Loading...
1// SPDX-License-Identifier: GPL-2.0+
2//
3// Linux performance counter support for ARC CPUs.
4// This code is inspired by the perf support of various other architectures.
5//
6// Copyright (C) 2013-2018 Synopsys, Inc. (www.synopsys.com)
7
8#include <linux/errno.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/of.h>
12#include <linux/perf_event.h>
13#include <linux/platform_device.h>
14#include <asm/arcregs.h>
15#include <asm/stacktrace.h>
16
17/* HW holds 8 symbols + one for null terminator */
18#define ARCPMU_EVENT_NAME_LEN 9
19
20/*
21 * Some ARC pct quirks:
22 *
23 * PERF_COUNT_HW_STALLED_CYCLES_BACKEND
24 * PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
25 * The ARC 700 can either measure stalls per pipeline stage, or all stalls
26 * combined; for now we assign all stalls to STALLED_CYCLES_BACKEND
27 * and all pipeline flushes (e.g. caused by mispredicts, etc.) to
28 * STALLED_CYCLES_FRONTEND.
29 *
30 * We could start multiple performance counters and combine everything
31 * afterwards, but that makes it complicated.
32 *
33 * Note that I$ cache misses aren't counted by either of the two!
34 */
35
36/*
37 * ARC PCT has hardware conditions with fixed "names" but variable "indexes"
38 * (based on a specific RTL build)
39 * Below is the static map between perf generic/arc specific event_id and
40 * h/w condition names.
41 * At the time of probe, we loop thru each index and find its name to
42 * complete the mapping of perf event_id to h/w index as latter is needed
43 * to program the counter really
44 */
45static const char * const arc_pmu_ev_hw_map[] = {
46 /* count cycles */
47 [PERF_COUNT_HW_CPU_CYCLES] = "crun",
48 [PERF_COUNT_HW_REF_CPU_CYCLES] = "crun",
49 [PERF_COUNT_HW_BUS_CYCLES] = "crun",
50
51 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = "bflush",
52 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = "bstall",
53
54 /* counts condition */
55 [PERF_COUNT_HW_INSTRUCTIONS] = "iall",
56 /* All jump instructions that are taken */
57 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = "ijmptak",
58#ifdef CONFIG_ISA_ARCV2
59 [PERF_COUNT_HW_BRANCH_MISSES] = "bpmp",
60#else
61 [PERF_COUNT_ARC_BPOK] = "bpok", /* NP-NT, PT-T, PNT-NT */
62 [PERF_COUNT_HW_BRANCH_MISSES] = "bpfail", /* NP-T, PT-NT, PNT-T */
63#endif
64 [PERF_COUNT_ARC_LDC] = "imemrdc", /* Instr: mem read cached */
65 [PERF_COUNT_ARC_STC] = "imemwrc", /* Instr: mem write cached */
66
67 [PERF_COUNT_ARC_DCLM] = "dclm", /* D-cache Load Miss */
68 [PERF_COUNT_ARC_DCSM] = "dcsm", /* D-cache Store Miss */
69 [PERF_COUNT_ARC_ICM] = "icm", /* I-cache Miss */
70 [PERF_COUNT_ARC_EDTLB] = "edtlb", /* D-TLB Miss */
71 [PERF_COUNT_ARC_EITLB] = "eitlb", /* I-TLB Miss */
72
73 [PERF_COUNT_HW_CACHE_REFERENCES] = "imemrdc", /* Instr: mem read cached */
74 [PERF_COUNT_HW_CACHE_MISSES] = "dclm", /* D-cache Load Miss */
75};
76
77#define C(_x) PERF_COUNT_HW_CACHE_##_x
78#define CACHE_OP_UNSUPPORTED 0xffff
79
80static const unsigned int arc_pmu_cache_map[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
81 [C(L1D)] = {
82 [C(OP_READ)] = {
83 [C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC,
84 [C(RESULT_MISS)] = PERF_COUNT_ARC_DCLM,
85 },
86 [C(OP_WRITE)] = {
87 [C(RESULT_ACCESS)] = PERF_COUNT_ARC_STC,
88 [C(RESULT_MISS)] = PERF_COUNT_ARC_DCSM,
89 },
90 [C(OP_PREFETCH)] = {
91 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
92 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
93 },
94 },
95 [C(L1I)] = {
96 [C(OP_READ)] = {
97 [C(RESULT_ACCESS)] = PERF_COUNT_HW_INSTRUCTIONS,
98 [C(RESULT_MISS)] = PERF_COUNT_ARC_ICM,
99 },
100 [C(OP_WRITE)] = {
101 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
102 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
103 },
104 [C(OP_PREFETCH)] = {
105 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
106 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
107 },
108 },
109 [C(LL)] = {
110 [C(OP_READ)] = {
111 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
112 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
113 },
114 [C(OP_WRITE)] = {
115 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
116 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
117 },
118 [C(OP_PREFETCH)] = {
119 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
120 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
121 },
122 },
123 [C(DTLB)] = {
124 [C(OP_READ)] = {
125 [C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC,
126 [C(RESULT_MISS)] = PERF_COUNT_ARC_EDTLB,
127 },
128 /* DTLB LD/ST Miss not segregated by h/w*/
129 [C(OP_WRITE)] = {
130 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
131 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
132 },
133 [C(OP_PREFETCH)] = {
134 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
135 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
136 },
137 },
138 [C(ITLB)] = {
139 [C(OP_READ)] = {
140 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
