Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015 Broadcom
 
 
 
 
   4 */
   5
   6/**
   7 * DOC: VC4 CRTC module
   8 *
   9 * In VC4, the Pixel Valve is what most closely corresponds to the
  10 * DRM's concept of a CRTC.  The PV generates video timings from the
  11 * encoder's clock plus its configuration.  It pulls scaled pixels from
  12 * the HVS at that timing, and feeds it to the encoder.
  13 *
  14 * However, the DRM CRTC also collects the configuration of all the
  15 * DRM planes attached to it.  As a result, the CRTC is also
  16 * responsible for writing the display list for the HVS channel that
  17 * the CRTC will use.
  18 *
  19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  21 * image domain can feed either HDMI or the SDTV controller.  The
  22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  23 * SDTV, etc.) according to which output type is chosen in the mux.
  24 *
  25 * For power management, the pixel valve's registers are all clocked
  26 * by the AXI clock, while the timings and FIFOs make use of the
  27 * output-specific clock.  Since the encoders also directly consume
  28 * the CPRMAN clocks, and know what timings they need, they are the
  29 * ones that set the clock.
  30 */
  31
  32#include <linux/clk.h>
  33#include <linux/component.h>
  34#include <linux/of.h>
  35#include <linux/platform_device.h>
  36#include <linux/pm_runtime.h>
  37
  38#include <drm/drm_atomic.h>
  39#include <drm/drm_atomic_helper.h>
  40#include <drm/drm_atomic_uapi.h>
  41#include <drm/drm_fb_dma_helper.h>
  42#include <drm/drm_framebuffer.h>
  43#include <drm/drm_drv.h>
  44#include <drm/drm_print.h>
  45#include <drm/drm_probe_helper.h>
  46#include <drm/drm_vblank.h>
  47
  48#include "vc4_drv.h"
  49#include "vc4_hdmi.h"
  50#include "vc4_regs.h"
  51
  52#define HVS_FIFO_LATENCY_PIX	6
 
 
 
 
 
 
  53
  54#define CRTC_WRITE(offset, val)								\
  55	do {										\
  56		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
  57		writel(val, vc4_crtc->regs + (offset));					\
  58	} while (0)
  59
  60#define CRTC_READ(offset)								\
  61	({										\
  62		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
  63		readl(vc4_crtc->regs + (offset));					\
  64	})
  65
  66static const struct debugfs_reg32 crtc_regs[] = {
  67	VC4_REG32(PV_CONTROL),
  68	VC4_REG32(PV_V_CONTROL),
  69	VC4_REG32(PV_VSYNCD_EVEN),
  70	VC4_REG32(PV_HORZA),
  71	VC4_REG32(PV_HORZB),
  72	VC4_REG32(PV_VERTA),
  73	VC4_REG32(PV_VERTB),
  74	VC4_REG32(PV_VERTA_EVEN),
  75	VC4_REG32(PV_VERTB_EVEN),
  76	VC4_REG32(PV_INTEN),
  77	VC4_REG32(PV_INTSTAT),
  78	VC4_REG32(PV_STAT),
  79	VC4_REG32(PV_HACT_ACT),
  80};
  81
  82static unsigned int
  83vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
 
 
 
 
 
 
  84{
  85	struct vc4_hvs *hvs = vc4->hvs;
  86	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
  87	/* Top/base are supposed to be 4-pixel aligned, but the
  88	 * Raspberry Pi firmware fills the low bits (which are
  89	 * presumably ignored).
  90	 */
  91	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
  92	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
  93
  94	return top - base + 4;
 
 
 
  95}
  96
  97static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
  98					  bool in_vblank_irq,
  99					  int *vpos, int *hpos,
 100					  ktime_t *stime, ktime_t *etime,
 101					  const struct drm_display_mode *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102{
 103	struct drm_device *dev = crtc->dev;
 104	struct vc4_dev *vc4 = to_vc4_dev(dev);
 105	struct vc4_hvs *hvs = vc4->hvs;
 106	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 107	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
 108	unsigned int channel = vc4_crtc_state->assigned_channel;
 109	unsigned int cob_size;
 110	u32 val;
 111	int fifo_lines;
 112	int vblank_lines;
 113	bool ret = false;
 114
 115	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 116
 117	/* Get optional system timestamp before query. */
 118	if (stime)
 119		*stime = ktime_get();
 120
 121	/*
 122	 * Read vertical scanline which is currently composed for our
 123	 * pixelvalve by the HVS, and also the scaler status.
 124	 */
 125	val = HVS_READ(SCALER_DISPSTATX(channel));
 126
 127	/* Get optional system timestamp after query. */
 128	if (etime)
 129		*etime = ktime_get();
 130
 131	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 132
 133	/* Vertical position of hvs composed scanline. */
 134	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 135	*hpos = 0;
 136
 137	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 138		*vpos /= 2;
 139
 140		/* Use hpos to correct for field offset in interlaced mode. */
 141		if (vc4_hvs_get_fifo_frame_count(hvs, channel) % 2)
 142			*hpos += mode->crtc_htotal / 2;
 143	}
 144
 145	cob_size = vc4_crtc_get_cob_allocation(vc4, channel);
 146	/* This is the offset we need for translating hvs -> pv scanout pos. */
 147	fifo_lines = cob_size / mode->crtc_hdisplay;
 148
 149	if (fifo_lines > 0)
 150		ret = true;
 151
 152	/* HVS more than fifo_lines into frame for compositing? */
 153	if (*vpos > fifo_lines) {
 154		/*
 155		 * We are in active scanout and can get some meaningful results
 156		 * from HVS. The actual PV scanout can not trail behind more
 157		 * than fifo_lines as that is the fifo's capacity. Assume that
 158		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 159		 * refilling the fifo and PV consuming from the fifo, ie.
 160		 * whenever the PV consumes and frees up a scanline in the
 161		 * fifo, the HVS will immediately refill it, therefore
 162		 * incrementing vpos. Therefore we choose HVS read position -
 163		 * fifo size in scanlines as a estimate of the real scanout
 164		 * position of the PV.
 165		 */
 166		*vpos -= fifo_lines + 1;
 167
 168		return ret;
 169	}
 170
 171	/*
 172	 * Less: This happens when we are in vblank and the HVS, after getting
 173	 * the VSTART restart signal from the PV, just started refilling its
 174	 * fifo with new lines from the top-most lines of the new framebuffers.
 175	 * The PV does not scan out in vblank, so does not remove lines from
 176	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 177	 * We can't get meaningful readings wrt. scanline position of the PV
 178	 * and need to make things up in a approximative but consistent way.
 179	 */
 180	vblank_lines = mode->vtotal - mode->vdisplay;
 181
 182	if (in_vblank_irq) {
 183		/*
 184		 * Assume the irq handler got called close to first
 185		 * line of vblank, so PV has about a full vblank
 186		 * scanlines to go, and as a base timestamp use the
 187		 * one taken at entry into vblank irq handler, so it
 188		 * is not affected by random delays due to lock
 189		 * contention on event_lock or vblank_time lock in
 190		 * the core.
 191		 */
 192		*vpos = -vblank_lines;
 193
 194		if (stime)
 195			*stime = vc4_crtc->t_vblank;
 196		if (etime)
 197			*etime = vc4_crtc->t_vblank;
 198
 199		/*
 200		 * If the HVS fifo is not yet full then we know for certain
 201		 * we are at the very beginning of vblank, as the hvs just
 202		 * started refilling, and the stime and etime timestamps
 203		 * truly correspond to start of vblank.
 204		 *
 205		 * Unfortunately there's no way to report this to upper levels
 206		 * and make it more useful.
 207		 */
 208	} else {
 209		/*
 210		 * No clue where we are inside vblank. Return a vpos of zero,
 211		 * which will cause calling code to just return the etime
 212		 * timestamp uncorrected. At least this is no worse than the
 213		 * standard fallback.
 214		 */
 215		*vpos = 0;
 216	}
 217
 218	return ret;
 219}
 220
 221static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
 222{
 223	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
 224	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 225	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
 226	u32 fifo_len_bytes = pv_data->fifo_depth;
 227
 228	/*
 229	 * Pixels are pulled from the HVS if the number of bytes is
 230	 * lower than the FIFO full level.
 231	 *
 232	 * The latency of the pixel fetch mechanism is 6 pixels, so we
 233	 * need to convert those 6 pixels in bytes, depending on the
 234	 * format, and then subtract that from the length of the FIFO
 235	 * to make sure we never end up in a situation where the FIFO
 236	 * is full.
 
 
 237	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238	switch (format) {
 239	case PV_CONTROL_FORMAT_DSIV_16:
 240	case PV_CONTROL_FORMAT_DSIC_16:
 241		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
 242	case PV_CONTROL_FORMAT_DSIV_18:
 243		return fifo_len_bytes - 14;
 244	case PV_CONTROL_FORMAT_24:
 245	case PV_CONTROL_FORMAT_DSIV_24:
 246	default:
 247		/*
 248		 * For some reason, the pixelvalve4 doesn't work with
 249		 * the usual formula and will only work with 32.
 250		 */
 251		if (crtc_data->hvs_output == 5)
 252			return 32;
 253
 254		/*
 255		 * It looks like in some situations, we will overflow
 256		 * the PixelValve FIFO (with the bit 10 of PV stat being
 257		 * set) and stall the HVS / PV, eventually resulting in
 258		 * a page flip timeout.
 259		 *
 260		 * Displaying the video overlay during a playback with
 261		 * Kodi on an RPi3 seems to be a great solution with a
 262		 * failure rate around 50%.
 263		 *
 264		 * Removing 1 from the FIFO full level however
 265		 * seems to completely remove that issue.
 266		 */
 267		if (vc4->gen == VC4_GEN_4)
 268			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
 269
 270		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
 271	}
 272}
 273
 274static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
 275					     u32 format)
 276{
 277	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
 278	u32 ret = 0;
 279
 280	ret |= VC4_SET_FIELD((level >> 6),
 281			     PV5_CONTROL_FIFO_LEVEL_HIGH);
 282
 283	return ret | VC4_SET_FIELD(level & 0x3f,
 284				   PV_CONTROL_FIFO_LEVEL);
 285}
 286
 287/*
 288 * Returns the encoder attached to the CRTC.
 289 *
 290 * VC4 can only scan out to one encoder at a time, while the DRM core
 291 * allows drivers to push pixels to more than one encoder from the
 292 * same CRTC.
 293 */
 294struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
 295					 struct drm_crtc_state *state)
 296{
 297	struct drm_encoder *encoder;
 
 298
 299	WARN_ON(hweight32(state->encoder_mask) > 1);
 300
 301	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
 302		return encoder;
 
 
 
