Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * sound/soc/omap/mcbsp.c
   3 *
   4 * Copyright (C) 2004 Nokia Corporation
   5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com>
   6 *
   7 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
   8 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 *
  14 * Multichannel mode not supported.
  15 */
  16
  17#include <linux/module.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/platform_device.h>
  21#include <linux/interrupt.h>
  22#include <linux/err.h>
  23#include <linux/clk.h>
  24#include <linux/delay.h>
  25#include <linux/io.h>
  26#include <linux/slab.h>
  27#include <linux/pm_runtime.h>
  28
  29#include <linux/platform_data/asoc-ti-mcbsp.h>
  30
  31#include "mcbsp.h"
  32
  33static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
  34{
  35	void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
  36
  37	if (mcbsp->pdata->reg_size == 2) {
  38		((u16 *)mcbsp->reg_cache)[reg] = (u16)val;
  39		writew_relaxed((u16)val, addr);
  40	} else {
  41		((u32 *)mcbsp->reg_cache)[reg] = val;
  42		writel_relaxed(val, addr);
  43	}
  44}
  45
  46static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache)
  47{
  48	void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
  49
  50	if (mcbsp->pdata->reg_size == 2) {
  51		return !from_cache ? readw_relaxed(addr) :
  52				     ((u16 *)mcbsp->reg_cache)[reg];
  53	} else {
  54		return !from_cache ? readl_relaxed(addr) :
  55				     ((u32 *)mcbsp->reg_cache)[reg];
  56	}
  57}
  58
  59static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
  60{
  61	writel_relaxed(val, mcbsp->st_data->io_base_st + reg);
  62}
  63
  64static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg)
  65{
  66	return readl_relaxed(mcbsp->st_data->io_base_st + reg);
  67}
  68
  69#define MCBSP_READ(mcbsp, reg) \
  70		omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0)
  71#define MCBSP_WRITE(mcbsp, reg, val) \
  72		omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val)
  73#define MCBSP_READ_CACHE(mcbsp, reg) \
  74		omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1)
  75
  76#define MCBSP_ST_READ(mcbsp, reg) \
  77			omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg)
  78#define MCBSP_ST_WRITE(mcbsp, reg, val) \
  79			omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val)
  80
  81static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
  82{
  83	dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
  84	dev_dbg(mcbsp->dev, "DRR2:  0x%04x\n",
  85			MCBSP_READ(mcbsp, DRR2));
  86	dev_dbg(mcbsp->dev, "DRR1:  0x%04x\n",
  87			MCBSP_READ(mcbsp, DRR1));
  88	dev_dbg(mcbsp->dev, "DXR2:  0x%04x\n",
  89			MCBSP_READ(mcbsp, DXR2));
  90	dev_dbg(mcbsp->dev, "DXR1:  0x%04x\n",
  91			MCBSP_READ(mcbsp, DXR1));
  92	dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n",
  93			MCBSP_READ(mcbsp, SPCR2));
  94	dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n",
  95			MCBSP_READ(mcbsp, SPCR1));
  96	dev_dbg(mcbsp->dev, "RCR2:  0x%04x\n",
  97			MCBSP_READ(mcbsp, RCR2));
  98	dev_dbg(mcbsp->dev, "RCR1:  0x%04x\n",
  99			MCBSP_READ(mcbsp, RCR1));
 100	dev_dbg(mcbsp->dev, "XCR2:  0x%04x\n",
 101			MCBSP_READ(mcbsp, XCR2));
 102	dev_dbg(mcbsp->dev, "XCR1:  0x%04x\n",
 103			MCBSP_READ(mcbsp, XCR1));
 104	dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n",
 105			MCBSP_READ(mcbsp, SRGR2));
 106	dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n",
 107			MCBSP_READ(mcbsp, SRGR1));
 108	dev_dbg(mcbsp->dev, "PCR0:  0x%04x\n",
 109			MCBSP_READ(mcbsp, PCR0));
 110	dev_dbg(mcbsp->dev, "***********************\n");
 111}
 112
 113static irqreturn_t omap_mcbsp_irq_handler(int irq, void *dev_id)
 114{
 115	struct omap_mcbsp *mcbsp = dev_id;
 116	u16 irqst;
 117
 118	irqst = MCBSP_READ(mcbsp, IRQST);
 119	dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
 120
 121	if (irqst & RSYNCERREN)
 122		dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
 123	if (irqst & RFSREN)
 124		dev_dbg(mcbsp->dev, "RX Frame Sync\n");
