Loading...
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
5 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23 * OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26#include <linux/mm.h>
27#include <linux/module.h>
28#include <linux/rbtree.h>
29#include <linux/slab.h>
30#include <linux/spinlock.h>
31#include <linux/types.h>
32
33#include <drm/drm_mm.h>
34#include <drm/drm_vma_manager.h>
35
36/**
37 * DOC: vma offset manager
38 *
39 * The vma-manager is responsible to map arbitrary driver-dependent memory
40 * regions into the linear user address-space. It provides offsets to the
41 * caller which can then be used on the address_space of the drm-device. It
42 * takes care to not overlap regions, size them appropriately and to not
43 * confuse mm-core by inconsistent fake vm_pgoff fields.
44 * Drivers shouldn't use this for object placement in VMEM. This manager should
45 * only be used to manage mappings into linear user-space VMs.
46 *
47 * We use drm_mm as backend to manage object allocations. But it is highly
48 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
49 * speed up offset lookups.
50 *
51 * You must not use multiple offset managers on a single address_space.
52 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
53 * no longer be linear.
54 *
55 * This offset manager works on page-based addresses. That is, every argument
56 * and return code (with the exception of drm_vma_node_offset_addr()) is given
57 * in number of pages, not number of bytes. That means, object sizes and offsets
58 * must always be page-aligned (as usual).
59 * If you want to get a valid byte-based user-space address for a given offset,
60 * please see drm_vma_node_offset_addr().
61 *
62 * Additionally to offset management, the vma offset manager also handles access
63 * management. For every open-file context that is allowed to access a given
64 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
65 * open-file with the offset of the node will fail with -EACCES. To revoke
66 * access again, use drm_vma_node_revoke(). However, the caller is responsible
67 * for destroying already existing mappings, if required.
68 */
69
70/**
71 * drm_vma_offset_manager_init - Initialize new offset-manager
72 * @mgr: Manager object
73 * @page_offset: Offset of available memory area (page-based)
74 * @size: Size of available address space range (page-based)
75 *
76 * Initialize a new offset-manager. The offset and area size available for the
77 * manager are given as @page_offset and @size. Both are interpreted as
78 * page-numbers, not bytes.
79 *
80 * Adding/removing nodes from the manager is locked internally and protected
81 * against concurrent access. However, node allocation and destruction is left
82 * for the caller. While calling into the vma-manager, a given node must
83 * always be guaranteed to be referenced.
84 */
85void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
86 unsigned long page_offset, unsigned long size)
87{
88 rwlock_init(&mgr->vm_lock);
89 drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
90}
91EXPORT_SYMBOL(drm_vma_offset_manager_init);
92
93/**
94 * drm_vma_offset_manager_destroy() - Destroy offset manager
95 * @mgr: Manager object
96 *
97 * Destroy an object manager which was previously created via
98 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
99 * before destroying the manager. Otherwise, drm_mm will refuse to free the
100 * requested resources.
101 *
102 * The manager must not be accessed after this function is called.
103 */
104void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
105{
106 drm_mm_takedown(&mgr->vm_addr_space_mm);
107}
108EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
109
110/**
111 * drm_vma_offset_lookup_locked() - Find node in offset space
112 * @mgr: Manager object
113 * @start: Start address for object (page-based)
114 * @pages: Size of object (page-based)
115 *
116 * Find a node given a start address and object size. This returns the _best_
117 * match for the given node. That is, @start may point somewhere into a valid
118 * region and the given node will be returned, as long as the node spans the
119 * whole requested area (given the size in number of pages as @pages).
120 *
121 * Note that before lookup the vma offset manager lookup lock must be acquired
122 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
123 * used to implement weakly referenced lookups using kref_get_unless_zero().
124 *
125 * Example:
126 *
127 * ::
128 *
129 * drm_vma_offset_lock_lookup(mgr);
130 * node = drm_vma_offset_lookup_locked(mgr);
131 * if (node)
132 * kref_get_unless_zero(container_of(node, sth, entr));
133 * drm_vma_offset_unlock_lookup(mgr);
134 *
135 * RETURNS:
136 * Returns NULL if no suitable node can be found. Otherwise, the best match
137 * is returned. It's the caller's responsibility to make sure the node doesn't
138 * get destroyed before the caller can access it.