 
 303
 304	return NULL;
 305}
 306
 307static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
 308{
 309	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 310	struct drm_device *dev = crtc->dev;
 311	int idx;
 312
 313	if (!drm_dev_enter(dev, &idx))
 314		return;
 315
 316	/* The PV needs to be disabled before it can be flushed */
 317	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
 318	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
 319
 320	drm_dev_exit(idx);
 321}
 322
 323static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
 324			       struct drm_atomic_state *state)
 325{
 326	struct drm_device *dev = crtc->dev;
 327	struct vc4_dev *vc4 = to_vc4_dev(dev);
 
 328	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 329	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 330	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 331	struct drm_crtc_state *crtc_state = crtc->state;
 332	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
 333	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 334	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
 335		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
 336	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
 337	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 338		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 339	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
 340	bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
 341	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 342	u8 ppc = pv_data->pixels_per_clock;
 343
 344	u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
 345	u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
 346	u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
 347
 348	bool debug_dump_regs = false;
 349	int idx;
 350
 351	if (!drm_dev_enter(dev, &idx))
 352		return;
 353
 354	if (debug_dump_regs) {
 355		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 356		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
 357			 drm_crtc_index(crtc));
 358		drm_print_regset32(&p, &vc4_crtc->regset);
 359	}
 360
 361	vc4_crtc_pixelvalve_reset(crtc);
 
 
 
 362
 363	CRTC_WRITE(PV_HORZA,
 364		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
 
 365				 PV_HORZA_HBP) |
 366		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
 
 367				 PV_HORZA_HSYNC));
 368
 369	CRTC_WRITE(PV_HORZB,
 370		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
 
 371				 PV_HORZB_HFP) |
 372		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
 373				 PV_HORZB_HACTIVE));
 374
 375	if (interlace) {
 376		bool odd_field_first = false;
 377		u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
 378		u16 vert_bp_even = vert_bp;
 379		u16 vert_fp_even = vert_fp;
 380
 381		if (is_vec) {
 382			/* VEC (composite output) */
 383			++field_delay;
 384			if (mode->htotal == 858) {
 385				/* 525-line mode (NTSC or PAL-M) */
 386				odd_field_first = true;
 387			}
 388		}
 389
 390		if (odd_field_first)
 391			++vert_fp_even;
 392		else
 393			++vert_bp;
 394
 
 395		CRTC_WRITE(PV_VERTA_EVEN,
 396			   VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
 397			   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
 
 
 
 
 398		CRTC_WRITE(PV_VERTB_EVEN,
 399			   VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
 
 
 400			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 401
 402		/* We set up first field even mode for HDMI and VEC's PAL.
 403		 * For NTSC, we need first field odd.
 
 
 404		 */
 405		CRTC_WRITE(PV_V_CONTROL,
 406			   PV_VCONTROL_CONTINUOUS |
 407			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 408			   PV_VCONTROL_INTERLACE |
 409			   (odd_field_first
 410				   ? PV_VCONTROL_ODD_FIRST
 411				   : VC4_SET_FIELD(field_delay,
 412						   PV_VCONTROL_ODD_DELAY)));
 413		CRTC_WRITE(PV_VSYNCD_EVEN,
 414			   (odd_field_first ? field_delay : 0));
 415	} else {
 416		CRTC_WRITE(PV_V_CONTROL,
 417			   PV_VCONTROL_CONTINUOUS |
 418			   (is_dsi ? PV_VCONTROL_DSI : 0));
 419		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 420	}
 421
 422	CRTC_WRITE(PV_VERTA,
 423		   VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
 424		   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
 425	CRTC_WRITE(PV_VERTB,
 426		   VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
 427		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 428
 429	if (is_dsi)
 430		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 431
 432	if (vc4->gen == VC4_GEN_5)
 433		CRTC_WRITE(PV_MUX_CFG,
 434			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
 435					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
 436
 437	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
 438		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
 439		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 
 
 440		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 441		   PV_CONTROL_CLR_AT_START |
 442		   PV_CONTROL_TRIGGER_UNDERFLOW |
 443		   PV_CONTROL_WAIT_HSTART |
 444		   VC4_SET_FIELD(vc4_encoder->clock_select,
 445				 PV_CONTROL_CLK_SELECT));
 
 
 
 
 
 
 
 
 
 
 
 
 446
 447	if (debug_dump_regs) {
 448		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
 449		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
 450			 drm_crtc_index(crtc));
 451		drm_print_regset32(&p, &vc4_crtc->regset);
 452	}
 453
 454	drm_dev_exit(idx);
 455}
 456
 457static void require_hvs_enabled(struct drm_device *dev)
 458{
 459	struct vc4_dev *vc4 = to_vc4_dev(dev);
 460	struct vc4_hvs *hvs = vc4->hvs;
 461
 462	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 463		     SCALER_DISPCTRL_ENABLE);
 464}
 465
 466static int vc4_crtc_disable(struct drm_crtc *crtc,
 467			    struct drm_encoder *encoder,
 468			    struct drm_atomic_state *state,
 469			    unsigned int channel)
 470{
 471	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 472	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 473	struct drm_device *dev = crtc->dev;
 474	struct vc4_dev *vc4 = to_vc4_dev(dev);
 475	int idx, ret;
 
 
 
 476
 477	if (!drm_dev_enter(dev, &idx))
 478		return -ENODEV;
 479
 480	CRTC_WRITE(PV_V_CONTROL,
 481		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 482	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 483	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 484
 485	/*
 486	 * This delay is needed to avoid to get a pixel stuck in an
 487	 * unflushable FIFO between the pixelvalve and the HDMI
 488	 * controllers on the BCM2711.
 489	 *
 490	 * Timing is fairly sensitive here, so mdelay is the safest
 491	 * approach.
 492	 *
 493	 * If it was to be reworked, the stuck pixel happens on a
 494	 * BCM2711 when changing mode with a good probability, so a
 495	 * script that changes mode on a regular basis should trigger
 496	 * the bug after less than 10 attempts. It manifests itself with
 497	 * every pixels being shifted by one to the right, and thus the
 498	 * last pixel of a line actually being displayed as the first
 499	 * pixel on the next line.
 500	 */
 501	mdelay(20);
 502
 503	if (vc4_encoder && vc4_encoder->post_crtc_disable)
 504		vc4_encoder->post_crtc_disable(encoder, state);
 505
 506	vc4_crtc_pixelvalve_reset(crtc);
 507	vc4_hvs_stop_channel(vc4->hvs, channel);
 508
 509	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
 510		vc4_encoder->post_crtc_powerdown(encoder, state);
 511
 512	drm_dev_exit(idx);
 513
 514	return 0;
 515}
 516
 517int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
 518{
 519	struct drm_device *drm = crtc->dev;
 520	struct vc4_dev *vc4 = to_vc4_dev(drm);
 521	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 522	enum vc4_encoder_type encoder_type;
 523	const struct vc4_pv_data *pv_data;
 524	struct drm_encoder *encoder;
 525	struct vc4_hdmi *vc4_hdmi;
 526	unsigned encoder_sel;
 527	int channel;
 528	int ret;
 529
 530	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 531				      "brcm,bcm2711-pixelvalve2") ||
 532	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
 533				      "brcm,bcm2711-pixelvalve4")))
 534		return 0;
 535
 536	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
 537		return 0;
 538
 539	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
 540		return 0;
 541
 542	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
 543	if (channel < 0)
 544		return 0;
 545
 546	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
 547	if (WARN_ON(encoder_sel != 0))
 548		return 0;
 549
 550	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
 551	encoder_type = pv_data->encoder_types[encoder_sel];
 552	encoder = vc4_find_encoder_by_type(drm, encoder_type);
 553	if (WARN_ON(!encoder))
 554		return 0;
 555
 556	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
 557	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
 558	if (ret)
 559		return ret;
 560
 561	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
 562	if (ret)
 563		return ret;
 564
 565	/*
 566	 * post_crtc_powerdown will have called pm_runtime_put, so we
 567	 * don't need it here otherwise we'll get the reference counting
 568	 * wrong.
 569	 */
 
 
 570
 571	return 0;
 
 
 
 
 572}
 573
 574void vc4_crtc_send_vblank(struct drm_crtc *crtc)
 575{
 576	struct drm_device *dev = crtc->dev;
 577	unsigned long flags;
 578
 579	if (!crtc->state || !crtc->state->event)
 580		return;
 581
 582	spin_lock_irqsave(&dev->event_lock, flags);
 583	drm_crtc_send_vblank_event(crtc, crtc->state->event);
 584	crtc->state->event = NULL;
 585	spin_unlock_irqrestore(&dev->event_lock, flags);
 586}
 587
 588static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 589				    struct drm_atomic_state *state)
 590{
 591	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
 592									 crtc);
 593	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
 594	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
 595	struct drm_device *dev = crtc->dev;
 596
 597	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
 598		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
 599
 600	require_hvs_enabled(dev);
 601
 602	/* Disable vblank irq handling before crtc is disabled. */
 603	drm_crtc_vblank_off(crtc);
 
 604
 605	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
 
 606
 607	/*
 608	 * Make sure we issue a vblank event after disabling the CRTC if
 609	 * someone was waiting it.
 610	 */
 611	vc4_crtc_send_vblank(crtc);
 612}
 613
 614static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 615				   struct drm_atomic_state *state)
 616{
 617	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
 618									 crtc);
 619	struct drm_device *dev = crtc->dev;
 
 620	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 621	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
 622	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 623	int idx;
 624
 625	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
 626		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
 627
 628	if (!drm_dev_enter(dev, &idx))
 629		return;
 630
 631	require_hvs_enabled(dev);
 632
 633	/* Enable vblank irq handling before crtc is started otherwise
 634	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 635	 */
 636	drm_crtc_vblank_on(crtc);
 
 637
 638	vc4_hvs_atomic_enable(crtc, state);
 639
 640	if (vc4_encoder->pre_crtc_configure)
 641		vc4_encoder->pre_crtc_configure(encoder, state);
 642
 643	vc4_crtc_config_pv(crtc, encoder, state);
 644
 645	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
 646
 647	if (vc4_encoder->pre_crtc_enable)
 648		vc4_encoder->pre_crtc_enable(encoder, state);
 649
 650	/* When feeding the transposer block the pixelvalve is unneeded and
 651	 * should not be enabled.
 652	 */
 
 
 
 
 
 
 653	CRTC_WRITE(PV_V_CONTROL,
 654		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 655
 656	if (vc4_encoder->post_crtc_enable)
 657		vc4_encoder->post_crtc_enable(encoder, state);
 658
 659	drm_dev_exit(idx);
 660}
 661
 662static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 663						const struct drm_display_mode *mode)
 664{
 665	/* Do not allow doublescan modes from user space */
 666	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 667		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 668			      crtc->base.id);
 669		return MODE_NO_DBLESCAN;
 670	}
 671
 672	return MODE_OK;
 673}
 674
 675void vc4_crtc_get_margins(struct drm_crtc_state *state,
 676			  unsigned int *left, unsigned int *right,
 677			  unsigned int *top, unsigned int *bottom)
 678{
 679	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 680	struct drm_connector_state *conn_state;
 681	struct drm_connector *conn;
 682	int i;
 