 125	if (irqst & REOFEN)
 126		dev_dbg(mcbsp->dev, "RX End Of Frame\n");
 127	if (irqst & RRDYEN)
 128		dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
 129	if (irqst & RUNDFLEN)
 130		dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
 131	if (irqst & ROVFLEN)
 132		dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
 133
 134	if (irqst & XSYNCERREN)
 135		dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
 136	if (irqst & XFSXEN)
 137		dev_dbg(mcbsp->dev, "TX Frame Sync\n");
 138	if (irqst & XEOFEN)
 139		dev_dbg(mcbsp->dev, "TX End Of Frame\n");
 140	if (irqst & XRDYEN)
 141		dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
 142	if (irqst & XUNDFLEN)
 143		dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
 144	if (irqst & XOVFLEN)
 145		dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
 146	if (irqst & XEMPTYEOFEN)
 147		dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
 148
 149	MCBSP_WRITE(mcbsp, IRQST, irqst);
 150
 151	return IRQ_HANDLED;
 152}
 153
 154static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
 155{
 156	struct omap_mcbsp *mcbsp_tx = dev_id;
 157	u16 irqst_spcr2;
 158
 159	irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2);
 160	dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
 161
 162	if (irqst_spcr2 & XSYNC_ERR) {
 163		dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n",
 164			irqst_spcr2);
 165		/* Writing zero to XSYNC_ERR clears the IRQ */
 166		MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2));
 167	}
 168
 169	return IRQ_HANDLED;
 170}
 171
 172static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
 173{
 174	struct omap_mcbsp *mcbsp_rx = dev_id;
 175	u16 irqst_spcr1;
 176
 177	irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1);
 178	dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
 179
 180	if (irqst_spcr1 & RSYNC_ERR) {
 181		dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n",
 182			irqst_spcr1);
 183		/* Writing zero to RSYNC_ERR clears the IRQ */
 184		MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1));
 185	}
 186
 187	return IRQ_HANDLED;
 188}
 189
 190/*
 191 * omap_mcbsp_config simply write a config to the
 192 * appropriate McBSP.
 193 * You either call this function or set the McBSP registers
 194 * by yourself before calling omap_mcbsp_start().
 195 */
 196void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
 197		       const struct omap_mcbsp_reg_cfg *config)
 198{
 199	dev_dbg(mcbsp->dev, "Configuring McBSP%d  phys_base: 0x%08lx\n",
 200			mcbsp->id, mcbsp->phys_base);
 201
 202	/* We write the given config */
 203	MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
 204	MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
 205	MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
 206	MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
 207	MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
 208	MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
 209	MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
 210	MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
 211	MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
 212	MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
 213	MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
 214	if (mcbsp->pdata->has_ccr) {
 215		MCBSP_WRITE(mcbsp, XCCR, config->xccr);
 216		MCBSP_WRITE(mcbsp, RCCR, config->rccr);
 217	}
 218	/* Enable wakeup behavior */
 219	if (mcbsp->pdata->has_wakeup)
 220		MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
 221
 222	/* Enable TX/RX sync error interrupts by default */
 223	if (mcbsp->irq)
 224		MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN |
 225			    RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN);
 226}
 227
 228/**
 229 * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
 230 * @id - mcbsp id
 231 * @stream - indicates the direction of data flow (rx or tx)
 232 *
 233 * Returns the address of mcbsp data transmit register or data receive register
 234 * to be used by DMA for transferring/receiving data based on the value of
