Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * arch/arm/probes/decode.h
  4 *
  5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  6 *
  7 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
  8 * Copyright (C) 2006, 2007 Motorola Inc.
 
 
 
 
 
 
 
 
 
  9 */
 10
 11#ifndef _ARM_KERNEL_PROBES_H
 12#define  _ARM_KERNEL_PROBES_H
 13
 14#include <linux/types.h>
 15#include <linux/stddef.h>
 16#include <asm/probes.h>
 17#include <asm/ptrace.h>
 18#include <asm/kprobes.h>
 19
 20void __init arm_probes_decode_init(void);
 21
 22extern probes_check_cc * const probes_condition_checks[16];
 23
 24#if __LINUX_ARM_ARCH__ >= 7
 25
 26/* str_pc_offset is architecturally defined from ARMv7 onwards */
 27#define str_pc_offset 8
 28#define find_str_pc_offset()
 29
 30#else /* __LINUX_ARM_ARCH__ < 7 */
 31
 32/* We need a run-time check to determine str_pc_offset */
 33extern int str_pc_offset;
 34void __init find_str_pc_offset(void);
 35
 36#endif
 37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38
 39static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
 40{
 41	long cpsr = regs->ARM_cpsr;
 42	if (pcv & 0x1) {
 43		cpsr |= PSR_T_BIT;
 44		pcv &= ~0x1;
 45	} else {
 46		cpsr &= ~PSR_T_BIT;
 47		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
 48	}
 49	regs->ARM_cpsr = cpsr;
 50	regs->ARM_pc = pcv;
 51}
 52
 53
 54#if __LINUX_ARM_ARCH__ >= 6
 55
 56/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
 57#define load_write_pc_interworks true
 58#define test_load_write_pc_interworking()
 59
 60#else /* __LINUX_ARM_ARCH__ < 6 */
 61
 62/* We need run-time testing to determine if load_write_pc() should interwork. */
 63extern bool load_write_pc_interworks;
 64void __init test_load_write_pc_interworking(void);
 65
 66#endif
 67
 68static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
 69{
 70	if (load_write_pc_interworks)
 71		bx_write_pc(pcv, regs);
 72	else
 73		regs->ARM_pc = pcv;
 74}
 75
 76
 77#if __LINUX_ARM_ARCH__ >= 7
 78
 79#define alu_write_pc_interworks true
 80#define test_alu_write_pc_interworking()
 81
 82#elif __LINUX_ARM_ARCH__ <= 5
 83
 84/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
 85#define alu_write_pc_interworks false
 86#define test_alu_write_pc_interworking()
 87
 88#else /* __LINUX_ARM_ARCH__ == 6 */
 89
 90/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
 91extern bool alu_write_pc_interworks;
 92void __init test_alu_write_pc_interworking(void);
 93
 94#endif /* __LINUX_ARM_ARCH__ == 6 */
 95
 96static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
 97{
 98	if (alu_write_pc_interworks)
 99		bx_write_pc(pcv, regs);
100	else
101		regs->ARM_pc = pcv;
102}
103
104
105/*
106 * Test if load/store instructions writeback the address register.
107 * if P (bit 24) == 0 or W (bit 21) == 1
108 */
109#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
110
111/*
112 * The following definitions and macros are used to build instruction
113 * decoding tables for use by probes_decode_insn.
114 *
115 * These tables are a concatenation of entries each of which consist of one of
116 * the decode_* structs. All of the fields in every type of decode structure
117 * are of the union type decode_item, therefore the entire decode table can be
118 * viewed as an array of these and declared like:
119 *
120 *	static const union decode_item table_name[] = {};
121 *
122 * In order to construct each entry in the table, macros are used to
123 * initialise a number of sequential decode_item values in a layout which
124 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
125 * decode_simulate by initialising four decode_item objects like this...
126 *
127 *	{.bits = _type},
128 *	{.bits = _mask},
129 *	{.bits = _value},
130 *	{.action = _handler},
131 *
132 * Initialising a specified member of the union means that the compiler
133 * will produce a warning if the argument is of an incorrect type.
134 *
135 * Below is a list of each of the macros used to initialise entries and a
136 * description of the action performed when that entry is matched to an
137 * instruction. A match is found when (instruction & mask) == value.