141 [C(RESULT_MISS)] = PERF_COUNT_ARC_EITLB,
142 },
143 [C(OP_WRITE)] = {
144 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
145 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
146 },
147 [C(OP_PREFETCH)] = {
148 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
149 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
150 },
151 },
152 [C(BPU)] = {
153 [C(OP_READ)] = {
154 [C(RESULT_ACCESS)] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS,
155 [C(RESULT_MISS)] = PERF_COUNT_HW_BRANCH_MISSES,
156 },
157 [C(OP_WRITE)] = {
158 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
159 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
160 },
161 [C(OP_PREFETCH)] = {
162 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
163 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
164 },
165 },
166 [C(NODE)] = {
167 [C(OP_READ)] = {
168 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
169 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
170 },
171 [C(OP_WRITE)] = {
172 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
173 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
174 },
175 [C(OP_PREFETCH)] = {
176 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
177 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
178 },
179 },
180};
181
182enum arc_pmu_attr_groups {
183 ARCPMU_ATTR_GR_EVENTS,
184 ARCPMU_ATTR_GR_FORMATS,
185 ARCPMU_NR_ATTR_GR
186};
187
188struct arc_pmu_raw_event_entry {
189 char name[ARCPMU_EVENT_NAME_LEN];
190};
191
192struct arc_pmu {
193 struct pmu pmu;
194 unsigned int irq;
195 int n_counters;
196 int n_events;
197 u64 max_period;
198 int ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
199
200 struct arc_pmu_raw_event_entry *raw_entry;
201 struct attribute **attrs;
202 struct perf_pmu_events_attr *attr;
203 const struct attribute_group *attr_groups[ARCPMU_NR_ATTR_GR + 1];
204};
205
206struct arc_pmu_cpu {
207 /*
208 * A 1 bit for an index indicates that the counter is being used for
209 * an event. A 0 means that the counter can be used.
210 */
211 unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
212
213 /*
214 * The events that are active on the PMU for the given index.
215 */
216 struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
217};
218
219struct arc_callchain_trace {
220 int depth;
221 void *perf_stuff;
222};
223
224static int callchain_trace(unsigned int addr, void *data)
225{
226 struct arc_callchain_trace *ctrl = data;
227 struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff;
228
229 perf_callchain_store(entry, addr);
230
231 if (ctrl->depth++ < 3)
232 return 0;
233
234 return -1;
235}
236
237void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
238 struct pt_regs *regs)
239{
240 struct arc_callchain_trace ctrl = {
241 .depth = 0,
242 .perf_stuff = entry,
243 };
244
245 arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
246}
247
248void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
249 struct pt_regs *regs)
250{
251 /*
252 * User stack can't be unwound trivially with kernel dwarf unwinder
253 * So for now just record the user PC
254 */
255 perf_callchain_store(entry, instruction_pointer(regs));
256}
257
258static struct arc_pmu *arc_pmu;
259static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
260
261/* read counter #idx; note that counter# != event# on ARC! */
262static u64 arc_pmu_read_counter(int idx)
263{
264 u32 tmp;
265 u64 result;
266
267 /*
268 * ARC supports making 'snapshots' of the counters, so we don't
269 * need to care about counters wrapping to 0 underneath our feet
270 */
271 write_aux_reg(ARC_REG_PCT_INDEX, idx);
272 tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
273 write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
274 result = (u64) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
275 result |= read_aux_reg(ARC_REG_PCT_SNAPL);
276
277 return result;
278}
279
280static void arc_perf_event_update(struct perf_event *event,
281 struct hw_perf_event *hwc, int idx)
282{
283 u64 prev_raw_count = local64_read(&hwc->prev_count);
284 u64 new_raw_count = arc_pmu_read_counter(idx);
285 s64 delta = new_raw_count - prev_raw_count;
286
287 /*
288 * We aren't afraid of hwc->prev_count changing beneath our feet
289 * because there's no way for us to re-enter this function anytime.
290 */
291 local64_set(&hwc->prev_count, new_raw_count);
292 local64_add(delta, &event->count);
293 local64_sub(delta, &hwc->period_left);
294}
295
296static void arc_pmu_read(struct perf_event *event)
297{
298 arc_perf_event_update(event, &event->hw, event->hw.idx);
299}
300
301static int arc_pmu_cache_event(u64 config)
302{
303 unsigned int cache_type, cache_op, cache_result;
304 int ret;
305
306 cache_type = (config >> 0) & 0xff;
307 cache_op = (config >> 8) & 0xff;
308 cache_result = (config >> 16) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 return -EINVAL;
311 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312 return -EINVAL;