 235 * @stream for the requested mcbsp given by @id
 236 */
 237static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
 238				     unsigned int stream)
 239{
 240	int data_reg;
 241
 242	if (mcbsp->pdata->reg_size == 2) {
 243		if (stream)
 244			data_reg = OMAP_MCBSP_REG_DRR1;
 245		else
 246			data_reg = OMAP_MCBSP_REG_DXR1;
 247	} else {
 248		if (stream)
 249			data_reg = OMAP_MCBSP_REG_DRR;
 250		else
 251			data_reg = OMAP_MCBSP_REG_DXR;
 252	}
 253
 254	return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
 255}
 256
 257static void omap_st_on(struct omap_mcbsp *mcbsp)
 258{
 259	unsigned int w;
 260
 261	if (mcbsp->pdata->force_ick_on)
 262		mcbsp->pdata->force_ick_on(mcbsp->st_data->mcbsp_iclk, true);
 263
 264	/* Disable Sidetone clock auto-gating for normal operation */
 265	w = MCBSP_ST_READ(mcbsp, SYSCONFIG);
 266	MCBSP_ST_WRITE(mcbsp, SYSCONFIG, w & ~(ST_AUTOIDLE));
 267
 268	/* Enable McBSP Sidetone */
 269	w = MCBSP_READ(mcbsp, SSELCR);
 270	MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN);
 271
 272	/* Enable Sidetone from Sidetone Core */
 273	w = MCBSP_ST_READ(mcbsp, SSELCR);
 274	MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN);
 275}
 276
 277static void omap_st_off(struct omap_mcbsp *mcbsp)
 278{
 279	unsigned int w;
 280
 281	w = MCBSP_ST_READ(mcbsp, SSELCR);
 282	MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN));
 283
 284	w = MCBSP_READ(mcbsp, SSELCR);
 285	MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN));
 286
 287	/* Enable Sidetone clock auto-gating to reduce power consumption */
 288	w = MCBSP_ST_READ(mcbsp, SYSCONFIG);
 289	MCBSP_ST_WRITE(mcbsp, SYSCONFIG, w | ST_AUTOIDLE);
 290
 291	if (mcbsp->pdata->force_ick_on)
 292		mcbsp->pdata->force_ick_on(mcbsp->st_data->mcbsp_iclk, false);
 293}
 294
 295static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir)
 296{
 297	u16 val, i;
 298
 299	val = MCBSP_ST_READ(mcbsp, SSELCR);
 300
 301	if (val & ST_COEFFWREN)
 302		MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
 303
 304	MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN);
 305
 306	for (i = 0; i < 128; i++)
 307		MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]);
 308
 309	i = 0;
 310
 311	val = MCBSP_ST_READ(mcbsp, SSELCR);
 312	while (!(val & ST_COEFFWRDONE) && (++i < 1000))
 313		val = MCBSP_ST_READ(mcbsp, SSELCR);
 314
 315	MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
 316
 317	if (i == 1000)
 318		dev_err(mcbsp->dev, "McBSP FIR load error!\n");
 319}
 320
 321static void omap_st_chgain(struct omap_mcbsp *mcbsp)
 322{
 323	u16 w;
 324	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 325
 326	w = MCBSP_ST_READ(mcbsp, SSELCR);
 327
 328	MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \
 329		      ST_CH1GAIN(st_data->ch1gain));
 330}
 331
 332int omap_st_set_chgain(struct omap_mcbsp *mcbsp, int channel, s16 chgain)
 333{
 334	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 335	int ret = 0;
 336
 337	if (!st_data)
 338		return -ENOENT;
 339
 340	spin_lock_irq(&mcbsp->lock);
 341	if (channel == 0)
 342		st_data->ch0gain = chgain;
 343	else if (channel == 1)
 344		st_data->ch1gain = chgain;
 345	else
 346		ret = -EINVAL;
 347
 348	if (st_data->enabled)
 349		omap_st_chgain(mcbsp);
 350	spin_unlock_irq(&mcbsp->lock);
 351
 352	return ret;
 353}
 354
 355int omap_st_get_chgain(struct omap_mcbsp *mcbsp, int channel, s16 *chgain)
 356{
 357	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 358	int ret = 0;
 359
 360	if (!st_data)
 361		return -ENOENT;
 362
 363	spin_lock_irq(&mcbsp->lock);
 364	if (channel == 0)
 365		*chgain = st_data->ch0gain;
 366	else if (channel == 1)
 367		*chgain = st_data->ch1gain;
 368	else
 369		ret = -EINVAL;
 370	spin_unlock_irq(&mcbsp->lock);
 371
 372	return ret;
 373}
 374
 375static int omap_st_start(struct omap_mcbsp *mcbsp)
 376{
 377	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 378
 379	if (st_data->enabled && !st_data->running) {
 380		omap_st_fir_write(mcbsp, st_data->taps);
 381		omap_st_chgain(mcbsp);
 382
