Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include <linux/pci.h>
5#include <linux/delay.h>
6#include <linux/sched.h>
7#include <linux/netdevice.h>
8
9#include "ixgbe.h"
10#include "ixgbe_common.h"
11#include "ixgbe_phy.h"
12
13static int ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16static int ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 u16 count);
20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24
25static int ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 u16 words, u16 *data);
29static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 u16 words, u16 *data);
31static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 u16 offset);
33static int ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
34
35/* Base table for registers values that change by MAC */
36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 IXGBE_MVALS_INIT(8259X)
38};
39
40/**
41 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42 * control
43 * @hw: pointer to hardware structure
44 *
45 * There are several phys that do not support autoneg flow control. This
46 * function check the device id to see if the associated phy supports
47 * autoneg flow control.
48 **/
49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50{
51 bool supported = false;
52 ixgbe_link_speed speed;
53 bool link_up;
54
55 switch (hw->phy.media_type) {
56 case ixgbe_media_type_fiber:
57 /* flow control autoneg black list */
58 switch (hw->device_id) {
59 case IXGBE_DEV_ID_X550EM_A_SFP:
60 case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 supported = false;
62 break;
63 default:
64 hw->mac.ops.check_link(hw, &speed, &link_up, false);
65 /* if link is down, assume supported */
66 if (link_up)
67 supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68 else
69 supported = true;
70 }
71
72 break;
73 case ixgbe_media_type_backplane:
74 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75 supported = false;
76 else
77 supported = true;
78 break;
79 case ixgbe_media_type_copper:
80 /* only some copper devices support flow control autoneg */
81 switch (hw->device_id) {
82 case IXGBE_DEV_ID_82599_T3_LOM:
83 case IXGBE_DEV_ID_X540T:
84 case IXGBE_DEV_ID_X540T1:
85 case IXGBE_DEV_ID_X550T:
86 case IXGBE_DEV_ID_X550T1:
87 case IXGBE_DEV_ID_X550EM_X_10G_T:
88 case IXGBE_DEV_ID_X550EM_A_10G_T:
89 case IXGBE_DEV_ID_X550EM_A_1G_T:
90 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91 supported = true;
92 break;
93 default:
94 break;
95 }
96 break;
97 default:
98 break;
99 }
100
101 if (!supported)
102 hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103 hw->device_id);
104
105 return supported;
106}
107
108/**
109 * ixgbe_setup_fc_generic - Set up flow control
110 * @hw: pointer to hardware structure
111 *
112 * Called at init time to set up flow control.
113 **/
114int ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115{
116 u32 reg = 0, reg_bp = 0;
117 bool locked = false;
118 int ret_val = 0;
119 u16 reg_cu = 0;
120
121 /*
122 * Validate the requested mode. Strict IEEE mode does not allow
123 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124 */
125 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127 return -EINVAL;
128 }
129
130 /*
131 * 10gig parts do not have a word in the EEPROM to determine the
132 * default flow control setting, so we explicitly set it to full.
133 */
134 if (hw->fc.requested_mode == ixgbe_fc_default)
135 hw->fc.requested_mode = ixgbe_fc_full;
136
137 /*
138 * Set up the 1G and 10G flow control advertisement registers so the
139 * HW will be able to do fc autoneg once the cable is plugged in. If
140 * we link at 10G, the 1G advertisement is harmless and vice versa.
141 */
142 switch (hw->phy.media_type) {
143 case ixgbe_media_type_backplane:
144 /* some MAC's need RMW protection on AUTOC */
145 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
146 if (ret_val)
147 return ret_val;
148
149 fallthrough; /* only backplane uses autoc */
150 case ixgbe_media_type_fiber:
151 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152
153 break;
154 case ixgbe_media_type_copper:
155 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156 MDIO_MMD_AN, ®_cu);
157 break;
158 default:
159 break;
160 }
161
162 /*
163 * The possible values of fc.requested_mode are:
164 * 0: Flow control is completely disabled
165 * 1: Rx flow control is enabled (we can receive pause frames,
166 * but not send pause frames).
167 * 2: Tx flow control is enabled (we can send pause frames but
168 * we do not support receiving pause frames).
169 * 3: Both Rx and Tx flow control (symmetric) are enabled.
170 * other: Invalid.
171 */
172 switch (hw->fc.requested_mode) {
173 case ixgbe_fc_none:
174 /* Flow control completely disabled by software override. */
175 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176 if (hw->phy.media_type == ixgbe_media_type_backplane)
177 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178 IXGBE_AUTOC_ASM_PAUSE);
179 else if (hw->phy.media_type == ixgbe_media_type_copper)
180 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181 break;
182 case ixgbe_fc_tx_pause:
183 /*
184 * Tx Flow control is enabled, and Rx Flow control is
185 * disabled by software override.
186 */
187 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189 if (hw->phy.media_type == ixgbe_media_type_backplane) {
190 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
193 reg_cu |= IXGBE_TAF_ASM_PAUSE;
194 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195 }
196 break;
197 case ixgbe_fc_rx_pause:
198 /*
199 * Rx Flow control is enabled and Tx Flow control is
200 * disabled by software override. Since there really
201 * isn't a way to advertise that we are capable of RX
202 * Pause ONLY, we will advertise that we support both
203 * symmetric and asymmetric Rx PAUSE, as such we fall
204 * through to the fc_full statement. Later, we will
205 * disable the adapter's ability to send PAUSE frames.
206 */
207 case ixgbe_fc_full:
208 /* Flow control (both Rx and Tx) is enabled by SW override. */
209 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210 if (hw->phy.media_type == ixgbe_media_type_backplane)
211 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212 IXGBE_AUTOC_ASM_PAUSE;
213 else if (hw->phy.media_type == ixgbe_media_type_copper)
214 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215 break;
216 default:
217 hw_dbg(hw, "Flow control param set incorrectly\n");
218 return -EIO;
219 }
220
221 if (hw->mac.type != ixgbe_mac_X540) {
222 /*
223 * Enable auto-negotiation between the MAC & PHY;
224 * the MAC will advertise clause 37 flow control.
225 */
226 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228
229 /* Disable AN timeout */
230 if (hw->fc.strict_ieee)
231 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232
233 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235 }
236
237 /*
238 * AUTOC restart handles negotiation of 1G and 10G on backplane
239 * and copper. There is no need to set the PCS1GCTL register.
240 *
241 */
242 if (hw->phy.media_type == ixgbe_media_type_backplane) {
243 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
244 * LESM is on, likewise reset_pipeline requries the lock as
245 * it also writes AUTOC.
246 */
247 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248 if (ret_val)
249 return ret_val;
250
251 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252 ixgbe_device_supports_autoneg_fc(hw)) {
253 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254 MDIO_MMD_AN, reg_cu);
255 }
256
257 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258 return ret_val;
259}
260
261/**
262 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263 * @hw: pointer to hardware structure
264 *
265 * Starts the hardware by filling the bus info structure and media type, clears
266 * all on chip counters, initializes receive address registers, multicast
267 * table, VLAN filter table, calls routine to set up link and flow control
268 * settings, and leaves transmit and receive units disabled and uninitialized
269 **/
270int ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271{
272 u16 device_caps;
273 u32 ctrl_ext;
274 int ret_val;
275
276 /* Set the media type */
277 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278
279 /* Identify the PHY */
280 hw->phy.ops.identify(hw);
281
282 /* Clear the VLAN filter table */
283 hw->mac.ops.clear_vfta(hw);
284
285 /* Clear statistics registers */
286 hw->mac.ops.clear_hw_cntrs(hw);
287
288 /* Set No Snoop Disable */
289 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292 IXGBE_WRITE_FLUSH(hw);
293
294 /* Setup flow control if method for doing so */
295 if (hw->mac.ops.setup_fc) {
296 ret_val = hw->mac.ops.setup_fc(hw);
297 if (ret_val)
298 return ret_val;
299 }
300
301 /* Cashe bit indicating need for crosstalk fix */
302 switch (hw->mac.type) {
303 case ixgbe_mac_82599EB:
304 case ixgbe_mac_X550EM_x:
305 case ixgbe_mac_x550em_a:
306 hw->mac.ops.get_device_caps(hw, &device_caps);
307 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308 hw->need_crosstalk_fix = false;
309 else
310 hw->need_crosstalk_fix = true;
311 break;
312 default:
313 hw->need_crosstalk_fix = false;
314 break;
315 }
316
317 /* Clear adapter stopped flag */
318 hw->adapter_stopped = false;
319
320 return 0;
321}
322
323/**
324 * ixgbe_start_hw_gen2 - Init sequence for common device family
325 * @hw: pointer to hw structure
326 *
327 * Performs the init sequence common to the second generation
328 * of 10 GbE devices.
329 * Devices in the second generation:
330 * 82599
331 * X540
332 **/
333int ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334{
335 u32 i;
336
337 /* Clear the rate limiters */
338 for (i = 0; i < hw->mac.max_tx_queues; i++) {
339 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341 }
342 IXGBE_WRITE_FLUSH(hw);
343
344 return 0;
345}
346
347/**
348 * ixgbe_init_hw_generic - Generic hardware initialization
349 * @hw: pointer to hardware structure
350 *
351 * Initialize the hardware by resetting the hardware, filling the bus info
352 * structure and media type, clears all on chip counters, initializes receive
353 * address registers, multicast table, VLAN filter table, calls routine to set
354 * up link and flow control settings, and leaves transmit and receive units
355 * disabled and uninitialized
356 **/
357int ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358{
359 int status;
360
361 /* Reset the hardware */
362 status = hw->mac.ops.reset_hw(hw);
363
364 if (status == 0) {
365 /* Start the HW */
366 status = hw->mac.ops.start_hw(hw);
367 }
368
369 /* Initialize the LED link active for LED blink support */
370 if (hw->mac.ops.init_led_link_act)
371 hw->mac.ops.init_led_link_act(hw);
372
373 return status;
374}
375
376/**
377 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378 * @hw: pointer to hardware structure
379 *
380 * Clears all hardware statistics counters by reading them from the hardware
381 * Statistics counters are clear on read.
382 **/
383int ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384{
385 u16 i = 0;
386
387 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389 IXGBE_READ_REG(hw, IXGBE_ERRBC);
390 IXGBE_READ_REG(hw, IXGBE_MSPDC);
391 for (i = 0; i < 8; i++)
392 IXGBE_READ_REG(hw, IXGBE_MPC(i));
393
394 IXGBE_READ_REG(hw, IXGBE_MLFC);
395 IXGBE_READ_REG(hw, IXGBE_MRFC);
396 IXGBE_READ_REG(hw, IXGBE_RLEC);
397 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399 if (hw->mac.type >= ixgbe_mac_82599EB) {
400 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402 } else {
403 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405 }
406
407 for (i = 0; i < 8; i++) {
408 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410 if (hw->mac.type >= ixgbe_mac_82599EB) {
411 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413 } else {
414 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416 }
417 }
418 if (hw->mac.type >= ixgbe_mac_82599EB)
419 for (i = 0; i < 8; i++)
420 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421 IXGBE_READ_REG(hw, IXGBE_PRC64);
422 IXGBE_READ_REG(hw, IXGBE_PRC127);
423 IXGBE_READ_REG(hw, IXGBE_PRC255);
424 IXGBE_READ_REG(hw, IXGBE_PRC511);
425 IXGBE_READ_REG(hw, IXGBE_PRC1023);
426 IXGBE_READ_REG(hw, IXGBE_PRC1522);
427 IXGBE_READ_REG(hw, IXGBE_GPRC);
428 IXGBE_READ_REG(hw, IXGBE_BPRC);
429 IXGBE_READ_REG(hw, IXGBE_MPRC);
430 IXGBE_READ_REG(hw, IXGBE_GPTC);
431 IXGBE_READ_REG(hw, IXGBE_GORCL);
432 IXGBE_READ_REG(hw, IXGBE_GORCH);
433 IXGBE_READ_REG(hw, IXGBE_GOTCL);
434 IXGBE_READ_REG(hw, IXGBE_GOTCH);
435 if (hw->mac.type == ixgbe_mac_82598EB)
436 for (i = 0; i < 8; i++)
437 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438 IXGBE_READ_REG(hw, IXGBE_RUC);
439 IXGBE_READ_REG(hw, IXGBE_RFC);
440 IXGBE_READ_REG(hw, IXGBE_ROC);
441 IXGBE_READ_REG(hw, IXGBE_RJC);
442 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445 IXGBE_READ_REG(hw, IXGBE_TORL);
446 IXGBE_READ_REG(hw, IXGBE_TORH);
447 IXGBE_READ_REG(hw, IXGBE_TPR);
448 IXGBE_READ_REG(hw, IXGBE_TPT);
449 IXGBE_READ_REG(hw, IXGBE_PTC64);
450 IXGBE_READ_REG(hw, IXGBE_PTC127);
451 IXGBE_READ_REG(hw, IXGBE_PTC255);
452 IXGBE_READ_REG(hw, IXGBE_PTC511);
453 IXGBE_READ_REG(hw, IXGBE_PTC1023);
454 IXGBE_READ_REG(hw, IXGBE_PTC1522);
455 IXGBE_READ_REG(hw, IXGBE_MPTC);
456 IXGBE_READ_REG(hw, IXGBE_BPTC);
457 for (i = 0; i < 16; i++) {
458 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460 if (hw->mac.type >= ixgbe_mac_82599EB) {
461 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466 } else {
467 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469 }
470 }
471
472 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473 if (hw->phy.id == 0)
474 hw->phy.ops.identify(hw);
475 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479 }
480
481 return 0;
482}
483
484/**
485 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486 * @hw: pointer to hardware structure
487 * @pba_num: stores the part number string from the EEPROM
488 * @pba_num_size: part number string buffer length
489 *
490 * Reads the part number string from the EEPROM.
491 **/
492int ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493 u32 pba_num_size)
494{
495 int ret_val;
496 u16 pba_ptr;
497 u16 offset;
498 u16 length;
499 u16 data;
500
501 if (pba_num == NULL) {
502 hw_dbg(hw, "PBA string buffer was null\n");
503 return -EINVAL;
504 }
505
506 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507 if (ret_val) {
508 hw_dbg(hw, "NVM Read Error\n");
509 return ret_val;
510 }
511
512 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513 if (ret_val) {
514 hw_dbg(hw, "NVM Read Error\n");
515 return ret_val;
516 }
517
518 /*
519 * if data is not ptr guard the PBA must be in legacy format which
520 * means pba_ptr is actually our second data word for the PBA number
521 * and we can decode it into an ascii string
522 */
523 if (data != IXGBE_PBANUM_PTR_GUARD) {
524 hw_dbg(hw, "NVM PBA number is not stored as string\n");
525
526 /* we will need 11 characters to store the PBA */
527 if (pba_num_size < 11) {
528 hw_dbg(hw, "PBA string buffer too small\n");
529 return -ENOSPC;
530 }
531
532 /* extract hex string from data and pba_ptr */
533 pba_num[0] = (data >> 12) & 0xF;
534 pba_num[1] = (data >> 8) & 0xF;
535 pba_num[2] = (data >> 4) & 0xF;
536 pba_num[3] = data & 0xF;
537 pba_num[4] = (pba_ptr >> 12) & 0xF;
538 pba_num[5] = (pba_ptr >> 8) & 0xF;
539 pba_num[6] = '-';
540 pba_num[7] = 0;
541 pba_num[8] = (pba_ptr >> 4) & 0xF;
542 pba_num[9] = pba_ptr & 0xF;
543
544 /* put a null character on the end of our string */
545 pba_num[10] = '\0';
546
547 /* switch all the data but the '-' to hex char */
548 for (offset = 0; offset < 10; offset++) {
549 if (pba_num[offset] < 0xA)
550 pba_num[offset] += '0';
551 else if (pba_num[offset] < 0x10)
552 pba_num[offset] += 'A' - 0xA;
553 }
554
555 return 0;
556 }
557
558 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559 if (ret_val) {
560 hw_dbg(hw, "NVM Read Error\n");
561 return ret_val;
562 }
563
564 if (length == 0xFFFF || length == 0) {
565 hw_dbg(hw, "NVM PBA number section invalid length\n");
566 return -EIO;
567 }
568
569 /* check if pba_num buffer is big enough */
570 if (pba_num_size < (((u32)length * 2) - 1)) {
571 hw_dbg(hw, "PBA string buffer too small\n");
572 return -ENOSPC;
573 }
574
575 /* trim pba length from start of string */
576 pba_ptr++;
577 length--;
578
579 for (offset = 0; offset < length; offset++) {
580 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581 if (ret_val) {
582 hw_dbg(hw, "NVM Read Error\n");
583 return ret_val;
584 }
585 pba_num[offset * 2] = (u8)(data >> 8);
586 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587 }
588 pba_num[offset * 2] = '\0';
589
590 return 0;
591}
592
593/**
594 * ixgbe_get_mac_addr_generic - Generic get MAC address
595 * @hw: pointer to hardware structure
596 * @mac_addr: Adapter MAC address
597 *
598 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
599 * A reset of the adapter must be performed prior to calling this function
600 * in order for the MAC address to have been loaded from the EEPROM into RAR0
601 **/
602int ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603{
604 u32 rar_high;
605 u32 rar_low;
606 u16 i;
607
608 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610
611 for (i = 0; i < 4; i++)
612 mac_addr[i] = (u8)(rar_low >> (i*8));
613
614 for (i = 0; i < 2; i++)
615 mac_addr[i+4] = (u8)(rar_high >> (i*8));
616
617 return 0;
618}
619
620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621{
622 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623 case IXGBE_PCI_LINK_WIDTH_1:
624 return ixgbe_bus_width_pcie_x1;
625 case IXGBE_PCI_LINK_WIDTH_2:
626 return ixgbe_bus_width_pcie_x2;
627 case IXGBE_PCI_LINK_WIDTH_4:
628 return ixgbe_bus_width_pcie_x4;
629 case IXGBE_PCI_LINK_WIDTH_8:
630 return ixgbe_bus_width_pcie_x8;
631 default:
632 return ixgbe_bus_width_unknown;
633 }
634}
635
636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637{
638 switch (link_status & IXGBE_PCI_LINK_SPEED) {
639 case IXGBE_PCI_LINK_SPEED_2500:
640 return ixgbe_bus_speed_2500;
641 case IXGBE_PCI_LINK_SPEED_5000:
642 return ixgbe_bus_speed_5000;
643 case IXGBE_PCI_LINK_SPEED_8000:
644 return ixgbe_bus_speed_8000;
645 default:
646 return ixgbe_bus_speed_unknown;
647 }
648}
649
650/**
651 * ixgbe_get_bus_info_generic - Generic set PCI bus info
652 * @hw: pointer to hardware structure
653 *
654 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655 **/
656int ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657{
658 u16 link_status;
659
660 hw->bus.type = ixgbe_bus_type_pci_express;
661
662 /* Get the negotiated link width and speed from PCI config space */
663 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664
665 hw->bus.width = ixgbe_convert_bus_width(link_status);
666 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667
668 hw->mac.ops.set_lan_id(hw);
669
670 return 0;
671}
672
673/**
674 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675 * @hw: pointer to the HW structure
676 *
677 * Determines the LAN function id by reading memory-mapped registers
678 * and swaps the port value if requested.
679 **/
680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681{
682 struct ixgbe_bus_info *bus = &hw->bus;
683 u16 ee_ctrl_4;
684 u32 reg;
685
686 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 bus->func = FIELD_GET(IXGBE_STATUS_LAN_ID, reg);
688 bus->lan_id = bus->func;
689
690 /* check for a port swap */
691 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 if (reg & IXGBE_FACTPS_LFS)
693 bus->func ^= 0x1;
694
695 /* Get MAC instance from EEPROM for configuring CS4227 */
696 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698 bus->instance_id = FIELD_GET(IXGBE_EE_CTRL_4_INST_ID,
699 ee_ctrl_4);
700 }
701}
702
703/**
704 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705 * @hw: pointer to hardware structure
706 *
707 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708 * disables transmit and receive units. The adapter_stopped flag is used by
709 * the shared code and drivers to determine if the adapter is in a stopped
710 * state and should not touch the hardware.
711 **/
712int ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713{
714 u32 reg_val;
715 u16 i;
716
717 /*
718 * Set the adapter_stopped flag so other driver functions stop touching
719 * the hardware
720 */
721 hw->adapter_stopped = true;
722
723 /* Disable the receive unit */
724 hw->mac.ops.disable_rx(hw);
725
726 /* Clear interrupt mask to stop interrupts from being generated */
727 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728
729 /* Clear any pending interrupts, flush previous writes */
730 IXGBE_READ_REG(hw, IXGBE_EICR);
731
732 /* Disable the transmit unit. Each queue must be disabled. */
733 for (i = 0; i < hw->mac.max_tx_queues; i++)
734 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735
736 /* Disable the receive unit by stopping each queue */
737 for (i = 0; i < hw->mac.max_rx_queues; i++) {
738 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739 reg_val &= ~IXGBE_RXDCTL_ENABLE;
740 reg_val |= IXGBE_RXDCTL_SWFLSH;
741 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742 }
743
744 /* flush all queues disables */
745 IXGBE_WRITE_FLUSH(hw);
746 usleep_range(1000, 2000);
747
748 /*
749 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
750 * access and verify no pending requests
751 */
752 return ixgbe_disable_pcie_primary(hw);
753}
754
755/**
756 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757 * @hw: pointer to hardware structure
758 *
759 * Store the index for the link active LED. This will be used to support
760 * blinking the LED.
761 **/
762int ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763{
764 struct ixgbe_mac_info *mac = &hw->mac;
765 u32 led_reg, led_mode;
766 u16 i;
767
768 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769
770 /* Get LED link active from the LEDCTL register */
771 for (i = 0; i < 4; i++) {
772 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773
774 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775 IXGBE_LED_LINK_ACTIVE) {
776 mac->led_link_act = i;
777 return 0;
778 }
779 }
780
781 /* If LEDCTL register does not have the LED link active set, then use
782 * known MAC defaults.
783 */
784 switch (hw->mac.type) {
785 case ixgbe_mac_x550em_a:
786 mac->led_link_act = 0;
787 break;
788 case ixgbe_mac_X550EM_x:
789 mac->led_link_act = 1;
790 break;
791 default:
792 mac->led_link_act = 2;
793 }
794
795 return 0;
796}
797
798/**
799 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
800 * @hw: pointer to hardware structure
801 * @index: led number to turn on
802 **/
803int ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804{
805 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806
807 if (index > 3)
808 return -EINVAL;
809
810 /* To turn on the LED, set mode to ON. */
811 led_reg &= ~IXGBE_LED_MODE_MASK(index);
812 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814 IXGBE_WRITE_FLUSH(hw);
815
816 return 0;
817}
818
819/**
820 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
821 * @hw: pointer to hardware structure
822 * @index: led number to turn off
823 **/
824int ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825{
826 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827
828 if (index > 3)
829 return -EINVAL;
830
831 /* To turn off the LED, set mode to OFF. */
832 led_reg &= ~IXGBE_LED_MODE_MASK(index);
833 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835 IXGBE_WRITE_FLUSH(hw);
836
837 return 0;
838}
839
840/**
841 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842 * @hw: pointer to hardware structure
843 *
844 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
845 * ixgbe_hw struct in order to set up EEPROM access.
846 **/
847int ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848{
849 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850 u32 eec;
851 u16 eeprom_size;
852
853 if (eeprom->type == ixgbe_eeprom_uninitialized) {
854 eeprom->type = ixgbe_eeprom_none;
855 /* Set default semaphore delay to 10ms which is a well
856 * tested value */
857 eeprom->semaphore_delay = 10;
858 /* Clear EEPROM page size, it will be initialized as needed */
859 eeprom->word_page_size = 0;
860
861 /*
862 * Check for EEPROM present first.
863 * If not present leave as none
864 */
865 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866 if (eec & IXGBE_EEC_PRES) {
867 eeprom->type = ixgbe_eeprom_spi;
868
869 /*
870 * SPI EEPROM is assumed here. This code would need to
871 * change if a future EEPROM is not SPI.
872 */
873 eeprom_size = FIELD_GET(IXGBE_EEC_SIZE, eec);
874 eeprom->word_size = BIT(eeprom_size +
875 IXGBE_EEPROM_WORD_SIZE_SHIFT);
876 }
877
878 if (eec & IXGBE_EEC_ADDR_SIZE)
879 eeprom->address_bits = 16;
880 else
881 eeprom->address_bits = 8;
882 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
883 eeprom->type, eeprom->word_size, eeprom->address_bits);
884 }
885
886 return 0;
887}
888
889/**
890 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
891 * @hw: pointer to hardware structure
892 * @offset: offset within the EEPROM to write
893 * @words: number of words
894 * @data: 16 bit word(s) to write to EEPROM
895 *
896 * Reads 16 bit word(s) from EEPROM through bit-bang method
897 **/
898int ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
899 u16 words, u16 *data)
900{
901 u16 i, count;
902 int status;
903
904 hw->eeprom.ops.init_params(hw);
905
906 if (words == 0 || (offset + words > hw->eeprom.word_size))
907 return -EINVAL;
908
909 /*
910 * The EEPROM page size cannot be queried from the chip. We do lazy
911 * initialization. It is worth to do that when we write large buffer.
