Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
 
 
 
 
   6 */
   7
   8/* Common definitions for all Efx net driver code */
   9
  10#ifndef EFX_NET_DRIVER_H
  11#define EFX_NET_DRIVER_H
  12
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/ethtool.h>
  16#include <linux/if_vlan.h>
  17#include <linux/timer.h>
  18#include <linux/mdio.h>
  19#include <linux/list.h>
  20#include <linux/pci.h>
  21#include <linux/device.h>
  22#include <linux/highmem.h>
  23#include <linux/workqueue.h>
  24#include <linux/mutex.h>
  25#include <linux/rwsem.h>
  26#include <linux/vmalloc.h>
 
  27#include <linux/mtd/mtd.h>
  28#include <net/busy_poll.h>
  29#include <net/xdp.h>
  30#include <net/netevent.h>
  31
  32#include "enum.h"
  33#include "bitfield.h"
  34#include "filter.h"
  35
  36/**************************************************************************
  37 *
  38 * Build definitions
  39 *
  40 **************************************************************************/
  41
 
 
  42#ifdef DEBUG
  43#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
  44#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  45#else
  46#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
  47#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  48#endif
  49
  50/**************************************************************************
  51 *
  52 * Efx data structures
  53 *
  54 **************************************************************************/
  55
  56#define EFX_MAX_CHANNELS 32U
  57#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  58#define EFX_EXTRA_CHANNEL_IOV	0
  59#define EFX_EXTRA_CHANNEL_PTP	1
  60#define EFX_EXTRA_CHANNEL_TC	2
  61#define EFX_MAX_EXTRA_CHANNELS	3U
  62
  63/* Checksum generation is a per-queue option in hardware, so each
  64 * queue visible to the networking core is backed by two hardware TX
  65 * queues. */
  66#define EFX_MAX_TX_TC		2
  67#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  68#define EFX_TXQ_TYPE_OUTER_CSUM	1	/* Outer checksum offload */
  69#define EFX_TXQ_TYPE_INNER_CSUM	2	/* Inner checksum offload */
  70#define EFX_TXQ_TYPES		4
  71#define EFX_MAX_TXQ_PER_CHANNEL	4
  72#define EFX_MAX_TX_QUEUES	(EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
  73
  74/* Maximum possible MTU the driver supports */
  75#define EFX_MAX_MTU (9 * 1024)
  76
  77/* Minimum MTU, from RFC791 (IP) */
  78#define EFX_MIN_MTU 68
  79
  80/* Maximum total header length for TSOv2 */
  81#define EFX_TSO2_MAX_HDRLEN	208
  82
  83/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  84 * and should be a multiple of the cache line size.
  85 */
  86#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  87
  88/* If possible, we should ensure cache line alignment at start and end
  89 * of every buffer.  Otherwise, we just need to ensure 4-byte
  90 * alignment of the network header.
  91 */
  92#if NET_IP_ALIGN == 0
  93#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  94#else
  95#define EFX_RX_BUF_ALIGNMENT	4
  96#endif
  97
  98/* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
  99 * still fit two standard MTU size packets into a single 4K page.
 100 */
 101#define EFX_XDP_HEADROOM	128
 102#define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
 103
 104/* Forward declare Precision Time Protocol (PTP) support structure. */
 105struct efx_ptp_data;
 106struct hwtstamp_config;
 107
 108struct efx_self_tests;
 109
 110/**
 111 * struct efx_buffer - A general-purpose DMA buffer
 112 * @addr: host base address of the buffer
 113 * @dma_addr: DMA base address of the buffer
 114 * @len: Buffer length, in bytes
 115 *
 116 * The NIC uses these buffers for its interrupt status registers and
 117 * MAC stats dumps.
 118 */
 119struct efx_buffer {
 120	void *addr;
 121	dma_addr_t dma_addr;
 122	unsigned int len;
 123};
 124
 125/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126 * struct efx_tx_buffer - buffer state for a TX descriptor
 127 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 128 *	freed when descriptor completes
 129 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
 130 *	member is the associated buffer to drop a page reference on.
 131 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
 132 *	descriptor.
 133 * @dma_addr: DMA address of the fragment.
 134 * @flags: Flags for allocation and DMA mapping type
 135 * @len: Length of this fragment.
 136 *	This field is zero when the queue slot is empty.
 137 * @unmap_len: Length of this fragment to unmap
 138 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 139 * Only valid if @unmap_len != 0.
 140 */
 141struct efx_tx_buffer {
 
 142	union {
 143		const struct sk_buff *skb;
 144		struct xdp_frame *xdpf;
 145	};
 146	union {
 147		efx_qword_t option;    /* EF10 */
 148		dma_addr_t dma_addr;
 149	};
 150	unsigned short flags;
 151	unsigned short len;
 152	unsigned short unmap_len;
 153	unsigned short dma_offset;
 154};
 155#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 156#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 157#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 158#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 159#define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
 160#define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
 161#define EFX_TX_BUF_EFV		0x100	/* buffer was sent from representor */
 162
 163/**
 164 * struct efx_tx_queue - An Efx TX queue
 165 *
 166 * This is a ring buffer of TX fragments.
 167 * Since the TX completion path always executes on the same
 168 * CPU and the xmit path can operate on different CPUs,
 169 * performance is increased by ensuring that the completion
 170 * path and the xmit path operate on different cache lines.
 171 * This is particularly important if the xmit path is always
 172 * executing on one CPU which is different from the completion
 173 * path.  There is also a cache line for members which are
 174 * read but not written on the fast path.
 175 *
 176 * @efx: The associated Efx NIC
 177 * @queue: DMA queue number
 178 * @label: Label for TX completion events.
 179 *	Is our index within @channel->tx_queue array.
 180 * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
 181 * @tso_version: Version of TSO in use for this queue.
 182 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
 183 * @channel: The associated channel
 184 * @core_txq: The networking core TX queue structure
 185 * @buffer: The software buffer ring
 186 * @cb_page: Array of pages of copy buffers.  Carved up according to
 187 *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
 188 * @txd: The hardware descriptor ring
 189 * @ptr_mask: The size of the ring minus 1.
 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 191 *	Size of the region is efx_piobuf_size.
 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 193 * @initialised: Has hardware queue been initialised?
 194 * @timestamping: Is timestamping enabled for this channel?
 195 * @xdp_tx: Is this an XDP tx queue?
 196 * @old_complete_packets: Value of @complete_packets as of last
 197 *	efx_init_tx_queue()
 198 * @old_complete_bytes: Value of @complete_bytes as of last
 199 *	efx_init_tx_queue()
 200 * @old_tso_bursts: Value of @tso_bursts as of last efx_init_tx_queue()
 201 * @old_tso_packets: Value of @tso_packets as of last efx_init_tx_queue()
 202 * @read_count: Current read pointer.
 203 *	This is the number of buffers that have been removed from both rings.
 204 * @old_write_count: The value of @write_count when last checked.
 205 *	This is here for performance reasons.  The xmit path will
 206 *	only get the up-to-date value of @write_count if this
 207 *	variable indicates that the queue is empty.  This is to
 208 *	avoid cache-line ping-pong between the xmit path and the
 209 *	completion path.
 210 * @merge_events: Number of TX merged completion events
 211 * @bytes_compl: Number of bytes completed during this NAPI poll
 212 *	(efx_process_channel()).  For BQL.
 213 * @pkts_compl: Number of packets completed during this NAPI poll.
 214 * @complete_packets: Number of packets completed since this struct was
 215 *	created.  Only counts SKB packets, not XDP TX (it accumulates
 216 *	the same values that are reported to BQL).
 217 * @complete_bytes: Number of bytes completed since this struct was
 218 *	created.  For TSO, counts the superframe size, not the sizes of
 219 *	generated frames on the wire (i.e. the headers are only counted
 220 *	once)
 221 * @complete_xdp_packets: Number of XDP TX packets completed since this
 222 *	struct was created.
 223 * @complete_xdp_bytes: Number of XDP TX bytes completed since this
 224 *	struct was created.
 225 * @completed_timestamp_major: Top part of the most recent tx timestamp.
 226 * @completed_timestamp_minor: Low part of the most recent tx timestamp.
 227 * @insert_count: Current insert pointer
 228 *	This is the number of buffers that have been added to the
 229 *	software ring.
 230 * @write_count: Current write pointer
 231 *	This is the number of buffers that have been added to the
 232 *	hardware ring.
 233 * @packet_write_count: Completable write pointer
 234 *	This is the write pointer of the last packet written.
 235 *	Normally this will equal @write_count, but as option descriptors
 236 *	don't produce completion events, they won't update this.
 237 *	Filled in iff @efx->type->option_descriptors; only used for PIO.
 238 *	Thus, this is only written and used on EF10.
 239 * @old_read_count: The value of read_count when last checked.
 240 *	This is here for performance reasons.  The xmit path will
 241 *	only get the up-to-date value of read_count if this
 242 *	variable indicates that the queue is full.  This is to
 243 *	avoid cache-line ping-pong between the xmit path and the
 244 *	completion path.
 245 * @tso_bursts: Number of times TSO xmit invoked by kernel
 246 * @tso_long_headers: Number of packets with headers too long for standard
 247 *	blocks
 248 * @tso_packets: Number of packets via the TSO xmit path
 249 * @tso_fallbacks: Number of times TSO fallback used
 250 * @pushes: Number of times the TX push feature has been used
 251 * @pio_packets: Number of times the TX PIO feature has been used
 252 * @xmit_pending: Are any packets waiting to be pushed to the NIC
 253 * @cb_packets: Number of times the TX copybreak feature has been used
 254 * @notify_count: Count of notified descriptors to the NIC
 255 * @tx_packets: Number of packets sent since this struct was created
 256 * @empty_read_count: If the completion path has seen the queue as empty
 257 *	and the transmission path has not yet checked this, the value of
 258 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 259 */
 260struct efx_tx_queue {
 261	/* Members which don't change on the fast path */
 262	struct efx_nic *efx ____cacheline_aligned_in_smp;
 263	unsigned int queue;
 264	unsigned int label;
 265	unsigned int type;
 266	unsigned int tso_version;
 267	bool tso_encap;
 268	struct efx_channel *channel;
 269	struct netdev_queue *core_txq;
 270	struct efx_tx_buffer *buffer;
 271	struct efx_buffer *cb_page;
 272	struct efx_buffer txd;
 273	unsigned int ptr_mask;
 274	void __iomem *piobuf;
 275	unsigned int piobuf_offset;
 276	bool initialised;
 277	bool timestamping;
 278	bool xdp_tx;
 279	unsigned long old_complete_packets;
 280	unsigned long old_complete_bytes;
 281	unsigned int old_tso_bursts;
 282	unsigned int old_tso_packets;
 283
 284	/* Members used mainly on the completion path */
 285	unsigned int read_count ____cacheline_aligned_in_smp;
 286	unsigned int old_write_count;
 287	unsigned int merge_events;
 288	unsigned int bytes_compl;
 289	unsigned int pkts_compl;
 290	unsigned long complete_packets;
 291	unsigned long complete_bytes;
 292	unsigned long complete_xdp_packets;
 293	unsigned long complete_xdp_bytes;
 294	u32 completed_timestamp_major;
 295	u32 completed_timestamp_minor;
 296
 297	/* Members used only on the xmit path */
 298	unsigned int insert_count ____cacheline_aligned_in_smp;
 299	unsigned int write_count;
 300	unsigned int packet_write_count;
 301	unsigned int old_read_count;
 302	unsigned int tso_bursts;
 303	unsigned int tso_long_headers;
 304	unsigned int tso_packets;
 305	unsigned int tso_fallbacks;
 306	unsigned int pushes;
 307	unsigned int pio_packets;
 308	bool xmit_pending;
 309	unsigned int cb_packets;
 310	unsigned int notify_count;
 311	/* Statistics to supplement MAC stats */
 312	unsigned long tx_packets;
 313
 314	/* Members shared between paths and sometimes updated */
 315	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 316#define EFX_EMPTY_COUNT_VALID 0x80000000
 317	atomic_t flush_outstanding;
 318};
 319
 320#define EFX_TX_CB_ORDER	7
 321#define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
 322
 323/**
 324 * struct efx_rx_buffer - An Efx RX data buffer
 325 * @dma_addr: DMA base address of the buffer
 326 * @page: The associated page buffer.
 327 *	Will be %NULL if the buffer slot is currently free.
 328 * @page_offset: If pending: offset in @page of DMA base address.
 329 *	If completed: offset in @page of Ethernet header.
 330 * @len: If pending: length for DMA descriptor.
 331 *	If completed: received length, excluding hash prefix.
 332 * @flags: Flags for buffer and packet state.  These are only set on the
 333 *	first buffer of a scattered packet.
 334 */
 335struct efx_rx_buffer {
 336	dma_addr_t dma_addr;
 337	struct page *page;
 338	u16 page_offset;
 339	u16 len;
 340	u16 flags;
 341};
 342#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 343#define EFX_RX_PKT_CSUMMED	0x0002
 344#define EFX_RX_PKT_DISCARD	0x0004
 345#define EFX_RX_PKT_TCP		0x0040
 346#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 347#define EFX_RX_PKT_CSUM_LEVEL	0x0200
 348
 349/**
 350 * struct efx_rx_page_state - Page-based rx buffer state
 351 *
 352 * Inserted at the start of every page allocated for receive buffers.
 353 * Used to facilitate sharing dma mappings between recycled rx buffers
 354 * and those passed up to the kernel.
 355 *
 356 * @dma_addr: The dma address of this page.
 357 */
 358struct efx_rx_page_state {
 359	dma_addr_t dma_addr;
 360
 361	unsigned int __pad[] ____cacheline_aligned;
 362};
 363
 364/**
 365 * struct efx_rx_queue - An Efx RX queue
 366 * @efx: The associated Efx NIC
 367 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 368 *	is associated with a real RX queue.
 369 * @buffer: The software buffer ring
 370 * @rxd: The hardware descriptor ring
 371 * @ptr_mask: The size of the ring minus 1.
 372 * @refill_enabled: Enable refill whenever fill level is low
 373 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 374 *	@rxq_flush_pending.
 375 * @grant_credits: Posted RX descriptors need to be granted to the MAE with
 376 *	%MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS.  For %EFX_EXTRA_CHANNEL_TC,
 377 *	and only supported on EF100.
 378 * @added_count: Number of buffers added to the receive queue.
 379 * @notified_count: Number of buffers given to NIC (<= @added_count).
 380 * @granted_count: Number of buffers granted to the MAE (<= @notified_count).
 381 * @removed_count: Number of buffers removed from the receive queue.
 382 * @scatter_n: Used by NIC specific receive code.
 383 * @scatter_len: Used by NIC specific receive code.
 384 * @page_ring: The ring to store DMA mapped pages for reuse.
 385 * @page_add: Counter to calculate the write pointer for the recycle ring.
 386 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 387 * @page_recycle_count: The number of pages that have been recycled.
 388 * @page_recycle_failed: The number of pages that couldn't be recycled because
 389 *      the kernel still held a reference to them.
 390 * @page_recycle_full: The number of pages that were released because the
 391 *      recycle ring was full.
 392 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 393 * @max_fill: RX descriptor maximum fill level (<= ring size)
 394 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 395 *	(<= @max_fill)
 396 * @min_fill: RX descriptor minimum non-zero fill level.
 397 *	This records the minimum fill level observed when a ring
 398 *	refill was triggered.
 399 * @recycle_count: RX buffer recycle counter.
 400 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 401 * @grant_work: workitem used to grant credits to the MAE if @grant_credits
 402 * @rx_packets: Number of packets received since this struct was created
 403 * @rx_bytes: Number of bytes received since this struct was created
 404 * @old_rx_packets: Value of @rx_packets as of last efx_init_rx_queue()
 405 * @old_rx_bytes: Value of @rx_bytes as of last efx_init_rx_queue()
 406 * @xdp_rxq_info: XDP specific RX queue information.
 407 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
 408 */
 409struct efx_rx_queue {
 410	struct efx_nic *efx;
 411	int core_index;
 412	struct efx_rx_buffer *buffer;
 413	struct efx_buffer rxd;
 414	unsigned int ptr_mask;
 415	bool refill_enabled;
 416	bool flush_pending;
 417	bool grant_credits;
 418
 419	unsigned int added_count;
 420	unsigned int notified_count;
 421	unsigned int granted_count;
 422	unsigned int removed_count;
 423	unsigned int scatter_n;
 424	unsigned int scatter_len;
 425	struct page **page_ring;
 426	unsigned int page_add;
 427	unsigned int page_remove;
 428	unsigned int page_recycle_count;
 429	unsigned int page_recycle_failed;
 430	unsigned int page_recycle_full;
 431	unsigned int page_ptr_mask;
 432	unsigned int max_fill;
 433	unsigned int fast_fill_trigger;
 434	unsigned int min_fill;
 435	unsigned int min_overfill;
 436	unsigned int recycle_count;
 437	struct timer_list slow_fill;
 438	unsigned int slow_fill_count;
 439	struct work_struct grant_work;
 440	/* Statistics to supplement MAC stats */
 441	unsigned long rx_packets;
 442	unsigned long rx_bytes;
 443	unsigned long old_rx_packets;
 444	unsigned long old_rx_bytes;
 445	struct xdp_rxq_info xdp_rxq_info;
 446	bool xdp_rxq_info_valid;
 447};
 448
 449enum efx_sync_events_state {
 450	SYNC_EVENTS_DISABLED = 0,
 451	SYNC_EVENTS_QUIESCENT,
 452	SYNC_EVENTS_REQUESTED,
 453	SYNC_EVENTS_VALID,
 454};
 455
 456/**
 457 * struct efx_channel - An Efx channel
 458 *
 459 * A channel comprises an event queue, at least one TX queue, at least
 460 * one RX queue, and an associated tasklet for processing the event
 461 * queue.
 462 *
 463 * @efx: Associated Efx NIC
 464 * @channel: Channel instance number
 465 * @type: Channel type definition
 466 * @eventq_init: Event queue initialised flag
 467 * @enabled: Channel enabled indicator
 468 * @irq: IRQ number (MSI and MSI-X only)
 469 * @irq_moderation_us: IRQ moderation value (in microseconds)
 470 * @napi_dev: Net device used with NAPI
 471 * @napi_str: NAPI control structure
 472 * @state: state for NAPI vs busy polling
 473 * @state_lock: lock protecting @state
 474 * @eventq: Event queue buffer
 475 * @eventq_mask: Event queue pointer mask
 476 * @eventq_read_ptr: Event queue read pointer
 477 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 478 * @irq_count: Number of IRQs since last adaptive moderation decision
 479 * @irq_mod_score: IRQ moderation score
 480 * @rfs_filter_count: number of accelerated RFS filters currently in place;
 481 *	equals the count of @rps_flow_id slots filled
 482 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
 483 *	were checked for expiry
 484 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
 485 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
 486 * @n_rfs_failed: number of failed accelerated RFS filter insertions
 487 * @filter_work: Work item for efx_filter_rfs_expire()
 488 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 489 *      indexed by filter ID
 