 
 
 
 683
 684	*left = vc4_state->margins.left;
 685	*right = vc4_state->margins.right;
 686	*top = vc4_state->margins.top;
 687	*bottom = vc4_state->margins.bottom;
 688
 689	/* We have to interate over all new connector states because
 690	 * vc4_crtc_get_margins() might be called before
 691	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
 692	 * might be outdated.
 693	 */
 694	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
 695		if (conn_state->crtc != state->crtc)
 696			continue;
 697
 698		*left = conn_state->tv.margins.left;
 699		*right = conn_state->tv.margins.right;
 700		*top = conn_state->tv.margins.top;
 701		*bottom = conn_state->tv.margins.bottom;
 702		break;
 703	}
 704}
 705
 706int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 707			  struct drm_atomic_state *state)
 708{
 709	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
 710									  crtc);
 711	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
 712	struct drm_connector *conn;
 713	struct drm_connector_state *conn_state;
 714	struct drm_encoder *encoder;
 715	int ret, i;
 716
 717	ret = vc4_hvs_atomic_check(crtc, state);
 
 
 
 718	if (ret)
 719		return ret;
 720
 721	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
 722	if (encoder) {
 723		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
 724		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 725
 726		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
 727			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
 728						  mode->clock * 9 / 10) * 1000;
 729		} else {
 730			vc4_state->hvs_load = mode->clock * 1000;
 731		}
 732	}
 
 
 
 
 
 
 733
 734	for_each_new_connector_in_state(state, conn, conn_state,
 735					i) {
 736		if (conn_state->crtc != crtc)
 737			continue;
 738
 739		if (memcmp(&vc4_state->margins, &conn_state->tv.margins,
 740			   sizeof(vc4_state->margins))) {
 741			memcpy(&vc4_state->margins, &conn_state->tv.margins,
 742			       sizeof(vc4_state->margins));
 743
 744			/*
 745			 * Need to force the dlist entries for all planes to be
 746			 * updated so that the dest rectangles are changed.
 
 
 
 747			 */
 748			crtc_state->zpos_changed = true;
 
 749		}
 750		break;
 
 751	}
 752
 753	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754}
 755
 756static int vc4_enable_vblank(struct drm_crtc *crtc)
 757{
 758	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 759	struct drm_device *dev = crtc->dev;
 760	int idx;
 761
 762	if (!drm_dev_enter(dev, &idx))
 763		return -ENODEV;
 764
 765	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 766
 767	drm_dev_exit(idx);
 768
 769	return 0;
 770}
 771
 772static void vc4_disable_vblank(struct drm_crtc *crtc)
 773{
 774	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 775	struct drm_device *dev = crtc->dev;
 776	int idx;
 777
 778	if (!drm_dev_enter(dev, &idx))
 779		return;
 780
 781	CRTC_WRITE(PV_INTEN, 0);
 782
 783	drm_dev_exit(idx);
 784}
 785
 786static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 787{
 788	struct drm_crtc *crtc = &vc4_crtc->base;
 789	struct drm_device *dev = crtc->dev;
 790	struct vc4_dev *vc4 = to_vc4_dev(dev);
 791	struct vc4_hvs *hvs = vc4->hvs;
 792	u32 chan = vc4_crtc->current_hvs_channel;
 793	unsigned long flags;
 794
 795	spin_lock_irqsave(&dev->event_lock, flags);
 796	spin_lock(&vc4_crtc->irq_lock);
 797	if (vc4_crtc->event &&
 798	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
 799	     vc4_crtc->feeds_txp)) {
 800		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 801		vc4_crtc->event = NULL;
 802		drm_crtc_vblank_put(crtc);
 803
 804		/* Wait for the page flip to unmask the underrun to ensure that
 805		 * the display list was updated by the hardware. Before that
 806		 * happens, the HVS will be using the previous display list with
 807		 * the CRTC and encoder already reconfigured, leading to
 808		 * underruns. This can be seen when reconfiguring the CRTC.
 809		 */
 810		vc4_hvs_unmask_underrun(hvs, chan);
 811	}
 812	spin_unlock(&vc4_crtc->irq_lock);
 813	spin_unlock_irqrestore(&dev->event_lock, flags);
 814}
 815
 816void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
 817{
 818	crtc->t_vblank = ktime_get();
 819	drm_crtc_handle_vblank(&crtc->base);
 820	vc4_crtc_handle_page_flip(crtc);
 821}
 822
 823static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 824{
 825	struct vc4_crtc *vc4_crtc = data;
 826	u32 stat = CRTC_READ(PV_INTSTAT);
 827	irqreturn_t ret = IRQ_NONE;
 828
 829	if (stat & PV_INT_VFP_START) {
 
 830		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 831		vc4_crtc_handle_vblank(vc4_crtc);
 
 832		ret = IRQ_HANDLED;
 833	}
 834
 835	return ret;
 836}
 837
 838struct vc4_async_flip_state {
 839	struct drm_crtc *crtc;
 840	struct drm_framebuffer *fb;
 841	struct drm_framebuffer *old_fb;
 842	struct drm_pending_vblank_event *event;
 843
 844	union {
 845		struct dma_fence_cb fence;
 846		struct vc4_seqno_cb seqno;
 847	} cb;
 848};
 849
 850/* Called when the V3D execution for the BO being flipped to is done, so that
 851 * we can actually update the plane's address to point to it.
 852 */
 853static void
 854vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
 855{
 
 
 856	struct drm_crtc *crtc = flip_state->crtc;
 857	struct drm_device *dev = crtc->dev;
 
 858	struct drm_plane *plane = crtc->primary;
 859
 860	vc4_plane_async_set_fb(plane, flip_state->fb);
 861	if (flip_state->event) {
 862		unsigned long flags;
 863
 864		spin_lock_irqsave(&dev->event_lock, flags);
 865		drm_crtc_send_vblank_event(crtc, flip_state->event);
 866		spin_unlock_irqrestore(&dev->event_lock, flags);
 867	}
 868
 869	drm_crtc_vblank_put(crtc);
 870	drm_framebuffer_put(flip_state->fb);
 871
 872	if (flip_state->old_fb)
 873		drm_framebuffer_put(flip_state->old_fb);
 874
 875	kfree(flip_state);
 876}
 877
 878static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
 879{
 880	struct vc4_async_flip_state *flip_state =
 881		container_of(cb, struct vc4_async_flip_state, cb.seqno);
 882	struct vc4_bo *bo = NULL;
 883
 884	if (flip_state->old_fb) {
 885		struct drm_gem_dma_object *dma_bo =
 886			drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
 887		bo = to_vc4_bo(&dma_bo->base);
 888	}
 889
 890	vc4_async_page_flip_complete(flip_state);
 891
 892	/*
 893	 * Decrement the BO usecnt in order to keep the inc/dec
 894	 * calls balanced when the planes are updated through
 895	 * the async update path.
 896	 *
 897	 * FIXME: we should move to generic async-page-flip when
 898	 * it's available, so that we can get rid of this
 899	 * hand-made cleanup_fb() logic.
 900	 */
 901	if (bo)
 902		vc4_bo_dec_usecnt(bo);
 903}
 904
 905static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
 906					       struct dma_fence_cb *cb)
 907{
 908	struct vc4_async_flip_state *flip_state =
 909		container_of(cb, struct vc4_async_flip_state, cb.fence);
 910
 911	vc4_async_page_flip_complete(flip_state);
 912	dma_fence_put(fence);
 913}
 914
 915static int vc4_async_set_fence_cb(struct drm_device *dev,
 916				  struct vc4_async_flip_state *flip_state)
 917{
 918	struct drm_framebuffer *fb = flip_state->fb;
 919	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
 920	struct vc4_dev *vc4 = to_vc4_dev(dev);
 921	struct dma_fence *fence;
 922	int ret;
 923
 924	if (vc4->gen == VC4_GEN_4) {
 925		struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
 926
 927		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
 928					  vc4_async_page_flip_seqno_complete);
 929	}
 930
 931	ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
 932	if (ret)
 933		return ret;
 934
 935	/* If there's no fence, complete the page flip immediately */
 936	if (!fence) {
 937		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
 938		return 0;
 939	}
 940
 941	/* If the fence has already been completed, complete the page flip */
 942	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
 943				   vc4_async_page_flip_fence_complete))
 944		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
 945
 946	return 0;
 947}
 948
 949static int
 950vc4_async_page_flip_common(struct drm_crtc *crtc,
 951			   struct drm_framebuffer *fb,
 952			   struct drm_pending_vblank_event *event,
 953			   uint32_t flags)
 
 
 
 
 
 954{
 955	struct drm_device *dev = crtc->dev;
 
 956	struct drm_plane *plane = crtc->primary;
 
 957	struct vc4_async_flip_state *flip_state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 958
 959	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 960	if (!flip_state)
 
 961		return -ENOMEM;
 
 962
 963	drm_framebuffer_get(fb);
 964	flip_state->fb = fb;
 965	flip_state->crtc = crtc;
 966	flip_state->event = event;
 967
 
 
 
 
 
 
 
 
 
 968	/* Save the current FB before it's replaced by the new one in
 969	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 970	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 971	 * it consistent.
 972	 * FIXME: we should move to generic async-page-flip when it's
 973	 * available, so that we can get rid of this hand-made cleanup_fb()
 974	 * logic.
 975	 */
 976	flip_state->old_fb = plane->state->fb;
 977	if (flip_state->old_fb)
 978		drm_framebuffer_get(flip_state->old_fb);
 979
 980	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 981
 982	/* Immediately update the plane's legacy fb pointer, so that later
 983	 * modeset prep sees the state that will be present when the semaphore
 984	 * is released.
 985	 */
 986	drm_atomic_set_fb_for_plane(plane->state, fb);
 
 987
 988	vc4_async_set_fence_cb(dev, flip_state);
 