139 */
140struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
141 unsigned long start,
142 unsigned long pages)
143{
144 struct drm_mm_node *node, *best;
145 struct rb_node *iter;
146 unsigned long offset;
147
148 iter = mgr->vm_addr_space_mm.interval_tree.rb_root.rb_node;
149 best = NULL;
150
151 while (likely(iter)) {
152 node = rb_entry(iter, struct drm_mm_node, rb);
153 offset = node->start;
154 if (start >= offset) {
155 iter = iter->rb_right;
156 best = node;
157 if (start == offset)
158 break;
159 } else {
160 iter = iter->rb_left;
161 }
162 }
163
164 /* verify that the node spans the requested area */
165 if (best) {
166 offset = best->start + best->size;
167 if (offset < start + pages)
168 best = NULL;
169 }
170
171 if (!best)
172 return NULL;
173
174 return container_of(best, struct drm_vma_offset_node, vm_node);
175}
176EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
177
178/**
179 * drm_vma_offset_add() - Add offset node to manager
180 * @mgr: Manager object
181 * @node: Node to be added
182 * @pages: Allocation size visible to user-space (in number of pages)
183 *
184 * Add a node to the offset-manager. If the node was already added, this does
185 * nothing and return 0. @pages is the size of the object given in number of
186 * pages.
187 * After this call succeeds, you can access the offset of the node until it
188 * is removed again.
189 *
190 * If this call fails, it is safe to retry the operation or call
191 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
192 * case.
193 *
194 * @pages is not required to be the same size as the underlying memory object
195 * that you want to map. It only limits the size that user-space can map into
196 * their address space.
197 *
198 * RETURNS:
199 * 0 on success, negative error code on failure.
200 */
201int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
202 struct drm_vma_offset_node *node, unsigned long pages)
203{
204 int ret = 0;
205
206 write_lock(&mgr->vm_lock);
207
208 if (!drm_mm_node_allocated(&node->vm_node))
209 ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
210 &node->vm_node, pages);
211
212 write_unlock(&mgr->vm_lock);
213
214 return ret;
215}
216EXPORT_SYMBOL(drm_vma_offset_add);
217
218/**
219 * drm_vma_offset_remove() - Remove offset node from manager
220 * @mgr: Manager object
221 * @node: Node to be removed
222 *
223 * Remove a node from the offset manager. If the node wasn't added before, this
224 * does nothing. After this call returns, the offset and size will be 0 until a
225 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
226 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
227 * offset is allocated.
228 */
229void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
230 struct drm_vma_offset_node *node)
231{
232 write_lock(&mgr->vm_lock);
233
234 if (drm_mm_node_allocated(&node->vm_node)) {
235 drm_mm_remove_node(&node->vm_node);
236 memset(&node->vm_node, 0, sizeof(node->vm_node));
237 }
238
239 write_unlock(&mgr->vm_lock);
240}
241EXPORT_SYMBOL(drm_vma_offset_remove);
242
243static int vma_node_allow(struct drm_vma_offset_node *node,
244 struct drm_file *tag, bool ref_counted)
245{
246 struct rb_node **iter;
247 struct rb_node *parent = NULL;
248 struct drm_vma_offset_file *new, *entry;
249 int ret = 0;
250
251 /* Preallocate entry to avoid atomic allocations below. It is quite
252 * unlikely that an open-file is added twice to a single node so we
253 * don't optimize for this case. OOM is checked below only if the entry
254 * is actually used. */
255 new = kmalloc(sizeof(*entry), GFP_KERNEL);
256
257 write_lock(&node->vm_lock);
258
259 iter = &node->vm_files.rb_node;
260
261 while (likely(*iter)) {
262 parent = *iter;
263 entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
264
265 if (tag == entry->vm_tag) {
266 if (ref_counted)
267 entry->vm_count++;
268 goto unlock;
269 } else if (tag > entry->vm_tag) {
270 iter = &(*iter)->rb_right;
271 } else {
272 iter = &(*iter)->rb_left;
273 }
274 }
275
276 if (!new) {
277 ret = -ENOMEM;
278 goto unlock;
279 }
280
281 new->vm_tag = tag;
282 new->vm_count = 1;
283 rb_link_node(&new->vm_rb, parent, iter);
284 rb_insert_color(&new->vm_rb, &node->vm_files);
285 new = NULL;
286
287unlock:
288 write_unlock(&node->vm_lock);
289 kfree(new);
290 return ret;
291}
292
293/**
294 * drm_vma_node_allow - Add open-file to list of allowed users
295 * @node: Node to modify
296 * @tag: Tag of file to remove
297 *
298 * Add @tag to the list of allowed open-files for this node. If @tag is
299 * already on this list, the ref-count is incremented.