 490 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 491 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 
 492 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 493 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 494 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 495 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 496 *	lack of descriptors
 497 * @n_rx_merge_events: Number of RX merged completion events
 498 * @n_rx_merge_packets: Number of RX packets completed by merged events
 499 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
 500 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
 501 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
 502 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
 503 * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was
 504 *	not recognised
 505 * @old_n_rx_hw_drops: Count of all RX packets dropped for any reason as of last
 506 *	efx_start_channels()
 507 * @old_n_rx_hw_drop_overruns: Value of @n_rx_nodesc_trunc as of last
 508 *	efx_start_channels()
 509 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 510 *	__efx_rx_packet(), or zero if there is none
 511 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 512 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 513 * @rx_list: list of SKBs from current RX, awaiting processing
 514 * @rx_queue: RX queue for this channel
 515 * @tx_queue: TX queues for this channel
 516 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
 517 * @sync_events_state: Current state of sync events on this channel
 518 * @sync_timestamp_major: Major part of the last ptp sync event
 519 * @sync_timestamp_minor: Minor part of the last ptp sync event
 520 */
 521struct efx_channel {
 522	struct efx_nic *efx;
 523	int channel;
 524	const struct efx_channel_type *type;
 525	bool eventq_init;
 526	bool enabled;
 527	int irq;
 528	unsigned int irq_moderation_us;
 529	struct net_device *napi_dev;
 530	struct napi_struct napi_str;
 531#ifdef CONFIG_NET_RX_BUSY_POLL
 532	unsigned long busy_poll_state;
 533#endif
 534	struct efx_buffer eventq;
 535	unsigned int eventq_mask;
 536	unsigned int eventq_read_ptr;
 537	int event_test_cpu;
 538
 539	unsigned int irq_count;
 540	unsigned int irq_mod_score;
 541#ifdef CONFIG_RFS_ACCEL
 542	unsigned int rfs_filter_count;
 543	unsigned int rfs_last_expiry;
 544	unsigned int rfs_expire_index;
 545	unsigned int n_rfs_succeeded;
 546	unsigned int n_rfs_failed;
 547	struct delayed_work filter_work;
 548#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 549	u32 *rps_flow_id;
 550#endif
 551
 552	unsigned int n_rx_ip_hdr_chksum_err;
 553	unsigned int n_rx_tcp_udp_chksum_err;
 554	unsigned int n_rx_outer_ip_hdr_chksum_err;
 555	unsigned int n_rx_outer_tcp_udp_chksum_err;
 556	unsigned int n_rx_inner_ip_hdr_chksum_err;
 557	unsigned int n_rx_inner_tcp_udp_chksum_err;
 558	unsigned int n_rx_eth_crc_err;
 559	unsigned int n_rx_frm_trunc;
 560	unsigned int n_rx_overlength;
 561	unsigned int n_skbuff_leaks;
 562	unsigned int n_rx_nodesc_trunc;
 563	unsigned int n_rx_merge_events;
 564	unsigned int n_rx_merge_packets;
 565	unsigned int n_rx_xdp_drops;
 566	unsigned int n_rx_xdp_bad_drops;
 567	unsigned int n_rx_xdp_tx;
 568	unsigned int n_rx_xdp_redirect;
 569	unsigned int n_rx_mport_bad;
 570
 571	unsigned int old_n_rx_hw_drops;
 572	unsigned int old_n_rx_hw_drop_overruns;
 573
 574	unsigned int rx_pkt_n_frags;
 575	unsigned int rx_pkt_index;
 576
 577	struct list_head *rx_list;
 578
 579	struct efx_rx_queue rx_queue;
 580	struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
 581	struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
 582
 583	enum efx_sync_events_state sync_events_state;
 584	u32 sync_timestamp_major;
 585	u32 sync_timestamp_minor;
 586};
 587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588/**
 589 * struct efx_msi_context - Context for each MSI
 590 * @efx: The associated NIC
 591 * @index: Index of the channel/IRQ
 592 * @name: Name of the channel/IRQ
 593 *
 594 * Unlike &struct efx_channel, this is never reallocated and is always
 595 * safe for the IRQ handler to access.
 596 */
 597struct efx_msi_context {
 598	struct efx_nic *efx;
 599	unsigned int index;
 600	char name[IFNAMSIZ + 6];
 601};
 602
 603/**
 604 * struct efx_channel_type - distinguishes traffic and extra channels
 605 * @handle_no_channel: Handle failure to allocate an extra channel
 606 * @pre_probe: Set up extra state prior to initialisation
 607 * @start: called early in efx_start_channels()
 608 * @stop: called early in efx_stop_channels()
 609 * @post_remove: Tear down extra state after finalisation, if allocated.
 610 *	May be called on channels that have not been probed.
 611 * @get_name: Generate the channel's name (used for its IRQ handler)
 612 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 613 *	reallocation is not supported.
 614 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 615 * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet()
 616 * @want_txqs: Determine whether this channel should have TX queues
 617 *	created.  If %NULL, TX queues are not created.
 618 * @keep_eventq: Flag for whether event queue should be kept initialised
 619 *	while the device is stopped
 620 * @want_pio: Flag for whether PIO buffers should be linked to this
 621 *	channel's TX queues.
 622 */
 623struct efx_channel_type {
 624	void (*handle_no_channel)(struct efx_nic *);
 625	int (*pre_probe)(struct efx_channel *);
 626	int (*start)(struct efx_channel *);
 627	void (*stop)(struct efx_channel *);
 628	void (*post_remove)(struct efx_channel *);
 629	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 630	struct efx_channel *(*copy)(const struct efx_channel *);
 631	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 632	bool (*receive_raw)(struct efx_rx_queue *, u32);
 633	bool (*want_txqs)(struct efx_channel *);
 634	bool keep_eventq;
 635	bool want_pio;
 636};
 637
 638enum efx_led_mode {
 639	EFX_LED_OFF	= 0,
 640	EFX_LED_ON	= 1,
 641	EFX_LED_DEFAULT	= 2
 642};
 643
 644#define STRING_TABLE_LOOKUP(val, member) \
 645	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 646
 647extern const char *const efx_loopback_mode_names[];
 648extern const unsigned int efx_loopback_mode_max;
 649#define LOOPBACK_MODE(efx) \
 650	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 651
 
 
 
 
 
 652enum efx_int_mode {
 653	/* Be careful if altering to correct macro below */
 654	EFX_INT_MODE_MSIX = 0,
 655	EFX_INT_MODE_MSI = 1,
 656	EFX_INT_MODE_LEGACY = 2,
 657	EFX_INT_MODE_MAX	/* Insert any new items before this */
 658};
 659#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 660
 661enum nic_state {
 662	STATE_UNINIT = 0,	/* device being probed/removed */
 663	STATE_PROBED,		/* hardware probed */
 664	STATE_NET_DOWN,		/* netdev registered */
 665	STATE_NET_UP,		/* ready for traffic */
 666	STATE_DISABLED,		/* device disabled due to hardware errors */
 667
 668	STATE_RECOVERY = 0x100,/* recovering from PCI error */
 669	STATE_FROZEN = 0x200,	/* frozen by power management */
 670};
 671
 672static inline bool efx_net_active(enum nic_state state)
 673{
 674	return state == STATE_NET_DOWN || state == STATE_NET_UP;
 675}
 676
 677static inline bool efx_frozen(enum nic_state state)
 678{
 679	return state & STATE_FROZEN;
 680}
 681
 682static inline bool efx_recovering(enum nic_state state)
 683{
 684	return state & STATE_RECOVERY;
 685}
 686
 687static inline enum nic_state efx_freeze(enum nic_state state)
 688{
 689	WARN_ON(!efx_net_active(state));
 690	return state | STATE_FROZEN;
 691}
 692
 693static inline enum nic_state efx_thaw(enum nic_state state)
 694{
 695	WARN_ON(!efx_frozen(state));
 696	return state & ~STATE_FROZEN;
 697}
 698
 699static inline enum nic_state efx_recover(enum nic_state state)
 700{
 701	WARN_ON(!efx_net_active(state));
 702	return state | STATE_RECOVERY;
 703}
 704
 705static inline enum nic_state efx_recovered(enum nic_state state)
 706{
 707	WARN_ON(!efx_recovering(state));
 708	return state & ~STATE_RECOVERY;
 709}
 710
 711/* Forward declaration */
 712struct efx_nic;
 713
 714/* Pseudo bit-mask flow control field */
 715#define EFX_FC_RX	FLOW_CTRL_RX
 716#define EFX_FC_TX	FLOW_CTRL_TX
 717#define EFX_FC_AUTO	4
 718
 719/**
 720 * struct efx_link_state - Current state of the link
 721 * @up: Link is up
 722 * @fd: Link is full-duplex
 723 * @fc: Actual flow control flags
 724 * @speed: Link speed (Mbps)
 725 */
 726struct efx_link_state {
 727	bool up;
 728	bool fd;
 729	u8 fc;
 730	unsigned int speed;
 731};
 732
 733static inline bool efx_link_state_equal(const struct efx_link_state *left,
 734					const struct efx_link_state *right)
 735{
 736	return left->up == right->up && left->fd == right->fd &&
 737		left->fc == right->fc && left->speed == right->speed;
 738}
 739
 740/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741 * enum efx_phy_mode - PHY operating mode flags
 742 * @PHY_MODE_NORMAL: on and should pass traffic
 743 * @PHY_MODE_TX_DISABLED: on with TX disabled
 744 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 745 * @PHY_MODE_OFF: switched off through external control
 746 * @PHY_MODE_SPECIAL: on but will not pass traffic
 747 */
 748enum efx_phy_mode {
 749	PHY_MODE_NORMAL		= 0,
 750	PHY_MODE_TX_DISABLED	= 1,
 751	PHY_MODE_LOW_POWER	= 2,
 752	PHY_MODE_OFF		= 4,
 753	PHY_MODE_SPECIAL	= 8,
 754};
 755
 756static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 757{
 758	return !!(mode & ~PHY_MODE_TX_DISABLED);
 759}
 760
 761/**
 762 * struct efx_hw_stat_desc - Description of a hardware statistic
 763 * @name: Name of the statistic as visible through ethtool, or %NULL if
 764 *	it should not be exposed
 765 * @dma_width: Width in bits (0 for non-DMA statistics)
 766 * @offset: Offset within stats (ignored for non-DMA statistics)
 767 */
 768struct efx_hw_stat_desc {
 769	const char *name;
 770	u16 dma_width;
 771	u16 offset;
 772};
 773
 774struct vfdi_status;
 775
 776/* The reserved RSS context value */
 777#define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
 778/**
 779 * struct efx_rss_context_priv - driver private data for an RSS context
 780 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
 781 *	%EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
 782 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
 783 */
 784struct efx_rss_context_priv {
 785	u32 context_id;
 786	bool rx_hash_udp_4tuple;
 787};
 788
 789/**
 790 * struct efx_rss_context - an RSS context
 791 * @priv: hardware-specific state
 792 * @rx_hash_key: Toeplitz hash key for this RSS context
 793 * @indir_table: Indirection table for this RSS context
 794 */
 795struct efx_rss_context {
 796	struct efx_rss_context_priv priv;
 797	u8 rx_hash_key[40];
 798	u32 rx_indir_table[128];
 799};
 800
 801#ifdef CONFIG_RFS_ACCEL
 802/* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
 803 * is used to test if filter does or will exist.
 804 */
 805#define EFX_ARFS_FILTER_ID_PENDING	-1
 806#define EFX_ARFS_FILTER_ID_ERROR	-2
 807#define EFX_ARFS_FILTER_ID_REMOVING	-3
 808/**
 809 * struct efx_arfs_rule - record of an ARFS filter and its IDs
 810 * @node: linkage into hash table
 811 * @spec: details of the filter (used as key for hash table).  Use efx->type to
 812 *	determine which member to use.
 813 * @rxq_index: channel to which the filter will steer traffic.
 814 * @arfs_id: filter ID which was returned to ARFS
 815 * @filter_id: index in software filter table.  May be
 816 *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
 817 *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
 818 *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
 819 */
 820struct efx_arfs_rule {
 821	struct hlist_node node;
 822	struct efx_filter_spec spec;
 823	u16 rxq_index;
 824	u16 arfs_id;
 825	s32 filter_id;
 826};
 827
 828/* Size chosen so that the table is one page (4kB) */
 829#define EFX_ARFS_HASH_TABLE_SIZE	512
 830
 831/**
 832 * struct efx_async_filter_insertion - Request to asynchronously insert a filter
 833 * @net_dev: Reference to the netdevice
 834 * @spec: The filter to insert
 835 * @work: Workitem for this request
 836 * @rxq_index: Identifies the channel for which this request was made
 837 * @flow_id: Identifies the kernel-side flow for which this request was made
 838 */
 839struct efx_async_filter_insertion {
 840	struct net_device *net_dev;
 841	struct efx_filter_spec spec;
 842	struct work_struct work;
 843	u16 rxq_index;
 844	u32 flow_id;
 845};
 846
 847/* Maximum number of ARFS workitems that may be in flight on an efx_nic */
 848#define EFX_RPS_MAX_IN_FLIGHT	8
 849#endif /* CONFIG_RFS_ACCEL */
 850
 851enum efx_xdp_tx_queues_mode {
 852	EFX_XDP_TX_QUEUES_DEDICATED,	/* one queue per core, locking not needed */
 853	EFX_XDP_TX_QUEUES_SHARED,	/* each queue used by more than 1 core */
 854	EFX_XDP_TX_QUEUES_BORROWED	/* queues borrowed from net stack */
 855};
 856
 857struct efx_mae;
 858
 859/**
 860 * struct efx_nic - an Efx NIC
 861 * @name: Device name (net device name or bus id before net device registered)
 862 * @pci_dev: The PCI device
 863 * @node: List node for maintaning primary/secondary function lists
 864 * @primary: &struct efx_nic instance for the primary function of this
 865 *	controller.  May be the same structure, and may be %NULL if no
 866 *	primary function is bound.  Serialised by rtnl_lock.
 867 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 868 *	functions of the controller, if this is for the primary function.
 869 *	Serialised by rtnl_lock.
 870 * @type: Controller type attributes
 871 * @legacy_irq: IRQ number
 872 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 873 *	Work items do not hold and must not acquire RTNL.
 874 * @workqueue_name: Name of workqueue
 875 * @reset_work: Scheduled reset workitem
 876 * @membase_phys: Memory BAR value as physical address
 877 * @membase: Memory BAR value
 878 * @vi_stride: step between per-VI registers / memory regions
 879 * @interrupt_mode: Interrupt mode
 880 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 881 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 882 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 883 * @irqs_hooked: Channel interrupts are hooked
 884 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 885 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 886 * @msg_enable: Log message enable flags
 887 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 888 * @reset_pending: Bitmask for pending resets
 889 * @tx_queue: TX DMA queues
 890 * @rx_queue: RX DMA queues
 891 * @channel: Channels
 892 * @msi_context: Context for each MSI
 893 * @extra_channel_types: Types of extra (non-traffic) channels that
 894 *	should be allocated for this NIC
 895 * @mae: Details of the Match Action Engine
 896 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
 897 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
 898 * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
 899 * @rxq_entries: Size of receive queues requested by user.
 900 * @txq_entries: Size of transmit queues requested by user.
 901 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 902 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 903 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 904 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 905 * @sram_lim_qw: Qword address limit of SRAM
 
