Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Testsuite for eBPF verifier
   4 *
   5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
   6 * Copyright (c) 2017 Facebook
   7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
 
 
   8 */
   9
  10#include <endian.h>
  11#include <asm/types.h>
  12#include <linux/types.h>
  13#include <stdint.h>
  14#include <stdio.h>
  15#include <stdlib.h>
  16#include <unistd.h>
  17#include <errno.h>
  18#include <string.h>
  19#include <stddef.h>
  20#include <stdbool.h>
  21#include <sched.h>
  22#include <limits.h>
  23#include <assert.h>
  24
  25#include <linux/unistd.h>
  26#include <linux/filter.h>
  27#include <linux/bpf_perf_event.h>
  28#include <linux/bpf.h>
  29#include <linux/if_ether.h>
  30#include <linux/btf.h>
  31
  32#include <bpf/btf.h>
  33#include <bpf/bpf.h>
  34#include <bpf/libbpf.h>
  35
  36#include "autoconf_helper.h"
  37#include "unpriv_helpers.h"
  38#include "cap_helpers.h"
  39#include "bpf_rand.h"
  40#include "bpf_util.h"
  41#include "test_btf.h"
  42#include "../../../include/linux/filter.h"
  43#include "testing_helpers.h"
  44
  45#define MAX_INSNS	BPF_MAXINSNS
  46#define MAX_EXPECTED_INSNS	32
  47#define MAX_UNEXPECTED_INSNS	32
  48#define MAX_TEST_INSNS	1000000
 
 
 