300 *
301 * The list of allowed-users is preserved across drm_vma_offset_add() and
302 * drm_vma_offset_remove() calls. You may even call it if the node is currently
303 * not added to any offset-manager.
304 *
305 * You must remove all open-files the same number of times as you added them
306 * before destroying the node. Otherwise, you will leak memory.
307 *
308 * This is locked against concurrent access internally.
309 *
310 * RETURNS:
311 * 0 on success, negative error code on internal failure (out-of-mem)
312 */
313int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
314{
315 return vma_node_allow(node, tag, true);
316}
317EXPORT_SYMBOL(drm_vma_node_allow);
318
319/**
320 * drm_vma_node_allow_once - Add open-file to list of allowed users
321 * @node: Node to modify
322 * @tag: Tag of file to remove
323 *
324 * Add @tag to the list of allowed open-files for this node.
325 *
326 * The list of allowed-users is preserved across drm_vma_offset_add() and
327 * drm_vma_offset_remove() calls. You may even call it if the node is currently
328 * not added to any offset-manager.
329 *
330 * This is not ref-counted unlike drm_vma_node_allow() hence drm_vma_node_revoke()
331 * should only be called once after this.
332 *
333 * This is locked against concurrent access internally.
334 *
335 * RETURNS:
336 * 0 on success, negative error code on internal failure (out-of-mem)
337 */
338int drm_vma_node_allow_once(struct drm_vma_offset_node *node, struct drm_file *tag)
339{
340 return vma_node_allow(node, tag, false);
341}
342EXPORT_SYMBOL(drm_vma_node_allow_once);
343
344/**
345 * drm_vma_node_revoke - Remove open-file from list of allowed users
346 * @node: Node to modify
347 * @tag: Tag of file to remove
348 *
349 * Decrement the ref-count of @tag in the list of allowed open-files on @node.
350 * If the ref-count drops to zero, remove @tag from the list. You must call
351 * this once for every drm_vma_node_allow() on @tag.
352 *
353 * This is locked against concurrent access internally.
354 *
355 * If @tag is not on the list, nothing is done.
356 */
357void drm_vma_node_revoke(struct drm_vma_offset_node *node,
358 struct drm_file *tag)
359{
360 struct drm_vma_offset_file *entry;
361 struct rb_node *iter;
362
363 write_lock(&node->vm_lock);
364
365 iter = node->vm_files.rb_node;
366 while (likely(iter)) {
367 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
368 if (tag == entry->vm_tag) {
369 if (!--entry->vm_count) {
370 rb_erase(&entry->vm_rb, &node->vm_files);
371 kfree(entry);
372 }
373 break;
374 } else if (tag > entry->vm_tag) {
375 iter = iter->rb_right;
376 } else {
377 iter = iter->rb_left;
378 }
379 }
380
381 write_unlock(&node->vm_lock);
382}
383EXPORT_SYMBOL(drm_vma_node_revoke);
384
385/**
386 * drm_vma_node_is_allowed - Check whether an open-file is granted access
387 * @node: Node to check
388 * @tag: Tag of file to remove
389 *
390 * Search the list in @node whether @tag is currently on the list of allowed
391 * open-files (see drm_vma_node_allow()).
392 *
393 * This is locked against concurrent access internally.