313 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
314 return -EINVAL;
315
316 ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
317
318 if (ret == CACHE_OP_UNSUPPORTED)
319 return -ENOENT;
320
321 pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
322 cache_type, cache_op, cache_result, ret,
323 arc_pmu_ev_hw_map[ret]);
324
325 return ret;
326}
327
328/* initializes hw_perf_event structure if event is supported */
329static int arc_pmu_event_init(struct perf_event *event)
330{
331 struct hw_perf_event *hwc = &event->hw;
332 int ret;
333
334 if (!is_sampling_event(event)) {
335 hwc->sample_period = arc_pmu->max_period;
336 hwc->last_period = hwc->sample_period;
337 local64_set(&hwc->period_left, hwc->sample_period);
338 }
339
340 hwc->config = 0;
341
342 if (is_isa_arcv2()) {
343 /* "exclude user" means "count only kernel" */
344 if (event->attr.exclude_user)
345 hwc->config |= ARC_REG_PCT_CONFIG_KERN;
346
347 /* "exclude kernel" means "count only user" */
348 if (event->attr.exclude_kernel)
349 hwc->config |= ARC_REG_PCT_CONFIG_USER;
350 }
351
352 switch (event->attr.type) {
353 case PERF_TYPE_HARDWARE:
354 if (event->attr.config >= PERF_COUNT_HW_MAX)
355 return -ENOENT;
356 if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
357 return -ENOENT;
358 hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
359 pr_debug("init event %d with h/w %08x \'%s\'\n",
360 (int)event->attr.config, (int)hwc->config,
361 arc_pmu_ev_hw_map[event->attr.config]);
362 return 0;
363
364 case PERF_TYPE_HW_CACHE:
365 ret = arc_pmu_cache_event(event->attr.config);
366 if (ret < 0)
367 return ret;
368 hwc->config |= arc_pmu->ev_hw_idx[ret];
369 pr_debug("init cache event with h/w %08x \'%s\'\n",
370 (int)hwc->config, arc_pmu_ev_hw_map[ret]);
371 return 0;
372
373 case PERF_TYPE_RAW:
374 if (event->attr.config >= arc_pmu->n_events)
375 return -ENOENT;
376
377 hwc->config |= event->attr.config;
378 pr_debug("init raw event with idx %lld \'%s\'\n",
379 event->attr.config,
380 arc_pmu->raw_entry[event->attr.config].name);
381
382 return 0;
383
384 default:
385 return -ENOENT;
386 }
387}
388
389/* starts all counters */
390static void arc_pmu_enable(struct pmu *pmu)
391{
392 u32 tmp;
393 tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
394 write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
395}
396
397/* stops all counters */
398static void arc_pmu_disable(struct pmu *pmu)
399{
400 u32 tmp;
401 tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
402 write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
403}
404
405static int arc_pmu_event_set_period(struct perf_event *event)
406{
407 struct hw_perf_event *hwc = &event->hw;
408 s64 left = local64_read(&hwc->period_left);
409 s64 period = hwc->sample_period;
410 int idx = hwc->idx;
411 int overflow = 0;
412 u64 value;
413
414 if (unlikely(left <= -period)) {
415 /* left underflowed by more than period. */
416 left = period;
417 local64_set(&hwc->period_left, left);
418 hwc->last_period = period;
419 overflow = 1;
420 } else if (unlikely(left <= 0)) {
421 /* left underflowed by less than period. */
422 left += period;
423 local64_set(&hwc->period_left, left);
424 hwc->last_period = period;
425 overflow = 1;
426 }
427
428 if (left > arc_pmu->max_period)
429 left = arc_pmu->max_period;
430
431 value = arc_pmu->max_period - left;
432 local64_set(&hwc->prev_count, value);
433
434 /* Select counter */
435 write_aux_reg(ARC_REG_PCT_INDEX, idx);
436
437 /* Write value */
438 write_aux_reg(ARC_REG_PCT_COUNTL, lower_32_bits(value));
439 write_aux_reg(ARC_REG_PCT_COUNTH, upper_32_bits(value));
440
441 perf_event_update_userpage(event);
442
443 return overflow;
444}
445
446/*
447 * Assigns hardware counter to hardware condition.
448 * Note that there is no separate start/stop mechanism;
449 * stopping is achieved by assigning the 'never' condition
450 */
451static void arc_pmu_start(struct perf_event *event, int flags)
452{
453 struct hw_perf_event *hwc = &event->hw;
454 int idx = hwc->idx;
455
456 if (WARN_ON_ONCE(idx == -1))
457 return;
458
459 if (flags & PERF_EF_RELOAD)
460 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
461
462 hwc->state = 0;
463
464 arc_pmu_event_set_period(event);
465
466 /* Enable interrupt for this counter */
467 if (is_sampling_event(event))
468 write_aux_reg(ARC_REG_PCT_INT_CTRL,
469 read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx));
470
471 /* enable ARC pmu here */
472 write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */
473 write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */
474}
475
476static void arc_pmu_stop(struct perf_event *event, int flags)
477{
478 struct hw_perf_event *hwc = &event->hw;
479 int idx = hwc->idx;
480
481 /* Disable interrupt for this counter */
482 if (is_sampling_event(event)) {
483 /*
484 * Reset interrupt flag by writing of 1. This is required
485 * to make sure pending interrupt was not left.