  49#define MAX_FIXUPS	8
  50#define MAX_NR_MAPS	23
  51#define MAX_TEST_RUNS	8
  52#define POINTER_VALUE	0xcafe4all
  53#define TEST_DATA_LEN	64
  54#define MAX_FUNC_INFOS	8
  55#define MAX_BTF_STRINGS	256
  56#define MAX_BTF_TYPES	256
  57
  58#define INSN_OFF_MASK	((__s16)0xFFFF)
  59#define INSN_IMM_MASK	((__s32)0xFFFFFFFF)
  60#define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
  61
  62#define DEFAULT_LIBBPF_LOG_LEVEL	4
  63
  64#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
  65#define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
  66#define F_NEEDS_JIT_ENABLED			(1 << 2)
  67
  68/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
  69#define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\
  70		    1ULL << CAP_PERFMON |	\
  71		    1ULL << CAP_BPF)
  72#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
  73static bool unpriv_disabled = false;
  74static bool jit_disabled;
  75static int skips;
  76static bool verbose = false;
  77static int verif_log_level = 0;
  78
  79struct kfunc_btf_id_pair {
  80	const char *kfunc;
  81	int insn_idx;
  82};
  83
  84struct bpf_test {
  85	const char *descr;
  86	struct bpf_insn	insns[MAX_INSNS];
  87	struct bpf_insn	*fill_insns;
  88	/* If specified, test engine looks for this sequence of
  89	 * instructions in the BPF program after loading. Allows to
  90	 * test rewrites applied by verifier.  Use values
  91	 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
  92	 * fields if content does not matter.  The test case fails if
  93	 * specified instructions are not found.
  94	 *
  95	 * The sequence could be split into sub-sequences by adding
  96	 * SKIP_INSNS instruction at the end of each sub-sequence. In
  97	 * such case sub-sequences are searched for one after another.
  98	 */
  99	struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
 100	/* If specified, test engine applies same pattern matching
 101	 * logic as for `expected_insns`. If the specified pattern is
 102	 * matched test case is marked as failed.
 103	 */
 104	struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
 105	int fixup_map_hash_8b[MAX_FIXUPS];
 106	int fixup_map_hash_48b[MAX_FIXUPS];
 107	int fixup_map_hash_16b[MAX_FIXUPS];
 108	int fixup_map_array_48b[MAX_FIXUPS];
 109	int fixup_map_sockmap[MAX_FIXUPS];
 110	int fixup_map_sockhash[MAX_FIXUPS];
 111	int fixup_map_xskmap[MAX_FIXUPS];
 112	int fixup_map_stacktrace[MAX_FIXUPS];
 113	int fixup_prog1[MAX_FIXUPS];
 114	int fixup_prog2[MAX_FIXUPS];
 115	int fixup_map_in_map[MAX_FIXUPS];
 116	int fixup_cgroup_storage[MAX_FIXUPS];
 117	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
 118	int fixup_map_spin_lock[MAX_FIXUPS];
 119	int fixup_map_array_ro[MAX_FIXUPS];
 120	int fixup_map_array_wo[MAX_FIXUPS];
 121	int fixup_map_array_small[MAX_FIXUPS];
 122	int fixup_sk_storage_map[MAX_FIXUPS];
 123	int fixup_map_event_output[MAX_FIXUPS];
 124	int fixup_map_reuseport_array[MAX_FIXUPS];
 125	int fixup_map_ringbuf[MAX_FIXUPS];
 126	int fixup_map_timer[MAX_FIXUPS];
 127	int fixup_map_kptr[MAX_FIXUPS];
 128	struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
 129	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
 130	 * Can be a tab-separated sequence of expected strings. An empty string
 131	 * means no log verification.
 132	 */
 133	const char *errstr;
 134	const char *errstr_unpriv;
 135	uint32_t insn_processed;
 136	int prog_len;
 137	enum {
 138		UNDEF,
 139		ACCEPT,
 140		REJECT,
 141		VERBOSE_ACCEPT,
 142	} result, result_unpriv;
 143	enum bpf_prog_type prog_type;
 144	uint8_t flags;
 145	void (*fill_helper)(struct bpf_test *self);
 146	int runs;
 147#define bpf_testdata_struct_t					\
 148	struct {						\
 149		uint32_t retval, retval_unpriv;			\
 150		union {						\
 151			__u8 data[TEST_DATA_LEN];		\
 152			__u64 data64[TEST_DATA_LEN / 8];	\
 153		};						\
 154	}
 155	union {
 156		bpf_testdata_struct_t;
 157		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
 158	};
 159	enum bpf_attach_type expected_attach_type;
 160	const char *kfunc;
 161	struct bpf_func_info func_info[MAX_FUNC_INFOS];
 162	int func_info_cnt;
 163	char btf_strings[MAX_BTF_STRINGS];
 164	/* A set of BTF types to load when specified,
 165	 * use macro definitions from test_btf.h,
 166	 * must end with BTF_END_RAW
 167	 */
 168	__u32 btf_types[MAX_BTF_TYPES];
 169};
 170
 171/* Note we want this to be 64 bit aligned so that the end of our array is
 172 * actually the end of the structure.
 173 */
 174#define MAX_ENTRIES 11
 175
 176struct test_val {
 177	unsigned int index;
 178	int foo[MAX_ENTRIES];
 179};
 180
 181struct other_val {
 182	long long foo;
 183	long long bar;
 184};
 185
 186static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
 187{
 188	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
 189#define PUSH_CNT 51
 190	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
 191	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
 192	struct bpf_insn *insn = self->fill_insns;
 193	int i = 0, j, k = 0;
 194
 195	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
 196loop:
 197	for (j = 0; j < PUSH_CNT; j++) {
 198		insn[i++] = BPF_LD_ABS(BPF_B, 0);
 199		/* jump to error label */
 200		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
 201		i++;
 202		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
 203		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
 204		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
 205		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 206					 BPF_FUNC_skb_vlan_push);
 207		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
 208		i++;
 209	}
 210
 211	for (j = 0; j < PUSH_CNT; j++) {
 212		insn[i++] = BPF_LD_ABS(BPF_B, 0);
 213		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
 214		i++;
 215		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
 216		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 217					 BPF_FUNC_skb_vlan_pop);
 218		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
 219		i++;
 220	}
 221	if (++k < 5)
 222		goto loop;
 223
 224	for (; i < len - 3; i++)
 225		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
 226	insn[len - 3] = BPF_JMP_A(1);
 227	/* error label */
 228	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
 229	insn[len - 1] = BPF_EXIT_INSN();
 230	self->prog_len = len;
 231}
 232
 233static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
 234{
 235	struct bpf_insn *insn = self->fill_insns;
 236	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
 237	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
 238	 * to extend the error value of the inlined ld_abs sequence which then
 239	 * contains 7 insns. so, set the dividend to 7 so the testcase could
 240	 * work on all arches.
 241	 */
 242	unsigned int len = (1 << 15) / 7;
 243	int i = 0;
 244
 245	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
 246	insn[i++] = BPF_LD_ABS(BPF_B, 0);
 247	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
 248	i++;
 249	while (i < len - 1)
 250		insn[i++] = BPF_LD_ABS(BPF_B, 1);
 251	insn[i] = BPF_EXIT_INSN();
 252	self->prog_len = i + 1;
 253}
 254
 255static void bpf_fill_rand_ld_dw(struct bpf_test *self)
 256{
 257	struct bpf_insn *insn = self->fill_insns;
 258	uint64_t res = 0;
 259	int i = 0;
 260
 261	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
 262	while (i < self->retval) {
 263		uint64_t val = bpf_semi_rand_get();
 264		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
 265
 266		res ^= val;
 267		insn[i++] = tmp[0];
 268		insn[i++] = tmp[1];
 269		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
 270	}
 271	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
 272	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
 273	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
 274	insn[i] = BPF_EXIT_INSN();
 275	self->prog_len = i + 1;
 276	res ^= (res >> 32);
 277	self->retval = (uint32_t)res;
 278}
 279
 280#define MAX_JMP_SEQ 8192
 281
 282/* test the sequence of 8k jumps */
 283static void bpf_fill_scale1(struct bpf_test *self)
 284{
 285	struct bpf_insn *insn = self->fill_insns;
 286	int i = 0, k = 0;
 287
 288	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
 289	/* test to check that the long sequence of jumps is acceptable */
 290	while (k++ < MAX_JMP_SEQ) {
 291		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 292					 BPF_FUNC_get_prandom_u32);
 293		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
 294		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
 295		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
 296					-8 * (k % 64 + 1));
 297	}
 298	/* is_state_visited() doesn't allocate state for pruning for every jump.
 299	 * Hence multiply jmps by 4 to accommodate that heuristic
 300	 */
 301	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
 302		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
 303	insn[i] = BPF_EXIT_INSN();
 304	self->prog_len = i + 1;
 305	self->retval = 42;
 306}
 307
 308/* test the sequence of 8k jumps in inner most function (function depth 8)*/
 309static void bpf_fill_scale2(struct bpf_test *self)
 310{
 311	struct bpf_insn *insn = self->fill_insns;
 312	int i = 0, k = 0;
 313
 314#define FUNC_NEST 7
 315	for (k = 0; k < FUNC_NEST; k++) {
 316		insn[i++] = BPF_CALL_REL(1);
 317		insn[i++] = BPF_EXIT_INSN();
 318	}
 319	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
 320	/* test to check that the long sequence of jumps is acceptable */
 321	k = 0;
 322	while (k++ < MAX_JMP_SEQ) {
 323		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 324					 BPF_FUNC_get_prandom_u32);
 325		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
 326		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
 327		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
 328					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
 329	}
 330	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
 331		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
 332	insn[i] = BPF_EXIT_INSN();
 333	self->prog_len = i + 1;
 334	self->retval = 42;
 335}
 336
 337static void bpf_fill_scale(struct bpf_test *self)
 338{
 339	switch (self->retval) {
 340	case 1:
 341		return bpf_fill_scale1(self);
 342	case 2:
 343		return bpf_fill_scale2(self);
 344	default:
 345		self->prog_len = 0;
 346		break;
 347	}
 348}
 349
 350static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
 351{
 352	unsigned int len = 259, hlen = 128;
 353	int i;
 354
 355	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
 356	for (i = 1; i <= hlen; i++) {
 357		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
 358		insn[i + hlen] = BPF_JMP_A(hlen - i);
 359	}
 360	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
 361	insn[len - 1] = BPF_EXIT_INSN();
 362
 363	return len;
 364}
 365
 366static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
 367{
 368	unsigned int len = 4100, jmp_off = 2048;
 369	int i, j;
 370
 371	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
 372	for (i = 1; i <= jmp_off; i++) {
 373		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
 374	}
 375	insn[i++] = BPF_JMP_A(jmp_off);
 376	for (; i <= jmp_off * 2 + 1; i+=16) {
 377		for (j = 0; j < 16; j++) {
 378			insn[i + j] = BPF_JMP_A(16 - j - 1);
 379		}
 380	}
 381
 382	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
 383	insn[len - 1] = BPF_EXIT_INSN();
 384
 385	return len;
 386}
 387
 388static void bpf_fill_torturous_jumps(struct bpf_test *self)
 389{
 390	struct bpf_insn *insn = self->fill_insns;
 391	int i = 0;
 392
 393	switch (self->retval) {
 394	case 1:
 395		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
 396		return;
 397	case 2:
 398		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
 399		return;
 400	case 3:
 401		/* main */
 402		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
 403		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
 404		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
 405		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
 406		insn[i++] = BPF_EXIT_INSN();
 407
 408		/* subprog 1 */
 409		i += bpf_fill_torturous_jumps_insn_1(insn + i);
 410
 411		/* subprog 2 */
 412		i += bpf_fill_torturous_jumps_insn_2(insn + i);
 413
 414		self->prog_len = i;
 415		return;
 416	default:
 417		self->prog_len = 0;
 418		break;
 419	}
 420}
 421
 422static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
 423{
 424	struct bpf_insn *insn = self->fill_insns;
 425	/* This test was added to catch a specific use after free
 426	 * error, which happened upon BPF program reallocation.
 427	 * Reallocation is handled by core.c:bpf_prog_realloc, which
 428	 * reuses old memory if page boundary is not crossed. The
 429	 * value of `len` is chosen to cross this boundary on bpf_loop
 430	 * patching.
 431	 */
 432	const int len = getpagesize() - 25;
 433	int callback_load_idx;
 434	int callback_idx;
 435	int i = 0;
 436
 437	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
 438	callback_load_idx = i;
 439	insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
 440				 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
 441				 777 /* filled below */);
 442	insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
 443	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
 444	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
 445	insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
 446
 447	while (i < len - 3)
 448		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
 449	insn[i++] = BPF_EXIT_INSN();
 450
 451	callback_idx = i;
 452	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
 453	insn[i++] = BPF_EXIT_INSN();
 454
 455	insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
 456	self->func_info[1].insn_off = callback_idx;
 457	self->prog_len = i;
 458	assert(i == len);
 459}
 460
 461/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
 462#define BPF_SK_LOOKUP(func)						\
 463	/* struct bpf_sock_tuple tuple = {} */				\
 464	BPF_MOV64_IMM(BPF_REG_2, 0),					\
 465	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
 466	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
 467	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
 468	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
 469	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
 470	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
 471	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
 472	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
 473	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
 474	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
 475	BPF_MOV64_IMM(BPF_REG_4, 0),					\
 476	BPF_MOV64_IMM(BPF_REG_5, 0),					\
 477	BPF_EMIT_CALL(BPF_FUNC_ ## func)
 478
 479/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
 480 * value into 0 and does necessary preparation for direct packet access
 481 * through r2. The allowed access range is 8 bytes.
 482 */
 483#define BPF_DIRECT_PKT_R2						\
 484	BPF_MOV64_IMM(BPF_REG_0, 0),					\
 485	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
 486		    offsetof(struct __sk_buff, data)),			\
 487	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
 488		    offsetof(struct __sk_buff, data_end)),		\
 489	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
 490	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
 491	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
 492	BPF_EXIT_INSN()
 493
 494/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
 495 * positive u32, and zero-extend it into 64-bit.
 496 */
 497#define BPF_RAND_UEXT_R7						\
 498	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
 499		     BPF_FUNC_get_prandom_u32),				\
 500	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
 501	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
 502	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
 503
 504/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
 505 * negative u32, and sign-extend it into 64-bit.
 506 */
 507#define BPF_RAND_SEXT_R7						\
 508	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
 509		     BPF_FUNC_get_prandom_u32),				\
 510	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
 511	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
 512	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
 513	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
 514
 515static struct bpf_test tests[] = {
 516#define FILL_ARRAY
 517#include <verifier/tests.h>
 518#undef FILL_ARRAY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519};
 520
 521static int probe_filter_length(const struct bpf_insn *fp)
 522{
 523	int len;
 524
 525	for (len = MAX_INSNS - 1; len > 0; --len)
 526		if (fp[len].code != 0 || fp[len].imm != 0)
 527			break;
 528	return len + 1;
 529}
 530
 531static bool skip_unsupported_map(enum bpf_map_type map_type)
 532{
 533	if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
 534		printf("SKIP (unsupported map type %d)\n", map_type);
 535		skips++;
 536		return true;
 537	}
 538	return false;
 539}
 540
 541static int __create_map(uint32_t type, uint32_t size_key,
 542			uint32_t size_value, uint32_t max_elem,
 543			uint32_t extra_flags)
 544{
 545	LIBBPF_OPTS(bpf_map_create_opts, opts);
 546	int fd;
 547
 548	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
 549	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
 550	if (fd < 0) {
 551		if (skip_unsupported_map(type))
 552			return -1;
 553		printf("Failed to create hash map '%s'!\n", strerror(errno));
 554	}
 555
 556	return fd;
 557}
 558
 559static int create_map(uint32_t type, uint32_t size_key,
 560		      uint32_t size_value, uint32_t max_elem)
 561{
 562	return __create_map(type, size_key, size_value, max_elem, 0);
 563}
 564
 565static void update_map(int fd, int index)
 566{
 567	struct test_val value = {
 568		.index = (6 + 1) * sizeof(int),
 569		.foo[6] = 0xabcdef12,
 570	};
 571
 572	assert(!bpf_map_update_elem(fd, &index, &value, 0));
 573}
 574
 575static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
 576{
 577	struct bpf_insn prog[] = {
 578		BPF_MOV64_IMM(BPF_REG_0, ret),
 579		BPF_EXIT_INSN(),
 580	};
 581
 582	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
 583}
 584
 585static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
 586				  int idx, int ret)
 587{
 588	struct bpf_insn prog[] = {
 589		BPF_MOV64_IMM(BPF_REG_3, idx),
 590		BPF_LD_MAP_FD(BPF_REG_2, mfd),
 591		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 592			     BPF_FUNC_tail_call),
 593		BPF_MOV64_IMM(BPF_REG_0, ret),
 594		BPF_EXIT_INSN(),
 595	};
 596
 597	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
 598}
 599
 600static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
 601			     int p1key, int p2key, int p3key)
 602{
 603	int mfd, p1fd, p2fd, p3fd;
 604
 605	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
 606			     sizeof(int), max_elem, NULL);
 607	if (mfd < 0) {
 608		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
 609			return -1;
 610		printf("Failed to create prog array '%s'!\n", strerror(errno));
 611		return -1;
 612	}
 613
 614	p1fd = create_prog_dummy_simple(prog_type, 42);
 615	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
 616	p3fd = create_prog_dummy_simple(prog_type, 24);
 617	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
 618		goto err;
 619	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
 620		goto err;
 621	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
 622		goto err;
 623	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
 624err:
 625		close(mfd);
 626		mfd = -1;
 627	}
 628	close(p3fd);
 629	close(p2fd);
 630	close(p1fd);
 631	return mfd;
 632}
 633
 634static int create_map_in_map(void)
 635{
 636	LIBBPF_OPTS(bpf_map_create_opts, opts);
 637	int inner_map_fd, outer_map_fd;
 638
 639	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
 640				      sizeof(int), 1, NULL);
 641	if (inner_map_fd < 0) {
 642		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
 643			return -1;
 644		printf("Failed to create array '%s'!\n", strerror(errno));
 645		return inner_map_fd;
 646	}
 647
 648	opts.inner_map_fd = inner_map_fd;
 649	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
 650				      sizeof(int), sizeof(int), 1, &opts);
 651	if (outer_map_fd < 0) {
 652		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
 653			return -1;
 654		printf("Failed to create array of maps '%s'!\n",
 655		       strerror(errno));
 656	}
 657
 658	close(inner_map_fd);
 659
 660	return outer_map_fd;
 661}
 662
 663static int create_cgroup_storage(bool percpu)
 664{
 665	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
 666		BPF_MAP_TYPE_CGROUP_STORAGE;
 667	int fd;
 668
 669	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
 670			    TEST_DATA_LEN, 0, NULL);
 671	if (fd < 0) {
 672		if (skip_unsupported_map(type))
 673			return -1;
 674		printf("Failed to create cgroup storage '%s'!\n",
 675		       strerror(errno));
 676	}
 677
 678	return fd;
 679}
 680
 681/* struct bpf_spin_lock {
 682 *   int val;
 683 * };
 684 * struct val {
 685 *   int cnt;
 686 *   struct bpf_spin_lock l;
 687 * };
 688 * struct bpf_timer {
 689 *   __u64 :64;
 690 *   __u64 :64;
 691 * } __attribute__((aligned(8)));
 692 * struct timer {
 693 *   struct bpf_timer t;
 694 * };
 695 * struct btf_ptr {
 696 *   struct prog_test_ref_kfunc __kptr_untrusted *ptr;
 697 *   struct prog_test_ref_kfunc __kptr *ptr;
 698 *   struct prog_test_member __kptr *ptr;
 699 * }
 700 */
 701static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
 702				  "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
 703				  "\0prog_test_member";
 704static __u32 btf_raw_types[] = {
 705	/* int */
 706	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
 707	/* struct bpf_spin_lock */                      /* [2] */
 708	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
 709	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
 710	/* struct val */                                /* [3] */
 711	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
 712	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
 713	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
 714	/* struct bpf_timer */                          /* [4] */
 715	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
 716	/* struct timer */                              /* [5] */
 717	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
 718	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
 719	/* struct prog_test_ref_kfunc */		/* [6] */
 720	BTF_STRUCT_ENC(51, 0, 0),
 721	BTF_STRUCT_ENC(95, 0, 0),			/* [7] */
 722	/* type tag "kptr_untrusted" */
 723	BTF_TYPE_TAG_ENC(80, 6),			/* [8] */
 724	/* type tag "kptr" */
 725	BTF_TYPE_TAG_ENC(75, 6),			/* [9] */
 726	BTF_TYPE_TAG_ENC(75, 7),			/* [10] */
 727	BTF_PTR_ENC(8),					/* [11] */
 728	BTF_PTR_ENC(9),					/* [12] */
 729	BTF_PTR_ENC(10),				/* [13] */
 730	/* struct btf_ptr */				/* [14] */
 731	BTF_STRUCT_ENC(43, 3, 24),
 732	BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
 733	BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
 734	BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
 735};
 736
 737static char bpf_vlog[UINT_MAX >> 8];
 738
 739static int load_btf_spec(__u32 *types, int types_len,
 740			 const char *strings, int strings_len)
 741{
 742	struct btf_header hdr = {
 743		.magic = BTF_MAGIC,
 744		.version = BTF_VERSION,
 745		.hdr_len = sizeof(struct btf_header),
 746		.type_len = types_len,
 747		.str_off = types_len,
 748		.str_len = strings_len,
 749	};
 750	void *ptr, *raw_btf;
 751	int btf_fd;
 752	LIBBPF_OPTS(bpf_btf_load_opts, opts,
 753		    .log_buf = bpf_vlog,
 754		    .log_size = sizeof(bpf_vlog),
 755		    .log_level = (verbose
 756				  ? verif_log_level
 757				  : DEFAULT_LIBBPF_LOG_LEVEL),
 758	);
 759
 760	raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
 761
 762	ptr = raw_btf;
 763	memcpy(ptr, &hdr, sizeof(hdr));
 764	ptr += sizeof(hdr);
 765	memcpy(ptr, types, hdr.type_len);
 766	ptr += hdr.type_len;
 767	memcpy(ptr, strings, hdr.str_len);
 768	ptr += hdr.str_len;
 769
 770	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
 771	if (btf_fd < 0)
 772		printf("Failed to load BTF spec: '%s'\n", strerror(errno));
 773
 774	free(raw_btf);
 775
 776	return btf_fd < 0 ? -1 : btf_fd;
 777}
 778
 779static int load_btf(void)
 780{
 781	return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
 782			     btf_str_sec, sizeof(btf_str_sec));
 783}
 784
 785static int load_btf_for_test(struct bpf_test *test)
 786{
 787	int types_num = 0;
 788
 789	while (types_num < MAX_BTF_TYPES &&
 790	       test->btf_types[types_num] != BTF_END_RAW)
 791		++types_num;
 792
 793	int types_len = types_num * sizeof(test->btf_types[0]);
 794
 795	return load_btf_spec(test->btf_types, types_len,
 796			     test->btf_strings, sizeof(test->btf_strings));
 797}
 798
 799static int create_map_spin_lock(void)
 800{
 801	LIBBPF_OPTS(bpf_map_create_opts, opts,
 802		.btf_key_type_id = 1,
 803		.btf_value_type_id = 3,
 804	);
 805	int fd, btf_fd;
 806
 807	btf_fd = load_btf();
 808	if (btf_fd < 0)
 809		return -1;
 810	opts.btf_fd = btf_fd;
 811	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
 812	if (fd < 0)
 813		printf("Failed to create map with spin_lock\n");
 814	return fd;
 815}
 816
 817static int create_sk_storage_map(void)
 818{
 819	LIBBPF_OPTS(bpf_map_create_opts, opts,
 820		.map_flags = BPF_F_NO_PREALLOC,
 821		.btf_key_type_id = 1,
 822		.btf_value_type_id = 3,
 823	);
 824	int fd, btf_fd;
 825
 826	btf_fd = load_btf();
 827	if (btf_fd < 0)
 828		return -1;
 829	opts.btf_fd = btf_fd;
 830	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
 831	close(opts.btf_fd);
 832	if (fd < 0)
 833		printf("Failed to create sk_storage_map\n");
 834	return fd;
 835}
 836
 837static int create_map_timer(void)
 838{
 839	LIBBPF_OPTS(bpf_map_create_opts, opts,
 840		.btf_key_type_id = 1,
 841		.btf_value_type_id = 5,
 842	);
 843	int fd, btf_fd;
 844
 845	btf_fd = load_btf();
 846	if (btf_fd < 0)
 847		return -1;
 848
 849	opts.btf_fd = btf_fd;
 850	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
 851	if (fd < 0)
 852		printf("Failed to create map with timer\n");
 853	return fd;
 854}
 855
 856static int create_map_kptr(void)
 857{
 858	LIBBPF_OPTS(bpf_map_create_opts, opts,
 859		.btf_key_type_id = 1,
 860		.btf_value_type_id = 14,
 861	);
 862	int fd, btf_fd;
 863
 864	btf_fd = load_btf();
 865	if (btf_fd < 0)
 866		return -1;
 867
 868	opts.btf_fd = btf_fd;
 869	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
 870	if (fd < 0)
 871		printf("Failed to create map with btf_id pointer\n");
 872	return fd;
 873}
 874
 875static void set_root(bool set)
 876{
 877	__u64 caps;
 878
 879	if (set) {
 880		if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps))
 881			perror("cap_disable_effective(CAP_SYS_ADMIN)");
 882	} else {
 883		if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps))
 884			perror("cap_disable_effective(CAP_SYS_ADMIN)");
 885	}
 886}
 887
 888static __u64 ptr_to_u64(const void *ptr)
 889{
 890	return (uintptr_t) ptr;
 891}
 892
 893static struct btf *btf__load_testmod_btf(struct btf *vmlinux)
 894{
 895	struct bpf_btf_info info;
 896	__u32 len = sizeof(info);
 897	struct btf *btf = NULL;
 898	char name[64];
 899	__u32 id = 0;
 900	int err, fd;
 901
 902	/* Iterate all loaded BTF objects and find bpf_testmod,
 903	 * we need SYS_ADMIN cap for that.
 904	 */
 905	set_root(true);
 906
 907	while (true) {
 908		err = bpf_btf_get_next_id(id, &id);
 909		if (err) {
 910			if (errno == ENOENT)
 911				break;
 912			perror("bpf_btf_get_next_id failed");
 913			break;
 914		}
 915
 916		fd = bpf_btf_get_fd_by_id(id);
 917		if (fd < 0) {
 918			if (errno == ENOENT)
 919				continue;
 920			perror("bpf_btf_get_fd_by_id failed");
 921			break;
 922		}
 923
 924		memset(&info, 0, sizeof(info));
 925		info.name_len = sizeof(name);
 926		info.name = ptr_to_u64(name);
 927		len = sizeof(info);
 928
 929		err = bpf_obj_get_info_by_fd(fd, &info, &len);
 930		if (err) {
 931			close(fd);
 932			perror("bpf_obj_get_info_by_fd failed");
 933			break;
 934		}
 935
 936		if (strcmp("bpf_testmod", name)) {
 937			close(fd);
 938			continue;
 939		}
 940
 941		btf = btf__load_from_kernel_by_id_split(id, vmlinux);
 942		if (!btf) {
 943			close(fd);
 944			break;
 945		}
 946
 947		/* We need the fd to stay open so it can be used in fd_array.
 948		 * The final cleanup call to btf__free will free btf object
 949		 * and close the file descriptor.
 950		 */
 951		btf__set_fd(btf, fd);
 952		break;
 953	}
 954
 955	set_root(false);
 956	return btf;
 957}
 958
 959static struct btf *testmod_btf;
 960static struct btf *vmlinux_btf;
 961
 962static void kfuncs_cleanup(void)
 963{
 964	btf__free(testmod_btf);
 965	btf__free(vmlinux_btf);
 966}
 967
 968static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array,
 969			      struct kfunc_btf_id_pair *fixup_kfunc_btf_id)
 970{
 971	/* Patch in kfunc BTF IDs */
 972	while (fixup_kfunc_btf_id->kfunc) {
 973		int btf_id = 0;
 974
 975		/* try to find kfunc in kernel BTF */
 976		vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf();
 977		if (vmlinux_btf) {
 978			btf_id = btf__find_by_name_kind(vmlinux_btf,
 979							fixup_kfunc_btf_id->kfunc,
 980							BTF_KIND_FUNC);
 981			btf_id = btf_id < 0 ? 0 : btf_id;
 982		}
 983
 984		/* kfunc not found in kernel BTF, try bpf_testmod BTF */
 985		if (!btf_id) {
 986			testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf);
 987			if (testmod_btf) {
 988				btf_id = btf__find_by_name_kind(testmod_btf,
 989								fixup_kfunc_btf_id->kfunc,
 990								BTF_KIND_FUNC);
 991				btf_id = btf_id < 0 ? 0 : btf_id;
 992				if (btf_id) {
 993					/* We put bpf_testmod module fd into fd_array
 994					 * and its index 1 into instruction 'off'.
 995					 */
 996					*fd_array = btf__fd(testmod_btf);
 997					prog[fixup_kfunc_btf_id->insn_idx].off = 1;
 998				}
 999			}
1000		}
1001
1002		prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1003		fixup_kfunc_btf_id++;
1004	}
1005}
1006
1007static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
1008			  struct bpf_insn *prog, int *map_fds, int *fd_array)
1009{
1010	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
1011	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
1012	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
1013	int *fixup_map_array_48b = test->fixup_map_array_48b;
1014	int *fixup_map_sockmap = test->fixup_map_sockmap;
1015	int *fixup_map_sockhash = test->fixup_map_sockhash;
1016	int *fixup_map_xskmap = test->fixup_map_xskmap;
1017	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
1018	int *fixup_prog1 = test->fixup_prog1;
1019	int *fixup_prog2 = test->fixup_prog2;
1020	int *fixup_map_in_map = test->fixup_map_in_map;
1021	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
1022	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
1023	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
1024	int *fixup_map_array_ro = test->fixup_map_array_ro;
1025	int *fixup_map_array_wo = test->fixup_map_array_wo;
1026	int *fixup_map_array_small = test->fixup_map_array_small;
1027	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
1028	int *fixup_map_event_output = test->fixup_map_event_output;
1029	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
1030	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
1031	int *fixup_map_timer = test->fixup_map_timer;
1032	int *fixup_map_kptr = test->fixup_map_kptr;
1033
1034	if (test->fill_helper) {
1035		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
1036		test->fill_helper(test);
1037	}
1038
1039	/* Allocating HTs with 1 elem is fine here, since we only test
1040	 * for verifier and not do a runtime lookup, so the only thing
1041	 * that really matters is value size in this case.
1042	 */
1043	if (*fixup_map_hash_8b) {
1044		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1045					sizeof(long long), 1);
1046		do {
1047			prog[*fixup_map_hash_8b].imm = map_fds[0];
1048			fixup_map_hash_8b++;
1049		} while (*fixup_map_hash_8b);
1050	}
1051
1052	if (*fixup_map_hash_48b) {
1053		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1054					sizeof(struct test_val), 1);
1055		do {
1056			prog[*fixup_map_hash_48b].imm = map_fds[1];
1057			fixup_map_hash_48b++;
1058		} while (*fixup_map_hash_48b);
1059	}
1060
1061	if (*fixup_map_hash_16b) {
1062		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1063					sizeof(struct other_val), 1);
1064		do {
1065			prog[*fixup_map_hash_16b].imm = map_fds[2];
1066			fixup_map_hash_16b++;
1067		} while (*fixup_map_hash_16b);
1068	}
1069
1070	if (*fixup_map_array_48b) {
1071		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1072					sizeof(struct test_val), 1);
1073		update_map(map_fds[3], 0);
1074		do {
1075			prog[*fixup_map_array_48b].imm = map_fds[3];
1076			fixup_map_array_48b++;
1077		} while (*fixup_map_array_48b);
1078	}
1079
1080	if (*fixup_prog1) {
1081		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
1082		do {
1083			prog[*fixup_prog1].imm = map_fds[4];
1084			fixup_prog1++;
1085		} while (*fixup_prog1);
1086	}
1087
1088	if (*fixup_prog2) {
1089		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
1090		do {
1091			prog[*fixup_prog2].imm = map_fds[5];
1092			fixup_prog2++;
1093		} while (*fixup_prog2);
1094	}
1095
1096	if (*fixup_map_in_map) {
1097		map_fds[6] = create_map_in_map();
1098		do {
1099			prog[*fixup_map_in_map].imm = map_fds[6];
1100			fixup_map_in_map++;
1101		} while (*fixup_map_in_map);
1102	}
1103
1104	if (*fixup_cgroup_storage) {
1105		map_fds[7] = create_cgroup_storage(false);
1106		do {
1107			prog[*fixup_cgroup_storage].imm = map_fds[7];
1108			fixup_cgroup_storage++;
1109		} while (*fixup_cgroup_storage);
1110	}
1111
1112	if (*fixup_percpu_cgroup_storage) {
1113		map_fds[8] = create_cgroup_storage(true);
1114		do {
1115			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
1116			fixup_percpu_cgroup_storage++;
1117		} while (*fixup_percpu_cgroup_storage);
1118	}
1119	if (*fixup_map_sockmap) {
1120		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
1121					sizeof(int), 1);
1122		do {
1123			prog[*fixup_map_sockmap].imm = map_fds[9];
1124			fixup_map_sockmap++;
1125		} while (*fixup_map_sockmap);
1126	}
1127	if (*fixup_map_sockhash) {
1128		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
1129					sizeof(int), 1);
1130		do {
1131			prog[*fixup_map_sockhash].imm = map_fds[10];
1132			fixup_map_sockhash++;
1133		} while (*fixup_map_sockhash);
1134	}
1135	if (*fixup_map_xskmap) {
1136		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
1137					sizeof(int), 1);
1138		do {
1139			prog[*fixup_map_xskmap].imm = map_fds[11];
1140			fixup_map_xskmap++;
1141		} while (*fixup_map_xskmap);
1142	}
1143	if (*fixup_map_stacktrace) {
1144		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
1145					 sizeof(u64), 1);
1146		do {
1147			prog[*fixup_map_stacktrace].imm = map_fds[12];
1148			fixup_map_stacktrace++;
1149		} while (*fixup_map_stacktrace);
1150	}
1151	if (*fixup_map_spin_lock) {
1152		map_fds[13] = create_map_spin_lock();
1153		do {
1154			prog[*fixup_map_spin_lock].imm = map_fds[13];
1155			fixup_map_spin_lock++;
1156		} while (*fixup_map_spin_lock);
1157	}
1158	if (*fixup_map_array_ro) {
1159		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1160					   sizeof(struct test_val), 1,
1161					   BPF_F_RDONLY_PROG);
1162		update_map(map_fds[14], 0);
1163		do {
1164			prog[*fixup_map_array_ro].imm = map_fds[14];
1165			fixup_map_array_ro++;
1166		} while (*fixup_map_array_ro);
1167	}
1168	if (*fixup_map_array_wo) {
1169		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1170					   sizeof(struct test_val), 1,
1171					   BPF_F_WRONLY_PROG);
1172		update_map(map_fds[15], 0);
1173		do {
1174			prog[*fixup_map_array_wo].imm = map_fds[15];
1175			fixup_map_array_wo++;
1176		} while (*fixup_map_array_wo);
1177	}
1178	if (*fixup_map_array_small) {
1179		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1180					   1, 1, 0);
1181		update_map(map_fds[16], 0);
1182		do {
1183			prog[*fixup_map_array_small].imm = map_fds[16];
1184			fixup_map_array_small++;
1185		} while (*fixup_map_array_small);
1186	}
1187	if (*fixup_sk_storage_map) {
1188		map_fds[17] = create_sk_storage_map();
1189		do {
1190			prog[*fixup_sk_storage_map].imm = map_fds[17];
1191			fixup_sk_storage_map++;
1192		} while (*fixup_sk_storage_map);
1193	}
1194	if (*fixup_map_event_output) {
1195		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1196					   sizeof(int), sizeof(int), 1, 0);
1197		do {
1198			prog[*fixup_map_event_output].imm = map_fds[18];
1199			fixup_map_event_output++;
1200		} while (*fixup_map_event_output);
1201	}
1202	if (*fixup_map_reuseport_array) {
1203		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1204					   sizeof(u32), sizeof(u64), 1, 0);
1205		do {
1206			prog[*fixup_map_reuseport_array].imm = map_fds[19];
1207			fixup_map_reuseport_array++;
1208		} while (*fixup_map_reuseport_array);
1209	}
1210	if (*fixup_map_ringbuf) {
1211		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1212					 0, getpagesize());
1213		do {
1214			prog[*fixup_map_ringbuf].imm = map_fds[20];
1215			fixup_map_ringbuf++;
1216		} while (*fixup_map_ringbuf);
1217	}
1218	if (*fixup_map_timer) {
1219		map_fds[21] = create_map_timer();
1220		do {
1221			prog[*fixup_map_timer].imm = map_fds[21];
1222			fixup_map_timer++;
1223		} while (*fixup_map_timer);
1224	}
1225	if (*fixup_map_kptr) {
1226		map_fds[22] = create_map_kptr();
1227		do {
1228			prog[*fixup_map_kptr].imm = map_fds[22];
1229			fixup_map_kptr++;
1230		} while (*fixup_map_kptr);
1231	}
1232
1233	fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id);
1234}
1235
1236static int set_admin(bool admin)
1237{
1238	int err;
1239
1240	if (admin) {
1241		err = cap_enable_effective(ADMIN_CAPS, NULL);
1242		if (err)
1243			perror("cap_enable_effective(ADMIN_CAPS)");
1244	} else {
1245		err = cap_disable_effective(ADMIN_CAPS, NULL);
1246		if (err)
1247			perror("cap_disable_effective(ADMIN_CAPS)");
1248	}
1249
1250	return err;
1251}
1252
1253static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1254			    void *data, size_t size_data)
1255{
1256	__u8 tmp[TEST_DATA_LEN << 2];
1257	__u32 size_tmp = sizeof(tmp);
1258	int err, saved_errno;
1259	LIBBPF_OPTS(bpf_test_run_opts, topts,
1260		.data_in = data,
1261		.data_size_in = size_data,
1262		.data_out = tmp,
1263		.data_size_out = size_tmp,
1264		.repeat = 1,
1265	);
1266
1267	if (unpriv)
1268		set_admin(true);
1269	err = bpf_prog_test_run_opts(fd_prog, &topts);
1270	saved_errno = errno;
1271
1272	if (unpriv)
1273		set_admin(false);
1274
1275	if (err) {
1276		switch (saved_errno) {
1277		case ENOTSUPP:
1278			printf("Did not run the program (not supported) ");
1279			return 0;
1280		case EPERM:
1281			if (unpriv) {
1282				printf("Did not run the program (no permission) ");
1283				return 0;
1284			}
1285			/* fallthrough; */
1286		default:
1287			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1288				strerror(saved_errno));
1289			return err;
1290		}
1291	}
1292
1293	if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1294		printf("FAIL retval %d != %d ", topts.retval, expected_val);
1295		return 1;
1296	}
1297
1298	return 0;
1299}
1300
1301/* Returns true if every part of exp (tab-separated) appears in log, in order.
1302 *
1303 * If exp is an empty string, returns true.
1304 */
1305static bool cmp_str_seq(const char *log, const char *exp)
1306{
1307	char needle[200];
1308	const char *p, *q;
1309	int len;
1310
1311	do {
1312		if (!strlen(exp))
1313			break;
1314		p = strchr(exp, '\t');
1315		if (!p)
1316			p = exp + strlen(exp);
1317
1318		len = p - exp;
1319		if (len >= sizeof(needle) || !len) {
1320			printf("FAIL\nTestcase bug\n");
1321			return false;
1322		}
1323		strncpy(needle, exp, len);
1324		needle[len] = 0;
1325		q = strstr(log, needle);
1326		if (!q) {
1327			printf("FAIL\nUnexpected verifier log!\n"
1328			       "EXP: %s\nRES:\n", needle);
1329			return false;
1330		}
1331		log = q + len;
1332		exp = p + 1;
1333	} while (*p);
1334	return true;
1335}
1336
1337static bool is_null_insn(struct bpf_insn *insn)
1338{
1339	struct bpf_insn null_insn = {};
1340
1341	return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1342}
1343
1344static bool is_skip_insn(struct bpf_insn *insn)
1345{
1346	struct bpf_insn skip_insn = SKIP_INSNS();
1347
1348	return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1349}
1350
1351static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1352{
1353	int i;
1354
1355	for (i = 0; i < max_len; ++i) {
1356		if (is_null_insn(&seq[i]))
1357			return i;
1358	}
1359	return max_len;
1360}
1361
1362static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1363{
1364	struct bpf_insn orig_masked;
1365
1366	memcpy(&orig_masked, orig, sizeof(orig_masked));
1367	if (masked->imm == INSN_IMM_MASK)
1368		orig_masked.imm = INSN_IMM_MASK;
1369	if (masked->off == INSN_OFF_MASK)
1370		orig_masked.off = INSN_OFF_MASK;
1371
1372	return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1373}
1374
1375static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1376			    int seq_len, int subseq_len)
1377{
1378	int i, j;
1379
1380	if (subseq_len > seq_len)
1381		return -1;
1382
1383	for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1384		bool found = true;
1385
1386		for (j = 0; j < subseq_len; ++j) {
1387			if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1388				found = false;
1389				break;
1390			}
1391		}
1392		if (found)
1393			return i;
1394	}
1395
1396	return -1;
1397}
1398
1399static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1400{
1401	int i;
1402
1403	for (i = 0; i < len; ++i)
1404		if (is_skip_insn(&seq[i]))
1405			return i;
1406
1407	return -1;
1408}
1409
1410/* Return true if all sub-sequences in `subseqs` could be found in
1411 * `seq` one after another. Sub-sequences are separated by a single
1412 * nil instruction.
1413 */
1414static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1415				  int seq_len, int max_subseqs_len)
1416{
1417	int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1418
1419	while (subseqs_len > 0) {
1420		int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1421		int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1422		int subseq_idx = find_insn_subseq(seq, subseqs,
1423						  seq_len, cur_subseq_len);
1424
1425		if (subseq_idx < 0)
1426			return false;
1427		seq += subseq_idx + cur_subseq_len;
1428		seq_len -= subseq_idx + cur_subseq_len;
1429		subseqs += cur_subseq_len + 1;
1430		subseqs_len -= cur_subseq_len + 1;
1431	}
1432
1433	return true;
1434}
1435
1436static void print_insn(struct bpf_insn *buf, int cnt)
1437{
1438	int i;
1439
1440	printf("  addr  op d s off  imm\n");
1441	for (i = 0; i < cnt; ++i) {
1442		struct bpf_insn *insn = &buf[i];
1443
1444		if (is_null_insn(insn))
1445			break;
1446
1447		if (is_skip_insn(insn))
1448			printf("  ...\n");
1449		else
1450			printf("  %04x: %02x %1x %x %04hx %08x\n",
1451			       i, insn->code, insn->dst_reg,
1452			       insn->src_reg, insn->off, insn->imm);
1453	}
1454}
1455
1456static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1457{
1458	struct bpf_insn *buf;
1459	unsigned int cnt;
1460	bool result = true;
1461	bool check_expected = !is_null_insn(test->expected_insns);
1462	bool check_unexpected = !is_null_insn(test->unexpected_insns);
1463
1464	if (!check_expected && !check_unexpected)
1465		goto out;
1466
1467	if (get_xlated_program(fd_prog, &buf, &cnt)) {
1468		printf("FAIL: can't get xlated program\n");
1469		result = false;
1470		goto out;
1471	}
1472
1473	if (check_expected &&
1474	    !find_all_insn_subseqs(buf, test->expected_insns,
1475				   cnt, MAX_EXPECTED_INSNS)) {
1476		printf("FAIL: can't find expected subsequence of instructions\n");
1477		result = false;
1478		if (verbose) {
1479			printf("Program:\n");
1480			print_insn(buf, cnt);
1481			printf("Expected subsequence:\n");
1482			print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1483		}
1484	}
1485
1486	if (check_unexpected &&
1487	    find_all_insn_subseqs(buf, test->unexpected_insns,
1488				  cnt, MAX_UNEXPECTED_INSNS)) {
1489		printf("FAIL: found unexpected subsequence of instructions\n");
1490		result = false;
1491		if (verbose) {
1492			printf("Program:\n");
1493			print_insn(buf, cnt);
1494			printf("Un-expected subsequence:\n");
1495			print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1496		}
1497	}
1498
1499	free(buf);
1500 out:
1501	return result;
1502}
1503
1504static void do_test_single(struct bpf_test *test, bool unpriv,
1505			   int *passes, int *errors)
1506{
1507	int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1508	int prog_len, prog_type = test->prog_type;
1509	struct bpf_insn *prog = test->insns;
1510	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1511	int run_errs, run_successes;
1512	int map_fds[MAX_NR_MAPS];
 