138 *
139 * DECODE_TABLE(mask, value, table)
140 *	Instruction decoding jumps to parsing the new sub-table 'table'.
141 *
142 * DECODE_CUSTOM(mask, value, decoder)
143 *	The value of 'decoder' is used as an index into the array of
144 *	action functions, and the retrieved decoder function is invoked
145 *	to complete decoding of the instruction.
146 *
147 * DECODE_SIMULATE(mask, value, handler)
148 *	The probes instruction handler is set to the value found by
149 *	indexing into the action array using the value of 'handler'. This
150 *	will be used to simulate the instruction when the probe is hit.
151 *	Decoding returns with INSN_GOOD_NO_SLOT.
152 *
153 * DECODE_EMULATE(mask, value, handler)
154 *	The probes instruction handler is set to the value found by
155 *	indexing into the action array using the value of 'handler'. This
156 *	will be used to emulate the instruction when the probe is hit. The
157 *	modified instruction (see below) is placed in the probes instruction
158 *	slot so it may be called by the emulation code. Decoding returns
159 *	with INSN_GOOD.
160 *
161 * DECODE_REJECT(mask, value)
162 *	Instruction decoding fails with INSN_REJECTED
163 *
164 * DECODE_OR(mask, value)
165 *	This allows the mask/value test of multiple table entries to be
166 *	logically ORed. Once an 'or' entry is matched the decoding action to
167 *	be performed is that of the next entry which isn't an 'or'. E.g.
168 *
169 *		DECODE_OR	(mask1, value1)
170 *		DECODE_OR	(mask2, value2)
171 *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
172 *
173 *	This means that if any of the three mask/value pairs match the
174 *	instruction being decoded, then 'simulation_handler' will be used
175 *	for it.
176 *
177 * Both the SIMULATE and EMULATE macros have a second form which take an
178 * additional 'regs' argument.
179 *
180 *	DECODE_SIMULATEX(mask, value, handler, regs)
181 *	DECODE_EMULATEX	(mask, value, handler, regs)
182 *
183 * These are used to specify what kind of CPU register is encoded in each of the
184 * least significant 5 nibbles of the instruction being decoded. The regs value
185 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
186 * from enum decode_reg_type as arguments; only the '*' part of the name is
187 * given. E.g.
188 *
189 *	REGS(0, ANY, NOPC, 0, ANY)
190 *
191 * This indicates an instruction is encoded like:
192 *
193 *	bits 19..16	ignore
194 *	bits 15..12	any register allowed here
195 *	bits 11.. 8	any register except PC allowed here
196 *	bits  7.. 4	ignore
197 *	bits  3.. 0	any register allowed here
198 *
199 * This register specification is checked after a decode table entry is found to
200 * match an instruction (through the mask/value test). Any invalid register then
201 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
202 * the above example this would happen if bits 11..8 of the instruction were
203 * 1111, indicating R15 or PC.
204 *
205 * As well as checking for legal combinations of registers, this data is also
206 * used to modify the registers encoded in the instructions so that an
207 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
208 *
209 * Here is a real example which matches ARM instructions of the form
210 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
211 *
212 *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
213 *						 REGS(ANY, ANY, NOPC, 0, ANY)),
214 *						      ^    ^    ^        ^
215 *						      Rn   Rd   Rs       Rm
216 *
217 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
218 * Rs == R15
219 *
220 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
221 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
222 * the kprobes instruction slot. This can then be called later by the handler
223 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
224 * the indicated slot in the action array), in order to simulate the instruction.
225 */
226
227enum decode_type {
228	DECODE_TYPE_END,
229	DECODE_TYPE_TABLE,
230	DECODE_TYPE_CUSTOM,
231	DECODE_TYPE_SIMULATE,
232	DECODE_TYPE_EMULATE,
233	DECODE_TYPE_OR,
234	DECODE_TYPE_REJECT,
235	NUM_DECODE_TYPES /* Must be last enum */
236};
237
238#define DECODE_TYPE_BITS	4
239#define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
240
241enum decode_reg_type {
242	REG_TYPE_NONE = 0, /* Not a register, ignore */
243	REG_TYPE_ANY,	   /* Any register allowed */
244	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
245	REG_TYPE_SP,	   /* Register must be SP */
246	REG_TYPE_PC,	   /* Register must be PC */
247	REG_TYPE_NOSP,	   /* Register must not be SP */
248	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
249	REG_TYPE_NOPC,	   /* Register must not be PC */
250	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
251
252	/* The following types are used when the encoding for PC indicates
253	 * another instruction form. This distiction only matters for test
254	 * case coverage checks.