 383		if (!mcbsp->free) {
 384			omap_st_on(mcbsp);
 385			st_data->running = 1;
 386		}
 387	}
 388
 389	return 0;
 390}
 391
 392int omap_st_enable(struct omap_mcbsp *mcbsp)
 393{
 394	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 395
 396	if (!st_data)
 397		return -ENODEV;
 398
 399	spin_lock_irq(&mcbsp->lock);
 400	st_data->enabled = 1;
 401	omap_st_start(mcbsp);
 402	spin_unlock_irq(&mcbsp->lock);
 403
 404	return 0;
 405}
 406
 407static int omap_st_stop(struct omap_mcbsp *mcbsp)
 408{
 409	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 410
 411	if (st_data->running) {
 412		if (!mcbsp->free) {
 413			omap_st_off(mcbsp);
 414			st_data->running = 0;
 415		}
 416	}
 417
 418	return 0;
 419}
 420
 421int omap_st_disable(struct omap_mcbsp *mcbsp)
 422{
 423	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 424	int ret = 0;
 425
 426	if (!st_data)
 427		return -ENODEV;
 428
 429	spin_lock_irq(&mcbsp->lock);
 430	omap_st_stop(mcbsp);
 431	st_data->enabled = 0;
 432	spin_unlock_irq(&mcbsp->lock);
 433
 434	return ret;
 435}
 436
 437int omap_st_is_enabled(struct omap_mcbsp *mcbsp)
 438{
 439	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 440
 441	if (!st_data)
 442		return -ENODEV;
 443
 444	return st_data->enabled;
 445}
 446
 447/*
 448 * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
 449 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 450 * for the THRSH2 register.
 451 */
 452void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 453{
 454	if (mcbsp->pdata->buffer_size == 0)
 455		return;
 456
 457	if (threshold && threshold <= mcbsp->max_tx_thres)
 458		MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
 459}
 460
 461/*
 462 * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
 463 * The threshold parameter is 1 based, and it is converted (threshold - 1)
 464 * for the THRSH1 register.
 465 */
 466void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
 467{
 468	if (mcbsp->pdata->buffer_size == 0)
 469		return;
 470
 471	if (threshold && threshold <= mcbsp->max_rx_thres)
 472		MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
 473}
 474
 475/*
 476 * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
 477 */
 478u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
 479{
 480	u16 buffstat;
 481
 482	if (mcbsp->pdata->buffer_size == 0)
 483		return 0;
 484
 485	/* Returns the number of free locations in the buffer */
 486	buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
 487
 488	/* Number of slots are different in McBSP ports */
 489	return mcbsp->pdata->buffer_size - buffstat;
 490}
 491
 492/*
 493 * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
 494 * to reach the threshold value (when the DMA will be triggered to read it)
 495 */
 496u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
 497{
 498	u16 buffstat, threshold;
 499
 500	if (mcbsp->pdata->buffer_size == 0)
 501		return 0;
 502
 503	/* Returns the number of used locations in the buffer */
 504	buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
 505	/* RX threshold */
 506	threshold = MCBSP_READ(mcbsp, THRSH1);
 507
 508	/* Return the number of location till we reach the threshold limit */
 509	if (threshold <= buffstat)
 510		return 0;
 511	else
 512		return threshold - buffstat;
 513}
 514
 515int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
 516{
 517	void *reg_cache;
 518	int err;
 519
 520	reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
 521	if (!reg_cache) {
 522		return -ENOMEM;
 523	}
 524
 525	spin_lock(&mcbsp->lock);
 526	if (!mcbsp->free) {
 527		dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
 528			mcbsp->id);
 529		err = -EBUSY;
 530		goto err_kfree;
 531	}
 532
 533	mcbsp->free = false;
 534	mcbsp->reg_cache = reg_cache;
 535	spin_unlock(&mcbsp->lock);
 536
 537	if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request)
 538		mcbsp->pdata->ops->request(mcbsp->id - 1);
 539
 540	/*
 541	 * Make sure that transmitter, receiver and sample-rate generator are
 542	 * not running before activating IRQs.