1513	const char *expected_err;
1514	int fd_array[2] = { -1, -1 };
1515	int saved_errno;
1516	int fixup_skips;
1517	__u32 pflags;
1518	int i, err;
1519
1520	if ((test->flags & F_NEEDS_JIT_ENABLED) && jit_disabled) {
1521		printf("SKIP (requires BPF JIT)\n");
1522		skips++;
1523		sched_yield();
1524		return;
1525	}
1526
1527	fd_prog = -1;
1528	for (i = 0; i < MAX_NR_MAPS; i++)
1529		map_fds[i] = -1;
1530	btf_fd = -1;
1531
1532	if (!prog_type)
1533		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1534	fixup_skips = skips;
1535	do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]);
1536	if (test->fill_insns) {
1537		prog = test->fill_insns;
1538		prog_len = test->prog_len;
1539	} else {
1540		prog_len = probe_filter_length(prog);
1541	}
1542	/* If there were some map skips during fixup due to missing bpf
1543	 * features, skip this test.
1544	 */
1545	if (fixup_skips != skips)
1546		return;
1547
1548	pflags = testing_prog_flags();
1549	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1550		pflags |= BPF_F_STRICT_ALIGNMENT;
1551	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1552		pflags |= BPF_F_ANY_ALIGNMENT;
1553	if (test->flags & ~3)
1554		pflags |= test->flags;
1555
1556	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1557		       test->result_unpriv : test->result;
1558	expected_err = unpriv && test->errstr_unpriv ?
1559		       test->errstr_unpriv : test->errstr;
1560
1561	opts.expected_attach_type = test->expected_attach_type;
1562	if (verbose)
1563		opts.log_level = verif_log_level | 4; /* force stats */
1564	else if (expected_ret == VERBOSE_ACCEPT)
1565		opts.log_level = 2;
1566	else
1567		opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1568	opts.prog_flags = pflags;
1569	if (fd_array[1] != -1)
1570		opts.fd_array = &fd_array[0];
1571
1572	if ((prog_type == BPF_PROG_TYPE_TRACING ||
1573	     prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1574		int attach_btf_id;
1575
1576		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1577						opts.expected_attach_type);
1578		if (attach_btf_id < 0) {
1579			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1580				test->kfunc);
1581			(*errors)++;
1582			return;
1583		}
1584
1585		opts.attach_btf_id = attach_btf_id;
1586	}
1587
1588	if (test->btf_types[0] != 0) {
1589		btf_fd = load_btf_for_test(test);
1590		if (btf_fd < 0)
1591			goto fail_log;
1592		opts.prog_btf_fd = btf_fd;
1593	}
1594
1595	if (test->func_info_cnt != 0) {
1596		opts.func_info = test->func_info;
1597		opts.func_info_cnt = test->func_info_cnt;
1598		opts.func_info_rec_size = sizeof(test->func_info[0]);
1599	}
1600
1601	opts.log_buf = bpf_vlog;
1602	opts.log_size = sizeof(bpf_vlog);
1603	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1604	saved_errno = errno;
1605
1606	/* BPF_PROG_TYPE_TRACING requires more setup and
1607	 * bpf_probe_prog_type won't give correct answer
1608	 */
1609	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1610	    !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1611		printf("SKIP (unsupported program type %d)\n", prog_type);
1612		skips++;
1613		goto close_fds;
1614	}
1615
1616	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1617		printf("SKIP (program uses an unsupported feature)\n");
1618		skips++;
1619		goto close_fds;
1620	}
1621
1622	alignment_prevented_execution = 0;
1623
1624	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1625		if (fd_prog < 0) {
1626			printf("FAIL\nFailed to load prog '%s'!\n",
1627			       strerror(saved_errno));
1628			goto fail_log;
1629		}
1630#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1631		if (fd_prog >= 0 &&
1632		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1633			alignment_prevented_execution = 1;
1634#endif
1635		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1636			goto fail_log;
1637		}
1638	} else {
1639		if (fd_prog >= 0) {
1640			printf("FAIL\nUnexpected success to load!\n");
1641			goto fail_log;
1642		}
1643		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1644			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1645			      expected_err, bpf_vlog);
1646			goto fail_log;
1647		}
1648	}
1649
1650	if (!unpriv && test->insn_processed) {
1651		uint32_t insn_processed;
1652		char *proc;
1653
1654		proc = strstr(bpf_vlog, "processed ");
1655		insn_processed = atoi(proc + 10);
1656		if (test->insn_processed != insn_processed) {
1657			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1658			       insn_processed, test->insn_processed);
1659			goto fail_log;
1660		}
1661	}
1662
1663	if (verbose)
1664		printf(", verifier log:\n%s", bpf_vlog);
1665
1666	if (!check_xlated_program(test, fd_prog))
1667		goto fail_log;
1668
1669	run_errs = 0;
1670	run_successes = 0;
1671	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1672		uint32_t expected_val;
1673		int i;
1674
1675		if (!test->runs)
1676			test->runs = 1;
1677
1678		for (i = 0; i < test->runs; i++) {
1679			if (unpriv && test->retvals[i].retval_unpriv)
1680				expected_val = test->retvals[i].retval_unpriv;
1681			else
1682				expected_val = test->retvals[i].retval;
1683
1684			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1685					       test->retvals[i].data,
1686					       sizeof(test->retvals[i].data));
1687			if (err) {
1688				printf("(run %d/%d) ", i + 1, test->runs);
1689				run_errs++;
1690			} else {
1691				run_successes++;
1692			}
1693		}
1694	}
1695
1696	if (!run_errs) {
1697		(*passes)++;
1698		if (run_successes > 1)
1699			printf("%d cases ", run_successes);
1700		printf("OK");
1701		if (alignment_prevented_execution)
1702			printf(" (NOTE: not executed due to unknown alignment)");
1703		printf("\n");
1704	} else {
1705		printf("\n");
1706		goto fail_log;
1707	}
1708close_fds:
1709	if (test->fill_insns)
1710		free(test->fill_insns);
1711	close(fd_prog);
1712	close(btf_fd);
1713	for (i = 0; i < MAX_NR_MAPS; i++)
1714		close(map_fds[i]);
1715	sched_yield();
1716	return;
1717fail_log:
1718	(*errors)++;
1719	printf("%s", bpf_vlog);
1720	goto close_fds;
1721}
1722
1723static bool is_admin(void)
1724{
1725	__u64 caps;
1726
1727	/* The test checks for finer cap as CAP_NET_ADMIN,
1728	 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1729	 * Thus, disable CAP_SYS_ADMIN at the beginning.
1730	 */
1731	if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1732		perror("cap_disable_effective(CAP_SYS_ADMIN)");
1733		return false;
1734	}
1735
1736	return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1737}
1738
1739static bool test_as_unpriv(struct bpf_test *test)
1740{
1741#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1742	/* Some architectures have strict alignment requirements. In
1743	 * that case, the BPF verifier detects if a program has
1744	 * unaligned accesses and rejects them. A user can pass
1745	 * BPF_F_ANY_ALIGNMENT to a program to override this
1746	 * check. That, however, will only work when a privileged user
1747	 * loads a program. An unprivileged user loading a program
1748	 * with this flag will be rejected prior entering the
1749	 * verifier.
1750	 */
1751	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1752		return false;
1753#endif
1754	return !test->prog_type ||
1755	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1756	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1757}
1758
1759static int do_test(bool unpriv, unsigned int from, unsigned int to)
1760{
1761	int i, passes = 0, errors = 0;
1762
1763	/* ensure previous instance of the module is unloaded */
1764	unload_bpf_testmod(verbose);
1765
1766	if (load_bpf_testmod(verbose))
1767		return EXIT_FAILURE;
1768
1769	for (i = from; i < to; i++) {
1770		struct bpf_test *test = &tests[i];
1771
1772		/* Program types that are not supported by non-root we
1773		 * skip right away.
1774		 */
1775		if (test_as_unpriv(test) && unpriv_disabled) {
1776			printf("#%d/u %s SKIP\n", i, test->descr);
1777			skips++;
1778		} else if (test_as_unpriv(test)) {
1779			if (!unpriv)
1780				set_admin(false);
1781			printf("#%d/u %s ", i, test->descr);
1782			do_test_single(test, true, &passes, &errors);
1783			if (!unpriv)
1784				set_admin(true);
1785		}
1786
1787		if (unpriv) {
1788			printf("#%d/p %s SKIP\n", i, test->descr);
1789			skips++;
1790		} else {
1791			printf("#%d/p %s ", i, test->descr);
1792			do_test_single(test, false, &passes, &errors);
1793		}
1794	}
1795
1796	unload_bpf_testmod(verbose);
1797	kfuncs_cleanup();
1798
1799	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1800	       skips, errors);
1801	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1802}
1803
1804int main(int argc, char **argv)
1805{
 
 
1806	unsigned int from = 0, to = ARRAY_SIZE(tests);
1807	bool unpriv = !is_admin();
1808	int arg = 1;
1809
1810	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1811		arg++;
1812		verbose = true;
1813		verif_log_level = 1;
1814		argc--;
1815	}
1816	if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
1817		arg++;
1818		verbose = true;
1819		verif_log_level = 2;
1820		argc--;
1821	}
1822
1823	if (argc == 3) {
1824		unsigned int l = atoi(argv[arg]);
1825		unsigned int u = atoi(argv[arg + 1]);
1826
1827		if (l < to && u < to) {
1828			from = l;
1829			to   = u + 1;
1830		}
1831	} else if (argc == 2) {
1832		unsigned int t = atoi(argv[arg]);
1833
1834		if (t < to) {
1835			from = t;
1836			to   = t + 1;
1837		}
1838	}
1839
1840	unpriv_disabled = get_unpriv_disabled();
1841	if (unpriv && unpriv_disabled) {
1842		printf("Cannot run as unprivileged user with sysctl %s.\n",
1843		       UNPRIV_SYSCTL);
1844		return EXIT_FAILURE;
1845	}
1846
1847	jit_disabled = !is_jit_enabled();
1848
1849	/* Use libbpf 1.0 API mode */
1850	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1851
1852	bpf_semi_rand_init();
1853	return do_test(unpriv, from, to);
1854}
v4.10.11
 
   1/*
   2 * Testsuite for eBPF verifier
   3 *
   4 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of version 2 of the GNU General Public
   8 * License as published by the Free Software Foundation.
   9 */
  10
 
 
 
 
  11#include <stdio.h>
 
  12#include <unistd.h>
  13#include <errno.h>
  14#include <string.h>
  15#include <stddef.h>
  16#include <stdbool.h>
  17#include <sched.h>
  18
  19#include <sys/resource.h>
  20
  21#include <linux/unistd.h>
  22#include <linux/filter.h>
  23#include <linux/bpf_perf_event.h>
  24#include <linux/bpf.h>
 
 
  25
 
 
 
 
 
 
 
 
 
 
  26#include "../../../include/linux/filter.h"
 
  27
  28#include "bpf_sys.h"
  29
  30#ifndef ARRAY_SIZE
  31# define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  32#endif
  33
  34#define MAX_INSNS	512
  35#define MAX_FIXUPS	8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36
  37struct bpf_test {
  38	const char *descr;
  39	struct bpf_insn	insns[MAX_INSNS];
  40	int fixup_map1[MAX_FIXUPS];
  41	int fixup_map2[MAX_FIXUPS];
  42	int fixup_prog[MAX_FIXUPS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43	const char *errstr;
  44	const char *errstr_unpriv;
 
