Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0 OR MIT
  2/*
  3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
  4 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
  5 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the "Software"),
  9 * to deal in the Software without restriction, including without limitation
 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 11 * and/or sell copies of the Software, and to permit persons to whom the
 12 * Software is furnished to do so, subject to the following conditions:
 13 *
 14 * The above copyright notice and this permission notice shall be included in
 15 * all copies or substantial portions of the Software.
 16 *
 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 20 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 23 * OTHER DEALINGS IN THE SOFTWARE.
 24 */
 25
 
 
 
 26#include <linux/mm.h>
 27#include <linux/module.h>
 28#include <linux/rbtree.h>
 29#include <linux/slab.h>
 30#include <linux/spinlock.h>
 31#include <linux/types.h>
 32
 33#include <drm/drm_mm.h>
 34#include <drm/drm_vma_manager.h>
 35
 36/**
 37 * DOC: vma offset manager
 38 *
 39 * The vma-manager is responsible to map arbitrary driver-dependent memory
 40 * regions into the linear user address-space. It provides offsets to the
 41 * caller which can then be used on the address_space of the drm-device. It
 42 * takes care to not overlap regions, size them appropriately and to not
 43 * confuse mm-core by inconsistent fake vm_pgoff fields.
 44 * Drivers shouldn't use this for object placement in VMEM. This manager should
 45 * only be used to manage mappings into linear user-space VMs.
 46 *
 47 * We use drm_mm as backend to manage object allocations. But it is highly
 48 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
 49 * speed up offset lookups.
 50 *
 51 * You must not use multiple offset managers on a single address_space.
 52 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
 53 * no longer be linear.
 54 *
 55 * This offset manager works on page-based addresses. That is, every argument
 56 * and return code (with the exception of drm_vma_node_offset_addr()) is given
 57 * in number of pages, not number of bytes. That means, object sizes and offsets
 58 * must always be page-aligned (as usual).
 59 * If you want to get a valid byte-based user-space address for a given offset,
 60 * please see drm_vma_node_offset_addr().
 61 *
 62 * Additionally to offset management, the vma offset manager also handles access
 63 * management. For every open-file context that is allowed to access a given
 64 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
 65 * open-file with the offset of the node will fail with -EACCES. To revoke
 66 * access again, use drm_vma_node_revoke(). However, the caller is responsible
 67 * for destroying already existing mappings, if required.
 68 */
 69
 70/**
 71 * drm_vma_offset_manager_init - Initialize new offset-manager
 72 * @mgr: Manager object
 73 * @page_offset: Offset of available memory area (page-based)
 74 * @size: Size of available address space range (page-based)
 75 *
 76 * Initialize a new offset-manager. The offset and area size available for the
 77 * manager are given as @page_offset and @size. Both are interpreted as
 78 * page-numbers, not bytes.
 79 *
 80 * Adding/removing nodes from the manager is locked internally and protected
 81 * against concurrent access. However, node allocation and destruction is left
 82 * for the caller. While calling into the vma-manager, a given node must
 83 * always be guaranteed to be referenced.
 84 */
 85void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
 86				 unsigned long page_offset, unsigned long size)
 87{
 88	rwlock_init(&mgr->vm_lock);
 89	drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
 90}
 91EXPORT_SYMBOL(drm_vma_offset_manager_init);
 92
 93/**
 94 * drm_vma_offset_manager_destroy() - Destroy offset manager
 95 * @mgr: Manager object
 96 *
 97 * Destroy an object manager which was previously created via
 98 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
 99 * before destroying the manager. Otherwise, drm_mm will refuse to free the
100 * requested resources.
101 *
102 * The manager must not be accessed after this function is called.
103 */
104void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
105{
 
 
106	drm_mm_takedown(&mgr->vm_addr_space_mm);
 
107}
108EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
109
110/**
111 * drm_vma_offset_lookup_locked() - Find node in offset space
112 * @mgr: Manager object
113 * @start: Start address for object (page-based)
114 * @pages: Size of object (page-based)
115 *
116 * Find a node given a start address and object size. This returns the _best_
117 * match for the given node. That is, @start may point somewhere into a valid
118 * region and the given node will be returned, as long as the node spans the
119 * whole requested area (given the size in number of pages as @pages).
120 *
121 * Note that before lookup the vma offset manager lookup lock must be acquired
122 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
123 * used to implement weakly referenced lookups using kref_get_unless_zero().