912 */
913 if ((hw->eeprom.word_page_size == 0) &&
914 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
915 ixgbe_detect_eeprom_page_size_generic(hw, offset);
916
917 /*
918 * We cannot hold synchronization semaphores for too long
919 * to avoid other entity starvation. However it is more efficient
920 * to read in bursts than synchronizing access for each word.
921 */
922 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
923 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
924 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
925 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
926 count, &data[i]);
927
928 if (status != 0)
929 break;
930 }
931
932 return status;
933}
934
935/**
936 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
937 * @hw: pointer to hardware structure
938 * @offset: offset within the EEPROM to be written to
939 * @words: number of word(s)
940 * @data: 16 bit word(s) to be written to the EEPROM
941 *
942 * If ixgbe_eeprom_update_checksum is not called after this function, the
943 * EEPROM will most likely contain an invalid checksum.
944 **/
945static int ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
946 u16 words, u16 *data)
947{
948 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
949 u16 page_size;
950 int status;
951 u16 word;
952 u16 i;
953
954 /* Prepare the EEPROM for writing */
955 status = ixgbe_acquire_eeprom(hw);
956 if (status)
957 return status;
958
959 if (ixgbe_ready_eeprom(hw) != 0) {
960 ixgbe_release_eeprom(hw);
961 return -EIO;
962 }
963
964 for (i = 0; i < words; i++) {
965 ixgbe_standby_eeprom(hw);
966
967 /* Send the WRITE ENABLE command (8 bit opcode) */
968 ixgbe_shift_out_eeprom_bits(hw,
969 IXGBE_EEPROM_WREN_OPCODE_SPI,
970 IXGBE_EEPROM_OPCODE_BITS);
971
972 ixgbe_standby_eeprom(hw);
973
974 /* Some SPI eeproms use the 8th address bit embedded
975 * in the opcode
976 */
977 if ((hw->eeprom.address_bits == 8) &&
978 ((offset + i) >= 128))
979 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
980
981 /* Send the Write command (8-bit opcode + addr) */
982 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
983 IXGBE_EEPROM_OPCODE_BITS);
984 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
985 hw->eeprom.address_bits);
986
987 page_size = hw->eeprom.word_page_size;
988
989 /* Send the data in burst via SPI */
990 do {
991 word = data[i];
992 word = (word >> 8) | (word << 8);
993 ixgbe_shift_out_eeprom_bits(hw, word, 16);
994
995 if (page_size == 0)
996 break;
997
998 /* do not wrap around page */
999 if (((offset + i) & (page_size - 1)) ==
1000 (page_size - 1))
1001 break;
1002 } while (++i < words);
1003
1004 ixgbe_standby_eeprom(hw);
1005 usleep_range(10000, 20000);
1006 }
1007 /* Done with writing - release the EEPROM */
1008 ixgbe_release_eeprom(hw);
1009
1010 return 0;
1011}
1012
1013/**
1014 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1015 * @hw: pointer to hardware structure
1016 * @offset: offset within the EEPROM to be written to
1017 * @data: 16 bit word to be written to the EEPROM
1018 *
1019 * If ixgbe_eeprom_update_checksum is not called after this function, the
1020 * EEPROM will most likely contain an invalid checksum.
1021 **/
1022int ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1023{
1024 hw->eeprom.ops.init_params(hw);
1025
1026 if (offset >= hw->eeprom.word_size)
1027 return -EINVAL;
1028
1029 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1030}
1031
1032/**
1033 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1034 * @hw: pointer to hardware structure
1035 * @offset: offset within the EEPROM to be read
1036 * @words: number of word(s)
1037 * @data: read 16 bit words(s) from EEPROM
1038 *
1039 * Reads 16 bit word(s) from EEPROM through bit-bang method
1040 **/
1041int ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1042 u16 words, u16 *data)
1043{
1044 u16 i, count;
1045 int status;
1046
1047 hw->eeprom.ops.init_params(hw);
1048
1049 if (words == 0 || (offset + words > hw->eeprom.word_size))
1050 return -EINVAL;
1051
1052 /*
1053 * We cannot hold synchronization semaphores for too long
1054 * to avoid other entity starvation. However it is more efficient
1055 * to read in bursts than synchronizing access for each word.
1056 */
1057 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1058 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1059 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1060
1061 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1062 count, &data[i]);
1063
1064 if (status)
1065 return status;
1066 }
1067
1068 return 0;
1069}
1070
1071/**
1072 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1073 * @hw: pointer to hardware structure
1074 * @offset: offset within the EEPROM to be read
1075 * @words: number of word(s)
1076 * @data: read 16 bit word(s) from EEPROM
1077 *
1078 * Reads 16 bit word(s) from EEPROM through bit-bang method
1079 **/
1080static int ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1081 u16 words, u16 *data)
1082{
1083 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1084 u16 word_in;
1085 int status;
1086 u16 i;
1087
1088 /* Prepare the EEPROM for reading */
1089 status = ixgbe_acquire_eeprom(hw);
1090 if (status)
1091 return status;
1092
1093 if (ixgbe_ready_eeprom(hw) != 0) {
1094 ixgbe_release_eeprom(hw);
1095 return -EIO;
1096 }
1097
1098 for (i = 0; i < words; i++) {
1099 ixgbe_standby_eeprom(hw);
1100 /* Some SPI eeproms use the 8th address bit embedded
1101 * in the opcode
1102 */
1103 if ((hw->eeprom.address_bits == 8) &&
1104 ((offset + i) >= 128))
1105 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1106
1107 /* Send the READ command (opcode + addr) */
1108 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1109 IXGBE_EEPROM_OPCODE_BITS);
1110 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1111 hw->eeprom.address_bits);
1112
1113 /* Read the data. */
1114 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1115 data[i] = (word_in >> 8) | (word_in << 8);
1116 }
1117
1118 /* End this read operation */
1119 ixgbe_release_eeprom(hw);
1120
1121 return 0;
1122}
1123
1124/**
1125 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1126 * @hw: pointer to hardware structure
1127 * @offset: offset within the EEPROM to be read
1128 * @data: read 16 bit value from EEPROM
1129 *
1130 * Reads 16 bit value from EEPROM through bit-bang method
1131 **/
1132int ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1133 u16 *data)
1134{
1135 hw->eeprom.ops.init_params(hw);
1136
1137 if (offset >= hw->eeprom.word_size)
1138 return -EINVAL;
1139
1140 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1141}
1142
1143/**
1144 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1145 * @hw: pointer to hardware structure
1146 * @offset: offset of word in the EEPROM to read
1147 * @words: number of word(s)
1148 * @data: 16 bit word(s) from the EEPROM
1149 *
1150 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1151 **/
1152int ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1153 u16 words, u16 *data)
1154{
1155 int status;
1156 u32 eerd;
1157 u32 i;
1158
1159 hw->eeprom.ops.init_params(hw);
1160
1161 if (words == 0 || offset >= hw->eeprom.word_size)
1162 return -EINVAL;
1163
1164 for (i = 0; i < words; i++) {
1165 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1166 IXGBE_EEPROM_RW_REG_START;
1167
1168 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1169 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1170
1171 if (status == 0) {
1172 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1173 IXGBE_EEPROM_RW_REG_DATA);
1174 } else {
1175 hw_dbg(hw, "Eeprom read timed out\n");
1176 return status;
1177 }
1178 }
1179
1180 return 0;
1181}
1182
1183/**
1184 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1185 * @hw: pointer to hardware structure
1186 * @offset: offset within the EEPROM to be used as a scratch pad
1187 *
1188 * Discover EEPROM page size by writing marching data at given offset.
1189 * This function is called only when we are writing a new large buffer
1190 * at given offset so the data would be overwritten anyway.
1191 **/
1192static int ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1193 u16 offset)
1194{
1195 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1196 int status;
1197 u16 i;
1198
1199 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1200 data[i] = i;
1201
1202 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1203 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1204 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1205 hw->eeprom.word_page_size = 0;
1206 if (status)
1207 return status;
1208
1209 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1210 if (status)
1211 return status;
1212
1213 /*
1214 * When writing in burst more than the actual page size
1215 * EEPROM address wraps around current page.
1216 */
1217 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1218
1219 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1220 hw->eeprom.word_page_size);
1221 return 0;
1222}
1223
1224/**
1225 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1226 * @hw: pointer to hardware structure
1227 * @offset: offset of word in the EEPROM to read
1228 * @data: word read from the EEPROM
1229 *
1230 * Reads a 16 bit word from the EEPROM using the EERD register.
1231 **/
1232int ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1233{
1234 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1235}
1236
1237/**
1238 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1239 * @hw: pointer to hardware structure
1240 * @offset: offset of word in the EEPROM to write
1241 * @words: number of words
1242 * @data: word(s) write to the EEPROM
1243 *
1244 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1245 **/
1246int ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1247 u16 words, u16 *data)
1248{
1249 int status;
1250 u32 eewr;
1251 u16 i;
1252
1253 hw->eeprom.ops.init_params(hw);
1254
1255 if (words == 0 || offset >= hw->eeprom.word_size)
1256 return -EINVAL;
1257
1258 for (i = 0; i < words; i++) {
1259 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261 IXGBE_EEPROM_RW_REG_START;
1262
1263 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264 if (status) {
1265 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266 return status;
1267 }
1268
1269 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270
1271 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272 if (status) {
1273 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274 return status;
1275 }
1276 }
1277
1278 return 0;
1279}
1280
1281/**
1282 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1283 * @hw: pointer to hardware structure
1284 * @offset: offset of word in the EEPROM to write
1285 * @data: word write to the EEPROM
1286 *
1287 * Write a 16 bit word to the EEPROM using the EEWR register.
1288 **/
1289int ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1290{
1291 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1292}
1293
1294/**
1295 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1296 * @hw: pointer to hardware structure
1297 * @ee_reg: EEPROM flag for polling
1298 *
1299 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1300 * read or write is done respectively.
1301 **/
1302static int ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1303{
1304 u32 i;
1305 u32 reg;
1306
1307 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1308 if (ee_reg == IXGBE_NVM_POLL_READ)
1309 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1310 else
1311 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1312
1313 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1314 return 0;
1315 }
1316 udelay(5);
1317 }
1318 return -EIO;
1319}
1320
1321/**
1322 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1323 * @hw: pointer to hardware structure
1324 *
1325 * Prepares EEPROM for access using bit-bang method. This function should
1326 * be called before issuing a command to the EEPROM.
1327 **/
1328static int ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1329{
1330 u32 eec;
1331 u32 i;
1332
1333 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1334 return -EBUSY;
1335
1336 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1337
1338 /* Request EEPROM Access */
1339 eec |= IXGBE_EEC_REQ;
1340 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1341
1342 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1343 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1344 if (eec & IXGBE_EEC_GNT)
1345 break;
1346 udelay(5);
1347 }
1348
1349 /* Release if grant not acquired */
1350 if (!(eec & IXGBE_EEC_GNT)) {
1351 eec &= ~IXGBE_EEC_REQ;
1352 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1354
1355 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1356 return -EIO;
1357 }
1358
1359 /* Setup EEPROM for Read/Write */
1360 /* Clear CS and SK */
1361 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1362 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1363 IXGBE_WRITE_FLUSH(hw);
1364 udelay(1);
1365 return 0;
1366}
1367
1368/**
1369 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1370 * @hw: pointer to hardware structure
1371 *
1372 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1373 **/
1374static int ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1375{
1376 u32 timeout = 2000;
1377 u32 i;
1378 u32 swsm;
1379
1380 /* Get SMBI software semaphore between device drivers first */
1381 for (i = 0; i < timeout; i++) {
1382 /*
1383 * If the SMBI bit is 0 when we read it, then the bit will be
1384 * set and we have the semaphore
1385 */
1386 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1387 if (!(swsm & IXGBE_SWSM_SMBI))
1388 break;
1389 usleep_range(50, 100);
1390 }
1391
1392 if (i == timeout) {
1393 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1394 /* this release is particularly important because our attempts
1395 * above to get the semaphore may have succeeded, and if there
1396 * was a timeout, we should unconditionally clear the semaphore
1397 * bits to free the driver to make progress
1398 */
1399 ixgbe_release_eeprom_semaphore(hw);
1400
1401 usleep_range(50, 100);
1402 /* one last try
1403 * If the SMBI bit is 0 when we read it, then the bit will be
1404 * set and we have the semaphore
1405 */
1406 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1407 if (swsm & IXGBE_SWSM_SMBI) {
1408 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1409 return -EIO;
1410 }
1411 }
1412
1413 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1414 for (i = 0; i < timeout; i++) {
1415 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1416
1417 /* Set the SW EEPROM semaphore bit to request access */
1418 swsm |= IXGBE_SWSM_SWESMBI;
1419 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1420
1421 /* If we set the bit successfully then we got the
1422 * semaphore.
1423 */
1424 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425 if (swsm & IXGBE_SWSM_SWESMBI)
1426 break;
1427
1428 usleep_range(50, 100);
1429 }
1430
1431 /* Release semaphores and return error if SW EEPROM semaphore
1432 * was not granted because we don't have access to the EEPROM
1433 */
1434 if (i >= timeout) {
1435 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1436 ixgbe_release_eeprom_semaphore(hw);
1437 return -EIO;
1438 }
1439
1440 return 0;
1441}
1442
1443/**
1444 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1445 * @hw: pointer to hardware structure
1446 *
1447 * This function clears hardware semaphore bits.
1448 **/
1449static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1450{
1451 u32 swsm;
1452
1453 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454
1455 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1456 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1457 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458 IXGBE_WRITE_FLUSH(hw);
1459}
1460
1461/**
1462 * ixgbe_ready_eeprom - Polls for EEPROM ready
1463 * @hw: pointer to hardware structure
1464 **/
1465static int ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1466{
1467 u16 i;
1468 u8 spi_stat_reg;
1469
1470 /*
1471 * Read "Status Register" repeatedly until the LSB is cleared. The
1472 * EEPROM will signal that the command has been completed by clearing
1473 * bit 0 of the internal status register. If it's not cleared within
1474 * 5 milliseconds, then error out.
1475 */
1476 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1477 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1478 IXGBE_EEPROM_OPCODE_BITS);
1479 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1480 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1481 break;
1482
1483 udelay(5);
1484 ixgbe_standby_eeprom(hw);
1485 }
1486
1487 /*
1488 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1489 * devices (and only 0-5mSec on 5V devices)
1490 */
1491 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1492 hw_dbg(hw, "SPI EEPROM Status error\n");
1493 return -EIO;
1494 }
1495
1496 return 0;
1497}
1498
1499/**
1500 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1501 * @hw: pointer to hardware structure
1502 **/
1503static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1504{
1505 u32 eec;
1506
1507 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1508
1509 /* Toggle CS to flush commands */
1510 eec |= IXGBE_EEC_CS;
1511 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512 IXGBE_WRITE_FLUSH(hw);
1513 udelay(1);
1514 eec &= ~IXGBE_EEC_CS;
1515 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1516 IXGBE_WRITE_FLUSH(hw);
1517 udelay(1);
1518}
1519
1520/**
1521 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1522 * @hw: pointer to hardware structure
1523 * @data: data to send to the EEPROM
1524 * @count: number of bits to shift out
1525 **/
1526static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1527 u16 count)
1528{
1529 u32 eec;
1530 u32 mask;
1531 u32 i;
1532
1533 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1534
1535 /*
1536 * Mask is used to shift "count" bits of "data" out to the EEPROM
1537 * one bit at a time. Determine the starting bit based on count
1538 */
1539 mask = BIT(count - 1);
1540
1541 for (i = 0; i < count; i++) {
1542 /*
1543 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1544 * "1", and then raising and then lowering the clock (the SK
1545 * bit controls the clock input to the EEPROM). A "0" is
1546 * shifted out to the EEPROM by setting "DI" to "0" and then
1547 * raising and then lowering the clock.
1548 */
1549 if (data & mask)
1550 eec |= IXGBE_EEC_DI;
1551 else
1552 eec &= ~IXGBE_EEC_DI;
1553
1554 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555 IXGBE_WRITE_FLUSH(hw);
1556
1557 udelay(1);
1558
1559 ixgbe_raise_eeprom_clk(hw, &eec);
1560 ixgbe_lower_eeprom_clk(hw, &eec);
1561
1562 /*
1563 * Shift mask to signify next bit of data to shift in to the
1564 * EEPROM
1565 */
1566 mask = mask >> 1;
1567 }
1568
1569 /* We leave the "DI" bit set to "0" when we leave this routine. */
1570 eec &= ~IXGBE_EEC_DI;
1571 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1572 IXGBE_WRITE_FLUSH(hw);
1573}
1574
1575/**
1576 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1577 * @hw: pointer to hardware structure
1578 * @count: number of bits to shift
1579 **/
1580static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1581{
1582 u32 eec;
1583 u32 i;
1584 u16 data = 0;
1585
1586 /*
1587 * In order to read a register from the EEPROM, we need to shift
1588 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1589 * the clock input to the EEPROM (setting the SK bit), and then reading
1590 * the value of the "DO" bit. During this "shifting in" process the
1591 * "DI" bit should always be clear.
1592 */
1593 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1594
1595 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1596
1597 for (i = 0; i < count; i++) {
1598 data = data << 1;
1599 ixgbe_raise_eeprom_clk(hw, &eec);
1600
1601 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1602
1603 eec &= ~(IXGBE_EEC_DI);
1604 if (eec & IXGBE_EEC_DO)
1605 data |= 1;
1606
1607 ixgbe_lower_eeprom_clk(hw, &eec);
1608 }
1609
1610 return data;
1611}
1612
1613/**
1614 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1615 * @hw: pointer to hardware structure
1616 * @eec: EEC register's current value
1617 **/
1618static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1619{
1620 /*
1621 * Raise the clock input to the EEPROM
1622 * (setting the SK bit), then delay
1623 */
1624 *eec = *eec | IXGBE_EEC_SK;
1625 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1626 IXGBE_WRITE_FLUSH(hw);
1627 udelay(1);
1628}
1629
1630/**
1631 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1632 * @hw: pointer to hardware structure
1633 * @eec: EEC's current value
1634 **/
1635static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1636{
1637 /*
1638 * Lower the clock input to the EEPROM (clearing the SK bit), then
1639 * delay
1640 */
1641 *eec = *eec & ~IXGBE_EEC_SK;
1642 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1643 IXGBE_WRITE_FLUSH(hw);
1644 udelay(1);
1645}
1646
1647/**
1648 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1649 * @hw: pointer to hardware structure
1650 **/
1651static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1652{
1653 u32 eec;
1654
1655 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1656
1657 eec |= IXGBE_EEC_CS; /* Pull CS high */
1658 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1659
1660 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1661 IXGBE_WRITE_FLUSH(hw);
1662
1663 udelay(1);
1664
1665 /* Stop requesting EEPROM access */
1666 eec &= ~IXGBE_EEC_REQ;
1667 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1668
1669 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1670
1671 /*
1672 * Delay before attempt to obtain semaphore again to allow FW
1673 * access. semaphore_delay is in ms we need us for usleep_range
1674 */
1675 usleep_range(hw->eeprom.semaphore_delay * 1000,
1676 hw->eeprom.semaphore_delay * 2000);
1677}
1678
1679/**
1680 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1681 * @hw: pointer to hardware structure
1682 **/
1683int ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1684{
1685 u16 i;
1686 u16 j;
1687 u16 checksum = 0;
1688 u16 length = 0;
1689 u16 pointer = 0;
1690 u16 word = 0;
1691
1692 /* Include 0x0-0x3F in the checksum */
1693 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1694 if (hw->eeprom.ops.read(hw, i, &word)) {
1695 hw_dbg(hw, "EEPROM read failed\n");
1696 break;
1697 }
1698 checksum += word;
1699 }
1700
1701 /* Include all data from pointers except for the fw pointer */
1702 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1703 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1704 hw_dbg(hw, "EEPROM read failed\n");
1705 return -EIO;
1706 }
1707
1708 /* If the pointer seems invalid */
1709 if (pointer == 0xFFFF || pointer == 0)
1710 continue;
1711
1712 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1713 hw_dbg(hw, "EEPROM read failed\n");
1714 return -EIO;
1715 }
1716
1717 if (length == 0xFFFF || length == 0)
1718 continue;
1719
1720 for (j = pointer + 1; j <= pointer + length; j++) {
1721 if (hw->eeprom.ops.read(hw, j, &word)) {
1722 hw_dbg(hw, "EEPROM read failed\n");
1723 return -EIO;
1724 }
1725 checksum += word;
1726 }
1727 }
1728
1729 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1730
1731 return (int)checksum;
1732}
1733
1734/**
1735 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1736 * @hw: pointer to hardware structure
1737 * @checksum_val: calculated checksum
1738 *
1739 * Performs checksum calculation and validates the EEPROM checksum. If the
1740 * caller does not need checksum_val, the value can be NULL.
1741 **/
1742int ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1743 u16 *checksum_val)
1744{
1745 u16 read_checksum = 0;
1746 u16 checksum;
1747 int status;
1748
1749 /*
1750 * Read the first word from the EEPROM. If this times out or fails, do
1751 * not continue or we could be in for a very long wait while every
1752 * EEPROM read fails
1753 */
1754 status = hw->eeprom.ops.read(hw, 0, &checksum);
1755 if (status) {
1756 hw_dbg(hw, "EEPROM read failed\n");
1757 return status;
1758 }
1759
1760 status = hw->eeprom.ops.calc_checksum(hw);
1761 if (status < 0)
1762 return status;
1763
1764 checksum = (u16)(status & 0xffff);
1765
1766 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1767 if (status) {
1768 hw_dbg(hw, "EEPROM read failed\n");
1769 return status;
1770 }
1771
1772 /* Verify read checksum from EEPROM is the same as
1773 * calculated checksum
1774 */
1775 if (read_checksum != checksum)
1776 status = -EIO;
1777
1778 /* If the user cares, return the calculated checksum */
1779 if (checksum_val)
1780 *checksum_val = checksum;
1781
1782 return status;
1783}
1784
1785/**
1786 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1787 * @hw: pointer to hardware structure
1788 **/
1789int ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1790{
1791 u16 checksum;
1792 int status;
1793
1794 /*
1795 * Read the first word from the EEPROM. If this times out or fails, do
1796 * not continue or we could be in for a very long wait while every
1797 * EEPROM read fails
1798 */
1799 status = hw->eeprom.ops.read(hw, 0, &checksum);
1800 if (status) {
1801 hw_dbg(hw, "EEPROM read failed\n");
1802 return status;
1803 }
1804
1805 status = hw->eeprom.ops.calc_checksum(hw);
1806 if (status < 0)
1807 return status;
1808
1809 checksum = (u16)(status & 0xffff);
1810
1811 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1812
1813 return status;
1814}
1815
1816/**
1817 * ixgbe_set_rar_generic - Set Rx address register
1818 * @hw: pointer to hardware structure
1819 * @index: Receive address register to write
1820 * @addr: Address to put into receive address register
1821 * @vmdq: VMDq "set" or "pool" index
1822 * @enable_addr: set flag that address is active
1823 *
1824 * Puts an ethernet address into a receive address register.
1825 **/
1826int ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1827 u32 enable_addr)
1828{
1829 u32 rar_low, rar_high;
1830 u32 rar_entries = hw->mac.num_rar_entries;
1831
1832 /* Make sure we are using a valid rar index range */
1833 if (index >= rar_entries) {
1834 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1835 return -EINVAL;
1836 }
1837
1838 /* setup VMDq pool selection before this RAR gets enabled */
1839 hw->mac.ops.set_vmdq(hw, index, vmdq);
1840
1841 /*
1842 * HW expects these in little endian so we reverse the byte
1843 * order from network order (big endian) to little endian
1844 */
1845 rar_low = ((u32)addr[0] |
1846 ((u32)addr[1] << 8) |
1847 ((u32)addr[2] << 16) |
1848 ((u32)addr[3] << 24));
1849 /*
1850 * Some parts put the VMDq setting in the extra RAH bits,
1851 * so save everything except the lower 16 bits that hold part
1852 * of the address and the address valid bit.
1853 */
1854 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1855 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1856 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1857
1858 if (enable_addr != 0)
1859 rar_high |= IXGBE_RAH_AV;
1860
1861 /* Record lower 32 bits of MAC address and then make
1862 * sure that write is flushed to hardware before writing
1863 * the upper 16 bits and setting the valid bit.
1864 */
1865 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1866 IXGBE_WRITE_FLUSH(hw);
1867 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1868
1869 return 0;
1870}
1871
1872/**
1873 * ixgbe_clear_rar_generic - Remove Rx address register
1874 * @hw: pointer to hardware structure
1875 * @index: Receive address register to write
1876 *
1877 * Clears an ethernet address from a receive address register.