486 */
487 write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx));
488 write_aux_reg(ARC_REG_PCT_INT_CTRL,
489 read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~BIT(idx));
490 }
491
492 if (!(event->hw.state & PERF_HES_STOPPED)) {
493 /* stop hw counter here */
494 write_aux_reg(ARC_REG_PCT_INDEX, idx);
495
496 /* condition code #0 is always "never" */
497 write_aux_reg(ARC_REG_PCT_CONFIG, 0);
498
499 event->hw.state |= PERF_HES_STOPPED;
500 }
501
502 if ((flags & PERF_EF_UPDATE) &&
503 !(event->hw.state & PERF_HES_UPTODATE)) {
504 arc_perf_event_update(event, &event->hw, idx);
505 event->hw.state |= PERF_HES_UPTODATE;
506 }
507}
508
509static void arc_pmu_del(struct perf_event *event, int flags)
510{
511 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
512
513 arc_pmu_stop(event, PERF_EF_UPDATE);
514 __clear_bit(event->hw.idx, pmu_cpu->used_mask);
515
516 pmu_cpu->act_counter[event->hw.idx] = 0;
517
518 perf_event_update_userpage(event);
519}
520
521/* allocate hardware counter and optionally start counting */
522static int arc_pmu_add(struct perf_event *event, int flags)
523{
524 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
525 struct hw_perf_event *hwc = &event->hw;
526 int idx;
527
528 idx = ffz(pmu_cpu->used_mask[0]);
529 if (idx == arc_pmu->n_counters)
530 return -EAGAIN;
531
532 __set_bit(idx, pmu_cpu->used_mask);
533 hwc->idx = idx;
534
535 write_aux_reg(ARC_REG_PCT_INDEX, idx);
536
537 pmu_cpu->act_counter[idx] = event;
538
539 if (is_sampling_event(event)) {
540 /* Mimic full counter overflow as other arches do */
541 write_aux_reg(ARC_REG_PCT_INT_CNTL,
542 lower_32_bits(arc_pmu->max_period));
543 write_aux_reg(ARC_REG_PCT_INT_CNTH,
544 upper_32_bits(arc_pmu->max_period));
545 }
546
547 write_aux_reg(ARC_REG_PCT_CONFIG, 0);
548 write_aux_reg(ARC_REG_PCT_COUNTL, 0);
549 write_aux_reg(ARC_REG_PCT_COUNTH, 0);
550 local64_set(&hwc->prev_count, 0);
551
552 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
553 if (flags & PERF_EF_START)
554 arc_pmu_start(event, PERF_EF_RELOAD);
555
556 perf_event_update_userpage(event);
557
558 return 0;
559}
560
561#ifdef CONFIG_ISA_ARCV2
562static irqreturn_t arc_pmu_intr(int irq, void *dev)
563{
564 struct perf_sample_data data;
565 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
566 struct pt_regs *regs;
567 unsigned int active_ints;
568 int idx;
569
570 arc_pmu_disable(&arc_pmu->pmu);
571
572 active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
573 if (!active_ints)
574 goto done;
575
576 regs = get_irq_regs();
577
578 do {
579 struct perf_event *event;
580 struct hw_perf_event *hwc;
581
582 idx = __ffs(active_ints);
583
584 /* Reset interrupt flag by writing of 1 */
585 write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx));
586
587 /*
588 * On reset of "interrupt active" bit corresponding
589 * "interrupt enable" bit gets automatically reset as well.
590 * Now we need to re-enable interrupt for the counter.
591 */
592 write_aux_reg(ARC_REG_PCT_INT_CTRL,
593 read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx));
594
595 event = pmu_cpu->act_counter[idx];
596 hwc = &event->hw;
597
598 WARN_ON_ONCE(hwc->idx != idx);
599
600 arc_perf_event_update(event, &event->hw, event->hw.idx);
601 perf_sample_data_init(&data, 0, hwc->last_period);
602 if (arc_pmu_event_set_period(event)) {
603 if (perf_event_overflow(event, &data, regs))
604 arc_pmu_stop(event, 0);
605 }
606
607 active_ints &= ~BIT(idx);
608 } while (active_ints);
609
610done:
611 arc_pmu_enable(&arc_pmu->pmu);
612
613 return IRQ_HANDLED;
614}
615#else
616
617static irqreturn_t arc_pmu_intr(int irq, void *dev)
618{
619 return IRQ_NONE;
620}
621
622#endif /* CONFIG_ISA_ARCV2 */
623
624static void arc_cpu_pmu_irq_init(void *data)
625{
626 int irq = *(int *)data;
627
628 enable_percpu_irq(irq, IRQ_TYPE_NONE);
629
630 /* Clear all pending interrupt flags */
631 write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
632}
633
634/* Event field occupies the bottom 15 bits of our config field */
635PMU_FORMAT_ATTR(event, "config:0-14");
636static struct attribute *arc_pmu_format_attrs[] = {
637 &format_attr_event.attr,
638 NULL,
639};
640
641static struct attribute_group arc_pmu_format_attr_gr = {
642 .name = "format",
643 .attrs = arc_pmu_format_attrs,
644};
645
646static ssize_t arc_pmu_events_sysfs_show(struct device *dev,
647 struct device_attribute *attr,
648 char *page)
649{
650 struct perf_pmu_events_attr *pmu_attr;
651
652 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
653 return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
654}
655
656/*
657 * We don't add attrs here as we don't have pre-defined list of perf events.
658 * We will generate and add attrs dynamically in probe() after we read HW
659 * configuration.