 906 * @n_channels: Number of channels in use
 907 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 908 * @n_tx_channels: Number of channels used for TX
 909 * @n_extra_tx_channels: Number of extra channels with TX queues
 910 * @tx_queues_per_channel: number of TX queues probed on each channel
 911 * @n_xdp_channels: Number of channels used for XDP TX
 912 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
 913 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
 914 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 915 *	in accordance with NET_IP_ALIGN
 916 * @rx_dma_len: Current maximum RX DMA length
 917 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 918 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 919 *	for use in sk_buff::truesize
 920 * @rx_prefix_size: Size of RX prefix before packet data
 921 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 922 *	(valid only if @rx_prefix_size != 0; always negative)
 923 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 924 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 925 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 926 *	(valid only if channel->sync_timestamps_enabled; always negative)
 
 
 927 * @rx_scatter: Scatter mode enabled for receives
 928 * @rss_context: Main RSS context.
 929 * @vport_id: The function's vport ID, only relevant for PFs
 930 * @int_error_count: Number of internal errors seen recently
 931 * @int_error_expire: Time at which error count will be expired
 932 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 933 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 934 *	acknowledge but do nothing else.
 935 * @irq_status: Interrupt status buffer
 936 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 937 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 938 * @selftest_work: Work item for asynchronous self-test
 939 * @mtd_list: List of MTDs attached to the NIC
 940 * @nic_data: Hardware dependent state
 941 * @mcdi: Management-Controller-to-Driver Interface state
 942 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 943 *	efx_monitor() and efx_reconfigure_port()
 944 * @port_enabled: Port enabled indicator.
 945 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 946 *	efx_mac_work() with kernel interfaces. Safe to read under any
 947 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 948 *	be held to modify it.
 949 * @port_initialized: Port initialized?
 950 * @net_dev: Operating system network device. Consider holding the rtnl lock
 951 * @fixed_features: Features which cannot be turned off
 952 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
 953 *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
 954 * @stats_buffer: DMA buffer for statistics
 955 * @phy_type: PHY type
 
 956 * @phy_data: PHY private data (including PHY-specific stats)
 957 * @mdio: PHY MDIO interface
 958 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 959 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 960 * @link_advertising: Autonegotiation advertising flags
 961 * @fec_config: Forward Error Correction configuration flags.  For bit positions
 962 *	see &enum ethtool_fec_config_bits.
 963 * @link_state: Current state of the link
 964 * @n_link_state_changes: Number of times the link has changed state
 
 
 
 
 965 * @wanted_fc: Wanted flow control flags
 966 * @fc_disable: When non-zero flow control is disabled. Typically used to
 967 *	ensure that network back pressure doesn't delay dma queue flushes.
 968 *	Serialised by the rtnl lock.
 969 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 970 * @loopback_mode: Loopback status
 971 * @loopback_modes: Supported loopback mode bitmask
 972 * @loopback_selftest: Offline self-test private state
 973 * @xdp_prog: Current XDP programme for this interface
 974 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
 975 * @filter_state: Architecture-dependent filter table state
 976 * @rps_mutex: Protects RPS state of all channels
 977 * @rps_slot_map: bitmap of in-flight entries in @rps_slot
 978 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
 979 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
 980 *	@rps_next_id).
 981 * @rps_hash_table: Mapping between ARFS filters and their various IDs
 982 * @rps_next_id: next arfs_id for an ARFS filter
 983 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 984 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 985 *	Decremented when the efx_flush_rx_queue() is called.
 986 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 987 *	completed (either success or failure). Not used when MCDI is used to
 988 *	flush receive queues.
 989 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 990 * @vf_count: Number of VFs intended to be enabled.
 991 * @vf_init_count: Number of VFs that have been fully initialised.
 992 * @vi_scale: log2 number of vnics per VF.
 993 * @vf_reps_lock: Protects vf_reps list
 994 * @vf_reps: local VF reps
 995 * @ptp_data: PTP state data
 996 * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
 997 * @vpd_sn: Serial number read from VPD
 998 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
 999 *      xdp_rxq_info structures?
1000 * @netdev_notifier: Netdevice notifier.
1001 * @netevent_notifier: Netevent notifier (for neighbour updates).
1002 * @tc: state for TC offload (EF100).
1003 * @devlink: reference to devlink structure owned by this device
1004 * @dl_port: devlink port associated with the PF
1005 * @mem_bar: The BAR that is mapped into membase.
1006 * @reg_base: Offset from the start of the bar to the function control window.
1007 * @monitor_work: Hardware monitor workitem
1008 * @biu_lock: BIU (bus interface unit) lock
1009 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
1010 *	field is used by efx_test_interrupts() to verify that an
1011 *	interrupt has occurred.
1012 * @stats_lock: Statistics update lock. Must be held when calling
1013 *	efx_nic_type::{update,start,stop}_stats.
1014 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
1015 *
1016 * This is stored in the private area of the &struct net_device.
1017 */
1018struct efx_nic {
1019	/* The following fields should be written very rarely */
1020
1021	char name[IFNAMSIZ];
1022	struct list_head node;
1023	struct efx_nic *primary;
1024	struct list_head secondary_list;
1025	struct pci_dev *pci_dev;
1026	unsigned int port_num;
1027	const struct efx_nic_type *type;
1028	int legacy_irq;
1029	bool eeh_disabled_legacy_irq;
1030	struct workqueue_struct *workqueue;
1031	char workqueue_name[16];
1032	struct work_struct reset_work;
1033	resource_size_t membase_phys;
1034	void __iomem *membase;
1035
1036	unsigned int vi_stride;
1037
1038	enum efx_int_mode interrupt_mode;
1039	unsigned int timer_quantum_ns;
1040	unsigned int timer_max_ns;
1041	bool irq_rx_adaptive;
1042	bool irqs_hooked;
1043	unsigned int irq_mod_step_us;
1044	unsigned int irq_rx_moderation_us;
1045	u32 msg_enable;
1046
1047	enum nic_state state;
1048	unsigned long reset_pending;
1049
1050	struct efx_channel *channel[EFX_MAX_CHANNELS];
1051	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1052	const struct efx_channel_type *
1053	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
1054	struct efx_mae *mae;
1055
1056	unsigned int xdp_tx_queue_count;
1057	struct efx_tx_queue **xdp_tx_queues;
1058	enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
1059
1060	unsigned rxq_entries;
1061	unsigned txq_entries;
1062	unsigned int txq_stop_thresh;
1063	unsigned int txq_wake_thresh;
1064
1065	unsigned tx_dc_base;
1066	unsigned rx_dc_base;
1067	unsigned sram_lim_qw;
 
1068
1069	unsigned int max_channels;
1070	unsigned int max_vis;
1071	unsigned int max_tx_channels;
1072	unsigned n_channels;
1073	unsigned n_rx_channels;
1074	unsigned rss_spread;
1075	unsigned tx_channel_offset;
1076	unsigned n_tx_channels;
1077	unsigned n_extra_tx_channels;
1078	unsigned int tx_queues_per_channel;
1079	unsigned int n_xdp_channels;
1080	unsigned int xdp_channel_offset;
1081	unsigned int xdp_tx_per_channel;
1082	unsigned int rx_ip_align;
1083	unsigned int rx_dma_len;
1084	unsigned int rx_buffer_order;
1085	unsigned int rx_buffer_truesize;
1086	unsigned int rx_page_buf_step;
1087	unsigned int rx_bufs_per_page;
1088	unsigned int rx_pages_per_batch;
1089	unsigned int rx_prefix_size;
1090	int rx_packet_hash_offset;
1091	int rx_packet_len_offset;
1092	int rx_packet_ts_offset;
 
 
1093	bool rx_scatter;
1094	struct efx_rss_context rss_context;
1095	u32 vport_id;
1096
1097	unsigned int_error_count;
1098	unsigned long int_error_expire;
1099
1100	bool must_realloc_vis;
1101	bool irq_soft_enabled;
1102	struct efx_buffer irq_status;
1103	unsigned irq_zero_count;
1104	unsigned irq_level;
1105	struct delayed_work selftest_work;
1106
1107#ifdef CONFIG_SFC_MTD
1108	struct list_head mtd_list;
1109#endif
1110
1111	void *nic_data;
1112	struct efx_mcdi_data *mcdi;
1113
1114	struct mutex mac_lock;
1115	struct work_struct mac_work;
1116	bool port_enabled;
1117
1118	bool mc_bist_for_other_fn;
1119	bool port_initialized;
1120	struct net_device *net_dev;
1121
1122	netdev_features_t fixed_features;
1123
1124	u16 num_mac_stats;
1125	struct efx_buffer stats_buffer;
1126	u64 rx_nodesc_drops_total;
1127	u64 rx_nodesc_drops_while_down;
1128	bool rx_nodesc_drops_prev_state;
1129
1130	unsigned int phy_type;
 
1131	void *phy_data;
1132	struct mdio_if_info mdio;
1133	unsigned int mdio_bus;
1134	enum efx_phy_mode phy_mode;
1135
1136	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1137	u32 fec_config;
1138	struct efx_link_state link_state;
1139	unsigned int n_link_state_changes;
1140
 
 
1141	u8 wanted_fc;
1142	unsigned fc_disable;
1143
1144	atomic_t rx_reset;
1145	enum efx_loopback_mode loopback_mode;
1146	u64 loopback_modes;
1147
1148	void *loopback_selftest;
1149	/* We access loopback_selftest immediately before running XDP,
1150	 * so we want them next to each other.
1151	 */
1152	struct bpf_prog __rcu *xdp_prog;
1153
1154	struct rw_semaphore filter_sem;
 
1155	void *filter_state;
1156#ifdef CONFIG_RFS_ACCEL
1157	struct mutex rps_mutex;
1158	unsigned long rps_slot_map;
1159	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1160	spinlock_t rps_hash_lock;
1161	struct hlist_head *rps_hash_table;
1162	u32 rps_next_id;
1163#endif
1164
1165	atomic_t active_queues;
1166	atomic_t rxq_flush_pending;
1167	atomic_t rxq_flush_outstanding;
1168	wait_queue_head_t flush_wq;
1169
1170#ifdef CONFIG_SFC_SRIOV
1171	unsigned vf_count;
1172	unsigned vf_init_count;
1173	unsigned vi_scale;
1174#endif
1175	spinlock_t vf_reps_lock;
1176	struct list_head vf_reps;
1177
1178	struct efx_ptp_data *ptp_data;
1179	bool ptp_warned;
1180
1181	char *vpd_sn;
1182	bool xdp_rxq_info_failed;
1183
1184	struct notifier_block netdev_notifier;
1185	struct notifier_block netevent_notifier;
1186	struct efx_tc_state *tc;
1187
1188	struct devlink *devlink;
1189	struct devlink_port *dl_port;
1190	unsigned int mem_bar;
1191	u32 reg_base;
1192
1193	/* The following fields may be written more often */
1194
1195	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1196	spinlock_t biu_lock;
1197	int last_irq_cpu;
1198	spinlock_t stats_lock;
1199	atomic_t n_rx_noskb_drops;
1200};
1201
1202/**
1203 * struct efx_probe_data - State after hardware probe
1204 * @pci_dev: The PCI device
1205 * @efx: Efx NIC details
1206 */
1207struct efx_probe_data {
1208	struct pci_dev *pci_dev;
1209	struct efx_nic efx;
1210};
1211
1212static inline struct efx_nic *efx_netdev_priv(struct net_device *dev)
1213{
1214	struct efx_probe_data **probe_ptr = netdev_priv(dev);
1215	struct efx_probe_data *probe_data = *probe_ptr;
1216
1217	return &probe_data->efx;
1218}
1219
1220static inline int efx_dev_registered(struct efx_nic *efx)
1221{
1222	return efx->net_dev->reg_state == NETREG_REGISTERED;
1223}
1224
1225static inline unsigned int efx_port_num(struct efx_nic *efx)
1226{
1227	return efx->port_num;
1228}
1229
1230struct efx_mtd_partition {
1231	struct list_head node;
1232	struct mtd_info mtd;
1233	const char *dev_type_name;
1234	const char *type_name;
1235	char name[IFNAMSIZ + 20];
1236};
1237
1238struct efx_udp_tunnel {
1239#define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1240	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1241	__be16 port;
1242};
1243
1244/**
1245 * struct efx_nic_type - Efx device type definition
1246 * @mem_bar: Get the memory BAR
1247 * @mem_map_size: Get memory BAR mapped size
1248 * @probe: Probe the controller
1249 * @remove: Free resources allocated by probe()
1250 * @init: Initialise the controller
1251 * @dimension_resources: Dimension controller resources (buffer table,
1252 *	and VIs once the available interrupt resources are clear)
1253 * @fini: Shut down the controller
1254 * @monitor: Periodic function for polling link state and hardware monitor
1255 * @map_reset_reason: Map ethtool reset reason to a reset method
1256 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1257 * @reset: Reset the controller hardware and possibly the PHY.  This will
1258 *	be called while the controller is uninitialised.
1259 * @probe_port: Probe the MAC and PHY
1260 * @remove_port: Free resources allocated by probe_port()
1261 * @handle_global_event: Handle a "global" event (may be %NULL)
1262 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
 