1878 **/
1879int ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1880{
1881 u32 rar_high;
1882 u32 rar_entries = hw->mac.num_rar_entries;
1883
1884 /* Make sure we are using a valid rar index range */
1885 if (index >= rar_entries) {
1886 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1887 return -EINVAL;
1888 }
1889
1890 /*
1891 * Some parts put the VMDq setting in the extra RAH bits,
1892 * so save everything except the lower 16 bits that hold part
1893 * of the address and the address valid bit.
1894 */
1895 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1896 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1897
1898 /* Clear the address valid bit and upper 16 bits of the address
1899 * before clearing the lower bits. This way we aren't updating
1900 * a live filter.
1901 */
1902 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903 IXGBE_WRITE_FLUSH(hw);
1904 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1905
1906 /* clear VMDq pool/queue selection for this RAR */
1907 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1908
1909 return 0;
1910}
1911
1912/**
1913 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1914 * @hw: pointer to hardware structure
1915 *
1916 * Places the MAC address in receive address register 0 and clears the rest
1917 * of the receive address registers. Clears the multicast table. Assumes
1918 * the receiver is in reset when the routine is called.
1919 **/
1920int ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1921{
1922 u32 i;
1923 u32 rar_entries = hw->mac.num_rar_entries;
1924
1925 /*
1926 * If the current mac address is valid, assume it is a software override
1927 * to the permanent address.
1928 * Otherwise, use the permanent address from the eeprom.
1929 */
1930 if (!is_valid_ether_addr(hw->mac.addr)) {
1931 /* Get the MAC address from the RAR0 for later reference */
1932 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1933
1934 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1935 } else {
1936 /* Setup the receive address. */
1937 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1938 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1939
1940 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1941 }
1942
1943 /* clear VMDq pool/queue selection for RAR 0 */
1944 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1945
1946 hw->addr_ctrl.overflow_promisc = 0;
1947
1948 hw->addr_ctrl.rar_used_count = 1;
1949
1950 /* Zero out the other receive addresses. */
1951 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1952 for (i = 1; i < rar_entries; i++) {
1953 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1954 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1955 }
1956
1957 /* Clear the MTA */
1958 hw->addr_ctrl.mta_in_use = 0;
1959 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1960
1961 hw_dbg(hw, " Clearing MTA\n");
1962 for (i = 0; i < hw->mac.mcft_size; i++)
1963 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1964
1965 if (hw->mac.ops.init_uta_tables)
1966 hw->mac.ops.init_uta_tables(hw);
1967
1968 return 0;
1969}
1970
1971/**
1972 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1973 * @hw: pointer to hardware structure
1974 * @mc_addr: the multicast address
1975 *
1976 * Extracts the 12 bits, from a multicast address, to determine which
1977 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1978 * incoming rx multicast addresses, to determine the bit-vector to check in
1979 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1980 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1981 * to mc_filter_type.
1982 **/
1983static int ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1984{
1985 u32 vector = 0;
1986
1987 switch (hw->mac.mc_filter_type) {
1988 case 0: /* use bits [47:36] of the address */
1989 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1990 break;
1991 case 1: /* use bits [46:35] of the address */
1992 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1993 break;
1994 case 2: /* use bits [45:34] of the address */
1995 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1996 break;
1997 case 3: /* use bits [43:32] of the address */
1998 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1999 break;
2000 default: /* Invalid mc_filter_type */
2001 hw_dbg(hw, "MC filter type param set incorrectly\n");
2002 break;
2003 }
2004
2005 /* vector can only be 12-bits or boundary will be exceeded */
2006 vector &= 0xFFF;
2007 return vector;
2008}
2009
2010/**
2011 * ixgbe_set_mta - Set bit-vector in multicast table
2012 * @hw: pointer to hardware structure
2013 * @mc_addr: Multicast address
2014 *
2015 * Sets the bit-vector in the multicast table.
2016 **/
2017static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2018{
2019 u32 vector;
2020 u32 vector_bit;
2021 u32 vector_reg;
2022
2023 hw->addr_ctrl.mta_in_use++;
2024
2025 vector = ixgbe_mta_vector(hw, mc_addr);
2026 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2027
2028 /*
2029 * The MTA is a register array of 128 32-bit registers. It is treated
2030 * like an array of 4096 bits. We want to set bit
2031 * BitArray[vector_value]. So we figure out what register the bit is
2032 * in, read it, OR in the new bit, then write back the new value. The
2033 * register is determined by the upper 7 bits of the vector value and
2034 * the bit within that register are determined by the lower 5 bits of
2035 * the value.
2036 */
2037 vector_reg = (vector >> 5) & 0x7F;
2038 vector_bit = vector & 0x1F;
2039 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2040}
2041
2042/**
2043 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2044 * @hw: pointer to hardware structure
2045 * @netdev: pointer to net device structure
2046 *
2047 * The given list replaces any existing list. Clears the MC addrs from receive
2048 * address registers and the multicast table. Uses unused receive address
2049 * registers for the first multicast addresses, and hashes the rest into the
2050 * multicast table.
2051 **/
2052int ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2053 struct net_device *netdev)
2054{
2055 struct netdev_hw_addr *ha;
2056 u32 i;
2057
2058 /*
2059 * Set the new number of MC addresses that we are being requested to
2060 * use.
2061 */
2062 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2063 hw->addr_ctrl.mta_in_use = 0;
2064
2065 /* Clear mta_shadow */
2066 hw_dbg(hw, " Clearing MTA\n");
2067 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2068
2069 /* Update mta shadow */
2070 netdev_for_each_mc_addr(ha, netdev) {
2071 hw_dbg(hw, " Adding the multicast addresses:\n");
2072 ixgbe_set_mta(hw, ha->addr);
2073 }
2074
2075 /* Enable mta */
2076 for (i = 0; i < hw->mac.mcft_size; i++)
2077 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2078 hw->mac.mta_shadow[i]);
2079
2080 if (hw->addr_ctrl.mta_in_use > 0)
2081 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2082 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2083
2084 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2085 return 0;
2086}
2087
2088/**
2089 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2090 * @hw: pointer to hardware structure
2091 *
2092 * Enables multicast address in RAR and the use of the multicast hash table.
2093 **/
2094int ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2095{
2096 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2097
2098 if (a->mta_in_use > 0)
2099 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2100 hw->mac.mc_filter_type);
2101
2102 return 0;
2103}
2104
2105/**
2106 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2107 * @hw: pointer to hardware structure
2108 *
2109 * Disables multicast address in RAR and the use of the multicast hash table.
2110 **/
2111int ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2112{
2113 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2114
2115 if (a->mta_in_use > 0)
2116 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2117
2118 return 0;
2119}
2120
2121/**
2122 * ixgbe_fc_enable_generic - Enable flow control
2123 * @hw: pointer to hardware structure
2124 *
2125 * Enable flow control according to the current settings.
2126 **/
2127int ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2128{
2129 u32 mflcn_reg, fccfg_reg;
2130 u32 reg;
2131 u32 fcrtl, fcrth;
2132 int i;
2133
2134 /* Validate the water mark configuration. */
2135 if (!hw->fc.pause_time)
2136 return -EINVAL;
2137
2138 /* Low water mark of zero causes XOFF floods */
2139 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2140 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2141 hw->fc.high_water[i]) {
2142 if (!hw->fc.low_water[i] ||
2143 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2144 hw_dbg(hw, "Invalid water mark configuration\n");
2145 return -EINVAL;
2146 }
2147 }
2148 }
2149
2150 /* Negotiate the fc mode to use */
2151 hw->mac.ops.fc_autoneg(hw);
2152
2153 /* Disable any previous flow control settings */
2154 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2155 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2156
2157 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2158 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2159
2160 /*
2161 * The possible values of fc.current_mode are:
2162 * 0: Flow control is completely disabled
2163 * 1: Rx flow control is enabled (we can receive pause frames,
2164 * but not send pause frames).
2165 * 2: Tx flow control is enabled (we can send pause frames but
2166 * we do not support receiving pause frames).
2167 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2168 * other: Invalid.
2169 */
2170 switch (hw->fc.current_mode) {
2171 case ixgbe_fc_none:
2172 /*
2173 * Flow control is disabled by software override or autoneg.
2174 * The code below will actually disable it in the HW.
2175 */
2176 break;
2177 case ixgbe_fc_rx_pause:
2178 /*
2179 * Rx Flow control is enabled and Tx Flow control is
2180 * disabled by software override. Since there really
2181 * isn't a way to advertise that we are capable of RX
2182 * Pause ONLY, we will advertise that we support both
2183 * symmetric and asymmetric Rx PAUSE. Later, we will
2184 * disable the adapter's ability to send PAUSE frames.
2185 */
2186 mflcn_reg |= IXGBE_MFLCN_RFCE;
2187 break;
2188 case ixgbe_fc_tx_pause:
2189 /*
2190 * Tx Flow control is enabled, and Rx Flow control is
2191 * disabled by software override.
2192 */
2193 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2194 break;
2195 case ixgbe_fc_full:
2196 /* Flow control (both Rx and Tx) is enabled by SW override. */
2197 mflcn_reg |= IXGBE_MFLCN_RFCE;
2198 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2199 break;
2200 default:
2201 hw_dbg(hw, "Flow control param set incorrectly\n");
2202 return -EIO;
2203 }
2204
2205 /* Set 802.3x based flow control settings. */
2206 mflcn_reg |= IXGBE_MFLCN_DPF;
2207 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2208 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2209
2210 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2211 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2212 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2213 hw->fc.high_water[i]) {
2214 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2215 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2216 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2217 } else {
2218 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2219 /*
2220 * In order to prevent Tx hangs when the internal Tx
2221 * switch is enabled we must set the high water mark
2222 * to the Rx packet buffer size - 24KB. This allows
2223 * the Tx switch to function even under heavy Rx
2224 * workloads.
2225 */
2226 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2227 }
2228
2229 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2230 }
2231
2232 /* Configure pause time (2 TCs per register) */
2233 reg = hw->fc.pause_time * 0x00010001U;
2234 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2235 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2236
2237 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2238
2239 return 0;
2240}
2241
2242/**
2243 * ixgbe_negotiate_fc - Negotiate flow control
2244 * @hw: pointer to hardware structure
2245 * @adv_reg: flow control advertised settings
2246 * @lp_reg: link partner's flow control settings
2247 * @adv_sym: symmetric pause bit in advertisement
2248 * @adv_asm: asymmetric pause bit in advertisement
2249 * @lp_sym: symmetric pause bit in link partner advertisement
2250 * @lp_asm: asymmetric pause bit in link partner advertisement
2251 *
2252 * Find the intersection between advertised settings and link partner's
2253 * advertised settings
2254 **/
2255int ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2256 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2257{
2258 if ((!(adv_reg)) || (!(lp_reg)))
2259 return -EINVAL;
2260
2261 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2262 /*
2263 * Now we need to check if the user selected Rx ONLY
2264 * of pause frames. In this case, we had to advertise
2265 * FULL flow control because we could not advertise RX
2266 * ONLY. Hence, we must now check to see if we need to
2267 * turn OFF the TRANSMISSION of PAUSE frames.
2268 */
2269 if (hw->fc.requested_mode == ixgbe_fc_full) {
2270 hw->fc.current_mode = ixgbe_fc_full;
2271 hw_dbg(hw, "Flow Control = FULL.\n");
2272 } else {
2273 hw->fc.current_mode = ixgbe_fc_rx_pause;
2274 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2275 }
2276 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2277 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2278 hw->fc.current_mode = ixgbe_fc_tx_pause;
2279 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2280 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2281 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2282 hw->fc.current_mode = ixgbe_fc_rx_pause;
2283 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2284 } else {
2285 hw->fc.current_mode = ixgbe_fc_none;
2286 hw_dbg(hw, "Flow Control = NONE.\n");
2287 }
2288 return 0;
2289}
2290
2291/**
2292 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2293 * @hw: pointer to hardware structure
2294 *
2295 * Enable flow control according on 1 gig fiber.
2296 **/
2297static int ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2298{
2299 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2300 int ret_val;
2301
2302 /*
2303 * On multispeed fiber at 1g, bail out if
2304 * - link is up but AN did not complete, or if
2305 * - link is up and AN completed but timed out
2306 */
2307
2308 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2309 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2310 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2311 return -EIO;
2312
2313 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2314 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2315
2316 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2317 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2318 IXGBE_PCS1GANA_ASM_PAUSE,
2319 IXGBE_PCS1GANA_SYM_PAUSE,
2320 IXGBE_PCS1GANA_ASM_PAUSE);
2321
2322 return ret_val;
2323}
2324
2325/**
2326 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2327 * @hw: pointer to hardware structure
2328 *
2329 * Enable flow control according to IEEE clause 37.
2330 **/
2331static int ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2332{
2333 u32 links2, anlp1_reg, autoc_reg, links;
2334 int ret_val;
2335
2336 /*
2337 * On backplane, bail out if
2338 * - backplane autoneg was not completed, or if
2339 * - we are 82599 and link partner is not AN enabled
2340 */
2341 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2342 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2343 return -EIO;
2344
2345 if (hw->mac.type == ixgbe_mac_82599EB) {
2346 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2347 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2348 return -EIO;
2349 }
2350 /*
2351 * Read the 10g AN autoc and LP ability registers and resolve
2352 * local flow control settings accordingly
2353 */
2354 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2355 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2356
2357 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2358 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2359 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2360
2361 return ret_val;
2362}
2363
2364/**
2365 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2366 * @hw: pointer to hardware structure
2367 *
2368 * Enable flow control according to IEEE clause 37.
2369 **/
2370static int ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2371{
2372 u16 technology_ability_reg = 0;
2373 u16 lp_technology_ability_reg = 0;
2374
2375 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2376 MDIO_MMD_AN,
2377 &technology_ability_reg);
2378 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2379 MDIO_MMD_AN,
2380 &lp_technology_ability_reg);
2381
2382 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2383 (u32)lp_technology_ability_reg,
2384 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2385 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2386}
2387
2388/**
2389 * ixgbe_fc_autoneg - Configure flow control
2390 * @hw: pointer to hardware structure
2391 *
2392 * Compares our advertised flow control capabilities to those advertised by
2393 * our link partner, and determines the proper flow control mode to use.
2394 **/
2395void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2396{
2397 ixgbe_link_speed speed;
2398 int ret_val = -EIO;
2399 bool link_up;
2400
2401 /*
2402 * AN should have completed when the cable was plugged in.
2403 * Look for reasons to bail out. Bail out if:
2404 * - FC autoneg is disabled, or if
2405 * - link is not up.
2406 *
2407 * Since we're being called from an LSC, link is already known to be up.
2408 * So use link_up_wait_to_complete=false.
2409 */
2410 if (hw->fc.disable_fc_autoneg)
2411 goto out;
2412
2413 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2414 if (!link_up)
2415 goto out;
2416
2417 switch (hw->phy.media_type) {
2418 /* Autoneg flow control on fiber adapters */
2419 case ixgbe_media_type_fiber:
2420 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2421 ret_val = ixgbe_fc_autoneg_fiber(hw);
2422 break;
2423
2424 /* Autoneg flow control on backplane adapters */
2425 case ixgbe_media_type_backplane:
2426 ret_val = ixgbe_fc_autoneg_backplane(hw);
2427 break;
2428
2429 /* Autoneg flow control on copper adapters */
2430 case ixgbe_media_type_copper:
2431 if (ixgbe_device_supports_autoneg_fc(hw))
2432 ret_val = ixgbe_fc_autoneg_copper(hw);
2433 break;
2434
2435 default:
2436 break;
2437 }
2438
2439out:
2440 if (ret_val == 0) {
2441 hw->fc.fc_was_autonegged = true;
2442 } else {
2443 hw->fc.fc_was_autonegged = false;
2444 hw->fc.current_mode = hw->fc.requested_mode;
2445 }
2446}
2447
2448/**
2449 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2450 * @hw: pointer to hardware structure
2451 *
2452 * System-wide timeout range is encoded in PCIe Device Control2 register.
2453 *
2454 * Add 10% to specified maximum and return the number of times to poll for
2455 * completion timeout, in units of 100 microsec. Never return less than
2456 * 800 = 80 millisec.
2457 **/
2458static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2459{
2460 s16 devctl2;
2461 u32 pollcnt;
2462
2463 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2464 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2465
2466 switch (devctl2) {
2467 case IXGBE_PCIDEVCTRL2_65_130ms:
2468 pollcnt = 1300; /* 130 millisec */
2469 break;
2470 case IXGBE_PCIDEVCTRL2_260_520ms:
2471 pollcnt = 5200; /* 520 millisec */
2472 break;
2473 case IXGBE_PCIDEVCTRL2_1_2s:
2474 pollcnt = 20000; /* 2 sec */
2475 break;
2476 case IXGBE_PCIDEVCTRL2_4_8s:
2477 pollcnt = 80000; /* 8 sec */
2478 break;
2479 case IXGBE_PCIDEVCTRL2_17_34s:
2480 pollcnt = 34000; /* 34 sec */
2481 break;
2482 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2483 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2484 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2485 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2486 default:
2487 pollcnt = 800; /* 80 millisec minimum */
2488 break;
2489 }
2490
2491 /* add 10% to spec maximum */
2492 return (pollcnt * 11) / 10;
2493}
2494
2495/**
2496 * ixgbe_disable_pcie_primary - Disable PCI-express primary access
2497 * @hw: pointer to hardware structure
2498 *
2499 * Disables PCI-Express primary access and verifies there are no pending
2500 * requests. -EALREADY is returned if primary disable
2501 * bit hasn't caused the primary requests to be disabled, else 0
2502 * is returned signifying primary requests disabled.
2503 **/
2504static int ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2505{
2506 u32 i, poll;
2507 u16 value;
2508
2509 /* Always set this bit to ensure any future transactions are blocked */
2510 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2511
2512 /* Poll for bit to read as set */
2513 for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2514 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2515 break;
2516 usleep_range(100, 120);
2517 }
2518 if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2519 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2520 goto gio_disable_fail;
2521 }
2522
2523 /* Exit if primary requests are blocked */
2524 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2525 ixgbe_removed(hw->hw_addr))
2526 return 0;
2527
2528 /* Poll for primary request bit to clear */
2529 for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2530 udelay(100);
2531 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2532 return 0;
2533 }
2534
2535 /*
2536 * Two consecutive resets are required via CTRL.RST per datasheet
2537 * 5.2.5.3.2 Primary Disable. We set a flag to inform the reset routine
2538 * of this need. The first reset prevents new primary requests from
2539 * being issued by our device. We then must wait 1usec or more for any
2540 * remaining completions from the PCIe bus to trickle in, and then reset
2541 * again to clear out any effects they may have had on our device.
2542 */
2543 hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2544gio_disable_fail:
2545 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2546
2547 if (hw->mac.type >= ixgbe_mac_X550)
2548 return 0;
2549
2550 /*
2551 * Before proceeding, make sure that the PCIe block does not have
2552 * transactions pending.
2553 */
2554 poll = ixgbe_pcie_timeout_poll(hw);
2555 for (i = 0; i < poll; i++) {
2556 udelay(100);
2557 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2558 if (ixgbe_removed(hw->hw_addr))
2559 return 0;
2560 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2561 return 0;
2562 }
2563
2564 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2565 return -EALREADY;
2566}
2567
2568/**
2569 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2570 * @hw: pointer to hardware structure
2571 * @mask: Mask to specify which semaphore to acquire
2572 *
2573 * Acquires the SWFW semaphore through the GSSR register for the specified
2574 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2575 **/
2576int ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577{
2578 u32 gssr = 0;
2579 u32 swmask = mask;
2580 u32 fwmask = mask << 5;
2581 u32 timeout = 200;
2582 u32 i;
2583
2584 for (i = 0; i < timeout; i++) {
2585 /*
2586 * SW NVM semaphore bit is used for access to all
2587 * SW_FW_SYNC bits (not just NVM)
2588 */
2589 if (ixgbe_get_eeprom_semaphore(hw))
2590 return -EBUSY;
2591
2592 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593 if (!(gssr & (fwmask | swmask))) {
2594 gssr |= swmask;
2595 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2596 ixgbe_release_eeprom_semaphore(hw);
2597 return 0;
2598 } else {
2599 /* Resource is currently in use by FW or SW */
2600 ixgbe_release_eeprom_semaphore(hw);
2601 usleep_range(5000, 10000);
2602 }
2603 }
2604
2605 /* If time expired clear the bits holding the lock and retry */
2606 if (gssr & (fwmask | swmask))
2607 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2608
2609 usleep_range(5000, 10000);
2610 return -EBUSY;
2611}
2612
2613/**
2614 * ixgbe_release_swfw_sync - Release SWFW semaphore
2615 * @hw: pointer to hardware structure
2616 * @mask: Mask to specify which semaphore to release
2617 *
2618 * Releases the SWFW semaphore through the GSSR register for the specified
2619 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2620 **/
2621void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2622{
2623 u32 gssr;
2624 u32 swmask = mask;
2625
2626 ixgbe_get_eeprom_semaphore(hw);
2627
2628 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2629 gssr &= ~swmask;
2630 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2631
2632 ixgbe_release_eeprom_semaphore(hw);
2633}
2634
2635/**
2636 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2637 * @hw: pointer to hardware structure
2638 * @reg_val: Value we read from AUTOC
2639 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2640 * true in this the generic case.
2641 *
2642 * The default case requires no protection so just to the register read.
2643 **/
2644int prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2645{
2646 *locked = false;
2647 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2648 return 0;
2649}
2650
2651/**
2652 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2653 * @hw: pointer to hardware structure
2654 * @reg_val: value to write to AUTOC
2655 * @locked: bool to indicate whether the SW/FW lock was already taken by
2656 * previous read.
2657 **/
2658int prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2659{
2660 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2661 return 0;
2662}
2663
2664/**
2665 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2666 * @hw: pointer to hardware structure
2667 *
2668 * Stops the receive data path and waits for the HW to internally
2669 * empty the Rx security block.
2670 **/
2671int ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2672{
2673#define IXGBE_MAX_SECRX_POLL 40
2674 int i;
2675 int secrxreg;
2676
2677 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2678 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2679 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2680 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2681 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2682 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2683 break;
2684 else
2685 /* Use interrupt-safe sleep just in case */
2686 udelay(1000);
2687 }
2688
2689 /* For informational purposes only */
2690 if (i >= IXGBE_MAX_SECRX_POLL)
2691 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2692
2693 return 0;
2694
2695}
2696
2697/**
2698 * ixgbe_enable_rx_buff_generic - Enables the receive data path
2699 * @hw: pointer to hardware structure
2700 *
2701 * Enables the receive data path
2702 **/
2703int ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2704{
2705 u32 secrxreg;
2706
2707 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2709 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710 IXGBE_WRITE_FLUSH(hw);
2711
2712 return 0;
2713}
2714
2715/**
2716 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2717 * @hw: pointer to hardware structure
2718 * @regval: register value to write to RXCTRL
2719 *
2720 * Enables the Rx DMA unit
2721 **/
2722int ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2723{
2724 if (regval & IXGBE_RXCTRL_RXEN)
2725 hw->mac.ops.enable_rx(hw);
2726 else
2727 hw->mac.ops.disable_rx(hw);
2728
2729 return 0;
2730}
2731
2732/**
2733 * ixgbe_blink_led_start_generic - Blink LED based on index.
2734 * @hw: pointer to hardware structure
2735 * @index: led number to blink
2736 **/
2737int ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2738{
2739 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2740 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2741 ixgbe_link_speed speed = 0;
2742 bool link_up = false;
2743 bool locked = false;
2744 int ret_val;
2745
2746 if (index > 3)
2747 return -EINVAL;
2748
2749 /*
2750 * Link must be up to auto-blink the LEDs;
2751 * Force it if link is down.
2752 */
2753 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2754
2755 if (!link_up) {
2756 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2757 if (ret_val)
2758 return ret_val;
2759
2760 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2761 autoc_reg |= IXGBE_AUTOC_FLU;
2762
2763 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2764 if (ret_val)
2765 return ret_val;
2766
2767 IXGBE_WRITE_FLUSH(hw);
2768
2769 usleep_range(10000, 20000);
2770 }
2771
2772 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2773 led_reg |= IXGBE_LED_BLINK(index);
2774 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2775 IXGBE_WRITE_FLUSH(hw);
2776
2777 return 0;
2778}
2779
2780/**
2781 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2782 * @hw: pointer to hardware structure
2783 * @index: led number to stop blinking
2784 **/
2785int ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2786{
2787 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2788 bool locked = false;
2789 u32 autoc_reg = 0;
2790 int ret_val;
2791
2792 if (index > 3)
2793 return -EINVAL;
2794
2795 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2796 if (ret_val)
2797 return ret_val;
2798
2799 autoc_reg &= ~IXGBE_AUTOC_FLU;
2800 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2801
2802 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2803 if (ret_val)
2804 return ret_val;
2805
2806 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2807 led_reg &= ~IXGBE_LED_BLINK(index);
2808 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2809 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2810 IXGBE_WRITE_FLUSH(hw);
2811
2812 return 0;
2813}
2814
2815/**
2816 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2817 * @hw: pointer to hardware structure
2818 * @san_mac_offset: SAN MAC address offset
2819 *
2820 * This function will read the EEPROM location for the SAN MAC address
2821 * pointer, and returns the value at that location. This is used in both
2822 * get and set mac_addr routines.