 989
 990	/* Driver takes ownership of state on successful async commit. */
 991	return 0;
 992}
 993
 994/* Implements async (non-vblank-synced) page flips.
 995 *
 996 * The page flip ioctl needs to return immediately, so we grab the
 997 * modeset semaphore on the pipe, and queue the address update for
 998 * when V3D is done with the BO being flipped to.
 999 */
1000static int vc4_async_page_flip(struct drm_crtc *crtc,
1001			       struct drm_framebuffer *fb,
1002			       struct drm_pending_vblank_event *event,
1003			       uint32_t flags)
1004{
1005	struct drm_device *dev = crtc->dev;
1006	struct vc4_dev *vc4 = to_vc4_dev(dev);
1007	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1008	struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1009	int ret;
1010
1011	if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4))
1012		return -ENODEV;
1013
1014	/*
1015	 * Increment the BO usecnt here, so that we never end up with an
1016	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1017	 * plane is later updated through the non-async path.
1018	 *
1019	 * FIXME: we should move to generic async-page-flip when
1020	 * it's available, so that we can get rid of this
1021	 * hand-made prepare_fb() logic.
1022	 */
1023	ret = vc4_bo_inc_usecnt(bo);
1024	if (ret)
1025		return ret;
1026
1027	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1028	if (ret) {
1029		vc4_bo_dec_usecnt(bo);
1030		return ret;
1031	}
1032
1033	return 0;
1034}
1035
1036static int vc5_async_page_flip(struct drm_crtc *crtc,
1037			       struct drm_framebuffer *fb,
1038			       struct drm_pending_vblank_event *event,
1039			       uint32_t flags)
1040{
1041	return vc4_async_page_flip_common(crtc, fb, event, flags);
1042}
1043
1044int vc4_page_flip(struct drm_crtc *crtc,
1045		  struct drm_framebuffer *fb,
1046		  struct drm_pending_vblank_event *event,
1047		  uint32_t flags,
1048		  struct drm_modeset_acquire_ctx *ctx)
1049{
1050	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1051		struct drm_device *dev = crtc->dev;
1052		struct vc4_dev *vc4 = to_vc4_dev(dev);
1053
1054		if (vc4->gen > VC4_GEN_4)
1055			return vc5_async_page_flip(crtc, fb, event, flags);
1056		else
1057			return vc4_async_page_flip(crtc, fb, event, flags);
1058	} else {
1059		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1060	}
1061}
1062
1063struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1064{
1065	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1066
1067	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1068	if (!vc4_state)
1069		return NULL;
1070
1071	old_vc4_state = to_vc4_crtc_state(crtc->state);
1072	vc4_state->margins = old_vc4_state->margins;
1073	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1074
1075	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1076	return &vc4_state->base;
1077}
1078
1079void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1080			    struct drm_crtc_state *state)
1081{
1082	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1083	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1084
1085	if (drm_mm_node_allocated(&vc4_state->mm)) {
1086		unsigned long flags;
1087
1088		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1089		drm_mm_remove_node(&vc4_state->mm);
1090		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1091
1092	}
1093
1094	drm_atomic_helper_crtc_destroy_state(crtc, state);
1095}
1096
1097void vc4_crtc_reset(struct drm_crtc *crtc)
 
1098{
1099	struct vc4_crtc_state *vc4_crtc_state;
1100
1101	if (crtc->state)
1102		vc4_crtc_destroy_state(crtc, crtc->state);
1103
1104	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1105	if (!vc4_crtc_state) {
1106		crtc->state = NULL;
1107		return;
1108	}
1109
1110	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1111	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1112}
1113
1114int vc4_crtc_late_register(struct drm_crtc *crtc)
1115{
1116	struct drm_device *drm = crtc->dev;
1117	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1118	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1119
1120	vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1121				 &vc4_crtc->regset);
1122
1123	return 0;
1124}
1125
1126static const struct drm_crtc_funcs vc4_crtc_funcs = {
1127	.set_config = drm_atomic_helper_set_config,
 
1128	.page_flip = vc4_page_flip,
1129	.set_property = NULL,
1130	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1131	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1132	.reset = vc4_crtc_reset,
1133	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1134	.atomic_destroy_state = vc4_crtc_destroy_state,
 
1135	.enable_vblank = vc4_enable_vblank,
1136	.disable_vblank = vc4_disable_vblank,
1137	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1138	.late_register = vc4_crtc_late_register,
1139};
1140
1141static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 
1142	.mode_valid = vc4_crtc_mode_valid,
1143	.atomic_check = vc4_crtc_atomic_check,
1144	.atomic_begin = vc4_hvs_atomic_begin,
1145	.atomic_flush = vc4_hvs_atomic_flush,
1146	.atomic_enable = vc4_crtc_atomic_enable,
1147	.atomic_disable = vc4_crtc_atomic_disable,
1148	.get_scanout_position = vc4_crtc_get_scanout_position,
1149};
1150
1151const struct vc4_pv_data bcm2835_pv0_data = {
1152	.base = {
1153		.name = "pixelvalve-0",
1154		.debugfs_name = "crtc0_regs",
1155		.hvs_available_channels = BIT(0),
1156		.hvs_output = 0,
1157	},
1158	.fifo_depth = 64,
1159	.pixels_per_clock = 1,
1160	.encoder_types = {
1161		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1162		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1163	},
1164};
1165
1166const struct vc4_pv_data bcm2835_pv1_data = {
1167	.base = {
1168		.name = "pixelvalve-1",
1169		.debugfs_name = "crtc1_regs",
1170		.hvs_available_channels = BIT(2),
1171		.hvs_output = 2,
1172	},
1173	.fifo_depth = 64,
1174	.pixels_per_clock = 1,
1175	.encoder_types = {
1176		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1177		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1178	},
1179};
1180
1181const struct vc4_pv_data bcm2835_pv2_data = {
1182	.base = {
1183		.name = "pixelvalve-2",
1184		.debugfs_name = "crtc2_regs",
1185		.hvs_available_channels = BIT(1),
1186		.hvs_output = 1,
1187	},
1188	.fifo_depth = 64,
1189	.pixels_per_clock = 1,
1190	.encoder_types = {
1191		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1192		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1193	},
1194};
1195
1196const struct vc4_pv_data bcm2711_pv0_data = {
1197	.base = {
1198		.name = "pixelvalve-0",
1199		.debugfs_name = "crtc0_regs",
1200		.hvs_available_channels = BIT(0),
1201		.hvs_output = 0,
1202	},
1203	.fifo_depth = 64,
1204	.pixels_per_clock = 1,
1205	.encoder_types = {
1206		[0] = VC4_ENCODER_TYPE_DSI0,
1207		[1] = VC4_ENCODER_TYPE_DPI,
1208	},
1209};
1210
1211const struct vc4_pv_data bcm2711_pv1_data = {
1212	.base = {
1213		.name = "pixelvalve-1",
1214		.debugfs_name = "crtc1_regs",
1215		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1216		.hvs_output = 3,
1217	},
1218	.fifo_depth = 64,
1219	.pixels_per_clock = 1,
1220	.encoder_types = {
1221		[0] = VC4_ENCODER_TYPE_DSI1,
1222		[1] = VC4_ENCODER_TYPE_SMI,
1223	},
1224};
1225
1226const struct vc4_pv_data bcm2711_pv2_data = {
1227	.base = {
1228		.name = "pixelvalve-2",
1229		.debugfs_name = "crtc2_regs",
1230		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1231		.hvs_output = 4,
1232	},
1233	.fifo_depth = 256,
1234	.pixels_per_clock = 2,
1235	.encoder_types = {
1236		[0] = VC4_ENCODER_TYPE_HDMI0,
1237	},
1238};
1239
1240const struct vc4_pv_data bcm2711_pv3_data = {
1241	.base = {
1242		.name = "pixelvalve-3",
1243		.debugfs_name = "crtc3_regs",
1244		.hvs_available_channels = BIT(1),
1245		.hvs_output = 1,
1246	},
1247	.fifo_depth = 64,
1248	.pixels_per_clock = 1,
1249	.encoder_types = {
1250		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1251	},
1252};
1253
1254const struct vc4_pv_data bcm2711_pv4_data = {
1255	.base = {
1256		.name = "pixelvalve-4",
1257		.debugfs_name = "crtc4_regs",
1258		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1259		.hvs_output = 5,
1260	},
1261	.fifo_depth = 64,
1262	.pixels_per_clock = 2,
1263	.encoder_types = {
1264		[0] = VC4_ENCODER_TYPE_HDMI1,
1265	},
1266};
1267
1268static const struct of_device_id vc4_crtc_dt_match[] = {
1269	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1270	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1271	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1272	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1273	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1274	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1275	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1276	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1277	{}
1278};
1279
1280static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1281					struct drm_crtc *crtc)
1282{
1283	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1284	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1285	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1286	struct drm_encoder *encoder;
1287
1288	drm_for_each_encoder(encoder, drm) {
1289		struct vc4_encoder *vc4_encoder;
1290		int i;
1291
1292		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1293			continue;
1294
1295		vc4_encoder = to_vc4_encoder(encoder);
1296		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1297			if (vc4_encoder->type == encoder_types[i]) {
1298				vc4_encoder->clock_select = i;
1299				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1300				break;
1301			}
1302		}
1303	}
1304}
1305
1306/**
1307 * __vc4_crtc_init - Initializes a CRTC
1308 * @drm: DRM Device
1309 * @pdev: CRTC Platform Device
1310 * @vc4_crtc: CRTC Object to Initialize
1311 * @data: Configuration data associated with this CRTC
1312 * @primary_plane: Primary plane for CRTC
1313 * @crtc_funcs: Callbacks for the new CRTC
1314 * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1315 * @feeds_txp: Is this CRTC connected to the TXP?
1316 *
1317 * Initializes our private CRTC structure. This function is mostly
1318 * relevant for KUnit testing, all other users should use
1319 * vc4_crtc_init() instead.
1320 *
1321 * Returns:
1322 * 0 on success, a negative error code on failure.
1323 */
1324int __vc4_crtc_init(struct drm_device *drm,
1325		    struct platform_device *pdev,
1326		    struct vc4_crtc *vc4_crtc,
1327		    const struct vc4_crtc_data *data,
1328		    struct drm_plane *primary_plane,
1329		    const struct drm_crtc_funcs *crtc_funcs,
1330		    const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1331		    bool feeds_txp)
1332{
 
