Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   4 * Ethernet adapters. Based on earlier sk98lin, e100 and
   5 * FreeBSD if_sk drivers.
   6 *
   7 * This driver intentionally does not support all the features
   8 * of the original driver such as link fail-over and link management because
   9 * those should be done at higher levels.
  10 *
  11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/in.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/moduleparam.h>
  20#include <linux/netdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/ethtool.h>
  23#include <linux/pci.h>
  24#include <linux/if_vlan.h>
  25#include <linux/ip.h>
  26#include <linux/delay.h>
  27#include <linux/crc32.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/debugfs.h>
  30#include <linux/sched.h>
  31#include <linux/seq_file.h>
  32#include <linux/mii.h>
  33#include <linux/slab.h>
  34#include <linux/dmi.h>
  35#include <linux/prefetch.h>
  36#include <asm/irq.h>
  37
  38#include "skge.h"
  39
  40#define DRV_NAME		"skge"
  41#define DRV_VERSION		"1.14"
  42
  43#define DEFAULT_TX_RING_SIZE	128
  44#define DEFAULT_RX_RING_SIZE	512
  45#define MAX_TX_RING_SIZE	1024
  46#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
  47#define MAX_RX_RING_SIZE	4096
  48#define RX_COPY_THRESHOLD	128
  49#define RX_BUF_SIZE		1536
  50#define PHY_RETRIES	        1000
  51#define ETH_JUMBO_MTU		9000
  52#define TX_WATCHDOG		(5 * HZ)
 
  53#define BLINK_MS		250
  54#define LINK_HZ			HZ
  55
  56#define SKGE_EEPROM_MAGIC	0x9933aabb
  57
  58
  59MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  60MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  61MODULE_LICENSE("GPL");
  62MODULE_VERSION(DRV_VERSION);
  63
  64static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  65				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  66				NETIF_MSG_IFDOWN);
  67
  68static int debug = -1;	/* defaults above */
  69module_param(debug, int, 0);
  70MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  71
  72static const struct pci_device_id skge_id_table[] = {
  73	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
  74	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
  75#ifdef CONFIG_SKGE_GENESIS
  76	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  77#endif
  78	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  79	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
  80	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
  81	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
  82	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
  83	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
  84	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
  85	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
  86	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
  87	{ 0 }
  88};
  89MODULE_DEVICE_TABLE(pci, skge_id_table);
  90
  91static int skge_up(struct net_device *dev);
  92static int skge_down(struct net_device *dev);
  93static void skge_phy_reset(struct skge_port *skge);
  94static void skge_tx_clean(struct net_device *dev);
  95static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  96static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  97static void genesis_get_stats(struct skge_port *skge, u64 *data);
  98static void yukon_get_stats(struct skge_port *skge, u64 *data);
  99static void yukon_init(struct skge_hw *hw, int port);
 100static void genesis_mac_init(struct skge_hw *hw, int port);
 101static void genesis_link_up(struct skge_port *skge);
 102static void skge_set_multicast(struct net_device *dev);
 103static irqreturn_t skge_intr(int irq, void *dev_id);
 104
 105/* Avoid conditionals by using array */
 106static const int txqaddr[] = { Q_XA1, Q_XA2 };
 107static const int rxqaddr[] = { Q_R1, Q_R2 };
 108static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 109static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 110static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 111static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 112
 113static inline bool is_genesis(const struct skge_hw *hw)
 114{
 115#ifdef CONFIG_SKGE_GENESIS
 116	return hw->chip_id == CHIP_ID_GENESIS;
 117#else
 118	return false;
 119#endif
 120}
 121
 122static int skge_get_regs_len(struct net_device *dev)
 123{
 124	return 0x4000;
 125}
 126
 127/*
 128 * Returns copy of whole control register region
 129 * Note: skip RAM address register because accessing it will
 130 * 	 cause bus hangs!
 131 */
 132static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 133			  void *p)
 134{
 135	const struct skge_port *skge = netdev_priv(dev);
 136	const void __iomem *io = skge->hw->regs;
 137
 138	regs->version = 1;
 139	memset(p, 0, regs->len);
 140	memcpy_fromio(p, io, B3_RAM_ADDR);
 141
 142	if (regs->len > B3_RI_WTO_R1) {
 143		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 144			      regs->len - B3_RI_WTO_R1);
 145	}
 146}
 147
 148/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 149static u32 wol_supported(const struct skge_hw *hw)
 150{
 151	if (is_genesis(hw))
 152		return 0;
 153
 154	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 155		return 0;
 156
 157	return WAKE_MAGIC | WAKE_PHY;
 158}
 159
 160static void skge_wol_init(struct skge_port *skge)
 161{
 162	struct skge_hw *hw = skge->hw;
 163	int port = skge->port;
 164	u16 ctrl;
 165
 166	skge_write16(hw, B0_CTST, CS_RST_CLR);
 167	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 168
 169	/* Turn on Vaux */
 170	skge_write8(hw, B0_POWER_CTRL,
 171		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 172
 173	/* WA code for COMA mode -- clear PHY reset */
 174	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 175	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 176		u32 reg = skge_read32(hw, B2_GP_IO);
 177		reg |= GP_DIR_9;
 178		reg &= ~GP_IO_9;
 179		skge_write32(hw, B2_GP_IO, reg);
 180	}
 181
 182	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 183		     GPC_DIS_SLEEP |
 184		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 185		     GPC_ANEG_1 | GPC_RST_SET);
 186
 187	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 188		     GPC_DIS_SLEEP |
 189		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 190		     GPC_ANEG_1 | GPC_RST_CLR);
 191
 192	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 193
 194	/* Force to 10/100 skge_reset will re-enable on resume	 */
 195	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 196		     (PHY_AN_100FULL | PHY_AN_100HALF |
 197		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 198	/* no 1000 HD/FD */
 199	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 200	gm_phy_write(hw, port, PHY_MARV_CTRL,
 201		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 202		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 203
 204
 205	/* Set GMAC to no flow control and auto update for speed/duplex */
 206	gma_write16(hw, port, GM_GP_CTRL,
 207		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 208		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 209
 210	/* Set WOL address */
 211	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 212		    skge->netdev->dev_addr, ETH_ALEN);
 213
 214	/* Turn on appropriate WOL control bits */
 215	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 216	ctrl = 0;
 217	if (skge->wol & WAKE_PHY)
 218		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 219	else
 220		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 221
 222	if (skge->wol & WAKE_MAGIC)
 223		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 224	else
 225		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 226
 227	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 228	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 229
 230	/* block receiver */
 231	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 232}
 233
 234static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 235{
 236	struct skge_port *skge = netdev_priv(dev);
 237
 238	wol->supported = wol_supported(skge->hw);
 239	wol->wolopts = skge->wol;
 240}
 241
 242static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 243{
 244	struct skge_port *skge = netdev_priv(dev);
 245	struct skge_hw *hw = skge->hw;
 246
 247	if ((wol->wolopts & ~wol_supported(hw)) ||
 248	    !device_can_wakeup(&hw->pdev->dev))
 249		return -EOPNOTSUPP;
 250
 251	skge->wol = wol->wolopts;
 252
 253	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 254
 255	return 0;
 256}
 257
 258/* Determine supported/advertised modes based on hardware.
 259 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 260 */
 261static u32 skge_supported_modes(const struct skge_hw *hw)
 262{
 263	u32 supported;
 264
 265	if (hw->copper) {
 266		supported = (SUPPORTED_10baseT_Half |
 267			     SUPPORTED_10baseT_Full |
 268			     SUPPORTED_100baseT_Half |
 269			     SUPPORTED_100baseT_Full |
 270			     SUPPORTED_1000baseT_Half |
 271			     SUPPORTED_1000baseT_Full |
 272			     SUPPORTED_Autoneg |
 273			     SUPPORTED_TP);
 274
 275		if (is_genesis(hw))
 276			supported &= ~(SUPPORTED_10baseT_Half |
 277				       SUPPORTED_10baseT_Full |
 278				       SUPPORTED_100baseT_Half |
 279				       SUPPORTED_100baseT_Full);
 280
 281		else if (hw->chip_id == CHIP_ID_YUKON)
 282			supported &= ~SUPPORTED_1000baseT_Half;
 283	} else
 284		supported = (SUPPORTED_1000baseT_Full |
 285			     SUPPORTED_1000baseT_Half |
 286			     SUPPORTED_FIBRE |
 287			     SUPPORTED_Autoneg);
 288
 289	return supported;
 290}
 291
 292static int skge_get_link_ksettings(struct net_device *dev,
 293				   struct ethtool_link_ksettings *cmd)
 294{
 295	struct skge_port *skge = netdev_priv(dev);
 296	struct skge_hw *hw = skge->hw;
 297	u32 supported, advertising;
 298
 299	supported = skge_supported_modes(hw);
 
 300
 301	if (hw->copper) {
 302		cmd->base.port = PORT_TP;
 303		cmd->base.phy_address = hw->phy_addr;
 304	} else
 305		cmd->base.port = PORT_FIBRE;
 306
 307	advertising = skge->advertising;
 308	cmd->base.autoneg = skge->autoneg;
 309	cmd->base.speed = skge->speed;
 310	cmd->base.duplex = skge->duplex;
 311
 312	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 313						supported);
 314	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 315						advertising);
 316
 
 
 
 
 317	return 0;
 318}
 319
 320static int skge_set_link_ksettings(struct net_device *dev,
 321				   const struct ethtool_link_ksettings *cmd)
 322{
 323	struct skge_port *skge = netdev_priv(dev);
 324	const struct skge_hw *hw = skge->hw;
 325	u32 supported = skge_supported_modes(hw);
 326	int err = 0;
 327	u32 advertising;
 328
 329	ethtool_convert_link_mode_to_legacy_u32(&advertising,
 330						cmd->link_modes.advertising);
 331
 332	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 333		advertising = supported;
 334		skge->duplex = -1;
 335		skge->speed = -1;
 336	} else {
 337		u32 setting;
 338		u32 speed = cmd->base.speed;
 339
 340		switch (speed) {
 341		case SPEED_1000:
 342			if (cmd->base.duplex == DUPLEX_FULL)
 343				setting = SUPPORTED_1000baseT_Full;
 344			else if (cmd->base.duplex == DUPLEX_HALF)
 345				setting = SUPPORTED_1000baseT_Half;
 346			else
 347				return -EINVAL;
 348			break;
 349		case SPEED_100:
 350			if (cmd->base.duplex == DUPLEX_FULL)
 351				setting = SUPPORTED_100baseT_Full;
 352			else if (cmd->base.duplex == DUPLEX_HALF)
 353				setting = SUPPORTED_100baseT_Half;
 354			else
 355				return -EINVAL;
 356			break;
 357
 358		case SPEED_10:
 359			if (cmd->base.duplex == DUPLEX_FULL)
 360				setting = SUPPORTED_10baseT_Full;
 361			else if (cmd->base.duplex == DUPLEX_HALF)
 362				setting = SUPPORTED_10baseT_Half;
 363			else
 364				return -EINVAL;
 365			break;
 366		default:
 367			return -EINVAL;
 368		}
 369
 370		if ((setting & supported) == 0)
 371			return -EINVAL;
 372
 373		skge->speed = speed;
 374		skge->duplex = cmd->base.duplex;
 375	}
 376
 377	skge->autoneg = cmd->base.autoneg;
 378	skge->advertising = advertising;
 379
 380	if (netif_running(dev)) {
 381		skge_down(dev);
 382		err = skge_up(dev);
 383		if (err) {
 384			dev_close(dev);
 385			return err;
 386		}
 387	}
 388
 389	return 0;
 390}
 391
 392static void skge_get_drvinfo(struct net_device *dev,
 393			     struct ethtool_drvinfo *info)
 394{
 395	struct skge_port *skge = netdev_priv(dev);
 396
 397	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
 398	strscpy(info->version, DRV_VERSION, sizeof(info->version));
 399	strscpy(info->bus_info, pci_name(skge->hw->pdev),
 400		sizeof(info->bus_info));
 401}
 402
 403static const struct skge_stat {
 404	char 	   name[ETH_GSTRING_LEN];
 405	u16	   xmac_offset;
 406	u16	   gma_offset;
 407} skge_stats[] = {
 408	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
 409	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
 410
 411	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
 412	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
 413	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
 414	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
 415	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
 416	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
 417	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 418	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 419
 420	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 421	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 422	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 423	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 424	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 425	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 426
 427	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 428	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 429	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
 430	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 431	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 432};
 433
 434static int skge_get_sset_count(struct net_device *dev, int sset)
 435{
 436	switch (sset) {
 437	case ETH_SS_STATS:
 438		return ARRAY_SIZE(skge_stats);
 439	default:
 440		return -EOPNOTSUPP;
 441	}
 442}
 443
 444static void skge_get_ethtool_stats(struct net_device *dev,
 445				   struct ethtool_stats *stats, u64 *data)
 446{
 447	struct skge_port *skge = netdev_priv(dev);
 448
 449	if (is_genesis(skge->hw))
 450		genesis_get_stats(skge, data);
 451	else
 452		yukon_get_stats(skge, data);
 453}
 454
 455/* Use hardware MIB variables for critical path statistics and
 456 * transmit feedback not reported at interrupt.
 457 * Other errors are accounted for in interrupt handler.
 458 */
 459static struct net_device_stats *skge_get_stats(struct net_device *dev)
 460{
 461	struct skge_port *skge = netdev_priv(dev);
 462	u64 data[ARRAY_SIZE(skge_stats)];
 463
 464	if (is_genesis(skge->hw))
 465		genesis_get_stats(skge, data);
 466	else
 467		yukon_get_stats(skge, data);
 468
 469	dev->stats.tx_bytes = data[0];
 470	dev->stats.rx_bytes = data[1];
 471	dev->stats.tx_packets = data[2] + data[4] + data[6];
 472	dev->stats.rx_packets = data[3] + data[5] + data[7];
 473	dev->stats.multicast = data[3] + data[5];
 474	dev->stats.collisions = data[10];
 475	dev->stats.tx_aborted_errors = data[12];
 476
 477	return &dev->stats;
 478}
 479
 480static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 481{
 482	int i;
 483
 484	switch (stringset) {
 485	case ETH_SS_STATS:
 486		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 487			ethtool_puts(&data, skge_stats[i].name);
 
 488		break;
 489	}
 490}
 491
 492static void skge_get_ring_param(struct net_device *dev,
 493				struct ethtool_ringparam *p,
 494				struct kernel_ethtool_ringparam *kernel_p,
 495				struct netlink_ext_ack *extack)
 496{
 497	struct skge_port *skge = netdev_priv(dev);
 498
 499	p->rx_max_pending = MAX_RX_RING_SIZE;
 500	p->tx_max_pending = MAX_TX_RING_SIZE;
 501
 502	p->rx_pending = skge->rx_ring.count;
 503	p->tx_pending = skge->tx_ring.count;
 504}
 505
 506static int skge_set_ring_param(struct net_device *dev,
 507			       struct ethtool_ringparam *p,
 508			       struct kernel_ethtool_ringparam *kernel_p,
 509			       struct netlink_ext_ack *extack)
 510{
 511	struct skge_port *skge = netdev_priv(dev);
 512	int err = 0;
 513
 514	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 515	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 516		return -EINVAL;
 517
 518	skge->rx_ring.count = p->rx_pending;
 519	skge->tx_ring.count = p->tx_pending;
 520
 521	if (netif_running(dev)) {
 522		skge_down(dev);
 523		err = skge_up(dev);
 524		if (err)
 525			dev_close(dev);
 526	}
 527
 528	return err;
 529}
 530
 531static u32 skge_get_msglevel(struct net_device *netdev)
 532{
 533	struct skge_port *skge = netdev_priv(netdev);
 534	return skge->msg_enable;
 535}
 536
 537static void skge_set_msglevel(struct net_device *netdev, u32 value)
 538{
 539	struct skge_port *skge = netdev_priv(netdev);
 540	skge->msg_enable = value;
 541}
 542
 543static int skge_nway_reset(struct net_device *dev)
 544{
 545	struct skge_port *skge = netdev_priv(dev);
 546
 547	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 548		return -EINVAL;
 549
 550	skge_phy_reset(skge);
 551	return 0;
 552}
 553
 554static void skge_get_pauseparam(struct net_device *dev,
 555				struct ethtool_pauseparam *ecmd)
 556{
 557	struct skge_port *skge = netdev_priv(dev);
 558
 559	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 560			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 561	ecmd->tx_pause = (ecmd->rx_pause ||
 562			  (skge->flow_control == FLOW_MODE_LOC_SEND));
 563
 564	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 565}
 566
 567static int skge_set_pauseparam(struct net_device *dev,
 568			       struct ethtool_pauseparam *ecmd)
 569{
 570	struct skge_port *skge = netdev_priv(dev);
 571	struct ethtool_pauseparam old;
 572	int err = 0;
 573
 574	skge_get_pauseparam(dev, &old);
 575
 576	if (ecmd->autoneg != old.autoneg)
 577		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 578	else {
 579		if (ecmd->rx_pause && ecmd->tx_pause)
 580			skge->flow_control = FLOW_MODE_SYMMETRIC;
 581		else if (ecmd->rx_pause && !ecmd->tx_pause)
 582			skge->flow_control = FLOW_MODE_SYM_OR_REM;
 583		else if (!ecmd->rx_pause && ecmd->tx_pause)
 584			skge->flow_control = FLOW_MODE_LOC_SEND;
 585		else
 586			skge->flow_control = FLOW_MODE_NONE;
 587	}
 588
 589	if (netif_running(dev)) {
 590		skge_down(dev);
 591		err = skge_up(dev);
 592		if (err) {
 593			dev_close(dev);
 594			return err;
 595		}
 596	}
 597
 598	return 0;
 599}
 600
 601/* Chip internal frequency for clock calculations */
 602static inline u32 hwkhz(const struct skge_hw *hw)
 603{
 604	return is_genesis(hw) ? 53125 : 78125;
 605}
 606
 607/* Chip HZ to microseconds */
 608static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 609{
 610	return (ticks * 1000) / hwkhz(hw);
 611}
 612
 613/* Microseconds to chip HZ */
 614static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 615{
 616	return hwkhz(hw) * usec / 1000;
 617}
 618
 619static int skge_get_coalesce(struct net_device *dev,
 620			     struct ethtool_coalesce *ecmd,
 621			     struct kernel_ethtool_coalesce *kernel_coal,
 622			     struct netlink_ext_ack *extack)
 623{
 624	struct skge_port *skge = netdev_priv(dev);
 625	struct skge_hw *hw = skge->hw;
 626	int port = skge->port;
 627
 628	ecmd->rx_coalesce_usecs = 0;
 629	ecmd->tx_coalesce_usecs = 0;
 630
 631	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 632		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 633		u32 msk = skge_read32(hw, B2_IRQM_MSK);
 634
 635		if (msk & rxirqmask[port])
 636			ecmd->rx_coalesce_usecs = delay;
 637		if (msk & txirqmask[port])
 638			ecmd->tx_coalesce_usecs = delay;
 639	}
 640
 641	return 0;
 642}
 643
 644/* Note: interrupt timer is per board, but can turn on/off per port */
 645static int skge_set_coalesce(struct net_device *dev,
 646			     struct ethtool_coalesce *ecmd,
 647			     struct kernel_ethtool_coalesce *kernel_coal,
 648			     struct netlink_ext_ack *extack)
 649{
 650	struct skge_port *skge = netdev_priv(dev);
 651	struct skge_hw *hw = skge->hw;
 652	int port = skge->port;
 653	u32 msk = skge_read32(hw, B2_IRQM_MSK);
 654	u32 delay = 25;
 655
 656	if (ecmd->rx_coalesce_usecs == 0)
 657		msk &= ~rxirqmask[port];
 658	else if (ecmd->rx_coalesce_usecs < 25 ||
 659		 ecmd->rx_coalesce_usecs > 33333)
 660		return -EINVAL;
 661	else {
 662		msk |= rxirqmask[port];
 663		delay = ecmd->rx_coalesce_usecs;
 664	}
 665
 666	if (ecmd->tx_coalesce_usecs == 0)
 667		msk &= ~txirqmask[port];
 668	else if (ecmd->tx_coalesce_usecs < 25 ||
 669		 ecmd->tx_coalesce_usecs > 33333)
 670		return -EINVAL;
 671	else {
 672		msk |= txirqmask[port];
 673		delay = min(delay, ecmd->rx_coalesce_usecs);
 674	}
 675
 676	skge_write32(hw, B2_IRQM_MSK, msk);
 677	if (msk == 0)
 678		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 679	else {
 680		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 681		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 682	}
 683	return 0;
 684}
 685
 686enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 687static void skge_led(struct skge_port *skge, enum led_mode mode)
 688{
 689	struct skge_hw *hw = skge->hw;
 690	int port = skge->port;
 691
 692	spin_lock_bh(&hw->phy_lock);
 693	if (is_genesis(hw)) {
 694		switch (mode) {
 695		case LED_MODE_OFF:
 696			if (hw->phy_type == SK_PHY_BCOM)
 697				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 698			else {
 699				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 700				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 701			}
 702			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 703			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 704			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 705			break;
 706
 707		case LED_MODE_ON:
 708			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 709			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 710
 711			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 712			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 713
 714			break;
 715
 716		case LED_MODE_TST:
 717			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 718			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 719			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 720
 721			if (hw->phy_type == SK_PHY_BCOM)
 722				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 723			else {
 724				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 725				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 726				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 727			}
 728
 729		}
 730	} else {
 731		switch (mode) {
 732		case LED_MODE_OFF:
 733			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 734			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 735				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 736				     PHY_M_LED_MO_10(MO_LED_OFF)   |
 737				     PHY_M_LED_MO_100(MO_LED_OFF)  |
 738				     PHY_M_LED_MO_1000(MO_LED_OFF) |
 739				     PHY_M_LED_MO_RX(MO_LED_OFF));
 740			break;
 741		case LED_MODE_ON:
 742			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 743				     PHY_M_LED_PULS_DUR(PULS_170MS) |
 744				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 745				     PHY_M_LEDC_TX_CTRL |
 746				     PHY_M_LEDC_DP_CTRL);
 747
 748			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 749				     PHY_M_LED_MO_RX(MO_LED_OFF) |
 750				     (skge->speed == SPEED_100 ?
 751				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 752			break;
 753		case LED_MODE_TST:
 754			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 755			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 756				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 757				     PHY_M_LED_MO_10(MO_LED_ON)   |
 758				     PHY_M_LED_MO_100(MO_LED_ON)  |
 759				     PHY_M_LED_MO_1000(MO_LED_ON) |
 760				     PHY_M_LED_MO_RX(MO_LED_ON));
 761		}
 762	}
 763	spin_unlock_bh(&hw->phy_lock);
 764}
 765
 766/* blink LED's for finding board */
 767static int skge_set_phys_id(struct net_device *dev,
 768			    enum ethtool_phys_id_state state)
 769{
 770	struct skge_port *skge = netdev_priv(dev);
 771
 772	switch (state) {
 773	case ETHTOOL_ID_ACTIVE:
 774		return 2;	/* cycle on/off twice per second */
 775
 776	case ETHTOOL_ID_ON:
 777		skge_led(skge, LED_MODE_TST);
 778		break;
 779
 780	case ETHTOOL_ID_OFF:
 781		skge_led(skge, LED_MODE_OFF);
 782		break;
 783
 784	case ETHTOOL_ID_INACTIVE:
 785		/* back to regular LED state */
 786		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 787	}
 788
 789	return 0;
 790}
 791
 792static int skge_get_eeprom_len(struct net_device *dev)
 793{
 794	struct skge_port *skge = netdev_priv(dev);
 795	u32 reg2;
 796
 797	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 798	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 799}
 800
 801static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 802{
 803	u32 val;
 804
 805	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 806
 807	do {
 808		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 809	} while (!(offset & PCI_VPD_ADDR_F));
 810
 811	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 812	return val;
 813}
 814
 815static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 816{
 817	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 818	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 819			      offset | PCI_VPD_ADDR_F);
 820
 821	do {
 822		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 823	} while (offset & PCI_VPD_ADDR_F);
 824}
 825
 826static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 827			   u8 *data)
 828{
 829	struct skge_port *skge = netdev_priv(dev);
 830	struct pci_dev *pdev = skge->hw->pdev;
 831	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 832	int length = eeprom->len;
 833	u16 offset = eeprom->offset;
 834
 835	if (!cap)
 836		return -EINVAL;
 837
 838	eeprom->magic = SKGE_EEPROM_MAGIC;
 839
 840	while (length > 0) {
 841		u32 val = skge_vpd_read(pdev, cap, offset);
 842		int n = min_t(int, length, sizeof(val));
 843
 844		memcpy(data, &val, n);
 845		length -= n;
 846		data += n;
 847		offset += n;
 848	}
 849	return 0;
 850}
 851
 852static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 853			   u8 *data)
 854{
 855	struct skge_port *skge = netdev_priv(dev);
 856	struct pci_dev *pdev = skge->hw->pdev;
 857	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 858	int length = eeprom->len;
 859	u16 offset = eeprom->offset;
 860
 861	if (!cap)
 862		return -EINVAL;
 863
 864	if (eeprom->magic != SKGE_EEPROM_MAGIC)
 865		return -EINVAL;
 866
 867	while (length > 0) {
 868		u32 val;
 869		int n = min_t(int, length, sizeof(val));
 870
 871		if (n < sizeof(val))
 872			val = skge_vpd_read(pdev, cap, offset);
 873		memcpy(&val, data, n);
 874
 875		skge_vpd_write(pdev, cap, offset, val);
 876
 877		length -= n;
 878		data += n;
 879		offset += n;
 880	}
 881	return 0;
 882}
 883
 884static const struct ethtool_ops skge_ethtool_ops = {
 885	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
 