394 *
395 * RETURNS:
396 * true if @filp is on the list
397 */
398bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
399 struct drm_file *tag)
400{
401 struct drm_vma_offset_file *entry;
402 struct rb_node *iter;
403
404 read_lock(&node->vm_lock);
405
406 iter = node->vm_files.rb_node;
407 while (likely(iter)) {
408 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
409 if (tag == entry->vm_tag)
410 break;
411 else if (tag > entry->vm_tag)
412 iter = iter->rb_right;
413 else
414 iter = iter->rb_left;
415 }
416
417 read_unlock(&node->vm_lock);
418
419 return iter;
420}
421EXPORT_SYMBOL(drm_vma_node_is_allowed);
1/*
2 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
3 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
4 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25#include <drm/drmP.h>
26#include <drm/drm_mm.h>
27#include <drm/drm_vma_manager.h>
28#include <linux/mm.h>
29#include <linux/module.h>
30#include <linux/rbtree.h>
31#include <linux/slab.h>
32#include <linux/spinlock.h>
33#include <linux/types.h>
34
35/**
36 * DOC: vma offset manager
37 *
38 * The vma-manager is responsible to map arbitrary driver-dependent memory
39 * regions into the linear user address-space. It provides offsets to the
40 * caller which can then be used on the address_space of the drm-device. It
41 * takes care to not overlap regions, size them appropriately and to not
42 * confuse mm-core by inconsistent fake vm_pgoff fields.
43 * Drivers shouldn't use this for object placement in VMEM. This manager should
44 * only be used to manage mappings into linear user-space VMs.
45 *
46 * We use drm_mm as backend to manage object allocations. But it is highly
47 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
48 * speed up offset lookups.
49 *
50 * You must not use multiple offset managers on a single address_space.
51 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
52 * no longer be linear.
53 *
54 * This offset manager works on page-based addresses. That is, every argument
55 * and return code (with the exception of drm_vma_node_offset_addr()) is given
56 * in number of pages, not number of bytes. That means, object sizes and offsets
57 * must always be page-aligned (as usual).
58 * If you want to get a valid byte-based user-space address for a given offset,
59 * please see drm_vma_node_offset_addr().
60 *
61 * Additionally to offset management, the vma offset manager also handles access
62 * management. For every open-file context that is allowed to access a given
63 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
64 * open-file with the offset of the node will fail with -EACCES. To revoke
65 * access again, use drm_vma_node_revoke(). However, the caller is responsible
66 * for destroying already existing mappings, if required.
67 */
68
69/**
70 * drm_vma_offset_manager_init - Initialize new offset-manager
71 * @mgr: Manager object
72 * @page_offset: Offset of available memory area (page-based)
73 * @size: Size of available address space range (page-based)
74 *
75 * Initialize a new offset-manager. The offset and area size available for the
76 * manager are given as @page_offset and @size. Both are interpreted as
77 * page-numbers, not bytes.
78 *
79 * Adding/removing nodes from the manager is locked internally and protected
80 * against concurrent access. However, node allocation and destruction is left
81 * for the caller. While calling into the vma-manager, a given node must
82 * always be guaranteed to be referenced.
83 */
84void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
85 unsigned long page_offset, unsigned long size)
86{
87 rwlock_init(&mgr->vm_lock);
88 drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
89}
90EXPORT_SYMBOL(drm_vma_offset_manager_init);
91
92/**
93 * drm_vma_offset_manager_destroy() - Destroy offset manager
94 * @mgr: Manager object
95 *
96 * Destroy an object manager which was previously created via
97 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
98 * before destroying the manager. Otherwise, drm_mm will refuse to free the
99 * requested resources.
100 *
101 * The manager must not be accessed after this function is called.
102 */
103void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
104{
105 /* take the lock to protect against buggy drivers */
106 write_lock(&mgr->vm_lock);
107 drm_mm_takedown(&mgr->vm_addr_space_mm);
108 write_unlock(&mgr->vm_lock);
109}
110EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
111
112/**
113 * drm_vma_offset_lookup_locked() - Find node in offset space
114 * @mgr: Manager object
115 * @start: Start address for object (page-based)
116 * @pages: Size of object (page-based)
117 *
118 * Find a node given a start address and object size. This returns the _best_
119 * match for the given node. That is, @start may point somewhere into a valid
120 * region and the given node will be returned, as long as the node spans the
121 * whole requested area (given the size in number of pages as @pages).