 
  45	enum {
  46		UNDEF,
  47		ACCEPT,
  48		REJECT
 
  49	} result, result_unpriv;
  50	enum bpf_prog_type prog_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51};
  52
  53/* Note we want this to be 64 bit aligned so that the end of our array is
  54 * actually the end of the structure.
  55 */
  56#define MAX_ENTRIES 11
  57
  58struct test_val {
  59	unsigned int index;
  60	int foo[MAX_ENTRIES];
  61};
  62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63static struct bpf_test tests[] = {
  64	{
  65		"add+sub+mul",
  66		.insns = {
  67			BPF_MOV64_IMM(BPF_REG_1, 1),
  68			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 2),
  69			BPF_MOV64_IMM(BPF_REG_2, 3),
  70			BPF_ALU64_REG(BPF_SUB, BPF_REG_1, BPF_REG_2),
  71			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -1),
  72			BPF_ALU64_IMM(BPF_MUL, BPF_REG_1, 3),
  73			BPF_MOV64_REG(BPF_REG_0, BPF_REG_1),
  74			BPF_EXIT_INSN(),
  75		},
  76		.result = ACCEPT,
  77	},
  78	{
  79		"unreachable",
  80		.insns = {
  81			BPF_EXIT_INSN(),
  82			BPF_EXIT_INSN(),
  83		},
  84		.errstr = "unreachable",
  85		.result = REJECT,
  86	},
  87	{
  88		"unreachable2",
  89		.insns = {
  90			BPF_JMP_IMM(BPF_JA, 0, 0, 1),
  91			BPF_JMP_IMM(BPF_JA, 0, 0, 0),
  92			BPF_EXIT_INSN(),
  93		},
  94		.errstr = "unreachable",
  95		.result = REJECT,
  96	},
  97	{
  98		"out of range jump",
  99		.insns = {
 100			BPF_JMP_IMM(BPF_JA, 0, 0, 1),
 101			BPF_EXIT_INSN(),
 102		},
 103		.errstr = "jump out of range",
 104		.result = REJECT,
 105	},
 106	{
 107		"out of range jump2",
 108		.insns = {
 109			BPF_JMP_IMM(BPF_JA, 0, 0, -2),
 110			BPF_EXIT_INSN(),
 111		},
 112		.errstr = "jump out of range",
 113		.result = REJECT,
 114	},
 115	{
 116		"test1 ld_imm64",
 117		.insns = {
 118			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
 119			BPF_LD_IMM64(BPF_REG_0, 0),
 120			BPF_LD_IMM64(BPF_REG_0, 0),
 121			BPF_LD_IMM64(BPF_REG_0, 1),
 122			BPF_LD_IMM64(BPF_REG_0, 1),
 123			BPF_MOV64_IMM(BPF_REG_0, 2),
 124			BPF_EXIT_INSN(),
 125		},
 126		.errstr = "invalid BPF_LD_IMM insn",
 127		.errstr_unpriv = "R1 pointer comparison",
 128		.result = REJECT,
 129	},
 130	{
 131		"test2 ld_imm64",
 132		.insns = {
 133			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
 134			BPF_LD_IMM64(BPF_REG_0, 0),
 135			BPF_LD_IMM64(BPF_REG_0, 0),
 136			BPF_LD_IMM64(BPF_REG_0, 1),
 137			BPF_LD_IMM64(BPF_REG_0, 1),
 138			BPF_EXIT_INSN(),
 139		},
 140		.errstr = "invalid BPF_LD_IMM insn",
 141		.errstr_unpriv = "R1 pointer comparison",
 142		.result = REJECT,
 143	},
 144	{
 145		"test3 ld_imm64",
 146		.insns = {
 147			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
 148			BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
 149			BPF_LD_IMM64(BPF_REG_0, 0),
 150			BPF_LD_IMM64(BPF_REG_0, 0),
 151			BPF_LD_IMM64(BPF_REG_0, 1),
 152			BPF_LD_IMM64(BPF_REG_0, 1),
 153			BPF_EXIT_INSN(),
 154		},
 155		.errstr = "invalid bpf_ld_imm64 insn",
 156		.result = REJECT,
 157	},
 158	{
 159		"test4 ld_imm64",
 160		.insns = {
 161			BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
 162			BPF_EXIT_INSN(),
 163		},
 164		.errstr = "invalid bpf_ld_imm64 insn",
 165		.result = REJECT,
 166	},
 167	{
 168		"test5 ld_imm64",
 169		.insns = {
 170			BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 0, 0, 0, 0),
 171		},
 172		.errstr = "invalid bpf_ld_imm64 insn",
 173		.result = REJECT,
 174	},
 175	{
 176		"no bpf_exit",
 177		.insns = {
 178			BPF_ALU64_REG(BPF_MOV, BPF_REG_0, BPF_REG_2),
 179		},
 180		.errstr = "jump out of range",
 181		.result = REJECT,
 182	},
 183	{
 184		"loop (back-edge)",
 185		.insns = {
 186			BPF_JMP_IMM(BPF_JA, 0, 0, -1),
 187			BPF_EXIT_INSN(),
 188		},
 189		.errstr = "back-edge",
 190		.result = REJECT,
 191	},
 192	{
 193		"loop2 (back-edge)",
 194		.insns = {
 195			BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
 196			BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
 197			BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
 198			BPF_JMP_IMM(BPF_JA, 0, 0, -4),
 199			BPF_EXIT_INSN(),
 200		},
 201		.errstr = "back-edge",
 202		.result = REJECT,
 203	},
 204	{
 205		"conditional loop",
 206		.insns = {
 207			BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
 208			BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
 209			BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
 210			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, -3),
 211			BPF_EXIT_INSN(),
 212		},
 213		.errstr = "back-edge",
 214		.result = REJECT,
 215	},
 216	{
 217		"read uninitialized register",
 218		.insns = {
 219			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
 220			BPF_EXIT_INSN(),
 221		},
 222		.errstr = "R2 !read_ok",
 223		.result = REJECT,
 224	},
 225	{
 226		"read invalid register",
 227		.insns = {
 228			BPF_MOV64_REG(BPF_REG_0, -1),
 229			BPF_EXIT_INSN(),
 230		},
 231		.errstr = "R15 is invalid",
 232		.result = REJECT,
 233	},
 234	{
 235		"program doesn't init R0 before exit",
 236		.insns = {
 237			BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_1),
 238			BPF_EXIT_INSN(),
 239		},
 240		.errstr = "R0 !read_ok",
 241		.result = REJECT,
 242	},
 243	{
 244		"program doesn't init R0 before exit in all branches",
 245		.insns = {
 246			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
 247			BPF_MOV64_IMM(BPF_REG_0, 1),
 248			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 2),
 249			BPF_EXIT_INSN(),
 250		},
 251		.errstr = "R0 !read_ok",
 252		.errstr_unpriv = "R1 pointer comparison",
 253		.result = REJECT,
 254	},
 255	{
 256		"stack out of bounds",
 257		.insns = {
 258			BPF_ST_MEM(BPF_DW, BPF_REG_10, 8, 0),
 259			BPF_EXIT_INSN(),
 260		},
 261		.errstr = "invalid stack",
 262		.result = REJECT,
 263	},
 264	{
 265		"invalid call insn1",
 266		.insns = {
 267			BPF_RAW_INSN(BPF_JMP | BPF_CALL | BPF_X, 0, 0, 0, 0),
 268			BPF_EXIT_INSN(),
 269		},
 270		.errstr = "BPF_CALL uses reserved",
 271		.result = REJECT,
 272	},
 273	{
 274		"invalid call insn2",
 275		.insns = {
 276			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 1, 0),
 277			BPF_EXIT_INSN(),
 278		},
 279		.errstr = "BPF_CALL uses reserved",
 280		.result = REJECT,
 281	},
 282	{
 283		"invalid function call",
 284		.insns = {
 285			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 1234567),
 286			BPF_EXIT_INSN(),
 287		},
 288		.errstr = "invalid func unknown#1234567",
 289		.result = REJECT,
 290	},
 291	{
 292		"uninitialized stack1",
 293		.insns = {
 294			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 295			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 296			BPF_LD_MAP_FD(BPF_REG_1, 0),
 297			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 298				     BPF_FUNC_map_lookup_elem),
 299			BPF_EXIT_INSN(),
 300		},
 301		.fixup_map1 = { 2 },
 302		.errstr = "invalid indirect read from stack",
 303		.result = REJECT,
 304	},
 305	{
 306		"uninitialized stack2",
 307		.insns = {
 308			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 309			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -8),
 310			BPF_EXIT_INSN(),
 311		},
 312		.errstr = "invalid read from stack",
 313		.result = REJECT,
 314	},
 315	{
 316		"invalid argument register",
 317		.insns = {
 318			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 319				     BPF_FUNC_get_cgroup_classid),
 320			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 321				     BPF_FUNC_get_cgroup_classid),
 322			BPF_EXIT_INSN(),
 323		},
 324		.errstr = "R1 !read_ok",
 325		.result = REJECT,
 326		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
 327	},
 328	{
 329		"non-invalid argument register",
 330		.insns = {
 331			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
 332			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 333				     BPF_FUNC_get_cgroup_classid),
 334			BPF_ALU64_REG(BPF_MOV, BPF_REG_1, BPF_REG_6),
 335			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 336				     BPF_FUNC_get_cgroup_classid),
 337			BPF_EXIT_INSN(),
 338		},
 339		.result = ACCEPT,
 340		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
 341	},
 342	{
 343		"check valid spill/fill",
 344		.insns = {
 345			/* spill R1(ctx) into stack */
 346			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
 347			/* fill it back into R2 */
 348			BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_10, -8),
 349			/* should be able to access R0 = *(R2 + 8) */
 350			/* BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 8), */
 351			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
 352			BPF_EXIT_INSN(),
 353		},
 354		.errstr_unpriv = "R0 leaks addr",
 355		.result = ACCEPT,
 356		.result_unpriv = REJECT,
 357	},
 358	{
 359		"check valid spill/fill, skb mark",
 360		.insns = {
 361			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_1),
 362			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, -8),
 363			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
 364			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
 365				    offsetof(struct __sk_buff, mark)),
 366			BPF_EXIT_INSN(),
 367		},
 368		.result = ACCEPT,
 369		.result_unpriv = ACCEPT,
 370	},
 371	{
 372		"check corrupted spill/fill",
 373		.insns = {
 374			/* spill R1(ctx) into stack */
 375			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
 376			/* mess up with R1 pointer on stack */
 377			BPF_ST_MEM(BPF_B, BPF_REG_10, -7, 0x23),
 378			/* fill back into R0 should fail */
 379			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_10, -8),
 380			BPF_EXIT_INSN(),
 381		},
 382		.errstr_unpriv = "attempt to corrupt spilled",
 383		.errstr = "corrupted spill",
 384		.result = REJECT,
 385	},
 386	{
 387		"invalid src register in STX",
 388		.insns = {
 389			BPF_STX_MEM(BPF_B, BPF_REG_10, -1, -1),
 390			BPF_EXIT_INSN(),
 391		},
 392		.errstr = "R15 is invalid",
 393		.result = REJECT,
 394	},
 395	{
 396		"invalid dst register in STX",
 397		.insns = {
 398			BPF_STX_MEM(BPF_B, 14, BPF_REG_10, -1),
 399			BPF_EXIT_INSN(),
 400		},
 401		.errstr = "R14 is invalid",
 402		.result = REJECT,
 403	},
 404	{
 405		"invalid dst register in ST",
 406		.insns = {
 407			BPF_ST_MEM(BPF_B, 14, -1, -1),
 408			BPF_EXIT_INSN(),
 409		},
 410		.errstr = "R14 is invalid",
 411		.result = REJECT,
 412	},
 413	{
 414		"invalid src register in LDX",
 415		.insns = {
 416			BPF_LDX_MEM(BPF_B, BPF_REG_0, 12, 0),
 417			BPF_EXIT_INSN(),
 418		},
 419		.errstr = "R12 is invalid",
 420		.result = REJECT,
 421	},
 422	{
 423		"invalid dst register in LDX",
 424		.insns = {
 425			BPF_LDX_MEM(BPF_B, 11, BPF_REG_1, 0),
 426			BPF_EXIT_INSN(),
 427		},
 428		.errstr = "R11 is invalid",
 429		.result = REJECT,
 430	},
 431	{
 432		"junk insn",
 433		.insns = {
 434			BPF_RAW_INSN(0, 0, 0, 0, 0),
 435			BPF_EXIT_INSN(),
 436		},
 437		.errstr = "invalid BPF_LD_IMM",
 438		.result = REJECT,
 439	},
 440	{
 441		"junk insn2",
 442		.insns = {
 443			BPF_RAW_INSN(1, 0, 0, 0, 0),
 444			BPF_EXIT_INSN(),
 445		},
 446		.errstr = "BPF_LDX uses reserved fields",
 447		.result = REJECT,
 448	},
 449	{
 450		"junk insn3",
 451		.insns = {
 452			BPF_RAW_INSN(-1, 0, 0, 0, 0),
 453			BPF_EXIT_INSN(),
 454		},
 455		.errstr = "invalid BPF_ALU opcode f0",
 456		.result = REJECT,
 457	},
 458	{
 459		"junk insn4",
 460		.insns = {
 461			BPF_RAW_INSN(-1, -1, -1, -1, -1),
 462			BPF_EXIT_INSN(),
 463		},
 464		.errstr = "invalid BPF_ALU opcode f0",
 465		.result = REJECT,
 466	},
 467	{
 468		"junk insn5",
 469		.insns = {
 470			BPF_RAW_INSN(0x7f, -1, -1, -1, -1),
 471			BPF_EXIT_INSN(),
 472		},
 473		.errstr = "BPF_ALU uses reserved fields",
 474		.result = REJECT,
 475	},
 476	{
 477		"misaligned read from stack",
 478		.insns = {
 479			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 480			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, -4),
 481			BPF_EXIT_INSN(),
 482		},
 483		.errstr = "misaligned access",
 484		.result = REJECT,
 485	},
 486	{
 487		"invalid map_fd for function call",
 488		.insns = {
 489			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
 490			BPF_ALU64_REG(BPF_MOV, BPF_REG_2, BPF_REG_10),
 491			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 492			BPF_LD_MAP_FD(BPF_REG_1, 0),
 493			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 494				     BPF_FUNC_map_delete_elem),
 495			BPF_EXIT_INSN(),
 496		},
 497		.errstr = "fd 0 is not pointing to valid bpf_map",
 498		.result = REJECT,
 499	},
 500	{
 501		"don't check return value before access",
 502		.insns = {
 503			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
 504			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 505			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 506			BPF_LD_MAP_FD(BPF_REG_1, 0),
 507			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 508				     BPF_FUNC_map_lookup_elem),
 509			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
 510			BPF_EXIT_INSN(),
 511		},
 512		.fixup_map1 = { 3 },
 513		.errstr = "R0 invalid mem access 'map_value_or_null'",
 514		.result = REJECT,
 515	},
 516	{
 517		"access memory with incorrect alignment",
 518		.insns = {
 519			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
 520			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 521			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 522			BPF_LD_MAP_FD(BPF_REG_1, 0),
 523			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 524				     BPF_FUNC_map_lookup_elem),
 525			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
 526			BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0),
 527			BPF_EXIT_INSN(),
 528		},
 529		.fixup_map1 = { 3 },
 530		.errstr = "misaligned access",
 531		.result = REJECT,
 532	},
 533	{
 534		"sometimes access memory with incorrect alignment",
 535		.insns = {
 536			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
 537			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 538			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 539			BPF_LD_MAP_FD(BPF_REG_1, 0),
 540			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 541				     BPF_FUNC_map_lookup_elem),
 542			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
 543			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 0),
 544			BPF_EXIT_INSN(),
 545			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, 1),
 546			BPF_EXIT_INSN(),
 547		},
 548		.fixup_map1 = { 3 },
 549		.errstr = "R0 invalid mem access",
 550		.errstr_unpriv = "R0 leaks addr",
 551		.result = REJECT,
 552	},
 553	{
 554		"jump test 1",
 555		.insns = {
 556			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 557			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_1, -8),
 558			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 1),
 559			BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
 560			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 1),
 561			BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 1),
 562			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 1),
 563			BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 2),
 564			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 1),
 565			BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 3),
 566			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 1),
 567			BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 4),
 568			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
 569			BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 5),
 570			BPF_MOV64_IMM(BPF_REG_0, 0),
 571			BPF_EXIT_INSN(),
 572		},
 573		.errstr_unpriv = "R1 pointer comparison",
 574		.result_unpriv = REJECT,
 575		.result = ACCEPT,
 576	},
 577	{
 578		"jump test 2",
 579		.insns = {
 580			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 581			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 2),
 582			BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
 583			BPF_JMP_IMM(BPF_JA, 0, 0, 14),
 584			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 2),
 585			BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
 586			BPF_JMP_IMM(BPF_JA, 0, 0, 11),
 587			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 2),
 588			BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
 589			BPF_JMP_IMM(BPF_JA, 0, 0, 8),
 590			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 2),
 591			BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
 592			BPF_JMP_IMM(BPF_JA, 0, 0, 5),
 593			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 2),
 594			BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
 595			BPF_JMP_IMM(BPF_JA, 0, 0, 2),
 596			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 1),
 597			BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
 598			BPF_MOV64_IMM(BPF_REG_0, 0),
 599			BPF_EXIT_INSN(),
 600		},
 601		.errstr_unpriv = "R1 pointer comparison",
 602		.result_unpriv = REJECT,
 603		.result = ACCEPT,
 604	},
 605	{
 606		"jump test 3",
 607		.insns = {
 608			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 609			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
 610			BPF_ST_MEM(BPF_DW, BPF_REG_2, -8, 0),
 611			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 612			BPF_JMP_IMM(BPF_JA, 0, 0, 19),
 613			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 1, 3),
 614			BPF_ST_MEM(BPF_DW, BPF_REG_2, -16, 0),
 615			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
 616			BPF_JMP_IMM(BPF_JA, 0, 0, 15),
 617			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 2, 3),
 618			BPF_ST_MEM(BPF_DW, BPF_REG_2, -32, 0),
 619			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -32),
 620			BPF_JMP_IMM(BPF_JA, 0, 0, 11),
 621			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 3, 3),
 622			BPF_ST_MEM(BPF_DW, BPF_REG_2, -40, 0),
 623			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -40),
 624			BPF_JMP_IMM(BPF_JA, 0, 0, 7),
 625			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 4, 3),
 626			BPF_ST_MEM(BPF_DW, BPF_REG_2, -48, 0),
 627			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),
 628			BPF_JMP_IMM(BPF_JA, 0, 0, 3),
 629			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 5, 0),
 630			BPF_ST_MEM(BPF_DW, BPF_REG_2, -56, 0),
 631			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -56),
 632			BPF_LD_MAP_FD(BPF_REG_1, 0),
 633			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 634				     BPF_FUNC_map_delete_elem),
 635			BPF_EXIT_INSN(),
 636		},
 637		.fixup_map1 = { 24 },
 638		.errstr_unpriv = "R1 pointer comparison",
 639		.result_unpriv = REJECT,
 640		.result = ACCEPT,
 641	},
 642	{
 643		"jump test 4",
 644		.insns = {
 645			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 646			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 647			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 648			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 649			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 650			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 651			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 652			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 653			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 654			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 655			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 656			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 657			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 658			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 659			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 660			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 661			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 662			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 663			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 664			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 665			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 666			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 667			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 668			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 669			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 670			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 671			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 672			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 673			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 674			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 675			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 676			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 677			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 1),
 678			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 2),
 679			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 3),
 680			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 4),
 681			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
 682			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
 683			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
 684			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
 685			BPF_MOV64_IMM(BPF_REG_0, 0),
 686			BPF_EXIT_INSN(),
 687		},
 688		.errstr_unpriv = "R1 pointer comparison",
 689		.result_unpriv = REJECT,
 690		.result = ACCEPT,
 691	},
 692	{
 693		"jump test 5",
 694		.insns = {
 695			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 696			BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
 697			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
 698			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
 699			BPF_JMP_IMM(BPF_JA, 0, 0, 2),
 700			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
 701			BPF_JMP_IMM(BPF_JA, 0, 0, 0),
 702			BPF_MOV64_IMM(BPF_REG_0, 0),
 703			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
 704			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
 705			BPF_JMP_IMM(BPF_JA, 0, 0, 2),
 706			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
 707			BPF_JMP_IMM(BPF_JA, 0, 0, 0),
 708			BPF_MOV64_IMM(BPF_REG_0, 0),
 709			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
 710			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
 711			BPF_JMP_IMM(BPF_JA, 0, 0, 2),
 712			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
 713			BPF_JMP_IMM(BPF_JA, 0, 0, 0),
 714			BPF_MOV64_IMM(BPF_REG_0, 0),
 715			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
 716			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
 717			BPF_JMP_IMM(BPF_JA, 0, 0, 2),
 718			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
 719			BPF_JMP_IMM(BPF_JA, 0, 0, 0),
 720			BPF_MOV64_IMM(BPF_REG_0, 0),
 721			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
 722			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, -8),
 723			BPF_JMP_IMM(BPF_JA, 0, 0, 2),
 724			BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_2, -8),
 725			BPF_JMP_IMM(BPF_JA, 0, 0, 0),
 726			BPF_MOV64_IMM(BPF_REG_0, 0),
 727			BPF_EXIT_INSN(),
 728		},
 729		.errstr_unpriv = "R1 pointer comparison",
 730		.result_unpriv = REJECT,
 731		.result = ACCEPT,
 732	},
 733	{
 734		"access skb fields ok",
 735		.insns = {
 736			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 737				    offsetof(struct __sk_buff, len)),
 738			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
 739			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 740				    offsetof(struct __sk_buff, mark)),
 741			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
 742			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 743				    offsetof(struct __sk_buff, pkt_type)),
 744			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
 745			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 746				    offsetof(struct __sk_buff, queue_mapping)),
 747			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
 748			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 749				    offsetof(struct __sk_buff, protocol)),
 750			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
 751			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 752				    offsetof(struct __sk_buff, vlan_present)),
 753			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
 754			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 755				    offsetof(struct __sk_buff, vlan_tci)),
 756			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 0),
 757			BPF_EXIT_INSN(),
 758		},
 759		.result = ACCEPT,
 760	},
 761	{
 762		"access skb fields bad1",
 763		.insns = {
 764			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1, -4),
 765			BPF_EXIT_INSN(),
 766		},
 767		.errstr = "invalid bpf_context access",
 768		.result = REJECT,
 769	},
 770	{
 771		"access skb fields bad2",
 772		.insns = {
 773			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 9),
 774			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
 775			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 776			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 777			BPF_LD_MAP_FD(BPF_REG_1, 0),
 778			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 779				     BPF_FUNC_map_lookup_elem),
 780			BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
 781			BPF_EXIT_INSN(),
 782			BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
 783			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 784				    offsetof(struct __sk_buff, pkt_type)),
 785			BPF_EXIT_INSN(),
 786		},
 787		.fixup_map1 = { 4 },
 788		.errstr = "different pointers",
 789		.errstr_unpriv = "R1 pointer comparison",
 790		.result = REJECT,
 791	},
 792	{
 793		"access skb fields bad3",
 794		.insns = {
 795			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 2),
 796			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 797				    offsetof(struct __sk_buff, pkt_type)),
 798			BPF_EXIT_INSN(),
 799			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
 800			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 801			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 802			BPF_LD_MAP_FD(BPF_REG_1, 0),
 803			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 804				     BPF_FUNC_map_lookup_elem),
 805			BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
 806			BPF_EXIT_INSN(),
 807			BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
 808			BPF_JMP_IMM(BPF_JA, 0, 0, -12),
 809		},
 810		.fixup_map1 = { 6 },
 811		.errstr = "different pointers",
 812		.errstr_unpriv = "R1 pointer comparison",
 813		.result = REJECT,
 814	},
 815	{
 816		"access skb fields bad4",
 817		.insns = {
 818			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, 0, 3),
 819			BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
 820				    offsetof(struct __sk_buff, len)),
 821			BPF_MOV64_IMM(BPF_REG_0, 0),
 822			BPF_EXIT_INSN(),
 823			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
 824			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
 825			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
 826			BPF_LD_MAP_FD(BPF_REG_1, 0),
 827			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
 828				     BPF_FUNC_map_lookup_elem),
 829			BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
 830			BPF_EXIT_INSN(),
 831			BPF_MOV64_REG(BPF_REG_1, BPF_REG_0),
 832			BPF_JMP_IMM(BPF_JA, 0, 0, -13),
 833		},
 834		.fixup_map1 = { 7 },
 835		.errstr = "different pointers",
 836		.errstr_unpriv = "R1 pointer comparison",
 837		.result = REJECT,
 838	},
 839	{
 840		"check skb->mark is not writeable by sockets",