 543	 */
 544	MCBSP_WRITE(mcbsp, SPCR1, 0);
 545	MCBSP_WRITE(mcbsp, SPCR2, 0);
 546
 547	if (mcbsp->irq) {
 548		err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
 549				  "McBSP", (void *)mcbsp);
 550		if (err != 0) {
 551			dev_err(mcbsp->dev, "Unable to request IRQ\n");
 552			goto err_clk_disable;
 553		}
 554	} else {
 555		err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
 556				  "McBSP TX", (void *)mcbsp);
 557		if (err != 0) {
 558			dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
 559			goto err_clk_disable;
 560		}
 561
 562		err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
 563				  "McBSP RX", (void *)mcbsp);
 564		if (err != 0) {
 565			dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
 566			goto err_free_irq;
 567		}
 568	}
 569
 570	return 0;
 571err_free_irq:
 572	free_irq(mcbsp->tx_irq, (void *)mcbsp);
 573err_clk_disable:
 574	if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 575		mcbsp->pdata->ops->free(mcbsp->id - 1);
 576
 577	/* Disable wakeup behavior */
 578	if (mcbsp->pdata->has_wakeup)
 579		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 580
 581	spin_lock(&mcbsp->lock);
 582	mcbsp->free = true;
 583	mcbsp->reg_cache = NULL;
 584err_kfree:
 585	spin_unlock(&mcbsp->lock);
 586	kfree(reg_cache);
 587
 588	return err;
 589}
 590
 591void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
 592{
 593	void *reg_cache;
 594
 595	if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
 596		mcbsp->pdata->ops->free(mcbsp->id - 1);
 597
 598	/* Disable wakeup behavior */
 599	if (mcbsp->pdata->has_wakeup)
 600		MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
 601
 602	/* Disable interrupt requests */
 603	if (mcbsp->irq)
 604		MCBSP_WRITE(mcbsp, IRQEN, 0);
 605
 606	if (mcbsp->irq) {
 607		free_irq(mcbsp->irq, (void *)mcbsp);
 608	} else {
 609		free_irq(mcbsp->rx_irq, (void *)mcbsp);
 610		free_irq(mcbsp->tx_irq, (void *)mcbsp);
 611	}
 612
 613	reg_cache = mcbsp->reg_cache;
 614
 615	/*
 616	 * Select CLKS source from internal source unconditionally before
 617	 * marking the McBSP port as free.
 618	 * If the external clock source via MCBSP_CLKS pin has been selected the
 619	 * system will refuse to enter idle if the CLKS pin source is not reset
 620	 * back to internal source.
 621	 */
 622	if (!mcbsp_omap1())
 623		omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
 624
 625	spin_lock(&mcbsp->lock);
 626	if (mcbsp->free)
 627		dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
 628	else
 629		mcbsp->free = true;
 630	mcbsp->reg_cache = NULL;
 631	spin_unlock(&mcbsp->lock);
 632
 633	kfree(reg_cache);
 634}
 635
 636/*
 637 * Here we start the McBSP, by enabling transmitter, receiver or both.
 638 * If no transmitter or receiver is active prior calling, then sample-rate
 639 * generator and frame sync are started.
 640 */
 641void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int tx, int rx)
 642{
 643	int enable_srg = 0;
 644	u16 w;
 645
 646	if (mcbsp->st_data)
 647		omap_st_start(mcbsp);
 648
 649	/* Only enable SRG, if McBSP is master */
 650	w = MCBSP_READ_CACHE(mcbsp, PCR0);
 651	if (w & (FSXM | FSRM | CLKXM | CLKRM))
 652		enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 653				MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 654
 655	if (enable_srg) {
 656		/* Start the sample generator */
 657		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 658		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
 659	}
 660
 661	/* Enable transmitter and receiver */
 662	tx &= 1;
 663	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 664	MCBSP_WRITE(mcbsp, SPCR2, w | tx);
 665
 666	rx &= 1;
 667	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 668	MCBSP_WRITE(mcbsp, SPCR1, w | rx);
 669
 670	/*
 671	 * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
 672	 * REVISIT: 100us may give enough time for two CLKSRG, however
 673	 * due to some unknown PM related, clock gating etc. reason it
 674	 * is now at 500us.