124 *
125 * Example:
126 *
127 * ::
128 *
129 *     drm_vma_offset_lock_lookup(mgr);
130 *     node = drm_vma_offset_lookup_locked(mgr);
131 *     if (node)
132 *         kref_get_unless_zero(container_of(node, sth, entr));
133 *     drm_vma_offset_unlock_lookup(mgr);
134 *
135 * RETURNS:
136 * Returns NULL if no suitable node can be found. Otherwise, the best match
137 * is returned. It's the caller's responsibility to make sure the node doesn't
138 * get destroyed before the caller can access it.
139 */
140struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
141							 unsigned long start,
142							 unsigned long pages)
143{
144	struct drm_mm_node *node, *best;
145	struct rb_node *iter;
146	unsigned long offset;
147
148	iter = mgr->vm_addr_space_mm.interval_tree.rb_root.rb_node;
149	best = NULL;
150
151	while (likely(iter)) {
152		node = rb_entry(iter, struct drm_mm_node, rb);
153		offset = node->start;
154		if (start >= offset) {
155			iter = iter->rb_right;
156			best = node;
157			if (start == offset)
158				break;
159		} else {
160			iter = iter->rb_left;
161		}
162	}
163
164	/* verify that the node spans the requested area */
165	if (best) {
166		offset = best->start + best->size;
167		if (offset < start + pages)
168			best = NULL;
169	}
170
171	if (!best)
172		return NULL;
173
174	return container_of(best, struct drm_vma_offset_node, vm_node);
175}
176EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
177
178/**
179 * drm_vma_offset_add() - Add offset node to manager
180 * @mgr: Manager object
181 * @node: Node to be added
182 * @pages: Allocation size visible to user-space (in number of pages)
183 *
184 * Add a node to the offset-manager. If the node was already added, this does
185 * nothing and return 0. @pages is the size of the object given in number of
186 * pages.
187 * After this call succeeds, you can access the offset of the node until it
188 * is removed again.
189 *
190 * If this call fails, it is safe to retry the operation or call
191 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
192 * case.
193 *
194 * @pages is not required to be the same size as the underlying memory object
195 * that you want to map. It only limits the size that user-space can map into
196 * their address space.
197 *
198 * RETURNS:
199 * 0 on success, negative error code on failure.
200 */
201int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
202		       struct drm_vma_offset_node *node, unsigned long pages)
203{
204	int ret = 0;
205
206	write_lock(&mgr->vm_lock);
207
208	if (!drm_mm_node_allocated(&node->vm_node))
209		ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
210					 &node->vm_node, pages);
211
212	write_unlock(&mgr->vm_lock);
213
214	return ret;
215}
216EXPORT_SYMBOL(drm_vma_offset_add);
217
218/**
219 * drm_vma_offset_remove() - Remove offset node from manager
220 * @mgr: Manager object
221 * @node: Node to be removed
222 *
223 * Remove a node from the offset manager. If the node wasn't added before, this
224 * does nothing. After this call returns, the offset and size will be 0 until a
225 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
226 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
227 * offset is allocated.
228 */
229void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
230			   struct drm_vma_offset_node *node)
231{
232	write_lock(&mgr->vm_lock);
233
234	if (drm_mm_node_allocated(&node->vm_node)) {
235		drm_mm_remove_node(&node->vm_node);
236		memset(&node->vm_node, 0, sizeof(node->vm_node));
237	}
238
239	write_unlock(&mgr->vm_lock);
240}
241EXPORT_SYMBOL(drm_vma_offset_remove);
242
243static int vma_node_allow(struct drm_vma_offset_node *node,
244			  struct drm_file *tag, bool ref_counted)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245{
246	struct rb_node **iter;
247	struct rb_node *parent = NULL;
248	struct drm_vma_offset_file *new, *entry;
249	int ret = 0;
250
251	/* Preallocate entry to avoid atomic allocations below. It is quite
252	 * unlikely that an open-file is added twice to a single node so we
253	 * don't optimize for this case. OOM is checked below only if the entry
254	 * is actually used. */
255	new = kmalloc(sizeof(*entry), GFP_KERNEL);
256
257	write_lock(&node->vm_lock);
258
259	iter = &node->vm_files.rb_node;
260
261	while (likely(*iter)) {
262		parent = *iter;
263		entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
264
265		if (tag == entry->vm_tag) {
266			if (ref_counted)
267				entry->vm_count++;
268			goto unlock;
269		} else if (tag > entry->vm_tag) {
270			iter = &(*iter)->rb_right;
271		} else {
272			iter = &(*iter)->rb_left;
273		}
274	}
275
276	if (!new) {
277		ret = -ENOMEM;
278		goto unlock;
279	}
280
281	new->vm_tag = tag;
282	new->vm_count = 1;
283	rb_link_node(&new->vm_rb, parent, iter);
284	rb_insert_color(&new->vm_rb, &node->vm_files);
285	new = NULL;
286
287unlock:
288	write_unlock(&node->vm_lock);
289	kfree(new);
290	return ret;
291}
292
293/**
294 * drm_vma_node_allow - Add open-file to list of allowed users
295 * @node: Node to modify
296 * @tag: Tag of file to remove
297 *
298 * Add @tag to the list of allowed open-files for this node. If @tag is
299 * already on this list, the ref-count is incremented.