 886	.get_drvinfo	= skge_get_drvinfo,
 887	.get_regs_len	= skge_get_regs_len,
 888	.get_regs	= skge_get_regs,
 889	.get_wol	= skge_get_wol,
 890	.set_wol	= skge_set_wol,
 891	.get_msglevel	= skge_get_msglevel,
 892	.set_msglevel	= skge_set_msglevel,
 893	.nway_reset	= skge_nway_reset,
 894	.get_link	= ethtool_op_get_link,
 895	.get_eeprom_len	= skge_get_eeprom_len,
 896	.get_eeprom	= skge_get_eeprom,
 897	.set_eeprom	= skge_set_eeprom,
 898	.get_ringparam	= skge_get_ring_param,
 899	.set_ringparam	= skge_set_ring_param,
 900	.get_pauseparam = skge_get_pauseparam,
 901	.set_pauseparam = skge_set_pauseparam,
 902	.get_coalesce	= skge_get_coalesce,
 903	.set_coalesce	= skge_set_coalesce,
 904	.get_strings	= skge_get_strings,
 905	.set_phys_id	= skge_set_phys_id,
 906	.get_sset_count = skge_get_sset_count,
 907	.get_ethtool_stats = skge_get_ethtool_stats,
 908	.get_link_ksettings = skge_get_link_ksettings,
 909	.set_link_ksettings = skge_set_link_ksettings,
 910};
 911
 912/*
 913 * Allocate ring elements and chain them together
 914 * One-to-one association of board descriptors with ring elements
 915 */
 916static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 917{
 918	struct skge_tx_desc *d;
 919	struct skge_element *e;
 920	int i;
 921
 922	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 923	if (!ring->start)
 924		return -ENOMEM;
 925
 926	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 927		e->desc = d;
 928		if (i == ring->count - 1) {
 929			e->next = ring->start;
 930			d->next_offset = base;
 931		} else {
 932			e->next = e + 1;
 933			d->next_offset = base + (i+1) * sizeof(*d);
 934		}
 935	}
 936	ring->to_use = ring->to_clean = ring->start;
 937
 938	return 0;
 939}
 940
 941/* Allocate and setup a new buffer for receiving */
 942static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 943			 struct sk_buff *skb, unsigned int bufsize)
 944{
 945	struct skge_rx_desc *rd = e->desc;
 946	dma_addr_t map;
 947
 948	map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
 949			     DMA_FROM_DEVICE);
 950
 951	if (dma_mapping_error(&skge->hw->pdev->dev, map))
 952		return -1;
 953
 954	rd->dma_lo = lower_32_bits(map);
 955	rd->dma_hi = upper_32_bits(map);
 956	e->skb = skb;
 957	rd->csum1_start = ETH_HLEN;
 958	rd->csum2_start = ETH_HLEN;
 959	rd->csum1 = 0;
 960	rd->csum2 = 0;
 961
 962	wmb();
 963
 964	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 965	dma_unmap_addr_set(e, mapaddr, map);
 966	dma_unmap_len_set(e, maplen, bufsize);
 967	return 0;
 968}
 969
 970/* Resume receiving using existing skb,
 971 * Note: DMA address is not changed by chip.
 972 * 	 MTU not changed while receiver active.
 973 */
 974static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 975{
 976	struct skge_rx_desc *rd = e->desc;
 977
 978	rd->csum2 = 0;
 979	rd->csum2_start = ETH_HLEN;
 980
 981	wmb();
 982
 983	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 984}
 985
 986
 987/* Free all  buffers in receive ring, assumes receiver stopped */
 988static void skge_rx_clean(struct skge_port *skge)
 989{
 990	struct skge_hw *hw = skge->hw;
 991	struct skge_ring *ring = &skge->rx_ring;
 992	struct skge_element *e;
 993
 994	e = ring->start;
 995	do {
 996		struct skge_rx_desc *rd = e->desc;
 997		rd->control = 0;
 998		if (e->skb) {
 999			dma_unmap_single(&hw->pdev->dev,
1000					 dma_unmap_addr(e, mapaddr),
1001					 dma_unmap_len(e, maplen),
1002					 DMA_FROM_DEVICE);
1003			dev_kfree_skb(e->skb);
1004			e->skb = NULL;
1005		}
1006	} while ((e = e->next) != ring->start);
1007}
1008
1009
1010/* Allocate buffers for receive ring
1011 * For receive:  to_clean is next received frame.
1012 */
1013static int skge_rx_fill(struct net_device *dev)
1014{
1015	struct skge_port *skge = netdev_priv(dev);
1016	struct skge_ring *ring = &skge->rx_ring;
1017	struct skge_element *e;
1018
1019	e = ring->start;
1020	do {
1021		struct sk_buff *skb;
1022
1023		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1024					 GFP_KERNEL);
1025		if (!skb)
1026			return -ENOMEM;
1027
1028		skb_reserve(skb, NET_IP_ALIGN);
1029		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1030			dev_kfree_skb(skb);
1031			return -EIO;
1032		}
1033	} while ((e = e->next) != ring->start);
1034
1035	ring->to_clean = ring->start;
1036	return 0;
1037}
1038
1039static const char *skge_pause(enum pause_status status)
1040{
1041	switch (status) {
1042	case FLOW_STAT_NONE:
1043		return "none";
1044	case FLOW_STAT_REM_SEND:
1045		return "rx only";
1046	case FLOW_STAT_LOC_SEND:
1047		return "tx_only";
1048	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1049		return "both";
1050	default:
1051		return "indeterminated";
1052	}
1053}
1054
1055
1056static void skge_link_up(struct skge_port *skge)
1057{
1058	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1059		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1060
1061	netif_carrier_on(skge->netdev);
1062	netif_wake_queue(skge->netdev);
1063
1064	netif_info(skge, link, skge->netdev,
1065		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1066		   skge->speed,
1067		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1068		   skge_pause(skge->flow_status));
1069}
1070
1071static void skge_link_down(struct skge_port *skge)
1072{
1073	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1074	netif_carrier_off(skge->netdev);
1075	netif_stop_queue(skge->netdev);
1076
1077	netif_info(skge, link, skge->netdev, "Link is down\n");
1078}
1079
1080static void xm_link_down(struct skge_hw *hw, int port)
1081{
1082	struct net_device *dev = hw->dev[port];
1083	struct skge_port *skge = netdev_priv(dev);
1084
1085	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1086
1087	if (netif_carrier_ok(dev))
1088		skge_link_down(skge);
1089}
1090
1091static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1092{
1093	int i;
1094
1095	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1096	*val = xm_read16(hw, port, XM_PHY_DATA);
1097
1098	if (hw->phy_type == SK_PHY_XMAC)
1099		goto ready;
1100
1101	for (i = 0; i < PHY_RETRIES; i++) {
1102		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1103			goto ready;
1104		udelay(1);
1105	}
1106
1107	return -ETIMEDOUT;
1108 ready:
1109	*val = xm_read16(hw, port, XM_PHY_DATA);
1110
1111	return 0;
1112}
1113
1114static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1115{
1116	u16 v = 0;
1117	if (__xm_phy_read(hw, port, reg, &v))
1118		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1119	return v;
1120}
1121
1122static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1123{
1124	int i;
1125
1126	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1127	for (i = 0; i < PHY_RETRIES; i++) {
1128		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1129			goto ready;
1130		udelay(1);
1131	}
1132	return -EIO;
1133
1134 ready:
1135	xm_write16(hw, port, XM_PHY_DATA, val);
1136	for (i = 0; i < PHY_RETRIES; i++) {
1137		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1138			return 0;
1139		udelay(1);
1140	}
1141	return -ETIMEDOUT;
1142}
1143
1144static void genesis_init(struct skge_hw *hw)
1145{
1146	/* set blink source counter */
1147	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1148	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1149
1150	/* configure mac arbiter */
1151	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1152
1153	/* configure mac arbiter timeout values */
1154	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1155	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1156	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1157	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1158
1159	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1160	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1161	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1162	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1163
1164	/* configure packet arbiter timeout */
1165	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1166	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1167	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1168	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1169	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1170}
1171
1172static void genesis_reset(struct skge_hw *hw, int port)
1173{
1174	static const u8 zero[8]  = { 0 };
1175	u32 reg;
1176
1177	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1178
1179	/* reset the statistics module */
1180	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1181	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1182	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1183	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1184	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1185
1186	/* disable Broadcom PHY IRQ */
1187	if (hw->phy_type == SK_PHY_BCOM)
1188		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1189
1190	xm_outhash(hw, port, XM_HSM, zero);
1191
1192	/* Flush TX and RX fifo */
1193	reg = xm_read32(hw, port, XM_MODE);
1194	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1195	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1196}
1197
1198/* Convert mode to MII values  */
1199static const u16 phy_pause_map[] = {
1200	[FLOW_MODE_NONE] =	0,
1201	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1202	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1203	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1204};
1205
1206/* special defines for FIBER (88E1011S only) */
1207static const u16 fiber_pause_map[] = {
1208	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1209	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1210	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1211	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1212};
1213
1214
1215/* Check status of Broadcom phy link */
1216static void bcom_check_link(struct skge_hw *hw, int port)
1217{
1218	struct net_device *dev = hw->dev[port];
1219	struct skge_port *skge = netdev_priv(dev);
1220	u16 status;
1221
1222	/* read twice because of latch */
1223	xm_phy_read(hw, port, PHY_BCOM_STAT);
1224	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1225
1226	if ((status & PHY_ST_LSYNC) == 0) {
1227		xm_link_down(hw, port);
1228		return;
1229	}
1230
1231	if (skge->autoneg == AUTONEG_ENABLE) {
1232		u16 lpa, aux;
1233
1234		if (!(status & PHY_ST_AN_OVER))
1235			return;
1236
1237		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1238		if (lpa & PHY_B_AN_RF) {
1239			netdev_notice(dev, "remote fault\n");
1240			return;
1241		}
1242
1243		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1244
1245		/* Check Duplex mismatch */
1246		switch (aux & PHY_B_AS_AN_RES_MSK) {
1247		case PHY_B_RES_1000FD:
1248			skge->duplex = DUPLEX_FULL;
1249			break;
1250		case PHY_B_RES_1000HD:
1251			skge->duplex = DUPLEX_HALF;
1252			break;
1253		default:
1254			netdev_notice(dev, "duplex mismatch\n");
1255			return;
1256		}
1257
1258		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1259		switch (aux & PHY_B_AS_PAUSE_MSK) {
1260		case PHY_B_AS_PAUSE_MSK:
1261			skge->flow_status = FLOW_STAT_SYMMETRIC;
1262			break;
1263		case PHY_B_AS_PRR:
1264			skge->flow_status = FLOW_STAT_REM_SEND;
1265			break;
1266		case PHY_B_AS_PRT:
1267			skge->flow_status = FLOW_STAT_LOC_SEND;
1268			break;
1269		default:
1270			skge->flow_status = FLOW_STAT_NONE;
1271		}
1272		skge->speed = SPEED_1000;
1273	}
1274
1275	if (!netif_carrier_ok(dev))
1276		genesis_link_up(skge);
1277}
1278
1279/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1280 * Phy on for 100 or 10Mbit operation
1281 */
1282static void bcom_phy_init(struct skge_port *skge)
1283{
1284	struct skge_hw *hw = skge->hw;
1285	int port = skge->port;
1286	int i;
1287	u16 id1, r, ext, ctl;
1288
1289	/* magic workaround patterns for Broadcom */
1290	static const struct {
1291		u16 reg;
1292		u16 val;
1293	} A1hack[] = {
1294		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1295		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1296		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1297		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1298	}, C0hack[] = {
1299		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1300		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1301	};
1302
1303	/* read Id from external PHY (all have the same address) */
1304	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1305
1306	/* Optimize MDIO transfer by suppressing preamble. */
1307	r = xm_read16(hw, port, XM_MMU_CMD);
1308	r |=  XM_MMU_NO_PRE;
1309	xm_write16(hw, port, XM_MMU_CMD, r);
1310
1311	switch (id1) {
1312	case PHY_BCOM_ID1_C0:
1313		/*
1314		 * Workaround BCOM Errata for the C0 type.
1315		 * Write magic patterns to reserved registers.
1316		 */
1317		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1318			xm_phy_write(hw, port,
1319				     C0hack[i].reg, C0hack[i].val);
1320
1321		break;
1322	case PHY_BCOM_ID1_A1:
1323		/*
1324		 * Workaround BCOM Errata for the A1 type.
1325		 * Write magic patterns to reserved registers.
1326		 */
1327		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1328			xm_phy_write(hw, port,
1329				     A1hack[i].reg, A1hack[i].val);
1330		break;
1331	}
1332
1333	/*
1334	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1335	 * Disable Power Management after reset.
1336	 */
1337	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1338	r |= PHY_B_AC_DIS_PM;
1339	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1340
1341	/* Dummy read */
1342	xm_read16(hw, port, XM_ISRC);
1343
1344	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1345	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1346
1347	if (skge->autoneg == AUTONEG_ENABLE) {
1348		/*
1349		 * Workaround BCOM Errata #1 for the C5 type.
1350		 * 1000Base-T Link Acquisition Failure in Slave Mode
1351		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1352		 */
1353		u16 adv = PHY_B_1000C_RD;
1354		if (skge->advertising & ADVERTISED_1000baseT_Half)
1355			adv |= PHY_B_1000C_AHD;
1356		if (skge->advertising & ADVERTISED_1000baseT_Full)
1357			adv |= PHY_B_1000C_AFD;
1358		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1359
1360		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1361	} else {
1362		if (skge->duplex == DUPLEX_FULL)
1363			ctl |= PHY_CT_DUP_MD;
1364		/* Force to slave */
1365		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1366	}
1367
1368	/* Set autonegotiation pause parameters */
1369	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1370		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1371
1372	/* Handle Jumbo frames */
1373	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1374		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1375			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1376
1377		ext |= PHY_B_PEC_HIGH_LA;
1378
1379	}
1380
1381	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1382	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1383
1384	/* Use link status change interrupt */
1385	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1386}
1387
1388static void xm_phy_init(struct skge_port *skge)
1389{
1390	struct skge_hw *hw = skge->hw;
1391	int port = skge->port;
1392	u16 ctrl = 0;
1393
1394	if (skge->autoneg == AUTONEG_ENABLE) {
1395		if (skge->advertising & ADVERTISED_1000baseT_Half)
1396			ctrl |= PHY_X_AN_HD;
1397		if (skge->advertising & ADVERTISED_1000baseT_Full)
1398			ctrl |= PHY_X_AN_FD;
1399
1400		ctrl |= fiber_pause_map[skge->flow_control];
1401
1402		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1403
1404		/* Restart Auto-negotiation */
1405		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1406	} else {
1407		/* Set DuplexMode in Config register */
1408		if (skge->duplex == DUPLEX_FULL)
1409			ctrl |= PHY_CT_DUP_MD;
1410		/*
1411		 * Do NOT enable Auto-negotiation here. This would hold
1412		 * the link down because no IDLEs are transmitted
1413		 */
1414	}
1415
1416	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1417
1418	/* Poll PHY for status changes */
1419	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1420}
1421
1422static int xm_check_link(struct net_device *dev)
1423{
1424	struct skge_port *skge = netdev_priv(dev);
1425	struct skge_hw *hw = skge->hw;
1426	int port = skge->port;
1427	u16 status;
1428
1429	/* read twice because of latch */
1430	xm_phy_read(hw, port, PHY_XMAC_STAT);
1431	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1432
1433	if ((status & PHY_ST_LSYNC) == 0) {
1434		xm_link_down(hw, port);
1435		return 0;
1436	}
1437
1438	if (skge->autoneg == AUTONEG_ENABLE) {
1439		u16 lpa, res;
1440
1441		if (!(status & PHY_ST_AN_OVER))
1442			return 0;
1443
1444		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1445		if (lpa & PHY_B_AN_RF) {
1446			netdev_notice(dev, "remote fault\n");
1447			return 0;
1448		}
1449
1450		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1451
1452		/* Check Duplex mismatch */
1453		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1454		case PHY_X_RS_FD:
1455			skge->duplex = DUPLEX_FULL;
1456			break;
1457		case PHY_X_RS_HD:
1458			skge->duplex = DUPLEX_HALF;
1459			break;
1460		default:
1461			netdev_notice(dev, "duplex mismatch\n");
1462			return 0;
1463		}
1464
1465		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1466		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1467		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1468		    (lpa & PHY_X_P_SYM_MD))
1469			skge->flow_status = FLOW_STAT_SYMMETRIC;
1470		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1471			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1472			/* Enable PAUSE receive, disable PAUSE transmit */
1473			skge->flow_status  = FLOW_STAT_REM_SEND;
1474		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1475			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1476			/* Disable PAUSE receive, enable PAUSE transmit */
1477			skge->flow_status = FLOW_STAT_LOC_SEND;
1478		else
1479			skge->flow_status = FLOW_STAT_NONE;
1480
1481		skge->speed = SPEED_1000;
1482	}
1483
1484	if (!netif_carrier_ok(dev))
1485		genesis_link_up(skge);
1486	return 1;
1487}
1488
1489/* Poll to check for link coming up.
1490 *
1491 * Since internal PHY is wired to a level triggered pin, can't
1492 * get an interrupt when carrier is detected, need to poll for
1493 * link coming up.
1494 */
1495static void xm_link_timer(struct timer_list *t)
1496{
1497	struct skge_port *skge = from_timer(skge, t, link_timer);
1498	struct net_device *dev = skge->netdev;
1499	struct skge_hw *hw = skge->hw;
1500	int port = skge->port;
1501	int i;
1502	unsigned long flags;
1503
1504	if (!netif_running(dev))
1505		return;
1506
1507	spin_lock_irqsave(&hw->phy_lock, flags);
1508
1509	/*
1510	 * Verify that the link by checking GPIO register three times.
1511	 * This pin has the signal from the link_sync pin connected to it.
1512	 */
1513	for (i = 0; i < 3; i++) {
1514		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1515			goto link_down;
1516	}
1517
1518	/* Re-enable interrupt to detect link down */
1519	if (xm_check_link(dev)) {
1520		u16 msk = xm_read16(hw, port, XM_IMSK);
1521		msk &= ~XM_IS_INP_ASS;
1522		xm_write16(hw, port, XM_IMSK, msk);
1523		xm_read16(hw, port, XM_ISRC);
1524	} else {
1525link_down:
1526		mod_timer(&skge->link_timer,
1527			  round_jiffies(jiffies + LINK_HZ));
1528	}
1529	spin_unlock_irqrestore(&hw->phy_lock, flags);
1530}
1531
1532static void genesis_mac_init(struct skge_hw *hw, int port)
1533{
1534	struct net_device *dev = hw->dev[port];
1535	struct skge_port *skge = netdev_priv(dev);
1536	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1537	int i;
1538	u32 r;
1539	static const u8 zero[6]  = { 0 };
1540
1541	for (i = 0; i < 10; i++) {
1542		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1543			     MFF_SET_MAC_RST);
1544		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1545			goto reset_ok;
1546		udelay(1);
1547	}
1548
1549	netdev_warn(dev, "genesis reset failed\n");
1550
1551 reset_ok:
1552	/* Unreset the XMAC. */
1553	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1554
1555	/*
1556	 * Perform additional initialization for external PHYs,
1557	 * namely for the 1000baseTX cards that use the XMAC's
1558	 * GMII mode.
1559	 */
1560	if (hw->phy_type != SK_PHY_XMAC) {
1561		/* Take external Phy out of reset */
1562		r = skge_read32(hw, B2_GP_IO);
1563		if (port == 0)
1564			r |= GP_DIR_0|GP_IO_0;
1565		else
1566			r |= GP_DIR_2|GP_IO_2;
1567
1568		skge_write32(hw, B2_GP_IO, r);
1569
1570		/* Enable GMII interface */
1571		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1572	}
1573
1574
1575	switch (hw->phy_type) {
1576	case SK_PHY_XMAC:
1577		xm_phy_init(skge);
1578		break;
1579	case SK_PHY_BCOM:
1580		bcom_phy_init(skge);
1581		bcom_check_link(hw, port);
1582	}
1583
1584	/* Set Station Address */
1585	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1586
1587	/* We don't use match addresses so clear */
1588	for (i = 1; i < 16; i++)
1589		xm_outaddr(hw, port, XM_EXM(i), zero);
1590
1591	/* Clear MIB counters */
1592	xm_write16(hw, port, XM_STAT_CMD,
1593			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1594	/* Clear two times according to Errata #3 */
1595	xm_write16(hw, port, XM_STAT_CMD,
1596			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1597
1598	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1599	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1600
1601	/* We don't need the FCS appended to the packet. */
1602	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1603	if (jumbo)
1604		r |= XM_RX_BIG_PK_OK;
1605
1606	if (skge->duplex == DUPLEX_HALF) {
1607		/*
1608		 * If in manual half duplex mode the other side might be in
1609		 * full duplex mode, so ignore if a carrier extension is not seen
1610		 * on frames received
1611		 */
1612		r |= XM_RX_DIS_CEXT;
1613	}
1614	xm_write16(hw, port, XM_RX_CMD, r);
1615
1616	/* We want short frames padded to 60 bytes. */
1617	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1618
1619	/* Increase threshold for jumbo frames on dual port */
1620	if (hw->ports > 1 && jumbo)
1621		xm_write16(hw, port, XM_TX_THR, 1020);
1622	else
1623		xm_write16(hw, port, XM_TX_THR, 512);
1624
1625	/*
1626	 * Enable the reception of all error frames. This is
1627	 * a necessary evil due to the design of the XMAC. The
1628	 * XMAC's receive FIFO is only 8K in size, however jumbo
1629	 * frames can be up to 9000 bytes in length. When bad
1630	 * frame filtering is enabled, the XMAC's RX FIFO operates
1631	 * in 'store and forward' mode. For this to work, the
1632	 * entire frame has to fit into the FIFO, but that means
1633	 * that jumbo frames larger than 8192 bytes will be
1634	 * truncated. Disabling all bad frame filtering causes
1635	 * the RX FIFO to operate in streaming mode, in which
1636	 * case the XMAC will start transferring frames out of the
1637	 * RX FIFO as soon as the FIFO threshold is reached.
1638	 */
1639	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1640
1641
1642	/*
1643	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1644	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1645	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1646	 */
1647	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1648
1649	/*
1650	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1651	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1652	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1653	 */
1654	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1655
1656	/* Configure MAC arbiter */
1657	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1658
1659	/* configure timeout values */
1660	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1661	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1662	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1663	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1664
1665	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1666	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1667	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1668	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1669
1670	/* Configure Rx MAC FIFO */
1671	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1672	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1673	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1674
1675	/* Configure Tx MAC FIFO */
1676	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1677	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1678	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1679
1680	if (jumbo) {
1681		/* Enable frame flushing if jumbo frames used */
1682		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1683	} else {
1684		/* enable timeout timers if normal frames */
1685		skge_write16(hw, B3_PA_CTRL,
1686			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1687	}
1688}
1689
1690static void genesis_stop(struct skge_port *skge)
1691{
1692	struct skge_hw *hw = skge->hw;
1693	int port = skge->port;
1694	unsigned retries = 1000;
1695	u16 cmd;
1696
1697	/* Disable Tx and Rx */
1698	cmd = xm_read16(hw, port, XM_MMU_CMD);
1699	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1700	xm_write16(hw, port, XM_MMU_CMD, cmd);
1701
1702	genesis_reset(hw, port);
1703
1704	/* Clear Tx packet arbiter timeout IRQ */
1705	skge_write16(hw, B3_PA_CTRL,
1706		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1707
1708	/* Reset the MAC */
1709	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1710	do {
1711		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1712		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1713			break;
1714	} while (--retries > 0);
1715
1716	/* For external PHYs there must be special handling */
1717	if (hw->phy_type != SK_PHY_XMAC) {
1718		u32 reg = skge_read32(hw, B2_GP_IO);
1719		if (port == 0) {
1720			reg |= GP_DIR_0;
1721			reg &= ~GP_IO_0;
1722		} else {
1723			reg |= GP_DIR_2;
1724			reg &= ~GP_IO_2;
1725		}
1726		skge_write32(hw, B2_GP_IO, reg);
1727		skge_read32(hw, B2_GP_IO);
1728	}
1729
1730	xm_write16(hw, port, XM_MMU_CMD,
1731			xm_read16(hw, port, XM_MMU_CMD)
1732			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1733
1734	xm_read16(hw, port, XM_MMU_CMD);
1735}
1736
1737
1738static void genesis_get_stats(struct skge_port *skge, u64 *data)
1739{
1740	struct skge_hw *hw = skge->hw;
1741	int port = skge->port;
1742	int i;
1743	unsigned long timeout = jiffies + HZ;
1744
1745	xm_write16(hw, port,
1746			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1747
1748	/* wait for update to complete */
1749	while (xm_read16(hw, port, XM_STAT_CMD)
1750	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1751		if (time_after(jiffies, timeout))
1752			break;
1753		udelay(10);
1754	}
1755
1756	/* special case for 64 bit octet counter */
1757	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1758		| xm_read32(hw, port, XM_TXO_OK_LO);
1759	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1760		| xm_read32(hw, port, XM_RXO_OK_LO);
1761
1762	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1763		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1764}
1765
1766static void genesis_mac_intr(struct skge_hw *hw, int port)
1767{
1768	struct net_device *dev = hw->dev[port];
1769	struct skge_port *skge = netdev_priv(dev);
1770	u16 status = xm_read16(hw, port, XM_ISRC);
1771
1772	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1773		     "mac interrupt status 0x%x\n", status);
1774
1775	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1776		xm_link_down(hw, port);
1777		mod_timer(&skge->link_timer, jiffies + 1);
1778	}
1779
1780	if (status & XM_IS_TXF_UR) {
1781		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1782		++dev->stats.tx_fifo_errors;
1783	}
1784}
1785
1786static void genesis_link_up(struct skge_port *skge)
1787{
1788	struct skge_hw *hw = skge->hw;
1789	int port = skge->port;
1790	u16 cmd, msk;
1791	u32 mode;
1792
1793	cmd = xm_read16(hw, port, XM_MMU_CMD);
1794
1795	/*
1796	 * enabling pause frame reception is required for 1000BT
1797	 * because the XMAC is not reset if the link is going down
1798	 */
1799	if (skge->flow_status == FLOW_STAT_NONE ||
1800	    skge->flow_status == FLOW_STAT_LOC_SEND)
1801		/* Disable Pause Frame Reception */
1802		cmd |= XM_MMU_IGN_PF;
1803	else
1804		/* Enable Pause Frame Reception */
1805		cmd &= ~XM_MMU_IGN_PF;
1806
1807	xm_write16(hw, port, XM_MMU_CMD, cmd);
1808
1809	mode = xm_read32(hw, port, XM_MODE);
1810	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1811	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1812		/*
1813		 * Configure Pause Frame Generation
1814		 * Use internal and external Pause Frame Generation.
1815		 * Sending pause frames is edge triggered.
1816		 * Send a Pause frame with the maximum pause time if
1817		 * internal oder external FIFO full condition occurs.
1818		 * Send a zero pause time frame to re-start transmission.
1819		 */
1820		/* XM_PAUSE_DA = '010000C28001' (default) */
1821		/* XM_MAC_PTIME = 0xffff (maximum) */
1822		/* remember this value is defined in big endian (!) */
1823		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1824
1825		mode |= XM_PAUSE_MODE;
1826		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1827	} else {
1828		/*
1829		 * disable pause frame generation is required for 1000BT
1830		 * because the XMAC is not reset if the link is going down
1831		 */
1832		/* Disable Pause Mode in Mode Register */
1833		mode &= ~XM_PAUSE_MODE;
1834
1835		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1836	}
1837
1838	xm_write32(hw, port, XM_MODE, mode);
1839
1840	/* Turn on detection of Tx underrun */
1841	msk = xm_read16(hw, port, XM_IMSK);
1842	msk &= ~XM_IS_TXF_UR;
1843	xm_write16(hw, port, XM_IMSK, msk);
1844
1845	xm_read16(hw, port, XM_ISRC);
1846
1847	/* get MMU Command Reg. */
1848	cmd = xm_read16(hw, port, XM_MMU_CMD);
1849	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1850		cmd |= XM_MMU_GMII_FD;
1851
1852	/*
1853	 * Workaround BCOM Errata (#10523) for all BCom Phys
1854	 * Enable Power Management after link up
1855	 */
1856	if (hw->phy_type == SK_PHY_BCOM) {
1857		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1858			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1859			     & ~PHY_B_AC_DIS_PM);
1860		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1861	}
1862
1863	/* enable Rx/Tx */
1864	xm_write16(hw, port, XM_MMU_CMD,
1865			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1866	skge_link_up(skge);
1867}
1868
1869
1870static inline void bcom_phy_intr(struct skge_port *skge)
1871{
1872	struct skge_hw *hw = skge->hw;
1873	int port = skge->port;
1874	u16 isrc;
1875
1876	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1877	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1878		     "phy interrupt status 0x%x\n", isrc);
1879
1880	if (isrc & PHY_B_IS_PSE)
1881		pr_err("%s: uncorrectable pair swap error\n",
1882		       hw->dev[port]->name);
1883
1884	/* Workaround BCom Errata:
1885	 *	enable and disable loopback mode if "NO HCD" occurs.
1886	 */
1887	if (isrc & PHY_B_IS_NO_HDCL) {
1888		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1889		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1890				  ctrl | PHY_CT_LOOP);
1891		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1892				  ctrl & ~PHY_CT_LOOP);
1893	}
1894
1895	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1896		bcom_check_link(hw, port);
1897
1898}
1899
1900static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1901{
1902	int i;
1903
1904	gma_write16(hw, port, GM_SMI_DATA, val);
1905	gma_write16(hw, port, GM_SMI_CTRL,
1906			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1907	for (i = 0; i < PHY_RETRIES; i++) {
1908		udelay(1);
1909
1910		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1911			return 0;
1912	}
1913
1914	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1915	return -EIO;
1916}
1917
1918static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1919{
1920	int i;
1921
1922	gma_write16(hw, port, GM_SMI_CTRL,
1923			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1924			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1925
1926	for (i = 0; i < PHY_RETRIES; i++) {
1927		udelay(1);
1928		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1929			goto ready;
1930	}
1931
1932	return -ETIMEDOUT;
1933 ready:
1934	*val = gma_read16(hw, port, GM_SMI_DATA);
1935	return 0;
1936}
1937
1938static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1939{
1940	u16 v = 0;
1941	if (__gm_phy_read(hw, port, reg, &v))
1942		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1943	return v;
1944}
1945
1946/* Marvell Phy Initialization */
1947static void yukon_init(struct skge_hw *hw, int port)
1948{
1949	struct skge_port *skge = netdev_priv(hw->dev[port]);
1950	u16 ctrl, ct1000, adv;
1951
1952	if (skge->autoneg == AUTONEG_ENABLE) {
1953		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1954
1955		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1956			  PHY_M_EC_MAC_S_MSK);
1957		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1958
1959		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1960
1961		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1962	}
1963
1964	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1965	if (skge->autoneg == AUTONEG_DISABLE)
1966		ctrl &= ~PHY_CT_ANE;
1967
1968	ctrl |= PHY_CT_RESET;
1969	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1970
1971	ctrl = 0;
1972	ct1000 = 0;
1973	adv = PHY_AN_CSMA;
1974
1975	if (skge->autoneg == AUTONEG_ENABLE) {
1976		if (hw->copper) {
1977			if (skge->advertising & ADVERTISED_1000baseT_Full)
1978				ct1000 |= PHY_M_1000C_AFD;
1979			if (skge->advertising & ADVERTISED_1000baseT_Half)
1980				ct1000 |= PHY_M_1000C_AHD;
1981			if (skge->advertising & ADVERTISED_100baseT_Full)
1982				adv |= PHY_M_AN_100_FD;
1983			if (skge->advertising & ADVERTISED_100baseT_Half)
1984				adv |= PHY_M_AN_100_HD;
1985			if (skge->advertising & ADVERTISED_10baseT_Full)
1986				adv |= PHY_M_AN_10_FD;
1987			if (skge->advertising & ADVERTISED_10baseT_Half)
1988				adv |= PHY_M_AN_10_HD;
1989
1990			/* Set Flow-control capabilities */
1991			adv |= phy_pause_map[skge->flow_control];
1992		} else {
1993			if (skge->advertising & ADVERTISED_1000baseT_Full)
1994				adv |= PHY_M_AN_1000X_AFD;
1995			if (skge->advertising & ADVERTISED_1000baseT_Half)
1996				adv |= PHY_M_AN_1000X_AHD;
1997
1998			adv |= fiber_pause_map[skge->flow_control];
1999		}
2000
2001		/* Restart Auto-negotiation */
2002		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2003	} else {
2004		/* forced speed/duplex settings */
2005		ct1000 = PHY_M_1000C_MSE;
2006
2007		if (skge->duplex == DUPLEX_FULL)
2008			ctrl |= PHY_CT_DUP_MD;
2009
2010		switch (skge->speed) {
2011		case SPEED_1000:
2012			ctrl |= PHY_CT_SP1000;
2013			break;
2014		case SPEED_100:
2015			ctrl |= PHY_CT_SP100;
2016			break;
2017		}
2018
2019		ctrl |= PHY_CT_RESET;
2020	}
2021
2022	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2023
2024	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2025	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2026
2027	/* Enable phy interrupt on autonegotiation complete (or link up) */
2028	if (skge->autoneg == AUTONEG_ENABLE)
2029		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2030	else
2031		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2032}
2033
2034static void yukon_reset(struct skge_hw *hw, int port)
2035{
2036	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2037	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2038	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2039	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2040	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2041
2042	gma_write16(hw, port, GM_RX_CTRL,
2043			 gma_read16(hw, port, GM_RX_CTRL)
2044			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2045}
2046
2047/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2048static int is_yukon_lite_a0(struct skge_hw *hw)
2049{
2050	u32 reg;
2051	int ret;
2052
2053	if (hw->chip_id != CHIP_ID_YUKON)
2054		return 0;
2055
2056	reg = skge_read32(hw, B2_FAR);
2057	skge_write8(hw, B2_FAR + 3, 0xff);
2058	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2059	skge_write32(hw, B2_FAR, reg);
2060	return ret;
2061}
2062
2063static void yukon_mac_init(struct skge_hw *hw, int port)
2064{
2065	struct skge_port *skge = netdev_priv(hw->dev[port]);
2066	int i;
2067	u32 reg;
2068	const u8 *addr = hw->dev[port]->dev_addr;
2069
2070	/* WA code for COMA mode -- set PHY reset */
2071	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2072	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2073		reg = skge_read32(hw, B2_GP_IO);
2074		reg |= GP_DIR_9 | GP_IO_9;
2075		skge_write32(hw, B2_GP_IO, reg);
2076	}
2077
2078	/* hard reset */
2079	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2080	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2081
2082	/* WA code for COMA mode -- clear PHY reset */
2083	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2084	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2085		reg = skge_read32(hw, B2_GP_IO);
2086		reg |= GP_DIR_9;
2087		reg &= ~GP_IO_9;
2088		skge_write32(hw, B2_GP_IO, reg);
2089	}
2090
2091	/* Set hardware config mode */
2092	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2093		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2094	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2095
2096	/* Clear GMC reset */
2097	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2098	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2099	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2100
2101	if (skge->autoneg == AUTONEG_DISABLE) {
2102		reg = GM_GPCR_AU_ALL_DIS;
2103		gma_write16(hw, port, GM_GP_CTRL,
2104				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2105
2106		switch (skge->speed) {
2107		case SPEED_1000:
2108			reg &= ~GM_GPCR_SPEED_100;
2109			reg |= GM_GPCR_SPEED_1000;
2110			break;
2111		case SPEED_100:
2112			reg &= ~GM_GPCR_SPEED_1000;
2113			reg |= GM_GPCR_SPEED_100;
2114			break;
2115		case SPEED_10:
2116			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2117			break;
2118		}
2119
2120		if (skge->duplex == DUPLEX_FULL)
2121			reg |= GM_GPCR_DUP_FULL;
2122	} else
2123		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2124
2125	switch (skge->flow_control) {
2126	case FLOW_MODE_NONE:
2127		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2128		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2129		break;
2130	case FLOW_MODE_LOC_SEND:
2131		/* disable Rx flow-control */
2132		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2133		break;
2134	case FLOW_MODE_SYMMETRIC:
2135	case FLOW_MODE_SYM_OR_REM:
2136		/* enable Tx & Rx flow-control */
2137		break;
2138	}
2139
2140	gma_write16(hw, port, GM_GP_CTRL, reg);
2141	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2142
2143	yukon_init(hw, port);
2144
2145	/* MIB clear */
2146	reg = gma_read16(hw, port, GM_PHY_ADDR);
2147	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2148
2149	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2150		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2151	gma_write16(hw, port, GM_PHY_ADDR, reg);
2152
2153	/* transmit control */
2154	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2155
2156	/* receive control reg: unicast + multicast + no FCS  */
2157	gma_write16(hw, port, GM_RX_CTRL,
2158			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2159
2160	/* transmit flow control */
2161	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2162
2163	/* transmit parameter */
2164	gma_write16(hw, port, GM_TX_PARAM,
2165			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2166			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2167			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2168
2169	/* configure the Serial Mode Register */
2170	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2171		| GM_SMOD_VLAN_ENA
2172		| IPG_DATA_VAL(IPG_DATA_DEF);
2173
2174	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2175		reg |= GM_SMOD_JUMBO_ENA;
2176
2177	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2178
2179	/* physical address: used for pause frames */
2180	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2181	/* virtual address for data */
2182	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2183
2184	/* enable interrupt mask for counter overflows */
2185	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2186	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2187	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2188
2189	/* Initialize Mac Fifo */
2190
2191	/* Configure Rx MAC FIFO */
2192	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2193	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2194
2195	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2196	if (is_yukon_lite_a0(hw))
2197		reg &= ~GMF_RX_F_FL_ON;
2198
2199	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2200	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2201	/*
2202	 * because Pause Packet Truncation in GMAC is not working
2203	 * we have to increase the Flush Threshold to 64 bytes
2204	 * in order to flush pause packets in Rx FIFO on Yukon-1
2205	 */
2206	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2207
2208	/* Configure Tx MAC FIFO */
2209	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2210	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2211}
2212
2213/* Go into power down mode */
2214static void yukon_suspend(struct skge_hw *hw, int port)
2215{
2216	u16 ctrl;
2217
2218	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2219	ctrl |= PHY_M_PC_POL_R_DIS;
2220	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2221
2222	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2223	ctrl |= PHY_CT_RESET;
2224	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2225
2226	/* switch IEEE compatible power down mode on */
2227	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2228	ctrl |= PHY_CT_PDOWN;
2229	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2230}
2231
2232static void yukon_stop(struct skge_port *skge)
2233{
2234	struct skge_hw *hw = skge->hw;
2235	int port = skge->port;
2236
2237	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2238	yukon_reset(hw, port);
2239
2240	gma_write16(hw, port, GM_GP_CTRL,
2241			 gma_read16(hw, port, GM_GP_CTRL)
2242			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2243	gma_read16(hw, port, GM_GP_CTRL);
2244
2245	yukon_suspend(hw, port);
2246
2247	/* set GPHY Control reset */
2248	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2249	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2250}
2251
2252static void yukon_get_stats(struct skge_port *skge, u64 *data)
2253{
2254	struct skge_hw *hw = skge->hw;
2255	int port = skge->port;
2256	int i;
2257
2258	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2259		| gma_read32(hw, port, GM_TXO_OK_LO);
2260	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2261		| gma_read32(hw, port, GM_RXO_OK_LO);
2262
2263	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2264		data[i] = gma_read32(hw, port,
2265					  skge_stats[i].gma_offset);
2266}
2267
2268static void yukon_mac_intr(struct skge_hw *hw, int port)
2269{
2270	struct net_device *dev = hw->dev[port];
2271	struct skge_port *skge = netdev_priv(dev);
2272	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2273
2274	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2275		     "mac interrupt status 0x%x\n", status);
2276
2277	if (status & GM_IS_RX_FF_OR) {
2278		++dev->stats.rx_fifo_errors;
2279		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2280	}
2281
2282	if (status & GM_IS_TX_FF_UR) {
2283		++dev->stats.tx_fifo_errors;
2284		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2285	}
2286
2287}
2288
2289static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2290{
2291	switch (aux & PHY_M_PS_SPEED_MSK) {
2292	case PHY_M_PS_SPEED_1000:
2293		return SPEED_1000;
2294	case PHY_M_PS_SPEED_100:
2295		return SPEED_100;
2296	default:
2297		return SPEED_10;
2298	}
2299}
2300
2301static void yukon_link_up(struct skge_port *skge)
2302{
2303	struct skge_hw *hw = skge->hw;
2304	int port = skge->port;
2305	u16 reg;
2306
2307	/* Enable Transmit FIFO Underrun */
2308	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2309
2310	reg = gma_read16(hw, port, GM_GP_CTRL);
2311	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2312		reg |= GM_GPCR_DUP_FULL;
2313
2314	/* enable Rx/Tx */
2315	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2316	gma_write16(hw, port, GM_GP_CTRL, reg);
2317
2318	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2319	skge_link_up(skge);
2320}
2321
2322static void yukon_link_down(struct skge_port *skge)
2323{
2324	struct skge_hw *hw = skge->hw;
2325	int port = skge->port;
2326	u16 ctrl;
2327
2328	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2329	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2330	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2331
2332	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2333		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2334		ctrl |= PHY_M_AN_ASP;
2335		/* restore Asymmetric Pause bit */
2336		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2337	}
2338
2339	skge_link_down(skge);
2340
2341	yukon_init(hw, port);
2342}
2343
2344static void yukon_phy_intr(struct skge_port *skge)
2345{
2346	struct skge_hw *hw = skge->hw;
2347	int port = skge->port;
2348	const char *reason = NULL;
2349	u16 istatus, phystat;
2350
2351	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2352	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2353
2354	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2355		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2356
2357	if (istatus & PHY_M_IS_AN_COMPL) {
2358		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2359		    & PHY_M_AN_RF) {
2360			reason = "remote fault";
2361			goto failed;
2362		}
2363
2364		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2365			reason = "master/slave fault";
2366			goto failed;
2367		}
2368
2369		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2370			reason = "speed/duplex";
2371			goto failed;
2372		}
2373
2374		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2375			? DUPLEX_FULL : DUPLEX_HALF;
2376		skge->speed = yukon_speed(hw, phystat);
2377
2378		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2379		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2380		case PHY_M_PS_PAUSE_MSK:
2381			skge->flow_status = FLOW_STAT_SYMMETRIC;
2382			break;
2383		case PHY_M_PS_RX_P_EN:
2384			skge->flow_status = FLOW_STAT_REM_SEND;
2385			break;
2386		case PHY_M_PS_TX_P_EN:
2387			skge->flow_status = FLOW_STAT_LOC_SEND;
2388			break;
2389		default:
2390			skge->flow_status = FLOW_STAT_NONE;
2391		}
2392
2393		if (skge->flow_status == FLOW_STAT_NONE ||
2394		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2395			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2396		else
2397			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2398		yukon_link_up(skge);
2399		return;
2400	}
2401
2402	if (istatus & PHY_M_IS_LSP_CHANGE)
2403		skge->speed = yukon_speed(hw, phystat);
2404
2405	if (istatus & PHY_M_IS_DUP_CHANGE)
2406		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2407	if (istatus & PHY_M_IS_LST_CHANGE) {
2408		if (phystat & PHY_M_PS_LINK_UP)
2409			yukon_link_up(skge);
2410		else
2411			yukon_link_down(skge);
2412	}
2413	return;
2414 failed:
2415	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2416
2417	/* XXX restart autonegotiation? */
2418}
2419
2420static void skge_phy_reset(struct skge_port *skge)
2421{
2422	struct skge_hw *hw = skge->hw;
2423	int port = skge->port;
2424	struct net_device *dev = hw->dev[port];
2425
2426	netif_stop_queue(skge->netdev);
2427	netif_carrier_off(skge->netdev);
2428
2429	spin_lock_bh(&hw->phy_lock);
2430	if (is_genesis(hw)) {
2431		genesis_reset(hw, port);
2432		genesis_mac_init(hw, port);
2433	} else {
2434		yukon_reset(hw, port);
2435		yukon_init(hw, port);
2436	}
2437	spin_unlock_bh(&hw->phy_lock);
2438
2439	skge_set_multicast(dev);
2440}
2441
2442/* Basic MII support */
2443static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2444{
2445	struct mii_ioctl_data *data = if_mii(ifr);
2446	struct skge_port *skge = netdev_priv(dev);
2447	struct skge_hw *hw = skge->hw;
2448	int err = -EOPNOTSUPP;
2449
2450	if (!netif_running(dev))
2451		return -ENODEV;	/* Phy still in reset */
2452
2453	switch (cmd) {
2454	case SIOCGMIIPHY:
2455		data->phy_id = hw->phy_addr;
2456
2457		fallthrough;
2458	case SIOCGMIIREG: {
2459		u16 val = 0;
2460		spin_lock_bh(&hw->phy_lock);
2461
2462		if (is_genesis(hw))
2463			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2464		else
2465			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2466		spin_unlock_bh(&hw->phy_lock);
2467		data->val_out = val;
2468		break;
2469	}
2470
2471	case SIOCSMIIREG:
2472		spin_lock_bh(&hw->phy_lock);
2473		if (is_genesis(hw))
2474			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2475				   data->val_in);
2476		else
2477			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2478				   data->val_in);
2479		spin_unlock_bh(&hw->phy_lock);
2480		break;
2481	}
2482	return err;
2483}
2484
2485static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2486{
2487	u32 end;
2488
2489	start /= 8;
2490	len /= 8;
2491	end = start + len - 1;
2492
2493	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2494	skge_write32(hw, RB_ADDR(q, RB_START), start);
2495	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2496	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2497	skge_write32(hw, RB_ADDR(q, RB_END), end);
2498
2499	if (q == Q_R1 || q == Q_R2) {
2500		/* Set thresholds on receive queue's */
2501		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2502			     start + (2*len)/3);
2503		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2504			     start + (len/3));
2505	} else {
2506		/* Enable store & forward on Tx queue's because
2507		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2508		 */
2509		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2510	}
2511
2512	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2513}
2514
2515/* Setup Bus Memory Interface */
2516static void skge_qset(struct skge_port *skge, u16 q,
2517		      const struct skge_element *e)
2518{
2519	struct skge_hw *hw = skge->hw;
2520	u32 watermark = 0x600;
2521	u64 base = skge->dma + (e->desc - skge->mem);
2522
2523	/* optimization to reduce window on 32bit/33mhz */
2524	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2525		watermark /= 2;
2526
2527	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2528	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2529	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2530	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2531}
2532
2533static int skge_up(struct net_device *dev)
2534{
2535	struct skge_port *skge = netdev_priv(dev);
2536	struct skge_hw *hw = skge->hw;
2537	int port = skge->port;
2538	u32 chunk, ram_addr;
2539	size_t rx_size, tx_size;
2540	int err;
2541
2542	if (!is_valid_ether_addr(dev->dev_addr))
2543		return -EINVAL;
2544
2545	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2546
2547	if (dev->mtu > RX_BUF_SIZE)
2548		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2549	else
2550		skge->rx_buf_size = RX_BUF_SIZE;
2551
2552
2553	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2554	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2555	skge->mem_size = tx_size + rx_size;
2556	skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2557				       &skge->dma, GFP_KERNEL);
2558	if (!skge->mem)
2559		return -ENOMEM;
2560
2561	BUG_ON(skge->dma & 7);
2562
2563	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2564		dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2565		err = -EINVAL;
2566		goto free_pci_mem;
2567	}
2568
 
