Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/power/main.c - Where the driver meets power management.
4 *
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
7 *
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
12 *
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
16 */
17
18#define pr_fmt(fmt) "PM: " fmt
19#define dev_fmt pr_fmt
20
21#include <linux/device.h>
22#include <linux/export.h>
23#include <linux/mutex.h>
24#include <linux/pm.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm-trace.h>
27#include <linux/pm_wakeirq.h>
28#include <linux/interrupt.h>
29#include <linux/sched.h>
30#include <linux/sched/debug.h>
31#include <linux/async.h>
32#include <linux/suspend.h>
33#include <trace/events/power.h>
34#include <linux/cpufreq.h>
35#include <linux/devfreq.h>
36#include <linux/timer.h>
37
38#include "../base.h"
39#include "power.h"
40
41typedef int (*pm_callback_t)(struct device *);
42
43#define list_for_each_entry_rcu_locked(pos, head, member) \
44 list_for_each_entry_rcu(pos, head, member, \
45 device_links_read_lock_held())
46
47/*
48 * The entries in the dpm_list list are in a depth first order, simply
49 * because children are guaranteed to be discovered after parents, and
50 * are inserted at the back of the list on discovery.
51 *
52 * Since device_pm_add() may be called with a device lock held,
53 * we must never try to acquire a device lock while holding
54 * dpm_list_mutex.
55 */
56
57LIST_HEAD(dpm_list);
58static LIST_HEAD(dpm_prepared_list);
59static LIST_HEAD(dpm_suspended_list);
60static LIST_HEAD(dpm_late_early_list);
61static LIST_HEAD(dpm_noirq_list);
62
63static DEFINE_MUTEX(dpm_list_mtx);
64static pm_message_t pm_transition;
65
66static int async_error;
67
68static const char *pm_verb(int event)
69{
70 switch (event) {
71 case PM_EVENT_SUSPEND:
72 return "suspend";
73 case PM_EVENT_RESUME:
74 return "resume";
75 case PM_EVENT_FREEZE:
76 return "freeze";
77 case PM_EVENT_QUIESCE:
78 return "quiesce";
79 case PM_EVENT_HIBERNATE:
80 return "hibernate";
81 case PM_EVENT_THAW:
82 return "thaw";
83 case PM_EVENT_RESTORE:
84 return "restore";
85 case PM_EVENT_RECOVER:
86 return "recover";
87 default:
88 return "(unknown PM event)";
89 }
90}
91
92/**
93 * device_pm_sleep_init - Initialize system suspend-related device fields.
94 * @dev: Device object being initialized.
95 */
96void device_pm_sleep_init(struct device *dev)
97{
98 dev->power.is_prepared = false;
99 dev->power.is_suspended = false;
100 dev->power.is_noirq_suspended = false;
101 dev->power.is_late_suspended = false;
102 init_completion(&dev->power.completion);
103 complete_all(&dev->power.completion);
104 dev->power.wakeup = NULL;
105 INIT_LIST_HEAD(&dev->power.entry);
106}
107
108/**
109 * device_pm_lock - Lock the list of active devices used by the PM core.
110 */
111void device_pm_lock(void)
112{
113 mutex_lock(&dpm_list_mtx);
114}
115
116/**
117 * device_pm_unlock - Unlock the list of active devices used by the PM core.
118 */
119void device_pm_unlock(void)
120{
121 mutex_unlock(&dpm_list_mtx);
122}
123
124/**
125 * device_pm_add - Add a device to the PM core's list of active devices.
126 * @dev: Device to add to the list.
127 */
128void device_pm_add(struct device *dev)
129{
130 /* Skip PM setup/initialization. */
131 if (device_pm_not_required(dev))
132 return;
133
134 pr_debug("Adding info for %s:%s\n",
135 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
136 device_pm_check_callbacks(dev);
137 mutex_lock(&dpm_list_mtx);
138 if (dev->parent && dev->parent->power.is_prepared)
139 dev_warn(dev, "parent %s should not be sleeping\n",
140 dev_name(dev->parent));
141 list_add_tail(&dev->power.entry, &dpm_list);
142 dev->power.in_dpm_list = true;
143 mutex_unlock(&dpm_list_mtx);
144}
145
146/**
147 * device_pm_remove - Remove a device from the PM core's list of active devices.
148 * @dev: Device to be removed from the list.
149 */
150void device_pm_remove(struct device *dev)
151{
152 if (device_pm_not_required(dev))
153 return;
154
155 pr_debug("Removing info for %s:%s\n",
156 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
157 complete_all(&dev->power.completion);
158 mutex_lock(&dpm_list_mtx);
159 list_del_init(&dev->power.entry);
160 dev->power.in_dpm_list = false;
161 mutex_unlock(&dpm_list_mtx);
162 device_wakeup_disable(dev);
163 pm_runtime_remove(dev);
164 device_pm_check_callbacks(dev);
165}
166
167/**
168 * device_pm_move_before - Move device in the PM core's list of active devices.
169 * @deva: Device to move in dpm_list.
170 * @devb: Device @deva should come before.
171 */
172void device_pm_move_before(struct device *deva, struct device *devb)
173{
174 pr_debug("Moving %s:%s before %s:%s\n",
175 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
176 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
177 /* Delete deva from dpm_list and reinsert before devb. */
178 list_move_tail(&deva->power.entry, &devb->power.entry);
179}
180
181/**
182 * device_pm_move_after - Move device in the PM core's list of active devices.
183 * @deva: Device to move in dpm_list.
184 * @devb: Device @deva should come after.
185 */
186void device_pm_move_after(struct device *deva, struct device *devb)
187{
188 pr_debug("Moving %s:%s after %s:%s\n",
189 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
190 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
191 /* Delete deva from dpm_list and reinsert after devb. */
192 list_move(&deva->power.entry, &devb->power.entry);
193}
194
195/**
196 * device_pm_move_last - Move device to end of the PM core's list of devices.
197 * @dev: Device to move in dpm_list.
198 */
199void device_pm_move_last(struct device *dev)
200{
201 pr_debug("Moving %s:%s to end of list\n",
202 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
203 list_move_tail(&dev->power.entry, &dpm_list);
204}
205
206static ktime_t initcall_debug_start(struct device *dev, void *cb)
207{
208 if (!pm_print_times_enabled)
209 return 0;
210
211 dev_info(dev, "calling %ps @ %i, parent: %s\n", cb,
212 task_pid_nr(current),
213 dev->parent ? dev_name(dev->parent) : "none");
214 return ktime_get();
215}
216
217static void initcall_debug_report(struct device *dev, ktime_t calltime,
218 void *cb, int error)
219{
220 ktime_t rettime;
221
222 if (!pm_print_times_enabled)
223 return;
224
225 rettime = ktime_get();
226 dev_info(dev, "%ps returned %d after %Ld usecs\n", cb, error,
227 (unsigned long long)ktime_us_delta(rettime, calltime));
228}
229
230/**
231 * dpm_wait - Wait for a PM operation to complete.
232 * @dev: Device to wait for.
233 * @async: If unset, wait only if the device's power.async_suspend flag is set.
234 */
235static void dpm_wait(struct device *dev, bool async)
236{
237 if (!dev)
238 return;
239
240 if (async || (pm_async_enabled && dev->power.async_suspend))
241 wait_for_completion(&dev->power.completion);
242}
243
244static int dpm_wait_fn(struct device *dev, void *async_ptr)
245{
246 dpm_wait(dev, *((bool *)async_ptr));
247 return 0;
248}
249
250static void dpm_wait_for_children(struct device *dev, bool async)
251{
252 device_for_each_child(dev, &async, dpm_wait_fn);
253}
254
255static void dpm_wait_for_suppliers(struct device *dev, bool async)
256{
257 struct device_link *link;
258 int idx;
259
260 idx = device_links_read_lock();
261
262 /*
263 * If the supplier goes away right after we've checked the link to it,
264 * we'll wait for its completion to change the state, but that's fine,
265 * because the only things that will block as a result are the SRCU
266 * callbacks freeing the link objects for the links in the list we're
267 * walking.
268 */
269 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
270 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
271 dpm_wait(link->supplier, async);
272
273 device_links_read_unlock(idx);
274}
275
276static bool dpm_wait_for_superior(struct device *dev, bool async)
277{
278 struct device *parent;
279
280 /*
281 * If the device is resumed asynchronously and the parent's callback
282 * deletes both the device and the parent itself, the parent object may
283 * be freed while this function is running, so avoid that by reference
284 * counting the parent once more unless the device has been deleted
285 * already (in which case return right away).
286 */
287 mutex_lock(&dpm_list_mtx);
288
289 if (!device_pm_initialized(dev)) {
290 mutex_unlock(&dpm_list_mtx);
291 return false;
292 }
293
294 parent = get_device(dev->parent);
295
296 mutex_unlock(&dpm_list_mtx);
297
298 dpm_wait(parent, async);
299 put_device(parent);
300
301 dpm_wait_for_suppliers(dev, async);
302
303 /*
304 * If the parent's callback has deleted the device, attempting to resume
305 * it would be invalid, so avoid doing that then.
306 */
307 return device_pm_initialized(dev);
308}
309
310static void dpm_wait_for_consumers(struct device *dev, bool async)
311{
312 struct device_link *link;
313 int idx;
314
315 idx = device_links_read_lock();
316
317 /*
318 * The status of a device link can only be changed from "dormant" by a
319 * probe, but that cannot happen during system suspend/resume. In
320 * theory it can change to "dormant" at that time, but then it is
321 * reasonable to wait for the target device anyway (eg. if it goes
322 * away, it's better to wait for it to go away completely and then
323 * continue instead of trying to continue in parallel with its
324 * unregistration).
325 */
326 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
327 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
328 dpm_wait(link->consumer, async);
329
330 device_links_read_unlock(idx);
331}
332
333static void dpm_wait_for_subordinate(struct device *dev, bool async)
334{
335 dpm_wait_for_children(dev, async);
336 dpm_wait_for_consumers(dev, async);
337}
338
339/**
340 * pm_op - Return the PM operation appropriate for given PM event.
341 * @ops: PM operations to choose from.
342 * @state: PM transition of the system being carried out.
343 */
344static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
345{
346 switch (state.event) {
347#ifdef CONFIG_SUSPEND
348 case PM_EVENT_SUSPEND:
349 return ops->suspend;
350 case PM_EVENT_RESUME:
351 return ops->resume;
352#endif /* CONFIG_SUSPEND */
353#ifdef CONFIG_HIBERNATE_CALLBACKS
354 case PM_EVENT_FREEZE:
355 case PM_EVENT_QUIESCE:
356 return ops->freeze;
357 case PM_EVENT_HIBERNATE:
358 return ops->poweroff;
359 case PM_EVENT_THAW:
360 case PM_EVENT_RECOVER:
361 return ops->thaw;
362 case PM_EVENT_RESTORE:
363 return ops->restore;
364#endif /* CONFIG_HIBERNATE_CALLBACKS */
365 }
366
367 return NULL;
368}
369
370/**
371 * pm_late_early_op - Return the PM operation appropriate for given PM event.
372 * @ops: PM operations to choose from.
373 * @state: PM transition of the system being carried out.
374 *
375 * Runtime PM is disabled for @dev while this function is being executed.
376 */
377static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
378 pm_message_t state)
379{
380 switch (state.event) {
381#ifdef CONFIG_SUSPEND
382 case PM_EVENT_SUSPEND:
383 return ops->suspend_late;
384 case PM_EVENT_RESUME:
385 return ops->resume_early;
386#endif /* CONFIG_SUSPEND */
387#ifdef CONFIG_HIBERNATE_CALLBACKS
388 case PM_EVENT_FREEZE:
389 case PM_EVENT_QUIESCE:
390 return ops->freeze_late;
391 case PM_EVENT_HIBERNATE:
392 return ops->poweroff_late;
393 case PM_EVENT_THAW:
394 case PM_EVENT_RECOVER:
395 return ops->thaw_early;
396 case PM_EVENT_RESTORE:
397 return ops->restore_early;
398#endif /* CONFIG_HIBERNATE_CALLBACKS */
399 }
400
401 return NULL;
402}
403
404/**
405 * pm_noirq_op - Return the PM operation appropriate for given PM event.
406 * @ops: PM operations to choose from.
407 * @state: PM transition of the system being carried out.
408 *
409 * The driver of @dev will not receive interrupts while this function is being
410 * executed.
411 */
412static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
413{
414 switch (state.event) {
415#ifdef CONFIG_SUSPEND
416 case PM_EVENT_SUSPEND:
417 return ops->suspend_noirq;
418 case PM_EVENT_RESUME:
419 return ops->resume_noirq;
420#endif /* CONFIG_SUSPEND */
421#ifdef CONFIG_HIBERNATE_CALLBACKS
422 case PM_EVENT_FREEZE:
423 case PM_EVENT_QUIESCE:
424 return ops->freeze_noirq;
425 case PM_EVENT_HIBERNATE:
426 return ops->poweroff_noirq;
427 case PM_EVENT_THAW:
428 case PM_EVENT_RECOVER:
429 return ops->thaw_noirq;
430 case PM_EVENT_RESTORE:
431 return ops->restore_noirq;
432#endif /* CONFIG_HIBERNATE_CALLBACKS */
433 }
434
435 return NULL;
436}
437
438static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
439{
440 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
441 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
442 ", may wakeup" : "", dev->power.driver_flags);
443}
444
445static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
446 int error)
447{
448 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
449 error);
450}
451
452static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
453 const char *info)
454{
455 ktime_t calltime;
456 u64 usecs64;
457 int usecs;
458
459 calltime = ktime_get();
460 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
461 do_div(usecs64, NSEC_PER_USEC);
462 usecs = usecs64;
463 if (usecs == 0)
464 usecs = 1;
465
466 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
467 info ?: "", info ? " " : "", pm_verb(state.event),
468 error ? "aborted" : "complete",
469 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
470}
471
472static int dpm_run_callback(pm_callback_t cb, struct device *dev,
473 pm_message_t state, const char *info)
474{
475 ktime_t calltime;
476 int error;
477
478 if (!cb)
479 return 0;
480
481 calltime = initcall_debug_start(dev, cb);
482
483 pm_dev_dbg(dev, state, info);
484 trace_device_pm_callback_start(dev, info, state.event);
485 error = cb(dev);
486 trace_device_pm_callback_end(dev, error);
487 suspend_report_result(dev, cb, error);
488
489 initcall_debug_report(dev, calltime, cb, error);
490
491 return error;
492}
493
494#ifdef CONFIG_DPM_WATCHDOG
495struct dpm_watchdog {
496 struct device *dev;
497 struct task_struct *tsk;
498 struct timer_list timer;
499};
500
501#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
502 struct dpm_watchdog wd
503
504/**
505 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
506 * @t: The timer that PM watchdog depends on.