2823 **/
2824static int ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2825 u16 *san_mac_offset)
2826{
2827 int ret_val;
2828
2829 /*
2830 * First read the EEPROM pointer to see if the MAC addresses are
2831 * available.
2832 */
2833 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2834 san_mac_offset);
2835 if (ret_val)
2836 hw_err(hw, "eeprom read at offset %d failed\n",
2837 IXGBE_SAN_MAC_ADDR_PTR);
2838
2839 return ret_val;
2840}
2841
2842/**
2843 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2844 * @hw: pointer to hardware structure
2845 * @san_mac_addr: SAN MAC address
2846 *
2847 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2848 * per-port, so set_lan_id() must be called before reading the addresses.
2849 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2850 * upon for non-SFP connections, so we must call it here.
2851 **/
2852int ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2853{
2854 u16 san_mac_data, san_mac_offset;
2855 int ret_val;
2856 u8 i;
2857
2858 /*
2859 * First read the EEPROM pointer to see if the MAC addresses are
2860 * available. If they're not, no point in calling set_lan_id() here.
2861 */
2862 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2863 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2864
2865 goto san_mac_addr_clr;
2866
2867 /* make sure we know which port we need to program */
2868 hw->mac.ops.set_lan_id(hw);
2869 /* apply the port offset to the address offset */
2870 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2871 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2872 for (i = 0; i < 3; i++) {
2873 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2874 &san_mac_data);
2875 if (ret_val) {
2876 hw_err(hw, "eeprom read at offset %d failed\n",
2877 san_mac_offset);
2878 goto san_mac_addr_clr;
2879 }
2880 san_mac_addr[i * 2] = (u8)(san_mac_data);
2881 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2882 san_mac_offset++;
2883 }
2884 return 0;
2885
2886san_mac_addr_clr:
2887 /* No addresses available in this EEPROM. It's not necessarily an
2888 * error though, so just wipe the local address and return.
2889 */
2890 for (i = 0; i < 6; i++)
2891 san_mac_addr[i] = 0xFF;
2892 return ret_val;
2893}
2894
2895/**
2896 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2897 * @hw: pointer to hardware structure
2898 *
2899 * Read PCIe configuration space, and get the MSI-X vector count from
2900 * the capabilities table.
2901 **/
2902u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2903{
2904 u16 msix_count;
2905 u16 max_msix_count;
2906 u16 pcie_offset;
2907
2908 switch (hw->mac.type) {
2909 case ixgbe_mac_82598EB:
2910 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2911 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2912 break;
2913 case ixgbe_mac_82599EB:
2914 case ixgbe_mac_X540:
2915 case ixgbe_mac_X550:
2916 case ixgbe_mac_X550EM_x:
2917 case ixgbe_mac_x550em_a:
2918 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2919 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2920 break;
2921 default:
2922 return 1;
2923 }
2924
2925 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2926 if (ixgbe_removed(hw->hw_addr))
2927 msix_count = 0;
2928 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2929
2930 /* MSI-X count is zero-based in HW */
2931 msix_count++;
2932
2933 if (msix_count > max_msix_count)
2934 msix_count = max_msix_count;
2935
2936 return msix_count;
2937}
2938
2939/**
2940 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2941 * @hw: pointer to hardware struct
2942 * @rar: receive address register index to disassociate
2943 * @vmdq: VMDq pool index to remove from the rar
2944 **/
2945int ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2946{
2947 u32 mpsar_lo, mpsar_hi;
2948 u32 rar_entries = hw->mac.num_rar_entries;
2949
2950 /* Make sure we are using a valid rar index range */
2951 if (rar >= rar_entries) {
2952 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2953 return -EINVAL;
2954 }
2955
2956 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2957 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2958
2959 if (ixgbe_removed(hw->hw_addr))
2960 return 0;
2961
2962 if (!mpsar_lo && !mpsar_hi)
2963 return 0;
2964
2965 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2966 if (mpsar_lo) {
2967 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2968 mpsar_lo = 0;
2969 }
2970 if (mpsar_hi) {
2971 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2972 mpsar_hi = 0;
2973 }
2974 } else if (vmdq < 32) {
2975 mpsar_lo &= ~BIT(vmdq);
2976 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2977 } else {
2978 mpsar_hi &= ~BIT(vmdq - 32);
2979 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2980 }
2981
2982 /* was that the last pool using this rar? */
2983 if (mpsar_lo == 0 && mpsar_hi == 0 &&
2984 rar != 0 && rar != hw->mac.san_mac_rar_index)
2985 hw->mac.ops.clear_rar(hw, rar);
2986
2987 return 0;
2988}
2989
2990/**
2991 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2992 * @hw: pointer to hardware struct
2993 * @rar: receive address register index to associate with a VMDq index
2994 * @vmdq: VMDq pool index
2995 **/
2996int ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2997{
2998 u32 mpsar;
2999 u32 rar_entries = hw->mac.num_rar_entries;
3000
3001 /* Make sure we are using a valid rar index range */
3002 if (rar >= rar_entries) {
3003 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3004 return -EINVAL;
3005 }
3006
3007 if (vmdq < 32) {
3008 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3009 mpsar |= BIT(vmdq);
3010 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3011 } else {
3012 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3013 mpsar |= BIT(vmdq - 32);
3014 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3015 }
3016 return 0;
3017}
3018
3019/**
3020 * ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3021 * @hw: pointer to hardware struct
3022 * @vmdq: VMDq pool index
3023 *
3024 * This function should only be involved in the IOV mode.
3025 * In IOV mode, Default pool is next pool after the number of
3026 * VFs advertized and not 0.
3027 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3028 **/
3029int ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3030{
3031 u32 rar = hw->mac.san_mac_rar_index;
3032
3033 if (vmdq < 32) {
3034 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3035 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3036 } else {
3037 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3038 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3039 }
3040
3041 return 0;
3042}
3043
3044/**
3045 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3046 * @hw: pointer to hardware structure
3047 **/
3048int ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3049{
3050 int i;
3051
3052 for (i = 0; i < 128; i++)
3053 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3054
3055 return 0;
3056}
3057
3058/**
3059 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3060 * @hw: pointer to hardware structure
3061 * @vlan: VLAN id to write to VLAN filter
3062 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3063 * vlanid not found
3064 *
3065 * return the VLVF index where this VLAN id should be placed
3066 *
3067 **/
3068static int ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3069{
3070 int regindex, first_empty_slot;
3071 u32 bits;
3072
3073 /* short cut the special case */
3074 if (vlan == 0)
3075 return 0;
3076
3077 /* if vlvf_bypass is set we don't want to use an empty slot, we
3078 * will simply bypass the VLVF if there are no entries present in the
3079 * VLVF that contain our VLAN
3080 */
3081 first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3082
3083 /* add VLAN enable bit for comparison */
3084 vlan |= IXGBE_VLVF_VIEN;
3085
3086 /* Search for the vlan id in the VLVF entries. Save off the first empty
3087 * slot found along the way.
3088 *
3089 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3090 */
3091 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3092 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3093 if (bits == vlan)
3094 return regindex;
3095 if (!first_empty_slot && !bits)
3096 first_empty_slot = regindex;
3097 }
3098
3099 /* If we are here then we didn't find the VLAN. Return first empty
3100 * slot we found during our search, else error.
3101 */
3102 if (!first_empty_slot)
3103 hw_dbg(hw, "No space in VLVF.\n");
3104
3105 return first_empty_slot ? : -ENOSPC;
3106}
3107
3108/**
3109 * ixgbe_set_vfta_generic - Set VLAN filter table
3110 * @hw: pointer to hardware structure
3111 * @vlan: VLAN id to write to VLAN filter
3112 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3113 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3114 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3115 *
3116 * Turn on/off specified VLAN in the VLAN filter table.
3117 **/
3118int ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3119 bool vlan_on, bool vlvf_bypass)
3120{
3121 u32 regidx, vfta_delta, vfta, bits;
3122 int vlvf_index;
3123
3124 if ((vlan > 4095) || (vind > 63))
3125 return -EINVAL;
3126
3127 /*
3128 * this is a 2 part operation - first the VFTA, then the
3129 * VLVF and VLVFB if VT Mode is set
3130 * We don't write the VFTA until we know the VLVF part succeeded.
3131 */
3132
3133 /* Part 1
3134 * The VFTA is a bitstring made up of 128 32-bit registers
3135 * that enable the particular VLAN id, much like the MTA:
3136 * bits[11-5]: which register
3137 * bits[4-0]: which bit in the register
3138 */
3139 regidx = vlan / 32;
3140 vfta_delta = BIT(vlan % 32);
3141 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3142
3143 /* vfta_delta represents the difference between the current value
3144 * of vfta and the value we want in the register. Since the diff
3145 * is an XOR mask we can just update vfta using an XOR.
3146 */
3147 vfta_delta &= vlan_on ? ~vfta : vfta;
3148 vfta ^= vfta_delta;
3149
3150 /* Part 2
3151 * If VT Mode is set
3152 * Either vlan_on
3153 * make sure the vlan is in VLVF
3154 * set the vind bit in the matching VLVFB
3155 * Or !vlan_on
3156 * clear the pool bit and possibly the vind
3157 */
3158 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3159 goto vfta_update;
3160
3161 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3162 if (vlvf_index < 0) {
3163 if (vlvf_bypass)
3164 goto vfta_update;
3165 return vlvf_index;
3166 }
3167
3168 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3169
3170 /* set the pool bit */
3171 bits |= BIT(vind % 32);
3172 if (vlan_on)
3173 goto vlvf_update;
3174
3175 /* clear the pool bit */
3176 bits ^= BIT(vind % 32);
3177
3178 if (!bits &&
3179 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3180 /* Clear VFTA first, then disable VLVF. Otherwise
3181 * we run the risk of stray packets leaking into
3182 * the PF via the default pool
3183 */
3184 if (vfta_delta)
3185 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3186
3187 /* disable VLVF and clear remaining bit from pool */
3188 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3189 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3190
3191 return 0;
3192 }
3193
3194 /* If there are still bits set in the VLVFB registers
3195 * for the VLAN ID indicated we need to see if the
3196 * caller is requesting that we clear the VFTA entry bit.
3197 * If the caller has requested that we clear the VFTA
3198 * entry bit but there are still pools/VFs using this VLAN
3199 * ID entry then ignore the request. We're not worried
3200 * about the case where we're turning the VFTA VLAN ID
3201 * entry bit on, only when requested to turn it off as
3202 * there may be multiple pools and/or VFs using the
3203 * VLAN ID entry. In that case we cannot clear the
3204 * VFTA bit until all pools/VFs using that VLAN ID have also
3205 * been cleared. This will be indicated by "bits" being
3206 * zero.
3207 */
3208 vfta_delta = 0;
3209
3210vlvf_update:
3211 /* record pool change and enable VLAN ID if not already enabled */
3212 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3213 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3214
3215vfta_update:
3216 /* Update VFTA now that we are ready for traffic */
3217 if (vfta_delta)
3218 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3219
3220 return 0;
3221}
3222
3223/**
3224 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3225 * @hw: pointer to hardware structure
3226 *
3227 * Clears the VLAN filter table, and the VMDq index associated with the filter
3228 **/
3229int ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3230{
3231 u32 offset;
3232
3233 for (offset = 0; offset < hw->mac.vft_size; offset++)
3234 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3235
3236 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3237 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3238 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3239 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3240 }
3241
3242 return 0;
3243}
3244
3245/**
3246 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3247 * @hw: pointer to hardware structure
3248 *
3249 * Contains the logic to identify if we need to verify link for the
3250 * crosstalk fix
3251 **/
3252static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3253{
3254 /* Does FW say we need the fix */
3255 if (!hw->need_crosstalk_fix)
3256 return false;
3257
3258 /* Only consider SFP+ PHYs i.e. media type fiber */
3259 switch (hw->mac.ops.get_media_type(hw)) {
3260 case ixgbe_media_type_fiber:
3261 case ixgbe_media_type_fiber_qsfp:
3262 break;
3263 default:
3264 return false;
3265 }
3266
3267 return true;
3268}
3269
3270/**
3271 * ixgbe_check_mac_link_generic - Determine link and speed status
3272 * @hw: pointer to hardware structure
3273 * @speed: pointer to link speed
3274 * @link_up: true when link is up
3275 * @link_up_wait_to_complete: bool used to wait for link up or not
3276 *
3277 * Reads the links register to determine if link is up and the current speed
3278 **/
3279int ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3280 bool *link_up, bool link_up_wait_to_complete)
3281{
3282 bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3283 u32 links_reg, links_orig;
3284 u32 i;
3285
3286 /* If Crosstalk fix enabled do the sanity check of making sure
3287 * the SFP+ cage is full.
3288 */
3289 if (crosstalk_fix_active) {
3290 u32 sfp_cage_full;
3291
3292 switch (hw->mac.type) {
3293 case ixgbe_mac_82599EB:
3294 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3295 IXGBE_ESDP_SDP2;
3296 break;
3297 case ixgbe_mac_X550EM_x:
3298 case ixgbe_mac_x550em_a:
3299 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3300 IXGBE_ESDP_SDP0;
3301 break;
3302 default:
3303 /* sanity check - No SFP+ devices here */
3304 sfp_cage_full = false;
3305 break;
3306 }
3307
3308 if (!sfp_cage_full) {
3309 *link_up = false;
3310 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3311 return 0;
3312 }
3313 }
3314
3315 /* clear the old state */
3316 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3317
3318 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3319
3320 if (links_orig != links_reg) {
3321 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3322 links_orig, links_reg);
3323 }
3324
3325 if (link_up_wait_to_complete) {
3326 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3327 if (links_reg & IXGBE_LINKS_UP) {
3328 *link_up = true;
3329 break;
3330 } else {
3331 *link_up = false;
3332 }
3333 msleep(100);
3334 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3335 }
3336 } else {
3337 if (links_reg & IXGBE_LINKS_UP) {
3338 if (crosstalk_fix_active) {
3339 /* Check the link state again after a delay
3340 * to filter out spurious link up
3341 * notifications.
3342 */
3343 mdelay(5);
3344 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345 if (!(links_reg & IXGBE_LINKS_UP)) {
3346 *link_up = false;
3347 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3348 return 0;
3349 }
3350 }
3351 *link_up = true;
3352 } else {
3353 *link_up = false;
3354 }
3355 }
3356
3357 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3358 case IXGBE_LINKS_SPEED_10G_82599:
3359 if ((hw->mac.type >= ixgbe_mac_X550) &&
3360 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3361 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3362 else
3363 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3364 break;
3365 case IXGBE_LINKS_SPEED_1G_82599:
3366 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3367 break;
3368 case IXGBE_LINKS_SPEED_100_82599:
3369 if ((hw->mac.type >= ixgbe_mac_X550) &&
3370 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3371 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3372 else
3373 *speed = IXGBE_LINK_SPEED_100_FULL;
3374 break;
3375 case IXGBE_LINKS_SPEED_10_X550EM_A:
3376 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3377 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3378 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3379 *speed = IXGBE_LINK_SPEED_10_FULL;
3380 }
3381 break;
3382 default:
3383 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3384 }
3385
3386 return 0;
3387}
3388
3389/**
3390 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3391 * the EEPROM
3392 * @hw: pointer to hardware structure
3393 * @wwnn_prefix: the alternative WWNN prefix
3394 * @wwpn_prefix: the alternative WWPN prefix
3395 *
3396 * This function will read the EEPROM from the alternative SAN MAC address
3397 * block to check the support for the alternative WWNN/WWPN prefix support.
3398 **/
3399int ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3400 u16 *wwpn_prefix)
3401{
3402 u16 offset, caps;
3403 u16 alt_san_mac_blk_offset;
3404
3405 /* clear output first */
3406 *wwnn_prefix = 0xFFFF;
3407 *wwpn_prefix = 0xFFFF;
3408
3409 /* check if alternative SAN MAC is supported */
3410 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3411 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3412 goto wwn_prefix_err;
3413
3414 if ((alt_san_mac_blk_offset == 0) ||
3415 (alt_san_mac_blk_offset == 0xFFFF))
3416 return 0;
3417
3418 /* check capability in alternative san mac address block */
3419 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3420 if (hw->eeprom.ops.read(hw, offset, &caps))
3421 goto wwn_prefix_err;
3422 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3423 return 0;
3424
3425 /* get the corresponding prefix for WWNN/WWPN */
3426 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3427 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3428 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3429
3430 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3431 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3432 goto wwn_prefix_err;
3433
3434 return 0;
3435
3436wwn_prefix_err:
3437 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3438 return 0;
3439}
3440
3441/**
3442 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3443 * @hw: pointer to hardware structure
3444 * @enable: enable or disable switch for MAC anti-spoofing
3445 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3446 *
3447 **/
3448void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3449{
3450 int vf_target_reg = vf >> 3;
3451 int vf_target_shift = vf % 8;
3452 u32 pfvfspoof;
3453
3454 if (hw->mac.type == ixgbe_mac_82598EB)
3455 return;
3456
3457 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3458 if (enable)
3459 pfvfspoof |= BIT(vf_target_shift);
3460 else
3461 pfvfspoof &= ~BIT(vf_target_shift);
3462 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3463}
3464
3465/**
3466 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3467 * @hw: pointer to hardware structure
3468 * @enable: enable or disable switch for VLAN anti-spoofing
3469 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3470 *
3471 **/
3472void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3473{
3474 int vf_target_reg = vf >> 3;
3475 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3476 u32 pfvfspoof;
3477
3478 if (hw->mac.type == ixgbe_mac_82598EB)
3479 return;
3480
3481 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3482 if (enable)
3483 pfvfspoof |= BIT(vf_target_shift);
3484 else
3485 pfvfspoof &= ~BIT(vf_target_shift);
3486 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3487}
3488
3489/**
3490 * ixgbe_get_device_caps_generic - Get additional device capabilities
3491 * @hw: pointer to hardware structure
3492 * @device_caps: the EEPROM word with the extra device capabilities
3493 *
3494 * This function will read the EEPROM location for the device capabilities,
3495 * and return the word through device_caps.
3496 **/
3497int ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3498{
3499 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3500
3501 return 0;
3502}
3503
3504/**
3505 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3506 * @hw: pointer to hardware structure
3507 * @num_pb: number of packet buffers to allocate
3508 * @headroom: reserve n KB of headroom
3509 * @strategy: packet buffer allocation strategy
3510 **/
3511void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3512 int num_pb,
3513 u32 headroom,
3514 int strategy)
3515{
3516 u32 pbsize = hw->mac.rx_pb_size;
3517 int i = 0;
3518 u32 rxpktsize, txpktsize, txpbthresh;
3519
3520 /* Reserve headroom */
3521 pbsize -= headroom;
3522
3523 if (!num_pb)
3524 num_pb = 1;
3525
3526 /* Divide remaining packet buffer space amongst the number
3527 * of packet buffers requested using supplied strategy.
3528 */
3529 switch (strategy) {
3530 case (PBA_STRATEGY_WEIGHTED):
3531 /* pba_80_48 strategy weight first half of packet buffer with
3532 * 5/8 of the packet buffer space.
3533 */
3534 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3535 pbsize -= rxpktsize * (num_pb / 2);
3536 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3537 for (; i < (num_pb / 2); i++)
3538 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3539 fallthrough; /* configure remaining packet buffers */
3540 case (PBA_STRATEGY_EQUAL):
3541 /* Divide the remaining Rx packet buffer evenly among the TCs */
3542 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3543 for (; i < num_pb; i++)
3544 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3545 break;
3546 default:
3547 break;
3548 }
3549
3550 /*
3551 * Setup Tx packet buffer and threshold equally for all TCs
3552 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3553 * 10 since the largest packet we support is just over 9K.
3554 */
3555 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3556 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3557 for (i = 0; i < num_pb; i++) {
3558 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3559 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3560 }
3561
3562 /* Clear unused TCs, if any, to zero buffer size*/
3563 for (; i < IXGBE_MAX_PB; i++) {
3564 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3565 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3566 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3567 }
3568}
3569
3570/**
3571 * ixgbe_calculate_checksum - Calculate checksum for buffer
3572 * @buffer: pointer to EEPROM
3573 * @length: size of EEPROM to calculate a checksum for
3574 *
3575 * Calculates the checksum for some buffer on a specified length. The
3576 * checksum calculated is returned.
3577 **/
3578u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3579{
3580 u32 i;
3581 u8 sum = 0;
3582
3583 if (!buffer)
3584 return 0;
3585
3586 for (i = 0; i < length; i++)
3587 sum += buffer[i];
3588
3589 return (u8) (0 - sum);
3590}
3591
3592/**
3593 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3594 * @hw: pointer to the HW structure
3595 * @buffer: command to write and where the return status will be placed
3596 * @length: length of buffer, must be multiple of 4 bytes
3597 * @timeout: time in ms to wait for command completion
3598 *
3599 * Communicates with the manageability block. On success return 0
3600 * else returns semaphore error when encountering an error acquiring
3601 * semaphore, -EINVAL when incorrect parameters passed or -EIO when
3602 * command fails.
3603 *
3604 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3605 * by the caller.
3606 **/
3607int ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3608 u32 timeout)
3609{
3610 u32 hicr, i, fwsts;
3611 u16 dword_len;
3612
3613 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3614 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3615 return -EINVAL;
3616 }
3617
3618 /* Set bit 9 of FWSTS clearing FW reset indication */
3619 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3620 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3621
3622 /* Check that the host interface is enabled. */
3623 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3624 if (!(hicr & IXGBE_HICR_EN)) {
3625 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3626 return -EIO;
3627 }
3628
3629 /* Calculate length in DWORDs. We must be DWORD aligned */
3630 if (length % sizeof(u32)) {
3631 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3632 return -EINVAL;
3633 }
3634
3635 dword_len = length >> 2;
3636
3637 /* The device driver writes the relevant command block
3638 * into the ram area.
3639 */
3640 for (i = 0; i < dword_len; i++)
3641 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3642 i, (__force u32)cpu_to_le32(buffer[i]));
3643
3644 /* Setting this bit tells the ARC that a new command is pending. */
3645 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3646
3647 for (i = 0; i < timeout; i++) {
3648 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3649 if (!(hicr & IXGBE_HICR_C))
3650 break;
3651 usleep_range(1000, 2000);
3652 }
3653
3654 /* Check command successful completion. */
3655 if ((timeout && i == timeout) ||
3656 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3657 return -EIO;
3658
3659 return 0;
3660}
3661
3662/**
3663 * ixgbe_host_interface_command - Issue command to manageability block
3664 * @hw: pointer to the HW structure
3665 * @buffer: contains the command to write and where the return status will
3666 * be placed
3667 * @length: length of buffer, must be multiple of 4 bytes
3668 * @timeout: time in ms to wait for command completion
3669 * @return_data: read and return data from the buffer (true) or not (false)
3670 * Needed because FW structures are big endian and decoding of
3671 * these fields can be 8 bit or 16 bit based on command. Decoding
3672 * is not easily understood without making a table of commands.
3673 * So we will leave this up to the caller to read back the data
3674 * in these cases.
3675 *
3676 * Communicates with the manageability block. On success return 0
3677 * else return -EIO or -EINVAL.
3678 **/
3679int ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3680 u32 length, u32 timeout,
3681 bool return_data)
3682{
3683 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3684 struct ixgbe_hic_hdr *hdr = buffer;
3685 u16 buf_len, dword_len;
3686 u32 *u32arr = buffer;
3687 int status;
3688 u32 bi;
3689
3690 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3691 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3692 return -EINVAL;
3693 }
3694 /* Take management host interface semaphore */
3695 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3696 if (status)
3697 return status;
3698
3699 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3700 if (status)
3701 goto rel_out;
3702
3703 if (!return_data)
3704 goto rel_out;
3705
3706 /* Calculate length in DWORDs */
3707 dword_len = hdr_size >> 2;
3708
3709 /* first pull in the header so we know the buffer length */
3710 for (bi = 0; bi < dword_len; bi++) {
3711 u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3712 le32_to_cpus(&u32arr[bi]);
3713 }
3714
3715 /* If there is any thing in data position pull it in */
3716 buf_len = hdr->buf_len;
3717 if (!buf_len)
3718 goto rel_out;
3719
3720 if (length < round_up(buf_len, 4) + hdr_size) {
3721 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3722 status = -EIO;
3723 goto rel_out;
3724 }
3725
3726 /* Calculate length in DWORDs, add 3 for odd lengths */
3727 dword_len = (buf_len + 3) >> 2;
3728
3729 /* Pull in the rest of the buffer (bi is where we left off) */
3730 for (; bi <= dword_len; bi++) {
3731 u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3732 le32_to_cpus(&u32arr[bi]);
3733 }
3734
3735rel_out:
3736 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3737
3738 return status;
3739}
3740
3741/**
3742 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3743 * @hw: pointer to the HW structure
3744 * @maj: driver version major number
3745 * @min: driver version minor number
3746 * @build: driver version build number
3747 * @sub: driver version sub build number
3748 * @len: length of driver_ver string
3749 * @driver_ver: driver string
3750 *
3751 * Sends driver version number to firmware through the manageability
3752 * block. On success return 0
3753 * else returns -EBUSY when encountering an error acquiring
3754 * semaphore or -EIO when command fails.