1333	struct vc4_dev *vc4 = to_vc4_dev(drm);
1334	struct drm_crtc *crtc = &vc4_crtc->base;
1335	unsigned int i;
1336	int ret;
1337
1338	vc4_crtc->data = data;
1339	vc4_crtc->pdev = pdev;
1340	vc4_crtc->feeds_txp = feeds_txp;
1341	spin_lock_init(&vc4_crtc->irq_lock);
1342	ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1343					 crtc_funcs, data->name);
1344	if (ret)
1345		return ret;
1346
1347	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1348
1349	if (vc4->gen == VC4_GEN_4) {
1350		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1351		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1352
1353		/* We support CTM, but only for one CRTC at a time. It's therefore
1354		 * implemented as private driver state in vc4_kms, not here.
1355		 */
1356		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1357	}
1358
1359	for (i = 0; i < crtc->gamma_size; i++) {
1360		vc4_crtc->lut_r[i] = i;
1361		vc4_crtc->lut_g[i] = i;
1362		vc4_crtc->lut_b[i] = i;
1363	}
1364
1365	return 0;
1366}
1367
1368int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1369		  struct vc4_crtc *vc4_crtc,
1370		  const struct vc4_crtc_data *data,
1371		  const struct drm_crtc_funcs *crtc_funcs,
1372		  const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1373		  bool feeds_txp)
1374{
1375	struct drm_plane *primary_plane;
1376
1377	/* For now, we create just the primary and the legacy cursor
1378	 * planes.  We should be able to stack more planes on easily,
1379	 * but to do that we would need to compute the bandwidth
1380	 * requirement of the plane configuration, and reject ones
1381	 * that will take too much.
1382	 */
1383	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1384	if (IS_ERR(primary_plane)) {
1385		dev_err(drm->dev, "failed to construct primary plane\n");
1386		return PTR_ERR(primary_plane);
1387	}
1388
1389	return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1390			       crtc_funcs, crtc_helper_funcs, feeds_txp);
1391}
1392
1393static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1394{
1395	struct platform_device *pdev = to_platform_device(dev);
1396	struct drm_device *drm = dev_get_drvdata(master);
1397	const struct vc4_pv_data *pv_data;
1398	struct vc4_crtc *vc4_crtc;
1399	struct drm_crtc *crtc;
1400	int ret;
 
 
1401
1402	vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1403	if (!vc4_crtc)
1404		return -ENOMEM;
1405	crtc = &vc4_crtc->base;
1406
1407	pv_data = of_device_get_match_data(dev);
1408	if (!pv_data)
1409		return -ENODEV;
 
1410
1411	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1412	if (IS_ERR(vc4_crtc->regs))
1413		return PTR_ERR(vc4_crtc->regs);
1414
1415	vc4_crtc->regset.base = vc4_crtc->regs;
1416	vc4_crtc->regset.regs = crtc_regs;
1417	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1418
1419	ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1420			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1421			    false);
1422	if (ret)
1423		return ret;
1424	vc4_set_crtc_possible_masks(drm, crtc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425
1426	CRTC_WRITE(PV_INTEN, 0);
1427	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1428	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1429			       vc4_crtc_irq_handler,
1430			       IRQF_SHARED,
1431			       "vc4 crtc", vc4_crtc);
1432	if (ret)
1433		return ret;
 
 
 
 
 
 
 
 
1434
1435	platform_set_drvdata(pdev, vc4_crtc);
1436
1437	return 0;
 
 
 
 
 
 
 
 
 
1438}
1439
1440static void vc4_crtc_unbind(struct device *dev, struct device *master,
1441			    void *data)
1442{
1443	struct platform_device *pdev = to_platform_device(dev);
1444	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1445
 
 
1446	CRTC_WRITE(PV_INTEN, 0);
1447
1448	platform_set_drvdata(pdev, NULL);
1449}
1450
1451static const struct component_ops vc4_crtc_ops = {
1452	.bind   = vc4_crtc_bind,
1453	.unbind = vc4_crtc_unbind,
1454};
1455
1456static int vc4_crtc_dev_probe(struct platform_device *pdev)
1457{
1458	return component_add(&pdev->dev, &vc4_crtc_ops);
1459}
1460
1461static void vc4_crtc_dev_remove(struct platform_device *pdev)
1462{
1463	component_del(&pdev->dev, &vc4_crtc_ops);
 
1464}
1465
1466struct platform_driver vc4_crtc_driver = {
1467	.probe = vc4_crtc_dev_probe,
1468	.remove = vc4_crtc_dev_remove,
1469	.driver = {
1470		.name = "vc4_crtc",
1471		.of_match_table = vc4_crtc_dt_match,
1472	},
1473};
v4.17
 
   1/*
   2 * Copyright (C) 2015 Broadcom
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 */
   8
   9/**
  10 * DOC: VC4 CRTC module
  11 *
  12 * In VC4, the Pixel Valve is what most closely corresponds to the
  13 * DRM's concept of a CRTC.  The PV generates video timings from the
  14 * encoder's clock plus its configuration.  It pulls scaled pixels from
  15 * the HVS at that timing, and feeds it to the encoder.
  16 *
  17 * However, the DRM CRTC also collects the configuration of all the
  18 * DRM planes attached to it.  As a result, the CRTC is also
  19 * responsible for writing the display list for the HVS channel that
  20 * the CRTC will use.
  21 *
  22 * The 2835 has 3 different pixel valves.  pv0 in the audio power
  23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
  24 * image domain can feed either HDMI or the SDTV controller.  The
  25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
  26 * SDTV, etc.) according to which output type is chosen in the mux.
  27 *
  28 * For power management, the pixel valve's registers are all clocked
  29 * by the AXI clock, while the timings and FIFOs make use of the
  30 * output-specific clock.  Since the encoders also directly consume
  31 * the CPRMAN clocks, and know what timings they need, they are the
  32 * ones that set the clock.
  33 */
  34
 
 
 
 
 
 
  35#include <drm/drm_atomic.h>
  36#include <drm/drm_atomic_helper.h>
  37#include <drm/drm_crtc_helper.h>
  38#include <linux/clk.h>
  39#include <drm/drm_fb_cma_helper.h>
  40#include <linux/component.h>
  41#include <linux/of_device.h>
 
 
 
  42#include "vc4_drv.h"
 
  43#include "vc4_regs.h"
  44
  45struct vc4_crtc {
  46	struct drm_crtc base;
  47	const struct vc4_crtc_data *data;
  48	void __iomem *regs;
  49
  50	/* Timestamp at start of vblank irq - unaffected by lock delays. */
  51	ktime_t t_vblank;
  52
  53	/* Which HVS channel we're using for our CRTC. */
  54	int channel;
  55
  56	u8 lut_r[256];
  57	u8 lut_g[256];
  58	u8 lut_b[256];
  59	/* Size in pixels of the COB memory allocated to this CRTC. */
  60	u32 cob_size;
  61
  62	struct drm_pending_vblank_event *event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63};
  64
  65struct vc4_crtc_state {
  66	struct drm_crtc_state base;
  67	/* Dlist area for this CRTC configuration. */
  68	struct drm_mm_node mm;
  69};
  70
  71static inline struct vc4_crtc *
  72to_vc4_crtc(struct drm_crtc *crtc)
  73{
  74	return (struct vc4_crtc *)crtc;
  75}
 
 
 
 
 
 
  76
  77static inline struct vc4_crtc_state *
  78to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
  79{
  80	return (struct vc4_crtc_state *)crtc_state;
  81}
  82
  83struct vc4_crtc_data {
  84	/* Which channel of the HVS this pixelvalve sources from. */
  85	int hvs_channel;
  86
  87	enum vc4_encoder_type encoder_types[4];
  88};
  89
  90#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
  91#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
  92
  93#define CRTC_REG(reg) { reg, #reg }
  94static const struct {
  95	u32 reg;
  96	const char *name;
  97} crtc_regs[] = {
  98	CRTC_REG(PV_CONTROL),
  99	CRTC_REG(PV_V_CONTROL),
 100	CRTC_REG(PV_VSYNCD_EVEN),
 101	CRTC_REG(PV_HORZA),
 102	CRTC_REG(PV_HORZB),
 103	CRTC_REG(PV_VERTA),
 104	CRTC_REG(PV_VERTB),
 105	CRTC_REG(PV_VERTA_EVEN),
 106	CRTC_REG(PV_VERTB_EVEN),
 107	CRTC_REG(PV_INTEN),
 108	CRTC_REG(PV_INTSTAT),
 109	CRTC_REG(PV_STAT),
 110	CRTC_REG(PV_HACT_ACT),
 111};
 112
 113static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
 114{
 115	int i;
 116
 117	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
 118		DRM_INFO("0x%04x (%s): 0x%08x\n",
 119			 crtc_regs[i].reg, crtc_regs[i].name,
 120			 CRTC_READ(crtc_regs[i].reg));
 121	}
 122}
 123
 124#ifdef CONFIG_DEBUG_FS
 125int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
 126{
 127	struct drm_info_node *node = (struct drm_info_node *)m->private;
 128	struct drm_device *dev = node->minor->dev;
 129	int crtc_index = (uintptr_t)node->info_ent->data;
 130	struct drm_crtc *crtc;
 131	struct vc4_crtc *vc4_crtc;
 132	int i;
 133
 134	i = 0;
 135	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
 136		if (i == crtc_index)
 137			break;
 138		i++;
 139	}
 140	if (!crtc)
 141		return 0;
 142	vc4_crtc = to_vc4_crtc(crtc);
 143
 144	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
 145		seq_printf(m, "%s (0x%04x): 0x%08x\n",
 146			   crtc_regs[i].name, crtc_regs[i].reg,
 147			   CRTC_READ(crtc_regs[i].reg));
 148	}
 149
 150	return 0;
 151}
 152#endif
 153
 154bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
 155			     bool in_vblank_irq, int *vpos, int *hpos,
 156			     ktime_t *stime, ktime_t *etime,
 157			     const struct drm_display_mode *mode)
 158{
 
 159	struct vc4_dev *vc4 = to_vc4_dev(dev);
 160	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
 161	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
 
 162	u32 val;
 163	int fifo_lines;
 164	int vblank_lines;
 165	bool ret = false;
 166
 167	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 168
 169	/* Get optional system timestamp before query. */
 170	if (stime)
 171		*stime = ktime_get();
 172
 173	/*
 174	 * Read vertical scanline which is currently composed for our
 175	 * pixelvalve by the HVS, and also the scaler status.
 176	 */
 177	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 178
 179	/* Get optional system timestamp after query. */
 180	if (etime)
 181		*etime = ktime_get();
 182
 183	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 184
 185	/* Vertical position of hvs composed scanline. */
 186	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
 187	*hpos = 0;
 188
 189	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 190		*vpos /= 2;
 191
 192		/* Use hpos to correct for field offset in interlaced mode. */
 193		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
 194			*hpos += mode->crtc_htotal / 2;
 195	}
 196
 