 675	 */
 676	udelay(500);
 677
 678	if (enable_srg) {
 679		/* Start frame sync */
 680		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 681		MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
 682	}
 683
 684	if (mcbsp->pdata->has_ccr) {
 685		/* Release the transmitter and receiver */
 686		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 687		w &= ~(tx ? XDISABLE : 0);
 688		MCBSP_WRITE(mcbsp, XCCR, w);
 689		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 690		w &= ~(rx ? RDISABLE : 0);
 691		MCBSP_WRITE(mcbsp, RCCR, w);
 692	}
 693
 694	/* Dump McBSP Regs */
 695	omap_mcbsp_dump_reg(mcbsp);
 696}
 697
 698void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int tx, int rx)
 699{
 700	int idle;
 701	u16 w;
 702
 703	/* Reset transmitter */
 704	tx &= 1;
 705	if (mcbsp->pdata->has_ccr) {
 706		w = MCBSP_READ_CACHE(mcbsp, XCCR);
 707		w |= (tx ? XDISABLE : 0);
 708		MCBSP_WRITE(mcbsp, XCCR, w);
 709	}
 710	w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 711	MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
 712
 713	/* Reset receiver */
 714	rx &= 1;
 715	if (mcbsp->pdata->has_ccr) {
 716		w = MCBSP_READ_CACHE(mcbsp, RCCR);
 717		w |= (rx ? RDISABLE : 0);
 718		MCBSP_WRITE(mcbsp, RCCR, w);
 719	}
 720	w = MCBSP_READ_CACHE(mcbsp, SPCR1);
 721	MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
 722
 723	idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
 724			MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
 725
 726	if (idle) {
 727		/* Reset the sample rate generator */
 728		w = MCBSP_READ_CACHE(mcbsp, SPCR2);
 729		MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
 730	}
 731
 732	if (mcbsp->st_data)
 733		omap_st_stop(mcbsp);
 734}
 735
 736int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
 737{
 738	struct clk *fck_src;
 739	const char *src;
 740	int r;
 741
 742	if (fck_src_id == MCBSP_CLKS_PAD_SRC)
 743		src = "pad_fck";
 744	else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
 745		src = "prcm_fck";
 746	else
 747		return -EINVAL;
 748
 749	fck_src = clk_get(mcbsp->dev, src);
 750	if (IS_ERR(fck_src)) {
 751		dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
 752		return -EINVAL;
 753	}
 754
 755	pm_runtime_put_sync(mcbsp->dev);
 756
 757	r = clk_set_parent(mcbsp->fclk, fck_src);
 758	if (r) {
 759		dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
 760			src);
 761		clk_put(fck_src);
 762		return r;
 763	}
 764
 765	pm_runtime_get_sync(mcbsp->dev);
 766
 767	clk_put(fck_src);
 768
 769	return 0;
 770
 771}
 772
 773#define max_thres(m)			(mcbsp->pdata->buffer_size)
 774#define valid_threshold(m, val)		((val) <= max_thres(m))
 775#define THRESHOLD_PROP_BUILDER(prop)					\
 776static ssize_t prop##_show(struct device *dev,				\
 777			struct device_attribute *attr, char *buf)	\
 778{									\
 779	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 780									\
 781	return sprintf(buf, "%u\n", mcbsp->prop);			\
 782}									\
 783									\
 784static ssize_t prop##_store(struct device *dev,				\
 785				struct device_attribute *attr,		\
 786				const char *buf, size_t size)		\
 787{									\
 788	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);		\
 789	unsigned long val;						\
 790	int status;							\
 791									\
 792	status = kstrtoul(buf, 0, &val);				\
 793	if (status)							\
 794		return status;						\
 795									\
 796	if (!valid_threshold(mcbsp, val))				\
 797		return -EDOM;						\
 798									\
 799	mcbsp->prop = val;						\
 800	return size;							\
 801}									\
 802									\
 803static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store);
 804
 805THRESHOLD_PROP_BUILDER(max_tx_thres);
 806THRESHOLD_PROP_BUILDER(max_rx_thres);
 807
 808static const char *dma_op_modes[] = {
 809	"element", "threshold",
 810};
 811
 812static ssize_t dma_op_mode_show(struct device *dev,
 813			struct device_attribute *attr, char *buf)
 814{
 815	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 816	int dma_op_mode, i = 0;
 817	ssize_t len = 0;
 818	const char * const *s;
 819