122 *
123 * Note that before lookup the vma offset manager lookup lock must be acquired
124 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
125 * used to implement weakly referenced lookups using kref_get_unless_zero().
126 *
127 * Example:
128 *
129 * ::
130 *
131 * drm_vma_offset_lock_lookup(mgr);
132 * node = drm_vma_offset_lookup_locked(mgr);
133 * if (node)
134 * kref_get_unless_zero(container_of(node, sth, entr));
135 * drm_vma_offset_unlock_lookup(mgr);
136 *
137 * RETURNS:
138 * Returns NULL if no suitable node can be found. Otherwise, the best match
139 * is returned. It's the caller's responsibility to make sure the node doesn't
140 * get destroyed before the caller can access it.
141 */
142struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
143 unsigned long start,
144 unsigned long pages)
145{
146 struct drm_mm_node *node, *best;
147 struct rb_node *iter;
148 unsigned long offset;
149
150 iter = mgr->vm_addr_space_mm.interval_tree.rb_root.rb_node;
151 best = NULL;
152
153 while (likely(iter)) {
154 node = rb_entry(iter, struct drm_mm_node, rb);
155 offset = node->start;
156 if (start >= offset) {
157 iter = iter->rb_right;
158 best = node;
159 if (start == offset)
160 break;
161 } else {
162 iter = iter->rb_left;
163 }
164 }
165
166 /* verify that the node spans the requested area */
167 if (best) {
168 offset = best->start + best->size;
169 if (offset < start + pages)
170 best = NULL;
171 }
172
173 if (!best)
174 return NULL;
175
176 return container_of(best, struct drm_vma_offset_node, vm_node);
177}
178EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
179
180/**
181 * drm_vma_offset_add() - Add offset node to manager
182 * @mgr: Manager object
183 * @node: Node to be added
184 * @pages: Allocation size visible to user-space (in number of pages)
185 *
186 * Add a node to the offset-manager. If the node was already added, this does
187 * nothing and return 0. @pages is the size of the object given in number of
188 * pages.
189 * After this call succeeds, you can access the offset of the node until it
190 * is removed again.
191 *
192 * If this call fails, it is safe to retry the operation or call
193 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
194 * case.
195 *
196 * @pages is not required to be the same size as the underlying memory object
197 * that you want to map. It only limits the size that user-space can map into
198 * their address space.
199 *
200 * RETURNS:
201 * 0 on success, negative error code on failure.
202 */
203int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
204 struct drm_vma_offset_node *node, unsigned long pages)
205{
206 int ret = 0;
207
208 write_lock(&mgr->vm_lock);
209
210 if (!drm_mm_node_allocated(&node->vm_node))
211 ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
212 &node->vm_node, pages);
213
214 write_unlock(&mgr->vm_lock);
215
216 return ret;
217}
218EXPORT_SYMBOL(drm_vma_offset_add);
219
220/**
221 * drm_vma_offset_remove() - Remove offset node from manager
222 * @mgr: Manager object
223 * @node: Node to be removed
224 *
225 * Remove a node from the offset manager. If the node wasn't added before, this
226 * does nothing. After this call returns, the offset and size will be 0 until a
227 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
228 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
229 * offset is allocated.
230 */
231void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
232 struct drm_vma_offset_node *node)
233{
234 write_lock(&mgr->vm_lock);
235
236 if (drm_mm_node_allocated(&node->vm_node)) {
237 drm_mm_remove_node(&node->vm_node);
238 memset(&node->vm_node, 0, sizeof(node->vm_node));
239 }
240
241 write_unlock(&mgr->vm_lock);
242}
243EXPORT_SYMBOL(drm_vma_offset_remove);
244
245/**
246 * drm_vma_node_allow - Add open-file to list of allowed users
247 * @node: Node to modify
248 * @tag: Tag of file to remove
249 *
250 * Add @tag to the list of allowed open-files for this node. If @tag is
251 * already on this list, the ref-count is incremented.
252 *
253 * The list of allowed-users is preserved across drm_vma_offset_add() and
254 * drm_vma_offset_remove() calls. You may even call it if the node is currently
255 * not added to any offset-manager.