 
2569	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2570	if (err)
2571		goto free_pci_mem;
2572
2573	err = skge_rx_fill(dev);
2574	if (err)
2575		goto free_rx_ring;
2576
2577	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2578			      skge->dma + rx_size);
2579	if (err)
2580		goto free_rx_ring;
2581
2582	if (hw->ports == 1) {
2583		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2584				  dev->name, hw);
2585		if (err) {
2586			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2587				   hw->pdev->irq, err);
2588			goto free_tx_ring;
2589		}
2590	}
2591
2592	/* Initialize MAC */
2593	netif_carrier_off(dev);
2594	spin_lock_bh(&hw->phy_lock);
2595	if (is_genesis(hw))
2596		genesis_mac_init(hw, port);
2597	else
2598		yukon_mac_init(hw, port);
2599	spin_unlock_bh(&hw->phy_lock);
2600
2601	/* Configure RAMbuffers - equally between ports and tx/rx */
2602	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2603	ram_addr = hw->ram_offset + 2 * chunk * port;
2604
2605	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2606	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2607
2608	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2609	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2610	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2611
2612	/* Start receiver BMU */
2613	wmb();
2614	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2615	skge_led(skge, LED_MODE_ON);
2616
2617	spin_lock_irq(&hw->hw_lock);
2618	hw->intr_mask |= portmask[port];
2619	skge_write32(hw, B0_IMSK, hw->intr_mask);
2620	skge_read32(hw, B0_IMSK);
2621	spin_unlock_irq(&hw->hw_lock);
2622
2623	napi_enable(&skge->napi);
2624
2625	skge_set_multicast(dev);
2626
2627	return 0;
2628
2629 free_tx_ring:
2630	kfree(skge->tx_ring.start);
2631 free_rx_ring:
2632	skge_rx_clean(skge);
2633	kfree(skge->rx_ring.start);
2634 free_pci_mem:
2635	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2636			  skge->dma);
2637	skge->mem = NULL;
2638
2639	return err;
2640}
2641
2642/* stop receiver */
2643static void skge_rx_stop(struct skge_hw *hw, int port)
2644{
2645	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2646	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2647		     RB_RST_SET|RB_DIS_OP_MD);
2648	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2649}
2650
2651static int skge_down(struct net_device *dev)
2652{
2653	struct skge_port *skge = netdev_priv(dev);
2654	struct skge_hw *hw = skge->hw;
2655	int port = skge->port;
2656
2657	if (!skge->mem)
2658		return 0;
2659
2660	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2661
2662	netif_tx_disable(dev);
2663
2664	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2665		del_timer_sync(&skge->link_timer);
2666
2667	napi_disable(&skge->napi);
2668	netif_carrier_off(dev);
2669
2670	spin_lock_irq(&hw->hw_lock);
2671	hw->intr_mask &= ~portmask[port];
2672	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2673	skge_read32(hw, B0_IMSK);
2674	spin_unlock_irq(&hw->hw_lock);
2675
2676	if (hw->ports == 1)
2677		free_irq(hw->pdev->irq, hw);
2678
2679	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2680	if (is_genesis(hw))
2681		genesis_stop(skge);
2682	else
2683		yukon_stop(skge);
2684
2685	/* Stop transmitter */
2686	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2687	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2688		     RB_RST_SET|RB_DIS_OP_MD);
2689
2690
2691	/* Disable Force Sync bit and Enable Alloc bit */
2692	skge_write8(hw, SK_REG(port, TXA_CTRL),
2693		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2694
2695	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2696	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2697	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2698
2699	/* Reset PCI FIFO */
2700	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2701	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2702
2703	/* Reset the RAM Buffer async Tx queue */
2704	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2705
2706	skge_rx_stop(hw, port);
2707
2708	if (is_genesis(hw)) {
2709		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2710		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2711	} else {
2712		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2713		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2714	}
2715
2716	skge_led(skge, LED_MODE_OFF);
2717
2718	netif_tx_lock_bh(dev);
2719	skge_tx_clean(dev);
2720	netif_tx_unlock_bh(dev);
2721
2722	skge_rx_clean(skge);
2723
2724	kfree(skge->rx_ring.start);
2725	kfree(skge->tx_ring.start);
2726	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2727			  skge->dma);
2728	skge->mem = NULL;
2729	return 0;
2730}
2731
2732static inline int skge_avail(const struct skge_ring *ring)
2733{
2734	smp_mb();
2735	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2736		+ (ring->to_clean - ring->to_use) - 1;
2737}
2738
2739static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2740				   struct net_device *dev)
2741{
2742	struct skge_port *skge = netdev_priv(dev);
2743	struct skge_hw *hw = skge->hw;
2744	struct skge_element *e;
2745	struct skge_tx_desc *td;
2746	int i;
2747	u32 control, len;
2748	dma_addr_t map;
2749
2750	if (skb_padto(skb, ETH_ZLEN))
2751		return NETDEV_TX_OK;
2752
2753	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2754		return NETDEV_TX_BUSY;
2755
2756	e = skge->tx_ring.to_use;
2757	td = e->desc;
2758	BUG_ON(td->control & BMU_OWN);
2759	e->skb = skb;
2760	len = skb_headlen(skb);
2761	map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2762	if (dma_mapping_error(&hw->pdev->dev, map))
2763		goto mapping_error;
2764
2765	dma_unmap_addr_set(e, mapaddr, map);
2766	dma_unmap_len_set(e, maplen, len);
2767
2768	td->dma_lo = lower_32_bits(map);
2769	td->dma_hi = upper_32_bits(map);
2770
2771	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2772		const int offset = skb_checksum_start_offset(skb);
2773
2774		/* This seems backwards, but it is what the sk98lin
2775		 * does.  Looks like hardware is wrong?
2776		 */
2777		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2778		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2779			control = BMU_TCP_CHECK;
2780		else
2781			control = BMU_UDP_CHECK;
2782
2783		td->csum_offs = 0;
2784		td->csum_start = offset;
2785		td->csum_write = offset + skb->csum_offset;
2786	} else
2787		control = BMU_CHECK;
2788
2789	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2790		control |= BMU_EOF | BMU_IRQ_EOF;
2791	else {
2792		struct skge_tx_desc *tf = td;
2793
2794		control |= BMU_STFWD;
2795		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2796			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2797
2798			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2799					       skb_frag_size(frag), DMA_TO_DEVICE);
2800			if (dma_mapping_error(&hw->pdev->dev, map))
2801				goto mapping_unwind;
2802
2803			e = e->next;
2804			e->skb = skb;
2805			tf = e->desc;
2806			BUG_ON(tf->control & BMU_OWN);
2807
2808			tf->dma_lo = lower_32_bits(map);
2809			tf->dma_hi = upper_32_bits(map);
2810			dma_unmap_addr_set(e, mapaddr, map);
2811			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2812
2813			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2814		}
2815		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2816	}
2817	/* Make sure all the descriptors written */
2818	wmb();
2819	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2820	wmb();
2821
2822	netdev_sent_queue(dev, skb->len);
2823
2824	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2825
2826	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2827		     "tx queued, slot %td, len %d\n",
2828		     e - skge->tx_ring.start, skb->len);
2829
2830	skge->tx_ring.to_use = e->next;
2831	smp_wmb();
2832
2833	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2834		netdev_dbg(dev, "transmit queue full\n");
2835		netif_stop_queue(dev);
2836	}
2837
2838	return NETDEV_TX_OK;
2839
2840mapping_unwind:
2841	e = skge->tx_ring.to_use;
2842	dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2843			 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
 
 
2844	while (i-- > 0) {
2845		e = e->next;
2846		dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2847			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
 
 
2848	}
2849
2850mapping_error:
2851	if (net_ratelimit())
2852		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2853	dev_kfree_skb_any(skb);
2854	return NETDEV_TX_OK;
2855}
2856
2857
2858/* Free resources associated with this reing element */
2859static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2860				 u32 control)
2861{
2862	/* skb header vs. fragment */
2863	if (control & BMU_STF)
2864		dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2865				 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
 
2866	else
2867		dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2868			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
 
2869}
2870
2871/* Free all buffers in transmit ring */
2872static void skge_tx_clean(struct net_device *dev)
2873{
2874	struct skge_port *skge = netdev_priv(dev);
2875	struct skge_element *e;
2876
2877	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2878		struct skge_tx_desc *td = e->desc;
2879
2880		skge_tx_unmap(skge->hw->pdev, e, td->control);
2881
2882		if (td->control & BMU_EOF)
2883			dev_kfree_skb(e->skb);
2884		td->control = 0;
2885	}
2886
2887	netdev_reset_queue(dev);
2888	skge->tx_ring.to_clean = e;
2889}
2890
2891static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2892{
2893	struct skge_port *skge = netdev_priv(dev);
2894
2895	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2896
2897	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2898	skge_tx_clean(dev);
2899	netif_wake_queue(dev);
2900}
2901
2902static int skge_change_mtu(struct net_device *dev, int new_mtu)
2903{
2904	int err;
2905
2906	if (!netif_running(dev)) {
2907		WRITE_ONCE(dev->mtu, new_mtu);
2908		return 0;
2909	}
2910
2911	skge_down(dev);
2912
2913	WRITE_ONCE(dev->mtu, new_mtu);
2914
2915	err = skge_up(dev);
2916	if (err)
2917		dev_close(dev);
2918
2919	return err;
2920}
2921
2922static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2923
2924static void genesis_add_filter(u8 filter[8], const u8 *addr)
2925{
2926	u32 crc, bit;
2927
2928	crc = ether_crc_le(ETH_ALEN, addr);
2929	bit = ~crc & 0x3f;
2930	filter[bit/8] |= 1 << (bit%8);
2931}
2932
2933static void genesis_set_multicast(struct net_device *dev)
2934{
2935	struct skge_port *skge = netdev_priv(dev);
2936	struct skge_hw *hw = skge->hw;
2937	int port = skge->port;
2938	struct netdev_hw_addr *ha;
2939	u32 mode;
2940	u8 filter[8];
2941
2942	mode = xm_read32(hw, port, XM_MODE);
2943	mode |= XM_MD_ENA_HASH;
2944	if (dev->flags & IFF_PROMISC)
2945		mode |= XM_MD_ENA_PROM;
2946	else
2947		mode &= ~XM_MD_ENA_PROM;
2948
2949	if (dev->flags & IFF_ALLMULTI)
2950		memset(filter, 0xff, sizeof(filter));
2951	else {
2952		memset(filter, 0, sizeof(filter));
2953
2954		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2955		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2956			genesis_add_filter(filter, pause_mc_addr);
2957
2958		netdev_for_each_mc_addr(ha, dev)
2959			genesis_add_filter(filter, ha->addr);
2960	}
2961
2962	xm_write32(hw, port, XM_MODE, mode);
2963	xm_outhash(hw, port, XM_HSM, filter);
2964}
2965
2966static void yukon_add_filter(u8 filter[8], const u8 *addr)
2967{
2968	u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2969
2970	filter[bit / 8] |= 1 << (bit % 8);
2971}
2972
2973static void yukon_set_multicast(struct net_device *dev)
2974{
2975	struct skge_port *skge = netdev_priv(dev);
2976	struct skge_hw *hw = skge->hw;
2977	int port = skge->port;
2978	struct netdev_hw_addr *ha;
2979	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2980			skge->flow_status == FLOW_STAT_SYMMETRIC);
2981	u16 reg;
2982	u8 filter[8];
2983
2984	memset(filter, 0, sizeof(filter));
2985
2986	reg = gma_read16(hw, port, GM_RX_CTRL);
2987	reg |= GM_RXCR_UCF_ENA;
2988
2989	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2990		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2991	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2992		memset(filter, 0xff, sizeof(filter));
2993	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2994		reg &= ~GM_RXCR_MCF_ENA;
2995	else {
2996		reg |= GM_RXCR_MCF_ENA;
2997
2998		if (rx_pause)
2999			yukon_add_filter(filter, pause_mc_addr);
3000
3001		netdev_for_each_mc_addr(ha, dev)
3002			yukon_add_filter(filter, ha->addr);
3003	}
3004
3005
3006	gma_write16(hw, port, GM_MC_ADDR_H1,
3007			 (u16)filter[0] | ((u16)filter[1] << 8));
3008	gma_write16(hw, port, GM_MC_ADDR_H2,
3009			 (u16)filter[2] | ((u16)filter[3] << 8));
3010	gma_write16(hw, port, GM_MC_ADDR_H3,
3011			 (u16)filter[4] | ((u16)filter[5] << 8));
3012	gma_write16(hw, port, GM_MC_ADDR_H4,
3013			 (u16)filter[6] | ((u16)filter[7] << 8));
3014
3015	gma_write16(hw, port, GM_RX_CTRL, reg);
3016}
3017
3018static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3019{
3020	if (is_genesis(hw))
3021		return status >> XMR_FS_LEN_SHIFT;
3022	else
3023		return status >> GMR_FS_LEN_SHIFT;
3024}
3025
3026static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3027{
3028	if (is_genesis(hw))
3029		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3030	else
3031		return (status & GMR_FS_ANY_ERR) ||
3032			(status & GMR_FS_RX_OK) == 0;
3033}
3034
3035static void skge_set_multicast(struct net_device *dev)
3036{
3037	struct skge_port *skge = netdev_priv(dev);
3038
3039	if (is_genesis(skge->hw))
3040		genesis_set_multicast(dev);
3041	else
3042		yukon_set_multicast(dev);
3043
3044}
3045
3046
3047/* Get receive buffer from descriptor.
3048 * Handles copy of small buffers and reallocation failures
3049 */
3050static struct sk_buff *skge_rx_get(struct net_device *dev,
3051				   struct skge_element *e,
3052				   u32 control, u32 status, u16 csum)
3053{
3054	struct skge_port *skge = netdev_priv(dev);
3055	struct sk_buff *skb;
3056	u16 len = control & BMU_BBC;
3057
3058	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3059		     "rx slot %td status 0x%x len %d\n",
3060		     e - skge->rx_ring.start, status, len);
3061
3062	if (len > skge->rx_buf_size)
3063		goto error;
3064
3065	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3066		goto error;
3067
3068	if (bad_phy_status(skge->hw, status))
3069		goto error;
3070
3071	if (phy_length(skge->hw, status) != len)
3072		goto error;
3073
3074	if (len < RX_COPY_THRESHOLD) {
3075		skb = netdev_alloc_skb_ip_align(dev, len);
3076		if (!skb)
3077			goto resubmit;
3078
3079		dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3080					dma_unmap_addr(e, mapaddr),
3081					dma_unmap_len(e, maplen),
3082					DMA_FROM_DEVICE);
3083		skb_copy_from_linear_data(e->skb, skb->data, len);
3084		dma_sync_single_for_device(&skge->hw->pdev->dev,
3085					   dma_unmap_addr(e, mapaddr),
3086					   dma_unmap_len(e, maplen),
3087					   DMA_FROM_DEVICE);
3088		skge_rx_reuse(e, skge->rx_buf_size);
3089	} else {
3090		struct skge_element ee;
3091		struct sk_buff *nskb;
3092
3093		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3094		if (!nskb)
3095			goto resubmit;
3096
3097		ee = *e;
3098
3099		skb = ee.skb;
3100		prefetch(skb->data);
3101
3102		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3103			dev_kfree_skb(nskb);
3104			goto resubmit;
3105		}
3106
3107		dma_unmap_single(&skge->hw->pdev->dev,
3108				 dma_unmap_addr(&ee, mapaddr),
3109				 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
 