507 *
508 * Called when a driver has timed out suspending or resuming.
509 * There's not much we can do here to recover so panic() to
510 * capture a crash-dump in pstore.
511 */
512static void dpm_watchdog_handler(struct timer_list *t)
513{
514 struct dpm_watchdog *wd = from_timer(wd, t, timer);
515
516 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
517 show_stack(wd->tsk, NULL, KERN_EMERG);
518 panic("%s %s: unrecoverable failure\n",
519 dev_driver_string(wd->dev), dev_name(wd->dev));
520}
521
522/**
523 * dpm_watchdog_set - Enable pm watchdog for given device.
524 * @wd: Watchdog. Must be allocated on the stack.
525 * @dev: Device to handle.
526 */
527static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
528{
529 struct timer_list *timer = &wd->timer;
530
531 wd->dev = dev;
532 wd->tsk = current;
533
534 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
535 /* use same timeout value for both suspend and resume */
536 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
537 add_timer(timer);
538}
539
540/**
541 * dpm_watchdog_clear - Disable suspend/resume watchdog.
542 * @wd: Watchdog to disable.
543 */
544static void dpm_watchdog_clear(struct dpm_watchdog *wd)
545{
546 struct timer_list *timer = &wd->timer;
547
548 del_timer_sync(timer);
549 destroy_timer_on_stack(timer);
550}
551#else
552#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
553#define dpm_watchdog_set(x, y)
554#define dpm_watchdog_clear(x)
555#endif
556
557/*------------------------- Resume routines -------------------------*/
558
559/**
560 * dev_pm_skip_resume - System-wide device resume optimization check.
561 * @dev: Target device.
562 *
563 * Return:
564 * - %false if the transition under way is RESTORE.
565 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
566 * - The logical negation of %power.must_resume otherwise (that is, when the
567 * transition under way is RESUME).
568 */
569bool dev_pm_skip_resume(struct device *dev)
570{
571 if (pm_transition.event == PM_EVENT_RESTORE)
572 return false;
573
574 if (pm_transition.event == PM_EVENT_THAW)
575 return dev_pm_skip_suspend(dev);
576
577 return !dev->power.must_resume;
578}
579
580static bool is_async(struct device *dev)
581{
582 return dev->power.async_suspend && pm_async_enabled
583 && !pm_trace_is_enabled();
584}
585
586static bool dpm_async_fn(struct device *dev, async_func_t func)
587{
588 reinit_completion(&dev->power.completion);
589
590 if (is_async(dev)) {
591 dev->power.async_in_progress = true;
592
593 get_device(dev);
594
595 if (async_schedule_dev_nocall(func, dev))
596 return true;
597
598 put_device(dev);
599 }
600 /*
601 * Because async_schedule_dev_nocall() above has returned false or it
602 * has not been called at all, func() is not running and it is safe to
603 * update the async_in_progress flag without extra synchronization.
604 */
605 dev->power.async_in_progress = false;
606 return false;
607}
608
609/**
610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
611 * @dev: Device to handle.
612 * @state: PM transition of the system being carried out.
613 * @async: If true, the device is being resumed asynchronously.
614 *
615 * The driver of @dev will not receive interrupts while this function is being
616 * executed.
617 */
618static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
619{
620 pm_callback_t callback = NULL;
621 const char *info = NULL;
622 bool skip_resume;
623 int error = 0;
624
625 TRACE_DEVICE(dev);
626 TRACE_RESUME(0);
627
628 if (dev->power.syscore || dev->power.direct_complete)
629 goto Out;
630
631 if (!dev->power.is_noirq_suspended)
632 goto Out;
633
634 if (!dpm_wait_for_superior(dev, async))
635 goto Out;
636
637 skip_resume = dev_pm_skip_resume(dev);
638 /*
639 * If the driver callback is skipped below or by the middle layer
640 * callback and device_resume_early() also skips the driver callback for
641 * this device later, it needs to appear as "suspended" to PM-runtime,
642 * so change its status accordingly.
643 *
644 * Otherwise, the device is going to be resumed, so set its PM-runtime
645 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
646 * to avoid confusing drivers that don't use it.
647 */
648 if (skip_resume)
649 pm_runtime_set_suspended(dev);
650 else if (dev_pm_skip_suspend(dev))
651 pm_runtime_set_active(dev);
652
653 if (dev->pm_domain) {
654 info = "noirq power domain ";
655 callback = pm_noirq_op(&dev->pm_domain->ops, state);
656 } else if (dev->type && dev->type->pm) {
657 info = "noirq type ";
658 callback = pm_noirq_op(dev->type->pm, state);
659 } else if (dev->class && dev->class->pm) {
660 info = "noirq class ";
661 callback = pm_noirq_op(dev->class->pm, state);
662 } else if (dev->bus && dev->bus->pm) {
663 info = "noirq bus ";
664 callback = pm_noirq_op(dev->bus->pm, state);
665 }
666 if (callback)
667 goto Run;
668
669 if (skip_resume)
670 goto Skip;
671
672 if (dev->driver && dev->driver->pm) {
673 info = "noirq driver ";
674 callback = pm_noirq_op(dev->driver->pm, state);
675 }
676
677Run:
678 error = dpm_run_callback(callback, dev, state, info);
679
680Skip:
681 dev->power.is_noirq_suspended = false;
682
683Out:
684 complete_all(&dev->power.completion);
685 TRACE_RESUME(error);
686
687 if (error) {
688 async_error = error;
689 dpm_save_failed_dev(dev_name(dev));
690 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
691 }
692}
693
694static void async_resume_noirq(void *data, async_cookie_t cookie)
695{
696 struct device *dev = data;
697
698 device_resume_noirq(dev, pm_transition, true);
699 put_device(dev);
700}
701
702static void dpm_noirq_resume_devices(pm_message_t state)
703{
704 struct device *dev;
705 ktime_t starttime = ktime_get();
706
707 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
708
709 async_error = 0;
710 pm_transition = state;
711
712 mutex_lock(&dpm_list_mtx);
713
714 /*
715 * Trigger the resume of "async" devices upfront so they don't have to
716 * wait for the "non-async" ones they don't depend on.
717 */
718 list_for_each_entry(dev, &dpm_noirq_list, power.entry)
719 dpm_async_fn(dev, async_resume_noirq);
720
721 while (!list_empty(&dpm_noirq_list)) {
722 dev = to_device(dpm_noirq_list.next);
723 list_move_tail(&dev->power.entry, &dpm_late_early_list);
724
725 if (!dev->power.async_in_progress) {
726 get_device(dev);
727
728 mutex_unlock(&dpm_list_mtx);
729
730 device_resume_noirq(dev, state, false);
731
732 put_device(dev);
733
734 mutex_lock(&dpm_list_mtx);
735 }
736 }
737 mutex_unlock(&dpm_list_mtx);
738 async_synchronize_full();
739 dpm_show_time(starttime, state, 0, "noirq");
740 if (async_error)
741 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
742
743 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
744}
745
746/**
747 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
748 * @state: PM transition of the system being carried out.
749 *
750 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
751 * allow device drivers' interrupt handlers to be called.
752 */
753void dpm_resume_noirq(pm_message_t state)
754{
755 dpm_noirq_resume_devices(state);
756
757 resume_device_irqs();
758 device_wakeup_disarm_wake_irqs();
759}
760
761/**
762 * device_resume_early - Execute an "early resume" callback for given device.
763 * @dev: Device to handle.
764 * @state: PM transition of the system being carried out.
765 * @async: If true, the device is being resumed asynchronously.
766 *
767 * Runtime PM is disabled for @dev while this function is being executed.
768 */
769static void device_resume_early(struct device *dev, pm_message_t state, bool async)
770{
771 pm_callback_t callback = NULL;
772 const char *info = NULL;
773 int error = 0;
774
775 TRACE_DEVICE(dev);
776 TRACE_RESUME(0);
777
778 if (dev->power.syscore || dev->power.direct_complete)
779 goto Out;
780
781 if (!dev->power.is_late_suspended)
782 goto Out;
783
784 if (!dpm_wait_for_superior(dev, async))
785 goto Out;
786
787 if (dev->pm_domain) {
788 info = "early power domain ";
789 callback = pm_late_early_op(&dev->pm_domain->ops, state);
790 } else if (dev->type && dev->type->pm) {
791 info = "early type ";
792 callback = pm_late_early_op(dev->type->pm, state);
793 } else if (dev->class && dev->class->pm) {
794 info = "early class ";
795 callback = pm_late_early_op(dev->class->pm, state);
796 } else if (dev->bus && dev->bus->pm) {
797 info = "early bus ";
798 callback = pm_late_early_op(dev->bus->pm, state);
799 }
800 if (callback)
801 goto Run;
802
803 if (dev_pm_skip_resume(dev))
804 goto Skip;
805
806 if (dev->driver && dev->driver->pm) {
807 info = "early driver ";
808 callback = pm_late_early_op(dev->driver->pm, state);
809 }
810
811Run:
812 error = dpm_run_callback(callback, dev, state, info);
813
814Skip:
815 dev->power.is_late_suspended = false;
816
817Out:
818 TRACE_RESUME(error);
819
820 pm_runtime_enable(dev);
821 complete_all(&dev->power.completion);
822
823 if (error) {
824 async_error = error;
825 dpm_save_failed_dev(dev_name(dev));
826 pm_dev_err(dev, state, async ? " async early" : " early", error);
827 }
828}
829
830static void async_resume_early(void *data, async_cookie_t cookie)
831{
832 struct device *dev = data;
833
834 device_resume_early(dev, pm_transition, true);
835 put_device(dev);
836}
837
838/**
839 * dpm_resume_early - Execute "early resume" callbacks for all devices.
840 * @state: PM transition of the system being carried out.
841 */
842void dpm_resume_early(pm_message_t state)
843{
844 struct device *dev;
845 ktime_t starttime = ktime_get();
846
847 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
848
849 async_error = 0;
850 pm_transition = state;
851
852 mutex_lock(&dpm_list_mtx);
853
854 /*
855 * Trigger the resume of "async" devices upfront so they don't have to
856 * wait for the "non-async" ones they don't depend on.
857 */
858 list_for_each_entry(dev, &dpm_late_early_list, power.entry)
859 dpm_async_fn(dev, async_resume_early);
860
861 while (!list_empty(&dpm_late_early_list)) {
862 dev = to_device(dpm_late_early_list.next);
863 list_move_tail(&dev->power.entry, &dpm_suspended_list);
864
865 if (!dev->power.async_in_progress) {
866 get_device(dev);
867
868 mutex_unlock(&dpm_list_mtx);
869
870 device_resume_early(dev, state, false);
871
872 put_device(dev);
873
874 mutex_lock(&dpm_list_mtx);
875 }
876 }
877 mutex_unlock(&dpm_list_mtx);
878 async_synchronize_full();
879 dpm_show_time(starttime, state, 0, "early");
880 if (async_error)
881 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
882
883 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
884}
885
886/**
887 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
888 * @state: PM transition of the system being carried out.
889 */
890void dpm_resume_start(pm_message_t state)
891{
892 dpm_resume_noirq(state);
893 dpm_resume_early(state);
894}
895EXPORT_SYMBOL_GPL(dpm_resume_start);
896
897/**
898 * device_resume - Execute "resume" callbacks for given device.
899 * @dev: Device to handle.
900 * @state: PM transition of the system being carried out.
901 * @async: If true, the device is being resumed asynchronously.
902 */
903static void device_resume(struct device *dev, pm_message_t state, bool async)
904{
905 pm_callback_t callback = NULL;
906 const char *info = NULL;
907 int error = 0;
908 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
909
910 TRACE_DEVICE(dev);
911 TRACE_RESUME(0);
912
913 if (dev->power.syscore)
914 goto Complete;
915
916 if (dev->power.direct_complete) {
917 /* Match the pm_runtime_disable() in __device_suspend(). */
918 pm_runtime_enable(dev);
919 goto Complete;
920 }
921
922 if (!dpm_wait_for_superior(dev, async))
923 goto Complete;
924
925 dpm_watchdog_set(&wd, dev);
926 device_lock(dev);
927
928 /*
929 * This is a fib. But we'll allow new children to be added below
930 * a resumed device, even if the device hasn't been completed yet.
931 */
932 dev->power.is_prepared = false;
933
934 if (!dev->power.is_suspended)
935 goto Unlock;
936
937 if (dev->pm_domain) {
938 info = "power domain ";
939 callback = pm_op(&dev->pm_domain->ops, state);
940 goto Driver;
941 }
942
943 if (dev->type && dev->type->pm) {
944 info = "type ";
945 callback = pm_op(dev->type->pm, state);
946 goto Driver;
947 }
948
949 if (dev->class && dev->class->pm) {
950 info = "class ";
951 callback = pm_op(dev->class->pm, state);
952 goto Driver;
953 }
954
955 if (dev->bus) {
956 if (dev->bus->pm) {
957 info = "bus ";
958 callback = pm_op(dev->bus->pm, state);
959 } else if (dev->bus->resume) {
960 info = "legacy bus ";
961 callback = dev->bus->resume;
962 goto End;
963 }
964 }
965
966 Driver:
967 if (!callback && dev->driver && dev->driver->pm) {
968 info = "driver ";
969 callback = pm_op(dev->driver->pm, state);
970 }
971
972 End:
973 error = dpm_run_callback(callback, dev, state, info);
974 dev->power.is_suspended = false;
975
976 Unlock:
977 device_unlock(dev);
978 dpm_watchdog_clear(&wd);
979
980 Complete:
981 complete_all(&dev->power.completion);
982
983 TRACE_RESUME(error);
984
985 if (error) {
986 async_error = error;
987 dpm_save_failed_dev(dev_name(dev));
988 pm_dev_err(dev, state, async ? " async" : "", error);
989 }
990}
991
992static void async_resume(void *data, async_cookie_t cookie)
993{
994 struct device *dev = data;
995
996 device_resume(dev, pm_transition, true);
997 put_device(dev);
998}
999
1000/**
1001 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1002 * @state: PM transition of the system being carried out.
1003 *
1004 * Execute the appropriate "resume" callback for all devices whose status
1005 * indicates that they are suspended.
1006 */
1007void dpm_resume(pm_message_t state)
1008{
1009 struct device *dev;
1010 ktime_t starttime = ktime_get();
1011
1012 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1013 might_sleep();
1014
1015 pm_transition = state;
1016 async_error = 0;
1017
1018 mutex_lock(&dpm_list_mtx);
1019
1020 /*
1021 * Trigger the resume of "async" devices upfront so they don't have to
1022 * wait for the "non-async" ones they don't depend on.