256 *
257 * You must remove all open-files the same number of times as you added them
258 * before destroying the node. Otherwise, you will leak memory.
259 *
260 * This is locked against concurrent access internally.
261 *
262 * RETURNS:
263 * 0 on success, negative error code on internal failure (out-of-mem)
264 */
265int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
266{
267 struct rb_node **iter;
268 struct rb_node *parent = NULL;
269 struct drm_vma_offset_file *new, *entry;
270 int ret = 0;
271
272 /* Preallocate entry to avoid atomic allocations below. It is quite
273 * unlikely that an open-file is added twice to a single node so we
274 * don't optimize for this case. OOM is checked below only if the entry
275 * is actually used. */
276 new = kmalloc(sizeof(*entry), GFP_KERNEL);
277
278 write_lock(&node->vm_lock);
279
280 iter = &node->vm_files.rb_node;
281
282 while (likely(*iter)) {
283 parent = *iter;
284 entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
285
286 if (tag == entry->vm_tag) {
287 entry->vm_count++;
288 goto unlock;
289 } else if (tag > entry->vm_tag) {
290 iter = &(*iter)->rb_right;
291 } else {
292 iter = &(*iter)->rb_left;
293 }
294 }
295
296 if (!new) {
297 ret = -ENOMEM;
298 goto unlock;
299 }
300
301 new->vm_tag = tag;
302 new->vm_count = 1;
303 rb_link_node(&new->vm_rb, parent, iter);
304 rb_insert_color(&new->vm_rb, &node->vm_files);
305 new = NULL;
306
307unlock:
308 write_unlock(&node->vm_lock);
309 kfree(new);
310 return ret;
311}
312EXPORT_SYMBOL(drm_vma_node_allow);
313
314/**
315 * drm_vma_node_revoke - Remove open-file from list of allowed users
316 * @node: Node to modify
317 * @tag: Tag of file to remove
318 *
319 * Decrement the ref-count of @tag in the list of allowed open-files on @node.
320 * If the ref-count drops to zero, remove @tag from the list. You must call
321 * this once for every drm_vma_node_allow() on @tag.
322 *
323 * This is locked against concurrent access internally.
324 *
325 * If @tag is not on the list, nothing is done.
326 */
327void drm_vma_node_revoke(struct drm_vma_offset_node *node,
328 struct drm_file *tag)
329{
330 struct drm_vma_offset_file *entry;
331 struct rb_node *iter;
332
333 write_lock(&node->vm_lock);
334
335 iter = node->vm_files.rb_node;
336 while (likely(iter)) {
337 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
338 if (tag == entry->vm_tag) {
339 if (!--entry->vm_count) {
340 rb_erase(&entry->vm_rb, &node->vm_files);
341 kfree(entry);
342 }
343 break;
344 } else if (tag > entry->vm_tag) {
345 iter = iter->rb_right;
346 } else {
347 iter = iter->rb_left;
348 }
349 }
350
351 write_unlock(&node->vm_lock);
352}
353EXPORT_SYMBOL(drm_vma_node_revoke);
354
355/**
356 * drm_vma_node_is_allowed - Check whether an open-file is granted access
357 * @node: Node to check
358 * @tag: Tag of file to remove
359 *
360 * Search the list in @node whether @tag is currently on the list of allowed
361 * open-files (see drm_vma_node_allow()).
362 *
363 * This is locked against concurrent access internally.
364 *
365 * RETURNS:
366 * true iff @filp is on the list
367 */
368bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
369 struct drm_file *tag)
370{
371 struct drm_vma_offset_file *entry;
372 struct rb_node *iter;
373
374 read_lock(&node->vm_lock);
375
376 iter = node->vm_files.rb_node;
377 while (likely(iter)) {
378 entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
379 if (tag == entry->vm_tag)
380 break;
381 else if (tag > entry->vm_tag)
382 iter = iter->rb_right;
383 else
384 iter = iter->rb_left;
385 }
386
387 read_unlock(&node->vm_lock);
388
389 return iter;
390}
391EXPORT_SYMBOL(drm_vma_node_is_allowed);