3110	}
3111
3112	skb_put(skb, len);
3113
3114	if (dev->features & NETIF_F_RXCSUM) {
3115		skb->csum = le16_to_cpu(csum);
3116		skb->ip_summed = CHECKSUM_COMPLETE;
3117	}
3118
3119	skb->protocol = eth_type_trans(skb, dev);
3120
3121	return skb;
3122error:
3123
3124	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3125		     "rx err, slot %td control 0x%x status 0x%x\n",
3126		     e - skge->rx_ring.start, control, status);
3127
3128	if (is_genesis(skge->hw)) {
3129		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3130			dev->stats.rx_length_errors++;
3131		if (status & XMR_FS_FRA_ERR)
3132			dev->stats.rx_frame_errors++;
3133		if (status & XMR_FS_FCS_ERR)
3134			dev->stats.rx_crc_errors++;
3135	} else {
3136		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3137			dev->stats.rx_length_errors++;
3138		if (status & GMR_FS_FRAGMENT)
3139			dev->stats.rx_frame_errors++;
3140		if (status & GMR_FS_CRC_ERR)
3141			dev->stats.rx_crc_errors++;
3142	}
3143
3144resubmit:
3145	skge_rx_reuse(e, skge->rx_buf_size);
3146	return NULL;
3147}
3148
3149/* Free all buffers in Tx ring which are no longer owned by device */
3150static void skge_tx_done(struct net_device *dev)
3151{
3152	struct skge_port *skge = netdev_priv(dev);
3153	struct skge_ring *ring = &skge->tx_ring;
3154	struct skge_element *e;
3155	unsigned int bytes_compl = 0, pkts_compl = 0;
3156
3157	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3158
3159	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3160		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3161
3162		if (control & BMU_OWN)
3163			break;
3164
3165		skge_tx_unmap(skge->hw->pdev, e, control);
3166
3167		if (control & BMU_EOF) {
3168			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3169				     "tx done slot %td\n",
3170				     e - skge->tx_ring.start);
3171
3172			pkts_compl++;
3173			bytes_compl += e->skb->len;
3174
3175			dev_consume_skb_any(e->skb);
3176		}
3177	}
3178	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3179	skge->tx_ring.to_clean = e;
3180
3181	/* Can run lockless until we need to synchronize to restart queue. */
3182	smp_mb();
3183
3184	if (unlikely(netif_queue_stopped(dev) &&
3185		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3186		netif_tx_lock(dev);
3187		if (unlikely(netif_queue_stopped(dev) &&
3188			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3189			netif_wake_queue(dev);
3190
3191		}
3192		netif_tx_unlock(dev);
3193	}
3194}
3195
3196static int skge_poll(struct napi_struct *napi, int budget)
3197{
3198	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3199	struct net_device *dev = skge->netdev;
3200	struct skge_hw *hw = skge->hw;
3201	struct skge_ring *ring = &skge->rx_ring;
3202	struct skge_element *e;
3203	int work_done = 0;
3204
3205	skge_tx_done(dev);
3206
3207	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3208
3209	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3210		struct skge_rx_desc *rd = e->desc;
3211		struct sk_buff *skb;
3212		u32 control;
3213
3214		rmb();
3215		control = rd->control;
3216		if (control & BMU_OWN)
3217			break;
3218
3219		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3220		if (likely(skb)) {
3221			napi_gro_receive(napi, skb);
3222			++work_done;
3223		}
3224	}
3225	ring->to_clean = e;
3226
3227	/* restart receiver */
3228	wmb();
3229	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3230
3231	if (work_done < budget && napi_complete_done(napi, work_done)) {
3232		unsigned long flags;
3233
 
3234		spin_lock_irqsave(&hw->hw_lock, flags);
 
3235		hw->intr_mask |= napimask[skge->port];
3236		skge_write32(hw, B0_IMSK, hw->intr_mask);
3237		skge_read32(hw, B0_IMSK);
3238		spin_unlock_irqrestore(&hw->hw_lock, flags);
3239	}
3240
3241	return work_done;
3242}
3243
3244/* Parity errors seem to happen when Genesis is connected to a switch
3245 * with no other ports present. Heartbeat error??
3246 */
3247static void skge_mac_parity(struct skge_hw *hw, int port)
3248{
3249	struct net_device *dev = hw->dev[port];
3250
3251	++dev->stats.tx_heartbeat_errors;
3252
3253	if (is_genesis(hw))
3254		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3255			     MFF_CLR_PERR);
3256	else
3257		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3258		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3259			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3260			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3261}
3262
3263static void skge_mac_intr(struct skge_hw *hw, int port)
3264{
3265	if (is_genesis(hw))
3266		genesis_mac_intr(hw, port);
3267	else
3268		yukon_mac_intr(hw, port);
3269}
3270
3271/* Handle device specific framing and timeout interrupts */
3272static void skge_error_irq(struct skge_hw *hw)
3273{
3274	struct pci_dev *pdev = hw->pdev;
3275	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3276
3277	if (is_genesis(hw)) {
3278		/* clear xmac errors */
3279		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3280			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3281		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3282			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3283	} else {
3284		/* Timestamp (unused) overflow */
3285		if (hwstatus & IS_IRQ_TIST_OV)
3286			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3287	}
3288
3289	if (hwstatus & IS_RAM_RD_PAR) {
3290		dev_err(&pdev->dev, "Ram read data parity error\n");
3291		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3292	}
3293
3294	if (hwstatus & IS_RAM_WR_PAR) {
3295		dev_err(&pdev->dev, "Ram write data parity error\n");
3296		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3297	}
3298
3299	if (hwstatus & IS_M1_PAR_ERR)
3300		skge_mac_parity(hw, 0);
3301
3302	if (hwstatus & IS_M2_PAR_ERR)
3303		skge_mac_parity(hw, 1);
3304
3305	if (hwstatus & IS_R1_PAR_ERR) {
3306		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3307			hw->dev[0]->name);
3308		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3309	}
3310
3311	if (hwstatus & IS_R2_PAR_ERR) {
3312		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3313			hw->dev[1]->name);
3314		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3315	}
3316
3317	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3318		u16 pci_status, pci_cmd;
3319
3320		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3321		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3322
3323		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3324			pci_cmd, pci_status);
3325
3326		/* Write the error bits back to clear them. */
3327		pci_status &= PCI_STATUS_ERROR_BITS;
3328		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3329		pci_write_config_word(pdev, PCI_COMMAND,
3330				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3331		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3332		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3333
3334		/* if error still set then just ignore it */
3335		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3336		if (hwstatus & IS_IRQ_STAT) {
3337			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3338			hw->intr_mask &= ~IS_HW_ERR;
3339		}
3340	}
3341}
3342
3343/*
3344 * Interrupt from PHY are handled in tasklet (softirq)
3345 * because accessing phy registers requires spin wait which might
3346 * cause excess interrupt latency.
3347 */
3348static void skge_extirq(struct tasklet_struct *t)
3349{
3350	struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3351	int port;
3352
3353	for (port = 0; port < hw->ports; port++) {
3354		struct net_device *dev = hw->dev[port];
3355
3356		if (netif_running(dev)) {
3357			struct skge_port *skge = netdev_priv(dev);
3358
3359			spin_lock(&hw->phy_lock);
3360			if (!is_genesis(hw))
3361				yukon_phy_intr(skge);
3362			else if (hw->phy_type == SK_PHY_BCOM)
3363				bcom_phy_intr(skge);
3364			spin_unlock(&hw->phy_lock);
3365		}
3366	}
3367
3368	spin_lock_irq(&hw->hw_lock);
3369	hw->intr_mask |= IS_EXT_REG;
3370	skge_write32(hw, B0_IMSK, hw->intr_mask);
3371	skge_read32(hw, B0_IMSK);
3372	spin_unlock_irq(&hw->hw_lock);
3373}
3374
3375static irqreturn_t skge_intr(int irq, void *dev_id)
3376{
3377	struct skge_hw *hw = dev_id;
3378	u32 status;
3379	int handled = 0;
3380
3381	spin_lock(&hw->hw_lock);
3382	/* Reading this register masks IRQ */
3383	status = skge_read32(hw, B0_SP_ISRC);
3384	if (status == 0 || status == ~0)
3385		goto out;
3386
3387	handled = 1;
3388	status &= hw->intr_mask;
3389	if (status & IS_EXT_REG) {
3390		hw->intr_mask &= ~IS_EXT_REG;
3391		tasklet_schedule(&hw->phy_task);
3392	}
3393
3394	if (status & (IS_XA1_F|IS_R1_F)) {
3395		struct skge_port *skge = netdev_priv(hw->dev[0]);
3396		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3397		napi_schedule(&skge->napi);
3398	}
3399
3400	if (status & IS_PA_TO_TX1)
3401		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3402
3403	if (status & IS_PA_TO_RX1) {
3404		++hw->dev[0]->stats.rx_over_errors;
3405		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3406	}
3407
3408
3409	if (status & IS_MAC1)
3410		skge_mac_intr(hw, 0);
3411
3412	if (hw->dev[1]) {
3413		struct skge_port *skge = netdev_priv(hw->dev[1]);
3414
3415		if (status & (IS_XA2_F|IS_R2_F)) {
3416			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3417			napi_schedule(&skge->napi);
3418		}
3419
3420		if (status & IS_PA_TO_RX2) {
3421			++hw->dev[1]->stats.rx_over_errors;
3422			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3423		}
3424
3425		if (status & IS_PA_TO_TX2)
3426			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3427
3428		if (status & IS_MAC2)
3429			skge_mac_intr(hw, 1);
3430	}
3431
3432	if (status & IS_HW_ERR)
3433		skge_error_irq(hw);
3434out:
3435	skge_write32(hw, B0_IMSK, hw->intr_mask);
3436	skge_read32(hw, B0_IMSK);
3437	spin_unlock(&hw->hw_lock);
3438
3439	return IRQ_RETVAL(handled);
3440}
3441
3442#ifdef CONFIG_NET_POLL_CONTROLLER
3443static void skge_netpoll(struct net_device *dev)
3444{
3445	struct skge_port *skge = netdev_priv(dev);
3446
3447	disable_irq(dev->irq);
3448	skge_intr(dev->irq, skge->hw);
3449	enable_irq(dev->irq);
3450}
3451#endif
3452
3453static int skge_set_mac_address(struct net_device *dev, void *p)
3454{
3455	struct skge_port *skge = netdev_priv(dev);
3456	struct skge_hw *hw = skge->hw;
3457	unsigned port = skge->port;
3458	const struct sockaddr *addr = p;
3459	u16 ctrl;
3460
3461	if (!is_valid_ether_addr(addr->sa_data))
3462		return -EADDRNOTAVAIL;
3463
3464	eth_hw_addr_set(dev, addr->sa_data);
3465
3466	if (!netif_running(dev)) {
3467		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3468		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3469	} else {
3470		/* disable Rx */
3471		spin_lock_bh(&hw->phy_lock);
3472		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3473		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3474
3475		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3476		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3477
3478		if (is_genesis(hw))
3479			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3480		else {
3481			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3482			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3483		}
3484
3485		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3486		spin_unlock_bh(&hw->phy_lock);
3487	}
3488
3489	return 0;
3490}
3491
3492static const struct {
3493	u8 id;
3494	const char *name;
3495} skge_chips[] = {
3496	{ CHIP_ID_GENESIS,	"Genesis" },
3497	{ CHIP_ID_YUKON,	 "Yukon" },
3498	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3499	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3500};
3501
3502static const char *skge_board_name(const struct skge_hw *hw)
3503{
3504	int i;
3505	static char buf[16];
3506
3507	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3508		if (skge_chips[i].id == hw->chip_id)
3509			return skge_chips[i].name;
3510
3511	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3512	return buf;
3513}
3514
3515
3516/*
3517 * Setup the board data structure, but don't bring up
3518 * the port(s)
3519 */
3520static int skge_reset(struct skge_hw *hw)
3521{
3522	u32 reg;
3523	u16 ctst, pci_status;
3524	u8 t8, mac_cfg, pmd_type;
3525	int i;
3526
3527	ctst = skge_read16(hw, B0_CTST);
3528
3529	/* do a SW reset */
3530	skge_write8(hw, B0_CTST, CS_RST_SET);
3531	skge_write8(hw, B0_CTST, CS_RST_CLR);
3532
3533	/* clear PCI errors, if any */
3534	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3535	skge_write8(hw, B2_TST_CTRL2, 0);
3536
3537	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3538	pci_write_config_word(hw->pdev, PCI_STATUS,
3539			      pci_status | PCI_STATUS_ERROR_BITS);
3540	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3541	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3542
3543	/* restore CLK_RUN bits (for Yukon-Lite) */
3544	skge_write16(hw, B0_CTST,
3545		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3546
3547	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3548	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3549	pmd_type = skge_read8(hw, B2_PMD_TYP);
3550	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3551
3552	switch (hw->chip_id) {
3553	case CHIP_ID_GENESIS:
3554#ifdef CONFIG_SKGE_GENESIS
3555		switch (hw->phy_type) {
3556		case SK_PHY_XMAC:
3557			hw->phy_addr = PHY_ADDR_XMAC;
3558			break;
3559		case SK_PHY_BCOM:
3560			hw->phy_addr = PHY_ADDR_BCOM;
3561			break;
3562		default:
3563			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3564			       hw->phy_type);
3565			return -EOPNOTSUPP;
3566		}
3567		break;
3568#else
3569		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3570		return -EOPNOTSUPP;
3571#endif
3572
3573	case CHIP_ID_YUKON:
3574	case CHIP_ID_YUKON_LITE:
3575	case CHIP_ID_YUKON_LP:
3576		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3577			hw->copper = 1;
3578
3579		hw->phy_addr = PHY_ADDR_MARV;
3580		break;
3581
3582	default:
3583		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3584		       hw->chip_id);
3585		return -EOPNOTSUPP;
3586	}
3587
3588	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3589	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3590	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3591
3592	/* read the adapters RAM size */
3593	t8 = skge_read8(hw, B2_E_0);
3594	if (is_genesis(hw)) {
3595		if (t8 == 3) {
3596			/* special case: 4 x 64k x 36, offset = 0x80000 */
3597			hw->ram_size = 0x100000;
3598			hw->ram_offset = 0x80000;
3599		} else
3600			hw->ram_size = t8 * 512;
3601	} else if (t8 == 0)
3602		hw->ram_size = 0x20000;
3603	else
3604		hw->ram_size = t8 * 4096;
3605
3606	hw->intr_mask = IS_HW_ERR;
3607
3608	/* Use PHY IRQ for all but fiber based Genesis board */
3609	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3610		hw->intr_mask |= IS_EXT_REG;
3611
3612	if (is_genesis(hw))
3613		genesis_init(hw);
3614	else {
3615		/* switch power to VCC (WA for VAUX problem) */
3616		skge_write8(hw, B0_POWER_CTRL,
3617			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3618
3619		/* avoid boards with stuck Hardware error bits */
3620		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3621		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3622			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3623			hw->intr_mask &= ~IS_HW_ERR;
3624		}
3625
3626		/* Clear PHY COMA */
3627		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3628		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3629		reg &= ~PCI_PHY_COMA;
3630		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3631		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3632
3633
3634		for (i = 0; i < hw->ports; i++) {
3635			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3636			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3637		}
3638	}
3639
3640	/* turn off hardware timer (unused) */
3641	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3642	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3643	skge_write8(hw, B0_LED, LED_STAT_ON);
3644
3645	/* enable the Tx Arbiters */
3646	for (i = 0; i < hw->ports; i++)
3647		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3648
3649	/* Initialize ram interface */
3650	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3651
3652	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3653	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3654	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3655	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3656	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3657	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3658	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3659	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3660	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3661	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3662	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3663	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3664
3665	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3666
3667	/* Set interrupt moderation for Transmit only
3668	 * Receive interrupts avoided by NAPI
3669	 */
3670	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3671	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3672	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3673
3674	/* Leave irq disabled until first port is brought up. */
3675	skge_write32(hw, B0_IMSK, 0);
3676
3677	for (i = 0; i < hw->ports; i++) {
3678		if (is_genesis(hw))
3679			genesis_reset(hw, i);
3680		else
3681			yukon_reset(hw, i);
3682	}
3683
3684	return 0;
3685}
3686
3687
3688#ifdef CONFIG_SKGE_DEBUG
3689
3690static struct dentry *skge_debug;
3691
3692static int skge_debug_show(struct seq_file *seq, void *v)
3693{
3694	struct net_device *dev = seq->private;
3695	const struct skge_port *skge = netdev_priv(dev);
3696	const struct skge_hw *hw = skge->hw;
3697	const struct skge_element *e;
3698
3699	if (!netif_running(dev))
3700		return -ENETDOWN;
3701
3702	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3703		   skge_read32(hw, B0_IMSK));
3704
3705	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3706	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3707		const struct skge_tx_desc *t = e->desc;
3708		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3709			   t->control, t->dma_hi, t->dma_lo, t->status,
3710			   t->csum_offs, t->csum_write, t->csum_start);
3711	}
3712
3713	seq_puts(seq, "\nRx Ring:\n");
3714	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3715		const struct skge_rx_desc *r = e->desc;
3716
3717		if (r->control & BMU_OWN)
3718			break;
3719
3720		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3721			   r->control, r->dma_hi, r->dma_lo, r->status,
3722			   r->timestamp, r->csum1, r->csum1_start);
3723	}
3724
3725	return 0;
3726}
3727DEFINE_SHOW_ATTRIBUTE(skge_debug);
 
 
 
 
 
 
 
 
 
 
 
 
3728
3729/*
3730 * Use network device events to create/remove/rename
3731 * debugfs file entries
3732 */
3733static int skge_device_event(struct notifier_block *unused,
3734			     unsigned long event, void *ptr)
3735{
3736	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3737	struct skge_port *skge;
 
3738
3739	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3740		goto done;
3741
3742	skge = netdev_priv(dev);
3743	switch (event) {
3744	case NETDEV_CHANGENAME:
3745		if (skge->debugfs)
3746			skge->debugfs = debugfs_rename(skge_debug,
3747						       skge->debugfs,
3748						       skge_debug, dev->name);
 
 
 
 
 
 
3749		break;
3750
3751	case NETDEV_GOING_DOWN:
3752		debugfs_remove(skge->debugfs);
3753		skge->debugfs = NULL;
 
 
3754		break;
3755
3756	case NETDEV_UP:
3757		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3758						    dev, &skge_debug_fops);
 
 
 
 
 
3759		break;
3760	}
3761
3762done:
3763	return NOTIFY_DONE;
3764}
3765
3766static struct notifier_block skge_notifier = {
3767	.notifier_call = skge_device_event,
3768};
3769
3770
3771static __init void skge_debug_init(void)
3772{
3773	skge_debug = debugfs_create_dir("skge", NULL);
3774
 
 
 
 
 
 
 
3775	register_netdevice_notifier(&skge_notifier);
3776}
3777
3778static __exit void skge_debug_cleanup(void)
3779{
3780	if (skge_debug) {
3781		unregister_netdevice_notifier(&skge_notifier);
3782		debugfs_remove(skge_debug);
3783		skge_debug = NULL;
3784	}
3785}
3786
3787#else
3788#define skge_debug_init()
3789#define skge_debug_cleanup()
3790#endif
3791
3792static const struct net_device_ops skge_netdev_ops = {
3793	.ndo_open		= skge_up,
3794	.ndo_stop		= skge_down,
3795	.ndo_start_xmit		= skge_xmit_frame,
3796	.ndo_eth_ioctl		= skge_ioctl,
3797	.ndo_get_stats		= skge_get_stats,
3798	.ndo_tx_timeout		= skge_tx_timeout,
3799	.ndo_change_mtu		= skge_change_mtu,
3800	.ndo_validate_addr	= eth_validate_addr,
3801	.ndo_set_rx_mode	= skge_set_multicast,
3802	.ndo_set_mac_address	= skge_set_mac_address,
3803#ifdef CONFIG_NET_POLL_CONTROLLER
3804	.ndo_poll_controller	= skge_netpoll,
3805#endif
3806};
3807
3808
3809/* Initialize network device */
3810static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3811				       int highmem)
3812{
3813	struct skge_port *skge;
3814	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3815	u8 addr[ETH_ALEN];
3816
3817	if (!dev)
3818		return NULL;
3819
3820	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3821	dev->netdev_ops = &skge_netdev_ops;
3822	dev->ethtool_ops = &skge_ethtool_ops;
3823	dev->watchdog_timeo = TX_WATCHDOG;
3824	dev->irq = hw->pdev->irq;
3825
3826	/* MTU range: 60 - 9000 */
3827	dev->min_mtu = ETH_ZLEN;
3828	dev->max_mtu = ETH_JUMBO_MTU;
3829
3830	if (highmem)
3831		dev->features |= NETIF_F_HIGHDMA;
3832
3833	skge = netdev_priv(dev);
3834	netif_napi_add(dev, &skge->napi, skge_poll);
3835	skge->netdev = dev;
3836	skge->hw = hw;
3837	skge->msg_enable = netif_msg_init(debug, default_msg);
3838
3839	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3840	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3841
3842	/* Auto speed and flow control */
3843	skge->autoneg = AUTONEG_ENABLE;
3844	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3845	skge->duplex = -1;
3846	skge->speed = -1;
3847	skge->advertising = skge_supported_modes(hw);
3848
3849	if (device_can_wakeup(&hw->pdev->dev)) {
3850		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3851		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3852	}
3853
3854	hw->dev[port] = dev;
3855
3856	skge->port = port;
3857
3858	/* Only used for Genesis XMAC */
3859	if (is_genesis(hw))
3860		timer_setup(&skge->link_timer, xm_link_timer, 0);
3861	else {
3862		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3863		                   NETIF_F_RXCSUM;
3864		dev->features |= dev->hw_features;
3865	}
3866
3867	/* read the mac address */
3868	memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3869	eth_hw_addr_set(dev, addr);
3870
3871	return dev;
3872}
3873
3874static void skge_show_addr(struct net_device *dev)
3875{
3876	const struct skge_port *skge = netdev_priv(dev);
3877
3878	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3879}
3880
3881static int only_32bit_dma;
3882
3883static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3884{
3885	struct net_device *dev, *dev1;
3886	struct skge_hw *hw;
3887	int err, using_dac = 0;
3888
3889	err = pci_enable_device(pdev);
3890	if (err) {
3891		dev_err(&pdev->dev, "cannot enable PCI device\n");
3892		goto err_out;
3893	}
3894
3895	err = pci_request_regions(pdev, DRV_NAME);
3896	if (err) {
3897		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3898		goto err_out_disable_pdev;
3899	}
3900
3901	pci_set_master(pdev);
3902
3903	if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3904		using_dac = 1;
3905		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3906	} else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3907		using_dac = 0;
3908		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3909	}
3910
3911	if (err) {
3912		dev_err(&pdev->dev, "no usable DMA configuration\n");
3913		goto err_out_free_regions;
3914	}
3915
3916#ifdef __BIG_ENDIAN
3917	/* byte swap descriptors in hardware */
3918	{
3919		u32 reg;
3920
3921		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3922		reg |= PCI_REV_DESC;
3923		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3924	}
3925#endif
3926
3927	err = -ENOMEM;
3928	/* space for skge@pci:0000:04:00.0 */
3929	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3930		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3931	if (!hw)
3932		goto err_out_free_regions;
3933
3934	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3935
3936	hw->pdev = pdev;
3937	spin_lock_init(&hw->hw_lock);
3938	spin_lock_init(&hw->phy_lock);
3939	tasklet_setup(&hw->phy_task, skge_extirq);
3940
3941	hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3942	if (!hw->regs) {
3943		dev_err(&pdev->dev, "cannot map device registers\n");
3944		goto err_out_free_hw;
3945	}
3946
3947	err = skge_reset(hw);
3948	if (err)
3949		goto err_out_iounmap;
3950
3951	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3952		DRV_VERSION,
3953		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3954		skge_board_name(hw), hw->chip_rev);
3955
3956	dev = skge_devinit(hw, 0, using_dac);
3957	if (!dev) {
3958		err = -ENOMEM;
3959		goto err_out_led_off;
3960	}
3961
3962	/* Some motherboards are broken and has zero in ROM. */
3963	if (!is_valid_ether_addr(dev->dev_addr))
3964		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3965
3966	err = register_netdev(dev);
3967	if (err) {
3968		dev_err(&pdev->dev, "cannot register net device\n");
3969		goto err_out_free_netdev;
3970	}
3971
3972	skge_show_addr(dev);
3973
3974	if (hw->ports > 1) {
3975		dev1 = skge_devinit(hw, 1, using_dac);
3976		if (!dev1) {
3977			err = -ENOMEM;
3978			goto err_out_unregister;
3979		}
3980
3981		err = register_netdev(dev1);
3982		if (err) {
3983			dev_err(&pdev->dev, "cannot register second net device\n");
3984			goto err_out_free_dev1;
3985		}
3986
3987		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3988				  hw->irq_name, hw);
3989		if (err) {
3990			dev_err(&pdev->dev, "cannot assign irq %d\n",
3991				pdev->irq);
3992			goto err_out_unregister_dev1;
3993		}
3994
3995		skge_show_addr(dev1);
3996	}
3997	pci_set_drvdata(pdev, hw);
3998
3999	return 0;
4000
4001err_out_unregister_dev1:
4002	unregister_netdev(dev1);
4003err_out_free_dev1:
4004	free_netdev(dev1);
4005err_out_unregister:
4006	unregister_netdev(dev);
4007err_out_free_netdev:
4008	free_netdev(dev);
4009err_out_led_off:
4010	skge_write16(hw, B0_LED, LED_STAT_OFF);
4011err_out_iounmap:
4012	iounmap(hw->regs);
4013err_out_free_hw:
4014	kfree(hw);
4015err_out_free_regions:
4016	pci_release_regions(pdev);
4017err_out_disable_pdev:
4018	pci_disable_device(pdev);
4019err_out:
4020	return err;
4021}
4022
4023static void skge_remove(struct pci_dev *pdev)
4024{
4025	struct skge_hw *hw  = pci_get_drvdata(pdev);
4026	struct net_device *dev0, *dev1;
4027
4028	if (!hw)
4029		return;
4030
4031	dev1 = hw->dev[1];
4032	if (dev1)
4033		unregister_netdev(dev1);
4034	dev0 = hw->dev[0];
4035	unregister_netdev(dev0);
4036
4037	tasklet_kill(&hw->phy_task);
4038
4039	spin_lock_irq(&hw->hw_lock);
4040	hw->intr_mask = 0;
4041
4042	if (hw->ports > 1) {
4043		skge_write32(hw, B0_IMSK, 0);
4044		skge_read32(hw, B0_IMSK);
 
4045	}
4046	spin_unlock_irq(&hw->hw_lock);
4047
4048	skge_write16(hw, B0_LED, LED_STAT_OFF);
4049	skge_write8(hw, B0_CTST, CS_RST_SET);
4050
4051	if (hw->ports > 1)
4052		free_irq(pdev->irq, hw);
4053	pci_release_regions(pdev);
4054	pci_disable_device(pdev);
4055	if (dev1)
4056		free_netdev(dev1);
4057	free_netdev(dev0);
4058
4059	iounmap(hw->regs);
4060	kfree(hw);
4061}
4062
4063#ifdef CONFIG_PM_SLEEP
4064static int skge_suspend(struct device *dev)
4065{
4066	struct skge_hw *hw  = dev_get_drvdata(dev);
 
4067	int i;
4068
4069	if (!hw)
4070		return 0;
4071
4072	for (i = 0; i < hw->ports; i++) {
4073		struct net_device *dev = hw->dev[i];
4074		struct skge_port *skge = netdev_priv(dev);
4075
4076		if (netif_running(dev))
4077			skge_down(dev);
4078
4079		if (skge->wol)
4080			skge_wol_init(skge);
4081	}
4082
4083	skge_write32(hw, B0_IMSK, 0);
4084
4085	return 0;
4086}
4087
4088static int skge_resume(struct device *dev)
4089{
4090	struct skge_hw *hw  = dev_get_drvdata(dev);
 
4091	int i, err;
4092
4093	if (!hw)
4094		return 0;
4095
4096	err = skge_reset(hw);
4097	if (err)
4098		goto out;
4099
4100	for (i = 0; i < hw->ports; i++) {
4101		struct net_device *dev = hw->dev[i];
4102
4103		if (netif_running(dev)) {
4104			err = skge_up(dev);
4105
4106			if (err) {
4107				netdev_err(dev, "could not up: %d\n", err);
4108				dev_close(dev);
4109				goto out;
4110			}
4111		}
4112	}
4113out:
4114	return err;
4115}
4116
4117static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4118#define SKGE_PM_OPS (&skge_pm_ops)
4119
4120#else
4121
4122#define SKGE_PM_OPS NULL
4123#endif /* CONFIG_PM_SLEEP */
4124
4125static void skge_shutdown(struct pci_dev *pdev)
4126{
4127	struct skge_hw *hw  = pci_get_drvdata(pdev);
4128	int i;
4129
4130	if (!hw)
4131		return;
4132
4133	for (i = 0; i < hw->ports; i++) {
4134		struct net_device *dev = hw->dev[i];
4135		struct skge_port *skge = netdev_priv(dev);
4136
4137		if (skge->wol)
4138			skge_wol_init(skge);
4139	}
4140
4141	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4142	pci_set_power_state(pdev, PCI_D3hot);
4143}
4144
4145static struct pci_driver skge_driver = {
4146	.name =         DRV_NAME,
4147	.id_table =     skge_id_table,
4148	.probe =        skge_probe,
4149	.remove =       skge_remove,
4150	.shutdown =	skge_shutdown,
4151	.driver.pm =	SKGE_PM_OPS,
4152};
4153
4154static const struct dmi_system_id skge_32bit_dma_boards[] = {
4155	{
4156		.ident = "Gigabyte nForce boards",
4157		.matches = {
4158			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4159			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4160		},
4161	},
4162	{
4163		.ident = "ASUS P5NSLI",
4164		.matches = {
4165			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4166			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4167		},
4168	},
4169	{
4170		.ident = "FUJITSU SIEMENS A8NE-FM",
4171		.matches = {
4172			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4173			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4174		},
4175	},
4176	{}
4177};
4178
4179static int __init skge_init_module(void)
4180{
4181	if (dmi_check_system(skge_32bit_dma_boards))
4182		only_32bit_dma = 1;
4183	skge_debug_init();
4184	return pci_register_driver(&skge_driver);
4185}
4186
4187static void __exit skge_cleanup_module(void)
4188{
4189	pci_unregister_driver(&skge_driver);
4190	skge_debug_cleanup();
4191}
4192
4193module_init(skge_init_module);
4194module_exit(skge_cleanup_module);
v4.10.11
 