3755 **/
3756int ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3757 u8 build, u8 sub, __always_unused u16 len,
3758 __always_unused const char *driver_ver)
3759{
3760 struct ixgbe_hic_drv_info fw_cmd;
3761 int ret_val;
3762 int i;
3763
3764 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3765 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3766 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3767 fw_cmd.port_num = hw->bus.func;
3768 fw_cmd.ver_maj = maj;
3769 fw_cmd.ver_min = min;
3770 fw_cmd.ver_build = build;
3771 fw_cmd.ver_sub = sub;
3772 fw_cmd.hdr.checksum = 0;
3773 fw_cmd.pad = 0;
3774 fw_cmd.pad2 = 0;
3775 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3776 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3777
3778 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3779 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3780 sizeof(fw_cmd),
3781 IXGBE_HI_COMMAND_TIMEOUT,
3782 true);
3783 if (ret_val != 0)
3784 continue;
3785
3786 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3787 FW_CEM_RESP_STATUS_SUCCESS)
3788 ret_val = 0;
3789 else
3790 ret_val = -EIO;
3791
3792 break;
3793 }
3794
3795 return ret_val;
3796}
3797
3798/**
3799 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3800 * @hw: pointer to the hardware structure
3801 *
3802 * The 82599 and x540 MACs can experience issues if TX work is still pending
3803 * when a reset occurs. This function prevents this by flushing the PCIe
3804 * buffers on the system.
3805 **/
3806void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3807{
3808 u32 gcr_ext, hlreg0, i, poll;
3809 u16 value;
3810
3811 /*
3812 * If double reset is not requested then all transactions should
3813 * already be clear and as such there is no work to do
3814 */
3815 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3816 return;
3817
3818 /*
3819 * Set loopback enable to prevent any transmits from being sent
3820 * should the link come up. This assumes that the RXCTRL.RXEN bit
3821 * has already been cleared.
3822 */
3823 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3824 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3825
3826 /* wait for a last completion before clearing buffers */
3827 IXGBE_WRITE_FLUSH(hw);
3828 usleep_range(3000, 6000);
3829
3830 /* Before proceeding, make sure that the PCIe block does not have
3831 * transactions pending.
3832 */
3833 poll = ixgbe_pcie_timeout_poll(hw);
3834 for (i = 0; i < poll; i++) {
3835 usleep_range(100, 200);
3836 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3837 if (ixgbe_removed(hw->hw_addr))
3838 break;
3839 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3840 break;
3841 }
3842
3843 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3844 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3845 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3846 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3847
3848 /* Flush all writes and allow 20usec for all transactions to clear */
3849 IXGBE_WRITE_FLUSH(hw);
3850 udelay(20);
3851
3852 /* restore previous register values */
3853 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3854 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3855}
3856
3857static const u8 ixgbe_emc_temp_data[4] = {
3858 IXGBE_EMC_INTERNAL_DATA,
3859 IXGBE_EMC_DIODE1_DATA,
3860 IXGBE_EMC_DIODE2_DATA,
3861 IXGBE_EMC_DIODE3_DATA
3862};
3863static const u8 ixgbe_emc_therm_limit[4] = {
3864 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3865 IXGBE_EMC_DIODE1_THERM_LIMIT,
3866 IXGBE_EMC_DIODE2_THERM_LIMIT,
3867 IXGBE_EMC_DIODE3_THERM_LIMIT
3868};
3869
3870/**
3871 * ixgbe_get_ets_data - Extracts the ETS bit data
3872 * @hw: pointer to hardware structure
3873 * @ets_cfg: extected ETS data
3874 * @ets_offset: offset of ETS data
3875 *
3876 * Returns error code.
3877 **/
3878static int ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3879 u16 *ets_offset)
3880{
3881 int status;
3882
3883 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3884 if (status)
3885 return status;
3886
3887 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3888 return -EOPNOTSUPP;
3889
3890 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3891 if (status)
3892 return status;
3893
3894 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3895 return -EOPNOTSUPP;
3896
3897 return 0;
3898}
3899
3900/**
3901 * ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3902 * @hw: pointer to hardware structure
3903 *
3904 * Returns the thermal sensor data structure
3905 **/
3906int ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3907{
3908 u16 ets_offset;
3909 u16 ets_sensor;
3910 u8 num_sensors;
3911 u16 ets_cfg;
3912 int status;
3913 u8 i;
3914 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3915
3916 /* Only support thermal sensors attached to physical port 0 */
3917 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3918 return -EOPNOTSUPP;
3919
3920 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3921 if (status)
3922 return status;
3923
3924 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3925 if (num_sensors > IXGBE_MAX_SENSORS)
3926 num_sensors = IXGBE_MAX_SENSORS;
3927
3928 for (i = 0; i < num_sensors; i++) {
3929 u8 sensor_index;
3930 u8 sensor_location;
3931
3932 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3933 &ets_sensor);
3934 if (status)
3935 return status;
3936
3937 sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3938 ets_sensor);
3939 sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
3940 ets_sensor);
3941
3942 if (sensor_location != 0) {
3943 status = hw->phy.ops.read_i2c_byte(hw,
3944 ixgbe_emc_temp_data[sensor_index],
3945 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3946 &data->sensor[i].temp);
3947 if (status)
3948 return status;
3949 }
3950 }
3951
3952 return 0;
3953}
3954
3955/**
3956 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3957 * @hw: pointer to hardware structure
3958 *
3959 * Inits the thermal sensor thresholds according to the NVM map
3960 * and save off the threshold and location values into mac.thermal_sensor_data
3961 **/
3962int ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3963{
3964 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3965 u8 low_thresh_delta;
3966 u8 num_sensors;
3967 u8 therm_limit;
3968 u16 ets_sensor;
3969 u16 ets_offset;
3970 u16 ets_cfg;
3971 int status;
3972 u8 i;
3973
3974 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3975
3976 /* Only support thermal sensors attached to physical port 0 */
3977 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3978 return -EOPNOTSUPP;
3979
3980 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3981 if (status)
3982 return status;
3983
3984 low_thresh_delta = FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK, ets_cfg);
3985 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3986 if (num_sensors > IXGBE_MAX_SENSORS)
3987 num_sensors = IXGBE_MAX_SENSORS;
3988
3989 for (i = 0; i < num_sensors; i++) {
3990 u8 sensor_index;
3991 u8 sensor_location;
3992
3993 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3994 hw_err(hw, "eeprom read at offset %d failed\n",
3995 ets_offset + 1 + i);
3996 continue;
3997 }
3998 sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3999 ets_sensor);
4000 sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
4001 ets_sensor);
4002 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4003
4004 hw->phy.ops.write_i2c_byte(hw,
4005 ixgbe_emc_therm_limit[sensor_index],
4006 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4007
4008 if (sensor_location == 0)
4009 continue;
4010
4011 data->sensor[i].location = sensor_location;
4012 data->sensor[i].caution_thresh = therm_limit;
4013 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4014 }
4015
4016 return 0;
4017}
4018
4019/**
4020 * ixgbe_get_orom_version - Return option ROM from EEPROM
4021 *
4022 * @hw: pointer to hardware structure
4023 * @nvm_ver: pointer to output structure
4024 *
4025 * if valid option ROM version, nvm_ver->or_valid set to true
4026 * else nvm_ver->or_valid is false.
4027 **/
4028void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4029 struct ixgbe_nvm_version *nvm_ver)
4030{
4031 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4032
4033 nvm_ver->or_valid = false;
4034 /* Option Rom may or may not be present. Start with pointer */
4035 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4036
4037 /* make sure offset is valid */
4038 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4039 return;
4040
4041 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4042 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4043
4044 /* option rom exists and is valid */
4045 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4046 eeprom_cfg_blkl == NVM_VER_INVALID ||
4047 eeprom_cfg_blkh == NVM_VER_INVALID)
4048 return;
4049
4050 nvm_ver->or_valid = true;
4051 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4052 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4053 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4054 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4055}
4056
4057/**
4058 * ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4059 * @hw: pointer to hardware structure
4060 * @nvm_ver: pointer to output structure
4061 *
4062 * if valid OEM product version, nvm_ver->oem_valid set to true
4063 * else nvm_ver->oem_valid is false.
4064 **/
4065void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4066 struct ixgbe_nvm_version *nvm_ver)
4067{
4068 u16 rel_num, prod_ver, mod_len, cap, offset;
4069
4070 nvm_ver->oem_valid = false;
4071 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4072
4073 /* Return is offset to OEM Product Version block is invalid */
4074 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4075 return;
4076
4077 /* Read product version block */
4078 hw->eeprom.ops.read(hw, offset, &mod_len);
4079 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4080
4081 /* Return if OEM product version block is invalid */
4082 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4083 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4084 return;
4085
4086 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4087 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4088
4089 /* Return if version is invalid */
4090 if ((rel_num | prod_ver) == 0x0 ||
4091 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4092 return;
4093
4094 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4095 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4096 nvm_ver->oem_release = rel_num;
4097 nvm_ver->oem_valid = true;
4098}
4099
4100/**
4101 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4102 *
4103 * @hw: pointer to hardware structure
4104 * @nvm_ver: pointer to output structure
4105 *
4106 * word read errors will return 0xFFFF
4107 **/
4108void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4109 struct ixgbe_nvm_version *nvm_ver)
4110{
4111 u16 etk_id_l, etk_id_h;
4112
4113 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4114 etk_id_l = NVM_VER_INVALID;
4115 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4116 etk_id_h = NVM_VER_INVALID;
4117
4118 /* The word order for the version format is determined by high order
4119 * word bit 15.
4120 */
4121 if ((etk_id_h & NVM_ETK_VALID) == 0) {
4122 nvm_ver->etk_id = etk_id_h;
4123 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4124 } else {
4125 nvm_ver->etk_id = etk_id_l;
4126 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4127 }
4128}
4129
4130void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4131{
4132 u32 rxctrl;
4133
4134 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4135 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4136 if (hw->mac.type != ixgbe_mac_82598EB) {
4137 u32 pfdtxgswc;
4138
4139 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4140 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4141 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4142 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4143 hw->mac.set_lben = true;
4144 } else {
4145 hw->mac.set_lben = false;
4146 }
4147 }
4148 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4149 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4150 }
4151}
4152
4153void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4154{
4155 u32 rxctrl;
4156
4157 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4158 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4159
4160 if (hw->mac.type != ixgbe_mac_82598EB) {
4161 if (hw->mac.set_lben) {
4162 u32 pfdtxgswc;
4163
4164 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4165 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4166 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4167 hw->mac.set_lben = false;
4168 }
4169 }
4170}
4171
4172/** ixgbe_mng_present - returns true when management capability is present
4173 * @hw: pointer to hardware structure
4174 **/
4175bool ixgbe_mng_present(struct ixgbe_hw *hw)
4176{
4177 u32 fwsm;
4178
4179 if (hw->mac.type < ixgbe_mac_82599EB)
4180 return false;
4181
4182 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4183
4184 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4185}
4186
4187/**
4188 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4189 * @hw: pointer to hardware structure
4190 * @speed: new link speed
4191 * @autoneg_wait_to_complete: true when waiting for completion is needed
4192 *
4193 * Set the link speed in the MAC and/or PHY register and restarts link.
4194 */
4195int ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4196 ixgbe_link_speed speed,
4197 bool autoneg_wait_to_complete)
4198{
4199 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4200 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4201 bool autoneg, link_up = false;
4202 u32 speedcnt = 0;
4203 int status = 0;
4204 u32 i = 0;
4205
4206 /* Mask off requested but non-supported speeds */
4207 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4208 if (status)
4209 return status;
4210
4211 speed &= link_speed;
4212
4213 /* Try each speed one by one, highest priority first. We do this in
4214 * software because 10Gb fiber doesn't support speed autonegotiation.
4215 */
4216 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4217 speedcnt++;
4218 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4219
4220 /* Set the module link speed */
4221 switch (hw->phy.media_type) {
4222 case ixgbe_media_type_fiber:
4223 hw->mac.ops.set_rate_select_speed(hw,
4224 IXGBE_LINK_SPEED_10GB_FULL);
4225 break;
4226 case ixgbe_media_type_fiber_qsfp:
4227 /* QSFP module automatically detects MAC link speed */
4228 break;
4229 default:
4230 hw_dbg(hw, "Unexpected media type\n");
4231 break;
4232 }
4233
4234 /* Allow module to change analog characteristics (1G->10G) */
4235 msleep(40);
4236
4237 status = hw->mac.ops.setup_mac_link(hw,
4238 IXGBE_LINK_SPEED_10GB_FULL,
4239 autoneg_wait_to_complete);
4240 if (status)
4241 return status;
4242
4243 /* Flap the Tx laser if it has not already been done */
4244 if (hw->mac.ops.flap_tx_laser)
4245 hw->mac.ops.flap_tx_laser(hw);
4246
4247 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4248 * Section 73.10.2, we may have to wait up to 500ms if KR is
4249 * attempted. 82599 uses the same timing for 10g SFI.
4250 */
4251 for (i = 0; i < 5; i++) {
4252 /* Wait for the link partner to also set speed */
4253 msleep(100);
4254
4255 /* If we have link, just jump out */
4256 status = hw->mac.ops.check_link(hw, &link_speed,
4257 &link_up, false);
4258 if (status)
4259 return status;
4260
4261 if (link_up)
4262 goto out;
4263 }
4264 }
4265
4266 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4267 speedcnt++;
4268 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4269 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4270
4271 /* Set the module link speed */
4272 switch (hw->phy.media_type) {
4273 case ixgbe_media_type_fiber:
4274 hw->mac.ops.set_rate_select_speed(hw,
4275 IXGBE_LINK_SPEED_1GB_FULL);
4276 break;
4277 case ixgbe_media_type_fiber_qsfp:
4278 /* QSFP module automatically detects link speed */
4279 break;
4280 default:
4281 hw_dbg(hw, "Unexpected media type\n");
4282 break;
4283 }
4284
4285 /* Allow module to change analog characteristics (10G->1G) */
4286 msleep(40);
4287
4288 status = hw->mac.ops.setup_mac_link(hw,
4289 IXGBE_LINK_SPEED_1GB_FULL,
4290 autoneg_wait_to_complete);
4291 if (status)
4292 return status;
4293
4294 /* Flap the Tx laser if it has not already been done */
4295 if (hw->mac.ops.flap_tx_laser)
4296 hw->mac.ops.flap_tx_laser(hw);
4297
4298 /* Wait for the link partner to also set speed */
4299 msleep(100);
4300
4301 /* If we have link, just jump out */
4302 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4303 false);
4304 if (status)
4305 return status;
4306
4307 if (link_up)
4308 goto out;
4309 }
4310
4311 /* We didn't get link. Configure back to the highest speed we tried,
4312 * (if there was more than one). We call ourselves back with just the
4313 * single highest speed that the user requested.
4314 */
4315 if (speedcnt > 1)
4316 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4317 highest_link_speed,
4318 autoneg_wait_to_complete);
4319
4320out:
4321 /* Set autoneg_advertised value based on input link speed */
4322 hw->phy.autoneg_advertised = 0;
4323
4324 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4325 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4326
4327 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4328 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4329
4330 return status;
4331}
4332
4333/**
4334 * ixgbe_set_soft_rate_select_speed - Set module link speed
4335 * @hw: pointer to hardware structure
4336 * @speed: link speed to set
4337 *
4338 * Set module link speed via the soft rate select.
4339 */
4340void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4341 ixgbe_link_speed speed)
4342{
4343 u8 rs, eeprom_data;
4344 int status;
4345
4346 switch (speed) {
4347 case IXGBE_LINK_SPEED_10GB_FULL:
4348 /* one bit mask same as setting on */
4349 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4350 break;
4351 case IXGBE_LINK_SPEED_1GB_FULL:
4352 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4353 break;
4354 default:
4355 hw_dbg(hw, "Invalid fixed module speed\n");
4356 return;
4357 }
4358
4359 /* Set RS0 */
4360 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4361 IXGBE_I2C_EEPROM_DEV_ADDR2,
4362 &eeprom_data);
4363 if (status) {
4364 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4365 return;
4366 }
4367
4368 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4369
4370 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4371 IXGBE_I2C_EEPROM_DEV_ADDR2,
4372 eeprom_data);
4373 if (status) {
4374 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4375 return;
4376 }
4377
4378 /* Set RS1 */
4379 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4380 IXGBE_I2C_EEPROM_DEV_ADDR2,
4381 &eeprom_data);
4382 if (status) {
4383 hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4384 return;
4385 }
4386
4387 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4388
4389 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4390 IXGBE_I2C_EEPROM_DEV_ADDR2,
4391 eeprom_data);
4392 if (status) {
4393 hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4394 return;
4395 }
4396}
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/pci.h>
30#include <linux/delay.h>
31#include <linux/sched.h>
32#include <linux/netdevice.h>
33
34#include "ixgbe.h"
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37
38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49
50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 u16 offset);
58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59
60/* Base table for registers values that change by MAC */
61const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 IXGBE_MVALS_INIT(8259X)
63};
64
65/**
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67 * control
68 * @hw: pointer to hardware structure
69 *
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
73 **/
74bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75{
76 bool supported = false;
77 ixgbe_link_speed speed;
78 bool link_up;
79
80 switch (hw->phy.media_type) {
81 case ixgbe_media_type_fiber:
82 hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 /* if link is down, assume supported */
84 if (link_up)
85 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 true : false;
87 else
88 supported = true;
89 break;
90 case ixgbe_media_type_backplane:
91 supported = true;
92 break;
93 case ixgbe_media_type_copper:
94 /* only some copper devices support flow control autoneg */
95 switch (hw->device_id) {
96 case IXGBE_DEV_ID_82599_T3_LOM:
97 case IXGBE_DEV_ID_X540T:
98 case IXGBE_DEV_ID_X540T1:
99 case IXGBE_DEV_ID_X550T:
100 case IXGBE_DEV_ID_X550T1:
101 case IXGBE_DEV_ID_X550EM_X_10G_T:
102 case IXGBE_DEV_ID_X550EM_A_10G_T:
103 supported = true;
104 break;
105 default:
106 break;
107 }
108 default:
109 break;
110 }
111
112 return supported;
113}
114
115/**
116 * ixgbe_setup_fc_generic - Set up flow control
117 * @hw: pointer to hardware structure
118 *
119 * Called at init time to set up flow control.
120 **/
121s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
122{
123 s32 ret_val = 0;
124 u32 reg = 0, reg_bp = 0;
125 u16 reg_cu = 0;
126 bool locked = false;
127
128 /*
129 * Validate the requested mode. Strict IEEE mode does not allow
130 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
131 */
132 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
133 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
134 return IXGBE_ERR_INVALID_LINK_SETTINGS;
135 }
136
137 /*
138 * 10gig parts do not have a word in the EEPROM to determine the
139 * default flow control setting, so we explicitly set it to full.
140 */
141 if (hw->fc.requested_mode == ixgbe_fc_default)
142 hw->fc.requested_mode = ixgbe_fc_full;
143
144 /*
145 * Set up the 1G and 10G flow control advertisement registers so the
146 * HW will be able to do fc autoneg once the cable is plugged in. If
147 * we link at 10G, the 1G advertisement is harmless and vice versa.
148 */
149 switch (hw->phy.media_type) {
150 case ixgbe_media_type_backplane:
151 /* some MAC's need RMW protection on AUTOC */
152 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
153 if (ret_val)
154 return ret_val;
155
156 /* only backplane uses autoc so fall though */
157 case ixgbe_media_type_fiber:
158 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
159
160 break;
161 case ixgbe_media_type_copper:
162 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
163 MDIO_MMD_AN, ®_cu);
164 break;
165 default:
166 break;
167 }
168
169 /*
170 * The possible values of fc.requested_mode are:
171 * 0: Flow control is completely disabled
172 * 1: Rx flow control is enabled (we can receive pause frames,
173 * but not send pause frames).
174 * 2: Tx flow control is enabled (we can send pause frames but
175 * we do not support receiving pause frames).
176 * 3: Both Rx and Tx flow control (symmetric) are enabled.
177 * other: Invalid.
178 */
179 switch (hw->fc.requested_mode) {
180 case ixgbe_fc_none:
181 /* Flow control completely disabled by software override. */
182 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
183 if (hw->phy.media_type == ixgbe_media_type_backplane)
184 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
185 IXGBE_AUTOC_ASM_PAUSE);
186 else if (hw->phy.media_type == ixgbe_media_type_copper)
187 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
188 break;
189 case ixgbe_fc_tx_pause:
190 /*
191 * Tx Flow control is enabled, and Rx Flow control is
192 * disabled by software override.
193 */
194 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
195 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
196 if (hw->phy.media_type == ixgbe_media_type_backplane) {
197 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
198 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
199 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
200 reg_cu |= IXGBE_TAF_ASM_PAUSE;
201 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
202 }
203 break;
204 case ixgbe_fc_rx_pause:
205 /*
206 * Rx Flow control is enabled and Tx Flow control is
207 * disabled by software override. Since there really
208 * isn't a way to advertise that we are capable of RX
209 * Pause ONLY, we will advertise that we support both
210 * symmetric and asymmetric Rx PAUSE, as such we fall
211 * through to the fc_full statement. Later, we will
212 * disable the adapter's ability to send PAUSE frames.
213 */
214 case ixgbe_fc_full:
215 /* Flow control (both Rx and Tx) is enabled by SW override. */
216 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
217 if (hw->phy.media_type == ixgbe_media_type_backplane)
218 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
219 IXGBE_AUTOC_ASM_PAUSE;
220 else if (hw->phy.media_type == ixgbe_media_type_copper)
221 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
222 break;
223 default:
224 hw_dbg(hw, "Flow control param set incorrectly\n");
225 return IXGBE_ERR_CONFIG;
226 }
227
228 if (hw->mac.type != ixgbe_mac_X540) {
229 /*
230 * Enable auto-negotiation between the MAC & PHY;
231 * the MAC will advertise clause 37 flow control.
232 */
233 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
234 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
235
236 /* Disable AN timeout */
237 if (hw->fc.strict_ieee)
238 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
239
240 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
241 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
242 }
243
244 /*
245 * AUTOC restart handles negotiation of 1G and 10G on backplane
246 * and copper. There is no need to set the PCS1GCTL register.
247 *
248 */
249 if (hw->phy.media_type == ixgbe_media_type_backplane) {
250 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
251 * LESM is on, likewise reset_pipeline requries the lock as
252 * it also writes AUTOC.
253 */
254 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
255 if (ret_val)
256 return ret_val;
257
258 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
259 ixgbe_device_supports_autoneg_fc(hw)) {
260 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
261 MDIO_MMD_AN, reg_cu);
262 }
263
264 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
265 return ret_val;
266}
267
268/**
269 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
270 * @hw: pointer to hardware structure
271 *
272 * Starts the hardware by filling the bus info structure and media type, clears
273 * all on chip counters, initializes receive address registers, multicast
274 * table, VLAN filter table, calls routine to set up link and flow control
275 * settings, and leaves transmit and receive units disabled and uninitialized
276 **/
277s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
278{
279 s32 ret_val;
280 u32 ctrl_ext;
281 u16 device_caps;
282
283 /* Set the media type */
284 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
285
286 /* Identify the PHY */
287 hw->phy.ops.identify(hw);
288
289 /* Clear the VLAN filter table */
290 hw->mac.ops.clear_vfta(hw);
291
292 /* Clear statistics registers */
293 hw->mac.ops.clear_hw_cntrs(hw);
294
295 /* Set No Snoop Disable */
296 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
297 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
298 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
299 IXGBE_WRITE_FLUSH(hw);
300
301 /* Setup flow control if method for doing so */
302 if (hw->mac.ops.setup_fc) {
303 ret_val = hw->mac.ops.setup_fc(hw);
304 if (ret_val)
305 return ret_val;
306 }
307
308 /* Cashe bit indicating need for crosstalk fix */
309 switch (hw->mac.type) {
310 case ixgbe_mac_82599EB:
311 case ixgbe_mac_X550EM_x:
312 case ixgbe_mac_x550em_a:
313 hw->mac.ops.get_device_caps(hw, &device_caps);
314 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
315 hw->need_crosstalk_fix = false;
316 else
317 hw->need_crosstalk_fix = true;
318 break;
319 default:
320 hw->need_crosstalk_fix = false;
321 break;
322 }
323
324 /* Clear adapter stopped flag */
325 hw->adapter_stopped = false;
326
327 return 0;
328}
329
330/**
331 * ixgbe_start_hw_gen2 - Init sequence for common device family
332 * @hw: pointer to hw structure
333 *
334 * Performs the init sequence common to the second generation
335 * of 10 GbE devices.