 841		.insns = {
 842			BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
 843				    offsetof(struct __sk_buff, mark)),
 844			BPF_EXIT_INSN(),
 845		},
 846		.errstr = "invalid bpf_context access",
 847		.errstr_unpriv = "R1 leaks addr",
 848		.result = REJECT,
 849	},
 850	{
 851		"check skb->tc_index is not writeable by sockets",
 852		.insns = {
 853			BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
 854				    offsetof(struct __sk_buff, tc_index)),
 855			BPF_EXIT_INSN(),
 856		},
 857		.errstr = "invalid bpf_context access",
 858		.errstr_unpriv = "R1 leaks addr",
 859		.result = REJECT,
 860	},
 861	{
 862		"check non-u32 access to cb",
 863		.insns = {
 864			BPF_STX_MEM(BPF_H, BPF_REG_1, BPF_REG_1,
 865				    offsetof(struct __sk_buff, cb[0])),
 866			BPF_EXIT_INSN(),
 867		},
 868		.errstr = "invalid bpf_context access",
 869		.errstr_unpriv = "R1 leaks addr",
 870		.result = REJECT,
 871	},
 872	{
 873		"check out of range skb->cb access",
 874		.insns = {
 875			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 876				    offsetof(struct __sk_buff, cb[0]) + 256),
 877			BPF_EXIT_INSN(),
 878		},
 879		.errstr = "invalid bpf_context access",
 880		.errstr_unpriv = "",
 881		.result = REJECT,
 882		.prog_type = BPF_PROG_TYPE_SCHED_ACT,
 883	},
 884	{
 885		"write skb fields from socket prog",
 886		.insns = {
 887			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 888				    offsetof(struct __sk_buff, cb[4])),
 889			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
 890			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 891				    offsetof(struct __sk_buff, mark)),
 892			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 893				    offsetof(struct __sk_buff, tc_index)),
 894			BPF_JMP_IMM(BPF_JGE, BPF_REG_0, 0, 1),
 895			BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
 896				    offsetof(struct __sk_buff, cb[0])),
 897			BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
 898				    offsetof(struct __sk_buff, cb[2])),
 899			BPF_EXIT_INSN(),
 900		},
 901		.result = ACCEPT,
 902		.errstr_unpriv = "R1 leaks addr",
 903		.result_unpriv = REJECT,
 904	},
 905	{
 906		"write skb fields from tc_cls_act prog",
 907		.insns = {
 908			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 909				    offsetof(struct __sk_buff, cb[0])),
 910			BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
 911				    offsetof(struct __sk_buff, mark)),
 912			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
 913				    offsetof(struct __sk_buff, tc_index)),
 914			BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
 915				    offsetof(struct __sk_buff, tc_index)),
 916			BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_0,
 917				    offsetof(struct __sk_buff, cb[3])),
 918			BPF_EXIT_INSN(),
 919		},
 920		.errstr_unpriv = "",
 921		.result_unpriv = REJECT,
 922		.result = ACCEPT,
 923		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
 924	},
 925	{
 926		"PTR_TO_STACK store/load",
 927		.insns = {
 928			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 929			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
 930			BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
 931			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
 932			BPF_EXIT_INSN(),
 933		},
 934		.result = ACCEPT,
 935	},
 936	{
 937		"PTR_TO_STACK store/load - bad alignment on off",
 938		.insns = {
 939			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 940			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
 941			BPF_ST_MEM(BPF_DW, BPF_REG_1, 2, 0xfaceb00c),
 942			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 2),
 943			BPF_EXIT_INSN(),
 944		},
 945		.result = REJECT,
 946		.errstr = "misaligned access off -6 size 8",
 947	},
 948	{
 949		"PTR_TO_STACK store/load - bad alignment on reg",
 950		.insns = {
 951			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 952			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -10),
 953			BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
 954			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
 955			BPF_EXIT_INSN(),
 956		},
 957		.result = REJECT,
 958		.errstr = "misaligned access off -2 size 8",
 959	},
 960	{
 961		"PTR_TO_STACK store/load - out of bounds low",
 962		.insns = {
 963			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 964			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -80000),
 965			BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
 966			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
 967			BPF_EXIT_INSN(),
 968		},
 969		.result = REJECT,
 970		.errstr = "invalid stack off=-79992 size=8",
 971	},
 972	{
 973		"PTR_TO_STACK store/load - out of bounds high",
 974		.insns = {
 975			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
 976			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
 977			BPF_ST_MEM(BPF_DW, BPF_REG_1, 8, 0xfaceb00c),
 978			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, 8),
 979			BPF_EXIT_INSN(),
 980		},
 981		.result = REJECT,
 982		.errstr = "invalid stack off=0 size=8",
 983	},
 984	{
 985		"unpriv: return pointer",
 986		.insns = {
 987			BPF_MOV64_REG(BPF_REG_0, BPF_REG_10),
 988			BPF_EXIT_INSN(),
 989		},
 990		.result = ACCEPT,
 991		.result_unpriv = REJECT,
 992		.errstr_unpriv = "R0 leaks addr",
 993	},
 994	{
 995		"unpriv: add const to pointer",
 996		.insns = {
 997			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
 998			BPF_MOV64_IMM(BPF_REG_0, 0),
 999			BPF_EXIT_INSN(),
1000		},
1001		.result = ACCEPT,
1002		.result_unpriv = REJECT,
1003		.errstr_unpriv = "R1 pointer arithmetic",
1004	},
1005	{
1006		"unpriv: add pointer to pointer",
1007		.insns = {
1008			BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_10),
1009			BPF_MOV64_IMM(BPF_REG_0, 0),
1010			BPF_EXIT_INSN(),
1011		},
1012		.result = ACCEPT,
1013		.result_unpriv = REJECT,
1014		.errstr_unpriv = "R1 pointer arithmetic",
1015	},
1016	{
1017		"unpriv: neg pointer",
1018		.insns = {
1019			BPF_ALU64_IMM(BPF_NEG, BPF_REG_1, 0),
1020			BPF_MOV64_IMM(BPF_REG_0, 0),
1021			BPF_EXIT_INSN(),
1022		},
1023		.result = ACCEPT,
1024		.result_unpriv = REJECT,
1025		.errstr_unpriv = "R1 pointer arithmetic",
1026	},
1027	{
1028		"unpriv: cmp pointer with const",
1029		.insns = {
1030			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
1031			BPF_MOV64_IMM(BPF_REG_0, 0),
1032			BPF_EXIT_INSN(),
1033		},
1034		.result = ACCEPT,
1035		.result_unpriv = REJECT,
1036		.errstr_unpriv = "R1 pointer comparison",
1037	},
1038	{
1039		"unpriv: cmp pointer with pointer",
1040		.insns = {
1041			BPF_JMP_REG(BPF_JEQ, BPF_REG_1, BPF_REG_10, 0),
1042			BPF_MOV64_IMM(BPF_REG_0, 0),
1043			BPF_EXIT_INSN(),
1044		},
1045		.result = ACCEPT,
1046		.result_unpriv = REJECT,
1047		.errstr_unpriv = "R10 pointer comparison",
1048	},
1049	{
1050		"unpriv: check that printk is disallowed",
1051		.insns = {
1052			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
1053			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
1054			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),
1055			BPF_MOV64_IMM(BPF_REG_2, 8),
1056			BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
1057			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1058				     BPF_FUNC_trace_printk),
1059			BPF_MOV64_IMM(BPF_REG_0, 0),
1060			BPF_EXIT_INSN(),
1061		},
1062		.errstr_unpriv = "unknown func bpf_trace_printk#6",
1063		.result_unpriv = REJECT,
1064		.result = ACCEPT,
1065	},
1066	{
1067		"unpriv: pass pointer to helper function",
1068		.insns = {
1069			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
1070			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
1071			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
1072			BPF_LD_MAP_FD(BPF_REG_1, 0),
1073			BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
1074			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
1075			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1076				     BPF_FUNC_map_update_elem),
1077			BPF_MOV64_IMM(BPF_REG_0, 0),
1078			BPF_EXIT_INSN(),
1079		},
1080		.fixup_map1 = { 3 },
1081		.errstr_unpriv = "R4 leaks addr",
1082		.result_unpriv = REJECT,
1083		.result = ACCEPT,
1084	},
1085	{
1086		"unpriv: indirectly pass pointer on stack to helper function",
1087		.insns = {
1088			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
1089			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
1090			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
1091			BPF_LD_MAP_FD(BPF_REG_1, 0),
1092			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1093				     BPF_FUNC_map_lookup_elem),
1094			BPF_MOV64_IMM(BPF_REG_0, 0),
1095			BPF_EXIT_INSN(),
1096		},
1097		.fixup_map1 = { 3 },
1098		.errstr = "invalid indirect read from stack off -8+0 size 8",
1099		.result = REJECT,
1100	},
1101	{
1102		"unpriv: mangle pointer on stack 1",
1103		.insns = {
1104			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
1105			BPF_ST_MEM(BPF_W, BPF_REG_10, -8, 0),
1106			BPF_MOV64_IMM(BPF_REG_0, 0),
1107			BPF_EXIT_INSN(),
1108		},
1109		.errstr_unpriv = "attempt to corrupt spilled",
1110		.result_unpriv = REJECT,
1111		.result = ACCEPT,
1112	},
1113	{
1114		"unpriv: mangle pointer on stack 2",
1115		.insns = {
1116			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
1117			BPF_ST_MEM(BPF_B, BPF_REG_10, -1, 0),
1118			BPF_MOV64_IMM(BPF_REG_0, 0),
1119			BPF_EXIT_INSN(),
1120		},
1121		.errstr_unpriv = "attempt to corrupt spilled",
1122		.result_unpriv = REJECT,
1123		.result = ACCEPT,
1124	},
1125	{
1126		"unpriv: read pointer from stack in small chunks",
1127		.insns = {
1128			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_10, -8),
1129			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_10, -8),
1130			BPF_MOV64_IMM(BPF_REG_0, 0),
1131			BPF_EXIT_INSN(),
1132		},
1133		.errstr = "invalid size",
1134		.result = REJECT,
1135	},
1136	{
1137		"unpriv: write pointer into ctx",
1138		.insns = {
1139			BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1, 0),
1140			BPF_MOV64_IMM(BPF_REG_0, 0),
1141			BPF_EXIT_INSN(),
1142		},
1143		.errstr_unpriv = "R1 leaks addr",
1144		.result_unpriv = REJECT,
1145		.errstr = "invalid bpf_context access",
1146		.result = REJECT,
1147	},
1148	{
1149		"unpriv: spill/fill of ctx",
1150		.insns = {
1151			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1152			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1153			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
1154			BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
1155			BPF_MOV64_IMM(BPF_REG_0, 0),
1156			BPF_EXIT_INSN(),
1157		},
1158		.result = ACCEPT,
1159	},
1160	{
1161		"unpriv: spill/fill of ctx 2",
1162		.insns = {
1163			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1164			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1165			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
1166			BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
1167			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1168				     BPF_FUNC_get_hash_recalc),
1169			BPF_EXIT_INSN(),
1170		},
1171		.result = ACCEPT,
1172		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1173	},
1174	{
1175		"unpriv: spill/fill of ctx 3",
1176		.insns = {
1177			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1178			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1179			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
1180			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
1181			BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
1182			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1183				     BPF_FUNC_get_hash_recalc),
1184			BPF_EXIT_INSN(),
1185		},
1186		.result = REJECT,
1187		.errstr = "R1 type=fp expected=ctx",
1188		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1189	},
1190	{
1191		"unpriv: spill/fill of ctx 4",
1192		.insns = {
1193			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1194			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1195			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
1196			BPF_MOV64_IMM(BPF_REG_0, 1),
1197			BPF_RAW_INSN(BPF_STX | BPF_XADD | BPF_DW, BPF_REG_10,
1198				     BPF_REG_0, -8, 0),
1199			BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
1200			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1201				     BPF_FUNC_get_hash_recalc),
1202			BPF_EXIT_INSN(),
1203		},
1204		.result = REJECT,
1205		.errstr = "R1 type=inv expected=ctx",
1206		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1207	},
1208	{
1209		"unpriv: spill/fill of different pointers stx",
1210		.insns = {
1211			BPF_MOV64_IMM(BPF_REG_3, 42),
1212			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1213			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1214			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
1215			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
1216			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -16),
1217			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
1218			BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
1219			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
1220			BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
1221			BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_3,
1222				    offsetof(struct __sk_buff, mark)),
1223			BPF_MOV64_IMM(BPF_REG_0, 0),
1224			BPF_EXIT_INSN(),
1225		},
1226		.result = REJECT,
1227		.errstr = "same insn cannot be used with different pointers",
1228		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1229	},
1230	{
1231		"unpriv: spill/fill of different pointers ldx",
1232		.insns = {
1233			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1234			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1235			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 3),
1236			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
1237			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2,
1238				      -(__s32)offsetof(struct bpf_perf_event_data,
1239						       sample_period) - 8),
1240			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_2, 0),
1241			BPF_JMP_IMM(BPF_JNE, BPF_REG_1, 0, 1),
1242			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
1243			BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 0),
1244			BPF_LDX_MEM(BPF_DW, BPF_REG_1, BPF_REG_1,
1245				    offsetof(struct bpf_perf_event_data,
1246					     sample_period)),
1247			BPF_MOV64_IMM(BPF_REG_0, 0),
1248			BPF_EXIT_INSN(),
1249		},
1250		.result = REJECT,
1251		.errstr = "same insn cannot be used with different pointers",
1252		.prog_type = BPF_PROG_TYPE_PERF_EVENT,
1253	},
1254	{
1255		"unpriv: write pointer into map elem value",
1256		.insns = {
1257			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
1258			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
1259			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
1260			BPF_LD_MAP_FD(BPF_REG_1, 0),
1261			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1262				     BPF_FUNC_map_lookup_elem),
1263			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
1264			BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_0, 0),
1265			BPF_EXIT_INSN(),
1266		},
1267		.fixup_map1 = { 3 },
1268		.errstr_unpriv = "R0 leaks addr",
1269		.result_unpriv = REJECT,
1270		.result = ACCEPT,
1271	},
1272	{
1273		"unpriv: partial copy of pointer",
1274		.insns = {
1275			BPF_MOV32_REG(BPF_REG_1, BPF_REG_10),
1276			BPF_MOV64_IMM(BPF_REG_0, 0),
1277			BPF_EXIT_INSN(),
1278		},
1279		.errstr_unpriv = "R10 partial copy",
1280		.result_unpriv = REJECT,
1281		.result = ACCEPT,
1282	},
1283	{
1284		"unpriv: pass pointer to tail_call",
1285		.insns = {
1286			BPF_MOV64_REG(BPF_REG_3, BPF_REG_1),
1287			BPF_LD_MAP_FD(BPF_REG_2, 0),
1288			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1289				     BPF_FUNC_tail_call),
1290			BPF_MOV64_IMM(BPF_REG_0, 0),
1291			BPF_EXIT_INSN(),
1292		},
1293		.fixup_prog = { 1 },
1294		.errstr_unpriv = "R3 leaks addr into helper",
1295		.result_unpriv = REJECT,
1296		.result = ACCEPT,
1297	},
1298	{
1299		"unpriv: cmp map pointer with zero",
1300		.insns = {
1301			BPF_MOV64_IMM(BPF_REG_1, 0),
1302			BPF_LD_MAP_FD(BPF_REG_1, 0),
1303			BPF_JMP_IMM(BPF_JEQ, BPF_REG_1, 0, 0),
1304			BPF_MOV64_IMM(BPF_REG_0, 0),
1305			BPF_EXIT_INSN(),
1306		},
1307		.fixup_map1 = { 1 },
1308		.errstr_unpriv = "R1 pointer comparison",
1309		.result_unpriv = REJECT,
1310		.result = ACCEPT,
1311	},
1312	{
1313		"unpriv: write into frame pointer",
1314		.insns = {
1315			BPF_MOV64_REG(BPF_REG_10, BPF_REG_1),
1316			BPF_MOV64_IMM(BPF_REG_0, 0),
1317			BPF_EXIT_INSN(),
1318		},
1319		.errstr = "frame pointer is read only",
1320		.result = REJECT,
1321	},
1322	{
1323		"unpriv: spill/fill frame pointer",
1324		.insns = {
1325			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1326			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1327			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, 0),
1328			BPF_LDX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, 0),
1329			BPF_MOV64_IMM(BPF_REG_0, 0),
1330			BPF_EXIT_INSN(),
1331		},
1332		.errstr = "frame pointer is read only",
1333		.result = REJECT,
1334	},
1335	{
1336		"unpriv: cmp of frame pointer",
1337		.insns = {
1338			BPF_JMP_IMM(BPF_JEQ, BPF_REG_10, 0, 0),
1339			BPF_MOV64_IMM(BPF_REG_0, 0),
1340			BPF_EXIT_INSN(),
1341		},
1342		.errstr_unpriv = "R10 pointer comparison",
1343		.result_unpriv = REJECT,
1344		.result = ACCEPT,
1345	},
1346	{
1347		"unpriv: cmp of stack pointer",
1348		.insns = {
1349			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
1350			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
1351			BPF_JMP_IMM(BPF_JEQ, BPF_REG_2, 0, 0),
1352			BPF_MOV64_IMM(BPF_REG_0, 0),
1353			BPF_EXIT_INSN(),
1354		},
1355		.errstr_unpriv = "R2 pointer comparison",
1356		.result_unpriv = REJECT,
1357		.result = ACCEPT,
1358	},
1359	{
1360		"unpriv: obfuscate stack pointer",
1361		.insns = {
1362			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
1363			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
1364			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
1365			BPF_MOV64_IMM(BPF_REG_0, 0),
1366			BPF_EXIT_INSN(),
1367		},
1368		.errstr_unpriv = "R2 pointer arithmetic",
1369		.result_unpriv = REJECT,
1370		.result = ACCEPT,
1371	},
1372	{
1373		"raw_stack: no skb_load_bytes",
1374		.insns = {
1375			BPF_MOV64_IMM(BPF_REG_2, 4),
1376			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1377			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1378			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1379			BPF_MOV64_IMM(BPF_REG_4, 8),
1380			/* Call to skb_load_bytes() omitted. */
1381			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1382			BPF_EXIT_INSN(),
1383		},
1384		.result = REJECT,
1385		.errstr = "invalid read from stack off -8+0 size 8",
1386		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1387	},
1388	{
1389		"raw_stack: skb_load_bytes, negative len",
1390		.insns = {
1391			BPF_MOV64_IMM(BPF_REG_2, 4),
1392			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1393			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1394			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1395			BPF_MOV64_IMM(BPF_REG_4, -8),
1396			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1397				     BPF_FUNC_skb_load_bytes),
1398			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1399			BPF_EXIT_INSN(),
1400		},
1401		.result = REJECT,
1402		.errstr = "invalid stack type R3",
1403		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1404	},
1405	{
1406		"raw_stack: skb_load_bytes, negative len 2",
1407		.insns = {
1408			BPF_MOV64_IMM(BPF_REG_2, 4),
1409			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1410			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1411			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1412			BPF_MOV64_IMM(BPF_REG_4, ~0),
1413			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1414				     BPF_FUNC_skb_load_bytes),
1415			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1416			BPF_EXIT_INSN(),
1417		},
1418		.result = REJECT,
1419		.errstr = "invalid stack type R3",
1420		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1421	},
1422	{
1423		"raw_stack: skb_load_bytes, zero len",
1424		.insns = {
1425			BPF_MOV64_IMM(BPF_REG_2, 4),
1426			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1427			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1428			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1429			BPF_MOV64_IMM(BPF_REG_4, 0),
1430			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1431				     BPF_FUNC_skb_load_bytes),
1432			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1433			BPF_EXIT_INSN(),
1434		},
1435		.result = REJECT,
1436		.errstr = "invalid stack type R3",
1437		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1438	},
1439	{
1440		"raw_stack: skb_load_bytes, no init",
1441		.insns = {
1442			BPF_MOV64_IMM(BPF_REG_2, 4),
1443			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1444			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1445			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1446			BPF_MOV64_IMM(BPF_REG_4, 8),
1447			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1448				     BPF_FUNC_skb_load_bytes),
1449			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1450			BPF_EXIT_INSN(),
1451		},
1452		.result = ACCEPT,
1453		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1454	},
1455	{
1456		"raw_stack: skb_load_bytes, init",
1457		.insns = {
1458			BPF_MOV64_IMM(BPF_REG_2, 4),
1459			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1460			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1461			BPF_ST_MEM(BPF_DW, BPF_REG_6, 0, 0xcafe),
1462			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1463			BPF_MOV64_IMM(BPF_REG_4, 8),
1464			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1465				     BPF_FUNC_skb_load_bytes),
1466			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1467			BPF_EXIT_INSN(),
1468		},
1469		.result = ACCEPT,
1470		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1471	},
1472	{
1473		"raw_stack: skb_load_bytes, spilled regs around bounds",
1474		.insns = {
1475			BPF_MOV64_IMM(BPF_REG_2, 4),
1476			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1477			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
1478			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
1479			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1,  8),
1480			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1481			BPF_MOV64_IMM(BPF_REG_4, 8),
1482			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1483				     BPF_FUNC_skb_load_bytes),
1484			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
1485			BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6,  8),
1486			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
1487				    offsetof(struct __sk_buff, mark)),
1488			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
1489				    offsetof(struct __sk_buff, priority)),
1490			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
1491			BPF_EXIT_INSN(),
1492		},
1493		.result = ACCEPT,
1494		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1495	},
1496	{
1497		"raw_stack: skb_load_bytes, spilled regs corruption",
1498		.insns = {
1499			BPF_MOV64_IMM(BPF_REG_2, 4),
1500			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1501			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -8),
1502			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, 0),
1503			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1504			BPF_MOV64_IMM(BPF_REG_4, 8),
1505			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1506				     BPF_FUNC_skb_load_bytes),
1507			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1508			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
1509				    offsetof(struct __sk_buff, mark)),
1510			BPF_EXIT_INSN(),
1511		},
1512		.result = REJECT,
1513		.errstr = "R0 invalid mem access 'inv'",
1514		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1515	},
1516	{
1517		"raw_stack: skb_load_bytes, spilled regs corruption 2",
1518		.insns = {
1519			BPF_MOV64_IMM(BPF_REG_2, 4),
1520			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1521			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
1522			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
1523			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1,  0),
1524			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1,  8),
1525			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1526			BPF_MOV64_IMM(BPF_REG_4, 8),
1527			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1528				     BPF_FUNC_skb_load_bytes),
1529			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
1530			BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6,  8),
1531			BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6,  0),
1532			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
1533				    offsetof(struct __sk_buff, mark)),
1534			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
1535				    offsetof(struct __sk_buff, priority)),
1536			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
1537			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_3,
1538				    offsetof(struct __sk_buff, pkt_type)),
1539			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
1540			BPF_EXIT_INSN(),
1541		},
1542		.result = REJECT,
1543		.errstr = "R3 invalid mem access 'inv'",
1544		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1545	},
1546	{
1547		"raw_stack: skb_load_bytes, spilled regs + data",
1548		.insns = {
1549			BPF_MOV64_IMM(BPF_REG_2, 4),
1550			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1551			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -16),
1552			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1, -8),
1553			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1,  0),
1554			BPF_STX_MEM(BPF_DW, BPF_REG_6, BPF_REG_1,  8),
1555			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1556			BPF_MOV64_IMM(BPF_REG_4, 8),
1557			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1558				     BPF_FUNC_skb_load_bytes),
1559			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, -8),
1560			BPF_LDX_MEM(BPF_DW, BPF_REG_2, BPF_REG_6,  8),
1561			BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6,  0),
1562			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
1563				    offsetof(struct __sk_buff, mark)),
1564			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_2,
1565				    offsetof(struct __sk_buff, priority)),
1566			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_2),
1567			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_3),
1568			BPF_EXIT_INSN(),
1569		},
1570		.result = ACCEPT,
1571		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1572	},
1573	{
1574		"raw_stack: skb_load_bytes, invalid access 1",
1575		.insns = {
1576			BPF_MOV64_IMM(BPF_REG_2, 4),
1577			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1578			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -513),
1579			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1580			BPF_MOV64_IMM(BPF_REG_4, 8),
1581			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1582				     BPF_FUNC_skb_load_bytes),
1583			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1584			BPF_EXIT_INSN(),
1585		},
1586		.result = REJECT,