255	 */
256	REG_TYPE_NOPCX,	   /* Register must not be PC */
257	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
258
259	/* Alias to allow '0' arg to be used in REGS macro. */
260	REG_TYPE_0 = REG_TYPE_NONE
261};
262
263#define REGS(r16, r12, r8, r4, r0)	\
264	(((REG_TYPE_##r16) << 16) +	\
265	((REG_TYPE_##r12) << 12) +	\
266	((REG_TYPE_##r8) << 8) +	\
267	((REG_TYPE_##r4) << 4) +	\
268	(REG_TYPE_##r0))
269
270union decode_item {
271	u32			bits;
272	const union decode_item	*table;
273	int			action;
274};
275
276struct decode_header;
277typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
278						  struct arch_probes_insn *,
279						  const struct decode_header *);
280
281union decode_action {
282	probes_insn_handler_t	*handler;
283	probes_custom_decode_t	*decoder;
284};
285
286typedef enum probes_insn (probes_check_t)(probes_opcode_t,
287					   struct arch_probes_insn *,
288					   const struct decode_header *);
289
290struct decode_checker {
291	probes_check_t	*checker;
292};
293
294#define DECODE_END			\
295	{.bits = DECODE_TYPE_END}
296
297
298struct decode_header {
299	union decode_item	type_regs;
300	union decode_item	mask;
301	union decode_item	value;
302};
303
304#define DECODE_HEADER(_type, _mask, _value, _regs)		\
305	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
306	{.bits = (_mask)},					\
307	{.bits = (_value)}
308
309
310struct decode_table {
311	struct decode_header	header;
312	union decode_item	table;
313};
314
315#define DECODE_TABLE(_mask, _value, _table)			\
316	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
317	{.table = (_table)}
318
319
320struct decode_custom {
321	struct decode_header	header;
322	union decode_item	decoder;
323};
324
325#define DECODE_CUSTOM(_mask, _value, _decoder)			\
326	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
327	{.action = (_decoder)}
328
329
330struct decode_simulate {
331	struct decode_header	header;
332	union decode_item	handler;
333};
334
335#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
336	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
337	{.action = (_handler)}
338
339#define DECODE_SIMULATE(_mask, _value, _handler)	\
340	DECODE_SIMULATEX(_mask, _value, _handler, 0)
341
342
343struct decode_emulate {
344	struct decode_header	header;
345	union decode_item	handler;
346};
347
348#define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
349	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
350	{.action = (_handler)}
351
352#define DECODE_EMULATE(_mask, _value, _handler)		\
353	DECODE_EMULATEX(_mask, _value, _handler, 0)
354
355
356struct decode_or {
357	struct decode_header	header;
358};
359
360#define DECODE_OR(_mask, _value)				\
361	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
362
363enum probes_insn {
364	INSN_REJECTED,
365	INSN_GOOD,
366	INSN_GOOD_NO_SLOT
367};
368
369struct decode_reject {
370	struct decode_header	header;
371};
372
373#define DECODE_REJECT(_mask, _value)				\
374	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
375
376probes_insn_handler_t probes_simulate_nop;
377probes_insn_handler_t probes_emulate_none;
378
379int __kprobes
380probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
381		const union decode_item *table, bool thumb, bool emulate,
382		const union decode_action *actions,
383		const struct decode_checker **checkers);
384
385#endif
v4.17
 
  1/*
  2 * arch/arm/probes/decode.h
  3 *
  4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  5 *
  6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
  7 * Copyright (C) 2006, 2007 Motorola Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 16 * General Public License for more details.