1023 */
1024 list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1025 dpm_async_fn(dev, async_resume);
1026
1027 while (!list_empty(&dpm_suspended_list)) {
1028 dev = to_device(dpm_suspended_list.next);
1029 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1030
1031 if (!dev->power.async_in_progress) {
1032 get_device(dev);
1033
1034 mutex_unlock(&dpm_list_mtx);
1035
1036 device_resume(dev, state, false);
1037
1038 put_device(dev);
1039
1040 mutex_lock(&dpm_list_mtx);
1041 }
1042 }
1043 mutex_unlock(&dpm_list_mtx);
1044 async_synchronize_full();
1045 dpm_show_time(starttime, state, 0, NULL);
1046 if (async_error)
1047 dpm_save_failed_step(SUSPEND_RESUME);
1048
1049 cpufreq_resume();
1050 devfreq_resume();
1051 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1052}
1053
1054/**
1055 * device_complete - Complete a PM transition for given device.
1056 * @dev: Device to handle.
1057 * @state: PM transition of the system being carried out.
1058 */
1059static void device_complete(struct device *dev, pm_message_t state)
1060{
1061 void (*callback)(struct device *) = NULL;
1062 const char *info = NULL;
1063
1064 if (dev->power.syscore)
1065 goto out;
1066
1067 device_lock(dev);
1068
1069 if (dev->pm_domain) {
1070 info = "completing power domain ";
1071 callback = dev->pm_domain->ops.complete;
1072 } else if (dev->type && dev->type->pm) {
1073 info = "completing type ";
1074 callback = dev->type->pm->complete;
1075 } else if (dev->class && dev->class->pm) {
1076 info = "completing class ";
1077 callback = dev->class->pm->complete;
1078 } else if (dev->bus && dev->bus->pm) {
1079 info = "completing bus ";
1080 callback = dev->bus->pm->complete;
1081 }
1082
1083 if (!callback && dev->driver && dev->driver->pm) {
1084 info = "completing driver ";
1085 callback = dev->driver->pm->complete;
1086 }
1087
1088 if (callback) {
1089 pm_dev_dbg(dev, state, info);
1090 callback(dev);
1091 }
1092
1093 device_unlock(dev);
1094
1095out:
1096 pm_runtime_put(dev);
1097}
1098
1099/**
1100 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1101 * @state: PM transition of the system being carried out.
1102 *
1103 * Execute the ->complete() callbacks for all devices whose PM status is not
1104 * DPM_ON (this allows new devices to be registered).
1105 */
1106void dpm_complete(pm_message_t state)
1107{
1108 struct list_head list;
1109
1110 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1111 might_sleep();
1112
1113 INIT_LIST_HEAD(&list);
1114 mutex_lock(&dpm_list_mtx);
1115 while (!list_empty(&dpm_prepared_list)) {
1116 struct device *dev = to_device(dpm_prepared_list.prev);
1117
1118 get_device(dev);
1119 dev->power.is_prepared = false;
1120 list_move(&dev->power.entry, &list);
1121
1122 mutex_unlock(&dpm_list_mtx);
1123
1124 trace_device_pm_callback_start(dev, "", state.event);
1125 device_complete(dev, state);
1126 trace_device_pm_callback_end(dev, 0);
1127
1128 put_device(dev);
1129
1130 mutex_lock(&dpm_list_mtx);
1131 }
1132 list_splice(&list, &dpm_list);
1133 mutex_unlock(&dpm_list_mtx);
1134
1135 /* Allow device probing and trigger re-probing of deferred devices */
1136 device_unblock_probing();
1137 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1138}
1139
1140/**
1141 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1142 * @state: PM transition of the system being carried out.
1143 *
1144 * Execute "resume" callbacks for all devices and complete the PM transition of
1145 * the system.
1146 */
1147void dpm_resume_end(pm_message_t state)
1148{
1149 dpm_resume(state);
1150 dpm_complete(state);
1151}
1152EXPORT_SYMBOL_GPL(dpm_resume_end);
1153
1154
1155/*------------------------- Suspend routines -------------------------*/
1156
1157/**
1158 * resume_event - Return a "resume" message for given "suspend" sleep state.
1159 * @sleep_state: PM message representing a sleep state.
1160 *
1161 * Return a PM message representing the resume event corresponding to given
1162 * sleep state.
1163 */
1164static pm_message_t resume_event(pm_message_t sleep_state)
1165{
1166 switch (sleep_state.event) {
1167 case PM_EVENT_SUSPEND:
1168 return PMSG_RESUME;
1169 case PM_EVENT_FREEZE:
1170 case PM_EVENT_QUIESCE:
1171 return PMSG_RECOVER;
1172 case PM_EVENT_HIBERNATE:
1173 return PMSG_RESTORE;
1174 }
1175 return PMSG_ON;
1176}
1177
1178static void dpm_superior_set_must_resume(struct device *dev)
1179{
1180 struct device_link *link;
1181 int idx;
1182
1183 if (dev->parent)
1184 dev->parent->power.must_resume = true;
1185
1186 idx = device_links_read_lock();
1187
1188 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1189 link->supplier->power.must_resume = true;
1190
1191 device_links_read_unlock(idx);
1192}
1193
1194/**
1195 * device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1196 * @dev: Device to handle.
1197 * @state: PM transition of the system being carried out.
1198 * @async: If true, the device is being suspended asynchronously.
1199 *
1200 * The driver of @dev will not receive interrupts while this function is being
1201 * executed.
1202 */
1203static int device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1204{
1205 pm_callback_t callback = NULL;
1206 const char *info = NULL;
1207 int error = 0;
1208
1209 TRACE_DEVICE(dev);
1210 TRACE_SUSPEND(0);
1211
1212 dpm_wait_for_subordinate(dev, async);
1213
1214 if (async_error)
1215 goto Complete;
1216
1217 if (dev->power.syscore || dev->power.direct_complete)
1218 goto Complete;
1219
1220 if (dev->pm_domain) {
1221 info = "noirq power domain ";
1222 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1223 } else if (dev->type && dev->type->pm) {
1224 info = "noirq type ";
1225 callback = pm_noirq_op(dev->type->pm, state);
1226 } else if (dev->class && dev->class->pm) {
1227 info = "noirq class ";
1228 callback = pm_noirq_op(dev->class->pm, state);
1229 } else if (dev->bus && dev->bus->pm) {
1230 info = "noirq bus ";
1231 callback = pm_noirq_op(dev->bus->pm, state);
1232 }
1233 if (callback)
1234 goto Run;
1235
1236 if (dev_pm_skip_suspend(dev))
1237 goto Skip;
1238
1239 if (dev->driver && dev->driver->pm) {
1240 info = "noirq driver ";
1241 callback = pm_noirq_op(dev->driver->pm, state);
1242 }
1243
1244Run:
1245 error = dpm_run_callback(callback, dev, state, info);
1246 if (error) {
1247 async_error = error;
1248 dpm_save_failed_dev(dev_name(dev));
1249 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
1250 goto Complete;
1251 }
1252
1253Skip:
1254 dev->power.is_noirq_suspended = true;
1255
1256 /*
1257 * Skipping the resume of devices that were in use right before the
1258 * system suspend (as indicated by their PM-runtime usage counters)
1259 * would be suboptimal. Also resume them if doing that is not allowed
1260 * to be skipped.
1261 */
1262 if (atomic_read(&dev->power.usage_count) > 1 ||
1263 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1264 dev->power.may_skip_resume))
1265 dev->power.must_resume = true;
1266
1267 if (dev->power.must_resume)
1268 dpm_superior_set_must_resume(dev);
1269
1270Complete:
1271 complete_all(&dev->power.completion);
1272 TRACE_SUSPEND(error);
1273 return error;
1274}
1275
1276static void async_suspend_noirq(void *data, async_cookie_t cookie)
1277{
1278 struct device *dev = data;
1279
1280 device_suspend_noirq(dev, pm_transition, true);
1281 put_device(dev);
1282}
1283
1284static int dpm_noirq_suspend_devices(pm_message_t state)
1285{
1286 ktime_t starttime = ktime_get();
1287 int error = 0;
1288
1289 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1290
1291 pm_transition = state;
1292 async_error = 0;
1293
1294 mutex_lock(&dpm_list_mtx);
1295
1296 while (!list_empty(&dpm_late_early_list)) {
1297 struct device *dev = to_device(dpm_late_early_list.prev);
1298
1299 list_move(&dev->power.entry, &dpm_noirq_list);
1300
1301 if (dpm_async_fn(dev, async_suspend_noirq))
1302 continue;
1303
1304 get_device(dev);
1305
1306 mutex_unlock(&dpm_list_mtx);
1307
1308 error = device_suspend_noirq(dev, state, false);
1309
1310 put_device(dev);
1311
1312 mutex_lock(&dpm_list_mtx);
1313
1314 if (error || async_error)
1315 break;
1316 }
1317
1318 mutex_unlock(&dpm_list_mtx);
1319
1320 async_synchronize_full();
1321 if (!error)
1322 error = async_error;
1323
1324 if (error)
1325 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1326
1327 dpm_show_time(starttime, state, error, "noirq");
1328 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1329 return error;
1330}
1331
1332/**
1333 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1334 * @state: PM transition of the system being carried out.
1335 *
1336 * Prevent device drivers' interrupt handlers from being called and invoke
1337 * "noirq" suspend callbacks for all non-sysdev devices.
1338 */
1339int dpm_suspend_noirq(pm_message_t state)
1340{
1341 int ret;
1342
1343 device_wakeup_arm_wake_irqs();
1344 suspend_device_irqs();
1345
1346 ret = dpm_noirq_suspend_devices(state);
1347 if (ret)
1348 dpm_resume_noirq(resume_event(state));
1349
1350 return ret;
1351}
1352
1353static void dpm_propagate_wakeup_to_parent(struct device *dev)
1354{
1355 struct device *parent = dev->parent;
1356
1357 if (!parent)
1358 return;
1359
1360 spin_lock_irq(&parent->power.lock);
1361
1362 if (device_wakeup_path(dev) && !parent->power.ignore_children)
1363 parent->power.wakeup_path = true;
1364
1365 spin_unlock_irq(&parent->power.lock);
1366}
1367
1368/**
1369 * device_suspend_late - Execute a "late suspend" callback for given device.
1370 * @dev: Device to handle.
1371 * @state: PM transition of the system being carried out.
1372 * @async: If true, the device is being suspended asynchronously.
1373 *
1374 * Runtime PM is disabled for @dev while this function is being executed.
1375 */
1376static int device_suspend_late(struct device *dev, pm_message_t state, bool async)
1377{
1378 pm_callback_t callback = NULL;
1379 const char *info = NULL;
1380 int error = 0;
1381
1382 TRACE_DEVICE(dev);
1383 TRACE_SUSPEND(0);
1384
1385 __pm_runtime_disable(dev, false);
1386
1387 dpm_wait_for_subordinate(dev, async);
1388
1389 if (async_error)
1390 goto Complete;
1391
1392 if (pm_wakeup_pending()) {
1393 async_error = -EBUSY;
1394 goto Complete;
1395 }
1396
1397 if (dev->power.syscore || dev->power.direct_complete)
1398 goto Complete;
1399
1400 if (dev->pm_domain) {
1401 info = "late power domain ";
1402 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1403 } else if (dev->type && dev->type->pm) {
1404 info = "late type ";
1405 callback = pm_late_early_op(dev->type->pm, state);
1406 } else if (dev->class && dev->class->pm) {
1407 info = "late class ";
1408 callback = pm_late_early_op(dev->class->pm, state);
1409 } else if (dev->bus && dev->bus->pm) {
1410 info = "late bus ";
1411 callback = pm_late_early_op(dev->bus->pm, state);
1412 }
1413 if (callback)
1414 goto Run;
1415
1416 if (dev_pm_skip_suspend(dev))
1417 goto Skip;
1418
1419 if (dev->driver && dev->driver->pm) {
1420 info = "late driver ";
1421 callback = pm_late_early_op(dev->driver->pm, state);
1422 }
1423
1424Run:
1425 error = dpm_run_callback(callback, dev, state, info);
1426 if (error) {
1427 async_error = error;
1428 dpm_save_failed_dev(dev_name(dev));
1429 pm_dev_err(dev, state, async ? " async late" : " late", error);
1430 goto Complete;
1431 }
1432 dpm_propagate_wakeup_to_parent(dev);
1433
1434Skip:
1435 dev->power.is_late_suspended = true;
1436
1437Complete:
1438 TRACE_SUSPEND(error);
1439 complete_all(&dev->power.completion);
1440 return error;
1441}
1442
1443static void async_suspend_late(void *data, async_cookie_t cookie)
1444{
1445 struct device *dev = data;
1446
1447 device_suspend_late(dev, pm_transition, true);
1448 put_device(dev);
1449}
1450
1451/**
1452 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1453 * @state: PM transition of the system being carried out.
1454 */
1455int dpm_suspend_late(pm_message_t state)
1456{
1457 ktime_t starttime = ktime_get();
1458 int error = 0;
1459
1460 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1461
1462 pm_transition = state;
1463 async_error = 0;
1464
1465 wake_up_all_idle_cpus();
1466
1467 mutex_lock(&dpm_list_mtx);
1468
1469 while (!list_empty(&dpm_suspended_list)) {
1470 struct device *dev = to_device(dpm_suspended_list.prev);
1471
1472 list_move(&dev->power.entry, &dpm_late_early_list);
1473
1474 if (dpm_async_fn(dev, async_suspend_late))
1475 continue;
1476
1477 get_device(dev);
1478
1479 mutex_unlock(&dpm_list_mtx);
1480
1481 error = device_suspend_late(dev, state, false);
1482
1483 put_device(dev);
1484
1485 mutex_lock(&dpm_list_mtx);
1486
1487 if (error || async_error)
1488 break;
1489 }
1490
1491 mutex_unlock(&dpm_list_mtx);
1492
1493 async_synchronize_full();
1494 if (!error)
1495 error = async_error;
1496
1497 if (error) {
1498 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1499 dpm_resume_early(resume_event(state));
1500 }
1501 dpm_show_time(starttime, state, error, "late");
1502 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1503 return error;
1504}
1505
1506/**
1507 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1508 * @state: PM transition of the system being carried out.
1509 */
1510int dpm_suspend_end(pm_message_t state)
1511{
1512 ktime_t starttime = ktime_get();
1513 int error;
1514
1515 error = dpm_suspend_late(state);
1516 if (error)
1517 goto out;
1518
1519 error = dpm_suspend_noirq(state);
1520 if (error)
1521 dpm_resume_early(resume_event(state));
1522
1523out:
1524 dpm_show_time(starttime, state, error, "end");
1525 return error;
1526}
1527EXPORT_SYMBOL_GPL(dpm_suspend_end);
1528
1529/**
1530 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1531 * @dev: Device to suspend.