 820	dma_op_mode = mcbsp->dma_op_mode;
 821
 822	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
 823		if (dma_op_mode == i)
 824			len += sprintf(buf + len, "[%s] ", *s);
 825		else
 826			len += sprintf(buf + len, "%s ", *s);
 827	}
 828	len += sprintf(buf + len, "\n");
 829
 830	return len;
 831}
 832
 833static ssize_t dma_op_mode_store(struct device *dev,
 834				struct device_attribute *attr,
 835				const char *buf, size_t size)
 836{
 837	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 838	const char * const *s;
 839	int i = 0;
 840
 841	for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++)
 842		if (sysfs_streq(buf, *s))
 843			break;
 844
 845	if (i == ARRAY_SIZE(dma_op_modes))
 846		return -EINVAL;
 847
 848	spin_lock_irq(&mcbsp->lock);
 849	if (!mcbsp->free) {
 850		size = -EBUSY;
 851		goto unlock;
 852	}
 853	mcbsp->dma_op_mode = i;
 854
 855unlock:
 856	spin_unlock_irq(&mcbsp->lock);
 857
 858	return size;
 859}
 860
 861static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store);
 862
 863static const struct attribute *additional_attrs[] = {
 864	&dev_attr_max_tx_thres.attr,
 865	&dev_attr_max_rx_thres.attr,
 866	&dev_attr_dma_op_mode.attr,
 867	NULL,
 868};
 869
 870static const struct attribute_group additional_attr_group = {
 871	.attrs = (struct attribute **)additional_attrs,
 872};
 873
 874static ssize_t st_taps_show(struct device *dev,
 875			    struct device_attribute *attr, char *buf)
 876{
 877	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 878	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 879	ssize_t status = 0;
 880	int i;
 881
 882	spin_lock_irq(&mcbsp->lock);
 883	for (i = 0; i < st_data->nr_taps; i++)
 884		status += sprintf(&buf[status], (i ? ", %d" : "%d"),
 885				  st_data->taps[i]);
 886	if (i)
 887		status += sprintf(&buf[status], "\n");
 888	spin_unlock_irq(&mcbsp->lock);
 889
 890	return status;
 891}
 892
 893static ssize_t st_taps_store(struct device *dev,
 894			     struct device_attribute *attr,
 895			     const char *buf, size_t size)
 896{
 897	struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
 898	struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
 899	int val, tmp, status, i = 0;
 900
 901	spin_lock_irq(&mcbsp->lock);
 902	memset(st_data->taps, 0, sizeof(st_data->taps));
 903	st_data->nr_taps = 0;
 904
 905	do {
 906		status = sscanf(buf, "%d%n", &val, &tmp);
 907		if (status < 0 || status == 0) {
 908			size = -EINVAL;
 909			goto out;
 910		}
 911		if (val < -32768 || val > 32767) {
 912			size = -EINVAL;
 913			goto out;
 914		}
 915		st_data->taps[i++] = val;
 916		buf += tmp;
 917		if (*buf != ',')
 918			break;
 919		buf++;
 920	} while (1);
 921
 922	st_data->nr_taps = i;
 923
 924out:
 925	spin_unlock_irq(&mcbsp->lock);
 926
 927	return size;
 928}
 929
 930static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store);
 931
 932static const struct attribute *sidetone_attrs[] = {
 933	&dev_attr_st_taps.attr,
 934	NULL,
 935};
 936
 937static const struct attribute_group sidetone_attr_group = {
 938	.attrs = (struct attribute **)sidetone_attrs,
 939};
 940
 941static int omap_st_add(struct omap_mcbsp *mcbsp, struct resource *res)
 942{
 943	struct omap_mcbsp_st_data *st_data;
 944	int err;
 945
 946	st_data = devm_kzalloc(mcbsp->dev, sizeof(*mcbsp->st_data), GFP_KERNEL);
 947	if (!st_data)
 948		return -ENOMEM;
 949
 950	st_data->mcbsp_iclk = clk_get(mcbsp->dev, "ick");
 951	if (IS_ERR(st_data->mcbsp_iclk)) {
 952		dev_warn(mcbsp->dev,
 953			 "Failed to get ick, sidetone might be broken\n");
 954		st_data->mcbsp_iclk = NULL;
 955	}
 956
 957	st_data->io_base_st = devm_ioremap(mcbsp->dev, res->start,
 958					   resource_size(res));
 959	if (!st_data->io_base_st)
 960		return -ENOMEM;
 961
 962	err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group);
 963	if (err)
 964		return err;
 965
 966	mcbsp->st_data = st_data;
 967	return 0;
 968}
 969
 970/*
 971 * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
 972 * 730 has only 2 McBSP, and both of them are MPU peripherals.