1587		.errstr = "invalid stack type R3 off=-513 access_size=8",
1588		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1589	},
1590	{
1591		"raw_stack: skb_load_bytes, invalid access 2",
1592		.insns = {
1593			BPF_MOV64_IMM(BPF_REG_2, 4),
1594			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1595			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
1596			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1597			BPF_MOV64_IMM(BPF_REG_4, 8),
1598			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1599				     BPF_FUNC_skb_load_bytes),
1600			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1601			BPF_EXIT_INSN(),
1602		},
1603		.result = REJECT,
1604		.errstr = "invalid stack type R3 off=-1 access_size=8",
1605		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1606	},
1607	{
1608		"raw_stack: skb_load_bytes, invalid access 3",
1609		.insns = {
1610			BPF_MOV64_IMM(BPF_REG_2, 4),
1611			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1612			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 0xffffffff),
1613			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1614			BPF_MOV64_IMM(BPF_REG_4, 0xffffffff),
1615			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1616				     BPF_FUNC_skb_load_bytes),
1617			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1618			BPF_EXIT_INSN(),
1619		},
1620		.result = REJECT,
1621		.errstr = "invalid stack type R3 off=-1 access_size=-1",
1622		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1623	},
1624	{
1625		"raw_stack: skb_load_bytes, invalid access 4",
1626		.insns = {
1627			BPF_MOV64_IMM(BPF_REG_2, 4),
1628			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1629			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -1),
1630			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1631			BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
1632			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1633				     BPF_FUNC_skb_load_bytes),
1634			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1635			BPF_EXIT_INSN(),
1636		},
1637		.result = REJECT,
1638		.errstr = "invalid stack type R3 off=-1 access_size=2147483647",
1639		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1640	},
1641	{
1642		"raw_stack: skb_load_bytes, invalid access 5",
1643		.insns = {
1644			BPF_MOV64_IMM(BPF_REG_2, 4),
1645			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1646			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
1647			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1648			BPF_MOV64_IMM(BPF_REG_4, 0x7fffffff),
1649			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1650				     BPF_FUNC_skb_load_bytes),
1651			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1652			BPF_EXIT_INSN(),
1653		},
1654		.result = REJECT,
1655		.errstr = "invalid stack type R3 off=-512 access_size=2147483647",
1656		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1657	},
1658	{
1659		"raw_stack: skb_load_bytes, invalid access 6",
1660		.insns = {
1661			BPF_MOV64_IMM(BPF_REG_2, 4),
1662			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1663			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
1664			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1665			BPF_MOV64_IMM(BPF_REG_4, 0),
1666			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1667				     BPF_FUNC_skb_load_bytes),
1668			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1669			BPF_EXIT_INSN(),
1670		},
1671		.result = REJECT,
1672		.errstr = "invalid stack type R3 off=-512 access_size=0",
1673		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1674	},
1675	{
1676		"raw_stack: skb_load_bytes, large access",
1677		.insns = {
1678			BPF_MOV64_IMM(BPF_REG_2, 4),
1679			BPF_ALU64_REG(BPF_MOV, BPF_REG_6, BPF_REG_10),
1680			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, -512),
1681			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
1682			BPF_MOV64_IMM(BPF_REG_4, 512),
1683			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1684				     BPF_FUNC_skb_load_bytes),
1685			BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_6, 0),
1686			BPF_EXIT_INSN(),
1687		},
1688		.result = ACCEPT,
1689		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1690	},
1691	{
1692		"direct packet access: test1",
1693		.insns = {
1694			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1695				    offsetof(struct __sk_buff, data)),
1696			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1697				    offsetof(struct __sk_buff, data_end)),
1698			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
1699			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
1700			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
1701			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1702			BPF_MOV64_IMM(BPF_REG_0, 0),
1703			BPF_EXIT_INSN(),
1704		},
1705		.result = ACCEPT,
1706		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1707	},
1708	{
1709		"direct packet access: test2",
1710		.insns = {
1711			BPF_MOV64_IMM(BPF_REG_0, 1),
1712			BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_1,
1713				    offsetof(struct __sk_buff, data_end)),
1714			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1715				    offsetof(struct __sk_buff, data)),
1716			BPF_MOV64_REG(BPF_REG_5, BPF_REG_3),
1717			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14),
1718			BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_4, 15),
1719			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_3, 7),
1720			BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_3, 12),
1721			BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 14),
1722			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1723				    offsetof(struct __sk_buff, data)),
1724			BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_4),
1725			BPF_MOV64_REG(BPF_REG_2, BPF_REG_1),
1726			BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 48),
1727			BPF_ALU64_IMM(BPF_RSH, BPF_REG_2, 48),
1728			BPF_ALU64_REG(BPF_ADD, BPF_REG_3, BPF_REG_2),
1729			BPF_MOV64_REG(BPF_REG_2, BPF_REG_3),
1730			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
1731			BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_1,
1732				    offsetof(struct __sk_buff, data_end)),
1733			BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
1734			BPF_LDX_MEM(BPF_B, BPF_REG_1, BPF_REG_3, 4),
1735			BPF_MOV64_IMM(BPF_REG_0, 0),
1736			BPF_EXIT_INSN(),
1737		},
1738		.result = ACCEPT,
1739		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1740	},
1741	{
1742		"direct packet access: test3",
1743		.insns = {
1744			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1745				    offsetof(struct __sk_buff, data)),
1746			BPF_MOV64_IMM(BPF_REG_0, 0),
1747			BPF_EXIT_INSN(),
1748		},
1749		.errstr = "invalid bpf_context access off=76",
1750		.result = REJECT,
1751		.prog_type = BPF_PROG_TYPE_SOCKET_FILTER,
1752	},
1753	{
1754		"direct packet access: test4 (write)",
1755		.insns = {
1756			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1757				    offsetof(struct __sk_buff, data)),
1758			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1759				    offsetof(struct __sk_buff, data_end)),
1760			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
1761			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
1762			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
1763			BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
1764			BPF_MOV64_IMM(BPF_REG_0, 0),
1765			BPF_EXIT_INSN(),
1766		},
1767		.result = ACCEPT,
1768		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1769	},
1770	{
1771		"direct packet access: test5 (pkt_end >= reg, good access)",
1772		.insns = {
1773			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1774				    offsetof(struct __sk_buff, data)),
1775			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1776				    offsetof(struct __sk_buff, data_end)),
1777			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
1778			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
1779			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
1780			BPF_MOV64_IMM(BPF_REG_0, 1),
1781			BPF_EXIT_INSN(),
1782			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1783			BPF_MOV64_IMM(BPF_REG_0, 0),
1784			BPF_EXIT_INSN(),
1785		},
1786		.result = ACCEPT,
1787		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1788	},
1789	{
1790		"direct packet access: test6 (pkt_end >= reg, bad access)",
1791		.insns = {
1792			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1793				    offsetof(struct __sk_buff, data)),
1794			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1795				    offsetof(struct __sk_buff, data_end)),
1796			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
1797			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
1798			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
1799			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1800			BPF_MOV64_IMM(BPF_REG_0, 1),
1801			BPF_EXIT_INSN(),
1802			BPF_MOV64_IMM(BPF_REG_0, 0),
1803			BPF_EXIT_INSN(),
1804		},
1805		.errstr = "invalid access to packet",
1806		.result = REJECT,
1807		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1808	},
1809	{
1810		"direct packet access: test7 (pkt_end >= reg, both accesses)",
1811		.insns = {
1812			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1813				    offsetof(struct __sk_buff, data)),
1814			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1815				    offsetof(struct __sk_buff, data_end)),
1816			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
1817			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
1818			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 3),
1819			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1820			BPF_MOV64_IMM(BPF_REG_0, 1),
1821			BPF_EXIT_INSN(),
1822			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1823			BPF_MOV64_IMM(BPF_REG_0, 0),
1824			BPF_EXIT_INSN(),
1825		},
1826		.errstr = "invalid access to packet",
1827		.result = REJECT,
1828		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1829	},
1830	{
1831		"direct packet access: test8 (double test, variant 1)",
1832		.insns = {
1833			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1834				    offsetof(struct __sk_buff, data)),
1835			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1836				    offsetof(struct __sk_buff, data_end)),
1837			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
1838			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
1839			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 4),
1840			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
1841			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1842			BPF_MOV64_IMM(BPF_REG_0, 1),
1843			BPF_EXIT_INSN(),
1844			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1845			BPF_MOV64_IMM(BPF_REG_0, 0),
1846			BPF_EXIT_INSN(),
1847		},
1848		.result = ACCEPT,
1849		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1850	},
1851	{
1852		"direct packet access: test9 (double test, variant 2)",
1853		.insns = {
1854			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1855				    offsetof(struct __sk_buff, data)),
1856			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1857				    offsetof(struct __sk_buff, data_end)),
1858			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
1859			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
1860			BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 2),
1861			BPF_MOV64_IMM(BPF_REG_0, 1),
1862			BPF_EXIT_INSN(),
1863			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
1864			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1865			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
1866			BPF_MOV64_IMM(BPF_REG_0, 0),
1867			BPF_EXIT_INSN(),
1868		},
1869		.result = ACCEPT,
1870		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1871	},
1872	{
1873		"direct packet access: test10 (write invalid)",
1874		.insns = {
1875			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1876				    offsetof(struct __sk_buff, data)),
1877			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1878				    offsetof(struct __sk_buff, data_end)),
1879			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
1880			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
1881			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 2),
1882			BPF_MOV64_IMM(BPF_REG_0, 0),
1883			BPF_EXIT_INSN(),
1884			BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
1885			BPF_MOV64_IMM(BPF_REG_0, 0),
1886			BPF_EXIT_INSN(),
1887		},
1888		.errstr = "invalid access to packet",
1889		.result = REJECT,
1890		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
1891	},
1892	{
1893		"helper access to packet: test1, valid packet_ptr range",
1894		.insns = {
1895			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1896				    offsetof(struct xdp_md, data)),
1897			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1898				    offsetof(struct xdp_md, data_end)),
1899			BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
1900			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
1901			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
1902			BPF_LD_MAP_FD(BPF_REG_1, 0),
1903			BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
1904			BPF_MOV64_IMM(BPF_REG_4, 0),
1905			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1906				     BPF_FUNC_map_update_elem),
1907			BPF_MOV64_IMM(BPF_REG_0, 0),
1908			BPF_EXIT_INSN(),
1909		},
1910		.fixup_map1 = { 5 },
1911		.result_unpriv = ACCEPT,
1912		.result = ACCEPT,
1913		.prog_type = BPF_PROG_TYPE_XDP,
1914	},
1915	{
1916		"helper access to packet: test2, unchecked packet_ptr",
1917		.insns = {
1918			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1919				    offsetof(struct xdp_md, data)),
1920			BPF_LD_MAP_FD(BPF_REG_1, 0),
1921			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1922				     BPF_FUNC_map_lookup_elem),
1923			BPF_MOV64_IMM(BPF_REG_0, 0),
1924			BPF_EXIT_INSN(),
1925		},
1926		.fixup_map1 = { 1 },
1927		.result = REJECT,
1928		.errstr = "invalid access to packet",
1929		.prog_type = BPF_PROG_TYPE_XDP,
1930	},
1931	{
1932		"helper access to packet: test3, variable add",
1933		.insns = {
1934			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1935					offsetof(struct xdp_md, data)),
1936			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1937					offsetof(struct xdp_md, data_end)),
1938			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
1939			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
1940			BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
1941			BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
1942			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
1943			BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
1944			BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
1945			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
1946			BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
1947			BPF_LD_MAP_FD(BPF_REG_1, 0),
1948			BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
1949			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1950				     BPF_FUNC_map_lookup_elem),
1951			BPF_MOV64_IMM(BPF_REG_0, 0),
1952			BPF_EXIT_INSN(),
1953		},
1954		.fixup_map1 = { 11 },
1955		.result = ACCEPT,
1956		.prog_type = BPF_PROG_TYPE_XDP,
1957	},
1958	{
1959		"helper access to packet: test4, packet_ptr with bad range",
1960		.insns = {
1961			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1962				    offsetof(struct xdp_md, data)),
1963			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1964				    offsetof(struct xdp_md, data_end)),
1965			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
1966			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
1967			BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
1968			BPF_MOV64_IMM(BPF_REG_0, 0),
1969			BPF_EXIT_INSN(),
1970			BPF_LD_MAP_FD(BPF_REG_1, 0),
1971			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1972				     BPF_FUNC_map_lookup_elem),
1973			BPF_MOV64_IMM(BPF_REG_0, 0),
1974			BPF_EXIT_INSN(),
1975		},
1976		.fixup_map1 = { 7 },
1977		.result = REJECT,
1978		.errstr = "invalid access to packet",
1979		.prog_type = BPF_PROG_TYPE_XDP,
1980	},
1981	{
1982		"helper access to packet: test5, packet_ptr with too short range",
1983		.insns = {
1984			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
1985				    offsetof(struct xdp_md, data)),
1986			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
1987				    offsetof(struct xdp_md, data_end)),
1988			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
1989			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
1990			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
1991			BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
1992			BPF_LD_MAP_FD(BPF_REG_1, 0),
1993			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
1994				     BPF_FUNC_map_lookup_elem),
1995			BPF_MOV64_IMM(BPF_REG_0, 0),
1996			BPF_EXIT_INSN(),
1997		},
1998		.fixup_map1 = { 6 },
1999		.result = REJECT,
2000		.errstr = "invalid access to packet",
2001		.prog_type = BPF_PROG_TYPE_XDP,
2002	},
2003	{
2004		"helper access to packet: test6, cls valid packet_ptr range",
2005		.insns = {
2006			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2007				    offsetof(struct __sk_buff, data)),
2008			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2009				    offsetof(struct __sk_buff, data_end)),
2010			BPF_MOV64_REG(BPF_REG_1, BPF_REG_2),
2011			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 8),
2012			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_3, 5),
2013			BPF_LD_MAP_FD(BPF_REG_1, 0),
2014			BPF_MOV64_REG(BPF_REG_3, BPF_REG_2),
2015			BPF_MOV64_IMM(BPF_REG_4, 0),
2016			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2017				     BPF_FUNC_map_update_elem),
2018			BPF_MOV64_IMM(BPF_REG_0, 0),
2019			BPF_EXIT_INSN(),
2020		},
2021		.fixup_map1 = { 5 },
2022		.result = ACCEPT,
2023		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2024	},
2025	{
2026		"helper access to packet: test7, cls unchecked packet_ptr",
2027		.insns = {
2028			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2029				    offsetof(struct __sk_buff, data)),
2030			BPF_LD_MAP_FD(BPF_REG_1, 0),
2031			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2032				     BPF_FUNC_map_lookup_elem),
2033			BPF_MOV64_IMM(BPF_REG_0, 0),
2034			BPF_EXIT_INSN(),
2035		},
2036		.fixup_map1 = { 1 },
2037		.result = REJECT,
2038		.errstr = "invalid access to packet",
2039		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2040	},
2041	{
2042		"helper access to packet: test8, cls variable add",
2043		.insns = {
2044			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2045					offsetof(struct __sk_buff, data)),
2046			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2047					offsetof(struct __sk_buff, data_end)),
2048			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
2049			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),
2050			BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 10),
2051			BPF_LDX_MEM(BPF_B, BPF_REG_5, BPF_REG_2, 0),
2052			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
2053			BPF_ALU64_REG(BPF_ADD, BPF_REG_4, BPF_REG_5),
2054			BPF_MOV64_REG(BPF_REG_5, BPF_REG_4),
2055			BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 8),
2056			BPF_JMP_REG(BPF_JGT, BPF_REG_5, BPF_REG_3, 4),
2057			BPF_LD_MAP_FD(BPF_REG_1, 0),
2058			BPF_MOV64_REG(BPF_REG_2, BPF_REG_4),
2059			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2060				     BPF_FUNC_map_lookup_elem),
2061			BPF_MOV64_IMM(BPF_REG_0, 0),
2062			BPF_EXIT_INSN(),
2063		},
2064		.fixup_map1 = { 11 },
2065		.result = ACCEPT,
2066		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2067	},
2068	{
2069		"helper access to packet: test9, cls packet_ptr with bad range",
2070		.insns = {
2071			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2072				    offsetof(struct __sk_buff, data)),
2073			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2074				    offsetof(struct __sk_buff, data_end)),
2075			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
2076			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4),
2077			BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 2),
2078			BPF_MOV64_IMM(BPF_REG_0, 0),
2079			BPF_EXIT_INSN(),
2080			BPF_LD_MAP_FD(BPF_REG_1, 0),
2081			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2082				     BPF_FUNC_map_lookup_elem),
2083			BPF_MOV64_IMM(BPF_REG_0, 0),
2084			BPF_EXIT_INSN(),
2085		},
2086		.fixup_map1 = { 7 },
2087		.result = REJECT,
2088		.errstr = "invalid access to packet",
2089		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2090	},
2091	{
2092		"helper access to packet: test10, cls packet_ptr with too short range",
2093		.insns = {
2094			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2095				    offsetof(struct __sk_buff, data)),
2096			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2097				    offsetof(struct __sk_buff, data_end)),
2098			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 1),
2099			BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),
2100			BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 7),
2101			BPF_JMP_REG(BPF_JGT, BPF_REG_4, BPF_REG_3, 3),
2102			BPF_LD_MAP_FD(BPF_REG_1, 0),
2103			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2104				     BPF_FUNC_map_lookup_elem),
2105			BPF_MOV64_IMM(BPF_REG_0, 0),
2106			BPF_EXIT_INSN(),
2107		},
2108		.fixup_map1 = { 6 },
2109		.result = REJECT,
2110		.errstr = "invalid access to packet",
2111		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2112	},
2113	{
2114		"helper access to packet: test11, cls unsuitable helper 1",
2115		.insns = {
2116			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2117				    offsetof(struct __sk_buff, data)),
2118			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2119				    offsetof(struct __sk_buff, data_end)),
2120			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2121			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
2122			BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 7),
2123			BPF_JMP_REG(BPF_JGT, BPF_REG_3, BPF_REG_7, 4),
2124			BPF_MOV64_IMM(BPF_REG_2, 0),
2125			BPF_MOV64_IMM(BPF_REG_4, 42),
2126			BPF_MOV64_IMM(BPF_REG_5, 0),
2127			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2128				     BPF_FUNC_skb_store_bytes),
2129			BPF_MOV64_IMM(BPF_REG_0, 0),
2130			BPF_EXIT_INSN(),
2131		},
2132		.result = REJECT,
2133		.errstr = "helper access to the packet",
2134		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2135	},
2136	{
2137		"helper access to packet: test12, cls unsuitable helper 2",
2138		.insns = {
2139			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2140				    offsetof(struct __sk_buff, data)),
2141			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2142				    offsetof(struct __sk_buff, data_end)),
2143			BPF_MOV64_REG(BPF_REG_3, BPF_REG_6),
2144			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 8),
2145			BPF_JMP_REG(BPF_JGT, BPF_REG_6, BPF_REG_7, 3),
2146			BPF_MOV64_IMM(BPF_REG_2, 0),
2147			BPF_MOV64_IMM(BPF_REG_4, 4),
2148			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2149				     BPF_FUNC_skb_load_bytes),
2150			BPF_MOV64_IMM(BPF_REG_0, 0),
2151			BPF_EXIT_INSN(),
2152		},
2153		.result = REJECT,
2154		.errstr = "helper access to the packet",
2155		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2156	},
2157	{
2158		"helper access to packet: test13, cls helper ok",
2159		.insns = {
2160			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2161				    offsetof(struct __sk_buff, data)),
2162			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2163				    offsetof(struct __sk_buff, data_end)),
2164			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2165			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2166			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
2167			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
2168			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2169			BPF_MOV64_IMM(BPF_REG_2, 4),
2170			BPF_MOV64_IMM(BPF_REG_3, 0),
2171			BPF_MOV64_IMM(BPF_REG_4, 0),
2172			BPF_MOV64_IMM(BPF_REG_5, 0),
2173			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2174				     BPF_FUNC_csum_diff),
2175			BPF_MOV64_IMM(BPF_REG_0, 0),
2176			BPF_EXIT_INSN(),
2177		},
2178		.result = ACCEPT,
2179		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2180	},
2181	{
2182		"helper access to packet: test14, cls helper fail sub",
2183		.insns = {
2184			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2185				    offsetof(struct __sk_buff, data)),
2186			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2187				    offsetof(struct __sk_buff, data_end)),
2188			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2189			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2190			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
2191			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
2192			BPF_ALU64_IMM(BPF_SUB, BPF_REG_1, 4),
2193			BPF_MOV64_IMM(BPF_REG_2, 4),
2194			BPF_MOV64_IMM(BPF_REG_3, 0),
2195			BPF_MOV64_IMM(BPF_REG_4, 0),
2196			BPF_MOV64_IMM(BPF_REG_5, 0),
2197			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2198				     BPF_FUNC_csum_diff),
2199			BPF_MOV64_IMM(BPF_REG_0, 0),
2200			BPF_EXIT_INSN(),
2201		},
2202		.result = REJECT,
2203		.errstr = "type=inv expected=fp",
2204		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2205	},
2206	{
2207		"helper access to packet: test15, cls helper fail range 1",
2208		.insns = {
2209			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2210				    offsetof(struct __sk_buff, data)),
2211			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2212				    offsetof(struct __sk_buff, data_end)),
2213			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2214			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2215			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
2216			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
2217			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2218			BPF_MOV64_IMM(BPF_REG_2, 8),
2219			BPF_MOV64_IMM(BPF_REG_3, 0),
2220			BPF_MOV64_IMM(BPF_REG_4, 0),
2221			BPF_MOV64_IMM(BPF_REG_5, 0),
2222			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2223				     BPF_FUNC_csum_diff),
2224			BPF_MOV64_IMM(BPF_REG_0, 0),
2225			BPF_EXIT_INSN(),
2226		},
2227		.result = REJECT,
2228		.errstr = "invalid access to packet",
2229		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2230	},
2231	{
2232		"helper access to packet: test16, cls helper fail range 2",
2233		.insns = {
2234			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2235				    offsetof(struct __sk_buff, data)),
2236			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2237				    offsetof(struct __sk_buff, data_end)),
2238			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2239			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2240			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
2241			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
2242			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2243			BPF_MOV64_IMM(BPF_REG_2, -9),
2244			BPF_MOV64_IMM(BPF_REG_3, 0),
2245			BPF_MOV64_IMM(BPF_REG_4, 0),
2246			BPF_MOV64_IMM(BPF_REG_5, 0),
2247			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2248				     BPF_FUNC_csum_diff),