   1/*
   2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   3 * Ethernet adapters. Based on earlier sk98lin, e100 and
   4 * FreeBSD if_sk drivers.
   5 *
   6 * This driver intentionally does not support all the features
   7 * of the original driver such as link fail-over and link management because
   8 * those should be done at higher levels.
   9 *
  10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/in.h>
  29#include <linux/kernel.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/ethtool.h>
  35#include <linux/pci.h>
  36#include <linux/if_vlan.h>
  37#include <linux/ip.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/debugfs.h>
  42#include <linux/sched.h>
  43#include <linux/seq_file.h>
  44#include <linux/mii.h>
  45#include <linux/slab.h>
  46#include <linux/dmi.h>
  47#include <linux/prefetch.h>
  48#include <asm/irq.h>
  49
  50#include "skge.h"
  51
  52#define DRV_NAME		"skge"
  53#define DRV_VERSION		"1.14"
  54
  55#define DEFAULT_TX_RING_SIZE	128
  56#define DEFAULT_RX_RING_SIZE	512
  57#define MAX_TX_RING_SIZE	1024
  58#define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
  59#define MAX_RX_RING_SIZE	4096
  60#define RX_COPY_THRESHOLD	128
  61#define RX_BUF_SIZE		1536
  62#define PHY_RETRIES	        1000
  63#define ETH_JUMBO_MTU		9000
  64#define TX_WATCHDOG		(5 * HZ)
  65#define NAPI_WEIGHT		64
  66#define BLINK_MS		250
  67#define LINK_HZ			HZ
  68
  69#define SKGE_EEPROM_MAGIC	0x9933aabb
  70
  71
  72MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  73MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  74MODULE_LICENSE("GPL");
  75MODULE_VERSION(DRV_VERSION);
  76
  77static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  78				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  79				NETIF_MSG_IFDOWN);
  80
  81static int debug = -1;	/* defaults above */
  82module_param(debug, int, 0);
  83MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  84
  85static const struct pci_device_id skge_id_table[] = {
  86	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
  87	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
  88#ifdef CONFIG_SKGE_GENESIS
  89	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  90#endif
  91	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  92	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
  93	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
  94	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
  95	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
  96	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
  97	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
  98	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
  99	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
 100	{ 0 }
 101};
 102MODULE_DEVICE_TABLE(pci, skge_id_table);
 103
 104static int skge_up(struct net_device *dev);
 105static int skge_down(struct net_device *dev);
 106static void skge_phy_reset(struct skge_port *skge);
 107static void skge_tx_clean(struct net_device *dev);
 108static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 109static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 110static void genesis_get_stats(struct skge_port *skge, u64 *data);
 111static void yukon_get_stats(struct skge_port *skge, u64 *data);
 112static void yukon_init(struct skge_hw *hw, int port);
 113static void genesis_mac_init(struct skge_hw *hw, int port);
 114static void genesis_link_up(struct skge_port *skge);
 115static void skge_set_multicast(struct net_device *dev);
 116static irqreturn_t skge_intr(int irq, void *dev_id);
 117
 118/* Avoid conditionals by using array */
 119static const int txqaddr[] = { Q_XA1, Q_XA2 };
 120static const int rxqaddr[] = { Q_R1, Q_R2 };
 121static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 122static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 123static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 124static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 125
 126static inline bool is_genesis(const struct skge_hw *hw)
 127{
 128#ifdef CONFIG_SKGE_GENESIS
 129	return hw->chip_id == CHIP_ID_GENESIS;
 130#else
 131	return false;
 132#endif
 133}
 134
 135static int skge_get_regs_len(struct net_device *dev)
 136{
 137	return 0x4000;
 138}
 139
 140/*
 141 * Returns copy of whole control register region
 142 * Note: skip RAM address register because accessing it will
 143 * 	 cause bus hangs!
 144 */
 145static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 146			  void *p)
 147{
 148	const struct skge_port *skge = netdev_priv(dev);
 149	const void __iomem *io = skge->hw->regs;
 150
 151	regs->version = 1;
 152	memset(p, 0, regs->len);
 153	memcpy_fromio(p, io, B3_RAM_ADDR);
 154
 155	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 156		      regs->len - B3_RI_WTO_R1);
 
 
 157}
 158
 159/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 160static u32 wol_supported(const struct skge_hw *hw)
 161{
 162	if (is_genesis(hw))
 163		return 0;
 164
 165	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 166		return 0;
 167
 168	return WAKE_MAGIC | WAKE_PHY;
 169}
 170
 171static void skge_wol_init(struct skge_port *skge)
 172{
 173	struct skge_hw *hw = skge->hw;
 174	int port = skge->port;
 175	u16 ctrl;
 176
 177	skge_write16(hw, B0_CTST, CS_RST_CLR);
 178	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 179
 180	/* Turn on Vaux */
 181	skge_write8(hw, B0_POWER_CTRL,
 182		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 183
 184	/* WA code for COMA mode -- clear PHY reset */
 185	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 186	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 187		u32 reg = skge_read32(hw, B2_GP_IO);
 188		reg |= GP_DIR_9;
 189		reg &= ~GP_IO_9;
 190		skge_write32(hw, B2_GP_IO, reg);
 191	}
 192
 193	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 194		     GPC_DIS_SLEEP |
 195		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 196		     GPC_ANEG_1 | GPC_RST_SET);
 197
 198	skge_write32(hw, SK_REG(port, GPHY_CTRL),
 199		     GPC_DIS_SLEEP |
 200		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 201		     GPC_ANEG_1 | GPC_RST_CLR);
 202
 203	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 204
 205	/* Force to 10/100 skge_reset will re-enable on resume	 */
 206	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 207		     (PHY_AN_100FULL | PHY_AN_100HALF |
 208		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 209	/* no 1000 HD/FD */
 210	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 211	gm_phy_write(hw, port, PHY_MARV_CTRL,
 212		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 213		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 214
 215
 216	/* Set GMAC to no flow control and auto update for speed/duplex */
 217	gma_write16(hw, port, GM_GP_CTRL,
 218		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 219		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 220
 221	/* Set WOL address */
 222	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 223		    skge->netdev->dev_addr, ETH_ALEN);
 224
 225	/* Turn on appropriate WOL control bits */
 226	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 227	ctrl = 0;
 228	if (skge->wol & WAKE_PHY)
 229		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 230	else
 231		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 232
 233	if (skge->wol & WAKE_MAGIC)
 234		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 235	else
 236		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 237
 238	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 239	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 240
 241	/* block receiver */
 242	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 243}
 244
 245static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 246{
 247	struct skge_port *skge = netdev_priv(dev);
 248
 249	wol->supported = wol_supported(skge->hw);
 250	wol->wolopts = skge->wol;
 251}
 252
 253static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 254{
 255	struct skge_port *skge = netdev_priv(dev);
 256	struct skge_hw *hw = skge->hw;
 257
 258	if ((wol->wolopts & ~wol_supported(hw)) ||
 259	    !device_can_wakeup(&hw->pdev->dev))
 260		return -EOPNOTSUPP;
 261
 262	skge->wol = wol->wolopts;
 263
 264	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 265
 266	return 0;
 267}
 268
 269/* Determine supported/advertised modes based on hardware.
 270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 271 */
 272static u32 skge_supported_modes(const struct skge_hw *hw)
 273{
 274	u32 supported;
 275
 276	if (hw->copper) {
 277		supported = (SUPPORTED_10baseT_Half |
 278			     SUPPORTED_10baseT_Full |
 279			     SUPPORTED_100baseT_Half |
 280			     SUPPORTED_100baseT_Full |
 281			     SUPPORTED_1000baseT_Half |
 282			     SUPPORTED_1000baseT_Full |
 283			     SUPPORTED_Autoneg |
 284			     SUPPORTED_TP);
 285
 286		if (is_genesis(hw))
 287			supported &= ~(SUPPORTED_10baseT_Half |
 288				       SUPPORTED_10baseT_Full |
 289				       SUPPORTED_100baseT_Half |
 290				       SUPPORTED_100baseT_Full);
 291
 292		else if (hw->chip_id == CHIP_ID_YUKON)
 293			supported &= ~SUPPORTED_1000baseT_Half;
 294	} else
 295		supported = (SUPPORTED_1000baseT_Full |
 296			     SUPPORTED_1000baseT_Half |
 297			     SUPPORTED_FIBRE |
 298			     SUPPORTED_Autoneg);
 299
 300	return supported;
 301}
 302
 303static int skge_get_settings(struct net_device *dev,
 304			     struct ethtool_cmd *ecmd)
 305{
 306	struct skge_port *skge = netdev_priv(dev);
 307	struct skge_hw *hw = skge->hw;
 
 308
 309	ecmd->transceiver = XCVR_INTERNAL;
 310	ecmd->supported = skge_supported_modes(hw);
 311
 312	if (hw->copper) {
 313		ecmd->port = PORT_TP;
 314		ecmd->phy_address = hw->phy_addr;
 315	} else
 316		ecmd->port = PORT_FIBRE;
 
 
 
 
 
 
 
 
 
 
 317
 318	ecmd->advertising = skge->advertising;
 319	ecmd->autoneg = skge->autoneg;
 320	ethtool_cmd_speed_set(ecmd, skge->speed);
 321	ecmd->duplex = skge->duplex;
 322	return 0;
 323}
 324
 325static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 
 326{
 327	struct skge_port *skge = netdev_priv(dev);
 328	const struct skge_hw *hw = skge->hw;
 329	u32 supported = skge_supported_modes(hw);
 330	int err = 0;
 
 
 
 
 331
 332	if (ecmd->autoneg == AUTONEG_ENABLE) {
 333		ecmd->advertising = supported;
 334		skge->duplex = -1;
 335		skge->speed = -1;
 336	} else {
 337		u32 setting;
 338		u32 speed = ethtool_cmd_speed(ecmd);
 339
 340		switch (speed) {
 341		case SPEED_1000:
 342			if (ecmd->duplex == DUPLEX_FULL)
 343				setting = SUPPORTED_1000baseT_Full;
 344			else if (ecmd->duplex == DUPLEX_HALF)
 345				setting = SUPPORTED_1000baseT_Half;
 346			else
 347				return -EINVAL;
 348			break;
 349		case SPEED_100:
 350			if (ecmd->duplex == DUPLEX_FULL)
 351				setting = SUPPORTED_100baseT_Full;
 352			else if (ecmd->duplex == DUPLEX_HALF)
 353				setting = SUPPORTED_100baseT_Half;
 354			else
 355				return -EINVAL;
 356			break;
 357
 358		case SPEED_10:
 359			if (ecmd->duplex == DUPLEX_FULL)
 360				setting = SUPPORTED_10baseT_Full;
 361			else if (ecmd->duplex == DUPLEX_HALF)
 362				setting = SUPPORTED_10baseT_Half;
 363			else
 364				return -EINVAL;
 365			break;
 366		default:
 367			return -EINVAL;
 368		}
 369
 370		if ((setting & supported) == 0)
 371			return -EINVAL;
 372
 373		skge->speed = speed;
 374		skge->duplex = ecmd->duplex;
 375	}
 376
 377	skge->autoneg = ecmd->autoneg;
 378	skge->advertising = ecmd->advertising;
 379
 380	if (netif_running(dev)) {
 381		skge_down(dev);
 382		err = skge_up(dev);
 383		if (err) {
 384			dev_close(dev);
 385			return err;
 386		}
 387	}
 388
 389	return 0;
 390}
 391
 392static void skge_get_drvinfo(struct net_device *dev,
 393			     struct ethtool_drvinfo *info)
 394{
 395	struct skge_port *skge = netdev_priv(dev);
 396
 397	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 398	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 399	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
 400		sizeof(info->bus_info));
 401}
 402
 403static const struct skge_stat {
 404	char 	   name[ETH_GSTRING_LEN];
 405	u16	   xmac_offset;
 406	u16	   gma_offset;
 407} skge_stats[] = {
 408	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
 409	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
 410
 411	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
 412	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
 413	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
 414	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
 415	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
 416	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
 417	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 418	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 419
 420	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 421	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 422	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 423	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 424	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 425	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 426
 427	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 428	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 429	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
 430	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 431	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 432};
 433
 434static int skge_get_sset_count(struct net_device *dev, int sset)
 435{
 436	switch (sset) {
 437	case ETH_SS_STATS:
 438		return ARRAY_SIZE(skge_stats);
 439	default:
 440		return -EOPNOTSUPP;
 441	}
 442}
 443
 444static void skge_get_ethtool_stats(struct net_device *dev,
 445				   struct ethtool_stats *stats, u64 *data)
 446{
 447	struct skge_port *skge = netdev_priv(dev);
 448
 449	if (is_genesis(skge->hw))
 450		genesis_get_stats(skge, data);
 451	else
 452		yukon_get_stats(skge, data);
 453}
 454
 455/* Use hardware MIB variables for critical path statistics and
 456 * transmit feedback not reported at interrupt.
 457 * Other errors are accounted for in interrupt handler.
 458 */
 459static struct net_device_stats *skge_get_stats(struct net_device *dev)
 460{
 461	struct skge_port *skge = netdev_priv(dev);
 462	u64 data[ARRAY_SIZE(skge_stats)];
 463
 464	if (is_genesis(skge->hw))
 465		genesis_get_stats(skge, data);
 466	else
 467		yukon_get_stats(skge, data);
 468
 469	dev->stats.tx_bytes = data[0];
 470	dev->stats.rx_bytes = data[1];
 471	dev->stats.tx_packets = data[2] + data[4] + data[6];
 472	dev->stats.rx_packets = data[3] + data[5] + data[7];
 473	dev->stats.multicast = data[3] + data[5];
 474	dev->stats.collisions = data[10];
 475	dev->stats.tx_aborted_errors = data[12];
 476
 477	return &dev->stats;
 478}
 479
 480static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 481{
 482	int i;
 483
 484	switch (stringset) {
 485	case ETH_SS_STATS:
 486		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 487			memcpy(data + i * ETH_GSTRING_LEN,
 488			       skge_stats[i].name, ETH_GSTRING_LEN);
 489		break;
 490	}
 491}
 492
 493static void skge_get_ring_param(struct net_device *dev,
 494				struct ethtool_ringparam *p)
 
 
 495{
 496	struct skge_port *skge = netdev_priv(dev);
 497
 498	p->rx_max_pending = MAX_RX_RING_SIZE;
 499	p->tx_max_pending = MAX_TX_RING_SIZE;
 500
 501	p->rx_pending = skge->rx_ring.count;
 502	p->tx_pending = skge->tx_ring.count;
 503}
 504
 505static int skge_set_ring_param(struct net_device *dev,
 506			       struct ethtool_ringparam *p)
 
 
 507{
 508	struct skge_port *skge = netdev_priv(dev);
 509	int err = 0;
 510
 511	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 512	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 513		return -EINVAL;
 514
 515	skge->rx_ring.count = p->rx_pending;
 516	skge->tx_ring.count = p->tx_pending;
 517
 518	if (netif_running(dev)) {
 519		skge_down(dev);
 520		err = skge_up(dev);
 521		if (err)
 522			dev_close(dev);
 523	}
 524
 525	return err;
 526}
 527
 528static u32 skge_get_msglevel(struct net_device *netdev)
 529{
 530	struct skge_port *skge = netdev_priv(netdev);
 531	return skge->msg_enable;
 532}
 533
 534static void skge_set_msglevel(struct net_device *netdev, u32 value)
 535{
 536	struct skge_port *skge = netdev_priv(netdev);
 537	skge->msg_enable = value;
 538}
 539
 540static int skge_nway_reset(struct net_device *dev)
 541{
 542	struct skge_port *skge = netdev_priv(dev);
 543
 544	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 545		return -EINVAL;
 546
 547	skge_phy_reset(skge);
 548	return 0;
 549}
 550
 551static void skge_get_pauseparam(struct net_device *dev,
 552				struct ethtool_pauseparam *ecmd)
 553{
 554	struct skge_port *skge = netdev_priv(dev);
 555
 556	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 557			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 558	ecmd->tx_pause = (ecmd->rx_pause ||
 559			  (skge->flow_control == FLOW_MODE_LOC_SEND));
 560
 561	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 562}
 563
 564static int skge_set_pauseparam(struct net_device *dev,
 565			       struct ethtool_pauseparam *ecmd)
 566{
 567	struct skge_port *skge = netdev_priv(dev);
 568	struct ethtool_pauseparam old;
 569	int err = 0;
 570
 571	skge_get_pauseparam(dev, &old);
 572
 573	if (ecmd->autoneg != old.autoneg)
 574		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 575	else {
 576		if (ecmd->rx_pause && ecmd->tx_pause)
 577			skge->flow_control = FLOW_MODE_SYMMETRIC;
 578		else if (ecmd->rx_pause && !ecmd->tx_pause)
 579			skge->flow_control = FLOW_MODE_SYM_OR_REM;
 580		else if (!ecmd->rx_pause && ecmd->tx_pause)
 581			skge->flow_control = FLOW_MODE_LOC_SEND;
 582		else
 583			skge->flow_control = FLOW_MODE_NONE;
 584	}
 585
 586	if (netif_running(dev)) {
 587		skge_down(dev);
 588		err = skge_up(dev);
 589		if (err) {
 590			dev_close(dev);
 591			return err;
 592		}
 593	}
 594
 595	return 0;
 596}
 597
 598/* Chip internal frequency for clock calculations */
 599static inline u32 hwkhz(const struct skge_hw *hw)
 600{
 601	return is_genesis(hw) ? 53125 : 78125;
 602}
 603
 604/* Chip HZ to microseconds */
 605static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 606{
 607	return (ticks * 1000) / hwkhz(hw);
 608}
 609
 610/* Microseconds to chip HZ */
 611static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 612{
 613	return hwkhz(hw) * usec / 1000;
 614}
 615
 616static int skge_get_coalesce(struct net_device *dev,
 617			     struct ethtool_coalesce *ecmd)
 
 
 618{
 619	struct skge_port *skge = netdev_priv(dev);
 620	struct skge_hw *hw = skge->hw;
 621	int port = skge->port;
 622
 623	ecmd->rx_coalesce_usecs = 0;
 624	ecmd->tx_coalesce_usecs = 0;
 625
 626	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 627		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 628		u32 msk = skge_read32(hw, B2_IRQM_MSK);
 629
 630		if (msk & rxirqmask[port])
 631			ecmd->rx_coalesce_usecs = delay;
 632		if (msk & txirqmask[port])
 633			ecmd->tx_coalesce_usecs = delay;
 634	}
 635
 636	return 0;
 637}
 638
 639/* Note: interrupt timer is per board, but can turn on/off per port */
 640static int skge_set_coalesce(struct net_device *dev,
 641			     struct ethtool_coalesce *ecmd)
 
 
 642{
 643	struct skge_port *skge = netdev_priv(dev);
 644	struct skge_hw *hw = skge->hw;
 645	int port = skge->port;
 646	u32 msk = skge_read32(hw, B2_IRQM_MSK);
 647	u32 delay = 25;
 648
 649	if (ecmd->rx_coalesce_usecs == 0)
 650		msk &= ~rxirqmask[port];
 651	else if (ecmd->rx_coalesce_usecs < 25 ||
 652		 ecmd->rx_coalesce_usecs > 33333)
 653		return -EINVAL;
 654	else {
 655		msk |= rxirqmask[port];
 656		delay = ecmd->rx_coalesce_usecs;
 657	}
 658
 659	if (ecmd->tx_coalesce_usecs == 0)
 660		msk &= ~txirqmask[port];
 661	else if (ecmd->tx_coalesce_usecs < 25 ||
 662		 ecmd->tx_coalesce_usecs > 33333)
 663		return -EINVAL;
 664	else {
 665		msk |= txirqmask[port];
 666		delay = min(delay, ecmd->rx_coalesce_usecs);
 667	}
 668
 669	skge_write32(hw, B2_IRQM_MSK, msk);
 670	if (msk == 0)
 671		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 672	else {
 673		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 674		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 675	}
 676	return 0;
 677}
 678
 679enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 680static void skge_led(struct skge_port *skge, enum led_mode mode)
 681{
 682	struct skge_hw *hw = skge->hw;
 683	int port = skge->port;
 684
 685	spin_lock_bh(&hw->phy_lock);
 686	if (is_genesis(hw)) {
 687		switch (mode) {
 688		case LED_MODE_OFF:
 689			if (hw->phy_type == SK_PHY_BCOM)
 690				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 691			else {
 692				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 693				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 694			}
 695			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 696			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 697			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 698			break;
 699
 700		case LED_MODE_ON:
 701			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 702			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 703
 704			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 705			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 706
 707			break;
 708
 709		case LED_MODE_TST:
 710			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 711			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 712			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 713
 714			if (hw->phy_type == SK_PHY_BCOM)
 715				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 716			else {
 717				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 718				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 719				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 720			}
 721
 722		}
 723	} else {
 724		switch (mode) {
 725		case LED_MODE_OFF:
 726			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 727			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 728				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 729				     PHY_M_LED_MO_10(MO_LED_OFF)   |
 730				     PHY_M_LED_MO_100(MO_LED_OFF)  |
 731				     PHY_M_LED_MO_1000(MO_LED_OFF) |
 732				     PHY_M_LED_MO_RX(MO_LED_OFF));
 733			break;
 734		case LED_MODE_ON:
 735			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 736				     PHY_M_LED_PULS_DUR(PULS_170MS) |
 737				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 738				     PHY_M_LEDC_TX_CTRL |
 739				     PHY_M_LEDC_DP_CTRL);
 740
 741			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 742				     PHY_M_LED_MO_RX(MO_LED_OFF) |
 743				     (skge->speed == SPEED_100 ?
 744				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 745			break;
 746		case LED_MODE_TST:
 747			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 748			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 749				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 750				     PHY_M_LED_MO_10(MO_LED_ON)   |
 751				     PHY_M_LED_MO_100(MO_LED_ON)  |
 752				     PHY_M_LED_MO_1000(MO_LED_ON) |
 753				     PHY_M_LED_MO_RX(MO_LED_ON));
 754		}
 755	}
 756	spin_unlock_bh(&hw->phy_lock);
 757}
 758
 759/* blink LED's for finding board */
 760static int skge_set_phys_id(struct net_device *dev,
 761			    enum ethtool_phys_id_state state)
 762{
 763	struct skge_port *skge = netdev_priv(dev);
 764
 765	switch (state) {
 766	case ETHTOOL_ID_ACTIVE:
 767		return 2;	/* cycle on/off twice per second */
 768
 769	case ETHTOOL_ID_ON:
 770		skge_led(skge, LED_MODE_TST);
 771		break;
 772
 773	case ETHTOOL_ID_OFF:
 774		skge_led(skge, LED_MODE_OFF);
 775		break;
 776
 777	case ETHTOOL_ID_INACTIVE:
 778		/* back to regular LED state */
 779		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 780	}
 781
 782	return 0;
 783}
 784
 785static int skge_get_eeprom_len(struct net_device *dev)
 786{
 787	struct skge_port *skge = netdev_priv(dev);
 788	u32 reg2;
 789
 790	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 791	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 792}
 793
 794static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 795{
 796	u32 val;
 797
 798	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 799
 800	do {
 801		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 802	} while (!(offset & PCI_VPD_ADDR_F));
 803
 804	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 805	return val;
 806}
 807
 808static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 809{
 810	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 811	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 812			      offset | PCI_VPD_ADDR_F);
 813
 814	do {
 815		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 816	} while (offset & PCI_VPD_ADDR_F);
 817}
 818
 819static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 820			   u8 *data)
 821{
 822	struct skge_port *skge = netdev_priv(dev);
 823	struct pci_dev *pdev = skge->hw->pdev;
 824	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 825	int length = eeprom->len;
 826	u16 offset = eeprom->offset;
 827
 828	if (!cap)
 829		return -EINVAL;
 830
 831	eeprom->magic = SKGE_EEPROM_MAGIC;
 832
 833	while (length > 0) {
 834		u32 val = skge_vpd_read(pdev, cap, offset);
 835		int n = min_t(int, length, sizeof(val));
 836
 837		memcpy(data, &val, n);
 838		length -= n;
 839		data += n;
 840		offset += n;
 841	}
 842	return 0;
 843}
 844
 845static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 846			   u8 *data)
 847{
 848	struct skge_port *skge = netdev_priv(dev);
 849	struct pci_dev *pdev = skge->hw->pdev;
 850	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 851	int length = eeprom->len;
 852	u16 offset = eeprom->offset;
 853
 854	if (!cap)
 855		return -EINVAL;
 856
 857	if (eeprom->magic != SKGE_EEPROM_MAGIC)
 858		return -EINVAL;
 859
 860	while (length > 0) {
 861		u32 val;
 862		int n = min_t(int, length, sizeof(val));
 863
 864		if (n < sizeof(val))
 865			val = skge_vpd_read(pdev, cap, offset);
 866		memcpy(&val, data, n);
 867
 868		skge_vpd_write(pdev, cap, offset, val);
 869
 870		length -= n;
 871		data += n;
 872		offset += n;
 873	}
 874	return 0;
 875}
 876
 877static const struct ethtool_ops skge_ethtool_ops = {
 878	.get_settings	= skge_get_settings,
 879	.set_settings	= skge_set_settings,
 880	.get_drvinfo	= skge_get_drvinfo,
 881	.get_regs_len	= skge_get_regs_len,
 882	.get_regs	= skge_get_regs,
 883	.get_wol	= skge_get_wol,
 884	.set_wol	= skge_set_wol,
 885	.get_msglevel	= skge_get_msglevel,
 886	.set_msglevel	= skge_set_msglevel,
 887	.nway_reset	= skge_nway_reset,
 888	.get_link	= ethtool_op_get_link,
 889	.get_eeprom_len	= skge_get_eeprom_len,
 890	.get_eeprom	= skge_get_eeprom,
 891	.set_eeprom	= skge_set_eeprom,
 892	.get_ringparam	= skge_get_ring_param,
 893	.set_ringparam	= skge_set_ring_param,
 894	.get_pauseparam = skge_get_pauseparam,
 895	.set_pauseparam = skge_set_pauseparam,
 896	.get_coalesce	= skge_get_coalesce,
 897	.set_coalesce	= skge_set_coalesce,
 898	.get_strings	= skge_get_strings,
 899	.set_phys_id	= skge_set_phys_id,
 900	.get_sset_count = skge_get_sset_count,
 901	.get_ethtool_stats = skge_get_ethtool_stats,
 