 
 
 
1263 * @prepare_flr: Prepare for an FLR
1264 * @finish_flr: Clean up after an FLR
1265 * @describe_stats: Describe statistics for ethtool
1266 * @update_stats: Update statistics not provided by event handling.
1267 *	Either argument may be %NULL.
1268 * @update_stats_atomic: Update statistics while in atomic context, if that
1269 *	is more limiting than @update_stats.  Otherwise, leave %NULL and
1270 *	driver core will call @update_stats.
1271 * @start_stats: Start the regular fetching of statistics
1272 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1273 * @stop_stats: Stop the regular fetching of statistics
 
1274 * @push_irq_moderation: Apply interrupt moderation value
1275 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1276 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1277 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1278 *	to the hardware.  Serialised by the mac_lock.
1279 * @check_mac_fault: Check MAC fault state. True if fault present.
1280 * @get_wol: Get WoL configuration from driver state
1281 * @set_wol: Push WoL configuration to the NIC
1282 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1283 * @get_fec_stats: Get standard FEC statistics.
1284 * @test_chip: Test registers. This is expected to reset the NIC.
1285 * @test_nvram: Test validity of NVRAM contents
1286 * @mcdi_request: Send an MCDI request with the given header and SDU.
1287 *	The SDU length may be any value from 0 up to the protocol-
1288 *	defined maximum, but its buffer will be padded to a multiple
1289 *	of 4 bytes.
1290 * @mcdi_poll_response: Test whether an MCDI response is available.
1291 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1292 *	be a multiple of 4.  The length may not be, but the buffer
1293 *	will be padded so it is safe to round up.
1294 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1295 *	return an appropriate error code for aborting any current
1296 *	request; otherwise return 0.
1297 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1298 *	be separately enabled after this.
1299 * @irq_test_generate: Generate a test IRQ
1300 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1301 *	queue must be separately disabled before this.
1302 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1303 *	a pointer to the &struct efx_msi_context for the channel.
1304 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1305 *	is a pointer to the &struct efx_nic.
1306 * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1307 * @tx_init: Initialise TX queue on the NIC
1308 * @tx_remove: Free resources for TX queue
1309 * @tx_write: Write TX descriptors and doorbell
1310 * @tx_enqueue: Add an SKB to TX queue
1311 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1312 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1313 * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1314 *	user RSS context to the NIC
1315 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1316 *	RSS context back from the NIC
1317 * @rx_probe: Allocate resources for RX queue
1318 * @rx_init: Initialise RX queue on the NIC
1319 * @rx_remove: Free resources for RX queue
1320 * @rx_write: Write RX descriptors and doorbell
1321 * @rx_defer_refill: Generate a refill reminder event
1322 * @rx_packet: Receive the queued RX buffer on a channel
1323 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1324 * @ev_probe: Allocate resources for event queue
1325 * @ev_init: Initialise event queue on the NIC
1326 * @ev_fini: Deinitialise event queue on the NIC
1327 * @ev_remove: Free resources for event queue
1328 * @ev_process: Process events for a queue, up to the given NAPI quota
1329 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1330 * @ev_test_generate: Generate a test event
1331 * @filter_table_probe: Probe filter capabilities and set up filter software state
1332 * @filter_table_restore: Restore filters removed from hardware
1333 * @filter_table_remove: Remove filters from hardware and tear down software state
1334 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1335 * @filter_insert: add or replace a filter
1336 * @filter_remove_safe: remove a filter by ID, carefully
1337 * @filter_get_safe: retrieve a filter by ID, carefully
1338 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1339 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1340 * @filter_count_rx_used: Get the number of filters in use at a given priority
1341 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1342 * @filter_get_rx_ids: Get list of RX filters at a given priority
 
 
 
 
1343 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1344 *	This must check whether the specified table entry is used by RFS
1345 *	and that rps_may_expire_flow() returns true for it.
1346 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1347 *	 using efx_mtd_add()
1348 * @mtd_rename: Set an MTD partition name using the net device name
1349 * @mtd_read: Read from an MTD partition
1350 * @mtd_erase: Erase part of an MTD partition
1351 * @mtd_write: Write to an MTD partition
1352 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1353 *	also notifies the driver that a writer has finished using this
1354 *	partition.
1355 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1356 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1357 *	timestamping, possibly only temporarily for the purposes of a reset.
1358 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1359 *	and tx_type will already have been validated but this operation
1360 *	must validate and update rx_filter.
1361 * @get_phys_port_id: Get the underlying physical port id.
1362 * @set_mac_address: Set the MAC address of the device
1363 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1364 *	If %NULL, then device does not support any TSO version.
1365 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1366 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1367 * @print_additional_fwver: Dump NIC-specific additional FW version info
1368 * @sensor_event: Handle a sensor event from MCDI
1369 * @rx_recycle_ring_size: Size of the RX recycle ring
1370 * @revision: Hardware architecture revision
1371 * @txd_ptr_tbl_base: TX descriptor ring base address
1372 * @rxd_ptr_tbl_base: RX descriptor ring base address
1373 * @buf_tbl_base: Buffer table base address
1374 * @evq_ptr_tbl_base: Event queue pointer table base address
1375 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1376 * @max_dma_mask: Maximum possible DMA mask
1377 * @rx_prefix_size: Size of RX prefix before packet data
1378 * @rx_hash_offset: Offset of RX flow hash within prefix
1379 * @rx_ts_offset: Offset of timestamp within prefix
1380 * @rx_buffer_padding: Size of padding at end of RX packet
1381 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1382 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1383 * @option_descriptors: NIC supports TX option descriptors
1384 * @min_interrupt_mode: Lowest capability interrupt mode supported
1385 *	from &enum efx_int_mode.
1386 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1387 * @offload_features: net_device feature flags for protocol offload
1388 *	features implemented in hardware
1389 * @mcdi_max_ver: Maximum MCDI version supported
1390 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1391 */
1392struct efx_nic_type {
1393	bool is_vf;
1394	unsigned int (*mem_bar)(struct efx_nic *efx);
1395	unsigned int (*mem_map_size)(struct efx_nic *efx);
1396	int (*probe)(struct efx_nic *efx);
1397	void (*remove)(struct efx_nic *efx);
1398	int (*init)(struct efx_nic *efx);
1399	int (*dimension_resources)(struct efx_nic *efx);
1400	void (*fini)(struct efx_nic *efx);
1401	void (*monitor)(struct efx_nic *efx);
1402	enum reset_type (*map_reset_reason)(enum reset_type reason);
1403	int (*map_reset_flags)(u32 *flags);
1404	int (*reset)(struct efx_nic *efx, enum reset_type method);
1405	int (*probe_port)(struct efx_nic *efx);
1406	void (*remove_port)(struct efx_nic *efx);
1407	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1408	int (*fini_dmaq)(struct efx_nic *efx);
 
 
1409	void (*prepare_flr)(struct efx_nic *efx);
1410	void (*finish_flr)(struct efx_nic *efx);
1411	size_t (*describe_stats)(struct efx_nic *efx, u8 **names);
1412	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1413			       struct rtnl_link_stats64 *core_stats);
1414	size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1415				      struct rtnl_link_stats64 *core_stats);
1416	void (*start_stats)(struct efx_nic *efx);
1417	void (*pull_stats)(struct efx_nic *efx);
1418	void (*stop_stats)(struct efx_nic *efx);
 
1419	void (*push_irq_moderation)(struct efx_channel *channel);
1420	int (*reconfigure_port)(struct efx_nic *efx);
1421	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1422	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1423	bool (*check_mac_fault)(struct efx_nic *efx);
1424	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1425	int (*set_wol)(struct efx_nic *efx, u32 type);
1426	void (*resume_wol)(struct efx_nic *efx);
1427	void (*get_fec_stats)(struct efx_nic *efx,
1428			      struct ethtool_fec_stats *fec_stats);
1429	unsigned int (*check_caps)(const struct efx_nic *efx,
1430				   u8 flag,
1431				   u32 offset);
1432	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1433	int (*test_nvram)(struct efx_nic *efx);
1434	void (*mcdi_request)(struct efx_nic *efx,
1435			     const efx_dword_t *hdr, size_t hdr_len,
1436			     const efx_dword_t *sdu, size_t sdu_len);
1437	bool (*mcdi_poll_response)(struct efx_nic *efx);
1438	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1439				   size_t pdu_offset, size_t pdu_len);
1440	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1441	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1442	void (*irq_enable_master)(struct efx_nic *efx);
1443	int (*irq_test_generate)(struct efx_nic *efx);
1444	void (*irq_disable_non_ev)(struct efx_nic *efx);
1445	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1446	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1447	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1448	void (*tx_init)(struct efx_tx_queue *tx_queue);
1449	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1450	void (*tx_write)(struct efx_tx_queue *tx_queue);
1451	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1452	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1453				     dma_addr_t dma_addr, unsigned int len);
1454	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1455				  const u32 *rx_indir_table, const u8 *key);
1456	int (*rx_pull_rss_config)(struct efx_nic *efx);
1457	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1458					  struct efx_rss_context_priv *ctx,
1459					  const u32 *rx_indir_table,
1460					  const u8 *key, bool delete);
1461	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1462					  struct efx_rss_context *ctx);
1463	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1464	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1465	void (*rx_init)(struct efx_rx_queue *rx_queue);
1466	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1467	void (*rx_write)(struct efx_rx_queue *rx_queue);
1468	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1469	void (*rx_packet)(struct efx_channel *channel);
1470	bool (*rx_buf_hash_valid)(const u8 *prefix);
1471	int (*ev_probe)(struct efx_channel *channel);
1472	int (*ev_init)(struct efx_channel *channel);
1473	void (*ev_fini)(struct efx_channel *channel);
1474	void (*ev_remove)(struct efx_channel *channel);
1475	int (*ev_process)(struct efx_channel *channel, int quota);
1476	void (*ev_read_ack)(struct efx_channel *channel);
1477	void (*ev_test_generate)(struct efx_channel *channel);
1478	int (*filter_table_probe)(struct efx_nic *efx);
1479	void (*filter_table_restore)(struct efx_nic *efx);
1480	void (*filter_table_remove)(struct efx_nic *efx);
1481	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1482	s32 (*filter_insert)(struct efx_nic *efx,
1483			     struct efx_filter_spec *spec, bool replace);
1484	int (*filter_remove_safe)(struct efx_nic *efx,
1485				  enum efx_filter_priority priority,
1486				  u32 filter_id);
1487	int (*filter_get_safe)(struct efx_nic *efx,
1488			       enum efx_filter_priority priority,
1489			       u32 filter_id, struct efx_filter_spec *);
1490	int (*filter_clear_rx)(struct efx_nic *efx,
1491			       enum efx_filter_priority priority);
1492	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1493				    enum efx_filter_priority priority);
1494	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1495	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1496				 enum efx_filter_priority priority,
1497				 u32 *buf, u32 size);
1498#ifdef CONFIG_RFS_ACCEL
 
 
1499	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1500				      unsigned int index);
1501#endif
1502#ifdef CONFIG_SFC_MTD
1503	int (*mtd_probe)(struct efx_nic *efx);
1504	void (*mtd_rename)(struct efx_mtd_partition *part);
1505	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1506			size_t *retlen, u8 *buffer);
1507	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1508	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1509			 size_t *retlen, const u8 *buffer);
1510	int (*mtd_sync)(struct mtd_info *mtd);
1511#endif
1512	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1513	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1514	int (*ptp_set_ts_config)(struct efx_nic *efx,
1515				 struct kernel_hwtstamp_config *init);
1516	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1517	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1518	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1519	int (*get_phys_port_id)(struct efx_nic *efx,
1520				struct netdev_phys_item_id *ppid);
1521	int (*sriov_init)(struct efx_nic *efx);
1522	void (*sriov_fini)(struct efx_nic *efx);
1523	bool (*sriov_wanted)(struct efx_nic *efx);
1524	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
 
 
1525	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1526				 u8 qos);
1527	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1528				     bool spoofchk);
1529	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1530				   struct ifla_vf_info *ivi);
1531	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1532				       int link_state);
 
 
1533	int (*vswitching_probe)(struct efx_nic *efx);
1534	int (*vswitching_restore)(struct efx_nic *efx);
1535	void (*vswitching_remove)(struct efx_nic *efx);
1536	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1537	int (*set_mac_address)(struct efx_nic *efx);
1538	u32 (*tso_versions)(struct efx_nic *efx);
1539	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1540	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1541	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1542					 size_t len);
1543	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1544	unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1545
1546	int revision;
1547	unsigned int txd_ptr_tbl_base;
1548	unsigned int rxd_ptr_tbl_base;
1549	unsigned int buf_tbl_base;
1550	unsigned int evq_ptr_tbl_base;
1551	unsigned int evq_rptr_tbl_base;
1552	u64 max_dma_mask;
1553	unsigned int rx_prefix_size;
1554	unsigned int rx_hash_offset;
1555	unsigned int rx_ts_offset;
1556	unsigned int rx_buffer_padding;
1557	bool can_rx_scatter;
1558	bool always_rx_scatter;
1559	bool option_descriptors;
1560	unsigned int min_interrupt_mode;
1561	unsigned int timer_period_max;
1562	netdev_features_t offload_features;
1563	int mcdi_max_ver;
1564	unsigned int max_rx_ip_filters;
1565	u32 hwtstamp_filters;
1566	unsigned int rx_hash_key_size;
1567};
1568
1569/**************************************************************************
1570 *
1571 * Prototypes and inline functions
1572 *
1573 *************************************************************************/
1574
1575static inline struct efx_channel *
1576efx_get_channel(struct efx_nic *efx, unsigned index)
1577{
1578	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1579	return efx->channel[index];
1580}
1581
1582/* Iterate over all used channels */
1583#define efx_for_each_channel(_channel, _efx)				\
1584	for (_channel = (_efx)->channel[0];				\
1585	     _channel;							\
1586	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1587		     (_efx)->channel[_channel->channel + 1] : NULL)
1588
1589/* Iterate over all used channels in reverse */
1590#define efx_for_each_channel_rev(_channel, _efx)			\
1591	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1592	     _channel;							\
1593	     _channel = _channel->channel ?				\
1594		     (_efx)->channel[_channel->channel - 1] : NULL)
1595
1596static inline struct efx_channel *
1597efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1598{
1599	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1600	return efx->channel[efx->tx_channel_offset + index];
1601}
1602
1603static inline struct efx_channel *
1604efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1605{
1606	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1607	return efx->channel[efx->xdp_channel_offset + index];
1608}
1609
1610static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1611{
1612	return channel->channel - channel->efx->xdp_channel_offset <
1613	       channel->efx->n_xdp_channels;
 
1614}
1615
1616static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1617{
1618	return channel && channel->channel >= channel->efx->tx_channel_offset;
1619}
1620
1621static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1622{
1623	if (efx_channel_is_xdp_tx(channel))
1624		return channel->efx->xdp_tx_per_channel;
1625	return channel->efx->tx_queues_per_channel;
1626}
1627
1628static inline struct efx_tx_queue *
1629efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1630{
1631	EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1632	return channel->tx_queue_by_type[type];
 
1633}
1634
1635static inline struct efx_tx_queue *
1636efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1637{
1638	struct efx_channel *channel = efx_get_tx_channel(efx, index);
1639
1640	return efx_channel_get_tx_queue(channel, type);
1641}
1642
1643/* Iterate over all TX queues belonging to a channel */
1644#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1645	if (!efx_channel_has_tx_queues(_channel))			\
1646		;							\
1647	else								\
1648		for (_tx_queue = (_channel)->tx_queue;			\
1649		     _tx_queue < (_channel)->tx_queue +			\
1650				 efx_channel_num_tx_queues(_channel);		\
 