 197	/* This is the offset we need for translating hvs -> pv scanout pos. */
 198	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
 199
 200	if (fifo_lines > 0)
 201		ret = true;
 202
 203	/* HVS more than fifo_lines into frame for compositing? */
 204	if (*vpos > fifo_lines) {
 205		/*
 206		 * We are in active scanout and can get some meaningful results
 207		 * from HVS. The actual PV scanout can not trail behind more
 208		 * than fifo_lines as that is the fifo's capacity. Assume that
 209		 * in active scanout the HVS and PV work in lockstep wrt. HVS
 210		 * refilling the fifo and PV consuming from the fifo, ie.
 211		 * whenever the PV consumes and frees up a scanline in the
 212		 * fifo, the HVS will immediately refill it, therefore
 213		 * incrementing vpos. Therefore we choose HVS read position -
 214		 * fifo size in scanlines as a estimate of the real scanout
 215		 * position of the PV.
 216		 */
 217		*vpos -= fifo_lines + 1;
 218
 219		return ret;
 220	}
 221
 222	/*
 223	 * Less: This happens when we are in vblank and the HVS, after getting
 224	 * the VSTART restart signal from the PV, just started refilling its
 225	 * fifo with new lines from the top-most lines of the new framebuffers.
 226	 * The PV does not scan out in vblank, so does not remove lines from
 227	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
 228	 * We can't get meaningful readings wrt. scanline position of the PV
 229	 * and need to make things up in a approximative but consistent way.
 230	 */
 231	vblank_lines = mode->vtotal - mode->vdisplay;
 232
 233	if (in_vblank_irq) {
 234		/*
 235		 * Assume the irq handler got called close to first
 236		 * line of vblank, so PV has about a full vblank
 237		 * scanlines to go, and as a base timestamp use the
 238		 * one taken at entry into vblank irq handler, so it
 239		 * is not affected by random delays due to lock
 240		 * contention on event_lock or vblank_time lock in
 241		 * the core.
 242		 */
 243		*vpos = -vblank_lines;
 244
 245		if (stime)
 246			*stime = vc4_crtc->t_vblank;
 247		if (etime)
 248			*etime = vc4_crtc->t_vblank;
 249
 250		/*
 251		 * If the HVS fifo is not yet full then we know for certain
 252		 * we are at the very beginning of vblank, as the hvs just
 253		 * started refilling, and the stime and etime timestamps
 254		 * truly correspond to start of vblank.
 255		 *
 256		 * Unfortunately there's no way to report this to upper levels
 257		 * and make it more useful.
 258		 */
 259	} else {
 260		/*
 261		 * No clue where we are inside vblank. Return a vpos of zero,
 262		 * which will cause calling code to just return the etime
 263		 * timestamp uncorrected. At least this is no worse than the
 264		 * standard fallback.
 265		 */
 266		*vpos = 0;
 267	}
 268
 269	return ret;
 270}
 271
 272static void vc4_crtc_destroy(struct drm_crtc *crtc)
 273{
 274	drm_crtc_cleanup(crtc);
 275}
 
 
 276
 277static void
 278vc4_crtc_lut_load(struct drm_crtc *crtc)
 279{
 280	struct drm_device *dev = crtc->dev;
 281	struct vc4_dev *vc4 = to_vc4_dev(dev);
 282	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 283	u32 i;
 284
 285	/* The LUT memory is laid out with each HVS channel in order,
 286	 * each of which takes 256 writes for R, 256 for G, then 256
 287	 * for B.
 288	 */
 289	HVS_WRITE(SCALER_GAMADDR,
 290		  SCALER_GAMADDR_AUTOINC |
 291		  (vc4_crtc->channel * 3 * crtc->gamma_size));
 292
 293	for (i = 0; i < crtc->gamma_size; i++)
 294		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
 295	for (i = 0; i < crtc->gamma_size; i++)
 296		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
 297	for (i = 0; i < crtc->gamma_size; i++)
 298		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
 299}
 300
 301static int
 302vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
 303		   uint32_t size,
 304		   struct drm_modeset_acquire_ctx *ctx)
 305{
 306	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 307	u32 i;
 308
 309	for (i = 0; i < size; i++) {
 310		vc4_crtc->lut_r[i] = r[i] >> 8;
 311		vc4_crtc->lut_g[i] = g[i] >> 8;
 312		vc4_crtc->lut_b[i] = b[i] >> 8;
 313	}
 314
 315	vc4_crtc_lut_load(crtc);
 316
 317	return 0;
 318}
 319
 320static u32 vc4_get_fifo_full_level(u32 format)
 321{
 322	static const u32 fifo_len_bytes = 64;
 323	static const u32 hvs_latency_pix = 6;
 324
 325	switch (format) {
 326	case PV_CONTROL_FORMAT_DSIV_16:
 327	case PV_CONTROL_FORMAT_DSIC_16:
 328		return fifo_len_bytes - 2 * hvs_latency_pix;
 329	case PV_CONTROL_FORMAT_DSIV_18:
 330		return fifo_len_bytes - 14;
 331	case PV_CONTROL_FORMAT_24:
 332	case PV_CONTROL_FORMAT_DSIV_24:
 333	default:
 334		return fifo_len_bytes - 3 * hvs_latency_pix;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335	}
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 338/*
 339 * Returns the encoder attached to the CRTC.
 340 *
 341 * VC4 can only scan out to one encoder at a time, while the DRM core
 342 * allows drivers to push pixels to more than one encoder from the
 343 * same CRTC.
 344 */
 345static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
 
 346{
 347	struct drm_connector *connector;
 348	struct drm_connector_list_iter conn_iter;
 349
 350	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
 351	drm_for_each_connector_iter(connector, &conn_iter) {
 352		if (connector->state->crtc == crtc) {
 353			drm_connector_list_iter_end(&conn_iter);
 354			return connector->encoder;
 355		}
 356	}
 357	drm_connector_list_iter_end(&conn_iter);
 358
 359	return NULL;
 360}
 361
 362static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363{
 364	struct drm_device *dev = crtc->dev;
 365	struct vc4_dev *vc4 = to_vc4_dev(dev);
 366	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
 367	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
 368	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 369	struct drm_crtc_state *state = crtc->state;
 370	struct drm_display_mode *mode = &state->adjusted_mode;
 
 371	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
 372	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
 
 
 373	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
 374		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
 375	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
 
 
 
 
 
 
 
 
 376	bool debug_dump_regs = false;
 
 
 
 
 377
 378	if (debug_dump_regs) {
 379		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
 380		vc4_crtc_dump_regs(vc4_crtc);
 
 
 381	}
 382
 383	/* Reset the PV fifo. */
 384	CRTC_WRITE(PV_CONTROL, 0);
 385	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
 386	CRTC_WRITE(PV_CONTROL, 0);
 387
 388	CRTC_WRITE(PV_HORZA,
 389		   VC4_SET_FIELD((mode->htotal -
 390				  mode->hsync_end) * pixel_rep,
 391				 PV_HORZA_HBP) |
 392		   VC4_SET_FIELD((mode->hsync_end -
 393				  mode->hsync_start) * pixel_rep,
 394				 PV_HORZA_HSYNC));
 
 395	CRTC_WRITE(PV_HORZB,
 396		   VC4_SET_FIELD((mode->hsync_start -
 397				  mode->hdisplay) * pixel_rep,
 398				 PV_HORZB_HFP) |
 399		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
 
 400
 401	CRTC_WRITE(PV_VERTA,
 402		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
 403				 PV_VERTA_VBP) |
 404		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
 405				 PV_VERTA_VSYNC));
 406	CRTC_WRITE(PV_VERTB,
 407		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
 408				 PV_VERTB_VFP) |
 409		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 
 
 
 
 
 
 
 
 
 
 410
 411	if (interlace) {
 412		CRTC_WRITE(PV_VERTA_EVEN,
 413			   VC4_SET_FIELD(mode->crtc_vtotal -
 414					 mode->crtc_vsync_end - 1,
 415					 PV_VERTA_VBP) |
 416			   VC4_SET_FIELD(mode->crtc_vsync_end -
 417					 mode->crtc_vsync_start,
 418					 PV_VERTA_VSYNC));
 419		CRTC_WRITE(PV_VERTB_EVEN,
 420			   VC4_SET_FIELD(mode->crtc_vsync_start -
 421					 mode->crtc_vdisplay,
 422					 PV_VERTB_VFP) |
 423			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
 424
 425		/* We set up first field even mode for HDMI.  VEC's
 426		 * NTSC mode would want first field odd instead, once
 427		 * we support it (to do so, set ODD_FIRST and put the
 428		 * delay in VSYNCD_EVEN instead).
 429		 */
 430		CRTC_WRITE(PV_V_CONTROL,
 431			   PV_VCONTROL_CONTINUOUS |
 432			   (is_dsi ? PV_VCONTROL_DSI : 0) |
 433			   PV_VCONTROL_INTERLACE |
 434			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
 435					 PV_VCONTROL_ODD_DELAY));
 436		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
 
 
 
 437	} else {
 438		CRTC_WRITE(PV_V_CONTROL,
 439			   PV_VCONTROL_CONTINUOUS |
 440			   (is_dsi ? PV_VCONTROL_DSI : 0));
 
 441	}
 442
 443	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 444
 445	CRTC_WRITE(PV_CONTROL,
 
 446		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
 447		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
 448				 PV_CONTROL_FIFO_LEVEL) |
 449		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
 450		   PV_CONTROL_CLR_AT_START |
 451		   PV_CONTROL_TRIGGER_UNDERFLOW |
 452		   PV_CONTROL_WAIT_HSTART |
 453		   VC4_SET_FIELD(vc4_encoder->clock_select,
 454				 PV_CONTROL_CLK_SELECT) |
 455		   PV_CONTROL_FIFO_CLR |
 456		   PV_CONTROL_EN);
 457
 458	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 459		  SCALER_DISPBKGND_AUTOHS |
 460		  SCALER_DISPBKGND_GAMMA |
 461		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
 462
 463	/* Reload the LUT, since the SRAMs would have been disabled if
 464	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
 465	 */
 466	vc4_crtc_lut_load(crtc);
 467
 468	if (debug_dump_regs) {
 469		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
 470		vc4_crtc_dump_regs(vc4_crtc);
 
 
 471	}
 
 
 472}
 473
 474static void require_hvs_enabled(struct drm_device *dev)
 475{
 476	struct vc4_dev *vc4 = to_vc4_dev(dev);
 
 477
 478	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
 479		     SCALER_DISPCTRL_ENABLE);
 480}
 481
 482static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
 483				    struct drm_crtc_state *old_state)
 
 
 484{
 
 
 485	struct drm_device *dev = crtc->dev;
 486	struct vc4_dev *vc4 = to_vc4_dev(dev);
 487	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 488	u32 chan = vc4_crtc->channel;
 489	int ret;
 490	require_hvs_enabled(dev);
 491
 492	/* Disable vblank irq handling before crtc is disabled. */
 493	drm_crtc_vblank_off(crtc);
 494
 495	CRTC_WRITE(PV_V_CONTROL,
 496		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
 497	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
 498	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
 499
 500	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
 501	    SCALER_DISPCTRLX_ENABLE) {
 502		HVS_WRITE(SCALER_DISPCTRLX(chan),
 503			  SCALER_DISPCTRLX_RESET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505		/* While the docs say that reset is self-clearing, it
 506		 * seems it doesn't actually.
 507		 */
 508		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
 509	}
 
 
 
 
 
 
 
 
 
 
 510
 511	/* Once we leave, the scaler should be disabled and its fifo empty. */
 
 
 512
 513	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
 
 
 
 
 514
 515	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
 516				   SCALER_DISPSTATX_MODE) !=
 517		     SCALER_DISPSTATX_MODE_DISABLED);
 
 518
 519	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
 520		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
 521		     SCALER_DISPSTATX_EMPTY);
 522
 523	/*
 524	 * Make sure we issue a vblank event after disabling the CRTC if
 525	 * someone was waiting it.
 