336 * Devices in the second generation:
337 * 82599
338 * X540
339 **/
340s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
341{
342 u32 i;
343
344 /* Clear the rate limiters */
345 for (i = 0; i < hw->mac.max_tx_queues; i++) {
346 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
347 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
348 }
349 IXGBE_WRITE_FLUSH(hw);
350
351#ifndef CONFIG_SPARC
352 /* Disable relaxed ordering */
353 for (i = 0; i < hw->mac.max_tx_queues; i++) {
354 u32 regval;
355
356 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
357 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
358 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
359 }
360
361 for (i = 0; i < hw->mac.max_rx_queues; i++) {
362 u32 regval;
363
364 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
365 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
366 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
367 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
368 }
369#endif
370 return 0;
371}
372
373/**
374 * ixgbe_init_hw_generic - Generic hardware initialization
375 * @hw: pointer to hardware structure
376 *
377 * Initialize the hardware by resetting the hardware, filling the bus info
378 * structure and media type, clears all on chip counters, initializes receive
379 * address registers, multicast table, VLAN filter table, calls routine to set
380 * up link and flow control settings, and leaves transmit and receive units
381 * disabled and uninitialized
382 **/
383s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
384{
385 s32 status;
386
387 /* Reset the hardware */
388 status = hw->mac.ops.reset_hw(hw);
389
390 if (status == 0) {
391 /* Start the HW */
392 status = hw->mac.ops.start_hw(hw);
393 }
394
395 /* Initialize the LED link active for LED blink support */
396 hw->mac.ops.init_led_link_act(hw);
397
398 return status;
399}
400
401/**
402 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
403 * @hw: pointer to hardware structure
404 *
405 * Clears all hardware statistics counters by reading them from the hardware
406 * Statistics counters are clear on read.
407 **/
408s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
409{
410 u16 i = 0;
411
412 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
413 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
414 IXGBE_READ_REG(hw, IXGBE_ERRBC);
415 IXGBE_READ_REG(hw, IXGBE_MSPDC);
416 for (i = 0; i < 8; i++)
417 IXGBE_READ_REG(hw, IXGBE_MPC(i));
418
419 IXGBE_READ_REG(hw, IXGBE_MLFC);
420 IXGBE_READ_REG(hw, IXGBE_MRFC);
421 IXGBE_READ_REG(hw, IXGBE_RLEC);
422 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
423 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
424 if (hw->mac.type >= ixgbe_mac_82599EB) {
425 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
426 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
427 } else {
428 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
429 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
430 }
431
432 for (i = 0; i < 8; i++) {
433 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
434 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
435 if (hw->mac.type >= ixgbe_mac_82599EB) {
436 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
437 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
438 } else {
439 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
440 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
441 }
442 }
443 if (hw->mac.type >= ixgbe_mac_82599EB)
444 for (i = 0; i < 8; i++)
445 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
446 IXGBE_READ_REG(hw, IXGBE_PRC64);
447 IXGBE_READ_REG(hw, IXGBE_PRC127);
448 IXGBE_READ_REG(hw, IXGBE_PRC255);
449 IXGBE_READ_REG(hw, IXGBE_PRC511);
450 IXGBE_READ_REG(hw, IXGBE_PRC1023);
451 IXGBE_READ_REG(hw, IXGBE_PRC1522);
452 IXGBE_READ_REG(hw, IXGBE_GPRC);
453 IXGBE_READ_REG(hw, IXGBE_BPRC);
454 IXGBE_READ_REG(hw, IXGBE_MPRC);
455 IXGBE_READ_REG(hw, IXGBE_GPTC);
456 IXGBE_READ_REG(hw, IXGBE_GORCL);
457 IXGBE_READ_REG(hw, IXGBE_GORCH);
458 IXGBE_READ_REG(hw, IXGBE_GOTCL);
459 IXGBE_READ_REG(hw, IXGBE_GOTCH);
460 if (hw->mac.type == ixgbe_mac_82598EB)
461 for (i = 0; i < 8; i++)
462 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
463 IXGBE_READ_REG(hw, IXGBE_RUC);
464 IXGBE_READ_REG(hw, IXGBE_RFC);
465 IXGBE_READ_REG(hw, IXGBE_ROC);
466 IXGBE_READ_REG(hw, IXGBE_RJC);
467 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
468 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
469 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
470 IXGBE_READ_REG(hw, IXGBE_TORL);
471 IXGBE_READ_REG(hw, IXGBE_TORH);
472 IXGBE_READ_REG(hw, IXGBE_TPR);
473 IXGBE_READ_REG(hw, IXGBE_TPT);
474 IXGBE_READ_REG(hw, IXGBE_PTC64);
475 IXGBE_READ_REG(hw, IXGBE_PTC127);
476 IXGBE_READ_REG(hw, IXGBE_PTC255);
477 IXGBE_READ_REG(hw, IXGBE_PTC511);
478 IXGBE_READ_REG(hw, IXGBE_PTC1023);
479 IXGBE_READ_REG(hw, IXGBE_PTC1522);
480 IXGBE_READ_REG(hw, IXGBE_MPTC);
481 IXGBE_READ_REG(hw, IXGBE_BPTC);
482 for (i = 0; i < 16; i++) {
483 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
484 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
485 if (hw->mac.type >= ixgbe_mac_82599EB) {
486 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
487 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
488 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
489 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
490 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
491 } else {
492 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
493 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
494 }
495 }
496
497 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
498 if (hw->phy.id == 0)
499 hw->phy.ops.identify(hw);
500 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
501 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
502 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
503 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
504 }
505
506 return 0;
507}
508
509/**
510 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
511 * @hw: pointer to hardware structure
512 * @pba_num: stores the part number string from the EEPROM
513 * @pba_num_size: part number string buffer length
514 *
515 * Reads the part number string from the EEPROM.
516 **/
517s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
518 u32 pba_num_size)
519{
520 s32 ret_val;
521 u16 data;
522 u16 pba_ptr;
523 u16 offset;
524 u16 length;
525
526 if (pba_num == NULL) {
527 hw_dbg(hw, "PBA string buffer was null\n");
528 return IXGBE_ERR_INVALID_ARGUMENT;
529 }
530
531 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
532 if (ret_val) {
533 hw_dbg(hw, "NVM Read Error\n");
534 return ret_val;
535 }
536
537 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
538 if (ret_val) {
539 hw_dbg(hw, "NVM Read Error\n");
540 return ret_val;
541 }
542
543 /*
544 * if data is not ptr guard the PBA must be in legacy format which
545 * means pba_ptr is actually our second data word for the PBA number
546 * and we can decode it into an ascii string
547 */
548 if (data != IXGBE_PBANUM_PTR_GUARD) {
549 hw_dbg(hw, "NVM PBA number is not stored as string\n");
550
551 /* we will need 11 characters to store the PBA */
552 if (pba_num_size < 11) {
553 hw_dbg(hw, "PBA string buffer too small\n");
554 return IXGBE_ERR_NO_SPACE;
555 }
556
557 /* extract hex string from data and pba_ptr */
558 pba_num[0] = (data >> 12) & 0xF;
559 pba_num[1] = (data >> 8) & 0xF;
560 pba_num[2] = (data >> 4) & 0xF;
561 pba_num[3] = data & 0xF;
562 pba_num[4] = (pba_ptr >> 12) & 0xF;
563 pba_num[5] = (pba_ptr >> 8) & 0xF;
564 pba_num[6] = '-';
565 pba_num[7] = 0;
566 pba_num[8] = (pba_ptr >> 4) & 0xF;
567 pba_num[9] = pba_ptr & 0xF;
568
569 /* put a null character on the end of our string */
570 pba_num[10] = '\0';
571
572 /* switch all the data but the '-' to hex char */
573 for (offset = 0; offset < 10; offset++) {
574 if (pba_num[offset] < 0xA)
575 pba_num[offset] += '0';
576 else if (pba_num[offset] < 0x10)
577 pba_num[offset] += 'A' - 0xA;
578 }
579
580 return 0;
581 }
582
583 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
584 if (ret_val) {
585 hw_dbg(hw, "NVM Read Error\n");
586 return ret_val;
587 }
588
589 if (length == 0xFFFF || length == 0) {
590 hw_dbg(hw, "NVM PBA number section invalid length\n");
591 return IXGBE_ERR_PBA_SECTION;
592 }
593
594 /* check if pba_num buffer is big enough */
595 if (pba_num_size < (((u32)length * 2) - 1)) {
596 hw_dbg(hw, "PBA string buffer too small\n");
597 return IXGBE_ERR_NO_SPACE;
598 }
599
600 /* trim pba length from start of string */
601 pba_ptr++;
602 length--;
603
604 for (offset = 0; offset < length; offset++) {
605 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
606 if (ret_val) {
607 hw_dbg(hw, "NVM Read Error\n");
608 return ret_val;
609 }
610 pba_num[offset * 2] = (u8)(data >> 8);
611 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
612 }
613 pba_num[offset * 2] = '\0';
614
615 return 0;
616}
617
618/**
619 * ixgbe_get_mac_addr_generic - Generic get MAC address
620 * @hw: pointer to hardware structure
621 * @mac_addr: Adapter MAC address
622 *
623 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
624 * A reset of the adapter must be performed prior to calling this function
625 * in order for the MAC address to have been loaded from the EEPROM into RAR0
626 **/
627s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
628{
629 u32 rar_high;
630 u32 rar_low;
631 u16 i;
632
633 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
634 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
635
636 for (i = 0; i < 4; i++)
637 mac_addr[i] = (u8)(rar_low >> (i*8));
638
639 for (i = 0; i < 2; i++)
640 mac_addr[i+4] = (u8)(rar_high >> (i*8));
641
642 return 0;
643}
644
645enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
646{
647 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
648 case IXGBE_PCI_LINK_WIDTH_1:
649 return ixgbe_bus_width_pcie_x1;
650 case IXGBE_PCI_LINK_WIDTH_2:
651 return ixgbe_bus_width_pcie_x2;
652 case IXGBE_PCI_LINK_WIDTH_4:
653 return ixgbe_bus_width_pcie_x4;
654 case IXGBE_PCI_LINK_WIDTH_8:
655 return ixgbe_bus_width_pcie_x8;
656 default:
657 return ixgbe_bus_width_unknown;
658 }
659}
660
661enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
662{
663 switch (link_status & IXGBE_PCI_LINK_SPEED) {
664 case IXGBE_PCI_LINK_SPEED_2500:
665 return ixgbe_bus_speed_2500;
666 case IXGBE_PCI_LINK_SPEED_5000:
667 return ixgbe_bus_speed_5000;
668 case IXGBE_PCI_LINK_SPEED_8000:
669 return ixgbe_bus_speed_8000;
670 default:
671 return ixgbe_bus_speed_unknown;
672 }
673}
674
675/**
676 * ixgbe_get_bus_info_generic - Generic set PCI bus info
677 * @hw: pointer to hardware structure
678 *
679 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
680 **/
681s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
682{
683 u16 link_status;
684
685 hw->bus.type = ixgbe_bus_type_pci_express;
686
687 /* Get the negotiated link width and speed from PCI config space */
688 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
689
690 hw->bus.width = ixgbe_convert_bus_width(link_status);
691 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
692
693 hw->mac.ops.set_lan_id(hw);
694
695 return 0;
696}
697
698/**
699 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
700 * @hw: pointer to the HW structure
701 *
702 * Determines the LAN function id by reading memory-mapped registers
703 * and swaps the port value if requested.
704 **/
705void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
706{
707 struct ixgbe_bus_info *bus = &hw->bus;
708 u16 ee_ctrl_4;
709 u32 reg;
710
711 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
712 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
713 bus->lan_id = bus->func;
714
715 /* check for a port swap */
716 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
717 if (reg & IXGBE_FACTPS_LFS)
718 bus->func ^= 0x1;
719
720 /* Get MAC instance from EEPROM for configuring CS4227 */
721 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
722 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
723 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
724 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
725 }
726}
727
728/**
729 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
730 * @hw: pointer to hardware structure
731 *
732 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
733 * disables transmit and receive units. The adapter_stopped flag is used by
734 * the shared code and drivers to determine if the adapter is in a stopped
735 * state and should not touch the hardware.
736 **/
737s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
738{
739 u32 reg_val;
740 u16 i;
741
742 /*
743 * Set the adapter_stopped flag so other driver functions stop touching
744 * the hardware
745 */
746 hw->adapter_stopped = true;
747
748 /* Disable the receive unit */
749 hw->mac.ops.disable_rx(hw);
750
751 /* Clear interrupt mask to stop interrupts from being generated */
752 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
753
754 /* Clear any pending interrupts, flush previous writes */
755 IXGBE_READ_REG(hw, IXGBE_EICR);
756
757 /* Disable the transmit unit. Each queue must be disabled. */
758 for (i = 0; i < hw->mac.max_tx_queues; i++)
759 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
760
761 /* Disable the receive unit by stopping each queue */
762 for (i = 0; i < hw->mac.max_rx_queues; i++) {
763 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
764 reg_val &= ~IXGBE_RXDCTL_ENABLE;
765 reg_val |= IXGBE_RXDCTL_SWFLSH;
766 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
767 }
768
769 /* flush all queues disables */
770 IXGBE_WRITE_FLUSH(hw);
771 usleep_range(1000, 2000);
772
773 /*
774 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
775 * access and verify no pending requests
776 */
777 return ixgbe_disable_pcie_master(hw);
778}
779
780/**
781 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
782 * @hw: pointer to hardware structure
783 *
784 * Store the index for the link active LED. This will be used to support
785 * blinking the LED.
786 **/
787s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
788{
789 struct ixgbe_mac_info *mac = &hw->mac;
790 u32 led_reg, led_mode;
791 u16 i;
792
793 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
794
795 /* Get LED link active from the LEDCTL register */
796 for (i = 0; i < 4; i++) {
797 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
798
799 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
800 IXGBE_LED_LINK_ACTIVE) {
801 mac->led_link_act = i;
802 return 0;
803 }
804 }
805
806 /* If LEDCTL register does not have the LED link active set, then use
807 * known MAC defaults.
808 */
809 switch (hw->mac.type) {
810 case ixgbe_mac_x550em_a:
811 mac->led_link_act = 0;
812 break;
813 case ixgbe_mac_X550EM_x:
814 mac->led_link_act = 1;
815 break;
816 default:
817 mac->led_link_act = 2;
818 }
819
820 return 0;
821}
822
823/**
824 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
825 * @hw: pointer to hardware structure
826 * @index: led number to turn on
827 **/
828s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
829{
830 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
831
832 if (index > 3)
833 return IXGBE_ERR_PARAM;
834
835 /* To turn on the LED, set mode to ON. */
836 led_reg &= ~IXGBE_LED_MODE_MASK(index);
837 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
838 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
839 IXGBE_WRITE_FLUSH(hw);
840
841 return 0;
842}
843
844/**
845 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
846 * @hw: pointer to hardware structure
847 * @index: led number to turn off
848 **/
849s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
850{
851 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
852
853 if (index > 3)
854 return IXGBE_ERR_PARAM;
855
856 /* To turn off the LED, set mode to OFF. */
857 led_reg &= ~IXGBE_LED_MODE_MASK(index);
858 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
859 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
860 IXGBE_WRITE_FLUSH(hw);
861
862 return 0;
863}
864
865/**
866 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
867 * @hw: pointer to hardware structure
868 *
869 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
870 * ixgbe_hw struct in order to set up EEPROM access.
871 **/
872s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
873{
874 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
875 u32 eec;
876 u16 eeprom_size;
877
878 if (eeprom->type == ixgbe_eeprom_uninitialized) {
879 eeprom->type = ixgbe_eeprom_none;
880 /* Set default semaphore delay to 10ms which is a well
881 * tested value */
882 eeprom->semaphore_delay = 10;
883 /* Clear EEPROM page size, it will be initialized as needed */
884 eeprom->word_page_size = 0;
885
886 /*
887 * Check for EEPROM present first.
888 * If not present leave as none
889 */
890 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
891 if (eec & IXGBE_EEC_PRES) {
892 eeprom->type = ixgbe_eeprom_spi;
893
894 /*
895 * SPI EEPROM is assumed here. This code would need to
896 * change if a future EEPROM is not SPI.
897 */
898 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
899 IXGBE_EEC_SIZE_SHIFT);
900 eeprom->word_size = BIT(eeprom_size +
901 IXGBE_EEPROM_WORD_SIZE_SHIFT);
902 }
903
904 if (eec & IXGBE_EEC_ADDR_SIZE)
905 eeprom->address_bits = 16;
906 else
907 eeprom->address_bits = 8;
908 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
909 eeprom->type, eeprom->word_size, eeprom->address_bits);
910 }
911
912 return 0;
913}
914
915/**
916 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
917 * @hw: pointer to hardware structure
918 * @offset: offset within the EEPROM to write
919 * @words: number of words
920 * @data: 16 bit word(s) to write to EEPROM
921 *
922 * Reads 16 bit word(s) from EEPROM through bit-bang method
923 **/
924s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
925 u16 words, u16 *data)
926{
927 s32 status;
928 u16 i, count;
929
930 hw->eeprom.ops.init_params(hw);
931
932 if (words == 0)
933 return IXGBE_ERR_INVALID_ARGUMENT;
934
935 if (offset + words > hw->eeprom.word_size)
936 return IXGBE_ERR_EEPROM;
937
938 /*
939 * The EEPROM page size cannot be queried from the chip. We do lazy
940 * initialization. It is worth to do that when we write large buffer.
941 */
942 if ((hw->eeprom.word_page_size == 0) &&
943 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
944 ixgbe_detect_eeprom_page_size_generic(hw, offset);
945
946 /*
947 * We cannot hold synchronization semaphores for too long
948 * to avoid other entity starvation. However it is more efficient
949 * to read in bursts than synchronizing access for each word.
950 */
951 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
952 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
953 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
954 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
955 count, &data[i]);
956
957 if (status != 0)
958 break;
959 }
960
961 return status;
962}
963
964/**
965 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
966 * @hw: pointer to hardware structure
967 * @offset: offset within the EEPROM to be written to
968 * @words: number of word(s)
969 * @data: 16 bit word(s) to be written to the EEPROM
970 *
971 * If ixgbe_eeprom_update_checksum is not called after this function, the
972 * EEPROM will most likely contain an invalid checksum.
973 **/
974static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
975 u16 words, u16 *data)
976{
977 s32 status;
978 u16 word;
979 u16 page_size;
980 u16 i;
981 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
982
983 /* Prepare the EEPROM for writing */
984 status = ixgbe_acquire_eeprom(hw);
985 if (status)
986 return status;
987
988 if (ixgbe_ready_eeprom(hw) != 0) {
989 ixgbe_release_eeprom(hw);
990 return IXGBE_ERR_EEPROM;
991 }
992
993 for (i = 0; i < words; i++) {
994 ixgbe_standby_eeprom(hw);
995
996 /* Send the WRITE ENABLE command (8 bit opcode) */
997 ixgbe_shift_out_eeprom_bits(hw,
998 IXGBE_EEPROM_WREN_OPCODE_SPI,
999 IXGBE_EEPROM_OPCODE_BITS);
1000
1001 ixgbe_standby_eeprom(hw);
1002
1003 /* Some SPI eeproms use the 8th address bit embedded
1004 * in the opcode
1005 */
1006 if ((hw->eeprom.address_bits == 8) &&
1007 ((offset + i) >= 128))
1008 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1009
1010 /* Send the Write command (8-bit opcode + addr) */
1011 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1012 IXGBE_EEPROM_OPCODE_BITS);
1013 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1014 hw->eeprom.address_bits);
1015
1016 page_size = hw->eeprom.word_page_size;
1017
1018 /* Send the data in burst via SPI */
1019 do {
1020 word = data[i];
1021 word = (word >> 8) | (word << 8);
1022 ixgbe_shift_out_eeprom_bits(hw, word, 16);
1023
1024 if (page_size == 0)
1025 break;
1026
1027 /* do not wrap around page */
1028 if (((offset + i) & (page_size - 1)) ==
1029 (page_size - 1))
1030 break;
1031 } while (++i < words);
1032
1033 ixgbe_standby_eeprom(hw);
1034 usleep_range(10000, 20000);
1035 }
1036 /* Done with writing - release the EEPROM */
1037 ixgbe_release_eeprom(hw);
1038
1039 return 0;
1040}
1041
1042/**
1043 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1044 * @hw: pointer to hardware structure
1045 * @offset: offset within the EEPROM to be written to
1046 * @data: 16 bit word to be written to the EEPROM
1047 *
1048 * If ixgbe_eeprom_update_checksum is not called after this function, the
1049 * EEPROM will most likely contain an invalid checksum.
1050 **/
1051s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1052{
1053 hw->eeprom.ops.init_params(hw);
1054
1055 if (offset >= hw->eeprom.word_size)
1056 return IXGBE_ERR_EEPROM;
1057
1058 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1059}
1060
1061/**
1062 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1063 * @hw: pointer to hardware structure
1064 * @offset: offset within the EEPROM to be read
1065 * @words: number of word(s)
1066 * @data: read 16 bit words(s) from EEPROM
1067 *
1068 * Reads 16 bit word(s) from EEPROM through bit-bang method
1069 **/
1070s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1071 u16 words, u16 *data)
1072{
1073 s32 status;
1074 u16 i, count;
1075
1076 hw->eeprom.ops.init_params(hw);
1077
1078 if (words == 0)
1079 return IXGBE_ERR_INVALID_ARGUMENT;
1080
1081 if (offset + words > hw->eeprom.word_size)
1082 return IXGBE_ERR_EEPROM;
1083
1084 /*
1085 * We cannot hold synchronization semaphores for too long
1086 * to avoid other entity starvation. However it is more efficient
1087 * to read in bursts than synchronizing access for each word.
1088 */
1089 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1090 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1091 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1092
1093 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1094 count, &data[i]);
1095
1096 if (status)
1097 return status;
1098 }
1099
1100 return 0;
1101}
1102
1103/**
1104 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1105 * @hw: pointer to hardware structure
1106 * @offset: offset within the EEPROM to be read
1107 * @words: number of word(s)
1108 * @data: read 16 bit word(s) from EEPROM
1109 *
1110 * Reads 16 bit word(s) from EEPROM through bit-bang method
1111 **/
1112static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1113 u16 words, u16 *data)
1114{
1115 s32 status;
1116 u16 word_in;
1117 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1118 u16 i;
1119
1120 /* Prepare the EEPROM for reading */
1121 status = ixgbe_acquire_eeprom(hw);
1122 if (status)
1123 return status;
1124
1125 if (ixgbe_ready_eeprom(hw) != 0) {
1126 ixgbe_release_eeprom(hw);
1127 return IXGBE_ERR_EEPROM;
1128 }
1129
1130 for (i = 0; i < words; i++) {
1131 ixgbe_standby_eeprom(hw);
1132 /* Some SPI eeproms use the 8th address bit embedded
1133 * in the opcode
1134 */
1135 if ((hw->eeprom.address_bits == 8) &&
1136 ((offset + i) >= 128))
1137 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1138
1139 /* Send the READ command (opcode + addr) */
1140 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1141 IXGBE_EEPROM_OPCODE_BITS);
1142 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1143 hw->eeprom.address_bits);
1144
1145 /* Read the data. */
1146 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1147 data[i] = (word_in >> 8) | (word_in << 8);
1148 }
1149
1150 /* End this read operation */
1151 ixgbe_release_eeprom(hw);
1152
1153 return 0;
1154}
1155
1156/**
1157 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1158 * @hw: pointer to hardware structure
1159 * @offset: offset within the EEPROM to be read
1160 * @data: read 16 bit value from EEPROM
1161 *
1162 * Reads 16 bit value from EEPROM through bit-bang method
1163 **/
1164s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1165 u16 *data)
1166{
1167 hw->eeprom.ops.init_params(hw);
1168
1169 if (offset >= hw->eeprom.word_size)
1170 return IXGBE_ERR_EEPROM;
1171
1172 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1173}
1174
1175/**
1176 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1177 * @hw: pointer to hardware structure
1178 * @offset: offset of word in the EEPROM to read
1179 * @words: number of word(s)
1180 * @data: 16 bit word(s) from the EEPROM
1181 *
1182 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1183 **/
1184s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1185 u16 words, u16 *data)
1186{
1187 u32 eerd;
1188 s32 status;
1189 u32 i;
1190
1191 hw->eeprom.ops.init_params(hw);
1192
1193 if (words == 0)
1194 return IXGBE_ERR_INVALID_ARGUMENT;
1195
1196 if (offset >= hw->eeprom.word_size)
1197 return IXGBE_ERR_EEPROM;
1198
1199 for (i = 0; i < words; i++) {
1200 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1201 IXGBE_EEPROM_RW_REG_START;
1202
1203 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1204 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1205
1206 if (status == 0) {
1207 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1208 IXGBE_EEPROM_RW_REG_DATA);
1209 } else {
1210 hw_dbg(hw, "Eeprom read timed out\n");
1211 return status;
1212 }
1213 }
1214
1215 return 0;
1216}
1217
1218/**
1219 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1220 * @hw: pointer to hardware structure
1221 * @offset: offset within the EEPROM to be used as a scratch pad
1222 *
1223 * Discover EEPROM page size by writing marching data at given offset.