660 */
661static struct attribute_group arc_pmu_events_attr_gr = {
662 .name = "events",
663};
664
665static void arc_pmu_add_raw_event_attr(int j, char *str)
666{
667 memmove(arc_pmu->raw_entry[j].name, str, ARCPMU_EVENT_NAME_LEN - 1);
668 arc_pmu->attr[j].attr.attr.name = arc_pmu->raw_entry[j].name;
669 arc_pmu->attr[j].attr.attr.mode = VERIFY_OCTAL_PERMISSIONS(0444);
670 arc_pmu->attr[j].attr.show = arc_pmu_events_sysfs_show;
671 arc_pmu->attr[j].id = j;
672 arc_pmu->attrs[j] = &(arc_pmu->attr[j].attr.attr);
673}
674
675static int arc_pmu_raw_alloc(struct device *dev)
676{
677 arc_pmu->attr = devm_kmalloc_array(dev, arc_pmu->n_events + 1,
678 sizeof(*arc_pmu->attr), GFP_KERNEL | __GFP_ZERO);
679 if (!arc_pmu->attr)
680 return -ENOMEM;
681
682 arc_pmu->attrs = devm_kmalloc_array(dev, arc_pmu->n_events + 1,
683 sizeof(*arc_pmu->attrs), GFP_KERNEL | __GFP_ZERO);
684 if (!arc_pmu->attrs)
685 return -ENOMEM;
686
687 arc_pmu->raw_entry = devm_kmalloc_array(dev, arc_pmu->n_events,
688 sizeof(*arc_pmu->raw_entry), GFP_KERNEL | __GFP_ZERO);
689 if (!arc_pmu->raw_entry)
690 return -ENOMEM;
691
692 return 0;
693}
694
695static inline bool event_in_hw_event_map(int i, char *name)
696{
697 if (!arc_pmu_ev_hw_map[i])
698 return false;
699
700 if (!strlen(arc_pmu_ev_hw_map[i]))
701 return false;
702
703 if (strcmp(arc_pmu_ev_hw_map[i], name))
704 return false;
705
706 return true;
707}
708
709static void arc_pmu_map_hw_event(int j, char *str)
710{
711 int i;
712
713 /* See if HW condition has been mapped to a perf event_id */
714 for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
715 if (event_in_hw_event_map(i, str)) {
716 pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
717 i, str, j);
718 arc_pmu->ev_hw_idx[i] = j;
719 }
720 }
721}
722
723static int arc_pmu_device_probe(struct platform_device *pdev)
724{
725 struct arc_reg_pct_build pct_bcr;
726 struct arc_reg_cc_build cc_bcr;
727 int i, has_interrupts, irq = -1;
728 int counter_size; /* in bits */
729
730 union cc_name {
731 struct {
732 u32 word0, word1;
733 char sentinel;
734 } indiv;
735 char str[ARCPMU_EVENT_NAME_LEN];
736 } cc_name;
737
738
739 READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
740 if (!pct_bcr.v) {
741 pr_err("This core does not have performance counters!\n");
742 return -ENODEV;
743 }
744 BUILD_BUG_ON(ARC_PERF_MAX_COUNTERS > 32);
745 if (WARN_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS))
746 return -EINVAL;
747
748 READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
749 if (WARN(!cc_bcr.v, "Counters exist but No countable conditions?"))
750 return -EINVAL;
751
752 arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
753 if (!arc_pmu)
754 return -ENOMEM;
755
756 arc_pmu->n_events = cc_bcr.c;
757
758 if (arc_pmu_raw_alloc(&pdev->dev))
759 return -ENOMEM;
760
761 has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
762
763 arc_pmu->n_counters = pct_bcr.c;
764 counter_size = 32 + (pct_bcr.s << 4);
765
766 arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
767
768 pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
769 arc_pmu->n_counters, counter_size, cc_bcr.c,
770 has_interrupts ? ", [overflow IRQ support]" : "");
771
772 cc_name.str[ARCPMU_EVENT_NAME_LEN - 1] = 0;
773 for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
774 arc_pmu->ev_hw_idx[i] = -1;
775
776 /* loop thru all available h/w condition indexes */
777 for (i = 0; i < cc_bcr.c; i++) {
778 write_aux_reg(ARC_REG_CC_INDEX, i);
779 cc_name.indiv.word0 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME0));
780 cc_name.indiv.word1 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME1));
781
782 arc_pmu_map_hw_event(i, cc_name.str);
783 arc_pmu_add_raw_event_attr(i, cc_name.str);
784 }
785
786 arc_pmu_events_attr_gr.attrs = arc_pmu->attrs;
787 arc_pmu->attr_groups[ARCPMU_ATTR_GR_EVENTS] = &arc_pmu_events_attr_gr;
788 arc_pmu->attr_groups[ARCPMU_ATTR_GR_FORMATS] = &arc_pmu_format_attr_gr;
789
790 arc_pmu->pmu = (struct pmu) {
791 .pmu_enable = arc_pmu_enable,
792 .pmu_disable = arc_pmu_disable,
793 .event_init = arc_pmu_event_init,
794 .add = arc_pmu_add,
795 .del = arc_pmu_del,
796 .start = arc_pmu_start,
797 .stop = arc_pmu_stop,
798 .read = arc_pmu_read,
799 .attr_groups = arc_pmu->attr_groups,
800 };
801
802 if (has_interrupts) {
803 irq = platform_get_irq(pdev, 0);
804 if (irq >= 0) {
805 int ret;
806
807 arc_pmu->irq = irq;
808
809 /* intc map function ensures irq_set_percpu_devid() called */
810 ret = request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
811 this_cpu_ptr(&arc_pmu_cpu));
812
813 if (!ret)
814 on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
815 else
816 irq = -1;
817 }
818
819 }
820
821 if (irq == -1)
822 arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
823
824 /*
825 * perf parser doesn't really like '-' symbol in events name, so let's
826 * use '_' in arc pct name as it goes to kernel PMU event prefix.
827 */
828 return perf_pmu_register(&arc_pmu->pmu, "arc_pct", PERF_TYPE_RAW);
829}
830
831static const struct of_device_id arc_pmu_match[] = {
832 { .compatible = "snps,arc700-pct" },
833 { .compatible = "snps,archs-pct" },
834 {},
835};
836MODULE_DEVICE_TABLE(of, arc_pmu_match);
837
838static struct platform_driver arc_pmu_driver = {
839 .driver = {
840 .name = "arc-pct",
841 .of_match_table = of_match_ptr(arc_pmu_match),
842 },
843 .probe = arc_pmu_device_probe,
844};
845
846module_platform_driver(arc_pmu_driver);
847
848MODULE_LICENSE("GPL");
849MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>");
850MODULE_DESCRIPTION("ARC PMU driver");
1/*
2 * Linux performance counter support for ARC700 series
3 *
4 * Copyright (C) 2013-2015 Synopsys, Inc. (www.synopsys.com)
5 *
6 * This code is inspired by the perf support of various other architectures.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13#include <linux/errno.h>
14#include <linux/interrupt.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/perf_event.h>
18#include <linux/platform_device.h>
19#include <asm/arcregs.h>
20#include <asm/stacktrace.h>
21
22struct arc_pmu {
23 struct pmu pmu;
24 unsigned int irq;
25 int n_counters;
26 u64 max_period;
27 int ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
28};
29
30struct arc_pmu_cpu {
31 /*
32 * A 1 bit for an index indicates that the counter is being used for
33 * an event. A 0 means that the counter can be used.