 
 902};
 903
 904/*
 905 * Allocate ring elements and chain them together
 906 * One-to-one association of board descriptors with ring elements
 907 */
 908static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 909{
 910	struct skge_tx_desc *d;
 911	struct skge_element *e;
 912	int i;
 913
 914	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 915	if (!ring->start)
 916		return -ENOMEM;
 917
 918	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 919		e->desc = d;
 920		if (i == ring->count - 1) {
 921			e->next = ring->start;
 922			d->next_offset = base;
 923		} else {
 924			e->next = e + 1;
 925			d->next_offset = base + (i+1) * sizeof(*d);
 926		}
 927	}
 928	ring->to_use = ring->to_clean = ring->start;
 929
 930	return 0;
 931}
 932
 933/* Allocate and setup a new buffer for receiving */
 934static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 935			 struct sk_buff *skb, unsigned int bufsize)
 936{
 937	struct skge_rx_desc *rd = e->desc;
 938	dma_addr_t map;
 939
 940	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
 941			     PCI_DMA_FROMDEVICE);
 942
 943	if (pci_dma_mapping_error(skge->hw->pdev, map))
 944		return -1;
 945
 946	rd->dma_lo = lower_32_bits(map);
 947	rd->dma_hi = upper_32_bits(map);
 948	e->skb = skb;
 949	rd->csum1_start = ETH_HLEN;
 950	rd->csum2_start = ETH_HLEN;
 951	rd->csum1 = 0;
 952	rd->csum2 = 0;
 953
 954	wmb();
 955
 956	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 957	dma_unmap_addr_set(e, mapaddr, map);
 958	dma_unmap_len_set(e, maplen, bufsize);
 959	return 0;
 960}
 961
 962/* Resume receiving using existing skb,
 963 * Note: DMA address is not changed by chip.
 964 * 	 MTU not changed while receiver active.
 965 */
 966static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 967{
 968	struct skge_rx_desc *rd = e->desc;
 969
 970	rd->csum2 = 0;
 971	rd->csum2_start = ETH_HLEN;
 972
 973	wmb();
 974
 975	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 976}
 977
 978
 979/* Free all  buffers in receive ring, assumes receiver stopped */
 980static void skge_rx_clean(struct skge_port *skge)
 981{
 982	struct skge_hw *hw = skge->hw;
 983	struct skge_ring *ring = &skge->rx_ring;
 984	struct skge_element *e;
 985
 986	e = ring->start;
 987	do {
 988		struct skge_rx_desc *rd = e->desc;
 989		rd->control = 0;
 990		if (e->skb) {
 991			pci_unmap_single(hw->pdev,
 992					 dma_unmap_addr(e, mapaddr),
 993					 dma_unmap_len(e, maplen),
 994					 PCI_DMA_FROMDEVICE);
 995			dev_kfree_skb(e->skb);
 996			e->skb = NULL;
 997		}
 998	} while ((e = e->next) != ring->start);
 999}
1000
1001
1002/* Allocate buffers for receive ring
1003 * For receive:  to_clean is next received frame.
1004 */
1005static int skge_rx_fill(struct net_device *dev)
1006{
1007	struct skge_port *skge = netdev_priv(dev);
1008	struct skge_ring *ring = &skge->rx_ring;
1009	struct skge_element *e;
1010
1011	e = ring->start;
1012	do {
1013		struct sk_buff *skb;
1014
1015		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1016					 GFP_KERNEL);
1017		if (!skb)
1018			return -ENOMEM;
1019
1020		skb_reserve(skb, NET_IP_ALIGN);
1021		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1022			dev_kfree_skb(skb);
1023			return -EIO;
1024		}
1025	} while ((e = e->next) != ring->start);
1026
1027	ring->to_clean = ring->start;
1028	return 0;
1029}
1030
1031static const char *skge_pause(enum pause_status status)
1032{
1033	switch (status) {
1034	case FLOW_STAT_NONE:
1035		return "none";
1036	case FLOW_STAT_REM_SEND:
1037		return "rx only";
1038	case FLOW_STAT_LOC_SEND:
1039		return "tx_only";
1040	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1041		return "both";
1042	default:
1043		return "indeterminated";
1044	}
1045}
1046
1047
1048static void skge_link_up(struct skge_port *skge)
1049{
1050	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1051		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1052
1053	netif_carrier_on(skge->netdev);
1054	netif_wake_queue(skge->netdev);
1055
1056	netif_info(skge, link, skge->netdev,
1057		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1058		   skge->speed,
1059		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1060		   skge_pause(skge->flow_status));
1061}
1062
1063static void skge_link_down(struct skge_port *skge)
1064{
1065	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1066	netif_carrier_off(skge->netdev);
1067	netif_stop_queue(skge->netdev);
1068
1069	netif_info(skge, link, skge->netdev, "Link is down\n");
1070}
1071
1072static void xm_link_down(struct skge_hw *hw, int port)
1073{
1074	struct net_device *dev = hw->dev[port];
1075	struct skge_port *skge = netdev_priv(dev);
1076
1077	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1078
1079	if (netif_carrier_ok(dev))
1080		skge_link_down(skge);
1081}
1082
1083static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1084{
1085	int i;
1086
1087	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1088	*val = xm_read16(hw, port, XM_PHY_DATA);
1089
1090	if (hw->phy_type == SK_PHY_XMAC)
1091		goto ready;
1092
1093	for (i = 0; i < PHY_RETRIES; i++) {
1094		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1095			goto ready;
1096		udelay(1);
1097	}
1098
1099	return -ETIMEDOUT;
1100 ready:
1101	*val = xm_read16(hw, port, XM_PHY_DATA);
1102
1103	return 0;
1104}
1105
1106static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1107{
1108	u16 v = 0;
1109	if (__xm_phy_read(hw, port, reg, &v))
1110		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1111	return v;
1112}
1113
1114static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1115{
1116	int i;
1117
1118	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1119	for (i = 0; i < PHY_RETRIES; i++) {
1120		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1121			goto ready;
1122		udelay(1);
1123	}
1124	return -EIO;
1125
1126 ready:
1127	xm_write16(hw, port, XM_PHY_DATA, val);
1128	for (i = 0; i < PHY_RETRIES; i++) {
1129		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1130			return 0;
1131		udelay(1);
1132	}
1133	return -ETIMEDOUT;
1134}
1135
1136static void genesis_init(struct skge_hw *hw)
1137{
1138	/* set blink source counter */
1139	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1140	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1141
1142	/* configure mac arbiter */
1143	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1144
1145	/* configure mac arbiter timeout values */
1146	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1147	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1148	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1149	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1150
1151	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1152	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1153	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1154	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1155
1156	/* configure packet arbiter timeout */
1157	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1158	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1159	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1160	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1161	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1162}
1163
1164static void genesis_reset(struct skge_hw *hw, int port)
1165{
1166	static const u8 zero[8]  = { 0 };
1167	u32 reg;
1168
1169	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1170
1171	/* reset the statistics module */
1172	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1173	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1174	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1175	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1176	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1177
1178	/* disable Broadcom PHY IRQ */
1179	if (hw->phy_type == SK_PHY_BCOM)
1180		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1181
1182	xm_outhash(hw, port, XM_HSM, zero);
1183
1184	/* Flush TX and RX fifo */
1185	reg = xm_read32(hw, port, XM_MODE);
1186	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1187	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1188}
1189
1190/* Convert mode to MII values  */
1191static const u16 phy_pause_map[] = {
1192	[FLOW_MODE_NONE] =	0,
1193	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1194	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1195	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1196};
1197
1198/* special defines for FIBER (88E1011S only) */
1199static const u16 fiber_pause_map[] = {
1200	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1201	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1202	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1203	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1204};
1205
1206
1207/* Check status of Broadcom phy link */
1208static void bcom_check_link(struct skge_hw *hw, int port)
1209{
1210	struct net_device *dev = hw->dev[port];
1211	struct skge_port *skge = netdev_priv(dev);
1212	u16 status;
1213
1214	/* read twice because of latch */
1215	xm_phy_read(hw, port, PHY_BCOM_STAT);
1216	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1217
1218	if ((status & PHY_ST_LSYNC) == 0) {
1219		xm_link_down(hw, port);
1220		return;
1221	}
1222
1223	if (skge->autoneg == AUTONEG_ENABLE) {
1224		u16 lpa, aux;
1225
1226		if (!(status & PHY_ST_AN_OVER))
1227			return;
1228
1229		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1230		if (lpa & PHY_B_AN_RF) {
1231			netdev_notice(dev, "remote fault\n");
1232			return;
1233		}
1234
1235		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1236
1237		/* Check Duplex mismatch */
1238		switch (aux & PHY_B_AS_AN_RES_MSK) {
1239		case PHY_B_RES_1000FD:
1240			skge->duplex = DUPLEX_FULL;
1241			break;
1242		case PHY_B_RES_1000HD:
1243			skge->duplex = DUPLEX_HALF;
1244			break;
1245		default:
1246			netdev_notice(dev, "duplex mismatch\n");
1247			return;
1248		}
1249
1250		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1251		switch (aux & PHY_B_AS_PAUSE_MSK) {
1252		case PHY_B_AS_PAUSE_MSK:
1253			skge->flow_status = FLOW_STAT_SYMMETRIC;
1254			break;
1255		case PHY_B_AS_PRR:
1256			skge->flow_status = FLOW_STAT_REM_SEND;
1257			break;
1258		case PHY_B_AS_PRT:
1259			skge->flow_status = FLOW_STAT_LOC_SEND;
1260			break;
1261		default:
1262			skge->flow_status = FLOW_STAT_NONE;
1263		}
1264		skge->speed = SPEED_1000;
1265	}
1266
1267	if (!netif_carrier_ok(dev))
1268		genesis_link_up(skge);
1269}
1270
1271/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1272 * Phy on for 100 or 10Mbit operation
1273 */
1274static void bcom_phy_init(struct skge_port *skge)
1275{
1276	struct skge_hw *hw = skge->hw;
1277	int port = skge->port;
1278	int i;
1279	u16 id1, r, ext, ctl;
1280
1281	/* magic workaround patterns for Broadcom */
1282	static const struct {
1283		u16 reg;
1284		u16 val;
1285	} A1hack[] = {
1286		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1287		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1288		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1289		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1290	}, C0hack[] = {
1291		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1292		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1293	};
1294
1295	/* read Id from external PHY (all have the same address) */
1296	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1297
1298	/* Optimize MDIO transfer by suppressing preamble. */
1299	r = xm_read16(hw, port, XM_MMU_CMD);
1300	r |=  XM_MMU_NO_PRE;
1301	xm_write16(hw, port, XM_MMU_CMD, r);
1302
1303	switch (id1) {
1304	case PHY_BCOM_ID1_C0:
1305		/*
1306		 * Workaround BCOM Errata for the C0 type.
1307		 * Write magic patterns to reserved registers.
1308		 */
1309		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1310			xm_phy_write(hw, port,
1311				     C0hack[i].reg, C0hack[i].val);
1312
1313		break;
1314	case PHY_BCOM_ID1_A1:
1315		/*
1316		 * Workaround BCOM Errata for the A1 type.
1317		 * Write magic patterns to reserved registers.
1318		 */
1319		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1320			xm_phy_write(hw, port,
1321				     A1hack[i].reg, A1hack[i].val);
1322		break;
1323	}
1324
1325	/*
1326	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1327	 * Disable Power Management after reset.
1328	 */
1329	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1330	r |= PHY_B_AC_DIS_PM;
1331	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1332
1333	/* Dummy read */
1334	xm_read16(hw, port, XM_ISRC);
1335
1336	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1337	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1338
1339	if (skge->autoneg == AUTONEG_ENABLE) {
1340		/*
1341		 * Workaround BCOM Errata #1 for the C5 type.
1342		 * 1000Base-T Link Acquisition Failure in Slave Mode
1343		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1344		 */
1345		u16 adv = PHY_B_1000C_RD;
1346		if (skge->advertising & ADVERTISED_1000baseT_Half)
1347			adv |= PHY_B_1000C_AHD;
1348		if (skge->advertising & ADVERTISED_1000baseT_Full)
1349			adv |= PHY_B_1000C_AFD;
1350		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1351
1352		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1353	} else {
1354		if (skge->duplex == DUPLEX_FULL)
1355			ctl |= PHY_CT_DUP_MD;
1356		/* Force to slave */
1357		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1358	}
1359
1360	/* Set autonegotiation pause parameters */
1361	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1362		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1363
1364	/* Handle Jumbo frames */
1365	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1366		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1367			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1368
1369		ext |= PHY_B_PEC_HIGH_LA;
1370
1371	}
1372
1373	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1374	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1375
1376	/* Use link status change interrupt */
1377	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1378}
1379
1380static void xm_phy_init(struct skge_port *skge)
1381{
1382	struct skge_hw *hw = skge->hw;
1383	int port = skge->port;
1384	u16 ctrl = 0;
1385
1386	if (skge->autoneg == AUTONEG_ENABLE) {
1387		if (skge->advertising & ADVERTISED_1000baseT_Half)
1388			ctrl |= PHY_X_AN_HD;
1389		if (skge->advertising & ADVERTISED_1000baseT_Full)
1390			ctrl |= PHY_X_AN_FD;
1391
1392		ctrl |= fiber_pause_map[skge->flow_control];
1393
1394		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1395
1396		/* Restart Auto-negotiation */
1397		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1398	} else {
1399		/* Set DuplexMode in Config register */
1400		if (skge->duplex == DUPLEX_FULL)
1401			ctrl |= PHY_CT_DUP_MD;
1402		/*
1403		 * Do NOT enable Auto-negotiation here. This would hold
1404		 * the link down because no IDLEs are transmitted
1405		 */
1406	}
1407
1408	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1409
1410	/* Poll PHY for status changes */
1411	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1412}
1413
1414static int xm_check_link(struct net_device *dev)
1415{
1416	struct skge_port *skge = netdev_priv(dev);
1417	struct skge_hw *hw = skge->hw;
1418	int port = skge->port;
1419	u16 status;
1420
1421	/* read twice because of latch */
1422	xm_phy_read(hw, port, PHY_XMAC_STAT);
1423	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1424
1425	if ((status & PHY_ST_LSYNC) == 0) {
1426		xm_link_down(hw, port);
1427		return 0;
1428	}
1429
1430	if (skge->autoneg == AUTONEG_ENABLE) {
1431		u16 lpa, res;
1432
1433		if (!(status & PHY_ST_AN_OVER))
1434			return 0;
1435
1436		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1437		if (lpa & PHY_B_AN_RF) {
1438			netdev_notice(dev, "remote fault\n");
1439			return 0;
1440		}
1441
1442		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1443
1444		/* Check Duplex mismatch */
1445		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1446		case PHY_X_RS_FD:
1447			skge->duplex = DUPLEX_FULL;
1448			break;
1449		case PHY_X_RS_HD:
1450			skge->duplex = DUPLEX_HALF;
1451			break;
1452		default:
1453			netdev_notice(dev, "duplex mismatch\n");
1454			return 0;
1455		}
1456
1457		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1458		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1459		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1460		    (lpa & PHY_X_P_SYM_MD))
1461			skge->flow_status = FLOW_STAT_SYMMETRIC;
1462		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1463			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1464			/* Enable PAUSE receive, disable PAUSE transmit */
1465			skge->flow_status  = FLOW_STAT_REM_SEND;
1466		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1467			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1468			/* Disable PAUSE receive, enable PAUSE transmit */
1469			skge->flow_status = FLOW_STAT_LOC_SEND;
1470		else
1471			skge->flow_status = FLOW_STAT_NONE;
1472
1473		skge->speed = SPEED_1000;
1474	}
1475
1476	if (!netif_carrier_ok(dev))
1477		genesis_link_up(skge);
1478	return 1;
1479}
1480
1481/* Poll to check for link coming up.
1482 *
1483 * Since internal PHY is wired to a level triggered pin, can't
1484 * get an interrupt when carrier is detected, need to poll for
1485 * link coming up.
1486 */
1487static void xm_link_timer(unsigned long arg)
1488{
1489	struct skge_port *skge = (struct skge_port *) arg;
1490	struct net_device *dev = skge->netdev;
1491	struct skge_hw *hw = skge->hw;
1492	int port = skge->port;
1493	int i;
1494	unsigned long flags;
1495
1496	if (!netif_running(dev))
1497		return;
1498
1499	spin_lock_irqsave(&hw->phy_lock, flags);
1500
1501	/*
1502	 * Verify that the link by checking GPIO register three times.
1503	 * This pin has the signal from the link_sync pin connected to it.
1504	 */
1505	for (i = 0; i < 3; i++) {
1506		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1507			goto link_down;
1508	}
1509
1510	/* Re-enable interrupt to detect link down */
1511	if (xm_check_link(dev)) {
1512		u16 msk = xm_read16(hw, port, XM_IMSK);
1513		msk &= ~XM_IS_INP_ASS;
1514		xm_write16(hw, port, XM_IMSK, msk);
1515		xm_read16(hw, port, XM_ISRC);
1516	} else {
1517link_down:
1518		mod_timer(&skge->link_timer,
1519			  round_jiffies(jiffies + LINK_HZ));
1520	}
1521	spin_unlock_irqrestore(&hw->phy_lock, flags);
1522}
1523
1524static void genesis_mac_init(struct skge_hw *hw, int port)
1525{
1526	struct net_device *dev = hw->dev[port];
1527	struct skge_port *skge = netdev_priv(dev);
1528	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1529	int i;
1530	u32 r;
1531	static const u8 zero[6]  = { 0 };
1532
1533	for (i = 0; i < 10; i++) {
1534		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1535			     MFF_SET_MAC_RST);
1536		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1537			goto reset_ok;
1538		udelay(1);
1539	}
1540
1541	netdev_warn(dev, "genesis reset failed\n");
1542
1543 reset_ok:
1544	/* Unreset the XMAC. */
1545	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1546
1547	/*
1548	 * Perform additional initialization for external PHYs,
1549	 * namely for the 1000baseTX cards that use the XMAC's
1550	 * GMII mode.
1551	 */
1552	if (hw->phy_type != SK_PHY_XMAC) {
1553		/* Take external Phy out of reset */
1554		r = skge_read32(hw, B2_GP_IO);
1555		if (port == 0)
1556			r |= GP_DIR_0|GP_IO_0;
1557		else
1558			r |= GP_DIR_2|GP_IO_2;
1559
1560		skge_write32(hw, B2_GP_IO, r);
1561
1562		/* Enable GMII interface */
1563		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1564	}
1565
1566
1567	switch (hw->phy_type) {
1568	case SK_PHY_XMAC:
1569		xm_phy_init(skge);
1570		break;
1571	case SK_PHY_BCOM:
1572		bcom_phy_init(skge);
1573		bcom_check_link(hw, port);
1574	}
1575
1576	/* Set Station Address */
1577	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1578
1579	/* We don't use match addresses so clear */
1580	for (i = 1; i < 16; i++)
1581		xm_outaddr(hw, port, XM_EXM(i), zero);
1582
1583	/* Clear MIB counters */
1584	xm_write16(hw, port, XM_STAT_CMD,
1585			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1586	/* Clear two times according to Errata #3 */
1587	xm_write16(hw, port, XM_STAT_CMD,
1588			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1589
1590	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1591	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1592
1593	/* We don't need the FCS appended to the packet. */
1594	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1595	if (jumbo)
1596		r |= XM_RX_BIG_PK_OK;
1597
1598	if (skge->duplex == DUPLEX_HALF) {
1599		/*
1600		 * If in manual half duplex mode the other side might be in
1601		 * full duplex mode, so ignore if a carrier extension is not seen
1602		 * on frames received
1603		 */
1604		r |= XM_RX_DIS_CEXT;
1605	}
1606	xm_write16(hw, port, XM_RX_CMD, r);
1607
1608	/* We want short frames padded to 60 bytes. */
1609	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1610
1611	/* Increase threshold for jumbo frames on dual port */
1612	if (hw->ports > 1 && jumbo)
1613		xm_write16(hw, port, XM_TX_THR, 1020);
1614	else
1615		xm_write16(hw, port, XM_TX_THR, 512);
1616
1617	/*
1618	 * Enable the reception of all error frames. This is is
1619	 * a necessary evil due to the design of the XMAC. The
1620	 * XMAC's receive FIFO is only 8K in size, however jumbo
1621	 * frames can be up to 9000 bytes in length. When bad
1622	 * frame filtering is enabled, the XMAC's RX FIFO operates
1623	 * in 'store and forward' mode. For this to work, the
1624	 * entire frame has to fit into the FIFO, but that means
1625	 * that jumbo frames larger than 8192 bytes will be
1626	 * truncated. Disabling all bad frame filtering causes
1627	 * the RX FIFO to operate in streaming mode, in which
1628	 * case the XMAC will start transferring frames out of the
1629	 * RX FIFO as soon as the FIFO threshold is reached.
1630	 */
1631	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1632
1633
1634	/*
1635	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1636	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1637	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1638	 */
1639	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1640
1641	/*
1642	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1643	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1644	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1645	 */
1646	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1647
1648	/* Configure MAC arbiter */
1649	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1650
1651	/* configure timeout values */
1652	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1653	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1654	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1655	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1656
1657	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1658	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1659	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1660	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1661
1662	/* Configure Rx MAC FIFO */
1663	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1664	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1665	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1666
1667	/* Configure Tx MAC FIFO */
1668	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1669	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1670	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1671
1672	if (jumbo) {
1673		/* Enable frame flushing if jumbo frames used */
1674		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1675	} else {
1676		/* enable timeout timers if normal frames */
1677		skge_write16(hw, B3_PA_CTRL,
1678			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1679	}
1680}
1681
1682static void genesis_stop(struct skge_port *skge)
1683{
1684	struct skge_hw *hw = skge->hw;
1685	int port = skge->port;
1686	unsigned retries = 1000;
1687	u16 cmd;
1688
1689	/* Disable Tx and Rx */
1690	cmd = xm_read16(hw, port, XM_MMU_CMD);
1691	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1692	xm_write16(hw, port, XM_MMU_CMD, cmd);
1693
1694	genesis_reset(hw, port);
1695
1696	/* Clear Tx packet arbiter timeout IRQ */
1697	skge_write16(hw, B3_PA_CTRL,
1698		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1699
1700	/* Reset the MAC */
1701	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1702	do {
1703		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1704		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1705			break;
1706	} while (--retries > 0);
1707
1708	/* For external PHYs there must be special handling */
1709	if (hw->phy_type != SK_PHY_XMAC) {
1710		u32 reg = skge_read32(hw, B2_GP_IO);
1711		if (port == 0) {
1712			reg |= GP_DIR_0;
1713			reg &= ~GP_IO_0;
1714		} else {
1715			reg |= GP_DIR_2;
1716			reg &= ~GP_IO_2;
1717		}
1718		skge_write32(hw, B2_GP_IO, reg);
1719		skge_read32(hw, B2_GP_IO);
1720	}
1721
1722	xm_write16(hw, port, XM_MMU_CMD,
1723			xm_read16(hw, port, XM_MMU_CMD)
1724			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1725
1726	xm_read16(hw, port, XM_MMU_CMD);
1727}
1728
1729
1730static void genesis_get_stats(struct skge_port *skge, u64 *data)
1731{
1732	struct skge_hw *hw = skge->hw;
1733	int port = skge->port;
1734	int i;
1735	unsigned long timeout = jiffies + HZ;
1736
1737	xm_write16(hw, port,
1738			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1739
1740	/* wait for update to complete */
1741	while (xm_read16(hw, port, XM_STAT_CMD)
1742	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1743		if (time_after(jiffies, timeout))
1744			break;
1745		udelay(10);
1746	}
1747
1748	/* special case for 64 bit octet counter */
1749	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1750		| xm_read32(hw, port, XM_TXO_OK_LO);
1751	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1752		| xm_read32(hw, port, XM_RXO_OK_LO);
1753
1754	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1755		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1756}
1757
1758static void genesis_mac_intr(struct skge_hw *hw, int port)
1759{
1760	struct net_device *dev = hw->dev[port];
1761	struct skge_port *skge = netdev_priv(dev);
1762	u16 status = xm_read16(hw, port, XM_ISRC);
1763
1764	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1765		     "mac interrupt status 0x%x\n", status);
1766
1767	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1768		xm_link_down(hw, port);
1769		mod_timer(&skge->link_timer, jiffies + 1);
1770	}
1771
1772	if (status & XM_IS_TXF_UR) {
1773		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1774		++dev->stats.tx_fifo_errors;
1775	}
1776}
1777
1778static void genesis_link_up(struct skge_port *skge)
1779{
1780	struct skge_hw *hw = skge->hw;
1781	int port = skge->port;
1782	u16 cmd, msk;
1783	u32 mode;
1784
1785	cmd = xm_read16(hw, port, XM_MMU_CMD);
1786
1787	/*
1788	 * enabling pause frame reception is required for 1000BT
1789	 * because the XMAC is not reset if the link is going down
1790	 */
1791	if (skge->flow_status == FLOW_STAT_NONE ||
1792	    skge->flow_status == FLOW_STAT_LOC_SEND)
1793		/* Disable Pause Frame Reception */
1794		cmd |= XM_MMU_IGN_PF;
1795	else
1796		/* Enable Pause Frame Reception */
1797		cmd &= ~XM_MMU_IGN_PF;
1798
1799	xm_write16(hw, port, XM_MMU_CMD, cmd);
1800
1801	mode = xm_read32(hw, port, XM_MODE);
1802	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1803	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1804		/*
1805		 * Configure Pause Frame Generation
1806		 * Use internal and external Pause Frame Generation.
1807		 * Sending pause frames is edge triggered.
1808		 * Send a Pause frame with the maximum pause time if
1809		 * internal oder external FIFO full condition occurs.
1810		 * Send a zero pause time frame to re-start transmission.
1811		 */
1812		/* XM_PAUSE_DA = '010000C28001' (default) */
1813		/* XM_MAC_PTIME = 0xffff (maximum) */
1814		/* remember this value is defined in big endian (!) */
1815		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1816
1817		mode |= XM_PAUSE_MODE;
1818		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1819	} else {
1820		/*
1821		 * disable pause frame generation is required for 1000BT
1822		 * because the XMAC is not reset if the link is going down
1823		 */
1824		/* Disable Pause Mode in Mode Register */
1825		mode &= ~XM_PAUSE_MODE;
1826
1827		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1828	}
1829
1830	xm_write32(hw, port, XM_MODE, mode);
1831
1832	/* Turn on detection of Tx underrun */
1833	msk = xm_read16(hw, port, XM_IMSK);
1834	msk &= ~XM_IS_TXF_UR;
1835	xm_write16(hw, port, XM_IMSK, msk);
1836
1837	xm_read16(hw, port, XM_ISRC);
1838
1839	/* get MMU Command Reg. */
1840	cmd = xm_read16(hw, port, XM_MMU_CMD);
1841	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1842		cmd |= XM_MMU_GMII_FD;
1843
1844	/*
1845	 * Workaround BCOM Errata (#10523) for all BCom Phys
1846	 * Enable Power Management after link up
1847	 */
1848	if (hw->phy_type == SK_PHY_BCOM) {
1849		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1850			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1851			     & ~PHY_B_AC_DIS_PM);
1852		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1853	}
1854
1855	/* enable Rx/Tx */
1856	xm_write16(hw, port, XM_MMU_CMD,
1857			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1858	skge_link_up(skge);
1859}
1860
1861
1862static inline void bcom_phy_intr(struct skge_port *skge)
1863{
1864	struct skge_hw *hw = skge->hw;
1865	int port = skge->port;
1866	u16 isrc;
1867
1868	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1869	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1870		     "phy interrupt status 0x%x\n", isrc);
1871
1872	if (isrc & PHY_B_IS_PSE)
1873		pr_err("%s: uncorrectable pair swap error\n",
1874		       hw->dev[port]->name);
1875
1876	/* Workaround BCom Errata:
1877	 *	enable and disable loopback mode if "NO HCD" occurs.
1878	 */
1879	if (isrc & PHY_B_IS_NO_HDCL) {
1880		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1881		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1882				  ctrl | PHY_CT_LOOP);
1883		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1884				  ctrl & ~PHY_CT_LOOP);
1885	}
1886
1887	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1888		bcom_check_link(hw, port);
1889
1890}
1891
1892static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1893{
1894	int i;
1895
1896	gma_write16(hw, port, GM_SMI_DATA, val);
1897	gma_write16(hw, port, GM_SMI_CTRL,
1898			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1899	for (i = 0; i < PHY_RETRIES; i++) {
1900		udelay(1);
1901
1902		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1903			return 0;
1904	}
1905
1906	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1907	return -EIO;
1908}
1909
1910static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1911{
1912	int i;
1913
1914	gma_write16(hw, port, GM_SMI_CTRL,
1915			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1916			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1917
1918	for (i = 0; i < PHY_RETRIES; i++) {
1919		udelay(1);
1920		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1921			goto ready;
1922	}
1923
1924	return -ETIMEDOUT;
1925 ready:
1926	*val = gma_read16(hw, port, GM_SMI_DATA);
1927	return 0;
1928}
1929
1930static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1931{
1932	u16 v = 0;
1933	if (__gm_phy_read(hw, port, reg, &v))
1934		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1935	return v;
1936}
1937
1938/* Marvell Phy Initialization */
1939static void yukon_init(struct skge_hw *hw, int port)
1940{
1941	struct skge_port *skge = netdev_priv(hw->dev[port]);
1942	u16 ctrl, ct1000, adv;
1943
1944	if (skge->autoneg == AUTONEG_ENABLE) {
1945		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1946
1947		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1948			  PHY_M_EC_MAC_S_MSK);
1949		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1950
1951		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1952
1953		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1954	}
1955
1956	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1957	if (skge->autoneg == AUTONEG_DISABLE)
1958		ctrl &= ~PHY_CT_ANE;
1959
1960	ctrl |= PHY_CT_RESET;
1961	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1962
1963	ctrl = 0;
1964	ct1000 = 0;
1965	adv = PHY_AN_CSMA;
1966
1967	if (skge->autoneg == AUTONEG_ENABLE) {
1968		if (hw->copper) {
1969			if (skge->advertising & ADVERTISED_1000baseT_Full)
1970				ct1000 |= PHY_M_1000C_AFD;
1971			if (skge->advertising & ADVERTISED_1000baseT_Half)
1972				ct1000 |= PHY_M_1000C_AHD;
1973			if (skge->advertising & ADVERTISED_100baseT_Full)
1974				adv |= PHY_M_AN_100_FD;
1975			if (skge->advertising & ADVERTISED_100baseT_Half)
1976				adv |= PHY_M_AN_100_HD;
1977			if (skge->advertising & ADVERTISED_10baseT_Full)
1978				adv |= PHY_M_AN_10_FD;
1979			if (skge->advertising & ADVERTISED_10baseT_Half)
1980				adv |= PHY_M_AN_10_HD;
1981
1982			/* Set Flow-control capabilities */
1983			adv |= phy_pause_map[skge->flow_control];
1984		} else {
1985			if (skge->advertising & ADVERTISED_1000baseT_Full)
1986				adv |= PHY_M_AN_1000X_AFD;
1987			if (skge->advertising & ADVERTISED_1000baseT_Half)
1988				adv |= PHY_M_AN_1000X_AHD;
1989
1990			adv |= fiber_pause_map[skge->flow_control];
1991		}
1992
1993		/* Restart Auto-negotiation */
1994		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1995	} else {
1996		/* forced speed/duplex settings */
1997		ct1000 = PHY_M_1000C_MSE;
1998
1999		if (skge->duplex == DUPLEX_FULL)
2000			ctrl |= PHY_CT_DUP_MD;
2001
2002		switch (skge->speed) {
2003		case SPEED_1000:
2004			ctrl |= PHY_CT_SP1000;
2005			break;
2006		case SPEED_100:
2007			ctrl |= PHY_CT_SP100;
2008			break;
2009		}
2010
2011		ctrl |= PHY_CT_RESET;
2012	}
2013
2014	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2015
2016	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2017	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2018
2019	/* Enable phy interrupt on autonegotiation complete (or link up) */
2020	if (skge->autoneg == AUTONEG_ENABLE)
2021		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2022	else
2023		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2024}
2025
2026static void yukon_reset(struct skge_hw *hw, int port)
2027{
2028	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2029	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2030	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2031	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2032	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2033
2034	gma_write16(hw, port, GM_RX_CTRL,
2035			 gma_read16(hw, port, GM_RX_CTRL)
2036			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2037}
2038
2039/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2040static int is_yukon_lite_a0(struct skge_hw *hw)
2041{
2042	u32 reg;
2043	int ret;
2044
2045	if (hw->chip_id != CHIP_ID_YUKON)
2046		return 0;
2047
2048	reg = skge_read32(hw, B2_FAR);
2049	skge_write8(hw, B2_FAR + 3, 0xff);
2050	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2051	skge_write32(hw, B2_FAR, reg);
2052	return ret;
2053}
2054
2055static void yukon_mac_init(struct skge_hw *hw, int port)
2056{
2057	struct skge_port *skge = netdev_priv(hw->dev[port]);
2058	int i;
2059	u32 reg;
2060	const u8 *addr = hw->dev[port]->dev_addr;
2061
2062	/* WA code for COMA mode -- set PHY reset */
2063	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2064	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2065		reg = skge_read32(hw, B2_GP_IO);
2066		reg |= GP_DIR_9 | GP_IO_9;
2067		skge_write32(hw, B2_GP_IO, reg);
2068	}
2069
2070	/* hard reset */
2071	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2072	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2073
2074	/* WA code for COMA mode -- clear PHY reset */
2075	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2076	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2077		reg = skge_read32(hw, B2_GP_IO);
2078		reg |= GP_DIR_9;
2079		reg &= ~GP_IO_9;
2080		skge_write32(hw, B2_GP_IO, reg);
2081	}
2082
2083	/* Set hardware config mode */
2084	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2085		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2086	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2087
2088	/* Clear GMC reset */
2089	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2090	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2091	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2092
2093	if (skge->autoneg == AUTONEG_DISABLE) {
2094		reg = GM_GPCR_AU_ALL_DIS;
2095		gma_write16(hw, port, GM_GP_CTRL,
2096				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2097
2098		switch (skge->speed) {
2099		case SPEED_1000:
2100			reg &= ~GM_GPCR_SPEED_100;
2101			reg |= GM_GPCR_SPEED_1000;
2102			break;
2103		case SPEED_100:
2104			reg &= ~GM_GPCR_SPEED_1000;
2105			reg |= GM_GPCR_SPEED_100;
2106			break;
2107		case SPEED_10:
2108			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2109			break;
2110		}
2111
2112		if (skge->duplex == DUPLEX_FULL)
2113			reg |= GM_GPCR_DUP_FULL;
2114	} else
2115		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2116
2117	switch (skge->flow_control) {
2118	case FLOW_MODE_NONE:
2119		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2120		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2121		break;
2122	case FLOW_MODE_LOC_SEND:
2123		/* disable Rx flow-control */
2124		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2125		break;
2126	case FLOW_MODE_SYMMETRIC:
2127	case FLOW_MODE_SYM_OR_REM:
2128		/* enable Tx & Rx flow-control */
2129		break;
2130	}
2131
2132	gma_write16(hw, port, GM_GP_CTRL, reg);
2133	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2134
2135	yukon_init(hw, port);
2136
2137	/* MIB clear */
2138	reg = gma_read16(hw, port, GM_PHY_ADDR);
2139	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2140
2141	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2142		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2143	gma_write16(hw, port, GM_PHY_ADDR, reg);
2144
2145	/* transmit control */
2146	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2147
2148	/* receive control reg: unicast + multicast + no FCS  */
2149	gma_write16(hw, port, GM_RX_CTRL,
2150			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2151
2152	/* transmit flow control */
2153	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2154
2155	/* transmit parameter */
2156	gma_write16(hw, port, GM_TX_PARAM,
2157			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2158			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2159			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2160
2161	/* configure the Serial Mode Register */
2162	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2163		| GM_SMOD_VLAN_ENA
2164		| IPG_DATA_VAL(IPG_DATA_DEF);
2165
2166	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2167		reg |= GM_SMOD_JUMBO_ENA;
2168
2169	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2170
2171	/* physical address: used for pause frames */
2172	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2173	/* virtual address for data */
2174	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2175
2176	/* enable interrupt mask for counter overflows */
2177	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2178	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2179	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2180
2181	/* Initialize Mac Fifo */
2182
2183	/* Configure Rx MAC FIFO */
2184	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2185	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2186
2187	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2188	if (is_yukon_lite_a0(hw))
2189		reg &= ~GMF_RX_F_FL_ON;
2190
2191	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2192	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2193	/*
2194	 * because Pause Packet Truncation in GMAC is not working
2195	 * we have to increase the Flush Threshold to 64 bytes
2196	 * in order to flush pause packets in Rx FIFO on Yukon-1
2197	 */
2198	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2199
2200	/* Configure Tx MAC FIFO */
2201	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2202	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2203}
2204
2205/* Go into power down mode */
2206static void yukon_suspend(struct skge_hw *hw, int port)
2207{
2208	u16 ctrl;
2209
2210	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2211	ctrl |= PHY_M_PC_POL_R_DIS;
2212	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2213
2214	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2215	ctrl |= PHY_CT_RESET;
2216	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2217
2218	/* switch IEEE compatible power down mode on */
2219	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2220	ctrl |= PHY_CT_PDOWN;
2221	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2222}
2223
2224static void yukon_stop(struct skge_port *skge)
2225{
2226	struct skge_hw *hw = skge->hw;
2227	int port = skge->port;
2228
2229	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2230	yukon_reset(hw, port);
2231
2232	gma_write16(hw, port, GM_GP_CTRL,
2233			 gma_read16(hw, port, GM_GP_CTRL)
2234			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2235	gma_read16(hw, port, GM_GP_CTRL);
2236
2237	yukon_suspend(hw, port);
2238
2239	/* set GPHY Control reset */
2240	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2241	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2242}
2243
2244static void yukon_get_stats(struct skge_port *skge, u64 *data)
2245{
2246	struct skge_hw *hw = skge->hw;
2247	int port = skge->port;
2248	int i;
2249
2250	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2251		| gma_read32(hw, port, GM_TXO_OK_LO);
2252	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2253		| gma_read32(hw, port, GM_RXO_OK_LO);
2254
2255	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2256		data[i] = gma_read32(hw, port,
2257					  skge_stats[i].gma_offset);
2258}
2259
2260static void yukon_mac_intr(struct skge_hw *hw, int port)
2261{
2262	struct net_device *dev = hw->dev[port];
2263	struct skge_port *skge = netdev_priv(dev);
2264	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2265
2266	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2267		     "mac interrupt status 0x%x\n", status);
2268
2269	if (status & GM_IS_RX_FF_OR) {
2270		++dev->stats.rx_fifo_errors;
2271		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2272	}
2273
2274	if (status & GM_IS_TX_FF_UR) {
2275		++dev->stats.tx_fifo_errors;
2276		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2277	}
2278
2279}
2280
2281static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2282{
2283	switch (aux & PHY_M_PS_SPEED_MSK) {
2284	case PHY_M_PS_SPEED_1000:
2285		return SPEED_1000;
2286	case PHY_M_PS_SPEED_100:
2287		return SPEED_100;
2288	default:
2289		return SPEED_10;
2290	}
2291}
2292
2293static void yukon_link_up(struct skge_port *skge)
2294{
2295	struct skge_hw *hw = skge->hw;
2296	int port = skge->port;
2297	u16 reg;
2298
2299	/* Enable Transmit FIFO Underrun */
2300	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2301
2302	reg = gma_read16(hw, port, GM_GP_CTRL);
2303	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2304		reg |= GM_GPCR_DUP_FULL;
2305
2306	/* enable Rx/Tx */
2307	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2308	gma_write16(hw, port, GM_GP_CTRL, reg);
2309
2310	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2311	skge_link_up(skge);
2312}
2313
2314static void yukon_link_down(struct skge_port *skge)
2315{
2316	struct skge_hw *hw = skge->hw;
2317	int port = skge->port;
2318	u16 ctrl;
2319
2320	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2321	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2322	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2323
2324	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2325		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2326		ctrl |= PHY_M_AN_ASP;
2327		/* restore Asymmetric Pause bit */
2328		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2329	}
2330
2331	skge_link_down(skge);
2332
2333	yukon_init(hw, port);
2334}
2335
2336static void yukon_phy_intr(struct skge_port *skge)
2337{
2338	struct skge_hw *hw = skge->hw;
2339	int port = skge->port;
2340	const char *reason = NULL;
2341	u16 istatus, phystat;
2342
2343	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2344	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2345
2346	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2347		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2348
2349	if (istatus & PHY_M_IS_AN_COMPL) {
2350		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2351		    & PHY_M_AN_RF) {
2352			reason = "remote fault";
2353			goto failed;
2354		}
2355
2356		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2357			reason = "master/slave fault";
2358			goto failed;
2359		}
2360
2361		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2362			reason = "speed/duplex";
2363			goto failed;
2364		}
2365
2366		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2367			? DUPLEX_FULL : DUPLEX_HALF;
2368		skge->speed = yukon_speed(hw, phystat);
2369
2370		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2371		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2372		case PHY_M_PS_PAUSE_MSK:
2373			skge->flow_status = FLOW_STAT_SYMMETRIC;
2374			break;
2375		case PHY_M_PS_RX_P_EN:
2376			skge->flow_status = FLOW_STAT_REM_SEND;
2377			break;
2378		case PHY_M_PS_TX_P_EN:
2379			skge->flow_status = FLOW_STAT_LOC_SEND;
2380			break;
2381		default:
2382			skge->flow_status = FLOW_STAT_NONE;
2383		}
2384
2385		if (skge->flow_status == FLOW_STAT_NONE ||
2386		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2387			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2388		else
2389			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2390		yukon_link_up(skge);
2391		return;
2392	}
2393
2394	if (istatus & PHY_M_IS_LSP_CHANGE)
2395		skge->speed = yukon_speed(hw, phystat);
2396
2397	if (istatus & PHY_M_IS_DUP_CHANGE)
2398		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2399	if (istatus & PHY_M_IS_LST_CHANGE) {
2400		if (phystat & PHY_M_PS_LINK_UP)
2401			yukon_link_up(skge);
2402		else
2403			yukon_link_down(skge);
2404	}
2405	return;
2406 failed:
2407	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2408
2409	/* XXX restart autonegotiation? */
2410}
2411
2412static void skge_phy_reset(struct skge_port *skge)
2413{
2414	struct skge_hw *hw = skge->hw;
2415	int port = skge->port;
2416	struct net_device *dev = hw->dev[port];
2417
2418	netif_stop_queue(skge->netdev);
2419	netif_carrier_off(skge->netdev);
2420
2421	spin_lock_bh(&hw->phy_lock);
2422	if (is_genesis(hw)) {
2423		genesis_reset(hw, port);
2424		genesis_mac_init(hw, port);
2425	} else {
2426		yukon_reset(hw, port);
2427		yukon_init(hw, port);
2428	}
2429	spin_unlock_bh(&hw->phy_lock);
2430
2431	skge_set_multicast(dev);
2432}
2433
2434/* Basic MII support */
2435static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2436{
2437	struct mii_ioctl_data *data = if_mii(ifr);
2438	struct skge_port *skge = netdev_priv(dev);
2439	struct skge_hw *hw = skge->hw;
2440	int err = -EOPNOTSUPP;
2441
2442	if (!netif_running(dev))
2443		return -ENODEV;	/* Phy still in reset */
2444
2445	switch (cmd) {
2446	case SIOCGMIIPHY:
2447		data->phy_id = hw->phy_addr;
2448
2449		/* fallthru */
2450	case SIOCGMIIREG: {
2451		u16 val = 0;
2452		spin_lock_bh(&hw->phy_lock);
2453
2454		if (is_genesis(hw))
2455			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2456		else
2457			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2458		spin_unlock_bh(&hw->phy_lock);
2459		data->val_out = val;
2460		break;
2461	}
2462
2463	case SIOCSMIIREG:
2464		spin_lock_bh(&hw->phy_lock);
2465		if (is_genesis(hw))
2466			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2467				   data->val_in);
2468		else
2469			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2470				   data->val_in);
2471		spin_unlock_bh(&hw->phy_lock);
2472		break;
2473	}
2474	return err;
2475}
2476
2477static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2478{
2479	u32 end;
2480
2481	start /= 8;
2482	len /= 8;
2483	end = start + len - 1;
2484
2485	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2486	skge_write32(hw, RB_ADDR(q, RB_START), start);
2487	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2488	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2489	skge_write32(hw, RB_ADDR(q, RB_END), end);
2490
2491	if (q == Q_R1 || q == Q_R2) {
2492		/* Set thresholds on receive queue's */
2493		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2494			     start + (2*len)/3);
2495		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2496			     start + (len/3));
2497	} else {
2498		/* Enable store & forward on Tx queue's because
2499		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2500		 */
2501		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2502	}
2503
2504	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2505}
2506
2507/* Setup Bus Memory Interface */
2508static void skge_qset(struct skge_port *skge, u16 q,
2509		      const struct skge_element *e)
2510{
2511	struct skge_hw *hw = skge->hw;
2512	u32 watermark = 0x600;
2513	u64 base = skge->dma + (e->desc - skge->mem);
2514
2515	/* optimization to reduce window on 32bit/33mhz */
2516	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2517		watermark /= 2;
2518
2519	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2520	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2521	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2522	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2523}
2524
2525static int skge_up(struct net_device *dev)
2526{
2527	struct skge_port *skge = netdev_priv(dev);
2528	struct skge_hw *hw = skge->hw;
2529	int port = skge->port;
2530	u32 chunk, ram_addr;
2531	size_t rx_size, tx_size;
2532	int err;
2533
2534	if (!is_valid_ether_addr(dev->dev_addr))
2535		return -EINVAL;
2536
2537	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2538
2539	if (dev->mtu > RX_BUF_SIZE)
2540		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2541	else
2542		skge->rx_buf_size = RX_BUF_SIZE;
2543
2544
2545	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2546	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2547	skge->mem_size = tx_size + rx_size;
2548	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
 
