Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! A condition variable.
  4//!
  5//! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition
  6//! variable.
  7
  8use super::{lock::Backend, lock::Guard, LockClassKey};
  9use crate::{
 10    ffi::{c_int, c_long},
 11    init::PinInit,
 12    pin_init,
 13    str::CStr,
 14    task::{MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE},
 15    time::Jiffies,
 16    types::Opaque,
 17};
 18use core::marker::PhantomPinned;
 19use core::ptr;
 20use macros::pin_data;
 21
 22/// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class.
 23#[macro_export]
 24macro_rules! new_condvar {
 25    ($($name:literal)?) => {
 26        $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
 27    };
 28}
 29pub use new_condvar;
 30
 31/// A conditional variable.
 32///
 33/// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to
 34/// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And
 35/// it wakes up when notified by another thread (via [`CondVar::notify_one`] or
 36/// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up
 37/// spuriously.
 38///
 39/// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such
 40/// instances is with the [`pin_init`](crate::pin_init) and [`new_condvar`] macros.
 41///
 42/// # Examples
 43///
 44/// The following is an example of using a condvar with a mutex:
 45///
 46/// ```
 47/// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex};
 48///
 49/// #[pin_data]
 50/// pub struct Example {
 51///     #[pin]
 52///     value: Mutex<u32>,
 53///
 54///     #[pin]
 55///     value_changed: CondVar,
 56/// }
 57///
 58/// /// Waits for `e.value` to become `v`.
 59/// fn wait_for_value(e: &Example, v: u32) {
 60///     let mut guard = e.value.lock();
 61///     while *guard != v {
 62///         e.value_changed.wait(&mut guard);
 63///     }
 64/// }
 65///
 66/// /// Increments `e.value` and notifies all potential waiters.
 67/// fn increment(e: &Example) {
 68///     *e.value.lock() += 1;
 69///     e.value_changed.notify_all();
 70/// }
 71///
 72/// /// Allocates a new boxed `Example`.
 73/// fn new_example() -> Result<Pin<KBox<Example>>> {
 74///     KBox::pin_init(pin_init!(Example {
 75///         value <- new_mutex!(0),
 76///         value_changed <- new_condvar!(),
 77///     }), GFP_KERNEL)
 78/// }
 79/// ```
 80///
 81/// [`struct wait_queue_head`]: srctree/include/linux/wait.h
 82#[pin_data]
 83pub struct CondVar {
 84    #[pin]
 85    pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>,
 86
 87    /// A condvar needs to be pinned because it contains a [`struct list_head`] that is
 88    /// self-referential, so it cannot be safely moved once it is initialised.
 89    ///
 90    /// [`struct list_head`]: srctree/include/linux/types.h
 91    #[pin]
 92    _pin: PhantomPinned,
 93}
 94
 95// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread.
 96unsafe impl Send for CondVar {}
 97
 98// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads
 99// concurrently.
100unsafe impl Sync for CondVar {}
101
102impl CondVar {
103    /// Constructs a new condvar initialiser.
104    pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
105        pin_init!(Self {
106            _pin: PhantomPinned,
107            // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
108            // static lifetimes so they live indefinitely.
109            wait_queue_head <- Opaque::ffi_init(|slot| unsafe {
110                bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr())
111            }),
112        })
113    }
114
115    fn wait_internal<T: ?Sized, B: Backend>(
116        &self,
117        wait_state: c_int,
118        guard: &mut Guard<'_, T, B>,
119        timeout_in_jiffies: c_long,
120    ) -> c_long {
121        let wait = Opaque::<bindings::wait_queue_entry>::uninit();
122
123        // SAFETY: `wait` points to valid memory.
124        unsafe { bindings::init_wait(wait.get()) };
125
126        // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
127        unsafe {
128            bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state)
129        };
130
131        // SAFETY: Switches to another thread. The timeout can be any number.
132        let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) });
133
134        // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
135        unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) };
136
137        ret
138    }
139
140    /// Releases the lock and waits for a notification in uninterruptible mode.
141    ///
142    /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
143    /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by
144    /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up
145    /// spuriously.
146    pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) {
147        self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
148    }
149
150    /// Releases the lock and waits for a notification in interruptible mode.
151    ///
152    /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may
153    /// wake up due to signals. It may also wake up spuriously.
154    ///
155    /// Returns whether there is a signal pending.
156    #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"]
157    pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool {
158        self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
159        crate::current!().signal_pending()
160    }
161
162    /// Releases the lock and waits for a notification in interruptible mode.
163    ///
164    /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
165    /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or
166    /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal.
167    #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"]
168    pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>(
169        &self,
170        guard: &mut Guard<'_, T, B>,
171        jiffies: Jiffies,
172    ) -> CondVarTimeoutResult {
173        let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT);
174        let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies);
175
176        match (res as Jiffies, crate::current!().signal_pending()) {
177            (jiffies, true) => CondVarTimeoutResult::Signal { jiffies },
178            (0, false) => CondVarTimeoutResult::Timeout,
179            (jiffies, false) => CondVarTimeoutResult::Woken { jiffies },
180        }
181    }
182
183    /// Calls the kernel function to notify the appropriate number of threads.
184    fn notify(&self, count: c_int) {
185        // SAFETY: `wait_queue_head` points to valid memory.
186        unsafe {
187            bindings::__wake_up(
188                self.wait_queue_head.get(),
189                TASK_NORMAL,
190                count,
191                ptr::null_mut(),
192            )
193        };
194    }
195
196    /// Calls the kernel function to notify one thread synchronously.
197    ///
198    /// This method behaves like `notify_one`, except that it hints to the scheduler that the
199    /// current thread is about to go to sleep, so it should schedule the target thread on the same
200    /// CPU.
201    pub fn notify_sync(&self) {
202        // SAFETY: `wait_queue_head` points to valid memory.
203        unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) };
204    }
205
206    /// Wakes a single waiter up, if any.
207    ///
208    /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
209    /// completely (as opposed to automatically waking up the next waiter).
210    pub fn notify_one(&self) {
211        self.notify(1);
212    }
213
214    /// Wakes all waiters up, if any.
215    ///
216    /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
217    /// completely (as opposed to automatically waking up the next waiter).
218    pub fn notify_all(&self) {
219        self.notify(0);
220    }
221}
222
223/// The return type of `wait_timeout`.
224pub enum CondVarTimeoutResult {
225    /// The timeout was reached.
226    Timeout,
227    /// Somebody woke us up.
228    Woken {
229        /// Remaining sleep duration.
230        jiffies: Jiffies,
231    },
232    /// A signal occurred.
233    Signal {
234        /// Remaining sleep duration.
235        jiffies: Jiffies,
236    },
237}