300 *
301 * The list of allowed-users is preserved across drm_vma_offset_add() and
302 * drm_vma_offset_remove() calls. You may even call it if the node is currently
303 * not added to any offset-manager.
304 *
305 * You must remove all open-files the same number of times as you added them
306 * before destroying the node. Otherwise, you will leak memory.
307 *
308 * This is locked against concurrent access internally.
309 *
310 * RETURNS:
311 * 0 on success, negative error code on internal failure (out-of-mem)
312 */
313int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
314{
315	return vma_node_allow(node, tag, true);
316}
317EXPORT_SYMBOL(drm_vma_node_allow);
318
319/**
320 * drm_vma_node_allow_once - Add open-file to list of allowed users
321 * @node: Node to modify
322 * @tag: Tag of file to remove
323 *
324 * Add @tag to the list of allowed open-files for this node.
325 *
326 * The list of allowed-users is preserved across drm_vma_offset_add() and
327 * drm_vma_offset_remove() calls. You may even call it if the node is currently
328 * not added to any offset-manager.
329 *
330 * This is not ref-counted unlike drm_vma_node_allow() hence drm_vma_node_revoke()
331 * should only be called once after this.
332 *
333 * This is locked against concurrent access internally.
334 *
335 * RETURNS:
336 * 0 on success, negative error code on internal failure (out-of-mem)
337 */
338int drm_vma_node_allow_once(struct drm_vma_offset_node *node, struct drm_file *tag)
339{
340	return vma_node_allow(node, tag, false);
341}
342EXPORT_SYMBOL(drm_vma_node_allow_once);
343
344/**
345 * drm_vma_node_revoke - Remove open-file from list of allowed users
346 * @node: Node to modify
347 * @tag: Tag of file to remove
348 *
349 * Decrement the ref-count of @tag in the list of allowed open-files on @node.
350 * If the ref-count drops to zero, remove @tag from the list. You must call
351 * this once for every drm_vma_node_allow() on @tag.
352 *
353 * This is locked against concurrent access internally.
354 *
355 * If @tag is not on the list, nothing is done.
356 */
357void drm_vma_node_revoke(struct drm_vma_offset_node *node,
358			 struct drm_file *tag)
359{
360	struct drm_vma_offset_file *entry;
361	struct rb_node *iter;
362
363	write_lock(&node->vm_lock);
364
365	iter = node->vm_files.rb_node;
366	while (likely(iter)) {
367		entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
368		if (tag == entry->vm_tag) {
369			if (!--entry->vm_count) {
370				rb_erase(&entry->vm_rb, &node->vm_files);
371				kfree(entry);
372			}
373			break;
374		} else if (tag > entry->vm_tag) {
375			iter = iter->rb_right;
376		} else {
377			iter = iter->rb_left;
378		}
379	}
380
381	write_unlock(&node->vm_lock);
382}
383EXPORT_SYMBOL(drm_vma_node_revoke);
384
385/**
386 * drm_vma_node_is_allowed - Check whether an open-file is granted access
387 * @node: Node to check
388 * @tag: Tag of file to remove
389 *
390 * Search the list in @node whether @tag is currently on the list of allowed
391 * open-files (see drm_vma_node_allow()).
392 *
393 * This is locked against concurrent access internally.