34 */
35 unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
36
37 /*
38 * The events that are active on the PMU for the given index.
39 */
40 struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
41};
42
43struct arc_callchain_trace {
44 int depth;
45 void *perf_stuff;
46};
47
48static int callchain_trace(unsigned int addr, void *data)
49{
50 struct arc_callchain_trace *ctrl = data;
51 struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff;
52 perf_callchain_store(entry, addr);
53
54 if (ctrl->depth++ < 3)
55 return 0;
56
57 return -1;
58}
59
60void
61perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
62{
63 struct arc_callchain_trace ctrl = {
64 .depth = 0,
65 .perf_stuff = entry,
66 };
67
68 arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
69}
70
71void
72perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
73{
74 /*
75 * User stack can't be unwound trivially with kernel dwarf unwinder
76 * So for now just record the user PC
77 */
78 perf_callchain_store(entry, instruction_pointer(regs));
79}
80
81static struct arc_pmu *arc_pmu;
82static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
83
84/* read counter #idx; note that counter# != event# on ARC! */
85static uint64_t arc_pmu_read_counter(int idx)
86{
87 uint32_t tmp;
88 uint64_t result;
89
90 /*
91 * ARC supports making 'snapshots' of the counters, so we don't
92 * need to care about counters wrapping to 0 underneath our feet
93 */
94 write_aux_reg(ARC_REG_PCT_INDEX, idx);
95 tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
96 write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
97 result = (uint64_t) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
98 result |= read_aux_reg(ARC_REG_PCT_SNAPL);
99
100 return result;
101}
102
103static void arc_perf_event_update(struct perf_event *event,
104 struct hw_perf_event *hwc, int idx)
105{
106 uint64_t prev_raw_count = local64_read(&hwc->prev_count);
107 uint64_t new_raw_count = arc_pmu_read_counter(idx);
108 int64_t delta = new_raw_count - prev_raw_count;
109
110 /*
111 * We aren't afraid of hwc->prev_count changing beneath our feet
112 * because there's no way for us to re-enter this function anytime.
113 */
114 local64_set(&hwc->prev_count, new_raw_count);
115 local64_add(delta, &event->count);
116 local64_sub(delta, &hwc->period_left);
117}
118
119static void arc_pmu_read(struct perf_event *event)
120{
121 arc_perf_event_update(event, &event->hw, event->hw.idx);
122}
123
124static int arc_pmu_cache_event(u64 config)
125{
126 unsigned int cache_type, cache_op, cache_result;
127 int ret;
128
129 cache_type = (config >> 0) & 0xff;
130 cache_op = (config >> 8) & 0xff;
131 cache_result = (config >> 16) & 0xff;
132 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
133 return -EINVAL;
134 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135 return -EINVAL;
136 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137 return -EINVAL;
138
139 ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
140
141 if (ret == CACHE_OP_UNSUPPORTED)
142 return -ENOENT;
143
144 pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
145 cache_type, cache_op, cache_result, ret,
146 arc_pmu_ev_hw_map[ret]);
147
148 return ret;
149}
150
151/* initializes hw_perf_event structure if event is supported */
152static int arc_pmu_event_init(struct perf_event *event)
153{
154 struct hw_perf_event *hwc = &event->hw;
155 int ret;
156
157 if (!is_sampling_event(event)) {
158 hwc->sample_period = arc_pmu->max_period;
159 hwc->last_period = hwc->sample_period;
160 local64_set(&hwc->period_left, hwc->sample_period);
161 }
162
163 hwc->config = 0;
164
165 if (is_isa_arcv2()) {
166 /* "exclude user" means "count only kernel" */
167 if (event->attr.exclude_user)
168 hwc->config |= ARC_REG_PCT_CONFIG_KERN;
169
170 /* "exclude kernel" means "count only user" */
171 if (event->attr.exclude_kernel)
172 hwc->config |= ARC_REG_PCT_CONFIG_USER;
173 }
174
175 switch (event->attr.type) {
176 case PERF_TYPE_HARDWARE:
177 if (event->attr.config >= PERF_COUNT_HW_MAX)
178 return -ENOENT;
179 if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
180 return -ENOENT;
181 hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
182 pr_debug("init event %d with h/w %08x \'%s\'\n",
183 (int)event->attr.config, (int)hwc->config,
184 arc_pmu_ev_hw_map[event->attr.config]);
185 return 0;
186
187 case PERF_TYPE_HW_CACHE:
188 ret = arc_pmu_cache_event(event->attr.config);
189 if (ret < 0)
190 return ret;
191 hwc->config |= arc_pmu->ev_hw_idx[ret];
192 pr_debug("init cache event with h/w %08x \'%s\'\n",
193 (int)hwc->config, arc_pmu_ev_hw_map[ret]);
194 return 0;
195 default:
196 return -ENOENT;
197 }
198}
199
200/* starts all counters */
201static void arc_pmu_enable(struct pmu *pmu)
202{
203 uint32_t tmp;
204 tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
205 write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
206}
207
208/* stops all counters */
209static void arc_pmu_disable(struct pmu *pmu)
210{
211 uint32_t tmp;
212 tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
213 write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
214}
215
216static int arc_pmu_event_set_period(struct perf_event *event)
217{
218 struct hw_perf_event *hwc = &event->hw;
219 s64 left = local64_read(&hwc->period_left);
220 s64 period = hwc->sample_period;
221 int idx = hwc->idx;
222 int overflow = 0;
223 u64 value;
224
225 if (unlikely(left <= -period)) {
226 /* left underflowed by more than period. */
227 left = period;
228 local64_set(&hwc->period_left, left);
229 hwc->last_period = period;
230 overflow = 1;
231 } else if (unlikely(left <= 0)) {
232 /* left underflowed by less than period. */
233 left += period;
234 local64_set(&hwc->period_left, left);
235 hwc->last_period = period;
236 overflow = 1;
237 }
238
239 if (left > arc_pmu->max_period)
240 left = arc_pmu->max_period;
241
242 value = arc_pmu->max_period - left;
243 local64_set(&hwc->prev_count, value);
244
245 /* Select counter */
246 write_aux_reg(ARC_REG_PCT_INDEX, idx);
247
248 /* Write value */
249 write_aux_reg(ARC_REG_PCT_COUNTL, (u32)value);
250 write_aux_reg(ARC_REG_PCT_COUNTH, (value >> 32));
251
252 perf_event_update_userpage(event);
253
254 return overflow;
255}
256
257/*
258 * Assigns hardware counter to hardware condition.