 
 
 
 
 
 
 
 
1651		     _tx_queue++)
1652
1653static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1654{
1655	return channel->rx_queue.core_index >= 0;
1656}
1657
1658static inline struct efx_rx_queue *
1659efx_channel_get_rx_queue(struct efx_channel *channel)
1660{
1661	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1662	return &channel->rx_queue;
1663}
1664
1665/* Iterate over all RX queues belonging to a channel */
1666#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1667	if (!efx_channel_has_rx_queue(_channel))			\
1668		;							\
1669	else								\
1670		for (_rx_queue = &(_channel)->rx_queue;			\
1671		     _rx_queue;						\
1672		     _rx_queue = NULL)
1673
1674static inline struct efx_channel *
1675efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1676{
1677	return container_of(rx_queue, struct efx_channel, rx_queue);
1678}
1679
1680static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1681{
1682	return efx_rx_queue_channel(rx_queue)->channel;
1683}
1684
1685/* Returns a pointer to the specified receive buffer in the RX
1686 * descriptor queue.
1687 */
1688static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1689						  unsigned int index)
1690{
1691	return &rx_queue->buffer[index];
1692}
1693
1694static inline struct efx_rx_buffer *
1695efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1696{
1697	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1698		return efx_rx_buffer(rx_queue, 0);
1699	else
1700		return rx_buf + 1;
1701}
1702
1703/**
1704 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1705 *
1706 * This calculates the maximum frame length that will be used for a
1707 * given MTU.  The frame length will be equal to the MTU plus a
1708 * constant amount of header space and padding.  This is the quantity
1709 * that the net driver will program into the MAC as the maximum frame
1710 * length.
1711 *
1712 * The 10G MAC requires 8-byte alignment on the frame
1713 * length, so we round up to the nearest 8.
1714 *
1715 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1716 * XGMII cycle).  If the frame length reaches the maximum value in the
1717 * same cycle, the XMAC can miss the IPG altogether.  We work around
1718 * this by adding a further 16 bytes.
1719 */
1720#define EFX_FRAME_PAD	16
1721#define EFX_MAX_FRAME_LEN(mtu) \
1722	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1723
1724static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1725{
1726	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1727}
1728static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1729{
1730	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1731}
1732
1733/* Get the max fill level of the TX queues on this channel */
1734static inline unsigned int
1735efx_channel_tx_fill_level(struct efx_channel *channel)
1736{
1737	struct efx_tx_queue *tx_queue;
1738	unsigned int fill_level = 0;
1739
1740	efx_for_each_channel_tx_queue(tx_queue, channel)
1741		fill_level = max(fill_level,
1742				 tx_queue->insert_count - tx_queue->read_count);
1743
1744	return fill_level;
1745}
1746
1747/* Conservative approximation of efx_channel_tx_fill_level using cached value */
1748static inline unsigned int
1749efx_channel_tx_old_fill_level(struct efx_channel *channel)
1750{
1751	struct efx_tx_queue *tx_queue;
1752	unsigned int fill_level = 0;
1753
1754	efx_for_each_channel_tx_queue(tx_queue, channel)
1755		fill_level = max(fill_level,
1756				 tx_queue->insert_count - tx_queue->old_read_count);
1757
1758	return fill_level;
1759}
1760
1761/* Get all supported features.
1762 * If a feature is not fixed, it is present in hw_features.
1763 * If a feature is fixed, it does not present in hw_features, but
1764 * always in features.
1765 */
1766static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1767{
1768	const struct net_device *net_dev = efx->net_dev;
1769
1770	return net_dev->features | net_dev->hw_features;
1771}
1772
1773/* Get the current TX queue insert index. */
1774static inline unsigned int
1775efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1776{
1777	return tx_queue->insert_count & tx_queue->ptr_mask;
1778}
1779
1780/* Get a TX buffer. */
1781static inline struct efx_tx_buffer *
1782__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1783{
1784	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1785}
1786
1787/* Get a TX buffer, checking it's not currently in use. */
1788static inline struct efx_tx_buffer *
1789efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1790{
1791	struct efx_tx_buffer *buffer =
1792		__efx_tx_queue_get_insert_buffer(tx_queue);
1793
1794	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1795	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1796	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1797
1798	return buffer;
1799}
1800
1801#endif /* EFX_NET_DRIVER_H */
v4.10.11
 
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11/* Common definitions for all Efx net driver code */
  12
  13#ifndef EFX_NET_DRIVER_H
  14#define EFX_NET_DRIVER_H
  15
  16#include <linux/netdevice.h>
  17#include <linux/etherdevice.h>
  18#include <linux/ethtool.h>
  19#include <linux/if_vlan.h>
  20#include <linux/timer.h>
  21#include <linux/mdio.h>
  22#include <linux/list.h>
  23#include <linux/pci.h>
  24#include <linux/device.h>
  25#include <linux/highmem.h>
  26#include <linux/workqueue.h>
  27#include <linux/mutex.h>
  28#include <linux/rwsem.h>
  29#include <linux/vmalloc.h>
  30#include <linux/i2c.h>
  31#include <linux/mtd/mtd.h>
  32#include <net/busy_poll.h>
 
 
  33
  34#include "enum.h"
  35#include "bitfield.h"
  36#include "filter.h"
  37
  38/**************************************************************************
  39 *
  40 * Build definitions
  41 *
  42 **************************************************************************/
  43
  44#define EFX_DRIVER_VERSION	"4.1"
  45
  46#ifdef DEBUG
  47#define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
  48#define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
  49#else
  50#define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
  51#define EFX_WARN_ON_PARANOID(x) do {} while (0)
  52#endif
  53
  54/**************************************************************************
  55 *
  56 * Efx data structures
  57 *
  58 **************************************************************************/
  59
  60#define EFX_MAX_CHANNELS 32U
  61#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
  62#define EFX_EXTRA_CHANNEL_IOV	0
  63#define EFX_EXTRA_CHANNEL_PTP	1
  64#define EFX_MAX_EXTRA_CHANNELS	2U
 
  65
  66/* Checksum generation is a per-queue option in hardware, so each
  67 * queue visible to the networking core is backed by two hardware TX
  68 * queues. */
  69#define EFX_MAX_TX_TC		2
  70#define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
  71#define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
  72#define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
  73#define EFX_TXQ_TYPES		4
  74#define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
 
  75
  76/* Maximum possible MTU the driver supports */
  77#define EFX_MAX_MTU (9 * 1024)
  78
  79/* Minimum MTU, from RFC791 (IP) */
  80#define EFX_MIN_MTU 68
  81
 
 
 
  82/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
  83 * and should be a multiple of the cache line size.
  84 */
  85#define EFX_RX_USR_BUF_SIZE	(2048 - 256)
  86
  87/* If possible, we should ensure cache line alignment at start and end
  88 * of every buffer.  Otherwise, we just need to ensure 4-byte
  89 * alignment of the network header.
  90 */
  91#if NET_IP_ALIGN == 0
  92#define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
  93#else
  94#define EFX_RX_BUF_ALIGNMENT	4
  95#endif
  96
 
 
 
 
 
 
  97/* Forward declare Precision Time Protocol (PTP) support structure. */
  98struct efx_ptp_data;
  99struct hwtstamp_config;
 100
 101struct efx_self_tests;
 102
 103/**
 104 * struct efx_buffer - A general-purpose DMA buffer
 105 * @addr: host base address of the buffer
 106 * @dma_addr: DMA base address of the buffer
 107 * @len: Buffer length, in bytes
 108 *
 109 * The NIC uses these buffers for its interrupt status registers and
 110 * MAC stats dumps.
 111 */
 112struct efx_buffer {
 113	void *addr;
 114	dma_addr_t dma_addr;
 115	unsigned int len;
 116};
 117
 118/**
 119 * struct efx_special_buffer - DMA buffer entered into buffer table
 120 * @buf: Standard &struct efx_buffer
 121 * @index: Buffer index within controller;s buffer table
 122 * @entries: Number of buffer table entries
 123 *
 124 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
 125 * Event and descriptor rings are addressed via one or more buffer
 126 * table entries (and so can be physically non-contiguous, although we
 127 * currently do not take advantage of that).  On Falcon and Siena we
 128 * have to take care of allocating and initialising the entries
 129 * ourselves.  On later hardware this is managed by the firmware and
 130 * @index and @entries are left as 0.
 131 */
 132struct efx_special_buffer {
 133	struct efx_buffer buf;
 134	unsigned int index;
 135	unsigned int entries;
 136};
 137
 138/**
 139 * struct efx_tx_buffer - buffer state for a TX descriptor
 140 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
 141 *	freed when descriptor completes
 142 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
 
 
 
 143 * @dma_addr: DMA address of the fragment.
 144 * @flags: Flags for allocation and DMA mapping type
 145 * @len: Length of this fragment.
 146 *	This field is zero when the queue slot is empty.
 147 * @unmap_len: Length of this fragment to unmap
 148 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 149 * Only valid if @unmap_len != 0.
 150 */
 151struct efx_tx_buffer {
 152	const struct sk_buff *skb;
 153	union {
 154		efx_qword_t option;
 
 
 
 
 155		dma_addr_t dma_addr;
 156	};
 157	unsigned short flags;
 158	unsigned short len;
 159	unsigned short unmap_len;
 160	unsigned short dma_offset;
 161};
 162#define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
 163#define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
 164#define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
 165#define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
 
 
 
 166
 167/**
 168 * struct efx_tx_queue - An Efx TX queue
 169 *
 170 * This is a ring buffer of TX fragments.
 171 * Since the TX completion path always executes on the same
 172 * CPU and the xmit path can operate on different CPUs,
 173 * performance is increased by ensuring that the completion
 174 * path and the xmit path operate on different cache lines.
 175 * This is particularly important if the xmit path is always
 176 * executing on one CPU which is different from the completion
 177 * path.  There is also a cache line for members which are
 178 * read but not written on the fast path.
 179 *
 180 * @efx: The associated Efx NIC
 181 * @queue: DMA queue number
 
 
 
 182 * @tso_version: Version of TSO in use for this queue.
 
 183 * @channel: The associated channel
 184 * @core_txq: The networking core TX queue structure
 185 * @buffer: The software buffer ring
 186 * @cb_page: Array of pages of copy buffers.  Carved up according to
 187 *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
 188 * @txd: The hardware descriptor ring
 189 * @ptr_mask: The size of the ring minus 1.
 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
 191 *	Size of the region is efx_piobuf_size.
 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
 193 * @initialised: Has hardware queue been initialised?
 194 * @handle_tso: TSO xmit preparation handler.  Sets up the TSO metadata and
 195 *	may also map tx data, depending on the nature of the TSO implementation.
 
 
 
 
 
 
 196 * @read_count: Current read pointer.
 197 *	This is the number of buffers that have been removed from both rings.
 198 * @old_write_count: The value of @write_count when last checked.
 199 *	This is here for performance reasons.  The xmit path will
 200 *	only get the up-to-date value of @write_count if this
 201 *	variable indicates that the queue is empty.  This is to
 202 *	avoid cache-line ping-pong between the xmit path and the
 203 *	completion path.
 204 * @merge_events: Number of TX merged completion events
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205 * @insert_count: Current insert pointer
 206 *	This is the number of buffers that have been added to the
 207 *	software ring.
 208 * @write_count: Current write pointer
 209 *	This is the number of buffers that have been added to the
 210 *	hardware ring.
 
 
 
 
 
 
 211 * @old_read_count: The value of read_count when last checked.
 212 *	This is here for performance reasons.  The xmit path will
 213 *	only get the up-to-date value of read_count if this
 214 *	variable indicates that the queue is full.  This is to
 215 *	avoid cache-line ping-pong between the xmit path and the
 216 *	completion path.
 217 * @tso_bursts: Number of times TSO xmit invoked by kernel
 218 * @tso_long_headers: Number of packets with headers too long for standard
 219 *	blocks
 220 * @tso_packets: Number of packets via the TSO xmit path
 221 * @tso_fallbacks: Number of times TSO fallback used
 222 * @pushes: Number of times the TX push feature has been used
 223 * @pio_packets: Number of times the TX PIO feature has been used
 224 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
 225 * @cb_packets: Number of times the TX copybreak feature has been used
 
 
 226 * @empty_read_count: If the completion path has seen the queue as empty
 227 *	and the transmission path has not yet checked this, the value of
 228 *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
 229 */
 230struct efx_tx_queue {
 231	/* Members which don't change on the fast path */
 232	struct efx_nic *efx ____cacheline_aligned_in_smp;
 233	unsigned queue;
 
 
 234	unsigned int tso_version;
 
 235	struct efx_channel *channel;
 236	struct netdev_queue *core_txq;
 237	struct efx_tx_buffer *buffer;
 238	struct efx_buffer *cb_page;
 239	struct efx_special_buffer txd;
 240	unsigned int ptr_mask;
 241	void __iomem *piobuf;
 242	unsigned int piobuf_offset;
 243	bool initialised;
 244
 245	/* Function pointers used in the fast path. */
 246	int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
 
 
 
 247
 248	/* Members used mainly on the completion path */
 249	unsigned int read_count ____cacheline_aligned_in_smp;
 250	unsigned int old_write_count;
 251	unsigned int merge_events;
 252	unsigned int bytes_compl;
 253	unsigned int pkts_compl;
 
 
 
 
 
 
 254
 255	/* Members used only on the xmit path */
 256	unsigned int insert_count ____cacheline_aligned_in_smp;
 257	unsigned int write_count;
 
 258	unsigned int old_read_count;
 259	unsigned int tso_bursts;
 260	unsigned int tso_long_headers;
 261	unsigned int tso_packets;
 262	unsigned int tso_fallbacks;
 263	unsigned int pushes;
 264	unsigned int pio_packets;
 265	bool xmit_more_available;
 266	unsigned int cb_packets;
 
 267	/* Statistics to supplement MAC stats */
 268	unsigned long tx_packets;
 269
 270	/* Members shared between paths and sometimes updated */
 271	unsigned int empty_read_count ____cacheline_aligned_in_smp;
 272#define EFX_EMPTY_COUNT_VALID 0x80000000
 273	atomic_t flush_outstanding;
 274};
 275
 276#define EFX_TX_CB_ORDER	7
 277#define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
 278
 279/**
 280 * struct efx_rx_buffer - An Efx RX data buffer
 281 * @dma_addr: DMA base address of the buffer
 282 * @page: The associated page buffer.
 283 *	Will be %NULL if the buffer slot is currently free.
 284 * @page_offset: If pending: offset in @page of DMA base address.
 285 *	If completed: offset in @page of Ethernet header.
 286 * @len: If pending: length for DMA descriptor.
 287 *	If completed: received length, excluding hash prefix.
 288 * @flags: Flags for buffer and packet state.  These are only set on the
 289 *	first buffer of a scattered packet.
 290 */
 291struct efx_rx_buffer {
 292	dma_addr_t dma_addr;
 293	struct page *page;
 294	u16 page_offset;
 295	u16 len;
 296	u16 flags;
 297};
 298#define EFX_RX_BUF_LAST_IN_PAGE	0x0001
 299#define EFX_RX_PKT_CSUMMED	0x0002
 300#define EFX_RX_PKT_DISCARD	0x0004
 301#define EFX_RX_PKT_TCP		0x0040
 302#define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
 
 303
 304/**
 305 * struct efx_rx_page_state - Page-based rx buffer state
 306 *
 307 * Inserted at the start of every page allocated for receive buffers.
 308 * Used to facilitate sharing dma mappings between recycled rx buffers
 309 * and those passed up to the kernel.
 310 *
 311 * @dma_addr: The dma address of this page.
 312 */
 313struct efx_rx_page_state {
 314	dma_addr_t dma_addr;
 315
 316	unsigned int __pad[0] ____cacheline_aligned;
 317};
 318
 319/**
 320 * struct efx_rx_queue - An Efx RX queue
 321 * @efx: The associated Efx NIC
 322 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 323 *	is associated with a real RX queue.
 324 * @buffer: The software buffer ring
 325 * @rxd: The hardware descriptor ring
 326 * @ptr_mask: The size of the ring minus 1.
 327 * @refill_enabled: Enable refill whenever fill level is low
 328 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 329 *	@rxq_flush_pending.
 