2549	if (!skge->mem)
2550		return -ENOMEM;
2551
2552	BUG_ON(skge->dma & 7);
2553
2554	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2555		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2556		err = -EINVAL;
2557		goto free_pci_mem;
2558	}
2559
2560	memset(skge->mem, 0, skge->mem_size);
2561
2562	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2563	if (err)
2564		goto free_pci_mem;
2565
2566	err = skge_rx_fill(dev);
2567	if (err)
2568		goto free_rx_ring;
2569
2570	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2571			      skge->dma + rx_size);
2572	if (err)
2573		goto free_rx_ring;
2574
2575	if (hw->ports == 1) {
2576		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2577				  dev->name, hw);
2578		if (err) {
2579			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2580				   hw->pdev->irq, err);
2581			goto free_tx_ring;
2582		}
2583	}
2584
2585	/* Initialize MAC */
2586	netif_carrier_off(dev);
2587	spin_lock_bh(&hw->phy_lock);
2588	if (is_genesis(hw))
2589		genesis_mac_init(hw, port);
2590	else
2591		yukon_mac_init(hw, port);
2592	spin_unlock_bh(&hw->phy_lock);
2593
2594	/* Configure RAMbuffers - equally between ports and tx/rx */
2595	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2596	ram_addr = hw->ram_offset + 2 * chunk * port;
2597
2598	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2599	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2600
2601	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2602	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2603	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2604
2605	/* Start receiver BMU */
2606	wmb();
2607	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2608	skge_led(skge, LED_MODE_ON);
2609
2610	spin_lock_irq(&hw->hw_lock);
2611	hw->intr_mask |= portmask[port];
2612	skge_write32(hw, B0_IMSK, hw->intr_mask);
2613	skge_read32(hw, B0_IMSK);
2614	spin_unlock_irq(&hw->hw_lock);
2615
2616	napi_enable(&skge->napi);
2617
2618	skge_set_multicast(dev);
2619
2620	return 0;
2621
2622 free_tx_ring:
2623	kfree(skge->tx_ring.start);
2624 free_rx_ring:
2625	skge_rx_clean(skge);
2626	kfree(skge->rx_ring.start);
2627 free_pci_mem:
2628	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
 
2629	skge->mem = NULL;
2630
2631	return err;
2632}
2633
2634/* stop receiver */
2635static void skge_rx_stop(struct skge_hw *hw, int port)
2636{
2637	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2638	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2639		     RB_RST_SET|RB_DIS_OP_MD);
2640	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2641}
2642
2643static int skge_down(struct net_device *dev)
2644{
2645	struct skge_port *skge = netdev_priv(dev);
2646	struct skge_hw *hw = skge->hw;
2647	int port = skge->port;
2648
2649	if (skge->mem == NULL)
2650		return 0;
2651
2652	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2653
2654	netif_tx_disable(dev);
2655
2656	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2657		del_timer_sync(&skge->link_timer);
2658
2659	napi_disable(&skge->napi);
2660	netif_carrier_off(dev);
2661
2662	spin_lock_irq(&hw->hw_lock);
2663	hw->intr_mask &= ~portmask[port];
2664	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2665	skge_read32(hw, B0_IMSK);
2666	spin_unlock_irq(&hw->hw_lock);
2667
2668	if (hw->ports == 1)
2669		free_irq(hw->pdev->irq, hw);
2670
2671	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2672	if (is_genesis(hw))
2673		genesis_stop(skge);
2674	else
2675		yukon_stop(skge);
2676
2677	/* Stop transmitter */
2678	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2679	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2680		     RB_RST_SET|RB_DIS_OP_MD);
2681
2682
2683	/* Disable Force Sync bit and Enable Alloc bit */
2684	skge_write8(hw, SK_REG(port, TXA_CTRL),
2685		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2686
2687	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2688	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2689	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2690
2691	/* Reset PCI FIFO */
2692	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2693	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2694
2695	/* Reset the RAM Buffer async Tx queue */
2696	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2697
2698	skge_rx_stop(hw, port);
2699
2700	if (is_genesis(hw)) {
2701		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2702		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2703	} else {
2704		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2705		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2706	}
2707
2708	skge_led(skge, LED_MODE_OFF);
2709
2710	netif_tx_lock_bh(dev);
2711	skge_tx_clean(dev);
2712	netif_tx_unlock_bh(dev);
2713
2714	skge_rx_clean(skge);
2715
2716	kfree(skge->rx_ring.start);
2717	kfree(skge->tx_ring.start);
2718	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
 
2719	skge->mem = NULL;
2720	return 0;
2721}
2722
2723static inline int skge_avail(const struct skge_ring *ring)
2724{
2725	smp_mb();
2726	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2727		+ (ring->to_clean - ring->to_use) - 1;
2728}
2729
2730static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2731				   struct net_device *dev)
2732{
2733	struct skge_port *skge = netdev_priv(dev);
2734	struct skge_hw *hw = skge->hw;
2735	struct skge_element *e;
2736	struct skge_tx_desc *td;
2737	int i;
2738	u32 control, len;
2739	dma_addr_t map;
2740
2741	if (skb_padto(skb, ETH_ZLEN))
2742		return NETDEV_TX_OK;
2743
2744	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2745		return NETDEV_TX_BUSY;
2746
2747	e = skge->tx_ring.to_use;
2748	td = e->desc;
2749	BUG_ON(td->control & BMU_OWN);
2750	e->skb = skb;
2751	len = skb_headlen(skb);
2752	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2753	if (pci_dma_mapping_error(hw->pdev, map))
2754		goto mapping_error;
2755
2756	dma_unmap_addr_set(e, mapaddr, map);
2757	dma_unmap_len_set(e, maplen, len);
2758
2759	td->dma_lo = lower_32_bits(map);
2760	td->dma_hi = upper_32_bits(map);
2761
2762	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2763		const int offset = skb_checksum_start_offset(skb);
2764
2765		/* This seems backwards, but it is what the sk98lin
2766		 * does.  Looks like hardware is wrong?
2767		 */
2768		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2769		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2770			control = BMU_TCP_CHECK;
2771		else
2772			control = BMU_UDP_CHECK;
2773
2774		td->csum_offs = 0;
2775		td->csum_start = offset;
2776		td->csum_write = offset + skb->csum_offset;
2777	} else
2778		control = BMU_CHECK;
2779
2780	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2781		control |= BMU_EOF | BMU_IRQ_EOF;
2782	else {
2783		struct skge_tx_desc *tf = td;
2784
2785		control |= BMU_STFWD;
2786		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2787			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2788
2789			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2790					       skb_frag_size(frag), DMA_TO_DEVICE);
2791			if (dma_mapping_error(&hw->pdev->dev, map))
2792				goto mapping_unwind;
2793
2794			e = e->next;
2795			e->skb = skb;
2796			tf = e->desc;
2797			BUG_ON(tf->control & BMU_OWN);
2798
2799			tf->dma_lo = lower_32_bits(map);
2800			tf->dma_hi = upper_32_bits(map);
2801			dma_unmap_addr_set(e, mapaddr, map);
2802			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2803
2804			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2805		}
2806		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2807	}
2808	/* Make sure all the descriptors written */
2809	wmb();
2810	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2811	wmb();
2812
2813	netdev_sent_queue(dev, skb->len);
2814
2815	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2816
2817	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2818		     "tx queued, slot %td, len %d\n",
2819		     e - skge->tx_ring.start, skb->len);
2820
2821	skge->tx_ring.to_use = e->next;
2822	smp_wmb();
2823
2824	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2825		netdev_dbg(dev, "transmit queue full\n");
2826		netif_stop_queue(dev);
2827	}
2828
2829	return NETDEV_TX_OK;
2830
2831mapping_unwind:
2832	e = skge->tx_ring.to_use;
2833	pci_unmap_single(hw->pdev,
2834			 dma_unmap_addr(e, mapaddr),
2835			 dma_unmap_len(e, maplen),
2836			 PCI_DMA_TODEVICE);
2837	while (i-- > 0) {
2838		e = e->next;
2839		pci_unmap_page(hw->pdev,
2840			       dma_unmap_addr(e, mapaddr),
2841			       dma_unmap_len(e, maplen),
2842			       PCI_DMA_TODEVICE);
2843	}
2844
2845mapping_error:
2846	if (net_ratelimit())
2847		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2848	dev_kfree_skb_any(skb);
2849	return NETDEV_TX_OK;
2850}
2851
2852
2853/* Free resources associated with this reing element */
2854static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2855				 u32 control)
2856{
2857	/* skb header vs. fragment */
2858	if (control & BMU_STF)
2859		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2860				 dma_unmap_len(e, maplen),
2861				 PCI_DMA_TODEVICE);
2862	else
2863		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2864			       dma_unmap_len(e, maplen),
2865			       PCI_DMA_TODEVICE);
2866}
2867
2868/* Free all buffers in transmit ring */
2869static void skge_tx_clean(struct net_device *dev)
2870{
2871	struct skge_port *skge = netdev_priv(dev);
2872	struct skge_element *e;
2873
2874	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2875		struct skge_tx_desc *td = e->desc;
2876
2877		skge_tx_unmap(skge->hw->pdev, e, td->control);
2878
2879		if (td->control & BMU_EOF)
2880			dev_kfree_skb(e->skb);
2881		td->control = 0;
2882	}
2883
2884	netdev_reset_queue(dev);
2885	skge->tx_ring.to_clean = e;
2886}
2887
2888static void skge_tx_timeout(struct net_device *dev)
2889{
2890	struct skge_port *skge = netdev_priv(dev);
2891
2892	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2893
2894	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2895	skge_tx_clean(dev);
2896	netif_wake_queue(dev);
2897}
2898
2899static int skge_change_mtu(struct net_device *dev, int new_mtu)
2900{
2901	int err;
2902
2903	if (!netif_running(dev)) {
2904		dev->mtu = new_mtu;
2905		return 0;
2906	}
2907
2908	skge_down(dev);
2909
2910	dev->mtu = new_mtu;
2911
2912	err = skge_up(dev);
2913	if (err)
2914		dev_close(dev);
2915
2916	return err;
2917}
2918
2919static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2920
2921static void genesis_add_filter(u8 filter[8], const u8 *addr)
2922{
2923	u32 crc, bit;
2924
2925	crc = ether_crc_le(ETH_ALEN, addr);
2926	bit = ~crc & 0x3f;
2927	filter[bit/8] |= 1 << (bit%8);
2928}
2929
2930static void genesis_set_multicast(struct net_device *dev)
2931{
2932	struct skge_port *skge = netdev_priv(dev);
2933	struct skge_hw *hw = skge->hw;
2934	int port = skge->port;
2935	struct netdev_hw_addr *ha;
2936	u32 mode;
2937	u8 filter[8];
2938
2939	mode = xm_read32(hw, port, XM_MODE);
2940	mode |= XM_MD_ENA_HASH;
2941	if (dev->flags & IFF_PROMISC)
2942		mode |= XM_MD_ENA_PROM;
2943	else
2944		mode &= ~XM_MD_ENA_PROM;
2945
2946	if (dev->flags & IFF_ALLMULTI)
2947		memset(filter, 0xff, sizeof(filter));
2948	else {
2949		memset(filter, 0, sizeof(filter));
2950
2951		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2952		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2953			genesis_add_filter(filter, pause_mc_addr);
2954
2955		netdev_for_each_mc_addr(ha, dev)
2956			genesis_add_filter(filter, ha->addr);
2957	}
2958
2959	xm_write32(hw, port, XM_MODE, mode);
2960	xm_outhash(hw, port, XM_HSM, filter);
2961}
2962
2963static void yukon_add_filter(u8 filter[8], const u8 *addr)
2964{
2965	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2966	 filter[bit/8] |= 1 << (bit%8);
 