394 *
395 * RETURNS:
396 * true if @filp is on the list
397 */
398bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
399			     struct drm_file *tag)
400{
401	struct drm_vma_offset_file *entry;
402	struct rb_node *iter;
403
404	read_lock(&node->vm_lock);
405
406	iter = node->vm_files.rb_node;
407	while (likely(iter)) {
408		entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
409		if (tag == entry->vm_tag)
410			break;
411		else if (tag > entry->vm_tag)
412			iter = iter->rb_right;
413		else
414			iter = iter->rb_left;
415	}
416
417	read_unlock(&node->vm_lock);
418
419	return iter;
420}
421EXPORT_SYMBOL(drm_vma_node_is_allowed);
v4.17
 
  1/*
  2 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
  3 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
  4 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
  5 *
  6 * Permission is hereby granted, free of charge, to any person obtaining a
  7 * copy of this software and associated documentation files (the "Software"),
  8 * to deal in the Software without restriction, including without limitation
  9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 10 * and/or sell copies of the Software, and to permit persons to whom the
 11 * Software is furnished to do so, subject to the following conditions:
 12 *
 13 * The above copyright notice and this permission notice shall be included in
 14 * all copies or substantial portions of the Software.
 15 *
 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 22 * OTHER DEALINGS IN THE SOFTWARE.
 23 */
 24
 25#include <drm/drmP.h>
 26#include <drm/drm_mm.h>
 27#include <drm/drm_vma_manager.h>
 28#include <linux/mm.h>
 29#include <linux/module.h>
 30#include <linux/rbtree.h>
 31#include <linux/slab.h>
 32#include <linux/spinlock.h>
 33#include <linux/types.h>
 34
 
 
 
 35/**
 36 * DOC: vma offset manager
 37 *
 38 * The vma-manager is responsible to map arbitrary driver-dependent memory
 39 * regions into the linear user address-space. It provides offsets to the
 40 * caller which can then be used on the address_space of the drm-device. It
 41 * takes care to not overlap regions, size them appropriately and to not
 42 * confuse mm-core by inconsistent fake vm_pgoff fields.
 43 * Drivers shouldn't use this for object placement in VMEM. This manager should
 44 * only be used to manage mappings into linear user-space VMs.
 45 *
 46 * We use drm_mm as backend to manage object allocations. But it is highly
 47 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
 48 * speed up offset lookups.
 49 *
 50 * You must not use multiple offset managers on a single address_space.
 51 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
 52 * no longer be linear.
 53 *
 54 * This offset manager works on page-based addresses. That is, every argument
 55 * and return code (with the exception of drm_vma_node_offset_addr()) is given
 56 * in number of pages, not number of bytes. That means, object sizes and offsets
 57 * must always be page-aligned (as usual).
 58 * If you want to get a valid byte-based user-space address for a given offset,
 59 * please see drm_vma_node_offset_addr().
 60 *
 61 * Additionally to offset management, the vma offset manager also handles access
 62 * management. For every open-file context that is allowed to access a given
 63 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
 64 * open-file with the offset of the node will fail with -EACCES. To revoke
 65 * access again, use drm_vma_node_revoke(). However, the caller is responsible
 66 * for destroying already existing mappings, if required.
 67 */
 68
 69/**
 70 * drm_vma_offset_manager_init - Initialize new offset-manager
 71 * @mgr: Manager object
 72 * @page_offset: Offset of available memory area (page-based)
 73 * @size: Size of available address space range (page-based)
 74 *
 75 * Initialize a new offset-manager. The offset and area size available for the
 76 * manager are given as @page_offset and @size. Both are interpreted as
 77 * page-numbers, not bytes.
 78 *
 79 * Adding/removing nodes from the manager is locked internally and protected
 80 * against concurrent access. However, node allocation and destruction is left
 81 * for the caller. While calling into the vma-manager, a given node must
 82 * always be guaranteed to be referenced.
 83 */
 84void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
 85				 unsigned long page_offset, unsigned long size)
 86{
 87	rwlock_init(&mgr->vm_lock);
 88	drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
 89}
 90EXPORT_SYMBOL(drm_vma_offset_manager_init);
 91
 92/**
 93 * drm_vma_offset_manager_destroy() - Destroy offset manager
 94 * @mgr: Manager object
 95 *
 96 * Destroy an object manager which was previously created via
 97 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
 98 * before destroying the manager. Otherwise, drm_mm will refuse to free the
 99 * requested resources.
100 *
101 * The manager must not be accessed after this function is called.