 973 */
 974int omap_mcbsp_init(struct platform_device *pdev)
 975{
 976	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
 977	struct resource *res;
 978	int ret = 0;
 979
 980	spin_lock_init(&mcbsp->lock);
 981	mcbsp->free = true;
 982
 983	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
 984	if (!res)
 985		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 986
 987	mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res);
 988	if (IS_ERR(mcbsp->io_base))
 989		return PTR_ERR(mcbsp->io_base);
 990
 991	mcbsp->phys_base = res->start;
 992	mcbsp->reg_cache_size = resource_size(res);
 993
 994	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
 995	if (!res)
 996		mcbsp->phys_dma_base = mcbsp->phys_base;
 997	else
 998		mcbsp->phys_dma_base = res->start;
 999
1000	/*
1001	 * OMAP1, 2 uses two interrupt lines: TX, RX
1002	 * OMAP2430, OMAP3 SoC have combined IRQ line as well.
1003	 * OMAP4 and newer SoC only have the combined IRQ line.
1004	 * Use the combined IRQ if available since it gives better debugging
1005	 * possibilities.
1006	 */
1007	mcbsp->irq = platform_get_irq_byname(pdev, "common");
1008	if (mcbsp->irq == -ENXIO) {
1009		mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
1010
1011		if (mcbsp->tx_irq == -ENXIO) {
1012			mcbsp->irq = platform_get_irq(pdev, 0);
1013			mcbsp->tx_irq = 0;
1014		} else {
1015			mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
1016			mcbsp->irq = 0;
1017		}
1018	}
1019
1020	if (!pdev->dev.of_node) {
1021		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1022		if (!res) {
1023			dev_err(&pdev->dev, "invalid tx DMA channel\n");
1024			return -ENODEV;
1025		}
1026		mcbsp->dma_req[0] = res->start;
1027		mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0];
1028
1029		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1030		if (!res) {
1031			dev_err(&pdev->dev, "invalid rx DMA channel\n");
1032			return -ENODEV;
1033		}
1034		mcbsp->dma_req[1] = res->start;
1035		mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1];
1036	} else {
1037		mcbsp->dma_data[0].filter_data = "tx";
1038		mcbsp->dma_data[1].filter_data = "rx";
1039	}
1040
1041	mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp, 0);
1042	mcbsp->dma_data[0].maxburst = 4;
1043
1044	mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp, 1);
1045	mcbsp->dma_data[1].maxburst = 4;
1046
1047	mcbsp->fclk = clk_get(&pdev->dev, "fck");
1048	if (IS_ERR(mcbsp->fclk)) {
1049		ret = PTR_ERR(mcbsp->fclk);
1050		dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
1051		return ret;
1052	}
1053
1054	mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
1055	if (mcbsp->pdata->buffer_size) {
1056		/*
1057		 * Initially configure the maximum thresholds to a safe value.
1058		 * The McBSP FIFO usage with these values should not go under
1059		 * 16 locations.
1060		 * If the whole FIFO without safety buffer is used, than there
1061		 * is a possibility that the DMA will be not able to push the
1062		 * new data on time, causing channel shifts in runtime.
1063		 */
1064		mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
1065		mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
1066
1067		ret = sysfs_create_group(&mcbsp->dev->kobj,
1068					 &additional_attr_group);
1069		if (ret) {
1070			dev_err(mcbsp->dev,
1071				"Unable to create additional controls\n");
1072			goto err_thres;
1073		}
1074	} else {
1075		mcbsp->max_tx_thres = -EINVAL;
1076		mcbsp->max_rx_thres = -EINVAL;
1077	}
1078
1079	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone");
1080	if (res) {
1081		ret = omap_st_add(mcbsp, res);
1082		if (ret) {
1083			dev_err(mcbsp->dev,
1084				"Unable to create sidetone controls\n");
1085			goto err_st;
1086		}
1087	}
1088
1089	return 0;
1090
1091err_st:
1092	if (mcbsp->pdata->buffer_size)
1093		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1094err_thres:
1095	clk_put(mcbsp->fclk);
1096	return ret;
1097}
1098
1099void omap_mcbsp_cleanup(struct omap_mcbsp *mcbsp)
1100{
1101	if (mcbsp->pdata->buffer_size)
1102		sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
1103
1104	if (mcbsp->st_data) {
1105		sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group);
1106		clk_put(mcbsp->st_data->mcbsp_iclk);
1107	}
1108}