1532 * @state: PM transition of the system being carried out.
1533 * @cb: Suspend callback to execute.
1534 * @info: string description of caller.
1535 */
1536static int legacy_suspend(struct device *dev, pm_message_t state,
1537 int (*cb)(struct device *dev, pm_message_t state),
1538 const char *info)
1539{
1540 int error;
1541 ktime_t calltime;
1542
1543 calltime = initcall_debug_start(dev, cb);
1544
1545 trace_device_pm_callback_start(dev, info, state.event);
1546 error = cb(dev, state);
1547 trace_device_pm_callback_end(dev, error);
1548 suspend_report_result(dev, cb, error);
1549
1550 initcall_debug_report(dev, calltime, cb, error);
1551
1552 return error;
1553}
1554
1555static void dpm_clear_superiors_direct_complete(struct device *dev)
1556{
1557 struct device_link *link;
1558 int idx;
1559
1560 if (dev->parent) {
1561 spin_lock_irq(&dev->parent->power.lock);
1562 dev->parent->power.direct_complete = false;
1563 spin_unlock_irq(&dev->parent->power.lock);
1564 }
1565
1566 idx = device_links_read_lock();
1567
1568 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1569 spin_lock_irq(&link->supplier->power.lock);
1570 link->supplier->power.direct_complete = false;
1571 spin_unlock_irq(&link->supplier->power.lock);
1572 }
1573
1574 device_links_read_unlock(idx);
1575}
1576
1577/**
1578 * device_suspend - Execute "suspend" callbacks for given device.
1579 * @dev: Device to handle.
1580 * @state: PM transition of the system being carried out.
1581 * @async: If true, the device is being suspended asynchronously.
1582 */
1583static int device_suspend(struct device *dev, pm_message_t state, bool async)
1584{
1585 pm_callback_t callback = NULL;
1586 const char *info = NULL;
1587 int error = 0;
1588 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1589
1590 TRACE_DEVICE(dev);
1591 TRACE_SUSPEND(0);
1592
1593 dpm_wait_for_subordinate(dev, async);
1594
1595 if (async_error) {
1596 dev->power.direct_complete = false;
1597 goto Complete;
1598 }
1599
1600 /*
1601 * Wait for possible runtime PM transitions of the device in progress
1602 * to complete and if there's a runtime resume request pending for it,
1603 * resume it before proceeding with invoking the system-wide suspend
1604 * callbacks for it.
1605 *
1606 * If the system-wide suspend callbacks below change the configuration
1607 * of the device, they must disable runtime PM for it or otherwise
1608 * ensure that its runtime-resume callbacks will not be confused by that
1609 * change in case they are invoked going forward.
1610 */
1611 pm_runtime_barrier(dev);
1612
1613 if (pm_wakeup_pending()) {
1614 dev->power.direct_complete = false;
1615 async_error = -EBUSY;
1616 goto Complete;
1617 }
1618
1619 if (dev->power.syscore)
1620 goto Complete;
1621
1622 /* Avoid direct_complete to let wakeup_path propagate. */
1623 if (device_may_wakeup(dev) || device_wakeup_path(dev))
1624 dev->power.direct_complete = false;
1625
1626 if (dev->power.direct_complete) {
1627 if (pm_runtime_status_suspended(dev)) {
1628 pm_runtime_disable(dev);
1629 if (pm_runtime_status_suspended(dev)) {
1630 pm_dev_dbg(dev, state, "direct-complete ");
1631 goto Complete;
1632 }
1633
1634 pm_runtime_enable(dev);
1635 }
1636 dev->power.direct_complete = false;
1637 }
1638
1639 dev->power.may_skip_resume = true;
1640 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1641
1642 dpm_watchdog_set(&wd, dev);
1643 device_lock(dev);
1644
1645 if (dev->pm_domain) {
1646 info = "power domain ";
1647 callback = pm_op(&dev->pm_domain->ops, state);
1648 goto Run;
1649 }
1650
1651 if (dev->type && dev->type->pm) {
1652 info = "type ";
1653 callback = pm_op(dev->type->pm, state);
1654 goto Run;
1655 }
1656
1657 if (dev->class && dev->class->pm) {
1658 info = "class ";
1659 callback = pm_op(dev->class->pm, state);
1660 goto Run;
1661 }
1662
1663 if (dev->bus) {
1664 if (dev->bus->pm) {
1665 info = "bus ";
1666 callback = pm_op(dev->bus->pm, state);
1667 } else if (dev->bus->suspend) {
1668 pm_dev_dbg(dev, state, "legacy bus ");
1669 error = legacy_suspend(dev, state, dev->bus->suspend,
1670 "legacy bus ");
1671 goto End;
1672 }
1673 }
1674
1675 Run:
1676 if (!callback && dev->driver && dev->driver->pm) {
1677 info = "driver ";
1678 callback = pm_op(dev->driver->pm, state);
1679 }
1680
1681 error = dpm_run_callback(callback, dev, state, info);
1682
1683 End:
1684 if (!error) {
1685 dev->power.is_suspended = true;
1686 if (device_may_wakeup(dev))
1687 dev->power.wakeup_path = true;
1688
1689 dpm_propagate_wakeup_to_parent(dev);
1690 dpm_clear_superiors_direct_complete(dev);
1691 }
1692
1693 device_unlock(dev);
1694 dpm_watchdog_clear(&wd);
1695
1696 Complete:
1697 if (error) {
1698 async_error = error;
1699 dpm_save_failed_dev(dev_name(dev));
1700 pm_dev_err(dev, state, async ? " async" : "", error);
1701 }
1702
1703 complete_all(&dev->power.completion);
1704 TRACE_SUSPEND(error);
1705 return error;
1706}
1707
1708static void async_suspend(void *data, async_cookie_t cookie)
1709{
1710 struct device *dev = data;
1711
1712 device_suspend(dev, pm_transition, true);
1713 put_device(dev);
1714}
1715
1716/**
1717 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1718 * @state: PM transition of the system being carried out.
1719 */
1720int dpm_suspend(pm_message_t state)
1721{
1722 ktime_t starttime = ktime_get();
1723 int error = 0;
1724
1725 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1726 might_sleep();
1727
1728 devfreq_suspend();
1729 cpufreq_suspend();
1730
1731 pm_transition = state;
1732 async_error = 0;
1733
1734 mutex_lock(&dpm_list_mtx);
1735
1736 while (!list_empty(&dpm_prepared_list)) {
1737 struct device *dev = to_device(dpm_prepared_list.prev);
1738
1739 list_move(&dev->power.entry, &dpm_suspended_list);
1740
1741 if (dpm_async_fn(dev, async_suspend))
1742 continue;
1743
1744 get_device(dev);
1745
1746 mutex_unlock(&dpm_list_mtx);
1747
1748 error = device_suspend(dev, state, false);
1749
1750 put_device(dev);
1751
1752 mutex_lock(&dpm_list_mtx);
1753
1754 if (error || async_error)
1755 break;
1756 }
1757
1758 mutex_unlock(&dpm_list_mtx);
1759
1760 async_synchronize_full();
1761 if (!error)
1762 error = async_error;
1763
1764 if (error)
1765 dpm_save_failed_step(SUSPEND_SUSPEND);
1766
1767 dpm_show_time(starttime, state, error, NULL);
1768 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1769 return error;
1770}
1771
1772/**
1773 * device_prepare - Prepare a device for system power transition.
1774 * @dev: Device to handle.
1775 * @state: PM transition of the system being carried out.
1776 *
1777 * Execute the ->prepare() callback(s) for given device. No new children of the
1778 * device may be registered after this function has returned.
1779 */
1780static int device_prepare(struct device *dev, pm_message_t state)
1781{
1782 int (*callback)(struct device *) = NULL;
1783 int ret = 0;
1784
1785 /*
1786 * If a device's parent goes into runtime suspend at the wrong time,
1787 * it won't be possible to resume the device. To prevent this we
1788 * block runtime suspend here, during the prepare phase, and allow
1789 * it again during the complete phase.
1790 */
1791 pm_runtime_get_noresume(dev);
1792
1793 if (dev->power.syscore)
1794 return 0;
1795
1796 device_lock(dev);
1797
1798 dev->power.wakeup_path = false;
1799
1800 if (dev->power.no_pm_callbacks)
1801 goto unlock;
1802
1803 if (dev->pm_domain)
1804 callback = dev->pm_domain->ops.prepare;
1805 else if (dev->type && dev->type->pm)
1806 callback = dev->type->pm->prepare;
1807 else if (dev->class && dev->class->pm)
1808 callback = dev->class->pm->prepare;
1809 else if (dev->bus && dev->bus->pm)
1810 callback = dev->bus->pm->prepare;
1811
1812 if (!callback && dev->driver && dev->driver->pm)
1813 callback = dev->driver->pm->prepare;
1814
1815 if (callback)
1816 ret = callback(dev);
1817
1818unlock:
1819 device_unlock(dev);
1820
1821 if (ret < 0) {
1822 suspend_report_result(dev, callback, ret);
1823 pm_runtime_put(dev);
1824 return ret;
1825 }
1826 /*
1827 * A positive return value from ->prepare() means "this device appears
1828 * to be runtime-suspended and its state is fine, so if it really is
1829 * runtime-suspended, you can leave it in that state provided that you
1830 * will do the same thing with all of its descendants". This only
1831 * applies to suspend transitions, however.
1832 */
1833 spin_lock_irq(&dev->power.lock);
1834 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1835 (ret > 0 || dev->power.no_pm_callbacks) &&
1836 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1837 spin_unlock_irq(&dev->power.lock);
1838 return 0;
1839}
1840
1841/**
1842 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1843 * @state: PM transition of the system being carried out.
1844 *
1845 * Execute the ->prepare() callback(s) for all devices.
1846 */
1847int dpm_prepare(pm_message_t state)
1848{
1849 int error = 0;
1850
1851 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1852 might_sleep();
1853
1854 /*
1855 * Give a chance for the known devices to complete their probes, before
1856 * disable probing of devices. This sync point is important at least
1857 * at boot time + hibernation restore.
1858 */
1859 wait_for_device_probe();
1860 /*
1861 * It is unsafe if probing of devices will happen during suspend or
1862 * hibernation and system behavior will be unpredictable in this case.
1863 * So, let's prohibit device's probing here and defer their probes
1864 * instead. The normal behavior will be restored in dpm_complete().
1865 */
1866 device_block_probing();
1867
1868 mutex_lock(&dpm_list_mtx);
1869 while (!list_empty(&dpm_list) && !error) {
1870 struct device *dev = to_device(dpm_list.next);
1871
1872 get_device(dev);
1873
1874 mutex_unlock(&dpm_list_mtx);
1875
1876 trace_device_pm_callback_start(dev, "", state.event);
1877 error = device_prepare(dev, state);
1878 trace_device_pm_callback_end(dev, error);
1879
1880 mutex_lock(&dpm_list_mtx);
1881
1882 if (!error) {
1883 dev->power.is_prepared = true;
1884 if (!list_empty(&dev->power.entry))
1885 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1886 } else if (error == -EAGAIN) {
1887 error = 0;
1888 } else {
1889 dev_info(dev, "not prepared for power transition: code %d\n",
1890 error);
1891 }
1892
1893 mutex_unlock(&dpm_list_mtx);
1894
1895 put_device(dev);
1896
1897 mutex_lock(&dpm_list_mtx);
1898 }
1899 mutex_unlock(&dpm_list_mtx);
1900 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1901 return error;
1902}
1903
1904/**
1905 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1906 * @state: PM transition of the system being carried out.
1907 *
1908 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1909 * callbacks for them.
1910 */
1911int dpm_suspend_start(pm_message_t state)
1912{
1913 ktime_t starttime = ktime_get();
1914 int error;
1915
1916 error = dpm_prepare(state);
1917 if (error)
1918 dpm_save_failed_step(SUSPEND_PREPARE);
1919 else
1920 error = dpm_suspend(state);
1921
1922 dpm_show_time(starttime, state, error, "start");
1923 return error;
1924}
1925EXPORT_SYMBOL_GPL(dpm_suspend_start);
1926
1927void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1928{
1929 if (ret)
1930 dev_err(dev, "%s(): %ps returns %d\n", function, fn, ret);
1931}
1932EXPORT_SYMBOL_GPL(__suspend_report_result);
1933
1934/**
1935 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1936 * @subordinate: Device that needs to wait for @dev.
1937 * @dev: Device to wait for.
1938 */
1939int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1940{
1941 dpm_wait(dev, subordinate->power.async_suspend);
1942 return async_error;
1943}
1944EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1945
1946/**
1947 * dpm_for_each_dev - device iterator.
1948 * @data: data for the callback.
1949 * @fn: function to be called for each device.
1950 *
1951 * Iterate over devices in dpm_list, and call @fn for each device,
1952 * passing it @data.
1953 */
1954void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1955{
1956 struct device *dev;
1957
1958 if (!fn)
1959 return;
1960
1961 device_pm_lock();
1962 list_for_each_entry(dev, &dpm_list, power.entry)
1963 fn(dev, data);
1964 device_pm_unlock();
1965}
1966EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1967
1968static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1969{
1970 if (!ops)
1971 return true;
1972
1973 return !ops->prepare &&
1974 !ops->suspend &&
1975 !ops->suspend_late &&
1976 !ops->suspend_noirq &&
1977 !ops->resume_noirq &&
1978 !ops->resume_early &&
1979 !ops->resume &&
1980 !ops->complete;
1981}
1982
1983void device_pm_check_callbacks(struct device *dev)
1984{
1985 unsigned long flags;
1986
1987 spin_lock_irqsave(&dev->power.lock, flags);
1988 dev->power.no_pm_callbacks =
1989 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1990 !dev->bus->suspend && !dev->bus->resume)) &&
1991 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1992 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1993 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1994 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
1995 !dev->driver->suspend && !dev->driver->resume));
1996 spin_unlock_irqrestore(&dev->power.lock, flags);
1997}
1998
1999bool dev_pm_skip_suspend(struct device *dev)
2000{
2001 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2002 pm_runtime_status_suspended(dev);
2003}
1/*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20#include <linux/device.h>
21#include <linux/export.h>
22#include <linux/mutex.h>
23#include <linux/pm.h>
24#include <linux/pm_runtime.h>
25#include <linux/pm-trace.h>
26#include <linux/pm_wakeirq.h>
27#include <linux/interrupt.h>
28#include <linux/sched.h>
29#include <linux/sched/debug.h>
30#include <linux/async.h>
31#include <linux/suspend.h>
32#include <trace/events/power.h>
33#include <linux/cpufreq.h>
34#include <linux/cpuidle.h>
35#include <linux/timer.h>
36
37#include "../base.h"
38#include "power.h"
39
40typedef int (*pm_callback_t)(struct device *);
41
42/*
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
46 *
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
50 */
51
52LIST_HEAD(dpm_list);
53static LIST_HEAD(dpm_prepared_list);
54static LIST_HEAD(dpm_suspended_list);
55static LIST_HEAD(dpm_late_early_list);
56static LIST_HEAD(dpm_noirq_list);
57
58struct suspend_stats suspend_stats;
59static DEFINE_MUTEX(dpm_list_mtx);
60static pm_message_t pm_transition;
61
62static int async_error;
63
64static const char *pm_verb(int event)
65{
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
85 }
86}
87
88/**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
91 */
92void device_pm_sleep_init(struct device *dev)
93{
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
102}
103
104/**
105 * device_pm_lock - Lock the list of active devices used by the PM core.