102 */
103void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
104{
105	/* take the lock to protect against buggy drivers */
106	write_lock(&mgr->vm_lock);
107	drm_mm_takedown(&mgr->vm_addr_space_mm);
108	write_unlock(&mgr->vm_lock);
109}
110EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
111
112/**
113 * drm_vma_offset_lookup_locked() - Find node in offset space
114 * @mgr: Manager object
115 * @start: Start address for object (page-based)
116 * @pages: Size of object (page-based)
117 *
118 * Find a node given a start address and object size. This returns the _best_
119 * match for the given node. That is, @start may point somewhere into a valid
120 * region and the given node will be returned, as long as the node spans the
121 * whole requested area (given the size in number of pages as @pages).
122 *
123 * Note that before lookup the vma offset manager lookup lock must be acquired
124 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
125 * used to implement weakly referenced lookups using kref_get_unless_zero().
126 *
127 * Example:
128 *
129 * ::
130 *
131 *     drm_vma_offset_lock_lookup(mgr);
132 *     node = drm_vma_offset_lookup_locked(mgr);
133 *     if (node)
134 *         kref_get_unless_zero(container_of(node, sth, entr));
135 *     drm_vma_offset_unlock_lookup(mgr);
136 *
137 * RETURNS:
138 * Returns NULL if no suitable node can be found. Otherwise, the best match
139 * is returned. It's the caller's responsibility to make sure the node doesn't
140 * get destroyed before the caller can access it.
141 */
142struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
143							 unsigned long start,
144							 unsigned long pages)
145{
146	struct drm_mm_node *node, *best;
147	struct rb_node *iter;
148	unsigned long offset;
149
150	iter = mgr->vm_addr_space_mm.interval_tree.rb_root.rb_node;
151	best = NULL;
152
153	while (likely(iter)) {
154		node = rb_entry(iter, struct drm_mm_node, rb);
155		offset = node->start;
156		if (start >= offset) {
157			iter = iter->rb_right;
158			best = node;
159			if (start == offset)
160				break;
161		} else {
162			iter = iter->rb_left;
163		}
164	}
165
166	/* verify that the node spans the requested area */
167	if (best) {
168		offset = best->start + best->size;
169		if (offset < start + pages)
170			best = NULL;
171	}
172
173	if (!best)
174		return NULL;
175
176	return container_of(best, struct drm_vma_offset_node, vm_node);
177}
178EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
179
180/**
181 * drm_vma_offset_add() - Add offset node to manager
182 * @mgr: Manager object
183 * @node: Node to be added
184 * @pages: Allocation size visible to user-space (in number of pages)
185 *
186 * Add a node to the offset-manager. If the node was already added, this does
187 * nothing and return 0. @pages is the size of the object given in number of
188 * pages.
189 * After this call succeeds, you can access the offset of the node until it
190 * is removed again.
191 *
192 * If this call fails, it is safe to retry the operation or call
193 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
194 * case.
195 *
196 * @pages is not required to be the same size as the underlying memory object
197 * that you want to map. It only limits the size that user-space can map into
198 * their address space.
199 *
200 * RETURNS:
201 * 0 on success, negative error code on failure.
202 */
203int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
204		       struct drm_vma_offset_node *node, unsigned long pages)
205{
206	int ret = 0;
207
208	write_lock(&mgr->vm_lock);
209
210	if (!drm_mm_node_allocated(&node->vm_node))
211		ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
212					 &node->vm_node, pages);
213
214	write_unlock(&mgr->vm_lock);
215
216	return ret;
217}
218EXPORT_SYMBOL(drm_vma_offset_add);
219
220/**
221 * drm_vma_offset_remove() - Remove offset node from manager
222 * @mgr: Manager object
223 * @node: Node to be removed
224 *
225 * Remove a node from the offset manager. If the node wasn't added before, this
226 * does nothing. After this call returns, the offset and size will be 0 until a
227 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
228 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
229 * offset is allocated.
230 */
231void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
232			   struct drm_vma_offset_node *node)
233{
234	write_lock(&mgr->vm_lock);
235
236	if (drm_mm_node_allocated(&node->vm_node)) {
237		drm_mm_remove_node(&node->vm_node);
238		memset(&node->vm_node, 0, sizeof(node->vm_node));
239	}
240
241	write_unlock(&mgr->vm_lock);
242}
243EXPORT_SYMBOL(drm_vma_offset_remove);
244
245/**
246 * drm_vma_node_allow - Add open-file to list of allowed users
247 * @node: Node to modify
248 * @tag: Tag of file to remove
249 *
250 * Add @tag to the list of allowed open-files for this node. If @tag is
251 * already on this list, the ref-count is incremented.