 
 
 330 * @added_count: Number of buffers added to the receive queue.
 331 * @notified_count: Number of buffers given to NIC (<= @added_count).
 
 332 * @removed_count: Number of buffers removed from the receive queue.
 333 * @scatter_n: Used by NIC specific receive code.
 334 * @scatter_len: Used by NIC specific receive code.
 335 * @page_ring: The ring to store DMA mapped pages for reuse.
 336 * @page_add: Counter to calculate the write pointer for the recycle ring.
 337 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 338 * @page_recycle_count: The number of pages that have been recycled.
 339 * @page_recycle_failed: The number of pages that couldn't be recycled because
 340 *      the kernel still held a reference to them.
 341 * @page_recycle_full: The number of pages that were released because the
 342 *      recycle ring was full.
 343 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 344 * @max_fill: RX descriptor maximum fill level (<= ring size)
 345 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 346 *	(<= @max_fill)
 347 * @min_fill: RX descriptor minimum non-zero fill level.
 348 *	This records the minimum fill level observed when a ring
 349 *	refill was triggered.
 350 * @recycle_count: RX buffer recycle counter.
 351 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
 
 
 
 
 
 
 
 352 */
 353struct efx_rx_queue {
 354	struct efx_nic *efx;
 355	int core_index;
 356	struct efx_rx_buffer *buffer;
 357	struct efx_special_buffer rxd;
 358	unsigned int ptr_mask;
 359	bool refill_enabled;
 360	bool flush_pending;
 
 361
 362	unsigned int added_count;
 363	unsigned int notified_count;
 
 364	unsigned int removed_count;
 365	unsigned int scatter_n;
 366	unsigned int scatter_len;
 367	struct page **page_ring;
 368	unsigned int page_add;
 369	unsigned int page_remove;
 370	unsigned int page_recycle_count;
 371	unsigned int page_recycle_failed;
 372	unsigned int page_recycle_full;
 373	unsigned int page_ptr_mask;
 374	unsigned int max_fill;
 375	unsigned int fast_fill_trigger;
 376	unsigned int min_fill;
 377	unsigned int min_overfill;
 378	unsigned int recycle_count;
 379	struct timer_list slow_fill;
 380	unsigned int slow_fill_count;
 
 381	/* Statistics to supplement MAC stats */
 382	unsigned long rx_packets;
 
 
 
 
 
 383};
 384
 385enum efx_sync_events_state {
 386	SYNC_EVENTS_DISABLED = 0,
 387	SYNC_EVENTS_QUIESCENT,
 388	SYNC_EVENTS_REQUESTED,
 389	SYNC_EVENTS_VALID,
 390};
 391
 392/**
 393 * struct efx_channel - An Efx channel
 394 *
 395 * A channel comprises an event queue, at least one TX queue, at least
 396 * one RX queue, and an associated tasklet for processing the event
 397 * queue.
 398 *
 399 * @efx: Associated Efx NIC
 400 * @channel: Channel instance number
 401 * @type: Channel type definition
 402 * @eventq_init: Event queue initialised flag
 403 * @enabled: Channel enabled indicator
 404 * @irq: IRQ number (MSI and MSI-X only)
 405 * @irq_moderation_us: IRQ moderation value (in microseconds)
 406 * @napi_dev: Net device used with NAPI
 407 * @napi_str: NAPI control structure
 408 * @state: state for NAPI vs busy polling
 409 * @state_lock: lock protecting @state
 410 * @eventq: Event queue buffer
 411 * @eventq_mask: Event queue pointer mask
 412 * @eventq_read_ptr: Event queue read pointer
 413 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 414 * @irq_count: Number of IRQs since last adaptive moderation decision
 415 * @irq_mod_score: IRQ moderation score
 
 
 
 
 
 
 
 
 416 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 417 *      indexed by filter ID
 418 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 419 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 420 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 421 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 422 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 423 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 424 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 425 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 426 *	lack of descriptors
 427 * @n_rx_merge_events: Number of RX merged completion events
 428 * @n_rx_merge_packets: Number of RX packets completed by merged events
 
 
 
 
 
 
 
 
 
 
 429 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 430 *	__efx_rx_packet(), or zero if there is none
 431 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 432 *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
 
 433 * @rx_queue: RX queue for this channel
 434 * @tx_queue: TX queues for this channel
 
 435 * @sync_events_state: Current state of sync events on this channel
 436 * @sync_timestamp_major: Major part of the last ptp sync event
 437 * @sync_timestamp_minor: Minor part of the last ptp sync event
 438 */
 439struct efx_channel {
 440	struct efx_nic *efx;
 441	int channel;
 442	const struct efx_channel_type *type;
 443	bool eventq_init;
 444	bool enabled;
 445	int irq;
 446	unsigned int irq_moderation_us;
 447	struct net_device *napi_dev;
 448	struct napi_struct napi_str;
 449#ifdef CONFIG_NET_RX_BUSY_POLL
 450	unsigned long busy_poll_state;
 451#endif
 452	struct efx_special_buffer eventq;
 453	unsigned int eventq_mask;
 454	unsigned int eventq_read_ptr;
 455	int event_test_cpu;
 456
 457	unsigned int irq_count;
 458	unsigned int irq_mod_score;
 459#ifdef CONFIG_RFS_ACCEL
 460	unsigned int rfs_filters_added;
 
 
 
 
 
 461#define RPS_FLOW_ID_INVALID 0xFFFFFFFF
 462	u32 *rps_flow_id;
 463#endif
 464
 465	unsigned n_rx_tobe_disc;
 466	unsigned n_rx_ip_hdr_chksum_err;
 467	unsigned n_rx_tcp_udp_chksum_err;
 468	unsigned n_rx_mcast_mismatch;
 469	unsigned n_rx_frm_trunc;
 470	unsigned n_rx_overlength;
 471	unsigned n_skbuff_leaks;
 
 
 
 472	unsigned int n_rx_nodesc_trunc;
 473	unsigned int n_rx_merge_events;
 474	unsigned int n_rx_merge_packets;
 
 
 
 
 
 
 
 
 475
 476	unsigned int rx_pkt_n_frags;
 477	unsigned int rx_pkt_index;
 478
 
 
 479	struct efx_rx_queue rx_queue;
 480	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
 
 481
 482	enum efx_sync_events_state sync_events_state;
 483	u32 sync_timestamp_major;
 484	u32 sync_timestamp_minor;
 485};
 486
 487#ifdef CONFIG_NET_RX_BUSY_POLL
 488enum efx_channel_busy_poll_state {
 489	EFX_CHANNEL_STATE_IDLE = 0,
 490	EFX_CHANNEL_STATE_NAPI = BIT(0),
 491	EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1,
 492	EFX_CHANNEL_STATE_NAPI_REQ = BIT(1),
 493	EFX_CHANNEL_STATE_POLL_BIT = 2,
 494	EFX_CHANNEL_STATE_POLL = BIT(2),
 495	EFX_CHANNEL_STATE_DISABLE_BIT = 3,
 496};
 497
 498static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
 499{
 500	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
 501}
 502
 503/* Called from the device poll routine to get ownership of a channel. */
 504static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 505{
 506	unsigned long prev, old = READ_ONCE(channel->busy_poll_state);
 507
 508	while (1) {
 509		switch (old) {
 510		case EFX_CHANNEL_STATE_POLL:
 511			/* Ensure efx_channel_try_lock_poll() wont starve us */
 512			set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT,
 513				&channel->busy_poll_state);
 514			/* fallthrough */
 515		case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ:
 516			return false;
 517		default:
 518			break;
 519		}
 520		prev = cmpxchg(&channel->busy_poll_state, old,
 521			       EFX_CHANNEL_STATE_NAPI);
 522		if (unlikely(prev != old)) {
 523			/* This is likely to mean we've just entered polling
 524			 * state. Go back round to set the REQ bit.
 525			 */
 526			old = prev;
 527			continue;
 528		}
 529		return true;
 530	}
 531}
 532
 533static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 534{
 535	/* Make sure write has completed from efx_channel_lock_napi() */
 536	smp_wmb();
 537	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
 538}
 539
 540/* Called from efx_busy_poll(). */
 541static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
 542{
 543	return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE,
 544			EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE;
 545}
 546
 547static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 548{
 549	clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
 550}
 551
 552static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 553{
 554	return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
 555}
 556
 557static inline void efx_channel_enable(struct efx_channel *channel)
 558{
 559	clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT,
 560			 &channel->busy_poll_state);
 561}
 562
 563/* Stop further polling or napi access.
 564 * Returns false if the channel is currently busy polling.
 565 */
 566static inline bool efx_channel_disable(struct efx_channel *channel)
 567{
 568	set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state);
 569	/* Implicit barrier in efx_channel_busy_polling() */
 570	return !efx_channel_busy_polling(channel);
 571}
 572
 573#else /* CONFIG_NET_RX_BUSY_POLL */
 574
 575static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
 576{
 577}
 578
 579static inline bool efx_channel_lock_napi(struct efx_channel *channel)
 580{
 581	return true;
 582}
 583
 584static inline void efx_channel_unlock_napi(struct efx_channel *channel)
 585{
 586}
 587
 588static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
 589{
 590	return false;
 591}
 592
 593static inline void efx_channel_unlock_poll(struct efx_channel *channel)
 594{
 595}
 596
 597static inline bool efx_channel_busy_polling(struct efx_channel *channel)
 598{
 599	return false;
 600}
 601
 602static inline void efx_channel_enable(struct efx_channel *channel)
 603{
 604}
 605
 606static inline bool efx_channel_disable(struct efx_channel *channel)
 607{
 608	return true;
 609}
 610#endif /* CONFIG_NET_RX_BUSY_POLL */
 611
 612/**
 613 * struct efx_msi_context - Context for each MSI
 614 * @efx: The associated NIC
 615 * @index: Index of the channel/IRQ
 616 * @name: Name of the channel/IRQ
 617 *
 618 * Unlike &struct efx_channel, this is never reallocated and is always
 619 * safe for the IRQ handler to access.
 620 */
 621struct efx_msi_context {
 622	struct efx_nic *efx;
 623	unsigned int index;
 624	char name[IFNAMSIZ + 6];
 625};
 626
 627/**
 628 * struct efx_channel_type - distinguishes traffic and extra channels
 629 * @handle_no_channel: Handle failure to allocate an extra channel
 630 * @pre_probe: Set up extra state prior to initialisation
 
 
 631 * @post_remove: Tear down extra state after finalisation, if allocated.
 632 *	May be called on channels that have not been probed.
 633 * @get_name: Generate the channel's name (used for its IRQ handler)
 634 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 635 *	reallocation is not supported.
 636 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 
 
 
 637 * @keep_eventq: Flag for whether event queue should be kept initialised
 638 *	while the device is stopped
 
 
 639 */
 640struct efx_channel_type {
 641	void (*handle_no_channel)(struct efx_nic *);
 642	int (*pre_probe)(struct efx_channel *);
 
 
 643	void (*post_remove)(struct efx_channel *);
 644	void (*get_name)(struct efx_channel *, char *buf, size_t len);
 645	struct efx_channel *(*copy)(const struct efx_channel *);
 646	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
 
 
 647	bool keep_eventq;
 
 648};
 649
 650enum efx_led_mode {
 651	EFX_LED_OFF	= 0,
 652	EFX_LED_ON	= 1,
 653	EFX_LED_DEFAULT	= 2
 654};
 655
 656#define STRING_TABLE_LOOKUP(val, member) \
 657	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
 658
 659extern const char *const efx_loopback_mode_names[];
 660extern const unsigned int efx_loopback_mode_max;
 661#define LOOPBACK_MODE(efx) \
 662	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
 663
 664extern const char *const efx_reset_type_names[];
 665extern const unsigned int efx_reset_type_max;
 666#define RESET_TYPE(type) \
 667	STRING_TABLE_LOOKUP(type, efx_reset_type)
 668
 669enum efx_int_mode {
 670	/* Be careful if altering to correct macro below */
 671	EFX_INT_MODE_MSIX = 0,
 672	EFX_INT_MODE_MSI = 1,
 673	EFX_INT_MODE_LEGACY = 2,
 674	EFX_INT_MODE_MAX	/* Insert any new items before this */
 675};
 676#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
 677
 678enum nic_state {
 679	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
 680	STATE_READY = 1,	/* hardware ready and netdev registered */
 681	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
 682	STATE_RECOVERY = 3,	/* device recovering from PCI error */
 
 
 
 
 683};
 684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 685/* Forward declaration */
 686struct efx_nic;
 687
 688/* Pseudo bit-mask flow control field */
 689#define EFX_FC_RX	FLOW_CTRL_RX
 690#define EFX_FC_TX	FLOW_CTRL_TX
 691#define EFX_FC_AUTO	4
 692
 693/**
 694 * struct efx_link_state - Current state of the link
 695 * @up: Link is up
 696 * @fd: Link is full-duplex
 697 * @fc: Actual flow control flags
 698 * @speed: Link speed (Mbps)
 699 */
 700struct efx_link_state {
 701	bool up;
 702	bool fd;
 703	u8 fc;
 704	unsigned int speed;
 705};
 706
 707static inline bool efx_link_state_equal(const struct efx_link_state *left,
 708					const struct efx_link_state *right)
 709{
 710	return left->up == right->up && left->fd == right->fd &&
 711		left->fc == right->fc && left->speed == right->speed;
 712}
 713
 714/**
 715 * struct efx_phy_operations - Efx PHY operations table
 716 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 717 *	efx->loopback_modes.
 718 * @init: Initialise PHY
 719 * @fini: Shut down PHY
 720 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 721 * @poll: Update @link_state and report whether it changed.
 722 *	Serialised by the mac_lock.
 723 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
 724 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
 725 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 726 *	(only needed where AN bit is set in mmds)
 727 * @test_alive: Test that PHY is 'alive' (online)
 728 * @test_name: Get the name of a PHY-specific test/result
 729 * @run_tests: Run tests and record results as appropriate (offline).
 730 *	Flags are the ethtool tests flags.
 731 */
 732struct efx_phy_operations {
 733	int (*probe) (struct efx_nic *efx);
 734	int (*init) (struct efx_nic *efx);
 735	void (*fini) (struct efx_nic *efx);
 736	void (*remove) (struct efx_nic *efx);
 737	int (*reconfigure) (struct efx_nic *efx);
 738	bool (*poll) (struct efx_nic *efx);
 739	void (*get_link_ksettings)(struct efx_nic *efx,
 740				   struct ethtool_link_ksettings *cmd);
 741	int (*set_link_ksettings)(struct efx_nic *efx,
 742				  const struct ethtool_link_ksettings *cmd);
 743	void (*set_npage_adv) (struct efx_nic *efx, u32);
 744	int (*test_alive) (struct efx_nic *efx);
 745	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
 746	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
 747	int (*get_module_eeprom) (struct efx_nic *efx,
 748			       struct ethtool_eeprom *ee,
 749			       u8 *data);
 750	int (*get_module_info) (struct efx_nic *efx,
 751				struct ethtool_modinfo *modinfo);
 752};
 753
 754/**
 755 * enum efx_phy_mode - PHY operating mode flags
 756 * @PHY_MODE_NORMAL: on and should pass traffic
 757 * @PHY_MODE_TX_DISABLED: on with TX disabled
 758 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 759 * @PHY_MODE_OFF: switched off through external control
 760 * @PHY_MODE_SPECIAL: on but will not pass traffic
 761 */
 762enum efx_phy_mode {
 763	PHY_MODE_NORMAL		= 0,
 764	PHY_MODE_TX_DISABLED	= 1,
 765	PHY_MODE_LOW_POWER	= 2,
 766	PHY_MODE_OFF		= 4,
 767	PHY_MODE_SPECIAL	= 8,
 768};
 769
 770static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
 771{
 772	return !!(mode & ~PHY_MODE_TX_DISABLED);
 773}
 774
 775/**
 776 * struct efx_hw_stat_desc - Description of a hardware statistic
 777 * @name: Name of the statistic as visible through ethtool, or %NULL if
 778 *	it should not be exposed
 779 * @dma_width: Width in bits (0 for non-DMA statistics)
 780 * @offset: Offset within stats (ignored for non-DMA statistics)
 781 */
 782struct efx_hw_stat_desc {
 783	const char *name;
 784	u16 dma_width;
 785	u16 offset;
 786};
 787
 788/* Number of bits used in a multicast filter hash address */
 789#define EFX_MCAST_HASH_BITS 8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791/* Number of (single-bit) entries in a multicast filter hash */
 792#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
 793
 794/* An Efx multicast filter hash */
 795union efx_multicast_hash {
 796	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
 797	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
 