106 */
107void device_pm_lock(void)
108{
109 mutex_lock(&dpm_list_mtx);
110}
111
112/**
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 */
115void device_pm_unlock(void)
116{
117 mutex_unlock(&dpm_list_mtx);
118}
119
120/**
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
123 */
124void device_pm_add(struct device *dev)
125{
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 device_pm_check_callbacks(dev);
129 mutex_lock(&dpm_list_mtx);
130 if (dev->parent && dev->parent->power.is_prepared)
131 dev_warn(dev, "parent %s should not be sleeping\n",
132 dev_name(dev->parent));
133 list_add_tail(&dev->power.entry, &dpm_list);
134 dev->power.in_dpm_list = true;
135 mutex_unlock(&dpm_list_mtx);
136}
137
138/**
139 * device_pm_remove - Remove a device from the PM core's list of active devices.
140 * @dev: Device to be removed from the list.
141 */
142void device_pm_remove(struct device *dev)
143{
144 pr_debug("PM: Removing info for %s:%s\n",
145 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
146 complete_all(&dev->power.completion);
147 mutex_lock(&dpm_list_mtx);
148 list_del_init(&dev->power.entry);
149 dev->power.in_dpm_list = false;
150 mutex_unlock(&dpm_list_mtx);
151 device_wakeup_disable(dev);
152 pm_runtime_remove(dev);
153 device_pm_check_callbacks(dev);
154}
155
156/**
157 * device_pm_move_before - Move device in the PM core's list of active devices.
158 * @deva: Device to move in dpm_list.
159 * @devb: Device @deva should come before.
160 */
161void device_pm_move_before(struct device *deva, struct device *devb)
162{
163 pr_debug("PM: Moving %s:%s before %s:%s\n",
164 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
165 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
166 /* Delete deva from dpm_list and reinsert before devb. */
167 list_move_tail(&deva->power.entry, &devb->power.entry);
168}
169
170/**
171 * device_pm_move_after - Move device in the PM core's list of active devices.
172 * @deva: Device to move in dpm_list.
173 * @devb: Device @deva should come after.
174 */
175void device_pm_move_after(struct device *deva, struct device *devb)
176{
177 pr_debug("PM: Moving %s:%s after %s:%s\n",
178 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
179 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
180 /* Delete deva from dpm_list and reinsert after devb. */
181 list_move(&deva->power.entry, &devb->power.entry);
182}
183
184/**
185 * device_pm_move_last - Move device to end of the PM core's list of devices.
186 * @dev: Device to move in dpm_list.
187 */
188void device_pm_move_last(struct device *dev)
189{
190 pr_debug("PM: Moving %s:%s to end of list\n",
191 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
192 list_move_tail(&dev->power.entry, &dpm_list);
193}
194
195static ktime_t initcall_debug_start(struct device *dev)
196{
197 ktime_t calltime = 0;
198
199 if (pm_print_times_enabled) {
200 pr_info("calling %s+ @ %i, parent: %s\n",
201 dev_name(dev), task_pid_nr(current),
202 dev->parent ? dev_name(dev->parent) : "none");
203 calltime = ktime_get();
204 }
205
206 return calltime;
207}
208
209static void initcall_debug_report(struct device *dev, ktime_t calltime,
210 int error, pm_message_t state,
211 const char *info)
212{
213 ktime_t rettime;
214 s64 nsecs;
215
216 rettime = ktime_get();
217 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
218
219 if (pm_print_times_enabled) {
220 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
221 error, (unsigned long long)nsecs >> 10);
222 }
223}
224
225/**
226 * dpm_wait - Wait for a PM operation to complete.
227 * @dev: Device to wait for.
228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
229 */
230static void dpm_wait(struct device *dev, bool async)
231{
232 if (!dev)
233 return;
234
235 if (async || (pm_async_enabled && dev->power.async_suspend))
236 wait_for_completion(&dev->power.completion);
237}
238
239static int dpm_wait_fn(struct device *dev, void *async_ptr)
240{
241 dpm_wait(dev, *((bool *)async_ptr));
242 return 0;
243}
244
245static void dpm_wait_for_children(struct device *dev, bool async)
246{
247 device_for_each_child(dev, &async, dpm_wait_fn);
248}
249
250static void dpm_wait_for_suppliers(struct device *dev, bool async)
251{
252 struct device_link *link;
253 int idx;
254
255 idx = device_links_read_lock();
256
257 /*
258 * If the supplier goes away right after we've checked the link to it,
259 * we'll wait for its completion to change the state, but that's fine,
260 * because the only things that will block as a result are the SRCU
261 * callbacks freeing the link objects for the links in the list we're
262 * walking.
263 */
264 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
265 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
266 dpm_wait(link->supplier, async);
267
268 device_links_read_unlock(idx);
269}
270
271static void dpm_wait_for_superior(struct device *dev, bool async)
272{
273 dpm_wait(dev->parent, async);
274 dpm_wait_for_suppliers(dev, async);
275}
276
277static void dpm_wait_for_consumers(struct device *dev, bool async)
278{
279 struct device_link *link;
280 int idx;
281
282 idx = device_links_read_lock();
283
284 /*
285 * The status of a device link can only be changed from "dormant" by a
286 * probe, but that cannot happen during system suspend/resume. In
287 * theory it can change to "dormant" at that time, but then it is
288 * reasonable to wait for the target device anyway (eg. if it goes
289 * away, it's better to wait for it to go away completely and then
290 * continue instead of trying to continue in parallel with its
291 * unregistration).
292 */
293 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
294 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
295 dpm_wait(link->consumer, async);
296
297 device_links_read_unlock(idx);
298}
299
300static void dpm_wait_for_subordinate(struct device *dev, bool async)
301{
302 dpm_wait_for_children(dev, async);
303 dpm_wait_for_consumers(dev, async);
304}
305
306/**
307 * pm_op - Return the PM operation appropriate for given PM event.
308 * @ops: PM operations to choose from.
309 * @state: PM transition of the system being carried out.
310 */
311static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
312{
313 switch (state.event) {
314#ifdef CONFIG_SUSPEND
315 case PM_EVENT_SUSPEND:
316 return ops->suspend;
317 case PM_EVENT_RESUME:
318 return ops->resume;
319#endif /* CONFIG_SUSPEND */
320#ifdef CONFIG_HIBERNATE_CALLBACKS
321 case PM_EVENT_FREEZE:
322 case PM_EVENT_QUIESCE:
323 return ops->freeze;
324 case PM_EVENT_HIBERNATE:
325 return ops->poweroff;
326 case PM_EVENT_THAW:
327 case PM_EVENT_RECOVER:
328 return ops->thaw;
329 break;
330 case PM_EVENT_RESTORE:
331 return ops->restore;
332#endif /* CONFIG_HIBERNATE_CALLBACKS */
333 }
334
335 return NULL;
336}
337
338/**
339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
340 * @ops: PM operations to choose from.
341 * @state: PM transition of the system being carried out.
342 *
343 * Runtime PM is disabled for @dev while this function is being executed.
344 */
345static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
346 pm_message_t state)
347{
348 switch (state.event) {
349#ifdef CONFIG_SUSPEND
350 case PM_EVENT_SUSPEND:
351 return ops->suspend_late;
352 case PM_EVENT_RESUME:
353 return ops->resume_early;
354#endif /* CONFIG_SUSPEND */
355#ifdef CONFIG_HIBERNATE_CALLBACKS
356 case PM_EVENT_FREEZE:
357 case PM_EVENT_QUIESCE:
358 return ops->freeze_late;
359 case PM_EVENT_HIBERNATE:
360 return ops->poweroff_late;
361 case PM_EVENT_THAW:
362 case PM_EVENT_RECOVER:
363 return ops->thaw_early;
364 case PM_EVENT_RESTORE:
365 return ops->restore_early;
366#endif /* CONFIG_HIBERNATE_CALLBACKS */
367 }
368
369 return NULL;
370}
371
372/**
373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
374 * @ops: PM operations to choose from.
375 * @state: PM transition of the system being carried out.
376 *
377 * The driver of @dev will not receive interrupts while this function is being
378 * executed.
379 */
380static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
381{
382 switch (state.event) {
383#ifdef CONFIG_SUSPEND
384 case PM_EVENT_SUSPEND:
385 return ops->suspend_noirq;
386 case PM_EVENT_RESUME:
387 return ops->resume_noirq;
388#endif /* CONFIG_SUSPEND */
389#ifdef CONFIG_HIBERNATE_CALLBACKS
390 case PM_EVENT_FREEZE:
391 case PM_EVENT_QUIESCE:
392 return ops->freeze_noirq;
393 case PM_EVENT_HIBERNATE:
394 return ops->poweroff_noirq;
395 case PM_EVENT_THAW:
396 case PM_EVENT_RECOVER:
397 return ops->thaw_noirq;
398 case PM_EVENT_RESTORE:
399 return ops->restore_noirq;
400#endif /* CONFIG_HIBERNATE_CALLBACKS */
401 }
402
403 return NULL;
404}
405
406static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
407{
408 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
409 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
410 ", may wakeup" : "");
411}
412
413static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
414 int error)
415{
416 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
417 dev_name(dev), pm_verb(state.event), info, error);
418}
419
420static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
421 const char *info)
422{
423 ktime_t calltime;
424 u64 usecs64;
425 int usecs;
426
427 calltime = ktime_get();
428 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
429 do_div(usecs64, NSEC_PER_USEC);
430 usecs = usecs64;
431 if (usecs == 0)
432 usecs = 1;
433
434 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
435 info ?: "", info ? " " : "", pm_verb(state.event),
436 error ? "aborted" : "complete",
437 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
438}
439
440static int dpm_run_callback(pm_callback_t cb, struct device *dev,
441 pm_message_t state, const char *info)
442{
443 ktime_t calltime;
444 int error;
445
446 if (!cb)
447 return 0;
448
449 calltime = initcall_debug_start(dev);
450
451 pm_dev_dbg(dev, state, info);
452 trace_device_pm_callback_start(dev, info, state.event);
453 error = cb(dev);
454 trace_device_pm_callback_end(dev, error);
455 suspend_report_result(cb, error);
456
457 initcall_debug_report(dev, calltime, error, state, info);
458
459 return error;
460}
461
462#ifdef CONFIG_DPM_WATCHDOG
463struct dpm_watchdog {
464 struct device *dev;
465 struct task_struct *tsk;
466 struct timer_list timer;
467};
468
469#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
470 struct dpm_watchdog wd
471
472/**
473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
474 * @data: Watchdog object address.
475 *
476 * Called when a driver has timed out suspending or resuming.
477 * There's not much we can do here to recover so panic() to
478 * capture a crash-dump in pstore.
479 */
480static void dpm_watchdog_handler(struct timer_list *t)
481{
482 struct dpm_watchdog *wd = from_timer(wd, t, timer);
483
484 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
485 show_stack(wd->tsk, NULL);
486 panic("%s %s: unrecoverable failure\n",
487 dev_driver_string(wd->dev), dev_name(wd->dev));
488}
489
490/**
491 * dpm_watchdog_set - Enable pm watchdog for given device.
492 * @wd: Watchdog. Must be allocated on the stack.
493 * @dev: Device to handle.
494 */
495static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
496{
497 struct timer_list *timer = &wd->timer;
498
499 wd->dev = dev;
500 wd->tsk = current;
501
502 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
503 /* use same timeout value for both suspend and resume */
504 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
505 add_timer(timer);
506}
507
508/**
509 * dpm_watchdog_clear - Disable suspend/resume watchdog.
510 * @wd: Watchdog to disable.
511 */
512static void dpm_watchdog_clear(struct dpm_watchdog *wd)
513{
514 struct timer_list *timer = &wd->timer;
515
516 del_timer_sync(timer);
517 destroy_timer_on_stack(timer);
518}
519#else
520#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
521#define dpm_watchdog_set(x, y)
522#define dpm_watchdog_clear(x)
523#endif
524
525/*------------------------- Resume routines -------------------------*/
526
527/**
528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
529 * @dev: Target device.
530 *
531 * Make the core skip the "early resume" and "resume" phases for @dev.
532 *
533 * This function can be called by middle-layer code during the "noirq" phase of
534 * system resume if necessary, but not by device drivers.
535 */
536void dev_pm_skip_next_resume_phases(struct device *dev)
537{
538 dev->power.is_late_suspended = false;
539 dev->power.is_suspended = false;
540}
541
542/**
543 * suspend_event - Return a "suspend" message for given "resume" one.
544 * @resume_msg: PM message representing a system-wide resume transition.
545 */
546static pm_message_t suspend_event(pm_message_t resume_msg)
547{
548 switch (resume_msg.event) {
549 case PM_EVENT_RESUME:
550 return PMSG_SUSPEND;
551 case PM_EVENT_THAW:
552 case PM_EVENT_RESTORE:
553 return PMSG_FREEZE;
554 case PM_EVENT_RECOVER:
555 return PMSG_HIBERNATE;
556 }
557 return PMSG_ON;
558}
559
560/**
561 * dev_pm_may_skip_resume - System-wide device resume optimization check.
562 * @dev: Target device.
563 *
564 * Checks whether or not the device may be left in suspend after a system-wide
565 * transition to the working state.
566 */
567bool dev_pm_may_skip_resume(struct device *dev)
568{
569 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
570}
571
572static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
573 pm_message_t state,
574 const char **info_p)
575{
576 pm_callback_t callback;
577 const char *info;
578
579 if (dev->pm_domain) {
580 info = "noirq power domain ";
581 callback = pm_noirq_op(&dev->pm_domain->ops, state);
582 } else if (dev->type && dev->type->pm) {
583 info = "noirq type ";
584 callback = pm_noirq_op(dev->type->pm, state);
585 } else if (dev->class && dev->class->pm) {
586 info = "noirq class ";
587 callback = pm_noirq_op(dev->class->pm, state);
588 } else if (dev->bus && dev->bus->pm) {
589 info = "noirq bus ";
590 callback = pm_noirq_op(dev->bus->pm, state);
591 } else {
592 return NULL;
593 }
594
595 if (info_p)
596 *info_p = info;
597
598 return callback;
599}
600
601static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
602 pm_message_t state,
603 const char **info_p);
604
605static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
606 pm_message_t state,
607 const char **info_p);
608
609/**
610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
611 * @dev: Device to handle.