252 *
253 * The list of allowed-users is preserved across drm_vma_offset_add() and
254 * drm_vma_offset_remove() calls. You may even call it if the node is currently
255 * not added to any offset-manager.
256 *
257 * You must remove all open-files the same number of times as you added them
258 * before destroying the node. Otherwise, you will leak memory.
259 *
260 * This is locked against concurrent access internally.
261 *
262 * RETURNS:
263 * 0 on success, negative error code on internal failure (out-of-mem)
264 */
265int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
266{
267	struct rb_node **iter;
268	struct rb_node *parent = NULL;
269	struct drm_vma_offset_file *new, *entry;
270	int ret = 0;
271
272	/* Preallocate entry to avoid atomic allocations below. It is quite
273	 * unlikely that an open-file is added twice to a single node so we
274	 * don't optimize for this case. OOM is checked below only if the entry
275	 * is actually used. */
276	new = kmalloc(sizeof(*entry), GFP_KERNEL);
277
278	write_lock(&node->vm_lock);
279
280	iter = &node->vm_files.rb_node;
281
282	while (likely(*iter)) {
283		parent = *iter;
284		entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
285
286		if (tag == entry->vm_tag) {
287			entry->vm_count++;
 
288			goto unlock;
289		} else if (tag > entry->vm_tag) {
290			iter = &(*iter)->rb_right;
291		} else {
292			iter = &(*iter)->rb_left;
293		}
294	}
295
296	if (!new) {
297		ret = -ENOMEM;
298		goto unlock;
299	}
300
301	new->vm_tag = tag;
302	new->vm_count = 1;
303	rb_link_node(&new->vm_rb, parent, iter);
304	rb_insert_color(&new->vm_rb, &node->vm_files);
305	new = NULL;
306
307unlock:
308	write_unlock(&node->vm_lock);
309	kfree(new);
310	return ret;
311}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312EXPORT_SYMBOL(drm_vma_node_allow);
313
314/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315 * drm_vma_node_revoke - Remove open-file from list of allowed users
316 * @node: Node to modify
317 * @tag: Tag of file to remove
318 *
319 * Decrement the ref-count of @tag in the list of allowed open-files on @node.
320 * If the ref-count drops to zero, remove @tag from the list. You must call
321 * this once for every drm_vma_node_allow() on @tag.
322 *
323 * This is locked against concurrent access internally.
324 *
325 * If @tag is not on the list, nothing is done.
326 */
327void drm_vma_node_revoke(struct drm_vma_offset_node *node,
328			 struct drm_file *tag)
329{
330	struct drm_vma_offset_file *entry;
331	struct rb_node *iter;
332
333	write_lock(&node->vm_lock);
334
335	iter = node->vm_files.rb_node;
336	while (likely(iter)) {
337		entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
338		if (tag == entry->vm_tag) {
339			if (!--entry->vm_count) {
340				rb_erase(&entry->vm_rb, &node->vm_files);
341				kfree(entry);
342			}
343			break;
344		} else if (tag > entry->vm_tag) {
345			iter = iter->rb_right;
346		} else {
347			iter = iter->rb_left;
348		}
349	}
350
351	write_unlock(&node->vm_lock);
352}
353EXPORT_SYMBOL(drm_vma_node_revoke);
354
355/**
356 * drm_vma_node_is_allowed - Check whether an open-file is granted access
357 * @node: Node to check
358 * @tag: Tag of file to remove
359 *
360 * Search the list in @node whether @tag is currently on the list of allowed
361 * open-files (see drm_vma_node_allow()).
362 *
363 * This is locked against concurrent access internally.
364 *
365 * RETURNS:
366 * true iff @filp is on the list
367 */
368bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
369			     struct drm_file *tag)
370{
371	struct drm_vma_offset_file *entry;
372	struct rb_node *iter;
373
374	read_lock(&node->vm_lock);
375
376	iter = node->vm_files.rb_node;
377	while (likely(iter)) {
378		entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
379		if (tag == entry->vm_tag)
380			break;
381		else if (tag > entry->vm_tag)
382			iter = iter->rb_right;
383		else
384			iter = iter->rb_left;
385	}
386
387	read_unlock(&node->vm_lock);
388
389	return iter;
390}
391EXPORT_SYMBOL(drm_vma_node_is_allowed);