1224 * This function is called only when we are writing a new large buffer
1225 * at given offset so the data would be overwritten anyway.
1226 **/
1227static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1228 u16 offset)
1229{
1230 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1231 s32 status;
1232 u16 i;
1233
1234 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1235 data[i] = i;
1236
1237 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1238 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1239 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1240 hw->eeprom.word_page_size = 0;
1241 if (status)
1242 return status;
1243
1244 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1245 if (status)
1246 return status;
1247
1248 /*
1249 * When writing in burst more than the actual page size
1250 * EEPROM address wraps around current page.
1251 */
1252 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1253
1254 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1255 hw->eeprom.word_page_size);
1256 return 0;
1257}
1258
1259/**
1260 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1261 * @hw: pointer to hardware structure
1262 * @offset: offset of word in the EEPROM to read
1263 * @data: word read from the EEPROM
1264 *
1265 * Reads a 16 bit word from the EEPROM using the EERD register.
1266 **/
1267s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1268{
1269 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1270}
1271
1272/**
1273 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1274 * @hw: pointer to hardware structure
1275 * @offset: offset of word in the EEPROM to write
1276 * @words: number of words
1277 * @data: word(s) write to the EEPROM
1278 *
1279 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1280 **/
1281s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1282 u16 words, u16 *data)
1283{
1284 u32 eewr;
1285 s32 status;
1286 u16 i;
1287
1288 hw->eeprom.ops.init_params(hw);
1289
1290 if (words == 0)
1291 return IXGBE_ERR_INVALID_ARGUMENT;
1292
1293 if (offset >= hw->eeprom.word_size)
1294 return IXGBE_ERR_EEPROM;
1295
1296 for (i = 0; i < words; i++) {
1297 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1298 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1299 IXGBE_EEPROM_RW_REG_START;
1300
1301 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1302 if (status) {
1303 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1304 return status;
1305 }
1306
1307 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1308
1309 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1310 if (status) {
1311 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1312 return status;
1313 }
1314 }
1315
1316 return 0;
1317}
1318
1319/**
1320 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1321 * @hw: pointer to hardware structure
1322 * @offset: offset of word in the EEPROM to write
1323 * @data: word write to the EEPROM
1324 *
1325 * Write a 16 bit word to the EEPROM using the EEWR register.
1326 **/
1327s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1328{
1329 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1330}
1331
1332/**
1333 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1334 * @hw: pointer to hardware structure
1335 * @ee_reg: EEPROM flag for polling
1336 *
1337 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1338 * read or write is done respectively.
1339 **/
1340static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1341{
1342 u32 i;
1343 u32 reg;
1344
1345 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1346 if (ee_reg == IXGBE_NVM_POLL_READ)
1347 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1348 else
1349 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1350
1351 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1352 return 0;
1353 }
1354 udelay(5);
1355 }
1356 return IXGBE_ERR_EEPROM;
1357}
1358
1359/**
1360 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1361 * @hw: pointer to hardware structure
1362 *
1363 * Prepares EEPROM for access using bit-bang method. This function should
1364 * be called before issuing a command to the EEPROM.
1365 **/
1366static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1367{
1368 u32 eec;
1369 u32 i;
1370
1371 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1372 return IXGBE_ERR_SWFW_SYNC;
1373
1374 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1375
1376 /* Request EEPROM Access */
1377 eec |= IXGBE_EEC_REQ;
1378 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1379
1380 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1381 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1382 if (eec & IXGBE_EEC_GNT)
1383 break;
1384 udelay(5);
1385 }
1386
1387 /* Release if grant not acquired */
1388 if (!(eec & IXGBE_EEC_GNT)) {
1389 eec &= ~IXGBE_EEC_REQ;
1390 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1391 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1392
1393 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1394 return IXGBE_ERR_EEPROM;
1395 }
1396
1397 /* Setup EEPROM for Read/Write */
1398 /* Clear CS and SK */
1399 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1400 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1401 IXGBE_WRITE_FLUSH(hw);
1402 udelay(1);
1403 return 0;
1404}
1405
1406/**
1407 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1408 * @hw: pointer to hardware structure
1409 *
1410 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1411 **/
1412static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1413{
1414 u32 timeout = 2000;
1415 u32 i;
1416 u32 swsm;
1417
1418 /* Get SMBI software semaphore between device drivers first */
1419 for (i = 0; i < timeout; i++) {
1420 /*
1421 * If the SMBI bit is 0 when we read it, then the bit will be
1422 * set and we have the semaphore
1423 */
1424 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425 if (!(swsm & IXGBE_SWSM_SMBI))
1426 break;
1427 usleep_range(50, 100);
1428 }
1429
1430 if (i == timeout) {
1431 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1432 /* this release is particularly important because our attempts
1433 * above to get the semaphore may have succeeded, and if there
1434 * was a timeout, we should unconditionally clear the semaphore
1435 * bits to free the driver to make progress
1436 */
1437 ixgbe_release_eeprom_semaphore(hw);
1438
1439 usleep_range(50, 100);
1440 /* one last try
1441 * If the SMBI bit is 0 when we read it, then the bit will be
1442 * set and we have the semaphore
1443 */
1444 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1445 if (swsm & IXGBE_SWSM_SMBI) {
1446 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1447 return IXGBE_ERR_EEPROM;
1448 }
1449 }
1450
1451 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1452 for (i = 0; i < timeout; i++) {
1453 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454
1455 /* Set the SW EEPROM semaphore bit to request access */
1456 swsm |= IXGBE_SWSM_SWESMBI;
1457 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458
1459 /* If we set the bit successfully then we got the
1460 * semaphore.
1461 */
1462 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1463 if (swsm & IXGBE_SWSM_SWESMBI)
1464 break;
1465
1466 usleep_range(50, 100);
1467 }
1468
1469 /* Release semaphores and return error if SW EEPROM semaphore
1470 * was not granted because we don't have access to the EEPROM
1471 */
1472 if (i >= timeout) {
1473 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1474 ixgbe_release_eeprom_semaphore(hw);
1475 return IXGBE_ERR_EEPROM;
1476 }
1477
1478 return 0;
1479}
1480
1481/**
1482 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1483 * @hw: pointer to hardware structure
1484 *
1485 * This function clears hardware semaphore bits.
1486 **/
1487static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1488{
1489 u32 swsm;
1490
1491 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1492
1493 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1494 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1495 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1496 IXGBE_WRITE_FLUSH(hw);
1497}
1498
1499/**
1500 * ixgbe_ready_eeprom - Polls for EEPROM ready
1501 * @hw: pointer to hardware structure
1502 **/
1503static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1504{
1505 u16 i;
1506 u8 spi_stat_reg;
1507
1508 /*
1509 * Read "Status Register" repeatedly until the LSB is cleared. The
1510 * EEPROM will signal that the command has been completed by clearing
1511 * bit 0 of the internal status register. If it's not cleared within
1512 * 5 milliseconds, then error out.
1513 */
1514 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1515 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1516 IXGBE_EEPROM_OPCODE_BITS);
1517 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1518 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1519 break;
1520
1521 udelay(5);
1522 ixgbe_standby_eeprom(hw);
1523 }
1524
1525 /*
1526 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1527 * devices (and only 0-5mSec on 5V devices)
1528 */
1529 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1530 hw_dbg(hw, "SPI EEPROM Status error\n");
1531 return IXGBE_ERR_EEPROM;
1532 }
1533
1534 return 0;
1535}
1536
1537/**
1538 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1539 * @hw: pointer to hardware structure
1540 **/
1541static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1542{
1543 u32 eec;
1544
1545 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1546
1547 /* Toggle CS to flush commands */
1548 eec |= IXGBE_EEC_CS;
1549 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1550 IXGBE_WRITE_FLUSH(hw);
1551 udelay(1);
1552 eec &= ~IXGBE_EEC_CS;
1553 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1554 IXGBE_WRITE_FLUSH(hw);
1555 udelay(1);
1556}
1557
1558/**
1559 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1560 * @hw: pointer to hardware structure
1561 * @data: data to send to the EEPROM
1562 * @count: number of bits to shift out
1563 **/
1564static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1565 u16 count)
1566{
1567 u32 eec;
1568 u32 mask;
1569 u32 i;
1570
1571 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1572
1573 /*
1574 * Mask is used to shift "count" bits of "data" out to the EEPROM
1575 * one bit at a time. Determine the starting bit based on count
1576 */
1577 mask = BIT(count - 1);
1578
1579 for (i = 0; i < count; i++) {
1580 /*
1581 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1582 * "1", and then raising and then lowering the clock (the SK
1583 * bit controls the clock input to the EEPROM). A "0" is
1584 * shifted out to the EEPROM by setting "DI" to "0" and then
1585 * raising and then lowering the clock.
1586 */
1587 if (data & mask)
1588 eec |= IXGBE_EEC_DI;
1589 else
1590 eec &= ~IXGBE_EEC_DI;
1591
1592 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1593 IXGBE_WRITE_FLUSH(hw);
1594
1595 udelay(1);
1596
1597 ixgbe_raise_eeprom_clk(hw, &eec);
1598 ixgbe_lower_eeprom_clk(hw, &eec);
1599
1600 /*
1601 * Shift mask to signify next bit of data to shift in to the
1602 * EEPROM
1603 */
1604 mask = mask >> 1;
1605 }
1606
1607 /* We leave the "DI" bit set to "0" when we leave this routine. */
1608 eec &= ~IXGBE_EEC_DI;
1609 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1610 IXGBE_WRITE_FLUSH(hw);
1611}
1612
1613/**
1614 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1615 * @hw: pointer to hardware structure
1616 **/
1617static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1618{
1619 u32 eec;
1620 u32 i;
1621 u16 data = 0;
1622
1623 /*
1624 * In order to read a register from the EEPROM, we need to shift
1625 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1626 * the clock input to the EEPROM (setting the SK bit), and then reading
1627 * the value of the "DO" bit. During this "shifting in" process the
1628 * "DI" bit should always be clear.
1629 */
1630 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1631
1632 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1633
1634 for (i = 0; i < count; i++) {
1635 data = data << 1;
1636 ixgbe_raise_eeprom_clk(hw, &eec);
1637
1638 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1639
1640 eec &= ~(IXGBE_EEC_DI);
1641 if (eec & IXGBE_EEC_DO)
1642 data |= 1;
1643
1644 ixgbe_lower_eeprom_clk(hw, &eec);
1645 }
1646
1647 return data;
1648}
1649
1650/**
1651 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1652 * @hw: pointer to hardware structure
1653 * @eec: EEC register's current value
1654 **/
1655static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1656{
1657 /*
1658 * Raise the clock input to the EEPROM
1659 * (setting the SK bit), then delay
1660 */
1661 *eec = *eec | IXGBE_EEC_SK;
1662 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1663 IXGBE_WRITE_FLUSH(hw);
1664 udelay(1);
1665}
1666
1667/**
1668 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1669 * @hw: pointer to hardware structure
1670 * @eecd: EECD's current value
1671 **/
1672static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1673{
1674 /*
1675 * Lower the clock input to the EEPROM (clearing the SK bit), then
1676 * delay
1677 */
1678 *eec = *eec & ~IXGBE_EEC_SK;
1679 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1680 IXGBE_WRITE_FLUSH(hw);
1681 udelay(1);
1682}
1683
1684/**
1685 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1686 * @hw: pointer to hardware structure
1687 **/
1688static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1689{
1690 u32 eec;
1691
1692 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1693
1694 eec |= IXGBE_EEC_CS; /* Pull CS high */
1695 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1696
1697 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1698 IXGBE_WRITE_FLUSH(hw);
1699
1700 udelay(1);
1701
1702 /* Stop requesting EEPROM access */
1703 eec &= ~IXGBE_EEC_REQ;
1704 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1705
1706 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1707
1708 /*
1709 * Delay before attempt to obtain semaphore again to allow FW
1710 * access. semaphore_delay is in ms we need us for usleep_range
1711 */
1712 usleep_range(hw->eeprom.semaphore_delay * 1000,
1713 hw->eeprom.semaphore_delay * 2000);
1714}
1715
1716/**
1717 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1718 * @hw: pointer to hardware structure
1719 **/
1720s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1721{
1722 u16 i;
1723 u16 j;
1724 u16 checksum = 0;
1725 u16 length = 0;
1726 u16 pointer = 0;
1727 u16 word = 0;
1728
1729 /* Include 0x0-0x3F in the checksum */
1730 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1731 if (hw->eeprom.ops.read(hw, i, &word)) {
1732 hw_dbg(hw, "EEPROM read failed\n");
1733 break;
1734 }
1735 checksum += word;
1736 }
1737
1738 /* Include all data from pointers except for the fw pointer */
1739 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1740 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1741 hw_dbg(hw, "EEPROM read failed\n");
1742 return IXGBE_ERR_EEPROM;
1743 }
1744
1745 /* If the pointer seems invalid */
1746 if (pointer == 0xFFFF || pointer == 0)
1747 continue;
1748
1749 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1750 hw_dbg(hw, "EEPROM read failed\n");
1751 return IXGBE_ERR_EEPROM;
1752 }
1753
1754 if (length == 0xFFFF || length == 0)
1755 continue;
1756
1757 for (j = pointer + 1; j <= pointer + length; j++) {
1758 if (hw->eeprom.ops.read(hw, j, &word)) {
1759 hw_dbg(hw, "EEPROM read failed\n");
1760 return IXGBE_ERR_EEPROM;
1761 }
1762 checksum += word;
1763 }
1764 }
1765
1766 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1767
1768 return (s32)checksum;
1769}
1770
1771/**
1772 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1773 * @hw: pointer to hardware structure
1774 * @checksum_val: calculated checksum
1775 *
1776 * Performs checksum calculation and validates the EEPROM checksum. If the
1777 * caller does not need checksum_val, the value can be NULL.
1778 **/
1779s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1780 u16 *checksum_val)
1781{
1782 s32 status;
1783 u16 checksum;
1784 u16 read_checksum = 0;
1785
1786 /*
1787 * Read the first word from the EEPROM. If this times out or fails, do
1788 * not continue or we could be in for a very long wait while every
1789 * EEPROM read fails
1790 */
1791 status = hw->eeprom.ops.read(hw, 0, &checksum);
1792 if (status) {
1793 hw_dbg(hw, "EEPROM read failed\n");
1794 return status;
1795 }
1796
1797 status = hw->eeprom.ops.calc_checksum(hw);
1798 if (status < 0)
1799 return status;
1800
1801 checksum = (u16)(status & 0xffff);
1802
1803 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1804 if (status) {
1805 hw_dbg(hw, "EEPROM read failed\n");
1806 return status;
1807 }
1808
1809 /* Verify read checksum from EEPROM is the same as
1810 * calculated checksum
1811 */
1812 if (read_checksum != checksum)
1813 status = IXGBE_ERR_EEPROM_CHECKSUM;
1814
1815 /* If the user cares, return the calculated checksum */
1816 if (checksum_val)
1817 *checksum_val = checksum;
1818
1819 return status;
1820}
1821
1822/**
1823 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1824 * @hw: pointer to hardware structure
1825 **/
1826s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1827{
1828 s32 status;
1829 u16 checksum;
1830
1831 /*
1832 * Read the first word from the EEPROM. If this times out or fails, do
1833 * not continue or we could be in for a very long wait while every
1834 * EEPROM read fails
1835 */
1836 status = hw->eeprom.ops.read(hw, 0, &checksum);
1837 if (status) {
1838 hw_dbg(hw, "EEPROM read failed\n");
1839 return status;
1840 }
1841
1842 status = hw->eeprom.ops.calc_checksum(hw);
1843 if (status < 0)
1844 return status;
1845
1846 checksum = (u16)(status & 0xffff);
1847
1848 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1849
1850 return status;
1851}
1852
1853/**
1854 * ixgbe_set_rar_generic - Set Rx address register
1855 * @hw: pointer to hardware structure
1856 * @index: Receive address register to write
1857 * @addr: Address to put into receive address register
1858 * @vmdq: VMDq "set" or "pool" index
1859 * @enable_addr: set flag that address is active
1860 *
1861 * Puts an ethernet address into a receive address register.
1862 **/
1863s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1864 u32 enable_addr)
1865{
1866 u32 rar_low, rar_high;
1867 u32 rar_entries = hw->mac.num_rar_entries;
1868
1869 /* Make sure we are using a valid rar index range */
1870 if (index >= rar_entries) {
1871 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1872 return IXGBE_ERR_INVALID_ARGUMENT;
1873 }
1874
1875 /* setup VMDq pool selection before this RAR gets enabled */
1876 hw->mac.ops.set_vmdq(hw, index, vmdq);
1877
1878 /*
1879 * HW expects these in little endian so we reverse the byte
1880 * order from network order (big endian) to little endian
1881 */
1882 rar_low = ((u32)addr[0] |
1883 ((u32)addr[1] << 8) |
1884 ((u32)addr[2] << 16) |
1885 ((u32)addr[3] << 24));
1886 /*
1887 * Some parts put the VMDq setting in the extra RAH bits,
1888 * so save everything except the lower 16 bits that hold part
1889 * of the address and the address valid bit.
1890 */
1891 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1892 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1893 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1894
1895 if (enable_addr != 0)
1896 rar_high |= IXGBE_RAH_AV;
1897
1898 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1899 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1900
1901 return 0;
1902}
1903
1904/**
1905 * ixgbe_clear_rar_generic - Remove Rx address register
1906 * @hw: pointer to hardware structure
1907 * @index: Receive address register to write
1908 *
1909 * Clears an ethernet address from a receive address register.
1910 **/
1911s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1912{
1913 u32 rar_high;
1914 u32 rar_entries = hw->mac.num_rar_entries;
1915
1916 /* Make sure we are using a valid rar index range */
1917 if (index >= rar_entries) {
1918 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1919 return IXGBE_ERR_INVALID_ARGUMENT;
1920 }
1921
1922 /*
1923 * Some parts put the VMDq setting in the extra RAH bits,
1924 * so save everything except the lower 16 bits that hold part
1925 * of the address and the address valid bit.
1926 */
1927 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1928 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1929
1930 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1931 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1932
1933 /* clear VMDq pool/queue selection for this RAR */
1934 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1935
1936 return 0;
1937}
1938
1939/**
1940 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1941 * @hw: pointer to hardware structure
1942 *
1943 * Places the MAC address in receive address register 0 and clears the rest
1944 * of the receive address registers. Clears the multicast table. Assumes
1945 * the receiver is in reset when the routine is called.
1946 **/
1947s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1948{
1949 u32 i;
1950 u32 rar_entries = hw->mac.num_rar_entries;
1951
1952 /*
1953 * If the current mac address is valid, assume it is a software override
1954 * to the permanent address.
1955 * Otherwise, use the permanent address from the eeprom.
1956 */
1957 if (!is_valid_ether_addr(hw->mac.addr)) {
1958 /* Get the MAC address from the RAR0 for later reference */
1959 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1960
1961 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1962 } else {
1963 /* Setup the receive address. */
1964 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1965 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1966
1967 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1968 }
1969
1970 /* clear VMDq pool/queue selection for RAR 0 */
1971 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1972
1973 hw->addr_ctrl.overflow_promisc = 0;
1974
1975 hw->addr_ctrl.rar_used_count = 1;
1976
1977 /* Zero out the other receive addresses. */
1978 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1979 for (i = 1; i < rar_entries; i++) {
1980 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1981 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1982 }
1983
1984 /* Clear the MTA */
1985 hw->addr_ctrl.mta_in_use = 0;
1986 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1987
1988 hw_dbg(hw, " Clearing MTA\n");
1989 for (i = 0; i < hw->mac.mcft_size; i++)
1990 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1991
1992 if (hw->mac.ops.init_uta_tables)
1993 hw->mac.ops.init_uta_tables(hw);
1994
1995 return 0;
1996}
1997
1998/**
1999 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2000 * @hw: pointer to hardware structure
2001 * @mc_addr: the multicast address
2002 *
2003 * Extracts the 12 bits, from a multicast address, to determine which
2004 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2005 * incoming rx multicast addresses, to determine the bit-vector to check in
2006 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2007 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2008 * to mc_filter_type.
2009 **/
2010static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2011{
2012 u32 vector = 0;
2013
2014 switch (hw->mac.mc_filter_type) {
2015 case 0: /* use bits [47:36] of the address */
2016 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2017 break;
2018 case 1: /* use bits [46:35] of the address */
2019 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2020 break;
2021 case 2: /* use bits [45:34] of the address */
2022 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2023 break;
2024 case 3: /* use bits [43:32] of the address */
2025 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2026 break;
2027 default: /* Invalid mc_filter_type */
2028 hw_dbg(hw, "MC filter type param set incorrectly\n");
2029 break;
2030 }
2031
2032 /* vector can only be 12-bits or boundary will be exceeded */
2033 vector &= 0xFFF;
2034 return vector;
2035}
2036
2037/**
2038 * ixgbe_set_mta - Set bit-vector in multicast table
2039 * @hw: pointer to hardware structure
2040 * @hash_value: Multicast address hash value
2041 *
2042 * Sets the bit-vector in the multicast table.
2043 **/
2044static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2045{
2046 u32 vector;
2047 u32 vector_bit;
2048 u32 vector_reg;
2049
2050 hw->addr_ctrl.mta_in_use++;
2051
2052 vector = ixgbe_mta_vector(hw, mc_addr);
2053 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2054
2055 /*
2056 * The MTA is a register array of 128 32-bit registers. It is treated
2057 * like an array of 4096 bits. We want to set bit
2058 * BitArray[vector_value]. So we figure out what register the bit is
2059 * in, read it, OR in the new bit, then write back the new value. The
2060 * register is determined by the upper 7 bits of the vector value and
2061 * the bit within that register are determined by the lower 5 bits of
2062 * the value.
2063 */
2064 vector_reg = (vector >> 5) & 0x7F;
2065 vector_bit = vector & 0x1F;
2066 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2067}
2068
2069/**
2070 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2071 * @hw: pointer to hardware structure
2072 * @netdev: pointer to net device structure
2073 *
2074 * The given list replaces any existing list. Clears the MC addrs from receive
2075 * address registers and the multicast table. Uses unused receive address
2076 * registers for the first multicast addresses, and hashes the rest into the
2077 * multicast table.
2078 **/
2079s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2080 struct net_device *netdev)
2081{
2082 struct netdev_hw_addr *ha;
2083 u32 i;
2084
2085 /*
2086 * Set the new number of MC addresses that we are being requested to
2087 * use.
2088 */
2089 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2090 hw->addr_ctrl.mta_in_use = 0;
2091
2092 /* Clear mta_shadow */
2093 hw_dbg(hw, " Clearing MTA\n");
2094 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2095
2096 /* Update mta shadow */
2097 netdev_for_each_mc_addr(ha, netdev) {
2098 hw_dbg(hw, " Adding the multicast addresses:\n");
2099 ixgbe_set_mta(hw, ha->addr);
2100 }
2101
2102 /* Enable mta */
2103 for (i = 0; i < hw->mac.mcft_size; i++)
2104 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2105 hw->mac.mta_shadow[i]);
2106
2107 if (hw->addr_ctrl.mta_in_use > 0)
2108 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2109 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2110
2111 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2112 return 0;
2113}
2114
2115/**
2116 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2117 * @hw: pointer to hardware structure
2118 *
2119 * Enables multicast address in RAR and the use of the multicast hash table.
2120 **/
2121s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2122{
2123 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2124
2125 if (a->mta_in_use > 0)
2126 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2127 hw->mac.mc_filter_type);
2128
2129 return 0;
2130}
2131
2132/**
2133 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2134 * @hw: pointer to hardware structure
2135 *
2136 * Disables multicast address in RAR and the use of the multicast hash table.
2137 **/
2138s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2139{
2140 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2141
2142 if (a->mta_in_use > 0)
2143 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2144
2145 return 0;
2146}
2147
2148/**
2149 * ixgbe_fc_enable_generic - Enable flow control
2150 * @hw: pointer to hardware structure
2151 *
2152 * Enable flow control according to the current settings.