612 * @state: PM transition of the system being carried out.
613 * @async: If true, the device is being resumed asynchronously.
614 *
615 * The driver of @dev will not receive interrupts while this function is being
616 * executed.
617 */
618static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
619{
620 pm_callback_t callback;
621 const char *info;
622 bool skip_resume;
623 int error = 0;
624
625 TRACE_DEVICE(dev);
626 TRACE_RESUME(0);
627
628 if (dev->power.syscore || dev->power.direct_complete)
629 goto Out;
630
631 if (!dev->power.is_noirq_suspended)
632 goto Out;
633
634 dpm_wait_for_superior(dev, async);
635
636 skip_resume = dev_pm_may_skip_resume(dev);
637
638 callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
639 if (callback)
640 goto Run;
641
642 if (skip_resume)
643 goto Skip;
644
645 if (dev_pm_smart_suspend_and_suspended(dev)) {
646 pm_message_t suspend_msg = suspend_event(state);
647
648 /*
649 * If "freeze" callbacks have been skipped during a transition
650 * related to hibernation, the subsequent "thaw" callbacks must
651 * be skipped too or bad things may happen. Otherwise, resume
652 * callbacks are going to be run for the device, so its runtime
653 * PM status must be changed to reflect the new state after the
654 * transition under way.
655 */
656 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
657 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
658 if (state.event == PM_EVENT_THAW) {
659 skip_resume = true;
660 goto Skip;
661 } else {
662 pm_runtime_set_active(dev);
663 }
664 }
665 }
666
667 if (dev->driver && dev->driver->pm) {
668 info = "noirq driver ";
669 callback = pm_noirq_op(dev->driver->pm, state);
670 }
671
672Run:
673 error = dpm_run_callback(callback, dev, state, info);
674
675Skip:
676 dev->power.is_noirq_suspended = false;
677
678 if (skip_resume) {
679 /*
680 * The device is going to be left in suspend, but it might not
681 * have been in runtime suspend before the system suspended, so
682 * its runtime PM status needs to be updated to avoid confusing
683 * the runtime PM framework when runtime PM is enabled for the
684 * device again.
685 */
686 pm_runtime_set_suspended(dev);
687 dev_pm_skip_next_resume_phases(dev);
688 }
689
690Out:
691 complete_all(&dev->power.completion);
692 TRACE_RESUME(error);
693 return error;
694}
695
696static bool is_async(struct device *dev)
697{
698 return dev->power.async_suspend && pm_async_enabled
699 && !pm_trace_is_enabled();
700}
701
702static void async_resume_noirq(void *data, async_cookie_t cookie)
703{
704 struct device *dev = (struct device *)data;
705 int error;
706
707 error = device_resume_noirq(dev, pm_transition, true);
708 if (error)
709 pm_dev_err(dev, pm_transition, " async", error);
710
711 put_device(dev);
712}
713
714void dpm_noirq_resume_devices(pm_message_t state)
715{
716 struct device *dev;
717 ktime_t starttime = ktime_get();
718
719 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
720 mutex_lock(&dpm_list_mtx);
721 pm_transition = state;
722
723 /*
724 * Advanced the async threads upfront,
725 * in case the starting of async threads is
726 * delayed by non-async resuming devices.
727 */
728 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
729 reinit_completion(&dev->power.completion);
730 if (is_async(dev)) {
731 get_device(dev);
732 async_schedule(async_resume_noirq, dev);
733 }
734 }
735
736 while (!list_empty(&dpm_noirq_list)) {
737 dev = to_device(dpm_noirq_list.next);
738 get_device(dev);
739 list_move_tail(&dev->power.entry, &dpm_late_early_list);
740 mutex_unlock(&dpm_list_mtx);
741
742 if (!is_async(dev)) {
743 int error;
744
745 error = device_resume_noirq(dev, state, false);
746 if (error) {
747 suspend_stats.failed_resume_noirq++;
748 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
749 dpm_save_failed_dev(dev_name(dev));
750 pm_dev_err(dev, state, " noirq", error);
751 }
752 }
753
754 mutex_lock(&dpm_list_mtx);
755 put_device(dev);
756 }
757 mutex_unlock(&dpm_list_mtx);
758 async_synchronize_full();
759 dpm_show_time(starttime, state, 0, "noirq");
760 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
761}
762
763void dpm_noirq_end(void)
764{
765 resume_device_irqs();
766 device_wakeup_disarm_wake_irqs();
767 cpuidle_resume();
768}
769
770/**
771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
772 * @state: PM transition of the system being carried out.
773 *
774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
775 * allow device drivers' interrupt handlers to be called.
776 */
777void dpm_resume_noirq(pm_message_t state)
778{
779 dpm_noirq_resume_devices(state);
780 dpm_noirq_end();
781}
782
783static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
784 pm_message_t state,
785 const char **info_p)
786{
787 pm_callback_t callback;
788 const char *info;
789
790 if (dev->pm_domain) {
791 info = "early power domain ";
792 callback = pm_late_early_op(&dev->pm_domain->ops, state);
793 } else if (dev->type && dev->type->pm) {
794 info = "early type ";
795 callback = pm_late_early_op(dev->type->pm, state);
796 } else if (dev->class && dev->class->pm) {
797 info = "early class ";
798 callback = pm_late_early_op(dev->class->pm, state);
799 } else if (dev->bus && dev->bus->pm) {
800 info = "early bus ";
801 callback = pm_late_early_op(dev->bus->pm, state);
802 } else {
803 return NULL;
804 }
805
806 if (info_p)
807 *info_p = info;
808
809 return callback;
810}
811
812/**
813 * device_resume_early - Execute an "early resume" callback for given device.
814 * @dev: Device to handle.
815 * @state: PM transition of the system being carried out.
816 * @async: If true, the device is being resumed asynchronously.
817 *
818 * Runtime PM is disabled for @dev while this function is being executed.
819 */
820static int device_resume_early(struct device *dev, pm_message_t state, bool async)
821{
822 pm_callback_t callback;
823 const char *info;
824 int error = 0;
825
826 TRACE_DEVICE(dev);
827 TRACE_RESUME(0);
828
829 if (dev->power.syscore || dev->power.direct_complete)
830 goto Out;
831
832 if (!dev->power.is_late_suspended)
833 goto Out;
834
835 dpm_wait_for_superior(dev, async);
836
837 callback = dpm_subsys_resume_early_cb(dev, state, &info);
838
839 if (!callback && dev->driver && dev->driver->pm) {
840 info = "early driver ";
841 callback = pm_late_early_op(dev->driver->pm, state);
842 }
843
844 error = dpm_run_callback(callback, dev, state, info);
845 dev->power.is_late_suspended = false;
846
847 Out:
848 TRACE_RESUME(error);
849
850 pm_runtime_enable(dev);
851 complete_all(&dev->power.completion);
852 return error;
853}
854
855static void async_resume_early(void *data, async_cookie_t cookie)
856{
857 struct device *dev = (struct device *)data;
858 int error;
859
860 error = device_resume_early(dev, pm_transition, true);
861 if (error)
862 pm_dev_err(dev, pm_transition, " async", error);
863
864 put_device(dev);
865}
866
867/**
868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
869 * @state: PM transition of the system being carried out.
870 */
871void dpm_resume_early(pm_message_t state)
872{
873 struct device *dev;
874 ktime_t starttime = ktime_get();
875
876 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
877 mutex_lock(&dpm_list_mtx);
878 pm_transition = state;
879
880 /*
881 * Advanced the async threads upfront,
882 * in case the starting of async threads is
883 * delayed by non-async resuming devices.
884 */
885 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
886 reinit_completion(&dev->power.completion);
887 if (is_async(dev)) {
888 get_device(dev);
889 async_schedule(async_resume_early, dev);
890 }
891 }
892
893 while (!list_empty(&dpm_late_early_list)) {
894 dev = to_device(dpm_late_early_list.next);
895 get_device(dev);
896 list_move_tail(&dev->power.entry, &dpm_suspended_list);
897 mutex_unlock(&dpm_list_mtx);
898
899 if (!is_async(dev)) {
900 int error;
901
902 error = device_resume_early(dev, state, false);
903 if (error) {
904 suspend_stats.failed_resume_early++;
905 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
906 dpm_save_failed_dev(dev_name(dev));
907 pm_dev_err(dev, state, " early", error);
908 }
909 }
910 mutex_lock(&dpm_list_mtx);
911 put_device(dev);
912 }
913 mutex_unlock(&dpm_list_mtx);
914 async_synchronize_full();
915 dpm_show_time(starttime, state, 0, "early");
916 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
917}
918
919/**
920 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
921 * @state: PM transition of the system being carried out.
922 */
923void dpm_resume_start(pm_message_t state)
924{
925 dpm_resume_noirq(state);
926 dpm_resume_early(state);
927}
928EXPORT_SYMBOL_GPL(dpm_resume_start);
929
930/**
931 * device_resume - Execute "resume" callbacks for given device.
932 * @dev: Device to handle.
933 * @state: PM transition of the system being carried out.
934 * @async: If true, the device is being resumed asynchronously.
935 */
936static int device_resume(struct device *dev, pm_message_t state, bool async)
937{
938 pm_callback_t callback = NULL;
939 const char *info = NULL;
940 int error = 0;
941 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
942
943 TRACE_DEVICE(dev);
944 TRACE_RESUME(0);
945
946 if (dev->power.syscore)
947 goto Complete;
948
949 if (dev->power.direct_complete) {
950 /* Match the pm_runtime_disable() in __device_suspend(). */
951 pm_runtime_enable(dev);
952 goto Complete;
953 }
954
955 dpm_wait_for_superior(dev, async);
956 dpm_watchdog_set(&wd, dev);
957 device_lock(dev);
958
959 /*
960 * This is a fib. But we'll allow new children to be added below
961 * a resumed device, even if the device hasn't been completed yet.
962 */
963 dev->power.is_prepared = false;
964
965 if (!dev->power.is_suspended)
966 goto Unlock;
967
968 if (dev->pm_domain) {
969 info = "power domain ";
970 callback = pm_op(&dev->pm_domain->ops, state);
971 goto Driver;
972 }
973
974 if (dev->type && dev->type->pm) {
975 info = "type ";
976 callback = pm_op(dev->type->pm, state);
977 goto Driver;
978 }
979
980 if (dev->class && dev->class->pm) {
981 info = "class ";
982 callback = pm_op(dev->class->pm, state);
983 goto Driver;
984 }
985
986 if (dev->bus) {
987 if (dev->bus->pm) {
988 info = "bus ";
989 callback = pm_op(dev->bus->pm, state);
990 } else if (dev->bus->resume) {
991 info = "legacy bus ";
992 callback = dev->bus->resume;
993 goto End;
994 }
995 }
996
997 Driver:
998 if (!callback && dev->driver && dev->driver->pm) {
999 info = "driver ";
1000 callback = pm_op(dev->driver->pm, state);
1001 }
1002
1003 End:
1004 error = dpm_run_callback(callback, dev, state, info);
1005 dev->power.is_suspended = false;
1006
1007 Unlock:
1008 device_unlock(dev);
1009 dpm_watchdog_clear(&wd);
1010
1011 Complete:
1012 complete_all(&dev->power.completion);
1013
1014 TRACE_RESUME(error);
1015
1016 return error;
1017}
1018
1019static void async_resume(void *data, async_cookie_t cookie)
1020{
1021 struct device *dev = (struct device *)data;
1022 int error;
1023
1024 error = device_resume(dev, pm_transition, true);
1025 if (error)
1026 pm_dev_err(dev, pm_transition, " async", error);
1027 put_device(dev);
1028}
1029
1030/**
1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032 * @state: PM transition of the system being carried out.
1033 *
1034 * Execute the appropriate "resume" callback for all devices whose status
1035 * indicates that they are suspended.
1036 */
1037void dpm_resume(pm_message_t state)
1038{
1039 struct device *dev;
1040 ktime_t starttime = ktime_get();
1041
1042 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043 might_sleep();
1044
1045 mutex_lock(&dpm_list_mtx);
1046 pm_transition = state;
1047 async_error = 0;
1048
1049 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050 reinit_completion(&dev->power.completion);
1051 if (is_async(dev)) {
1052 get_device(dev);
1053 async_schedule(async_resume, dev);
1054 }
1055 }
1056
1057 while (!list_empty(&dpm_suspended_list)) {
1058 dev = to_device(dpm_suspended_list.next);
1059 get_device(dev);
1060 if (!is_async(dev)) {
1061 int error;
1062
1063 mutex_unlock(&dpm_list_mtx);
1064
1065 error = device_resume(dev, state, false);
1066 if (error) {
1067 suspend_stats.failed_resume++;
1068 dpm_save_failed_step(SUSPEND_RESUME);
1069 dpm_save_failed_dev(dev_name(dev));
1070 pm_dev_err(dev, state, "", error);
1071 }
1072
1073 mutex_lock(&dpm_list_mtx);
1074 }
1075 if (!list_empty(&dev->power.entry))
1076 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077 put_device(dev);
1078 }
1079 mutex_unlock(&dpm_list_mtx);
1080 async_synchronize_full();
1081 dpm_show_time(starttime, state, 0, NULL);
1082
1083 cpufreq_resume();
1084 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1085}
1086
1087/**
1088 * device_complete - Complete a PM transition for given device.
1089 * @dev: Device to handle.
1090 * @state: PM transition of the system being carried out.
1091 */
1092static void device_complete(struct device *dev, pm_message_t state)
1093{
1094 void (*callback)(struct device *) = NULL;
1095 const char *info = NULL;
1096
1097 if (dev->power.syscore)
1098 return;
1099
1100 device_lock(dev);
1101
1102 if (dev->pm_domain) {
1103 info = "completing power domain ";
1104 callback = dev->pm_domain->ops.complete;
1105 } else if (dev->type && dev->type->pm) {
1106 info = "completing type ";
1107 callback = dev->type->pm->complete;
1108 } else if (dev->class && dev->class->pm) {
1109 info = "completing class ";
1110 callback = dev->class->pm->complete;
1111 } else if (dev->bus && dev->bus->pm) {
1112 info = "completing bus ";
1113 callback = dev->bus->pm->complete;
1114 }
1115
1116 if (!callback && dev->driver && dev->driver->pm) {
1117 info = "completing driver ";
1118 callback = dev->driver->pm->complete;
1119 }
1120
1121 if (callback) {
1122 pm_dev_dbg(dev, state, info);
1123 callback(dev);
1124 }
1125
1126 device_unlock(dev);
1127
1128 pm_runtime_put(dev);
1129}
1130
1131/**
1132 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133 * @state: PM transition of the system being carried out.