2967}
2968
2969static void yukon_set_multicast(struct net_device *dev)
2970{
2971	struct skge_port *skge = netdev_priv(dev);
2972	struct skge_hw *hw = skge->hw;
2973	int port = skge->port;
2974	struct netdev_hw_addr *ha;
2975	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2976			skge->flow_status == FLOW_STAT_SYMMETRIC);
2977	u16 reg;
2978	u8 filter[8];
2979
2980	memset(filter, 0, sizeof(filter));
2981
2982	reg = gma_read16(hw, port, GM_RX_CTRL);
2983	reg |= GM_RXCR_UCF_ENA;
2984
2985	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2986		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2987	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2988		memset(filter, 0xff, sizeof(filter));
2989	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2990		reg &= ~GM_RXCR_MCF_ENA;
2991	else {
2992		reg |= GM_RXCR_MCF_ENA;
2993
2994		if (rx_pause)
2995			yukon_add_filter(filter, pause_mc_addr);
2996
2997		netdev_for_each_mc_addr(ha, dev)
2998			yukon_add_filter(filter, ha->addr);
2999	}
3000
3001
3002	gma_write16(hw, port, GM_MC_ADDR_H1,
3003			 (u16)filter[0] | ((u16)filter[1] << 8));
3004	gma_write16(hw, port, GM_MC_ADDR_H2,
3005			 (u16)filter[2] | ((u16)filter[3] << 8));
3006	gma_write16(hw, port, GM_MC_ADDR_H3,
3007			 (u16)filter[4] | ((u16)filter[5] << 8));
3008	gma_write16(hw, port, GM_MC_ADDR_H4,
3009			 (u16)filter[6] | ((u16)filter[7] << 8));
3010
3011	gma_write16(hw, port, GM_RX_CTRL, reg);
3012}
3013
3014static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3015{
3016	if (is_genesis(hw))
3017		return status >> XMR_FS_LEN_SHIFT;
3018	else
3019		return status >> GMR_FS_LEN_SHIFT;
3020}
3021
3022static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3023{
3024	if (is_genesis(hw))
3025		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3026	else
3027		return (status & GMR_FS_ANY_ERR) ||
3028			(status & GMR_FS_RX_OK) == 0;
3029}
3030
3031static void skge_set_multicast(struct net_device *dev)
3032{
3033	struct skge_port *skge = netdev_priv(dev);
3034
3035	if (is_genesis(skge->hw))
3036		genesis_set_multicast(dev);
3037	else
3038		yukon_set_multicast(dev);
3039
3040}
3041
3042
3043/* Get receive buffer from descriptor.
3044 * Handles copy of small buffers and reallocation failures
3045 */
3046static struct sk_buff *skge_rx_get(struct net_device *dev,
3047				   struct skge_element *e,
3048				   u32 control, u32 status, u16 csum)
3049{
3050	struct skge_port *skge = netdev_priv(dev);
3051	struct sk_buff *skb;
3052	u16 len = control & BMU_BBC;
3053
3054	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3055		     "rx slot %td status 0x%x len %d\n",
3056		     e - skge->rx_ring.start, status, len);
3057
3058	if (len > skge->rx_buf_size)
3059		goto error;
3060
3061	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3062		goto error;
3063
3064	if (bad_phy_status(skge->hw, status))
3065		goto error;
3066
3067	if (phy_length(skge->hw, status) != len)
3068		goto error;
3069
3070	if (len < RX_COPY_THRESHOLD) {
3071		skb = netdev_alloc_skb_ip_align(dev, len);
3072		if (!skb)
3073			goto resubmit;
3074
3075		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3076					    dma_unmap_addr(e, mapaddr),
3077					    dma_unmap_len(e, maplen),
3078					    PCI_DMA_FROMDEVICE);
3079		skb_copy_from_linear_data(e->skb, skb->data, len);
3080		pci_dma_sync_single_for_device(skge->hw->pdev,
3081					       dma_unmap_addr(e, mapaddr),
3082					       dma_unmap_len(e, maplen),
3083					       PCI_DMA_FROMDEVICE);
3084		skge_rx_reuse(e, skge->rx_buf_size);
3085	} else {
3086		struct skge_element ee;
3087		struct sk_buff *nskb;
3088
3089		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3090		if (!nskb)
3091			goto resubmit;
3092
3093		ee = *e;
3094
3095		skb = ee.skb;
3096		prefetch(skb->data);
3097
3098		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3099			dev_kfree_skb(nskb);
3100			goto resubmit;
3101		}
3102
3103		pci_unmap_single(skge->hw->pdev,
3104				 dma_unmap_addr(&ee, mapaddr),
3105				 dma_unmap_len(&ee, maplen),
3106				 PCI_DMA_FROMDEVICE);
3107	}
3108
3109	skb_put(skb, len);
3110
3111	if (dev->features & NETIF_F_RXCSUM) {
3112		skb->csum = csum;
3113		skb->ip_summed = CHECKSUM_COMPLETE;
3114	}
3115
3116	skb->protocol = eth_type_trans(skb, dev);
3117
3118	return skb;
3119error:
3120
3121	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3122		     "rx err, slot %td control 0x%x status 0x%x\n",
3123		     e - skge->rx_ring.start, control, status);
3124
3125	if (is_genesis(skge->hw)) {
3126		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3127			dev->stats.rx_length_errors++;
3128		if (status & XMR_FS_FRA_ERR)
3129			dev->stats.rx_frame_errors++;
3130		if (status & XMR_FS_FCS_ERR)
3131			dev->stats.rx_crc_errors++;
3132	} else {
3133		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3134			dev->stats.rx_length_errors++;
3135		if (status & GMR_FS_FRAGMENT)
3136			dev->stats.rx_frame_errors++;
3137		if (status & GMR_FS_CRC_ERR)
3138			dev->stats.rx_crc_errors++;
3139	}
3140
3141resubmit:
3142	skge_rx_reuse(e, skge->rx_buf_size);
3143	return NULL;
3144}
3145
3146/* Free all buffers in Tx ring which are no longer owned by device */
3147static void skge_tx_done(struct net_device *dev)
3148{
3149	struct skge_port *skge = netdev_priv(dev);
3150	struct skge_ring *ring = &skge->tx_ring;
3151	struct skge_element *e;
3152	unsigned int bytes_compl = 0, pkts_compl = 0;
3153
3154	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3155
3156	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3157		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3158
3159		if (control & BMU_OWN)
3160			break;
3161
3162		skge_tx_unmap(skge->hw->pdev, e, control);
3163
3164		if (control & BMU_EOF) {
3165			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3166				     "tx done slot %td\n",
3167				     e - skge->tx_ring.start);
3168
3169			pkts_compl++;
3170			bytes_compl += e->skb->len;
3171
3172			dev_consume_skb_any(e->skb);
3173		}
3174	}
3175	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3176	skge->tx_ring.to_clean = e;
3177
3178	/* Can run lockless until we need to synchronize to restart queue. */
3179	smp_mb();
3180
3181	if (unlikely(netif_queue_stopped(dev) &&
3182		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3183		netif_tx_lock(dev);
3184		if (unlikely(netif_queue_stopped(dev) &&
3185			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3186			netif_wake_queue(dev);
3187
3188		}
3189		netif_tx_unlock(dev);
3190	}
3191}
3192
3193static int skge_poll(struct napi_struct *napi, int to_do)
3194{
3195	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3196	struct net_device *dev = skge->netdev;
3197	struct skge_hw *hw = skge->hw;
3198	struct skge_ring *ring = &skge->rx_ring;
3199	struct skge_element *e;
3200	int work_done = 0;
3201
3202	skge_tx_done(dev);
3203
3204	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3205
3206	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3207		struct skge_rx_desc *rd = e->desc;
3208		struct sk_buff *skb;
3209		u32 control;
3210
3211		rmb();
3212		control = rd->control;
3213		if (control & BMU_OWN)
3214			break;
3215
3216		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3217		if (likely(skb)) {
3218			napi_gro_receive(napi, skb);
3219			++work_done;
3220		}
3221	}
3222	ring->to_clean = e;
3223
3224	/* restart receiver */
3225	wmb();
3226	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3227
3228	if (work_done < to_do) {
3229		unsigned long flags;
3230
3231		napi_gro_flush(napi, false);
3232		spin_lock_irqsave(&hw->hw_lock, flags);
3233		__napi_complete(napi);
3234		hw->intr_mask |= napimask[skge->port];
3235		skge_write32(hw, B0_IMSK, hw->intr_mask);
3236		skge_read32(hw, B0_IMSK);
3237		spin_unlock_irqrestore(&hw->hw_lock, flags);
3238	}
3239
3240	return work_done;
3241}
3242
3243/* Parity errors seem to happen when Genesis is connected to a switch
3244 * with no other ports present. Heartbeat error??
3245 */
3246static void skge_mac_parity(struct skge_hw *hw, int port)
3247{
3248	struct net_device *dev = hw->dev[port];
3249
3250	++dev->stats.tx_heartbeat_errors;
3251
3252	if (is_genesis(hw))
3253		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3254			     MFF_CLR_PERR);
3255	else
3256		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3257		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3258			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3259			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3260}
3261
3262static void skge_mac_intr(struct skge_hw *hw, int port)
3263{
3264	if (is_genesis(hw))
3265		genesis_mac_intr(hw, port);
3266	else
3267		yukon_mac_intr(hw, port);
3268}
3269
3270/* Handle device specific framing and timeout interrupts */
3271static void skge_error_irq(struct skge_hw *hw)
3272{
3273	struct pci_dev *pdev = hw->pdev;
3274	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3275
3276	if (is_genesis(hw)) {
3277		/* clear xmac errors */
3278		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3279			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3280		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3281			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3282	} else {
3283		/* Timestamp (unused) overflow */
3284		if (hwstatus & IS_IRQ_TIST_OV)
3285			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3286	}
3287
3288	if (hwstatus & IS_RAM_RD_PAR) {
3289		dev_err(&pdev->dev, "Ram read data parity error\n");
3290		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3291	}
3292
3293	if (hwstatus & IS_RAM_WR_PAR) {
3294		dev_err(&pdev->dev, "Ram write data parity error\n");
3295		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3296	}
3297
3298	if (hwstatus & IS_M1_PAR_ERR)
3299		skge_mac_parity(hw, 0);
3300
3301	if (hwstatus & IS_M2_PAR_ERR)
3302		skge_mac_parity(hw, 1);
3303
3304	if (hwstatus & IS_R1_PAR_ERR) {
3305		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3306			hw->dev[0]->name);
3307		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3308	}
3309
3310	if (hwstatus & IS_R2_PAR_ERR) {
3311		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3312			hw->dev[1]->name);
3313		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3314	}
3315
3316	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3317		u16 pci_status, pci_cmd;
3318
3319		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3320		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3321
3322		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3323			pci_cmd, pci_status);
3324
3325		/* Write the error bits back to clear them. */
3326		pci_status &= PCI_STATUS_ERROR_BITS;
3327		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3328		pci_write_config_word(pdev, PCI_COMMAND,
3329				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3330		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3331		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3332
3333		/* if error still set then just ignore it */
3334		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3335		if (hwstatus & IS_IRQ_STAT) {
3336			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3337			hw->intr_mask &= ~IS_HW_ERR;
3338		}
3339	}
3340}
3341
3342/*
3343 * Interrupt from PHY are handled in tasklet (softirq)
3344 * because accessing phy registers requires spin wait which might
3345 * cause excess interrupt latency.
3346 */
3347static void skge_extirq(unsigned long arg)
3348{
3349	struct skge_hw *hw = (struct skge_hw *) arg;
3350	int port;
3351
3352	for (port = 0; port < hw->ports; port++) {
3353		struct net_device *dev = hw->dev[port];
3354
3355		if (netif_running(dev)) {
3356			struct skge_port *skge = netdev_priv(dev);
3357
3358			spin_lock(&hw->phy_lock);
3359			if (!is_genesis(hw))
3360				yukon_phy_intr(skge);
3361			else if (hw->phy_type == SK_PHY_BCOM)
3362				bcom_phy_intr(skge);
3363			spin_unlock(&hw->phy_lock);
3364		}
3365	}
3366
3367	spin_lock_irq(&hw->hw_lock);
3368	hw->intr_mask |= IS_EXT_REG;
3369	skge_write32(hw, B0_IMSK, hw->intr_mask);
3370	skge_read32(hw, B0_IMSK);
3371	spin_unlock_irq(&hw->hw_lock);
3372}
3373
3374static irqreturn_t skge_intr(int irq, void *dev_id)
3375{
3376	struct skge_hw *hw = dev_id;
3377	u32 status;
3378	int handled = 0;
3379
3380	spin_lock(&hw->hw_lock);
3381	/* Reading this register masks IRQ */
3382	status = skge_read32(hw, B0_SP_ISRC);
3383	if (status == 0 || status == ~0)
3384		goto out;
3385
3386	handled = 1;
3387	status &= hw->intr_mask;
3388	if (status & IS_EXT_REG) {
3389		hw->intr_mask &= ~IS_EXT_REG;
3390		tasklet_schedule(&hw->phy_task);
3391	}
3392
3393	if (status & (IS_XA1_F|IS_R1_F)) {
3394		struct skge_port *skge = netdev_priv(hw->dev[0]);
3395		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3396		napi_schedule(&skge->napi);
3397	}
3398
3399	if (status & IS_PA_TO_TX1)
3400		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3401
3402	if (status & IS_PA_TO_RX1) {
3403		++hw->dev[0]->stats.rx_over_errors;
3404		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3405	}
3406
3407
3408	if (status & IS_MAC1)
3409		skge_mac_intr(hw, 0);
3410
3411	if (hw->dev[1]) {
3412		struct skge_port *skge = netdev_priv(hw->dev[1]);
3413
3414		if (status & (IS_XA2_F|IS_R2_F)) {
3415			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3416			napi_schedule(&skge->napi);
3417		}
3418
3419		if (status & IS_PA_TO_RX2) {
3420			++hw->dev[1]->stats.rx_over_errors;
3421			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3422		}
3423
3424		if (status & IS_PA_TO_TX2)
3425			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3426
3427		if (status & IS_MAC2)
3428			skge_mac_intr(hw, 1);
3429	}
3430
3431	if (status & IS_HW_ERR)
3432		skge_error_irq(hw);
3433out:
3434	skge_write32(hw, B0_IMSK, hw->intr_mask);
3435	skge_read32(hw, B0_IMSK);
3436	spin_unlock(&hw->hw_lock);
3437
3438	return IRQ_RETVAL(handled);
3439}
3440
3441#ifdef CONFIG_NET_POLL_CONTROLLER
3442static void skge_netpoll(struct net_device *dev)
3443{
3444	struct skge_port *skge = netdev_priv(dev);
3445
3446	disable_irq(dev->irq);
3447	skge_intr(dev->irq, skge->hw);
3448	enable_irq(dev->irq);
3449}
3450#endif
3451
3452static int skge_set_mac_address(struct net_device *dev, void *p)
3453{
3454	struct skge_port *skge = netdev_priv(dev);
3455	struct skge_hw *hw = skge->hw;
3456	unsigned port = skge->port;
3457	const struct sockaddr *addr = p;
3458	u16 ctrl;
3459
3460	if (!is_valid_ether_addr(addr->sa_data))
3461		return -EADDRNOTAVAIL;
3462
3463	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3464
3465	if (!netif_running(dev)) {
3466		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3467		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3468	} else {
3469		/* disable Rx */
3470		spin_lock_bh(&hw->phy_lock);
3471		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3472		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3473
3474		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3475		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3476
3477		if (is_genesis(hw))
3478			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3479		else {
3480			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3481			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3482		}
3483
3484		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3485		spin_unlock_bh(&hw->phy_lock);
3486	}
3487
3488	return 0;
3489}
3490
3491static const struct {
3492	u8 id;
3493	const char *name;
3494} skge_chips[] = {
3495	{ CHIP_ID_GENESIS,	"Genesis" },
3496	{ CHIP_ID_YUKON,	 "Yukon" },
3497	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3498	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3499};
3500
3501static const char *skge_board_name(const struct skge_hw *hw)
3502{
3503	int i;
3504	static char buf[16];
3505
3506	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3507		if (skge_chips[i].id == hw->chip_id)
3508			return skge_chips[i].name;
3509
3510	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3511	return buf;
3512}
3513
3514
3515/*
3516 * Setup the board data structure, but don't bring up
3517 * the port(s)
3518 */
3519static int skge_reset(struct skge_hw *hw)
3520{
3521	u32 reg;
3522	u16 ctst, pci_status;
3523	u8 t8, mac_cfg, pmd_type;
3524	int i;
3525
3526	ctst = skge_read16(hw, B0_CTST);
3527
3528	/* do a SW reset */
3529	skge_write8(hw, B0_CTST, CS_RST_SET);
3530	skge_write8(hw, B0_CTST, CS_RST_CLR);
3531
3532	/* clear PCI errors, if any */
3533	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3534	skge_write8(hw, B2_TST_CTRL2, 0);
3535
3536	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3537	pci_write_config_word(hw->pdev, PCI_STATUS,
3538			      pci_status | PCI_STATUS_ERROR_BITS);
3539	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3540	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3541
3542	/* restore CLK_RUN bits (for Yukon-Lite) */
3543	skge_write16(hw, B0_CTST,
3544		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3545
3546	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3547	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3548	pmd_type = skge_read8(hw, B2_PMD_TYP);
3549	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3550
3551	switch (hw->chip_id) {
3552	case CHIP_ID_GENESIS:
3553#ifdef CONFIG_SKGE_GENESIS
3554		switch (hw->phy_type) {
3555		case SK_PHY_XMAC:
3556			hw->phy_addr = PHY_ADDR_XMAC;
3557			break;
3558		case SK_PHY_BCOM:
3559			hw->phy_addr = PHY_ADDR_BCOM;
3560			break;
3561		default:
3562			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3563			       hw->phy_type);
3564			return -EOPNOTSUPP;
3565		}
3566		break;
3567#else
3568		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3569		return -EOPNOTSUPP;
3570#endif
3571
3572	case CHIP_ID_YUKON:
3573	case CHIP_ID_YUKON_LITE:
3574	case CHIP_ID_YUKON_LP:
3575		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3576			hw->copper = 1;
3577
3578		hw->phy_addr = PHY_ADDR_MARV;
3579		break;
3580
3581	default:
3582		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3583		       hw->chip_id);
3584		return -EOPNOTSUPP;
3585	}
3586
3587	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3588	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3589	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3590
3591	/* read the adapters RAM size */
3592	t8 = skge_read8(hw, B2_E_0);
3593	if (is_genesis(hw)) {
3594		if (t8 == 3) {
3595			/* special case: 4 x 64k x 36, offset = 0x80000 */
3596			hw->ram_size = 0x100000;
3597			hw->ram_offset = 0x80000;
3598		} else
3599			hw->ram_size = t8 * 512;
3600	} else if (t8 == 0)
3601		hw->ram_size = 0x20000;
3602	else
3603		hw->ram_size = t8 * 4096;
3604
3605	hw->intr_mask = IS_HW_ERR;
3606
3607	/* Use PHY IRQ for all but fiber based Genesis board */
3608	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3609		hw->intr_mask |= IS_EXT_REG;
3610
3611	if (is_genesis(hw))
3612		genesis_init(hw);
3613	else {
3614		/* switch power to VCC (WA for VAUX problem) */
3615		skge_write8(hw, B0_POWER_CTRL,
3616			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3617
3618		/* avoid boards with stuck Hardware error bits */
3619		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3620		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3621			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3622			hw->intr_mask &= ~IS_HW_ERR;
3623		}
3624
3625		/* Clear PHY COMA */
3626		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3627		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3628		reg &= ~PCI_PHY_COMA;
3629		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3630		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3631
3632
3633		for (i = 0; i < hw->ports; i++) {
3634			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3635			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3636		}
3637	}
3638
3639	/* turn off hardware timer (unused) */
3640	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3641	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3642	skge_write8(hw, B0_LED, LED_STAT_ON);
3643
3644	/* enable the Tx Arbiters */
3645	for (i = 0; i < hw->ports; i++)
3646		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3647
3648	/* Initialize ram interface */
3649	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3650
3651	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3652	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3653	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3654	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3655	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3656	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3657	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3658	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3659	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3660	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3661	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3662	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3663
3664	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3665
3666	/* Set interrupt moderation for Transmit only
3667	 * Receive interrupts avoided by NAPI
3668	 */
3669	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3670	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3671	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3672
3673	/* Leave irq disabled until first port is brought up. */
3674	skge_write32(hw, B0_IMSK, 0);
3675
3676	for (i = 0; i < hw->ports; i++) {
3677		if (is_genesis(hw))
3678			genesis_reset(hw, i);
3679		else
3680			yukon_reset(hw, i);
3681	}
3682
3683	return 0;
3684}
3685
3686
3687#ifdef CONFIG_SKGE_DEBUG
3688
3689static struct dentry *skge_debug;
3690
3691static int skge_debug_show(struct seq_file *seq, void *v)
3692{
3693	struct net_device *dev = seq->private;
3694	const struct skge_port *skge = netdev_priv(dev);
3695	const struct skge_hw *hw = skge->hw;
3696	const struct skge_element *e;
3697
3698	if (!netif_running(dev))
3699		return -ENETDOWN;
3700
3701	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3702		   skge_read32(hw, B0_IMSK));
3703
3704	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3705	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3706		const struct skge_tx_desc *t = e->desc;
3707		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3708			   t->control, t->dma_hi, t->dma_lo, t->status,
3709			   t->csum_offs, t->csum_write, t->csum_start);
3710	}
3711
3712	seq_printf(seq, "\nRx Ring:\n");
3713	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3714		const struct skge_rx_desc *r = e->desc;
3715
3716		if (r->control & BMU_OWN)
3717			break;
3718
3719		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3720			   r->control, r->dma_hi, r->dma_lo, r->status,
3721			   r->timestamp, r->csum1, r->csum1_start);
3722	}
3723
3724	return 0;
3725}
3726
3727static int skge_debug_open(struct inode *inode, struct file *file)
3728{
3729	return single_open(file, skge_debug_show, inode->i_private);
3730}
3731
3732static const struct file_operations skge_debug_fops = {
3733	.owner		= THIS_MODULE,
3734	.open		= skge_debug_open,
3735	.read		= seq_read,
3736	.llseek		= seq_lseek,
3737	.release	= single_release,
3738};
3739
3740/*
3741 * Use network device events to create/remove/rename
3742 * debugfs file entries
3743 */
3744static int skge_device_event(struct notifier_block *unused,
3745			     unsigned long event, void *ptr)
3746{
3747	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3748	struct skge_port *skge;
3749	struct dentry *d;
3750
3751	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3752		goto done;
3753
3754	skge = netdev_priv(dev);
3755	switch (event) {
3756	case NETDEV_CHANGENAME:
3757		if (skge->debugfs) {
3758			d = debugfs_rename(skge_debug, skge->debugfs,
3759					   skge_debug, dev->name);
3760			if (d)
3761				skge->debugfs = d;
3762			else {
3763				netdev_info(dev, "rename failed\n");
3764				debugfs_remove(skge->debugfs);
3765			}
3766		}
3767		break;
3768
3769	case NETDEV_GOING_DOWN:
3770		if (skge->debugfs) {
3771			debugfs_remove(skge->debugfs);
3772			skge->debugfs = NULL;
3773		}
3774		break;
3775
3776	case NETDEV_UP:
3777		d = debugfs_create_file(dev->name, S_IRUGO,
3778					skge_debug, dev,
3779					&skge_debug_fops);
3780		if (!d || IS_ERR(d))
3781			netdev_info(dev, "debugfs create failed\n");
3782		else
3783			skge->debugfs = d;
3784		break;
3785	}
3786
3787done:
3788	return NOTIFY_DONE;
3789}
3790
3791static struct notifier_block skge_notifier = {
3792	.notifier_call = skge_device_event,
3793};
3794
3795
3796static __init void skge_debug_init(void)
3797{
3798	struct dentry *ent;
3799
3800	ent = debugfs_create_dir("skge", NULL);
3801	if (!ent || IS_ERR(ent)) {
3802		pr_info("debugfs create directory failed\n");
3803		return;
3804	}
3805
3806	skge_debug = ent;
3807	register_netdevice_notifier(&skge_notifier);
3808}
3809
3810static __exit void skge_debug_cleanup(void)
3811{
3812	if (skge_debug) {
3813		unregister_netdevice_notifier(&skge_notifier);
3814		debugfs_remove(skge_debug);
3815		skge_debug = NULL;
3816	}
3817}
3818
3819#else
3820#define skge_debug_init()
3821#define skge_debug_cleanup()
3822#endif
3823
3824static const struct net_device_ops skge_netdev_ops = {
3825	.ndo_open		= skge_up,
3826	.ndo_stop		= skge_down,
3827	.ndo_start_xmit		= skge_xmit_frame,
3828	.ndo_do_ioctl		= skge_ioctl,
3829	.ndo_get_stats		= skge_get_stats,
3830	.ndo_tx_timeout		= skge_tx_timeout,
3831	.ndo_change_mtu		= skge_change_mtu,
3832	.ndo_validate_addr	= eth_validate_addr,
3833	.ndo_set_rx_mode	= skge_set_multicast,
3834	.ndo_set_mac_address	= skge_set_mac_address,
3835#ifdef CONFIG_NET_POLL_CONTROLLER
3836	.ndo_poll_controller	= skge_netpoll,
3837#endif
3838};
3839
3840
3841/* Initialize network device */
3842static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3843				       int highmem)
3844{
3845	struct skge_port *skge;
3846	struct net_device *dev = alloc_etherdev(sizeof(*skge));
 
3847
3848	if (!dev)
3849		return NULL;
3850
3851	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3852	dev->netdev_ops = &skge_netdev_ops;
3853	dev->ethtool_ops = &skge_ethtool_ops;
3854	dev->watchdog_timeo = TX_WATCHDOG;
3855	dev->irq = hw->pdev->irq;
3856
3857	/* MTU range: 60 - 9000 */
3858	dev->min_mtu = ETH_ZLEN;
3859	dev->max_mtu = ETH_JUMBO_MTU;
3860
3861	if (highmem)
3862		dev->features |= NETIF_F_HIGHDMA;
3863
3864	skge = netdev_priv(dev);
3865	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3866	skge->netdev = dev;
3867	skge->hw = hw;
3868	skge->msg_enable = netif_msg_init(debug, default_msg);
3869
3870	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3871	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3872
3873	/* Auto speed and flow control */
3874	skge->autoneg = AUTONEG_ENABLE;
3875	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3876	skge->duplex = -1;
3877	skge->speed = -1;
3878	skge->advertising = skge_supported_modes(hw);
3879
3880	if (device_can_wakeup(&hw->pdev->dev)) {
3881		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3882		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3883	}
3884
3885	hw->dev[port] = dev;
3886
3887	skge->port = port;
3888
3889	/* Only used for Genesis XMAC */
3890	if (is_genesis(hw))
3891	    setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3892	else {
3893		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3894		                   NETIF_F_RXCSUM;
3895		dev->features |= dev->hw_features;
3896	}
3897
3898	/* read the mac address */
3899	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
 
3900
3901	return dev;
3902}
3903
3904static void skge_show_addr(struct net_device *dev)
3905{
3906	const struct skge_port *skge = netdev_priv(dev);
3907
3908	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3909}
3910
3911static int only_32bit_dma;
3912
3913static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3914{
3915	struct net_device *dev, *dev1;
3916	struct skge_hw *hw;
3917	int err, using_dac = 0;
3918
3919	err = pci_enable_device(pdev);
3920	if (err) {
3921		dev_err(&pdev->dev, "cannot enable PCI device\n");
3922		goto err_out;
3923	}
3924
3925	err = pci_request_regions(pdev, DRV_NAME);
3926	if (err) {
3927		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3928		goto err_out_disable_pdev;
3929	}
3930
3931	pci_set_master(pdev);
3932
3933	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3934		using_dac = 1;
3935		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3936	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3937		using_dac = 0;
3938		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3939	}
3940
3941	if (err) {
3942		dev_err(&pdev->dev, "no usable DMA configuration\n");
3943		goto err_out_free_regions;
3944	}
3945
3946#ifdef __BIG_ENDIAN
3947	/* byte swap descriptors in hardware */
3948	{
3949		u32 reg;
3950
3951		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3952		reg |= PCI_REV_DESC;
3953		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3954	}
3955#endif
3956
3957	err = -ENOMEM;
3958	/* space for skge@pci:0000:04:00.0 */
3959	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3960		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3961	if (!hw)
3962		goto err_out_free_regions;
3963
3964	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3965
3966	hw->pdev = pdev;
3967	spin_lock_init(&hw->hw_lock);
3968	spin_lock_init(&hw->phy_lock);
3969	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3970
3971	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3972	if (!hw->regs) {
3973		dev_err(&pdev->dev, "cannot map device registers\n");
3974		goto err_out_free_hw;
3975	}
3976
3977	err = skge_reset(hw);
3978	if (err)
3979		goto err_out_iounmap;
3980
3981	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3982		DRV_VERSION,
3983		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3984		skge_board_name(hw), hw->chip_rev);
3985
3986	dev = skge_devinit(hw, 0, using_dac);
3987	if (!dev) {
3988		err = -ENOMEM;
3989		goto err_out_led_off;
3990	}
3991
3992	/* Some motherboards are broken and has zero in ROM. */
3993	if (!is_valid_ether_addr(dev->dev_addr))
3994		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3995
3996	err = register_netdev(dev);
3997	if (err) {
3998		dev_err(&pdev->dev, "cannot register net device\n");
3999		goto err_out_free_netdev;
4000	}
4001
4002	skge_show_addr(dev);
4003
4004	if (hw->ports > 1) {
4005		dev1 = skge_devinit(hw, 1, using_dac);
4006		if (!dev1) {
4007			err = -ENOMEM;
4008			goto err_out_unregister;
4009		}
4010
4011		err = register_netdev(dev1);
4012		if (err) {
4013			dev_err(&pdev->dev, "cannot register second net device\n");
4014			goto err_out_free_dev1;
4015		}
4016
4017		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
4018				  hw->irq_name, hw);
4019		if (err) {
4020			dev_err(&pdev->dev, "cannot assign irq %d\n",
4021				pdev->irq);
4022			goto err_out_unregister_dev1;
4023		}
4024
4025		skge_show_addr(dev1);
4026	}
4027	pci_set_drvdata(pdev, hw);
4028
4029	return 0;
4030
4031err_out_unregister_dev1:
4032	unregister_netdev(dev1);
4033err_out_free_dev1:
4034	free_netdev(dev1);
4035err_out_unregister:
4036	unregister_netdev(dev);
4037err_out_free_netdev:
4038	free_netdev(dev);
4039err_out_led_off:
4040	skge_write16(hw, B0_LED, LED_STAT_OFF);
4041err_out_iounmap:
4042	iounmap(hw->regs);
4043err_out_free_hw:
4044	kfree(hw);
4045err_out_free_regions:
4046	pci_release_regions(pdev);
4047err_out_disable_pdev:
4048	pci_disable_device(pdev);
4049err_out:
4050	return err;
4051}
4052
4053static void skge_remove(struct pci_dev *pdev)
4054{
4055	struct skge_hw *hw  = pci_get_drvdata(pdev);
4056	struct net_device *dev0, *dev1;
4057
4058	if (!hw)
4059		return;
4060
4061	dev1 = hw->dev[1];
4062	if (dev1)
4063		unregister_netdev(dev1);
4064	dev0 = hw->dev[0];
4065	unregister_netdev(dev0);
4066
4067	tasklet_kill(&hw->phy_task);
4068
4069	spin_lock_irq(&hw->hw_lock);
4070	hw->intr_mask = 0;
4071
4072	if (hw->ports > 1) {
4073		skge_write32(hw, B0_IMSK, 0);
4074		skge_read32(hw, B0_IMSK);
4075		free_irq(pdev->irq, hw);
4076	}
4077	spin_unlock_irq(&hw->hw_lock);
4078
4079	skge_write16(hw, B0_LED, LED_STAT_OFF);
4080	skge_write8(hw, B0_CTST, CS_RST_SET);
4081
4082	if (hw->ports > 1)
4083		free_irq(pdev->irq, hw);
4084	pci_release_regions(pdev);
4085	pci_disable_device(pdev);
4086	if (dev1)
4087		free_netdev(dev1);
4088	free_netdev(dev0);
4089
4090	iounmap(hw->regs);
4091	kfree(hw);
4092}
4093
4094#ifdef CONFIG_PM_SLEEP
4095static int skge_suspend(struct device *dev)
4096{
4097	struct pci_dev *pdev = to_pci_dev(dev);
4098	struct skge_hw *hw  = pci_get_drvdata(pdev);
4099	int i;
4100
4101	if (!hw)
4102		return 0;
4103
4104	for (i = 0; i < hw->ports; i++) {
4105		struct net_device *dev = hw->dev[i];
4106		struct skge_port *skge = netdev_priv(dev);
4107
4108		if (netif_running(dev))
4109			skge_down(dev);
4110
4111		if (skge->wol)
4112			skge_wol_init(skge);
4113	}
4114
4115	skge_write32(hw, B0_IMSK, 0);
4116
4117	return 0;
4118}
4119
4120static int skge_resume(struct device *dev)
4121{
4122	struct pci_dev *pdev = to_pci_dev(dev);
4123	struct skge_hw *hw  = pci_get_drvdata(pdev);
4124	int i, err;
4125
4126	if (!hw)
4127		return 0;
4128
4129	err = skge_reset(hw);
4130	if (err)
4131		goto out;
4132
4133	for (i = 0; i < hw->ports; i++) {
4134		struct net_device *dev = hw->dev[i];
4135
4136		if (netif_running(dev)) {
4137			err = skge_up(dev);
4138
4139			if (err) {
4140				netdev_err(dev, "could not up: %d\n", err);
4141				dev_close(dev);
4142				goto out;
4143			}
4144		}
4145	}
4146out:
4147	return err;
4148}
4149
4150static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4151#define SKGE_PM_OPS (&skge_pm_ops)
4152
4153#else
4154
4155#define SKGE_PM_OPS NULL
4156#endif /* CONFIG_PM_SLEEP */
4157
4158static void skge_shutdown(struct pci_dev *pdev)
4159{
4160	struct skge_hw *hw  = pci_get_drvdata(pdev);
4161	int i;
4162
4163	if (!hw)
4164		return;
4165
4166	for (i = 0; i < hw->ports; i++) {
4167		struct net_device *dev = hw->dev[i];
4168		struct skge_port *skge = netdev_priv(dev);
4169
4170		if (skge->wol)
4171			skge_wol_init(skge);
4172	}
4173
4174	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4175	pci_set_power_state(pdev, PCI_D3hot);
4176}
4177
4178static struct pci_driver skge_driver = {
4179	.name =         DRV_NAME,
4180	.id_table =     skge_id_table,
4181	.probe =        skge_probe,
4182	.remove =       skge_remove,
4183	.shutdown =	skge_shutdown,
4184	.driver.pm =	SKGE_PM_OPS,
4185};
4186
4187static struct dmi_system_id skge_32bit_dma_boards[] = {
4188	{
4189		.ident = "Gigabyte nForce boards",
4190		.matches = {
4191			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4192			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4193		},
4194	},
4195	{
4196		.ident = "ASUS P5NSLI",
4197		.matches = {
4198			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4199			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4200		},
4201	},
4202	{
4203		.ident = "FUJITSU SIEMENS A8NE-FM",
4204		.matches = {
4205			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4206			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4207		},
4208	},
4209	{}
4210};
4211
4212static int __init skge_init_module(void)
4213{
4214	if (dmi_check_system(skge_32bit_dma_boards))
4215		only_32bit_dma = 1;
4216	skge_debug_init();
4217	return pci_register_driver(&skge_driver);
4218}
4219
4220static void __exit skge_cleanup_module(void)
4221{
4222	pci_unregister_driver(&skge_driver);
4223	skge_debug_cleanup();
4224}
4225
4226module_init(skge_init_module);
4227module_exit(skge_cleanup_module);