 
 
 
 
 
 
 
 
 
 798};
 799
 800struct vfdi_status;
 
 
 
 
 
 
 
 
 
 
 801
 802/**
 803 * struct efx_nic - an Efx NIC
 804 * @name: Device name (net device name or bus id before net device registered)
 805 * @pci_dev: The PCI device
 806 * @node: List node for maintaning primary/secondary function lists
 807 * @primary: &struct efx_nic instance for the primary function of this
 808 *	controller.  May be the same structure, and may be %NULL if no
 809 *	primary function is bound.  Serialised by rtnl_lock.
 810 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
 811 *	functions of the controller, if this is for the primary function.
 812 *	Serialised by rtnl_lock.
 813 * @type: Controller type attributes
 814 * @legacy_irq: IRQ number
 815 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 816 *	Work items do not hold and must not acquire RTNL.
 817 * @workqueue_name: Name of workqueue
 818 * @reset_work: Scheduled reset workitem
 819 * @membase_phys: Memory BAR value as physical address
 820 * @membase: Memory BAR value
 
 821 * @interrupt_mode: Interrupt mode
 822 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 823 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 824 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 
 825 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 826 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 827 * @msg_enable: Log message enable flags
 828 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 829 * @reset_pending: Bitmask for pending resets
 830 * @tx_queue: TX DMA queues
 831 * @rx_queue: RX DMA queues
 832 * @channel: Channels
 833 * @msi_context: Context for each MSI
 834 * @extra_channel_types: Types of extra (non-traffic) channels that
 835 *	should be allocated for this NIC
 
 
 
 
 836 * @rxq_entries: Size of receive queues requested by user.
 837 * @txq_entries: Size of transmit queues requested by user.
 838 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 839 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 840 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 841 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 842 * @sram_lim_qw: Qword address limit of SRAM
 843 * @next_buffer_table: First available buffer table id
 844 * @n_channels: Number of channels in use
 845 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 846 * @n_tx_channels: Number of channels used for TX
 
 
 
 
 
 847 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 848 *	in accordance with NET_IP_ALIGN
 849 * @rx_dma_len: Current maximum RX DMA length
 850 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 851 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 852 *	for use in sk_buff::truesize
 853 * @rx_prefix_size: Size of RX prefix before packet data
 854 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 855 *	(valid only if @rx_prefix_size != 0; always negative)
 856 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 857 *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
 858 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 859 *	(valid only if channel->sync_timestamps_enabled; always negative)
 860 * @rx_hash_key: Toeplitz hash key for RSS
 861 * @rx_indir_table: Indirection table for RSS
 862 * @rx_scatter: Scatter mode enabled for receives
 863 * @rss_active: RSS enabled on hardware
 864 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
 865 * @int_error_count: Number of internal errors seen recently
 866 * @int_error_expire: Time at which error count will be expired
 
 867 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 868 *	acknowledge but do nothing else.
 869 * @irq_status: Interrupt status buffer
 870 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 871 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 872 * @selftest_work: Work item for asynchronous self-test
 873 * @mtd_list: List of MTDs attached to the NIC
 874 * @nic_data: Hardware dependent state
 875 * @mcdi: Management-Controller-to-Driver Interface state
 876 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 877 *	efx_monitor() and efx_reconfigure_port()
 878 * @port_enabled: Port enabled indicator.
 879 *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
 880 *	efx_mac_work() with kernel interfaces. Safe to read under any
 881 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 882 *	be held to modify it.
 883 * @port_initialized: Port initialized?
 884 * @net_dev: Operating system network device. Consider holding the rtnl lock
 885 * @fixed_features: Features which cannot be turned off
 
 
 886 * @stats_buffer: DMA buffer for statistics
 887 * @phy_type: PHY type
 888 * @phy_op: PHY interface
 889 * @phy_data: PHY private data (including PHY-specific stats)
 890 * @mdio: PHY MDIO interface
 891 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
 892 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 893 * @link_advertising: Autonegotiation advertising flags
 
 
 894 * @link_state: Current state of the link
 895 * @n_link_state_changes: Number of times the link has changed state
 896 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 897 *	Protected by @mac_lock.
 898 * @multicast_hash: Multicast hash table for Falcon-arch.
 899 *	Protected by @mac_lock.
 900 * @wanted_fc: Wanted flow control flags
 901 * @fc_disable: When non-zero flow control is disabled. Typically used to
 902 *	ensure that network back pressure doesn't delay dma queue flushes.
 903 *	Serialised by the rtnl lock.
 904 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 905 * @loopback_mode: Loopback status
 906 * @loopback_modes: Supported loopback mode bitmask
 907 * @loopback_selftest: Offline self-test private state
 908 * @filter_sem: Filter table rw_semaphore, for freeing the table
 909 * @filter_lock: Filter table lock, for mere content changes
 910 * @filter_state: Architecture-dependent filter table state
 911 * @rps_expire_channel: Next channel to check for expiry
 912 * @rps_expire_index: Next index to check for expiry in
 913 *	@rps_expire_channel's @rps_flow_id
 
 
 
 
 914 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 915 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 916 *	Decremented when the efx_flush_rx_queue() is called.
 917 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 918 *	completed (either success or failure). Not used when MCDI is used to
 919 *	flush receive queues.
 920 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
 921 * @vf_count: Number of VFs intended to be enabled.
 922 * @vf_init_count: Number of VFs that have been fully initialised.
 923 * @vi_scale: log2 number of vnics per VF.
 
 
 924 * @ptp_data: PTP state data
 
 925 * @vpd_sn: Serial number read from VPD
 
 
 
 
 
 
 
 
 
 926 * @monitor_work: Hardware monitor workitem
 927 * @biu_lock: BIU (bus interface unit) lock
 928 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 929 *	field is used by efx_test_interrupts() to verify that an
 930 *	interrupt has occurred.
 931 * @stats_lock: Statistics update lock. Must be held when calling
 932 *	efx_nic_type::{update,start,stop}_stats.
 933 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 934 *
 935 * This is stored in the private area of the &struct net_device.
 936 */
 937struct efx_nic {
 938	/* The following fields should be written very rarely */
 939
 940	char name[IFNAMSIZ];
 941	struct list_head node;
 942	struct efx_nic *primary;
 943	struct list_head secondary_list;
 944	struct pci_dev *pci_dev;
 945	unsigned int port_num;
 946	const struct efx_nic_type *type;
 947	int legacy_irq;
 948	bool eeh_disabled_legacy_irq;
 949	struct workqueue_struct *workqueue;
 950	char workqueue_name[16];
 951	struct work_struct reset_work;
 952	resource_size_t membase_phys;
 953	void __iomem *membase;
 954
 
 
 955	enum efx_int_mode interrupt_mode;
 956	unsigned int timer_quantum_ns;
 957	unsigned int timer_max_ns;
 958	bool irq_rx_adaptive;
 
 959	unsigned int irq_mod_step_us;
 960	unsigned int irq_rx_moderation_us;
 961	u32 msg_enable;
 962
 963	enum nic_state state;
 964	unsigned long reset_pending;
 965
 966	struct efx_channel *channel[EFX_MAX_CHANNELS];
 967	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
 968	const struct efx_channel_type *
 969	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
 
 
 
 
 
 970
 971	unsigned rxq_entries;
 972	unsigned txq_entries;
 973	unsigned int txq_stop_thresh;
 974	unsigned int txq_wake_thresh;
 975
 976	unsigned tx_dc_base;
 977	unsigned rx_dc_base;
 978	unsigned sram_lim_qw;
 979	unsigned next_buffer_table;
 980
 981	unsigned int max_channels;
 
 982	unsigned int max_tx_channels;
 983	unsigned n_channels;
 984	unsigned n_rx_channels;
 985	unsigned rss_spread;
 986	unsigned tx_channel_offset;
 987	unsigned n_tx_channels;
 
 
 
 
 
 988	unsigned int rx_ip_align;
 989	unsigned int rx_dma_len;
 990	unsigned int rx_buffer_order;
 991	unsigned int rx_buffer_truesize;
 992	unsigned int rx_page_buf_step;
 993	unsigned int rx_bufs_per_page;
 994	unsigned int rx_pages_per_batch;
 995	unsigned int rx_prefix_size;
 996	int rx_packet_hash_offset;
 997	int rx_packet_len_offset;
 998	int rx_packet_ts_offset;
 999	u8 rx_hash_key[40];
1000	u32 rx_indir_table[128];
1001	bool rx_scatter;
1002	bool rss_active;
1003	bool rx_hash_udp_4tuple;
1004
1005	unsigned int_error_count;
1006	unsigned long int_error_expire;
1007
 
1008	bool irq_soft_enabled;
1009	struct efx_buffer irq_status;
1010	unsigned irq_zero_count;
1011	unsigned irq_level;
1012	struct delayed_work selftest_work;
1013
1014#ifdef CONFIG_SFC_MTD
1015	struct list_head mtd_list;
1016#endif
1017
1018	void *nic_data;
1019	struct efx_mcdi_data *mcdi;
1020
1021	struct mutex mac_lock;
1022	struct work_struct mac_work;
1023	bool port_enabled;
1024
1025	bool mc_bist_for_other_fn;
1026	bool port_initialized;
1027	struct net_device *net_dev;
1028
1029	netdev_features_t fixed_features;
1030
 
1031	struct efx_buffer stats_buffer;
1032	u64 rx_nodesc_drops_total;
1033	u64 rx_nodesc_drops_while_down;
1034	bool rx_nodesc_drops_prev_state;
1035
1036	unsigned int phy_type;
1037	const struct efx_phy_operations *phy_op;
1038	void *phy_data;
1039	struct mdio_if_info mdio;
1040	unsigned int mdio_bus;
1041	enum efx_phy_mode phy_mode;
1042
1043	u32 link_advertising;
 
1044	struct efx_link_state link_state;
1045	unsigned int n_link_state_changes;
1046
1047	bool unicast_filter;
1048	union efx_multicast_hash multicast_hash;
1049	u8 wanted_fc;
1050	unsigned fc_disable;
1051
1052	atomic_t rx_reset;
1053	enum efx_loopback_mode loopback_mode;
1054	u64 loopback_modes;
1055
1056	void *loopback_selftest;
 
 
 
 
1057
1058	struct rw_semaphore filter_sem;
1059	spinlock_t filter_lock;
1060	void *filter_state;
1061#ifdef CONFIG_RFS_ACCEL
1062	unsigned int rps_expire_channel;
1063	unsigned int rps_expire_index;
 
 
 
 
1064#endif
1065
1066	atomic_t active_queues;
1067	atomic_t rxq_flush_pending;
1068	atomic_t rxq_flush_outstanding;
1069	wait_queue_head_t flush_wq;
1070
1071#ifdef CONFIG_SFC_SRIOV
1072	unsigned vf_count;
1073	unsigned vf_init_count;
1074	unsigned vi_scale;
1075#endif
 
 
1076
1077	struct efx_ptp_data *ptp_data;
 
1078
1079	char *vpd_sn;
 
 
 
 
 
 
 
 
 
 
1080
1081	/* The following fields may be written more often */
1082
1083	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1084	spinlock_t biu_lock;
1085	int last_irq_cpu;
1086	spinlock_t stats_lock;
1087	atomic_t n_rx_noskb_drops;
1088};
1089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090static inline int efx_dev_registered(struct efx_nic *efx)
1091{
1092	return efx->net_dev->reg_state == NETREG_REGISTERED;
1093}
1094
1095static inline unsigned int efx_port_num(struct efx_nic *efx)
1096{
1097	return efx->port_num;
1098}
1099
1100struct efx_mtd_partition {
1101	struct list_head node;
1102	struct mtd_info mtd;
1103	const char *dev_type_name;
1104	const char *type_name;
1105	char name[IFNAMSIZ + 20];
1106};
1107
 
 
 
 
 
 
1108/**
1109 * struct efx_nic_type - Efx device type definition
1110 * @mem_bar: Get the memory BAR
1111 * @mem_map_size: Get memory BAR mapped size
1112 * @probe: Probe the controller
1113 * @remove: Free resources allocated by probe()
1114 * @init: Initialise the controller
1115 * @dimension_resources: Dimension controller resources (buffer table,
1116 *	and VIs once the available interrupt resources are clear)
1117 * @fini: Shut down the controller
1118 * @monitor: Periodic function for polling link state and hardware monitor
1119 * @map_reset_reason: Map ethtool reset reason to a reset method
1120 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1121 * @reset: Reset the controller hardware and possibly the PHY.  This will
1122 *	be called while the controller is uninitialised.
1123 * @probe_port: Probe the MAC and PHY
1124 * @remove_port: Free resources allocated by probe_port()
1125 * @handle_global_event: Handle a "global" event (may be %NULL)
1126 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1127 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1128 *	(for Falcon architecture)
1129 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1130 *	architecture)
1131 * @prepare_flr: Prepare for an FLR
1132 * @finish_flr: Clean up after an FLR
1133 * @describe_stats: Describe statistics for ethtool
1134 * @update_stats: Update statistics not provided by event handling.
1135 *	Either argument may be %NULL.
 