2249			BPF_MOV64_IMM(BPF_REG_0, 0),
2250			BPF_EXIT_INSN(),
2251		},
2252		.result = REJECT,
2253		.errstr = "invalid access to packet",
2254		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2255	},
2256	{
2257		"helper access to packet: test17, cls helper fail range 3",
2258		.insns = {
2259			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2260				    offsetof(struct __sk_buff, data)),
2261			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2262				    offsetof(struct __sk_buff, data_end)),
2263			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2264			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2265			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
2266			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
2267			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2268			BPF_MOV64_IMM(BPF_REG_2, ~0),
2269			BPF_MOV64_IMM(BPF_REG_3, 0),
2270			BPF_MOV64_IMM(BPF_REG_4, 0),
2271			BPF_MOV64_IMM(BPF_REG_5, 0),
2272			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2273				     BPF_FUNC_csum_diff),
2274			BPF_MOV64_IMM(BPF_REG_0, 0),
2275			BPF_EXIT_INSN(),
2276		},
2277		.result = REJECT,
2278		.errstr = "invalid access to packet",
2279		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2280	},
2281	{
2282		"helper access to packet: test18, cls helper fail range zero",
2283		.insns = {
2284			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2285				    offsetof(struct __sk_buff, data)),
2286			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2287				    offsetof(struct __sk_buff, data_end)),
2288			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2289			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2290			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
2291			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
2292			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2293			BPF_MOV64_IMM(BPF_REG_2, 0),
2294			BPF_MOV64_IMM(BPF_REG_3, 0),
2295			BPF_MOV64_IMM(BPF_REG_4, 0),
2296			BPF_MOV64_IMM(BPF_REG_5, 0),
2297			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2298				     BPF_FUNC_csum_diff),
2299			BPF_MOV64_IMM(BPF_REG_0, 0),
2300			BPF_EXIT_INSN(),
2301		},
2302		.result = REJECT,
2303		.errstr = "invalid access to packet",
2304		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2305	},
2306	{
2307		"helper access to packet: test19, pkt end as input",
2308		.insns = {
2309			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2310				    offsetof(struct __sk_buff, data)),
2311			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2312				    offsetof(struct __sk_buff, data_end)),
2313			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2314			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2315			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
2316			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
2317			BPF_MOV64_REG(BPF_REG_1, BPF_REG_7),
2318			BPF_MOV64_IMM(BPF_REG_2, 4),
2319			BPF_MOV64_IMM(BPF_REG_3, 0),
2320			BPF_MOV64_IMM(BPF_REG_4, 0),
2321			BPF_MOV64_IMM(BPF_REG_5, 0),
2322			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2323				     BPF_FUNC_csum_diff),
2324			BPF_MOV64_IMM(BPF_REG_0, 0),
2325			BPF_EXIT_INSN(),
2326		},
2327		.result = REJECT,
2328		.errstr = "R1 type=pkt_end expected=fp",
2329		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2330	},
2331	{
2332		"helper access to packet: test20, wrong reg",
2333		.insns = {
2334			BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_1,
2335				    offsetof(struct __sk_buff, data)),
2336			BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_1,
2337				    offsetof(struct __sk_buff, data_end)),
2338			BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 1),
2339			BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
2340			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 7),
2341			BPF_JMP_REG(BPF_JGT, BPF_REG_1, BPF_REG_7, 6),
2342			BPF_MOV64_IMM(BPF_REG_2, 4),
2343			BPF_MOV64_IMM(BPF_REG_3, 0),
2344			BPF_MOV64_IMM(BPF_REG_4, 0),
2345			BPF_MOV64_IMM(BPF_REG_5, 0),
2346			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2347				     BPF_FUNC_csum_diff),
2348			BPF_MOV64_IMM(BPF_REG_0, 0),
2349			BPF_EXIT_INSN(),
2350		},
2351		.result = REJECT,
2352		.errstr = "invalid access to packet",
2353		.prog_type = BPF_PROG_TYPE_SCHED_CLS,
2354	},
2355	{
2356		"valid map access into an array with a constant",
2357		.insns = {
2358			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2359			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2360			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2361			BPF_LD_MAP_FD(BPF_REG_1, 0),
2362			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2363				     BPF_FUNC_map_lookup_elem),
2364			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
2365			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
2366				   offsetof(struct test_val, foo)),
2367			BPF_EXIT_INSN(),
2368		},
2369		.fixup_map2 = { 3 },
2370		.errstr_unpriv = "R0 leaks addr",
2371		.result_unpriv = REJECT,
2372		.result = ACCEPT,
2373	},
2374	{
2375		"valid map access into an array with a register",
2376		.insns = {
2377			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2378			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2379			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2380			BPF_LD_MAP_FD(BPF_REG_1, 0),
2381			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2382				     BPF_FUNC_map_lookup_elem),
2383			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
2384			BPF_MOV64_IMM(BPF_REG_1, 4),
2385			BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
2386			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
2387			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
2388				   offsetof(struct test_val, foo)),
2389			BPF_EXIT_INSN(),
2390		},
2391		.fixup_map2 = { 3 },
2392		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2393		.result_unpriv = REJECT,
2394		.result = ACCEPT,
2395	},
2396	{
2397		"valid map access into an array with a variable",
2398		.insns = {
2399			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2400			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2401			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2402			BPF_LD_MAP_FD(BPF_REG_1, 0),
2403			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2404				     BPF_FUNC_map_lookup_elem),
2405			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 5),
2406			BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
2407			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES, 3),
2408			BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
2409			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
2410			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
2411				   offsetof(struct test_val, foo)),
2412			BPF_EXIT_INSN(),
2413		},
2414		.fixup_map2 = { 3 },
2415		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2416		.result_unpriv = REJECT,
2417		.result = ACCEPT,
2418	},
2419	{
2420		"valid map access into an array with a signed variable",
2421		.insns = {
2422			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2423			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2424			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2425			BPF_LD_MAP_FD(BPF_REG_1, 0),
2426			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2427				     BPF_FUNC_map_lookup_elem),
2428			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 9),
2429			BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
2430			BPF_JMP_IMM(BPF_JSGT, BPF_REG_1, 0xffffffff, 1),
2431			BPF_MOV32_IMM(BPF_REG_1, 0),
2432			BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
2433			BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
2434			BPF_MOV32_IMM(BPF_REG_1, 0),
2435			BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
2436			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
2437			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
2438				   offsetof(struct test_val, foo)),
2439			BPF_EXIT_INSN(),
2440		},
2441		.fixup_map2 = { 3 },
2442		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2443		.result_unpriv = REJECT,
2444		.result = ACCEPT,
2445	},
2446	{
2447		"invalid map access into an array with a constant",
2448		.insns = {
2449			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2450			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2451			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2452			BPF_LD_MAP_FD(BPF_REG_1, 0),
2453			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2454				     BPF_FUNC_map_lookup_elem),
2455			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
2456			BPF_ST_MEM(BPF_DW, BPF_REG_0, (MAX_ENTRIES + 1) << 2,
2457				   offsetof(struct test_val, foo)),
2458			BPF_EXIT_INSN(),
2459		},
2460		.fixup_map2 = { 3 },
2461		.errstr = "invalid access to map value, value_size=48 off=48 size=8",
2462		.result = REJECT,
2463	},
2464	{
2465		"invalid map access into an array with a register",
2466		.insns = {
2467			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2468			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2469			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2470			BPF_LD_MAP_FD(BPF_REG_1, 0),
2471			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2472				     BPF_FUNC_map_lookup_elem),
2473			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
2474			BPF_MOV64_IMM(BPF_REG_1, MAX_ENTRIES + 1),
2475			BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
2476			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
2477			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
2478				   offsetof(struct test_val, foo)),
2479			BPF_EXIT_INSN(),
2480		},
2481		.fixup_map2 = { 3 },
2482		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2483		.errstr = "R0 min value is outside of the array range",
2484		.result_unpriv = REJECT,
2485		.result = REJECT,
2486	},
2487	{
2488		"invalid map access into an array with a variable",
2489		.insns = {
2490			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2491			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2492			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2493			BPF_LD_MAP_FD(BPF_REG_1, 0),
2494			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2495				     BPF_FUNC_map_lookup_elem),
2496			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 4),
2497			BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
2498			BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
2499			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
2500			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
2501				   offsetof(struct test_val, foo)),
2502			BPF_EXIT_INSN(),
2503		},
2504		.fixup_map2 = { 3 },
2505		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2506		.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
2507		.result_unpriv = REJECT,
2508		.result = REJECT,
2509	},
2510	{
2511		"invalid map access into an array with no floor check",
2512		.insns = {
2513			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2514			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2515			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2516			BPF_LD_MAP_FD(BPF_REG_1, 0),
2517			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2518				     BPF_FUNC_map_lookup_elem),
2519			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
2520			BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
2521			BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES),
2522			BPF_JMP_REG(BPF_JSGT, BPF_REG_2, BPF_REG_1, 1),
2523			BPF_MOV32_IMM(BPF_REG_1, 0),
2524			BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
2525			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
2526			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
2527				   offsetof(struct test_val, foo)),
2528			BPF_EXIT_INSN(),
2529		},
2530		.fixup_map2 = { 3 },
2531		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2532		.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
2533		.result_unpriv = REJECT,
2534		.result = REJECT,
2535	},
2536	{
2537		"invalid map access into an array with a invalid max check",
2538		.insns = {
2539			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2540			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2541			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2542			BPF_LD_MAP_FD(BPF_REG_1, 0),
2543			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2544				     BPF_FUNC_map_lookup_elem),
2545			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 7),
2546			BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
2547			BPF_MOV32_IMM(BPF_REG_2, MAX_ENTRIES + 1),
2548			BPF_JMP_REG(BPF_JGT, BPF_REG_2, BPF_REG_1, 1),
2549			BPF_MOV32_IMM(BPF_REG_1, 0),
2550			BPF_ALU32_IMM(BPF_LSH, BPF_REG_1, 2),
2551			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
2552			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0,
2553				   offsetof(struct test_val, foo)),
2554			BPF_EXIT_INSN(),
2555		},
2556		.fixup_map2 = { 3 },
2557		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2558		.errstr = "invalid access to map value, value_size=48 off=44 size=8",
2559		.result_unpriv = REJECT,
2560		.result = REJECT,
2561	},
2562	{
2563		"invalid map access into an array with a invalid max check",
2564		.insns = {
2565			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2566			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2567			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2568			BPF_LD_MAP_FD(BPF_REG_1, 0),
2569			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2570				     BPF_FUNC_map_lookup_elem),
2571			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 10),
2572			BPF_MOV64_REG(BPF_REG_8, BPF_REG_0),
2573			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2574			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2575			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2576			BPF_LD_MAP_FD(BPF_REG_1, 0),
2577			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2578				     BPF_FUNC_map_lookup_elem),
2579			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),
2580			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_8),
2581			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_0,
2582				    offsetof(struct test_val, foo)),
2583			BPF_EXIT_INSN(),
2584		},
2585		.fixup_map2 = { 3, 11 },
2586		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2587		.errstr = "R0 min value is negative, either use unsigned index or do a if (index >=0) check.",
2588		.result_unpriv = REJECT,
2589		.result = REJECT,
2590	},
2591	{
2592		"multiple registers share map_lookup_elem result",
2593		.insns = {
2594			BPF_MOV64_IMM(BPF_REG_1, 10),
2595			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
2596			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2597			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2598			BPF_LD_MAP_FD(BPF_REG_1, 0),
2599			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2600				     BPF_FUNC_map_lookup_elem),
2601			BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
2602			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
2603			BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
2604			BPF_EXIT_INSN(),
2605		},
2606		.fixup_map1 = { 4 },
2607		.result = ACCEPT,
2608		.prog_type = BPF_PROG_TYPE_SCHED_CLS
2609	},
2610	{
2611		"invalid memory access with multiple map_lookup_elem calls",
2612		.insns = {
2613			BPF_MOV64_IMM(BPF_REG_1, 10),
2614			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
2615			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2616			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2617			BPF_LD_MAP_FD(BPF_REG_1, 0),
2618			BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
2619			BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
2620			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2621				     BPF_FUNC_map_lookup_elem),
2622			BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
2623			BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
2624			BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
2625			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2626				     BPF_FUNC_map_lookup_elem),
2627			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
2628			BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
2629			BPF_EXIT_INSN(),
2630		},
2631		.fixup_map1 = { 4 },
2632		.result = REJECT,
2633		.errstr = "R4 !read_ok",
2634		.prog_type = BPF_PROG_TYPE_SCHED_CLS
2635	},
2636	{
2637		"valid indirect map_lookup_elem access with 2nd lookup in branch",
2638		.insns = {
2639			BPF_MOV64_IMM(BPF_REG_1, 10),
2640			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
2641			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2642			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2643			BPF_LD_MAP_FD(BPF_REG_1, 0),
2644			BPF_MOV64_REG(BPF_REG_8, BPF_REG_1),
2645			BPF_MOV64_REG(BPF_REG_7, BPF_REG_2),
2646			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2647				     BPF_FUNC_map_lookup_elem),
2648			BPF_MOV64_IMM(BPF_REG_2, 10),
2649			BPF_JMP_IMM(BPF_JNE, BPF_REG_2, 0, 3),
2650			BPF_MOV64_REG(BPF_REG_1, BPF_REG_8),
2651			BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
2652			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2653				     BPF_FUNC_map_lookup_elem),
2654			BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
2655			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
2656			BPF_ST_MEM(BPF_DW, BPF_REG_4, 0, 0),
2657			BPF_EXIT_INSN(),
2658		},
2659		.fixup_map1 = { 4 },
2660		.result = ACCEPT,
2661		.prog_type = BPF_PROG_TYPE_SCHED_CLS
2662	},
2663	{
2664		"multiple registers share map_lookup_elem bad reg type",
2665		.insns = {
2666			BPF_MOV64_IMM(BPF_REG_1, 10),
2667			BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_1, -8),
2668			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2669			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2670			BPF_LD_MAP_FD(BPF_REG_1, 0),
2671			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2672				     BPF_FUNC_map_lookup_elem),
2673			BPF_MOV64_REG(BPF_REG_2, BPF_REG_0),
2674			BPF_MOV64_REG(BPF_REG_3, BPF_REG_0),
2675			BPF_MOV64_REG(BPF_REG_4, BPF_REG_0),
2676			BPF_MOV64_REG(BPF_REG_5, BPF_REG_0),
2677			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
2678			BPF_MOV64_IMM(BPF_REG_1, 1),
2679			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
2680			BPF_MOV64_IMM(BPF_REG_1, 2),
2681			BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0, 1),
2682			BPF_ST_MEM(BPF_DW, BPF_REG_3, 0, 0),
2683			BPF_MOV64_IMM(BPF_REG_1, 3),
2684			BPF_EXIT_INSN(),
2685		},
2686		.fixup_map1 = { 4 },
2687		.result = REJECT,
2688		.errstr = "R3 invalid mem access 'inv'",
2689		.prog_type = BPF_PROG_TYPE_SCHED_CLS
2690	},
2691	{
2692		"invalid map access from else condition",
2693		.insns = {
2694			BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
2695			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
2696			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
2697			BPF_LD_MAP_FD(BPF_REG_1, 0),
2698			BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
2699			BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 6),
2700			BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0),
2701			BPF_JMP_IMM(BPF_JGE, BPF_REG_1, MAX_ENTRIES-1, 1),
2702			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, 1),
2703			BPF_ALU64_IMM(BPF_LSH, BPF_REG_1, 2),
2704			BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1),
2705			BPF_ST_MEM(BPF_DW, BPF_REG_0, 0, offsetof(struct test_val, foo)),
2706			BPF_EXIT_INSN(),
2707		},
2708		.fixup_map2 = { 3 },
2709		.errstr = "R0 unbounded memory access, make sure to bounds check any array access into a map",
2710		.result = REJECT,
2711		.errstr_unpriv = "R0 pointer arithmetic prohibited",
2712		.result_unpriv = REJECT,
2713	},
2714	{
2715		"constant register |= constant should keep constant type",
2716		.insns = {
2717			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
2718			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
2719			BPF_MOV64_IMM(BPF_REG_2, 34),
2720			BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 13),
2721			BPF_MOV64_IMM(BPF_REG_3, 0),
2722			BPF_EMIT_CALL(BPF_FUNC_probe_read),
2723			BPF_EXIT_INSN(),
2724		},
2725		.result = ACCEPT,
2726		.prog_type = BPF_PROG_TYPE_TRACEPOINT,
2727	},
2728	{
2729		"constant register |= constant should not bypass stack boundary checks",
2730		.insns = {
2731			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
2732			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
2733			BPF_MOV64_IMM(BPF_REG_2, 34),
2734			BPF_ALU64_IMM(BPF_OR, BPF_REG_2, 24),
2735			BPF_MOV64_IMM(BPF_REG_3, 0),
2736			BPF_EMIT_CALL(BPF_FUNC_probe_read),
2737			BPF_EXIT_INSN(),
2738		},
2739		.errstr = "invalid stack type R1 off=-48 access_size=58",
2740		.result = REJECT,
2741		.prog_type = BPF_PROG_TYPE_TRACEPOINT,
2742	},
2743	{
2744		"constant register |= constant register should keep constant type",
2745		.insns = {
2746			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
2747			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
2748			BPF_MOV64_IMM(BPF_REG_2, 34),
2749			BPF_MOV64_IMM(BPF_REG_4, 13),
2750			BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
2751			BPF_MOV64_IMM(BPF_REG_3, 0),
2752			BPF_EMIT_CALL(BPF_FUNC_probe_read),
2753			BPF_EXIT_INSN(),
2754		},
2755		.result = ACCEPT,
2756		.prog_type = BPF_PROG_TYPE_TRACEPOINT,
2757	},
2758	{
2759		"constant register |= constant register should not bypass stack boundary checks",
2760		.insns = {
2761			BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
2762			BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -48),
2763			BPF_MOV64_IMM(BPF_REG_2, 34),
2764			BPF_MOV64_IMM(BPF_REG_4, 24),
2765			BPF_ALU64_REG(BPF_OR, BPF_REG_2, BPF_REG_4),
2766			BPF_MOV64_IMM(BPF_REG_3, 0),
2767			BPF_EMIT_CALL(BPF_FUNC_probe_read),
2768			BPF_EXIT_INSN(),
2769		},
2770		.errstr = "invalid stack type R1 off=-48 access_size=58",
2771		.result = REJECT,
2772		.prog_type = BPF_PROG_TYPE_TRACEPOINT,
2773	},
2774	{
2775		"invalid direct packet write for LWT_IN",
2776		.insns = {
2777			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2778				    offsetof(struct __sk_buff, data)),
2779			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2780				    offsetof(struct __sk_buff, data_end)),
2781			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
2782			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
2783			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
2784			BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
2785			BPF_MOV64_IMM(BPF_REG_0, 0),
2786			BPF_EXIT_INSN(),
2787		},
2788		.errstr = "cannot write into packet",
2789		.result = REJECT,
2790		.prog_type = BPF_PROG_TYPE_LWT_IN,
2791	},
2792	{
2793		"invalid direct packet write for LWT_OUT",
2794		.insns = {
2795			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2796				    offsetof(struct __sk_buff, data)),
2797			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2798				    offsetof(struct __sk_buff, data_end)),
2799			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
2800			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
2801			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
2802			BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
2803			BPF_MOV64_IMM(BPF_REG_0, 0),
2804			BPF_EXIT_INSN(),
2805		},
2806		.errstr = "cannot write into packet",
2807		.result = REJECT,
2808		.prog_type = BPF_PROG_TYPE_LWT_OUT,
2809	},
2810	{
2811		"direct packet write for LWT_XMIT",
2812		.insns = {
2813			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2814				    offsetof(struct __sk_buff, data)),
2815			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2816				    offsetof(struct __sk_buff, data_end)),
2817			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
2818			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
2819			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
2820			BPF_STX_MEM(BPF_B, BPF_REG_2, BPF_REG_2, 0),
2821			BPF_MOV64_IMM(BPF_REG_0, 0),
2822			BPF_EXIT_INSN(),
2823		},
2824		.result = ACCEPT,
2825		.prog_type = BPF_PROG_TYPE_LWT_XMIT,
2826	},
2827	{
2828		"direct packet read for LWT_IN",
2829		.insns = {
2830			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2831				    offsetof(struct __sk_buff, data)),
2832			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2833				    offsetof(struct __sk_buff, data_end)),
2834			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
2835			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
2836			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
2837			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
2838			BPF_MOV64_IMM(BPF_REG_0, 0),
2839			BPF_EXIT_INSN(),
2840		},
2841		.result = ACCEPT,
2842		.prog_type = BPF_PROG_TYPE_LWT_IN,
2843	},
2844	{
2845		"direct packet read for LWT_OUT",
2846		.insns = {
2847			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2848				    offsetof(struct __sk_buff, data)),
2849			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2850				    offsetof(struct __sk_buff, data_end)),
2851			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
2852			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
2853			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
2854			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
2855			BPF_MOV64_IMM(BPF_REG_0, 0),
2856			BPF_EXIT_INSN(),
2857		},
2858		.result = ACCEPT,
2859		.prog_type = BPF_PROG_TYPE_LWT_OUT,
2860	},
2861	{
2862		"direct packet read for LWT_XMIT",
2863		.insns = {
2864			BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,
2865				    offsetof(struct __sk_buff, data)),
2866			BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,
2867				    offsetof(struct __sk_buff, data_end)),
2868			BPF_MOV64_REG(BPF_REG_0, BPF_REG_2),
2869			BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8),
2870			BPF_JMP_REG(BPF_JGT, BPF_REG_0, BPF_REG_3, 1),
2871			BPF_LDX_MEM(BPF_B, BPF_REG_0, BPF_REG_2, 0),
2872			BPF_MOV64_IMM(BPF_REG_0, 0),
2873			BPF_EXIT_INSN(),
2874		},
2875		.result = ACCEPT,
2876		.prog_type = BPF_PROG_TYPE_LWT_XMIT,
2877	},
2878	{
2879		"invalid access of tc_classid for LWT_IN",
2880		.insns = {
2881			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
2882				    offsetof(struct __sk_buff, tc_classid)),
2883			BPF_EXIT_INSN(),
2884		},
2885		.result = REJECT,
2886		.errstr = "invalid bpf_context access",
2887	},
2888	{
2889		"invalid access of tc_classid for LWT_OUT",
2890		.insns = {
2891			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
2892				    offsetof(struct __sk_buff, tc_classid)),
2893			BPF_EXIT_INSN(),
2894		},
2895		.result = REJECT,
2896		.errstr = "invalid bpf_context access",
2897	},
2898	{
2899		"invalid access of tc_classid for LWT_XMIT",
2900		.insns = {
2901			BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_1,
2902				    offsetof(struct __sk_buff, tc_classid)),
2903			BPF_EXIT_INSN(),
2904		},
2905		.result = REJECT,
2906		.errstr = "invalid bpf_context access",
2907	},
2908};
2909
2910static int probe_filter_length(const struct bpf_insn *fp)
2911{
2912	int len;
2913
2914	for (len = MAX_INSNS - 1; len > 0; --len)
2915		if (fp[len].code != 0 || fp[len].imm != 0)
2916			break;
2917	return len + 1;
2918}
2919
2920static int create_map(uint32_t size_value, uint32_t max_elem)
 