 526	 */
 527	if (crtc->state->event) {
 528		unsigned long flags;
 529
 530		spin_lock_irqsave(&dev->event_lock, flags);
 531		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 532		crtc->state->event = NULL;
 533		spin_unlock_irqrestore(&dev->event_lock, flags);
 534	}
 535}
 536
 537static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
 538{
 539	struct drm_device *dev = crtc->dev;
 540	struct vc4_dev *vc4 = to_vc4_dev(dev);
 541	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 542	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 
 
 
 
 
 
 
 543
 544	if (crtc->state->event) {
 545		unsigned long flags;
 
 
 
 
 
 
 546
 547		crtc->state->event->pipe = drm_crtc_index(crtc);
 
 548
 549		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 550
 551		spin_lock_irqsave(&dev->event_lock, flags);
 552		vc4_crtc->event = crtc->state->event;
 553		crtc->state->event = NULL;
 554
 555		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 556			  vc4_state->mm.start);
 557
 558		spin_unlock_irqrestore(&dev->event_lock, flags);
 559	} else {
 560		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
 561			  vc4_state->mm.start);
 562	}
 563}
 564
 565static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
 566				   struct drm_crtc_state *old_state)
 567{
 
 
 568	struct drm_device *dev = crtc->dev;
 569	struct vc4_dev *vc4 = to_vc4_dev(dev);
 570	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 571	struct drm_crtc_state *state = crtc->state;
 572	struct drm_display_mode *mode = &state->adjusted_mode;
 
 
 
 
 
 
 
 573
 574	require_hvs_enabled(dev);
 575
 576	/* Enable vblank irq handling before crtc is started otherwise
 577	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
 578	 */
 579	drm_crtc_vblank_on(crtc);
 580	vc4_crtc_update_dlist(crtc);
 581
 582	/* Turn on the scaler, which will wait for vstart to start
 583	 * compositing.
 
 
 
 
 
 
 
 
 
 
 
 
 584	 */
 585	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
 586		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
 587		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
 588		  SCALER_DISPCTRLX_ENABLE);
 589
 590	/* Turn on the pixel valve, which will emit the vstart signal. */
 591	CRTC_WRITE(PV_V_CONTROL,
 592		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
 
 
 
 
 
 593}
 594
 595static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
 596						const struct drm_display_mode *mode)
 597{
 598	/* Do not allow doublescan modes from user space */
 599	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
 600		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
 601			      crtc->base.id);
 602		return MODE_NO_DBLESCAN;
 603	}
 604
 605	return MODE_OK;
 606}
 607
 608static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
 609				 struct drm_crtc_state *state)
 
 610{
 611	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 612	struct drm_device *dev = crtc->dev;
 613	struct vc4_dev *vc4 = to_vc4_dev(dev);
 614	struct drm_plane *plane;
 615	unsigned long flags;
 616	const struct drm_plane_state *plane_state;
 617	u32 dlist_count = 0;
 618	int ret;
 619
 620	/* The pixelvalve can only feed one encoder (and encoders are
 621	 * 1:1 with connectors.)
 
 
 
 
 
 
 
 622	 */
 623	if (hweight32(state->connector_mask) > 1)
 624		return -EINVAL;
 
 625
 626	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
 627		dlist_count += vc4_plane_dlist_size(plane_state);
 
 
 
 
 
 628
 629	dlist_count++; /* Account for SCALER_CTL0_END. */
 
 
 
 
 
 
 
 
 
 630
 631	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 632	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
 633				 dlist_count);
 634	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 635	if (ret)
 636		return ret;
 637
 638	return 0;
 639}
 
 
 640
 641static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
 642				  struct drm_crtc_state *old_state)
 643{
 644	struct drm_device *dev = crtc->dev;
 645	struct vc4_dev *vc4 = to_vc4_dev(dev);
 646	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 647	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 648	struct drm_plane *plane;
 649	struct vc4_plane_state *vc4_plane_state;
 650	bool debug_dump_regs = false;
 651	bool enable_bg_fill = false;
 652	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
 653	u32 __iomem *dlist_next = dlist_start;
 654
 655	if (debug_dump_regs) {
 656		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
 657		vc4_hvs_dump_state(dev);
 658	}
 659
 660	/* Copy all the active planes' dlist contents to the hardware dlist. */
 661	drm_atomic_crtc_for_each_plane(plane, crtc) {
 662		/* Is this the first active plane? */
 663		if (dlist_next == dlist_start) {
 664			/* We need to enable background fill when a plane
 665			 * could be alpha blending from the background, i.e.
 666			 * where no other plane is underneath. It suffices to
 667			 * consider the first active plane here since we set
 668			 * needs_bg_fill such that either the first plane
 669			 * already needs it or all planes on top blend from
 670			 * the first or a lower plane.
 671			 */
 672			vc4_plane_state = to_vc4_plane_state(plane->state);
 673			enable_bg_fill = vc4_plane_state->needs_bg_fill;
 674		}
 675
 676		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
 677	}
 678
 679	writel(SCALER_CTL0_END, dlist_next);
 680	dlist_next++;
 681
 682	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
 683
 684	if (enable_bg_fill)
 685		/* This sets a black background color fill, as is the case
 686		 * with other DRM drivers.
 687		 */
 688		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
 689			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
 690			  SCALER_DISPBKGND_FILL);
 691
 692	/* Only update DISPLIST if the CRTC was already running and is not
 693	 * being disabled.
 694	 * vc4_crtc_enable() takes care of updating the dlist just after
 695	 * re-enabling VBLANK interrupts and before enabling the engine.
 696	 * If the CRTC is being disabled, there's no point in updating this
 697	 * information.
 698	 */
 699	if (crtc->state->active && old_state->active)
 700		vc4_crtc_update_dlist(crtc);
 701
 702	if (debug_dump_regs) {
 703		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
 704		vc4_hvs_dump_state(dev);
 705	}
 706}
 707
 708static int vc4_enable_vblank(struct drm_crtc *crtc)
 709{
 710	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
 
 
 
 711
 712	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
 713
 
 
 714	return 0;
 715}
 716
 717static void vc4_disable_vblank(struct drm_crtc *crtc)
 718{
 719	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 
 
 
 
 
 720
 721	CRTC_WRITE(PV_INTEN, 0);
 
 
 722}
 723
 724static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
 725{
 726	struct drm_crtc *crtc = &vc4_crtc->base;
 727	struct drm_device *dev = crtc->dev;
 728	struct vc4_dev *vc4 = to_vc4_dev(dev);
 729	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
 730	u32 chan = vc4_crtc->channel;
 731	unsigned long flags;
 732
 733	spin_lock_irqsave(&dev->event_lock, flags);
 
 734	if (vc4_crtc->event &&
 735	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
 
 736		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
 737		vc4_crtc->event = NULL;
 738		drm_crtc_vblank_put(crtc);
 
 
 
 
 
 
 
 
 739	}
 
 740	spin_unlock_irqrestore(&dev->event_lock, flags);
 741}
 742
 
 
 
 
 
 
 
 743static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
 744{
 745	struct vc4_crtc *vc4_crtc = data;
 746	u32 stat = CRTC_READ(PV_INTSTAT);
 747	irqreturn_t ret = IRQ_NONE;
 748
 749	if (stat & PV_INT_VFP_START) {
 750		vc4_crtc->t_vblank = ktime_get();
 751		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
 752		drm_crtc_handle_vblank(&vc4_crtc->base);
 753		vc4_crtc_handle_page_flip(vc4_crtc);
 754		ret = IRQ_HANDLED;
 755	}
 756
 757	return ret;
 758}
 759
 760struct vc4_async_flip_state {
 761	struct drm_crtc *crtc;
 762	struct drm_framebuffer *fb;
 763	struct drm_framebuffer *old_fb;
 764	struct drm_pending_vblank_event *event;
 765
 766	struct vc4_seqno_cb cb;
 
 
 
 767};
 768
 769/* Called when the V3D execution for the BO being flipped to is done, so that
 770 * we can actually update the plane's address to point to it.
 771 */
 772static void
 773vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
 774{
 775	struct vc4_async_flip_state *flip_state =
 776		container_of(cb, struct vc4_async_flip_state, cb);
 777	struct drm_crtc *crtc = flip_state->crtc;
 778	struct drm_device *dev = crtc->dev;
 779	struct vc4_dev *vc4 = to_vc4_dev(dev);
 780	struct drm_plane *plane = crtc->primary;
 781
 782	vc4_plane_async_set_fb(plane, flip_state->fb);
 783	if (flip_state->event) {
 784		unsigned long flags;
 785
 786		spin_lock_irqsave(&dev->event_lock, flags);
 787		drm_crtc_send_vblank_event(crtc, flip_state->event);
 788		spin_unlock_irqrestore(&dev->event_lock, flags);
 789	}
 790
 791	drm_crtc_vblank_put(crtc);
 792	drm_framebuffer_put(flip_state->fb);
 793
 794	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
 795	 * when the planes are updated through the async update path.
 796	 * FIXME: we should move to generic async-page-flip when it's
 797	 * available, so that we can get rid of this hand-made cleanup_fb()
 798	 * logic.
 799	 */
 
 
 
 
 
 
 800	if (flip_state->old_fb) {
 801		struct drm_gem_cma_object *cma_bo;
 802		struct vc4_bo *bo;
 
 
 803
 804		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
 805		bo = to_vc4_bo(&cma_bo->base);
 
 
 
 
 
 
 
 
 
 
 806		vc4_bo_dec_usecnt(bo);
 807		drm_framebuffer_put(flip_state->old_fb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808	}
 809
 810	kfree(flip_state);
 
 
 