 
 
1136 * @start_stats: Start the regular fetching of statistics
1137 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1138 * @stop_stats: Stop the regular fetching of statistics
1139 * @set_id_led: Set state of identifying LED or revert to automatic function
1140 * @push_irq_moderation: Apply interrupt moderation value
1141 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1142 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1143 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1144 *	to the hardware.  Serialised by the mac_lock.
1145 * @check_mac_fault: Check MAC fault state. True if fault present.
1146 * @get_wol: Get WoL configuration from driver state
1147 * @set_wol: Push WoL configuration to the NIC
1148 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1149 * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1150 *	expected to reset the NIC.
1151 * @test_nvram: Test validity of NVRAM contents
1152 * @mcdi_request: Send an MCDI request with the given header and SDU.
1153 *	The SDU length may be any value from 0 up to the protocol-
1154 *	defined maximum, but its buffer will be padded to a multiple
1155 *	of 4 bytes.
1156 * @mcdi_poll_response: Test whether an MCDI response is available.
1157 * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1158 *	be a multiple of 4.  The length may not be, but the buffer
1159 *	will be padded so it is safe to round up.
1160 * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1161 *	return an appropriate error code for aborting any current
1162 *	request; otherwise return 0.
1163 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1164 *	be separately enabled after this.
1165 * @irq_test_generate: Generate a test IRQ
1166 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1167 *	queue must be separately disabled before this.
1168 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1169 *	a pointer to the &struct efx_msi_context for the channel.
1170 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1171 *	is a pointer to the &struct efx_nic.
1172 * @tx_probe: Allocate resources for TX queue
1173 * @tx_init: Initialise TX queue on the NIC
1174 * @tx_remove: Free resources for TX queue
1175 * @tx_write: Write TX descriptors and doorbell
 
1176 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
 
 
 
 
 
1177 * @rx_probe: Allocate resources for RX queue
1178 * @rx_init: Initialise RX queue on the NIC
1179 * @rx_remove: Free resources for RX queue
1180 * @rx_write: Write RX descriptors and doorbell
1181 * @rx_defer_refill: Generate a refill reminder event
 
 
1182 * @ev_probe: Allocate resources for event queue
1183 * @ev_init: Initialise event queue on the NIC
1184 * @ev_fini: Deinitialise event queue on the NIC
1185 * @ev_remove: Free resources for event queue
1186 * @ev_process: Process events for a queue, up to the given NAPI quota
1187 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1188 * @ev_test_generate: Generate a test event
1189 * @filter_table_probe: Probe filter capabilities and set up filter software state
1190 * @filter_table_restore: Restore filters removed from hardware
1191 * @filter_table_remove: Remove filters from hardware and tear down software state
1192 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1193 * @filter_insert: add or replace a filter
1194 * @filter_remove_safe: remove a filter by ID, carefully
1195 * @filter_get_safe: retrieve a filter by ID, carefully
1196 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1197 *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1198 * @filter_count_rx_used: Get the number of filters in use at a given priority
1199 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1200 * @filter_get_rx_ids: Get list of RX filters at a given priority
1201 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1202 *	atomic.  The hardware change may be asynchronous but should
1203 *	not be delayed for long.  It may fail if this can't be done
1204 *	atomically.
1205 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1206 *	This must check whether the specified table entry is used by RFS
1207 *	and that rps_may_expire_flow() returns true for it.
1208 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1209 *	 using efx_mtd_add()
1210 * @mtd_rename: Set an MTD partition name using the net device name
1211 * @mtd_read: Read from an MTD partition
1212 * @mtd_erase: Erase part of an MTD partition
1213 * @mtd_write: Write to an MTD partition
1214 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1215 *	also notifies the driver that a writer has finished using this
1216 *	partition.
1217 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1218 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1219 *	timestamping, possibly only temporarily for the purposes of a reset.
1220 * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1221 *	and tx_type will already have been validated but this operation
1222 *	must validate and update rx_filter.
 
1223 * @set_mac_address: Set the MAC address of the device
1224 * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1225 *	If %NULL, then device does not support any TSO version.
 
 
 
 
 
1226 * @revision: Hardware architecture revision
1227 * @txd_ptr_tbl_base: TX descriptor ring base address
1228 * @rxd_ptr_tbl_base: RX descriptor ring base address
1229 * @buf_tbl_base: Buffer table base address
1230 * @evq_ptr_tbl_base: Event queue pointer table base address
1231 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1232 * @max_dma_mask: Maximum possible DMA mask
1233 * @rx_prefix_size: Size of RX prefix before packet data
1234 * @rx_hash_offset: Offset of RX flow hash within prefix
1235 * @rx_ts_offset: Offset of timestamp within prefix
1236 * @rx_buffer_padding: Size of padding at end of RX packet
1237 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1238 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1239 * @max_interrupt_mode: Highest capability interrupt mode supported
1240 *	from &enum efx_init_mode.
 
1241 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1242 * @offload_features: net_device feature flags for protocol offload
1243 *	features implemented in hardware
1244 * @mcdi_max_ver: Maximum MCDI version supported
1245 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1246 */
1247struct efx_nic_type {
1248	bool is_vf;
1249	unsigned int mem_bar;
1250	unsigned int (*mem_map_size)(struct efx_nic *efx);
1251	int (*probe)(struct efx_nic *efx);
1252	void (*remove)(struct efx_nic *efx);
1253	int (*init)(struct efx_nic *efx);
1254	int (*dimension_resources)(struct efx_nic *efx);
1255	void (*fini)(struct efx_nic *efx);
1256	void (*monitor)(struct efx_nic *efx);
1257	enum reset_type (*map_reset_reason)(enum reset_type reason);
1258	int (*map_reset_flags)(u32 *flags);
1259	int (*reset)(struct efx_nic *efx, enum reset_type method);
1260	int (*probe_port)(struct efx_nic *efx);
1261	void (*remove_port)(struct efx_nic *efx);
1262	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1263	int (*fini_dmaq)(struct efx_nic *efx);
1264	void (*prepare_flush)(struct efx_nic *efx);
1265	void (*finish_flush)(struct efx_nic *efx);
1266	void (*prepare_flr)(struct efx_nic *efx);
1267	void (*finish_flr)(struct efx_nic *efx);
1268	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1269	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1270			       struct rtnl_link_stats64 *core_stats);
 
 
1271	void (*start_stats)(struct efx_nic *efx);
1272	void (*pull_stats)(struct efx_nic *efx);
1273	void (*stop_stats)(struct efx_nic *efx);
1274	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1275	void (*push_irq_moderation)(struct efx_channel *channel);
1276	int (*reconfigure_port)(struct efx_nic *efx);
1277	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1278	int (*reconfigure_mac)(struct efx_nic *efx);
1279	bool (*check_mac_fault)(struct efx_nic *efx);
1280	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1281	int (*set_wol)(struct efx_nic *efx, u32 type);
1282	void (*resume_wol)(struct efx_nic *efx);
 
 
 
 
 
1283	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1284	int (*test_nvram)(struct efx_nic *efx);
1285	void (*mcdi_request)(struct efx_nic *efx,
1286			     const efx_dword_t *hdr, size_t hdr_len,
1287			     const efx_dword_t *sdu, size_t sdu_len);
1288	bool (*mcdi_poll_response)(struct efx_nic *efx);
1289	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1290				   size_t pdu_offset, size_t pdu_len);
1291	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1292	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1293	void (*irq_enable_master)(struct efx_nic *efx);
1294	int (*irq_test_generate)(struct efx_nic *efx);
1295	void (*irq_disable_non_ev)(struct efx_nic *efx);
1296	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1297	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1298	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1299	void (*tx_init)(struct efx_tx_queue *tx_queue);
1300	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1301	void (*tx_write)(struct efx_tx_queue *tx_queue);
 
1302	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1303				     dma_addr_t dma_addr, unsigned int len);
1304	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1305				  const u32 *rx_indir_table);
 
 
 
 
 
 
 
 
1306	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1307	void (*rx_init)(struct efx_rx_queue *rx_queue);
1308	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1309	void (*rx_write)(struct efx_rx_queue *rx_queue);
1310	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
 
 
1311	int (*ev_probe)(struct efx_channel *channel);
1312	int (*ev_init)(struct efx_channel *channel);
1313	void (*ev_fini)(struct efx_channel *channel);
1314	void (*ev_remove)(struct efx_channel *channel);
1315	int (*ev_process)(struct efx_channel *channel, int quota);
1316	void (*ev_read_ack)(struct efx_channel *channel);
1317	void (*ev_test_generate)(struct efx_channel *channel);
1318	int (*filter_table_probe)(struct efx_nic *efx);
1319	void (*filter_table_restore)(struct efx_nic *efx);
1320	void (*filter_table_remove)(struct efx_nic *efx);
1321	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1322	s32 (*filter_insert)(struct efx_nic *efx,
1323			     struct efx_filter_spec *spec, bool replace);
1324	int (*filter_remove_safe)(struct efx_nic *efx,
1325				  enum efx_filter_priority priority,
1326				  u32 filter_id);
1327	int (*filter_get_safe)(struct efx_nic *efx,
1328			       enum efx_filter_priority priority,
1329			       u32 filter_id, struct efx_filter_spec *);
1330	int (*filter_clear_rx)(struct efx_nic *efx,
1331			       enum efx_filter_priority priority);
1332	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1333				    enum efx_filter_priority priority);
1334	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1335	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1336				 enum efx_filter_priority priority,
1337				 u32 *buf, u32 size);
1338#ifdef CONFIG_RFS_ACCEL
1339	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1340				 struct efx_filter_spec *spec);
1341	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1342				      unsigned int index);
1343#endif
1344#ifdef CONFIG_SFC_MTD
1345	int (*mtd_probe)(struct efx_nic *efx);
1346	void (*mtd_rename)(struct efx_mtd_partition *part);
1347	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1348			size_t *retlen, u8 *buffer);
1349	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1350	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1351			 size_t *retlen, const u8 *buffer);
1352	int (*mtd_sync)(struct mtd_info *mtd);
1353#endif
1354	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1355	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1356	int (*ptp_set_ts_config)(struct efx_nic *efx,
1357				 struct hwtstamp_config *init);
1358	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1359	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1360	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
 
 
1361	int (*sriov_init)(struct efx_nic *efx);
1362	void (*sriov_fini)(struct efx_nic *efx);
1363	bool (*sriov_wanted)(struct efx_nic *efx);
1364	void (*sriov_reset)(struct efx_nic *efx);
1365	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1366	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1367	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1368				 u8 qos);
1369	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1370				     bool spoofchk);
1371	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1372				   struct ifla_vf_info *ivi);
1373	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1374				       int link_state);
1375	int (*sriov_get_phys_port_id)(struct efx_nic *efx,
1376				      struct netdev_phys_item_id *ppid);
1377	int (*vswitching_probe)(struct efx_nic *efx);
1378	int (*vswitching_restore)(struct efx_nic *efx);
1379	void (*vswitching_remove)(struct efx_nic *efx);
1380	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1381	int (*set_mac_address)(struct efx_nic *efx);
1382	u32 (*tso_versions)(struct efx_nic *efx);
 
 
 
 
 
 
1383
1384	int revision;
1385	unsigned int txd_ptr_tbl_base;
1386	unsigned int rxd_ptr_tbl_base;
1387	unsigned int buf_tbl_base;
1388	unsigned int evq_ptr_tbl_base;
1389	unsigned int evq_rptr_tbl_base;
1390	u64 max_dma_mask;
1391	unsigned int rx_prefix_size;
1392	unsigned int rx_hash_offset;
1393	unsigned int rx_ts_offset;
1394	unsigned int rx_buffer_padding;
1395	bool can_rx_scatter;
1396	bool always_rx_scatter;
1397	unsigned int max_interrupt_mode;
 
1398	unsigned int timer_period_max;
1399	netdev_features_t offload_features;
1400	int mcdi_max_ver;
1401	unsigned int max_rx_ip_filters;
1402	u32 hwtstamp_filters;
 
1403};
1404
1405/**************************************************************************
1406 *
1407 * Prototypes and inline functions
1408 *
1409 *************************************************************************/
1410
1411static inline struct efx_channel *
1412efx_get_channel(struct efx_nic *efx, unsigned index)
1413{
1414	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1415	return efx->channel[index];
1416}
1417
1418/* Iterate over all used channels */
1419#define efx_for_each_channel(_channel, _efx)				\
1420	for (_channel = (_efx)->channel[0];				\
1421	     _channel;							\
1422	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1423		     (_efx)->channel[_channel->channel + 1] : NULL)
1424
1425/* Iterate over all used channels in reverse */
1426#define efx_for_each_channel_rev(_channel, _efx)			\
1427	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1428	     _channel;							\
1429	     _channel = _channel->channel ?				\
1430		     (_efx)->channel[_channel->channel - 1] : NULL)
1431
1432static inline struct efx_tx_queue *
1433efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
 
 
 
 
 
 
 
 
 
 
 
 
 
1434{
1435	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1436				  type >= EFX_TXQ_TYPES);
1437	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1438}
1439
1440static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1441{
1442	return channel->channel - channel->efx->tx_channel_offset <
1443		channel->efx->n_tx_channels;
 
 
 
 
 
 
1444}
1445
1446static inline struct efx_tx_queue *
1447efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1448{
1449	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_tx_queues(channel) ||
1450				  type >= EFX_TXQ_TYPES);
1451	return &channel->tx_queue[type];
1452}
1453
1454static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
 
1455{
1456	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1457		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
 
1458}
1459
1460/* Iterate over all TX queues belonging to a channel */
1461#define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1462	if (!efx_channel_has_tx_queues(_channel))			\
1463		;							\
1464	else								\
1465		for (_tx_queue = (_channel)->tx_queue;			\
1466		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1467			     efx_tx_queue_used(_tx_queue);		\
1468		     _tx_queue++)
1469
1470/* Iterate over all possible TX queues belonging to a channel */
1471#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1472	if (!efx_channel_has_tx_queues(_channel))			\
1473		;							\
1474	else								\
1475		for (_tx_queue = (_channel)->tx_queue;			\
1476		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1477		     _tx_queue++)
1478
1479static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1480{
1481	return channel->rx_queue.core_index >= 0;
1482}
1483
1484static inline struct efx_rx_queue *
1485efx_channel_get_rx_queue(struct efx_channel *channel)
1486{
1487	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1488	return &channel->rx_queue;
1489}
1490
1491/* Iterate over all RX queues belonging to a channel */
1492#define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1493	if (!efx_channel_has_rx_queue(_channel))			\
1494		;							\
1495	else								\
1496		for (_rx_queue = &(_channel)->rx_queue;			\
1497		     _rx_queue;						\
1498		     _rx_queue = NULL)
1499
1500static inline struct efx_channel *
1501efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1502{
1503	return container_of(rx_queue, struct efx_channel, rx_queue);
1504}
1505
1506static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1507{
1508	return efx_rx_queue_channel(rx_queue)->channel;
1509}
1510
1511/* Returns a pointer to the specified receive buffer in the RX
1512 * descriptor queue.
1513 */
1514static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1515						  unsigned int index)
1516{
1517	return &rx_queue->buffer[index];
1518}
1519
 
 
 
 
 
 
 
 
 
1520/**
1521 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1522 *
1523 * This calculates the maximum frame length that will be used for a
1524 * given MTU.  The frame length will be equal to the MTU plus a
1525 * constant amount of header space and padding.  This is the quantity
1526 * that the net driver will program into the MAC as the maximum frame
1527 * length.
1528 *
1529 * The 10G MAC requires 8-byte alignment on the frame
1530 * length, so we round up to the nearest 8.
1531 *
1532 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1533 * XGMII cycle).  If the frame length reaches the maximum value in the
1534 * same cycle, the XMAC can miss the IPG altogether.  We work around
1535 * this by adding a further 16 bytes.
1536 */
1537#define EFX_FRAME_PAD	16
1538#define EFX_MAX_FRAME_LEN(mtu) \
1539	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1540
1541static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1542{
1543	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1544}
1545static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1546{
1547	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548}
1549
1550/* Get all supported features.
1551 * If a feature is not fixed, it is present in hw_features.
1552 * If a feature is fixed, it does not present in hw_features, but
1553 * always in features.
1554 */
1555static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1556{
1557	const struct net_device *net_dev = efx->net_dev;
1558
1559	return net_dev->features | net_dev->hw_features;
1560}
1561
1562/* Get the current TX queue insert index. */
1563static inline unsigned int
1564efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1565{
1566	return tx_queue->insert_count & tx_queue->ptr_mask;
1567}
1568
1569/* Get a TX buffer. */
1570static inline struct efx_tx_buffer *
1571__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1572{
1573	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1574}
1575
1576/* Get a TX buffer, checking it's not currently in use. */
1577static inline struct efx_tx_buffer *
1578efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1579{
1580	struct efx_tx_buffer *buffer =
1581		__efx_tx_queue_get_insert_buffer(tx_queue);
1582
1583	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1584	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1585	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1586
1587	return buffer;
1588}
1589
1590#endif /* EFX_NET_DRIVER_H */