 17 */
 18
 19#ifndef _ARM_KERNEL_PROBES_H
 20#define  _ARM_KERNEL_PROBES_H
 21
 22#include <linux/types.h>
 23#include <linux/stddef.h>
 24#include <asm/probes.h>
 
 25#include <asm/kprobes.h>
 26
 27void __init arm_probes_decode_init(void);
 28
 29extern probes_check_cc * const probes_condition_checks[16];
 30
 31#if __LINUX_ARM_ARCH__ >= 7
 32
 33/* str_pc_offset is architecturally defined from ARMv7 onwards */
 34#define str_pc_offset 8
 35#define find_str_pc_offset()
 36
 37#else /* __LINUX_ARM_ARCH__ < 7 */
 38
 39/* We need a run-time check to determine str_pc_offset */
 40extern int str_pc_offset;
 41void __init find_str_pc_offset(void);
 42
 43#endif
 44
 45
 46/*
 47 * Update ITSTATE after normal execution of an IT block instruction.
 48 *
 49 * The 8 IT state bits are split into two parts in CPSR:
 50 *	ITSTATE<1:0> are in CPSR<26:25>
 51 *	ITSTATE<7:2> are in CPSR<15:10>
 52 */
 53static inline unsigned long it_advance(unsigned long cpsr)
 54	{
 55	if ((cpsr & 0x06000400) == 0) {
 56		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
 57		cpsr &= ~PSR_IT_MASK;
 58	} else {
 59		/* We need to shift left ITSTATE<4:0> */
 60		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
 61		unsigned long it = cpsr & mask;
 62		it <<= 1;
 63		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
 64		it &= mask;
 65		cpsr &= ~mask;
 66		cpsr |= it;
 67	}
 68	return cpsr;
 69}
 70
 71static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
 72{
 73	long cpsr = regs->ARM_cpsr;
 74	if (pcv & 0x1) {
 75		cpsr |= PSR_T_BIT;
 76		pcv &= ~0x1;
 77	} else {
 78		cpsr &= ~PSR_T_BIT;
 79		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
 80	}
 81	regs->ARM_cpsr = cpsr;
 82	regs->ARM_pc = pcv;
 83}
 84
 85
 86#if __LINUX_ARM_ARCH__ >= 6
 87
 88/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
 89#define load_write_pc_interworks true
 90#define test_load_write_pc_interworking()
 91
 92#else /* __LINUX_ARM_ARCH__ < 6 */
 93
 94/* We need run-time testing to determine if load_write_pc() should interwork. */
 95extern bool load_write_pc_interworks;
 96void __init test_load_write_pc_interworking(void);
 97
 98#endif
 99
100static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
101{
102	if (load_write_pc_interworks)
103		bx_write_pc(pcv, regs);
104	else
105		regs->ARM_pc = pcv;
106}
107
108
109#if __LINUX_ARM_ARCH__ >= 7
110
111#define alu_write_pc_interworks true
112#define test_alu_write_pc_interworking()
113
114#elif __LINUX_ARM_ARCH__ <= 5
115
116/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
117#define alu_write_pc_interworks false
118#define test_alu_write_pc_interworking()
119
120#else /* __LINUX_ARM_ARCH__ == 6 */
121
122/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
123extern bool alu_write_pc_interworks;
124void __init test_alu_write_pc_interworking(void);
125
126#endif /* __LINUX_ARM_ARCH__ == 6 */
127
128static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
129{
130	if (alu_write_pc_interworks)
131		bx_write_pc(pcv, regs);
132	else
133		regs->ARM_pc = pcv;
134}
135
136
137/*
138 * Test if load/store instructions writeback the address register.
139 * if P (bit 24) == 0 or W (bit 21) == 1
140 */
141#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
142
143/*
144 * The following definitions and macros are used to build instruction
145 * decoding tables for use by probes_decode_insn.
146 *
147 * These tables are a concatenation of entries each of which consist of one of
148 * the decode_* structs. All of the fields in every type of decode structure
149 * are of the union type decode_item, therefore the entire decode table can be
150 * viewed as an array of these and declared like:
151 *
152 *	static const union decode_item table_name[] = {};
153 *
154 * In order to construct each entry in the table, macros are used to
155 * initialise a number of sequential decode_item values in a layout which
156 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
157 * decode_simulate by initialising four decode_item objects like this...