 811
 812	up(&vc4->async_modeset);
 813}
 814
 815/* Implements async (non-vblank-synced) page flips.
 816 *
 817 * The page flip ioctl needs to return immediately, so we grab the
 818 * modeset semaphore on the pipe, and queue the address update for
 819 * when V3D is done with the BO being flipped to.
 820 */
 821static int vc4_async_page_flip(struct drm_crtc *crtc,
 822			       struct drm_framebuffer *fb,
 823			       struct drm_pending_vblank_event *event,
 824			       uint32_t flags)
 825{
 826	struct drm_device *dev = crtc->dev;
 827	struct vc4_dev *vc4 = to_vc4_dev(dev);
 828	struct drm_plane *plane = crtc->primary;
 829	int ret = 0;
 830	struct vc4_async_flip_state *flip_state;
 831	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
 832	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
 833
 834	/* Increment the BO usecnt here, so that we never end up with an
 835	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
 836	 * plane is later updated through the non-async path.
 837	 * FIXME: we should move to generic async-page-flip when it's
 838	 * available, so that we can get rid of this hand-made prepare_fb()
 839	 * logic.
 840	 */
 841	ret = vc4_bo_inc_usecnt(bo);
 842	if (ret)
 843		return ret;
 844
 845	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
 846	if (!flip_state) {
 847		vc4_bo_dec_usecnt(bo);
 848		return -ENOMEM;
 849	}
 850
 851	drm_framebuffer_get(fb);
 852	flip_state->fb = fb;
 853	flip_state->crtc = crtc;
 854	flip_state->event = event;
 855
 856	/* Make sure all other async modesetes have landed. */
 857	ret = down_interruptible(&vc4->async_modeset);
 858	if (ret) {
 859		drm_framebuffer_put(fb);
 860		vc4_bo_dec_usecnt(bo);
 861		kfree(flip_state);
 862		return ret;
 863	}
 864
 865	/* Save the current FB before it's replaced by the new one in
 866	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
 867	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
 868	 * it consistent.
 869	 * FIXME: we should move to generic async-page-flip when it's
 870	 * available, so that we can get rid of this hand-made cleanup_fb()
 871	 * logic.
 872	 */
 873	flip_state->old_fb = plane->state->fb;
 874	if (flip_state->old_fb)
 875		drm_framebuffer_get(flip_state->old_fb);
 876
 877	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 878
 879	/* Immediately update the plane's legacy fb pointer, so that later
 880	 * modeset prep sees the state that will be present when the semaphore
 881	 * is released.
 882	 */
 883	drm_atomic_set_fb_for_plane(plane->state, fb);
 884	plane->fb = fb;
 885
 886	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
 887			   vc4_async_page_flip_complete);
 888
 889	/* Driver takes ownership of state on successful async commit. */
 890	return 0;
 891}
 892
 893static int vc4_page_flip(struct drm_crtc *crtc,
 894			 struct drm_framebuffer *fb,
 895			 struct drm_pending_vblank_event *event,
 896			 uint32_t flags,
 897			 struct drm_modeset_acquire_ctx *ctx)
 898{
 899	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
 900		return vc4_async_page_flip(crtc, fb, event, flags);
 901	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
 
 903}
 904
 905static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
 906{
 907	struct vc4_crtc_state *vc4_state;
 908
 909	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
 910	if (!vc4_state)
 911		return NULL;
 912
 
 
 
 
 913	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
 914	return &vc4_state->base;
 915}
 916
 917static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
 918				   struct drm_crtc_state *state)
 919{
 920	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
 921	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
 922
 923	if (vc4_state->mm.allocated) {
 924		unsigned long flags;
 925
 926		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
 927		drm_mm_remove_node(&vc4_state->mm);
 928		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
 929
 930	}
 931
 932	drm_atomic_helper_crtc_destroy_state(crtc, state);
 933}
 934
 935static void
 936vc4_crtc_reset(struct drm_crtc *crtc)
 937{
 
 
 938	if (crtc->state)
 939		__drm_atomic_helper_crtc_destroy_state(crtc->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940
 941	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
 942	if (crtc->state)
 943		crtc->state->crtc = crtc;
 
 944}
 945
 946static const struct drm_crtc_funcs vc4_crtc_funcs = {
 947	.set_config = drm_atomic_helper_set_config,
 948	.destroy = vc4_crtc_destroy,
 949	.page_flip = vc4_page_flip,
 950	.set_property = NULL,
 951	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
 952	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
 953	.reset = vc4_crtc_reset,
 954	.atomic_duplicate_state = vc4_crtc_duplicate_state,
 955	.atomic_destroy_state = vc4_crtc_destroy_state,
 956	.gamma_set = vc4_crtc_gamma_set,
 957	.enable_vblank = vc4_enable_vblank,
 958	.disable_vblank = vc4_disable_vblank,
 
 
 959};
 960
 961static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
 962	.mode_set_nofb = vc4_crtc_mode_set_nofb,
 963	.mode_valid = vc4_crtc_mode_valid,
 964	.atomic_check = vc4_crtc_atomic_check,
 965	.atomic_flush = vc4_crtc_atomic_flush,
 
 966	.atomic_enable = vc4_crtc_atomic_enable,
 967	.atomic_disable = vc4_crtc_atomic_disable,
 
 968};
 969
 970static const struct vc4_crtc_data pv0_data = {
 971	.hvs_channel = 0,
 
 
 
 
 
 
 
 972	.encoder_types = {
 973		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
 974		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
 975	},
 976};
 977
 978static const struct vc4_crtc_data pv1_data = {
 979	.hvs_channel = 2,
 
 
 
 
 
 
 
 980	.encoder_types = {
 981		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
 982		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
 983	},
 984};
 985
 986static const struct vc4_crtc_data pv2_data = {
 987	.hvs_channel = 1,
 
 
 
 
 
 
 
 988	.encoder_types = {
 989		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
 990		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
 991	},
 992};
 993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994static const struct of_device_id vc4_crtc_dt_match[] = {
 995	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
 996	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
 997	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
 
 
 
 
 
 998	{}
 999};
1000
1001static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1002					struct drm_crtc *crtc)
1003{
1004	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1005	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1006	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1007	struct drm_encoder *encoder;
1008
1009	drm_for_each_encoder(encoder, drm) {
1010		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
1011		int i;
1012
1013		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
 
 
 
 
1014			if (vc4_encoder->type == encoder_types[i]) {
1015				vc4_encoder->clock_select = i;
1016				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1017				break;
1018			}
1019		}
1020	}
1021}
1022
1023static void
1024vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025{
1026	struct drm_device *drm = vc4_crtc->base.dev;
1027	struct vc4_dev *vc4 = to_vc4_dev(drm);
1028	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1029	/* Top/base are supposed to be 4-pixel aligned, but the
1030	 * Raspberry Pi firmware fills the low bits (which are
1031	 * presumably ignored).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032	 */
1033	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1034	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
 
 
 
1035
1036	vc4_crtc->cob_size = top - base + 4;
 
1037}
1038
1039static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1040{
1041	struct platform_device *pdev = to_platform_device(dev);
1042	struct drm_device *drm = dev_get_drvdata(master);
 
1043	struct vc4_crtc *vc4_crtc;
1044	struct drm_crtc *crtc;
1045	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1046	const struct of_device_id *match;
1047	int ret, i;
1048
1049	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1050	if (!vc4_crtc)
1051		return -ENOMEM;
1052	crtc = &vc4_crtc->base;
1053
1054	match = of_match_device(vc4_crtc_dt_match, dev);
1055	if (!match)
1056		return -ENODEV;
1057	vc4_crtc->data = match->data;
1058
1059	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1060	if (IS_ERR(vc4_crtc->regs))
1061		return PTR_ERR(vc4_crtc->regs);
1062
1063	/* For now, we create just the primary and the legacy cursor
1064	 * planes.  We should be able to stack more planes on easily,
1065	 * but to do that we would need to compute the bandwidth
1066	 * requirement of the plane configuration, and reject ones
1067	 * that will take too much.
1068	 */
1069	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1070	if (IS_ERR(primary_plane)) {
1071		dev_err(dev, "failed to construct primary plane\n");
1072		ret = PTR_ERR(primary_plane);
1073		goto err;
1074	}
1075
1076	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1077				  &vc4_crtc_funcs, NULL);
1078	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1079	primary_plane->crtc = crtc;
1080	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1081	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1082
1083	/* Set up some arbitrary number of planes.  We're not limited
1084	 * by a set number of physical registers, just the space in
1085	 * the HVS (16k) and how small an plane can be (28 bytes).
1086	 * However, each plane we set up takes up some memory, and
1087	 * increases the cost of looping over planes, which atomic
1088	 * modesetting does quite a bit.  As a result, we pick a
1089	 * modest number of planes to expose, that should hopefully
1090	 * still cover any sane usecase.
1091	 */
1092	for (i = 0; i < 8; i++) {
1093		struct drm_plane *plane =
1094			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1095
1096		if (IS_ERR(plane))
1097			continue;
1098
1099		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1100	}
1101
1102	/* Set up the legacy cursor after overlay initialization,
1103	 * since we overlay planes on the CRTC in the order they were
1104	 * initialized.
1105	 */
1106	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1107	if (!IS_ERR(cursor_plane)) {
1108		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1109		cursor_plane->crtc = crtc;
1110		crtc->cursor = cursor_plane;
1111	}
1112
1113	vc4_crtc_get_cob_allocation(vc4_crtc);
1114
1115	CRTC_WRITE(PV_INTEN, 0);
1116	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1117	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1118			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
 
 
1119	if (ret)
1120		goto err_destroy_planes;
1121
1122	vc4_set_crtc_possible_masks(drm, crtc);
1123
1124	for (i = 0; i < crtc->gamma_size; i++) {
1125		vc4_crtc->lut_r[i] = i;
1126		vc4_crtc->lut_g[i] = i;
1127		vc4_crtc->lut_b[i] = i;
1128	}
1129
1130	platform_set_drvdata(pdev, vc4_crtc);
1131
1132	return 0;
1133
1134err_destroy_planes:
1135	list_for_each_entry_safe(destroy_plane, temp,
1136				 &drm->mode_config.plane_list, head) {
1137		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1138		    destroy_plane->funcs->destroy(destroy_plane);
1139	}
1140err:
1141	return ret;
1142}
1143
1144static void vc4_crtc_unbind(struct device *dev, struct device *master,
1145			    void *data)
1146{
1147	struct platform_device *pdev = to_platform_device(dev);
1148	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1149
1150	vc4_crtc_destroy(&vc4_crtc->base);
1151
1152	CRTC_WRITE(PV_INTEN, 0);
1153
1154	platform_set_drvdata(pdev, NULL);
1155}
1156
1157static const struct component_ops vc4_crtc_ops = {
1158	.bind   = vc4_crtc_bind,
1159	.unbind = vc4_crtc_unbind,
1160};
1161
1162static int vc4_crtc_dev_probe(struct platform_device *pdev)
1163{
1164	return component_add(&pdev->dev, &vc4_crtc_ops);
1165}
1166
1167static int vc4_crtc_dev_remove(struct platform_device *pdev)
1168{
1169	component_del(&pdev->dev, &vc4_crtc_ops);
1170	return 0;
1171}
1172
1173struct platform_driver vc4_crtc_driver = {
1174	.probe = vc4_crtc_dev_probe,
1175	.remove = vc4_crtc_dev_remove,
1176	.driver = {
1177		.name = "vc4_crtc",
1178		.of_match_table = vc4_crtc_dt_match,
1179	},
1180};