1134 *
1135 * Execute the ->complete() callbacks for all devices whose PM status is not
1136 * DPM_ON (this allows new devices to be registered).
1137 */
1138void dpm_complete(pm_message_t state)
1139{
1140 struct list_head list;
1141
1142 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143 might_sleep();
1144
1145 INIT_LIST_HEAD(&list);
1146 mutex_lock(&dpm_list_mtx);
1147 while (!list_empty(&dpm_prepared_list)) {
1148 struct device *dev = to_device(dpm_prepared_list.prev);
1149
1150 get_device(dev);
1151 dev->power.is_prepared = false;
1152 list_move(&dev->power.entry, &list);
1153 mutex_unlock(&dpm_list_mtx);
1154
1155 trace_device_pm_callback_start(dev, "", state.event);
1156 device_complete(dev, state);
1157 trace_device_pm_callback_end(dev, 0);
1158
1159 mutex_lock(&dpm_list_mtx);
1160 put_device(dev);
1161 }
1162 list_splice(&list, &dpm_list);
1163 mutex_unlock(&dpm_list_mtx);
1164
1165 /* Allow device probing and trigger re-probing of deferred devices */
1166 device_unblock_probing();
1167 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1168}
1169
1170/**
1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172 * @state: PM transition of the system being carried out.
1173 *
1174 * Execute "resume" callbacks for all devices and complete the PM transition of
1175 * the system.
1176 */
1177void dpm_resume_end(pm_message_t state)
1178{
1179 dpm_resume(state);
1180 dpm_complete(state);
1181}
1182EXPORT_SYMBOL_GPL(dpm_resume_end);
1183
1184
1185/*------------------------- Suspend routines -------------------------*/
1186
1187/**
1188 * resume_event - Return a "resume" message for given "suspend" sleep state.
1189 * @sleep_state: PM message representing a sleep state.
1190 *
1191 * Return a PM message representing the resume event corresponding to given
1192 * sleep state.
1193 */
1194static pm_message_t resume_event(pm_message_t sleep_state)
1195{
1196 switch (sleep_state.event) {
1197 case PM_EVENT_SUSPEND:
1198 return PMSG_RESUME;
1199 case PM_EVENT_FREEZE:
1200 case PM_EVENT_QUIESCE:
1201 return PMSG_RECOVER;
1202 case PM_EVENT_HIBERNATE:
1203 return PMSG_RESTORE;
1204 }
1205 return PMSG_ON;
1206}
1207
1208static void dpm_superior_set_must_resume(struct device *dev)
1209{
1210 struct device_link *link;
1211 int idx;
1212
1213 if (dev->parent)
1214 dev->parent->power.must_resume = true;
1215
1216 idx = device_links_read_lock();
1217
1218 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219 link->supplier->power.must_resume = true;
1220
1221 device_links_read_unlock(idx);
1222}
1223
1224static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225 pm_message_t state,
1226 const char **info_p)
1227{
1228 pm_callback_t callback;
1229 const char *info;
1230
1231 if (dev->pm_domain) {
1232 info = "noirq power domain ";
1233 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234 } else if (dev->type && dev->type->pm) {
1235 info = "noirq type ";
1236 callback = pm_noirq_op(dev->type->pm, state);
1237 } else if (dev->class && dev->class->pm) {
1238 info = "noirq class ";
1239 callback = pm_noirq_op(dev->class->pm, state);
1240 } else if (dev->bus && dev->bus->pm) {
1241 info = "noirq bus ";
1242 callback = pm_noirq_op(dev->bus->pm, state);
1243 } else {
1244 return NULL;
1245 }
1246
1247 if (info_p)
1248 *info_p = info;
1249
1250 return callback;
1251}
1252
1253static bool device_must_resume(struct device *dev, pm_message_t state,
1254 bool no_subsys_suspend_noirq)
1255{
1256 pm_message_t resume_msg = resume_event(state);
1257
1258 /*
1259 * If all of the device driver's "noirq", "late" and "early" callbacks
1260 * are invoked directly by the core, the decision to allow the device to
1261 * stay in suspend can be based on its current runtime PM status and its
1262 * wakeup settings.
1263 */
1264 if (no_subsys_suspend_noirq &&
1265 !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268 return !pm_runtime_status_suspended(dev) &&
1269 (resume_msg.event != PM_EVENT_RESUME ||
1270 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1271
1272 /*
1273 * The only safe strategy here is to require that if the device may not
1274 * be left in suspend, resume callbacks must be invoked for it.
1275 */
1276 return !dev->power.may_skip_resume;
1277}
1278
1279/**
1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281 * @dev: Device to handle.
1282 * @state: PM transition of the system being carried out.
1283 * @async: If true, the device is being suspended asynchronously.
1284 *
1285 * The driver of @dev will not receive interrupts while this function is being
1286 * executed.
1287 */
1288static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1289{
1290 pm_callback_t callback;
1291 const char *info;
1292 bool no_subsys_cb = false;
1293 int error = 0;
1294
1295 TRACE_DEVICE(dev);
1296 TRACE_SUSPEND(0);
1297
1298 dpm_wait_for_subordinate(dev, async);
1299
1300 if (async_error)
1301 goto Complete;
1302
1303 if (pm_wakeup_pending()) {
1304 async_error = -EBUSY;
1305 goto Complete;
1306 }
1307
1308 if (dev->power.syscore || dev->power.direct_complete)
1309 goto Complete;
1310
1311 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1312 if (callback)
1313 goto Run;
1314
1315 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1316
1317 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318 goto Skip;
1319
1320 if (dev->driver && dev->driver->pm) {
1321 info = "noirq driver ";
1322 callback = pm_noirq_op(dev->driver->pm, state);
1323 }
1324
1325Run:
1326 error = dpm_run_callback(callback, dev, state, info);
1327 if (error) {
1328 async_error = error;
1329 goto Complete;
1330 }
1331
1332Skip:
1333 dev->power.is_noirq_suspended = true;
1334
1335 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336 dev->power.must_resume = dev->power.must_resume ||
1337 atomic_read(&dev->power.usage_count) > 1 ||
1338 device_must_resume(dev, state, no_subsys_cb);
1339 } else {
1340 dev->power.must_resume = true;
1341 }
1342
1343 if (dev->power.must_resume)
1344 dpm_superior_set_must_resume(dev);
1345
1346Complete:
1347 complete_all(&dev->power.completion);
1348 TRACE_SUSPEND(error);
1349 return error;
1350}
1351
1352static void async_suspend_noirq(void *data, async_cookie_t cookie)
1353{
1354 struct device *dev = (struct device *)data;
1355 int error;
1356
1357 error = __device_suspend_noirq(dev, pm_transition, true);
1358 if (error) {
1359 dpm_save_failed_dev(dev_name(dev));
1360 pm_dev_err(dev, pm_transition, " async", error);
1361 }
1362
1363 put_device(dev);
1364}
1365
1366static int device_suspend_noirq(struct device *dev)
1367{
1368 reinit_completion(&dev->power.completion);
1369
1370 if (is_async(dev)) {
1371 get_device(dev);
1372 async_schedule(async_suspend_noirq, dev);
1373 return 0;
1374 }
1375 return __device_suspend_noirq(dev, pm_transition, false);
1376}
1377
1378void dpm_noirq_begin(void)
1379{
1380 cpuidle_pause();
1381 device_wakeup_arm_wake_irqs();
1382 suspend_device_irqs();
1383}
1384
1385int dpm_noirq_suspend_devices(pm_message_t state)
1386{
1387 ktime_t starttime = ktime_get();
1388 int error = 0;
1389
1390 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391 mutex_lock(&dpm_list_mtx);
1392 pm_transition = state;
1393 async_error = 0;
1394
1395 while (!list_empty(&dpm_late_early_list)) {
1396 struct device *dev = to_device(dpm_late_early_list.prev);
1397
1398 get_device(dev);
1399 mutex_unlock(&dpm_list_mtx);
1400
1401 error = device_suspend_noirq(dev);
1402
1403 mutex_lock(&dpm_list_mtx);
1404 if (error) {
1405 pm_dev_err(dev, state, " noirq", error);
1406 dpm_save_failed_dev(dev_name(dev));
1407 put_device(dev);
1408 break;
1409 }
1410 if (!list_empty(&dev->power.entry))
1411 list_move(&dev->power.entry, &dpm_noirq_list);
1412 put_device(dev);
1413
1414 if (async_error)
1415 break;
1416 }
1417 mutex_unlock(&dpm_list_mtx);
1418 async_synchronize_full();
1419 if (!error)
1420 error = async_error;
1421
1422 if (error) {
1423 suspend_stats.failed_suspend_noirq++;
1424 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1425 }
1426 dpm_show_time(starttime, state, error, "noirq");
1427 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428 return error;
1429}
1430
1431/**
1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433 * @state: PM transition of the system being carried out.
1434 *
1435 * Prevent device drivers' interrupt handlers from being called and invoke
1436 * "noirq" suspend callbacks for all non-sysdev devices.
1437 */
1438int dpm_suspend_noirq(pm_message_t state)
1439{
1440 int ret;
1441
1442 dpm_noirq_begin();
1443 ret = dpm_noirq_suspend_devices(state);
1444 if (ret)
1445 dpm_resume_noirq(resume_event(state));
1446
1447 return ret;
1448}
1449
1450static void dpm_propagate_wakeup_to_parent(struct device *dev)
1451{
1452 struct device *parent = dev->parent;
1453
1454 if (!parent)
1455 return;
1456
1457 spin_lock_irq(&parent->power.lock);
1458
1459 if (dev->power.wakeup_path && !parent->power.ignore_children)
1460 parent->power.wakeup_path = true;
1461
1462 spin_unlock_irq(&parent->power.lock);
1463}
1464
1465static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466 pm_message_t state,
1467 const char **info_p)
1468{
1469 pm_callback_t callback;
1470 const char *info;
1471
1472 if (dev->pm_domain) {
1473 info = "late power domain ";
1474 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1475 } else if (dev->type && dev->type->pm) {
1476 info = "late type ";
1477 callback = pm_late_early_op(dev->type->pm, state);
1478 } else if (dev->class && dev->class->pm) {
1479 info = "late class ";
1480 callback = pm_late_early_op(dev->class->pm, state);
1481 } else if (dev->bus && dev->bus->pm) {
1482 info = "late bus ";
1483 callback = pm_late_early_op(dev->bus->pm, state);
1484 } else {
1485 return NULL;
1486 }
1487
1488 if (info_p)
1489 *info_p = info;
1490
1491 return callback;
1492}
1493
1494/**
1495 * __device_suspend_late - Execute a "late suspend" callback for given device.
1496 * @dev: Device to handle.
1497 * @state: PM transition of the system being carried out.
1498 * @async: If true, the device is being suspended asynchronously.
1499 *
1500 * Runtime PM is disabled for @dev while this function is being executed.
1501 */
1502static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1503{
1504 pm_callback_t callback;
1505 const char *info;
1506 int error = 0;
1507
1508 TRACE_DEVICE(dev);
1509 TRACE_SUSPEND(0);
1510
1511 __pm_runtime_disable(dev, false);
1512
1513 dpm_wait_for_subordinate(dev, async);
1514
1515 if (async_error)
1516 goto Complete;
1517
1518 if (pm_wakeup_pending()) {
1519 async_error = -EBUSY;
1520 goto Complete;
1521 }
1522
1523 if (dev->power.syscore || dev->power.direct_complete)
1524 goto Complete;
1525
1526 callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1527 if (callback)
1528 goto Run;
1529
1530 if (dev_pm_smart_suspend_and_suspended(dev) &&
1531 !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532 goto Skip;
1533
1534 if (dev->driver && dev->driver->pm) {
1535 info = "late driver ";
1536 callback = pm_late_early_op(dev->driver->pm, state);
1537 }
1538
1539Run:
1540 error = dpm_run_callback(callback, dev, state, info);
1541 if (error) {
1542 async_error = error;
1543 goto Complete;
1544 }
1545 dpm_propagate_wakeup_to_parent(dev);
1546
1547Skip:
1548 dev->power.is_late_suspended = true;
1549
1550Complete:
1551 TRACE_SUSPEND(error);
1552 complete_all(&dev->power.completion);
1553 return error;
1554}
1555
1556static void async_suspend_late(void *data, async_cookie_t cookie)
1557{
1558 struct device *dev = (struct device *)data;
1559 int error;
1560
1561 error = __device_suspend_late(dev, pm_transition, true);
1562 if (error) {
1563 dpm_save_failed_dev(dev_name(dev));
1564 pm_dev_err(dev, pm_transition, " async", error);
1565 }
1566 put_device(dev);
1567}
1568
1569static int device_suspend_late(struct device *dev)
1570{
1571 reinit_completion(&dev->power.completion);
1572
1573 if (is_async(dev)) {
1574 get_device(dev);
1575 async_schedule(async_suspend_late, dev);
1576 return 0;
1577 }
1578
1579 return __device_suspend_late(dev, pm_transition, false);
1580}
1581
1582/**
1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584 * @state: PM transition of the system being carried out.
1585 */
1586int dpm_suspend_late(pm_message_t state)
1587{
1588 ktime_t starttime = ktime_get();
1589 int error = 0;
1590
1591 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592 mutex_lock(&dpm_list_mtx);
1593 pm_transition = state;
1594 async_error = 0;
1595
1596 while (!list_empty(&dpm_suspended_list)) {
1597 struct device *dev = to_device(dpm_suspended_list.prev);
1598
1599 get_device(dev);
1600 mutex_unlock(&dpm_list_mtx);
1601
1602 error = device_suspend_late(dev);
1603
1604 mutex_lock(&dpm_list_mtx);
1605 if (!list_empty(&dev->power.entry))
1606 list_move(&dev->power.entry, &dpm_late_early_list);
1607
1608 if (error) {
1609 pm_dev_err(dev, state, " late", error);
1610 dpm_save_failed_dev(dev_name(dev));
1611 put_device(dev);
1612 break;
1613 }
1614 put_device(dev);
1615
1616 if (async_error)
1617 break;
1618 }
1619 mutex_unlock(&dpm_list_mtx);
1620 async_synchronize_full();
1621 if (!error)
1622 error = async_error;
1623 if (error) {
1624 suspend_stats.failed_suspend_late++;
1625 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626 dpm_resume_early(resume_event(state));
1627 }
1628 dpm_show_time(starttime, state, error, "late");
1629 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630 return error;
1631}
1632
1633/**
1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635 * @state: PM transition of the system being carried out.