158 *
159 *	{.bits = _type},
160 *	{.bits = _mask},
161 *	{.bits = _value},
162 *	{.action = _handler},
163 *
164 * Initialising a specified member of the union means that the compiler
165 * will produce a warning if the argument is of an incorrect type.
166 *
167 * Below is a list of each of the macros used to initialise entries and a
168 * description of the action performed when that entry is matched to an
169 * instruction. A match is found when (instruction & mask) == value.
170 *
171 * DECODE_TABLE(mask, value, table)
172 *	Instruction decoding jumps to parsing the new sub-table 'table'.
173 *
174 * DECODE_CUSTOM(mask, value, decoder)
175 *	The value of 'decoder' is used as an index into the array of
176 *	action functions, and the retrieved decoder function is invoked
177 *	to complete decoding of the instruction.
178 *
179 * DECODE_SIMULATE(mask, value, handler)
180 *	The probes instruction handler is set to the value found by
181 *	indexing into the action array using the value of 'handler'. This
182 *	will be used to simulate the instruction when the probe is hit.
183 *	Decoding returns with INSN_GOOD_NO_SLOT.
184 *
185 * DECODE_EMULATE(mask, value, handler)
186 *	The probes instruction handler is set to the value found by
187 *	indexing into the action array using the value of 'handler'. This
188 *	will be used to emulate the instruction when the probe is hit. The
189 *	modified instruction (see below) is placed in the probes instruction
190 *	slot so it may be called by the emulation code. Decoding returns
191 *	with INSN_GOOD.
192 *
193 * DECODE_REJECT(mask, value)
194 *	Instruction decoding fails with INSN_REJECTED
195 *
196 * DECODE_OR(mask, value)
197 *	This allows the mask/value test of multiple table entries to be
198 *	logically ORed. Once an 'or' entry is matched the decoding action to
199 *	be performed is that of the next entry which isn't an 'or'. E.g.
200 *
201 *		DECODE_OR	(mask1, value1)
202 *		DECODE_OR	(mask2, value2)
203 *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
204 *
205 *	This means that if any of the three mask/value pairs match the
206 *	instruction being decoded, then 'simulation_handler' will be used
207 *	for it.
208 *
209 * Both the SIMULATE and EMULATE macros have a second form which take an
210 * additional 'regs' argument.
211 *
212 *	DECODE_SIMULATEX(mask, value, handler, regs)
213 *	DECODE_EMULATEX	(mask, value, handler, regs)
214 *
215 * These are used to specify what kind of CPU register is encoded in each of the
216 * least significant 5 nibbles of the instruction being decoded. The regs value
217 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
218 * from enum decode_reg_type as arguments; only the '*' part of the name is
219 * given. E.g.
220 *
221 *	REGS(0, ANY, NOPC, 0, ANY)
222 *
223 * This indicates an instruction is encoded like:
224 *
225 *	bits 19..16	ignore
226 *	bits 15..12	any register allowed here
227 *	bits 11.. 8	any register except PC allowed here
228 *	bits  7.. 4	ignore
229 *	bits  3.. 0	any register allowed here
230 *
231 * This register specification is checked after a decode table entry is found to
232 * match an instruction (through the mask/value test). Any invalid register then
233 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
234 * the above example this would happen if bits 11..8 of the instruction were
235 * 1111, indicating R15 or PC.
236 *
237 * As well as checking for legal combinations of registers, this data is also
238 * used to modify the registers encoded in the instructions so that an
239 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
240 *
241 * Here is a real example which matches ARM instructions of the form
242 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
243 *
244 *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
245 *						 REGS(ANY, ANY, NOPC, 0, ANY)),
246 *						      ^    ^    ^        ^
247 *						      Rn   Rd   Rs       Rm
248 *
249 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
250 * Rs == R15
251 *
252 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
253 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
254 * the kprobes instruction slot. This can then be called later by the handler
255 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
256 * the indicated slot in the action array), in order to simulate the instruction.