259 * Note that there is no separate start/stop mechanism;
260 * stopping is achieved by assigning the 'never' condition
261 */
262static void arc_pmu_start(struct perf_event *event, int flags)
263{
264 struct hw_perf_event *hwc = &event->hw;
265 int idx = hwc->idx;
266
267 if (WARN_ON_ONCE(idx == -1))
268 return;
269
270 if (flags & PERF_EF_RELOAD)
271 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
272
273 hwc->state = 0;
274
275 arc_pmu_event_set_period(event);
276
277 /* Enable interrupt for this counter */
278 if (is_sampling_event(event))
279 write_aux_reg(ARC_REG_PCT_INT_CTRL,
280 read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
281
282 /* enable ARC pmu here */
283 write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */
284 write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */
285}
286
287static void arc_pmu_stop(struct perf_event *event, int flags)
288{
289 struct hw_perf_event *hwc = &event->hw;
290 int idx = hwc->idx;
291
292 /* Disable interrupt for this counter */
293 if (is_sampling_event(event)) {
294 /*
295 * Reset interrupt flag by writing of 1. This is required
296 * to make sure pending interrupt was not left.
297 */
298 write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
299 write_aux_reg(ARC_REG_PCT_INT_CTRL,
300 read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~(1 << idx));
301 }
302
303 if (!(event->hw.state & PERF_HES_STOPPED)) {
304 /* stop ARC pmu here */
305 write_aux_reg(ARC_REG_PCT_INDEX, idx);
306
307 /* condition code #0 is always "never" */
308 write_aux_reg(ARC_REG_PCT_CONFIG, 0);
309
310 event->hw.state |= PERF_HES_STOPPED;
311 }
312
313 if ((flags & PERF_EF_UPDATE) &&
314 !(event->hw.state & PERF_HES_UPTODATE)) {
315 arc_perf_event_update(event, &event->hw, idx);
316 event->hw.state |= PERF_HES_UPTODATE;
317 }
318}
319
320static void arc_pmu_del(struct perf_event *event, int flags)
321{
322 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
323
324 arc_pmu_stop(event, PERF_EF_UPDATE);
325 __clear_bit(event->hw.idx, pmu_cpu->used_mask);
326
327 pmu_cpu->act_counter[event->hw.idx] = 0;
328
329 perf_event_update_userpage(event);
330}
331
332/* allocate hardware counter and optionally start counting */
333static int arc_pmu_add(struct perf_event *event, int flags)
334{
335 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
336 struct hw_perf_event *hwc = &event->hw;
337 int idx = hwc->idx;
338
339 idx = ffz(pmu_cpu->used_mask[0]);
340 if (idx == arc_pmu->n_counters)
341 return -EAGAIN;
342
343 __set_bit(idx, pmu_cpu->used_mask);
344 hwc->idx = idx;
345
346 write_aux_reg(ARC_REG_PCT_INDEX, idx);
347
348 pmu_cpu->act_counter[idx] = event;
349
350 if (is_sampling_event(event)) {
351 /* Mimic full counter overflow as other arches do */
352 write_aux_reg(ARC_REG_PCT_INT_CNTL, (u32)arc_pmu->max_period);
353 write_aux_reg(ARC_REG_PCT_INT_CNTH,
354 (arc_pmu->max_period >> 32));
355 }
356
357 write_aux_reg(ARC_REG_PCT_CONFIG, 0);
358 write_aux_reg(ARC_REG_PCT_COUNTL, 0);
359 write_aux_reg(ARC_REG_PCT_COUNTH, 0);
360 local64_set(&hwc->prev_count, 0);
361
362 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
363 if (flags & PERF_EF_START)
364 arc_pmu_start(event, PERF_EF_RELOAD);
365
366 perf_event_update_userpage(event);
367
368 return 0;
369}
370
371#ifdef CONFIG_ISA_ARCV2
372static irqreturn_t arc_pmu_intr(int irq, void *dev)
373{
374 struct perf_sample_data data;
375 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
376 struct pt_regs *regs;
377 unsigned int active_ints;
378 int idx;
379
380 arc_pmu_disable(&arc_pmu->pmu);
381
382 active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
383 if (!active_ints)
384 goto done;
385
386 regs = get_irq_regs();
387
388 do {
389 struct perf_event *event;
390 struct hw_perf_event *hwc;
391
392 idx = __ffs(active_ints);
393
394 /* Reset interrupt flag by writing of 1 */
395 write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
396
397 /*
398 * On reset of "interrupt active" bit corresponding
399 * "interrupt enable" bit gets automatically reset as well.