1636 */
1637int dpm_suspend_end(pm_message_t state)
1638{
1639 int error = dpm_suspend_late(state);
1640 if (error)
1641 return error;
1642
1643 error = dpm_suspend_noirq(state);
1644 if (error) {
1645 dpm_resume_early(resume_event(state));
1646 return error;
1647 }
1648
1649 return 0;
1650}
1651EXPORT_SYMBOL_GPL(dpm_suspend_end);
1652
1653/**
1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655 * @dev: Device to suspend.
1656 * @state: PM transition of the system being carried out.
1657 * @cb: Suspend callback to execute.
1658 * @info: string description of caller.
1659 */
1660static int legacy_suspend(struct device *dev, pm_message_t state,
1661 int (*cb)(struct device *dev, pm_message_t state),
1662 const char *info)
1663{
1664 int error;
1665 ktime_t calltime;
1666
1667 calltime = initcall_debug_start(dev);
1668
1669 trace_device_pm_callback_start(dev, info, state.event);
1670 error = cb(dev, state);
1671 trace_device_pm_callback_end(dev, error);
1672 suspend_report_result(cb, error);
1673
1674 initcall_debug_report(dev, calltime, error, state, info);
1675
1676 return error;
1677}
1678
1679static void dpm_clear_superiors_direct_complete(struct device *dev)
1680{
1681 struct device_link *link;
1682 int idx;
1683
1684 if (dev->parent) {
1685 spin_lock_irq(&dev->parent->power.lock);
1686 dev->parent->power.direct_complete = false;
1687 spin_unlock_irq(&dev->parent->power.lock);
1688 }
1689
1690 idx = device_links_read_lock();
1691
1692 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693 spin_lock_irq(&link->supplier->power.lock);
1694 link->supplier->power.direct_complete = false;
1695 spin_unlock_irq(&link->supplier->power.lock);
1696 }
1697
1698 device_links_read_unlock(idx);
1699}
1700
1701/**
1702 * __device_suspend - Execute "suspend" callbacks for given device.
1703 * @dev: Device to handle.
1704 * @state: PM transition of the system being carried out.
1705 * @async: If true, the device is being suspended asynchronously.
1706 */
1707static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1708{
1709 pm_callback_t callback = NULL;
1710 const char *info = NULL;
1711 int error = 0;
1712 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1713
1714 TRACE_DEVICE(dev);
1715 TRACE_SUSPEND(0);
1716
1717 dpm_wait_for_subordinate(dev, async);
1718
1719 if (async_error)
1720 goto Complete;
1721
1722 /*
1723 * If a device configured to wake up the system from sleep states
1724 * has been suspended at run time and there's a resume request pending
1725 * for it, this is equivalent to the device signaling wakeup, so the
1726 * system suspend operation should be aborted.
1727 */
1728 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729 pm_wakeup_event(dev, 0);
1730
1731 if (pm_wakeup_pending()) {
1732 async_error = -EBUSY;
1733 goto Complete;
1734 }
1735
1736 if (dev->power.syscore)
1737 goto Complete;
1738
1739 if (dev->power.direct_complete) {
1740 if (pm_runtime_status_suspended(dev)) {
1741 pm_runtime_disable(dev);
1742 if (pm_runtime_status_suspended(dev))
1743 goto Complete;
1744
1745 pm_runtime_enable(dev);
1746 }
1747 dev->power.direct_complete = false;
1748 }
1749
1750 dev->power.may_skip_resume = false;
1751 dev->power.must_resume = false;
1752
1753 dpm_watchdog_set(&wd, dev);
1754 device_lock(dev);
1755
1756 if (dev->pm_domain) {
1757 info = "power domain ";
1758 callback = pm_op(&dev->pm_domain->ops, state);
1759 goto Run;
1760 }
1761
1762 if (dev->type && dev->type->pm) {
1763 info = "type ";
1764 callback = pm_op(dev->type->pm, state);
1765 goto Run;
1766 }
1767
1768 if (dev->class && dev->class->pm) {
1769 info = "class ";
1770 callback = pm_op(dev->class->pm, state);
1771 goto Run;
1772 }
1773
1774 if (dev->bus) {
1775 if (dev->bus->pm) {
1776 info = "bus ";
1777 callback = pm_op(dev->bus->pm, state);
1778 } else if (dev->bus->suspend) {
1779 pm_dev_dbg(dev, state, "legacy bus ");
1780 error = legacy_suspend(dev, state, dev->bus->suspend,
1781 "legacy bus ");
1782 goto End;
1783 }
1784 }
1785
1786 Run:
1787 if (!callback && dev->driver && dev->driver->pm) {
1788 info = "driver ";
1789 callback = pm_op(dev->driver->pm, state);
1790 }
1791
1792 error = dpm_run_callback(callback, dev, state, info);
1793
1794 End:
1795 if (!error) {
1796 dev->power.is_suspended = true;
1797 if (device_may_wakeup(dev))
1798 dev->power.wakeup_path = true;
1799
1800 dpm_propagate_wakeup_to_parent(dev);
1801 dpm_clear_superiors_direct_complete(dev);
1802 }
1803
1804 device_unlock(dev);
1805 dpm_watchdog_clear(&wd);
1806
1807 Complete:
1808 if (error)
1809 async_error = error;
1810
1811 complete_all(&dev->power.completion);
1812 TRACE_SUSPEND(error);
1813 return error;
1814}
1815
1816static void async_suspend(void *data, async_cookie_t cookie)
1817{
1818 struct device *dev = (struct device *)data;
1819 int error;
1820
1821 error = __device_suspend(dev, pm_transition, true);
1822 if (error) {
1823 dpm_save_failed_dev(dev_name(dev));
1824 pm_dev_err(dev, pm_transition, " async", error);
1825 }
1826
1827 put_device(dev);
1828}
1829
1830static int device_suspend(struct device *dev)
1831{
1832 reinit_completion(&dev->power.completion);
1833
1834 if (is_async(dev)) {
1835 get_device(dev);
1836 async_schedule(async_suspend, dev);
1837 return 0;
1838 }
1839
1840 return __device_suspend(dev, pm_transition, false);
1841}
1842
1843/**
1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845 * @state: PM transition of the system being carried out.
1846 */
1847int dpm_suspend(pm_message_t state)
1848{
1849 ktime_t starttime = ktime_get();
1850 int error = 0;
1851
1852 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853 might_sleep();
1854
1855 cpufreq_suspend();
1856
1857 mutex_lock(&dpm_list_mtx);
1858 pm_transition = state;
1859 async_error = 0;
1860 while (!list_empty(&dpm_prepared_list)) {
1861 struct device *dev = to_device(dpm_prepared_list.prev);
1862
1863 get_device(dev);
1864 mutex_unlock(&dpm_list_mtx);
1865
1866 error = device_suspend(dev);
1867
1868 mutex_lock(&dpm_list_mtx);
1869 if (error) {
1870 pm_dev_err(dev, state, "", error);
1871 dpm_save_failed_dev(dev_name(dev));
1872 put_device(dev);
1873 break;
1874 }
1875 if (!list_empty(&dev->power.entry))
1876 list_move(&dev->power.entry, &dpm_suspended_list);
1877 put_device(dev);
1878 if (async_error)
1879 break;
1880 }
1881 mutex_unlock(&dpm_list_mtx);
1882 async_synchronize_full();
1883 if (!error)
1884 error = async_error;
1885 if (error) {
1886 suspend_stats.failed_suspend++;
1887 dpm_save_failed_step(SUSPEND_SUSPEND);
1888 }
1889 dpm_show_time(starttime, state, error, NULL);
1890 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891 return error;
1892}
1893
1894/**
1895 * device_prepare - Prepare a device for system power transition.
1896 * @dev: Device to handle.
1897 * @state: PM transition of the system being carried out.
1898 *
1899 * Execute the ->prepare() callback(s) for given device. No new children of the
1900 * device may be registered after this function has returned.
1901 */
1902static int device_prepare(struct device *dev, pm_message_t state)
1903{
1904 int (*callback)(struct device *) = NULL;
1905 int ret = 0;
1906
1907 if (dev->power.syscore)
1908 return 0;
1909
1910 WARN_ON(!pm_runtime_enabled(dev) &&
1911 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912 DPM_FLAG_LEAVE_SUSPENDED));
1913
1914 /*
1915 * If a device's parent goes into runtime suspend at the wrong time,
1916 * it won't be possible to resume the device. To prevent this we
1917 * block runtime suspend here, during the prepare phase, and allow
1918 * it again during the complete phase.
1919 */
1920 pm_runtime_get_noresume(dev);
1921
1922 device_lock(dev);
1923
1924 dev->power.wakeup_path = false;
1925
1926 if (dev->power.no_pm_callbacks)
1927 goto unlock;
1928
1929 if (dev->pm_domain)
1930 callback = dev->pm_domain->ops.prepare;
1931 else if (dev->type && dev->type->pm)
1932 callback = dev->type->pm->prepare;
1933 else if (dev->class && dev->class->pm)
1934 callback = dev->class->pm->prepare;
1935 else if (dev->bus && dev->bus->pm)
1936 callback = dev->bus->pm->prepare;
1937
1938 if (!callback && dev->driver && dev->driver->pm)
1939 callback = dev->driver->pm->prepare;
1940
1941 if (callback)
1942 ret = callback(dev);
1943
1944unlock:
1945 device_unlock(dev);
1946
1947 if (ret < 0) {
1948 suspend_report_result(callback, ret);
1949 pm_runtime_put(dev);
1950 return ret;
1951 }
1952 /*
1953 * A positive return value from ->prepare() means "this device appears
1954 * to be runtime-suspended and its state is fine, so if it really is
1955 * runtime-suspended, you can leave it in that state provided that you
1956 * will do the same thing with all of its descendants". This only
1957 * applies to suspend transitions, however.
1958 */
1959 spin_lock_irq(&dev->power.lock);
1960 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1961 ((pm_runtime_suspended(dev) && ret > 0) ||
1962 dev->power.no_pm_callbacks) &&
1963 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1964 spin_unlock_irq(&dev->power.lock);
1965 return 0;
1966}
1967
1968/**
1969 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1970 * @state: PM transition of the system being carried out.
1971 *
1972 * Execute the ->prepare() callback(s) for all devices.
1973 */
1974int dpm_prepare(pm_message_t state)
1975{
1976 int error = 0;
1977
1978 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1979 might_sleep();
1980
1981 /*
1982 * Give a chance for the known devices to complete their probes, before
1983 * disable probing of devices. This sync point is important at least
1984 * at boot time + hibernation restore.
1985 */
1986 wait_for_device_probe();
1987 /*
1988 * It is unsafe if probing of devices will happen during suspend or
1989 * hibernation and system behavior will be unpredictable in this case.
1990 * So, let's prohibit device's probing here and defer their probes
1991 * instead. The normal behavior will be restored in dpm_complete().
1992 */
1993 device_block_probing();
1994
1995 mutex_lock(&dpm_list_mtx);
1996 while (!list_empty(&dpm_list)) {
1997 struct device *dev = to_device(dpm_list.next);
1998
1999 get_device(dev);
2000 mutex_unlock(&dpm_list_mtx);
2001
2002 trace_device_pm_callback_start(dev, "", state.event);
2003 error = device_prepare(dev, state);
2004 trace_device_pm_callback_end(dev, error);
2005
2006 mutex_lock(&dpm_list_mtx);
2007 if (error) {
2008 if (error == -EAGAIN) {
2009 put_device(dev);
2010 error = 0;
2011 continue;
2012 }
2013 printk(KERN_INFO "PM: Device %s not prepared "
2014 "for power transition: code %d\n",
2015 dev_name(dev), error);
2016 put_device(dev);
2017 break;
2018 }
2019 dev->power.is_prepared = true;
2020 if (!list_empty(&dev->power.entry))
2021 list_move_tail(&dev->power.entry, &dpm_prepared_list);
2022 put_device(dev);
2023 }
2024 mutex_unlock(&dpm_list_mtx);
2025 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2026 return error;
2027}
2028
2029/**
2030 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2031 * @state: PM transition of the system being carried out.
2032 *
2033 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2034 * callbacks for them.
2035 */
2036int dpm_suspend_start(pm_message_t state)
2037{
2038 int error;
2039
2040 error = dpm_prepare(state);
2041 if (error) {
2042 suspend_stats.failed_prepare++;
2043 dpm_save_failed_step(SUSPEND_PREPARE);
2044 } else
2045 error = dpm_suspend(state);
2046 return error;
2047}
2048EXPORT_SYMBOL_GPL(dpm_suspend_start);
2049
2050void __suspend_report_result(const char *function, void *fn, int ret)
2051{
2052 if (ret)
2053 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2054}
2055EXPORT_SYMBOL_GPL(__suspend_report_result);
2056
2057/**
2058 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2059 * @dev: Device to wait for.
2060 * @subordinate: Device that needs to wait for @dev.
2061 */
2062int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2063{
2064 dpm_wait(dev, subordinate->power.async_suspend);
2065 return async_error;
2066}
2067EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2068
2069/**
2070 * dpm_for_each_dev - device iterator.
2071 * @data: data for the callback.
2072 * @fn: function to be called for each device.
2073 *
2074 * Iterate over devices in dpm_list, and call @fn for each device,
2075 * passing it @data.
2076 */
2077void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2078{
2079 struct device *dev;
2080
2081 if (!fn)
2082 return;
2083
2084 device_pm_lock();
2085 list_for_each_entry(dev, &dpm_list, power.entry)
2086 fn(dev, data);
2087 device_pm_unlock();
2088}
2089EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2090
2091static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2092{
2093 if (!ops)
2094 return true;
2095
2096 return !ops->prepare &&
2097 !ops->suspend &&
2098 !ops->suspend_late &&
2099 !ops->suspend_noirq &&
2100 !ops->resume_noirq &&
2101 !ops->resume_early &&
2102 !ops->resume &&
2103 !ops->complete;
2104}
2105
2106void device_pm_check_callbacks(struct device *dev)
2107{
2108 spin_lock_irq(&dev->power.lock);
2109 dev->power.no_pm_callbacks =
2110 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2111 !dev->bus->suspend && !dev->bus->resume)) &&
2112 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2113 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2114 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2115 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2116 !dev->driver->suspend && !dev->driver->resume));
2117 spin_unlock_irq(&dev->power.lock);
2118}
2119
2120bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2121{
2122 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2123 pm_runtime_status_suspended(dev);
2124}