257 */
258
259enum decode_type {
260	DECODE_TYPE_END,
261	DECODE_TYPE_TABLE,
262	DECODE_TYPE_CUSTOM,
263	DECODE_TYPE_SIMULATE,
264	DECODE_TYPE_EMULATE,
265	DECODE_TYPE_OR,
266	DECODE_TYPE_REJECT,
267	NUM_DECODE_TYPES /* Must be last enum */
268};
269
270#define DECODE_TYPE_BITS	4
271#define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
272
273enum decode_reg_type {
274	REG_TYPE_NONE = 0, /* Not a register, ignore */
275	REG_TYPE_ANY,	   /* Any register allowed */
276	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
277	REG_TYPE_SP,	   /* Register must be SP */
278	REG_TYPE_PC,	   /* Register must be PC */
279	REG_TYPE_NOSP,	   /* Register must not be SP */
280	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
281	REG_TYPE_NOPC,	   /* Register must not be PC */
282	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
283
284	/* The following types are used when the encoding for PC indicates
285	 * another instruction form. This distiction only matters for test
286	 * case coverage checks.
287	 */
288	REG_TYPE_NOPCX,	   /* Register must not be PC */
289	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
290
291	/* Alias to allow '0' arg to be used in REGS macro. */
292	REG_TYPE_0 = REG_TYPE_NONE
293};
294
295#define REGS(r16, r12, r8, r4, r0)	\
296	(((REG_TYPE_##r16) << 16) +	\
297	((REG_TYPE_##r12) << 12) +	\
298	((REG_TYPE_##r8) << 8) +	\
299	((REG_TYPE_##r4) << 4) +	\
300	(REG_TYPE_##r0))
301
302union decode_item {
303	u32			bits;
304	const union decode_item	*table;
305	int			action;
306};
307
308struct decode_header;
309typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
310						  struct arch_probes_insn *,
311						  const struct decode_header *);
312
313union decode_action {
314	probes_insn_handler_t	*handler;
315	probes_custom_decode_t	*decoder;
316};
317
318typedef enum probes_insn (probes_check_t)(probes_opcode_t,
319					   struct arch_probes_insn *,
320					   const struct decode_header *);
321
322struct decode_checker {
323	probes_check_t	*checker;
324};
325
326#define DECODE_END			\
327	{.bits = DECODE_TYPE_END}
328
329
330struct decode_header {
331	union decode_item	type_regs;
332	union decode_item	mask;
333	union decode_item	value;
334};
335
336#define DECODE_HEADER(_type, _mask, _value, _regs)		\
337	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
338	{.bits = (_mask)},					\
339	{.bits = (_value)}
340
341
342struct decode_table {
343	struct decode_header	header;
344	union decode_item	table;
345};
346
347#define DECODE_TABLE(_mask, _value, _table)			\
348	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
349	{.table = (_table)}
350
351
352struct decode_custom {
353	struct decode_header	header;
354	union decode_item	decoder;
355};
356
357#define DECODE_CUSTOM(_mask, _value, _decoder)			\
358	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
359	{.action = (_decoder)}
360
361
362struct decode_simulate {
363	struct decode_header	header;
364	union decode_item	handler;
365};
366
367#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
368	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
369	{.action = (_handler)}
370
371#define DECODE_SIMULATE(_mask, _value, _handler)	\
372	DECODE_SIMULATEX(_mask, _value, _handler, 0)
373
374
375struct decode_emulate {
376	struct decode_header	header;
377	union decode_item	handler;
378};
379
380#define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
381	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
382	{.action = (_handler)}
383
384#define DECODE_EMULATE(_mask, _value, _handler)		\
385	DECODE_EMULATEX(_mask, _value, _handler, 0)
386
387
388struct decode_or {
389	struct decode_header	header;
390};
391
392#define DECODE_OR(_mask, _value)				\
393	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
394
395enum probes_insn {
396	INSN_REJECTED,
397	INSN_GOOD,
398	INSN_GOOD_NO_SLOT
399};
400
401struct decode_reject {
402	struct decode_header	header;
403};
404
405#define DECODE_REJECT(_mask, _value)				\
406	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
407
408probes_insn_handler_t probes_simulate_nop;
409probes_insn_handler_t probes_emulate_none;
410
411int __kprobes
412probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
413		const union decode_item *table, bool thumb, bool emulate,
414		const union decode_action *actions,
415		const struct decode_checker **checkers);
416
417#endif