400 * Now we need to re-enable interrupt for the counter.
401 */
402 write_aux_reg(ARC_REG_PCT_INT_CTRL,
403 read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
404
405 event = pmu_cpu->act_counter[idx];
406 hwc = &event->hw;
407
408 WARN_ON_ONCE(hwc->idx != idx);
409
410 arc_perf_event_update(event, &event->hw, event->hw.idx);
411 perf_sample_data_init(&data, 0, hwc->last_period);
412 if (arc_pmu_event_set_period(event)) {
413 if (perf_event_overflow(event, &data, regs))
414 arc_pmu_stop(event, 0);
415 }
416
417 active_ints &= ~(1U << idx);
418 } while (active_ints);
419
420done:
421 arc_pmu_enable(&arc_pmu->pmu);
422
423 return IRQ_HANDLED;
424}
425#else
426
427static irqreturn_t arc_pmu_intr(int irq, void *dev)
428{
429 return IRQ_NONE;
430}
431
432#endif /* CONFIG_ISA_ARCV2 */
433
434static void arc_cpu_pmu_irq_init(void *data)
435{
436 int irq = *(int *)data;
437
438 enable_percpu_irq(irq, IRQ_TYPE_NONE);
439
440 /* Clear all pending interrupt flags */
441 write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
442}
443
444static int arc_pmu_device_probe(struct platform_device *pdev)
445{
446 struct arc_reg_pct_build pct_bcr;
447 struct arc_reg_cc_build cc_bcr;
448 int i, j, has_interrupts;
449 int counter_size; /* in bits */
450
451 union cc_name {
452 struct {
453 uint32_t word0, word1;
454 char sentinel;
455 } indiv;
456 char str[9];
457 } cc_name;
458
459
460 READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
461 if (!pct_bcr.v) {
462 pr_err("This core does not have performance counters!\n");
463 return -ENODEV;
464 }
465 BUILD_BUG_ON(ARC_PERF_MAX_COUNTERS > 32);
466 BUG_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS);
467
468 READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
469 BUG_ON(!cc_bcr.v); /* Counters exist but No countable conditions ? */
470
471 arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
472 if (!arc_pmu)
473 return -ENOMEM;
474
475 has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
476
477 arc_pmu->n_counters = pct_bcr.c;
478 counter_size = 32 + (pct_bcr.s << 4);
479
480 arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
481
482 pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
483 arc_pmu->n_counters, counter_size, cc_bcr.c,
484 has_interrupts ? ", [overflow IRQ support]":"");
485
486 cc_name.str[8] = 0;
487 for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
488 arc_pmu->ev_hw_idx[i] = -1;
489
490 /* loop thru all available h/w condition indexes */
491 for (j = 0; j < cc_bcr.c; j++) {
492 write_aux_reg(ARC_REG_CC_INDEX, j);
493 cc_name.indiv.word0 = read_aux_reg(ARC_REG_CC_NAME0);
494 cc_name.indiv.word1 = read_aux_reg(ARC_REG_CC_NAME1);
495
496 /* See if it has been mapped to a perf event_id */
497 for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
498 if (arc_pmu_ev_hw_map[i] &&
499 !strcmp(arc_pmu_ev_hw_map[i], cc_name.str) &&
500 strlen(arc_pmu_ev_hw_map[i])) {
501 pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
502 i, cc_name.str, j);
503 arc_pmu->ev_hw_idx[i] = j;
504 }
505 }
506 }
507
508 arc_pmu->pmu = (struct pmu) {
509 .pmu_enable = arc_pmu_enable,
510 .pmu_disable = arc_pmu_disable,
511 .event_init = arc_pmu_event_init,
512 .add = arc_pmu_add,
513 .del = arc_pmu_del,
514 .start = arc_pmu_start,
515 .stop = arc_pmu_stop,
516 .read = arc_pmu_read,
517 };
518
519 if (has_interrupts) {
520 int irq = platform_get_irq(pdev, 0);
521
522 if (irq < 0) {
523 pr_err("Cannot get IRQ number for the platform\n");
524 return -ENODEV;
525 }
526
527 arc_pmu->irq = irq;
528
529 /* intc map function ensures irq_set_percpu_devid() called */
530 request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
531 this_cpu_ptr(&arc_pmu_cpu));
532
533 on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
534
535 } else
536 arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
537
538 return perf_pmu_register(&arc_pmu->pmu, pdev->name, PERF_TYPE_RAW);
539}
540
541#ifdef CONFIG_OF
542static const struct of_device_id arc_pmu_match[] = {
543 { .compatible = "snps,arc700-pct" },
544 { .compatible = "snps,archs-pct" },
545 {},
546};
547MODULE_DEVICE_TABLE(of, arc_pmu_match);
548#endif
549
550static struct platform_driver arc_pmu_driver = {
551 .driver = {
552 .name = "arc-pct",
553 .of_match_table = of_match_ptr(arc_pmu_match),
554 },
555 .probe = arc_pmu_device_probe,
556};
557
558module_platform_driver(arc_pmu_driver);
559
560MODULE_LICENSE("GPL");
561MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>");
562MODULE_DESCRIPTION("ARC PMU driver");