 
 
 
 
 
 
 
 
 
 
 
2921{
 
2922	int fd;
2923
2924	fd = bpf_map_create(BPF_MAP_TYPE_HASH, sizeof(long long),
2925			    size_value, max_elem, BPF_F_NO_PREALLOC);
2926	if (fd < 0)
 
 
2927		printf("Failed to create hash map '%s'!\n", strerror(errno));
 
2928
2929	return fd;
2930}
2931
2932static int create_prog_array(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2933{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2934	int fd;
2935
2936	fd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
2937			    sizeof(int), 4, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2938	if (fd < 0)
2939		printf("Failed to create prog array '%s'!\n", strerror(errno));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940
 
 
 
 
2941	return fd;
2942}
2943
2944static char bpf_vlog[32768];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2945
2946static void do_test_fixup(struct bpf_test *test, struct bpf_insn *prog,
2947			  int *fd_f1, int *fd_f2, int *fd_f3)
2948{
2949	int *fixup_map1 = test->fixup_map1;
2950	int *fixup_map2 = test->fixup_map2;
2951	int *fixup_prog = test->fixup_prog;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2952
2953	/* Allocating HTs with 1 elem is fine here, since we only test
2954	 * for verifier and not do a runtime lookup, so the only thing
2955	 * that really matters is value size in this case.
2956	 */
2957	if (*fixup_map1) {
2958		*fd_f1 = create_map(sizeof(long long), 1);
 
2959		do {
2960			prog[*fixup_map1].imm = *fd_f1;
2961			fixup_map1++;
2962		} while (*fixup_map1);
2963	}
2964
2965	if (*fixup_map2) {
2966		*fd_f2 = create_map(sizeof(struct test_val), 1);
 
2967		do {
2968			prog[*fixup_map2].imm = *fd_f2;
2969			fixup_map2++;
2970		} while (*fixup_map2);
2971	}
2972
2973	if (*fixup_prog) {
2974		*fd_f3 = create_prog_array();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2975		do {
2976			prog[*fixup_prog].imm = *fd_f3;
2977			fixup_prog++;
2978		} while (*fixup_prog);
2979	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2980}
2981
2982static void do_test_single(struct bpf_test *test, bool unpriv,
2983			   int *passes, int *errors)
2984{
 
 
2985	struct bpf_insn *prog = test->insns;
2986	int prog_len = probe_filter_length(prog);
2987	int prog_type = test->prog_type;
2988	int fd_f1 = -1, fd_f2 = -1, fd_f3 = -1;
2989	int fd_prog, expected_ret;
2990	const char *expected_err;
 
 
 
 
 
 
 
 
 
 
 
 
2991
2992	do_test_fixup(test, prog, &fd_f1, &fd_f2, &fd_f3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2993
2994	fd_prog = bpf_prog_load(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER,
2995				prog, prog_len * sizeof(struct bpf_insn),
2996				"GPL", bpf_vlog, sizeof(bpf_vlog));
 
 
 
 
2997
2998	expected_ret = unpriv && test->result_unpriv != UNDEF ?
2999		       test->result_unpriv : test->result;
3000	expected_err = unpriv && test->errstr_unpriv ?
3001		       test->errstr_unpriv : test->errstr;
3002	if (expected_ret == ACCEPT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3003		if (fd_prog < 0) {
3004			printf("FAIL\nFailed to load prog '%s'!\n",
3005			       strerror(errno));
 
 
 
 
 
 
 
 
3006			goto fail_log;
3007		}
3008	} else {
3009		if (fd_prog >= 0) {
3010			printf("FAIL\nUnexpected success to load!\n");
3011			goto fail_log;
3012		}
3013		if (!strstr(bpf_vlog, expected_err)) {
3014			printf("FAIL\nUnexpected error message!\n");
 
3015			goto fail_log;
3016		}
3017	}
3018
3019	(*passes)++;
3020	printf("OK\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021close_fds:
 
 
3022	close(fd_prog);
3023	close(fd_f1);
3024	close(fd_f2);
3025	close(fd_f3);
3026	sched_yield();
3027	return;
3028fail_log:
3029	(*errors)++;
3030	printf("%s", bpf_vlog);
3031	goto close_fds;
3032}
3033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3034static int do_test(bool unpriv, unsigned int from, unsigned int to)
3035{
3036	int i, passes = 0, errors = 0;
3037
 
 
 
 
 
 
3038	for (i = from; i < to; i++) {
3039		struct bpf_test *test = &tests[i];
3040
3041		/* Program types that are not supported by non-root we
3042		 * skip right away.
3043		 */
3044		if (unpriv && test->prog_type)
3045			continue;
 
 
 
 
 
 
 
 
 
3046
3047		printf("#%d %s ", i, test->descr);
3048		do_test_single(test, unpriv, &passes, &errors);
 
 
 
 
 
3049	}
3050
3051	printf("Summary: %d PASSED, %d FAILED\n", passes, errors);
3052	return errors ? -errors : 0;
 
 
 
 
3053}
3054
3055int main(int argc, char **argv)
3056{
3057	struct rlimit rinf = { RLIM_INFINITY, RLIM_INFINITY };
3058	struct rlimit rlim = { 1 << 20, 1 << 20 };
3059	unsigned int from = 0, to = ARRAY_SIZE(tests);
3060	bool unpriv = geteuid() != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061
3062	if (argc == 3) {
3063		unsigned int l = atoi(argv[argc - 2]);
3064		unsigned int u = atoi(argv[argc - 1]);
3065
3066		if (l < to && u < to) {
3067			from = l;
3068			to   = u + 1;
3069		}
3070	} else if (argc == 2) {
3071		unsigned int t = atoi(argv[argc - 1]);
3072
3073		if (t < to) {
3074			from = t;
3075			to   = t + 1;
3076		}
3077	}
3078
3079	setrlimit(RLIMIT_MEMLOCK, unpriv ? &rlim : &rinf);
 
 
 
 
 
 
 
 
 
 
 
 
3080	return do_test(unpriv, from, to);
3081}