2153 **/
2154s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2155{
2156 u32 mflcn_reg, fccfg_reg;
2157 u32 reg;
2158 u32 fcrtl, fcrth;
2159 int i;
2160
2161 /* Validate the water mark configuration. */
2162 if (!hw->fc.pause_time)
2163 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2164
2165 /* Low water mark of zero causes XOFF floods */
2166 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2167 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2168 hw->fc.high_water[i]) {
2169 if (!hw->fc.low_water[i] ||
2170 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2171 hw_dbg(hw, "Invalid water mark configuration\n");
2172 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2173 }
2174 }
2175 }
2176
2177 /* Negotiate the fc mode to use */
2178 hw->mac.ops.fc_autoneg(hw);
2179
2180 /* Disable any previous flow control settings */
2181 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2182 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2183
2184 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2185 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2186
2187 /*
2188 * The possible values of fc.current_mode are:
2189 * 0: Flow control is completely disabled
2190 * 1: Rx flow control is enabled (we can receive pause frames,
2191 * but not send pause frames).
2192 * 2: Tx flow control is enabled (we can send pause frames but
2193 * we do not support receiving pause frames).
2194 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2195 * other: Invalid.
2196 */
2197 switch (hw->fc.current_mode) {
2198 case ixgbe_fc_none:
2199 /*
2200 * Flow control is disabled by software override or autoneg.
2201 * The code below will actually disable it in the HW.
2202 */
2203 break;
2204 case ixgbe_fc_rx_pause:
2205 /*
2206 * Rx Flow control is enabled and Tx Flow control is
2207 * disabled by software override. Since there really
2208 * isn't a way to advertise that we are capable of RX
2209 * Pause ONLY, we will advertise that we support both
2210 * symmetric and asymmetric Rx PAUSE. Later, we will
2211 * disable the adapter's ability to send PAUSE frames.
2212 */
2213 mflcn_reg |= IXGBE_MFLCN_RFCE;
2214 break;
2215 case ixgbe_fc_tx_pause:
2216 /*
2217 * Tx Flow control is enabled, and Rx Flow control is
2218 * disabled by software override.
2219 */
2220 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2221 break;
2222 case ixgbe_fc_full:
2223 /* Flow control (both Rx and Tx) is enabled by SW override. */
2224 mflcn_reg |= IXGBE_MFLCN_RFCE;
2225 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2226 break;
2227 default:
2228 hw_dbg(hw, "Flow control param set incorrectly\n");
2229 return IXGBE_ERR_CONFIG;
2230 }
2231
2232 /* Set 802.3x based flow control settings. */
2233 mflcn_reg |= IXGBE_MFLCN_DPF;
2234 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2235 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2236
2237 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2238 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2239 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2240 hw->fc.high_water[i]) {
2241 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2242 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2243 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2244 } else {
2245 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2246 /*
2247 * In order to prevent Tx hangs when the internal Tx
2248 * switch is enabled we must set the high water mark
2249 * to the Rx packet buffer size - 24KB. This allows
2250 * the Tx switch to function even under heavy Rx
2251 * workloads.
2252 */
2253 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2254 }
2255
2256 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2257 }
2258
2259 /* Configure pause time (2 TCs per register) */
2260 reg = hw->fc.pause_time * 0x00010001;
2261 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2262 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2263
2264 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2265
2266 return 0;
2267}
2268
2269/**
2270 * ixgbe_negotiate_fc - Negotiate flow control
2271 * @hw: pointer to hardware structure
2272 * @adv_reg: flow control advertised settings
2273 * @lp_reg: link partner's flow control settings
2274 * @adv_sym: symmetric pause bit in advertisement
2275 * @adv_asm: asymmetric pause bit in advertisement
2276 * @lp_sym: symmetric pause bit in link partner advertisement
2277 * @lp_asm: asymmetric pause bit in link partner advertisement
2278 *
2279 * Find the intersection between advertised settings and link partner's
2280 * advertised settings
2281 **/
2282s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2283 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2284{
2285 if ((!(adv_reg)) || (!(lp_reg)))
2286 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2287
2288 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2289 /*
2290 * Now we need to check if the user selected Rx ONLY
2291 * of pause frames. In this case, we had to advertise
2292 * FULL flow control because we could not advertise RX
2293 * ONLY. Hence, we must now check to see if we need to
2294 * turn OFF the TRANSMISSION of PAUSE frames.
2295 */
2296 if (hw->fc.requested_mode == ixgbe_fc_full) {
2297 hw->fc.current_mode = ixgbe_fc_full;
2298 hw_dbg(hw, "Flow Control = FULL.\n");
2299 } else {
2300 hw->fc.current_mode = ixgbe_fc_rx_pause;
2301 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2302 }
2303 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2304 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2305 hw->fc.current_mode = ixgbe_fc_tx_pause;
2306 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2307 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2308 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2309 hw->fc.current_mode = ixgbe_fc_rx_pause;
2310 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2311 } else {
2312 hw->fc.current_mode = ixgbe_fc_none;
2313 hw_dbg(hw, "Flow Control = NONE.\n");
2314 }
2315 return 0;
2316}
2317
2318/**
2319 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2320 * @hw: pointer to hardware structure
2321 *
2322 * Enable flow control according on 1 gig fiber.
2323 **/
2324static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2325{
2326 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2327 s32 ret_val;
2328
2329 /*
2330 * On multispeed fiber at 1g, bail out if
2331 * - link is up but AN did not complete, or if
2332 * - link is up and AN completed but timed out
2333 */
2334
2335 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2336 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2337 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2338 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2339
2340 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2341 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2342
2343 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2344 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2345 IXGBE_PCS1GANA_ASM_PAUSE,
2346 IXGBE_PCS1GANA_SYM_PAUSE,
2347 IXGBE_PCS1GANA_ASM_PAUSE);
2348
2349 return ret_val;
2350}
2351
2352/**
2353 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2354 * @hw: pointer to hardware structure
2355 *
2356 * Enable flow control according to IEEE clause 37.
2357 **/
2358static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2359{
2360 u32 links2, anlp1_reg, autoc_reg, links;
2361 s32 ret_val;
2362
2363 /*
2364 * On backplane, bail out if
2365 * - backplane autoneg was not completed, or if
2366 * - we are 82599 and link partner is not AN enabled
2367 */
2368 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2369 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2370 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2371
2372 if (hw->mac.type == ixgbe_mac_82599EB) {
2373 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2374 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2375 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2376 }
2377 /*
2378 * Read the 10g AN autoc and LP ability registers and resolve
2379 * local flow control settings accordingly
2380 */
2381 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2382 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2383
2384 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2385 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2386 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2387
2388 return ret_val;
2389}
2390
2391/**
2392 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2393 * @hw: pointer to hardware structure
2394 *
2395 * Enable flow control according to IEEE clause 37.
2396 **/
2397static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2398{
2399 u16 technology_ability_reg = 0;
2400 u16 lp_technology_ability_reg = 0;
2401
2402 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2403 MDIO_MMD_AN,
2404 &technology_ability_reg);
2405 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2406 MDIO_MMD_AN,
2407 &lp_technology_ability_reg);
2408
2409 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2410 (u32)lp_technology_ability_reg,
2411 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2412 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2413}
2414
2415/**
2416 * ixgbe_fc_autoneg - Configure flow control
2417 * @hw: pointer to hardware structure
2418 *
2419 * Compares our advertised flow control capabilities to those advertised by
2420 * our link partner, and determines the proper flow control mode to use.
2421 **/
2422void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2423{
2424 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2425 ixgbe_link_speed speed;
2426 bool link_up;
2427
2428 /*
2429 * AN should have completed when the cable was plugged in.
2430 * Look for reasons to bail out. Bail out if:
2431 * - FC autoneg is disabled, or if
2432 * - link is not up.
2433 *
2434 * Since we're being called from an LSC, link is already known to be up.
2435 * So use link_up_wait_to_complete=false.
2436 */
2437 if (hw->fc.disable_fc_autoneg)
2438 goto out;
2439
2440 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2441 if (!link_up)
2442 goto out;
2443
2444 switch (hw->phy.media_type) {
2445 /* Autoneg flow control on fiber adapters */
2446 case ixgbe_media_type_fiber:
2447 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2448 ret_val = ixgbe_fc_autoneg_fiber(hw);
2449 break;
2450
2451 /* Autoneg flow control on backplane adapters */
2452 case ixgbe_media_type_backplane:
2453 ret_val = ixgbe_fc_autoneg_backplane(hw);
2454 break;
2455
2456 /* Autoneg flow control on copper adapters */
2457 case ixgbe_media_type_copper:
2458 if (ixgbe_device_supports_autoneg_fc(hw))
2459 ret_val = ixgbe_fc_autoneg_copper(hw);
2460 break;
2461
2462 default:
2463 break;
2464 }
2465
2466out:
2467 if (ret_val == 0) {
2468 hw->fc.fc_was_autonegged = true;
2469 } else {
2470 hw->fc.fc_was_autonegged = false;
2471 hw->fc.current_mode = hw->fc.requested_mode;
2472 }
2473}
2474
2475/**
2476 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2477 * @hw: pointer to hardware structure
2478 *
2479 * System-wide timeout range is encoded in PCIe Device Control2 register.
2480 *
2481 * Add 10% to specified maximum and return the number of times to poll for
2482 * completion timeout, in units of 100 microsec. Never return less than
2483 * 800 = 80 millisec.
2484 **/
2485static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2486{
2487 s16 devctl2;
2488 u32 pollcnt;
2489
2490 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2491 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2492
2493 switch (devctl2) {
2494 case IXGBE_PCIDEVCTRL2_65_130ms:
2495 pollcnt = 1300; /* 130 millisec */
2496 break;
2497 case IXGBE_PCIDEVCTRL2_260_520ms:
2498 pollcnt = 5200; /* 520 millisec */
2499 break;
2500 case IXGBE_PCIDEVCTRL2_1_2s:
2501 pollcnt = 20000; /* 2 sec */
2502 break;
2503 case IXGBE_PCIDEVCTRL2_4_8s:
2504 pollcnt = 80000; /* 8 sec */
2505 break;
2506 case IXGBE_PCIDEVCTRL2_17_34s:
2507 pollcnt = 34000; /* 34 sec */
2508 break;
2509 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2510 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2511 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2512 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2513 default:
2514 pollcnt = 800; /* 80 millisec minimum */
2515 break;
2516 }
2517
2518 /* add 10% to spec maximum */
2519 return (pollcnt * 11) / 10;
2520}
2521
2522/**
2523 * ixgbe_disable_pcie_master - Disable PCI-express master access
2524 * @hw: pointer to hardware structure
2525 *
2526 * Disables PCI-Express master access and verifies there are no pending
2527 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2528 * bit hasn't caused the master requests to be disabled, else 0
2529 * is returned signifying master requests disabled.
2530 **/
2531static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2532{
2533 u32 i, poll;
2534 u16 value;
2535
2536 /* Always set this bit to ensure any future transactions are blocked */
2537 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2538
2539 /* Poll for bit to read as set */
2540 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2541 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2542 break;
2543 usleep_range(100, 120);
2544 }
2545 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2546 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2547 goto gio_disable_fail;
2548 }
2549
2550 /* Exit if master requests are blocked */
2551 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2552 ixgbe_removed(hw->hw_addr))
2553 return 0;
2554
2555 /* Poll for master request bit to clear */
2556 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2557 udelay(100);
2558 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2559 return 0;
2560 }
2561
2562 /*
2563 * Two consecutive resets are required via CTRL.RST per datasheet
2564 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2565 * of this need. The first reset prevents new master requests from
2566 * being issued by our device. We then must wait 1usec or more for any
2567 * remaining completions from the PCIe bus to trickle in, and then reset
2568 * again to clear out any effects they may have had on our device.
2569 */
2570 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2571gio_disable_fail:
2572 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2573
2574 if (hw->mac.type >= ixgbe_mac_X550)
2575 return 0;
2576
2577 /*
2578 * Before proceeding, make sure that the PCIe block does not have
2579 * transactions pending.
2580 */
2581 poll = ixgbe_pcie_timeout_poll(hw);
2582 for (i = 0; i < poll; i++) {
2583 udelay(100);
2584 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2585 if (ixgbe_removed(hw->hw_addr))
2586 return 0;
2587 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2588 return 0;
2589 }
2590
2591 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2592 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2593}
2594
2595/**
2596 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2597 * @hw: pointer to hardware structure
2598 * @mask: Mask to specify which semaphore to acquire
2599 *
2600 * Acquires the SWFW semaphore through the GSSR register for the specified
2601 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2602 **/
2603s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2604{
2605 u32 gssr = 0;
2606 u32 swmask = mask;
2607 u32 fwmask = mask << 5;
2608 u32 timeout = 200;
2609 u32 i;
2610
2611 for (i = 0; i < timeout; i++) {
2612 /*
2613 * SW NVM semaphore bit is used for access to all
2614 * SW_FW_SYNC bits (not just NVM)
2615 */
2616 if (ixgbe_get_eeprom_semaphore(hw))
2617 return IXGBE_ERR_SWFW_SYNC;
2618
2619 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2620 if (!(gssr & (fwmask | swmask))) {
2621 gssr |= swmask;
2622 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2623 ixgbe_release_eeprom_semaphore(hw);
2624 return 0;
2625 } else {
2626 /* Resource is currently in use by FW or SW */
2627 ixgbe_release_eeprom_semaphore(hw);
2628 usleep_range(5000, 10000);
2629 }
2630 }
2631
2632 /* If time expired clear the bits holding the lock and retry */
2633 if (gssr & (fwmask | swmask))
2634 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2635
2636 usleep_range(5000, 10000);
2637 return IXGBE_ERR_SWFW_SYNC;
2638}
2639
2640/**
2641 * ixgbe_release_swfw_sync - Release SWFW semaphore
2642 * @hw: pointer to hardware structure
2643 * @mask: Mask to specify which semaphore to release
2644 *
2645 * Releases the SWFW semaphore through the GSSR register for the specified
2646 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2647 **/
2648void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2649{
2650 u32 gssr;
2651 u32 swmask = mask;
2652
2653 ixgbe_get_eeprom_semaphore(hw);
2654
2655 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2656 gssr &= ~swmask;
2657 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2658
2659 ixgbe_release_eeprom_semaphore(hw);
2660}
2661
2662/**
2663 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2664 * @hw: pointer to hardware structure
2665 * @reg_val: Value we read from AUTOC
2666 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2667 * true in this the generic case.
2668 *
2669 * The default case requires no protection so just to the register read.
2670 **/
2671s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2672{
2673 *locked = false;
2674 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2675 return 0;
2676}
2677
2678/**
2679 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2680 * @hw: pointer to hardware structure
2681 * @reg_val: value to write to AUTOC
2682 * @locked: bool to indicate whether the SW/FW lock was already taken by
2683 * previous read.
2684 **/
2685s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2686{
2687 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2688 return 0;
2689}
2690
2691/**
2692 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2693 * @hw: pointer to hardware structure
2694 *
2695 * Stops the receive data path and waits for the HW to internally
2696 * empty the Rx security block.
2697 **/
2698s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2699{
2700#define IXGBE_MAX_SECRX_POLL 40
2701 int i;
2702 int secrxreg;
2703
2704 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2705 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2706 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2707 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2708 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2709 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2710 break;
2711 else
2712 /* Use interrupt-safe sleep just in case */
2713 udelay(1000);
2714 }
2715
2716 /* For informational purposes only */
2717 if (i >= IXGBE_MAX_SECRX_POLL)
2718 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2719
2720 return 0;
2721
2722}
2723
2724/**
2725 * ixgbe_enable_rx_buff - Enables the receive data path
2726 * @hw: pointer to hardware structure
2727 *
2728 * Enables the receive data path
2729 **/
2730s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2731{
2732 u32 secrxreg;
2733
2734 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2735 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2736 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2737 IXGBE_WRITE_FLUSH(hw);
2738
2739 return 0;
2740}
2741
2742/**
2743 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2744 * @hw: pointer to hardware structure
2745 * @regval: register value to write to RXCTRL
2746 *
2747 * Enables the Rx DMA unit
2748 **/
2749s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2750{
2751 if (regval & IXGBE_RXCTRL_RXEN)
2752 hw->mac.ops.enable_rx(hw);
2753 else
2754 hw->mac.ops.disable_rx(hw);
2755
2756 return 0;
2757}
2758
2759/**
2760 * ixgbe_blink_led_start_generic - Blink LED based on index.
2761 * @hw: pointer to hardware structure
2762 * @index: led number to blink
2763 **/
2764s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2765{
2766 ixgbe_link_speed speed = 0;
2767 bool link_up = false;
2768 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2769 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2770 bool locked = false;
2771 s32 ret_val;
2772
2773 if (index > 3)
2774 return IXGBE_ERR_PARAM;
2775
2776 /*
2777 * Link must be up to auto-blink the LEDs;
2778 * Force it if link is down.
2779 */
2780 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2781
2782 if (!link_up) {
2783 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2784 if (ret_val)
2785 return ret_val;
2786
2787 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2788 autoc_reg |= IXGBE_AUTOC_FLU;
2789
2790 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2791 if (ret_val)
2792 return ret_val;
2793
2794 IXGBE_WRITE_FLUSH(hw);
2795
2796 usleep_range(10000, 20000);
2797 }
2798
2799 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2800 led_reg |= IXGBE_LED_BLINK(index);
2801 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2802 IXGBE_WRITE_FLUSH(hw);
2803
2804 return 0;
2805}
2806
2807/**
2808 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2809 * @hw: pointer to hardware structure
2810 * @index: led number to stop blinking
2811 **/
2812s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2813{
2814 u32 autoc_reg = 0;
2815 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2816 bool locked = false;
2817 s32 ret_val;
2818
2819 if (index > 3)
2820 return IXGBE_ERR_PARAM;
2821
2822 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2823 if (ret_val)
2824 return ret_val;
2825
2826 autoc_reg &= ~IXGBE_AUTOC_FLU;
2827 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2828
2829 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2830 if (ret_val)
2831 return ret_val;
2832
2833 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2834 led_reg &= ~IXGBE_LED_BLINK(index);
2835 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2836 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2837 IXGBE_WRITE_FLUSH(hw);
2838
2839 return 0;
2840}
2841
2842/**
2843 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2844 * @hw: pointer to hardware structure
2845 * @san_mac_offset: SAN MAC address offset
2846 *
2847 * This function will read the EEPROM location for the SAN MAC address
2848 * pointer, and returns the value at that location. This is used in both
2849 * get and set mac_addr routines.
2850 **/
2851static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2852 u16 *san_mac_offset)
2853{
2854 s32 ret_val;
2855
2856 /*
2857 * First read the EEPROM pointer to see if the MAC addresses are
2858 * available.
2859 */
2860 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2861 san_mac_offset);
2862 if (ret_val)
2863 hw_err(hw, "eeprom read at offset %d failed\n",
2864 IXGBE_SAN_MAC_ADDR_PTR);
2865
2866 return ret_val;
2867}
2868
2869/**
2870 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2871 * @hw: pointer to hardware structure
2872 * @san_mac_addr: SAN MAC address
2873 *
2874 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2875 * per-port, so set_lan_id() must be called before reading the addresses.
2876 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2877 * upon for non-SFP connections, so we must call it here.
2878 **/
2879s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2880{
2881 u16 san_mac_data, san_mac_offset;
2882 u8 i;
2883 s32 ret_val;
2884
2885 /*
2886 * First read the EEPROM pointer to see if the MAC addresses are
2887 * available. If they're not, no point in calling set_lan_id() here.
2888 */
2889 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2890 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2891
2892 goto san_mac_addr_clr;
2893
2894 /* make sure we know which port we need to program */
2895 hw->mac.ops.set_lan_id(hw);
2896 /* apply the port offset to the address offset */
2897 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2898 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2899 for (i = 0; i < 3; i++) {
2900 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2901 &san_mac_data);
2902 if (ret_val) {
2903 hw_err(hw, "eeprom read at offset %d failed\n",
2904 san_mac_offset);
2905 goto san_mac_addr_clr;
2906 }
2907 san_mac_addr[i * 2] = (u8)(san_mac_data);
2908 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2909 san_mac_offset++;
2910 }
2911 return 0;
2912
2913san_mac_addr_clr:
2914 /* No addresses available in this EEPROM. It's not necessarily an
2915 * error though, so just wipe the local address and return.
2916 */
2917 for (i = 0; i < 6; i++)
2918 san_mac_addr[i] = 0xFF;
2919 return ret_val;
2920}
2921
2922/**
2923 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2924 * @hw: pointer to hardware structure
2925 *
2926 * Read PCIe configuration space, and get the MSI-X vector count from
2927 * the capabilities table.
2928 **/
2929u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2930{
2931 u16 msix_count;
2932 u16 max_msix_count;
2933 u16 pcie_offset;
2934
2935 switch (hw->mac.type) {
2936 case ixgbe_mac_82598EB:
2937 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2938 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2939 break;
2940 case ixgbe_mac_82599EB:
2941 case ixgbe_mac_X540:
2942 case ixgbe_mac_X550:
2943 case ixgbe_mac_X550EM_x:
2944 case ixgbe_mac_x550em_a:
2945 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2946 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2947 break;
2948 default:
2949 return 1;
2950 }
2951
2952 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2953 if (ixgbe_removed(hw->hw_addr))
2954 msix_count = 0;
2955 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2956
2957 /* MSI-X count is zero-based in HW */
2958 msix_count++;
2959
2960 if (msix_count > max_msix_count)
2961 msix_count = max_msix_count;
2962
2963 return msix_count;
2964}
2965
2966/**
2967 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2968 * @hw: pointer to hardware struct
2969 * @rar: receive address register index to disassociate
2970 * @vmdq: VMDq pool index to remove from the rar
2971 **/
2972s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2973{
2974 u32 mpsar_lo, mpsar_hi;
2975 u32 rar_entries = hw->mac.num_rar_entries;
2976
2977 /* Make sure we are using a valid rar index range */
2978 if (rar >= rar_entries) {
2979 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2980 return IXGBE_ERR_INVALID_ARGUMENT;
2981 }
2982
2983 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2984 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2985
2986 if (ixgbe_removed(hw->hw_addr))
2987 return 0;
2988
2989 if (!mpsar_lo && !mpsar_hi)
2990 return 0;
2991
2992 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2993 if (mpsar_lo) {
2994 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2995 mpsar_lo = 0;
2996 }
2997 if (mpsar_hi) {
2998 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2999 mpsar_hi = 0;
3000 }
3001 } else if (vmdq < 32) {
3002 mpsar_lo &= ~BIT(vmdq);
3003 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3004 } else {
3005 mpsar_hi &= ~BIT(vmdq - 32);
3006 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3007 }
3008
3009 /* was that the last pool using this rar? */
3010 if (mpsar_lo == 0 && mpsar_hi == 0 &&
3011 rar != 0 && rar != hw->mac.san_mac_rar_index)
3012 hw->mac.ops.clear_rar(hw, rar);
3013
3014 return 0;
3015}
3016
3017/**
3018 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3019 * @hw: pointer to hardware struct
3020 * @rar: receive address register index to associate with a VMDq index
3021 * @vmdq: VMDq pool index
3022 **/
3023s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3024{
3025 u32 mpsar;
3026 u32 rar_entries = hw->mac.num_rar_entries;
3027
3028 /* Make sure we are using a valid rar index range */
3029 if (rar >= rar_entries) {
3030 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3031 return IXGBE_ERR_INVALID_ARGUMENT;
3032 }
3033
3034 if (vmdq < 32) {
3035 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3036 mpsar |= BIT(vmdq);
3037 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3038 } else {
3039 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3040 mpsar |= BIT(vmdq - 32);
3041 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3042 }
3043 return 0;
3044}
3045
3046/**
3047 * This function should only be involved in the IOV mode.
3048 * In IOV mode, Default pool is next pool after the number of
3049 * VFs advertized and not 0.
3050 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3051 *
3052 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3053 * @hw: pointer to hardware struct
3054 * @vmdq: VMDq pool index
3055 **/
3056s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3057{
3058 u32 rar = hw->mac.san_mac_rar_index;
3059
3060 if (vmdq < 32) {
3061 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3062 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3063 } else {
3064 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3065 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3066 }
3067
3068 return 0;
3069}
3070
3071/**
3072 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3073 * @hw: pointer to hardware structure
3074 **/
3075s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3076{
3077 int i;
3078
3079 for (i = 0; i < 128; i++)
3080 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3081
3082 return 0;
3083}
3084
3085/**
3086 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3087 * @hw: pointer to hardware structure
3088 * @vlan: VLAN id to write to VLAN filter
3089 *
3090 * return the VLVF index where this VLAN id should be placed
3091 *
3092 **/
3093static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3094{
3095 s32 regindex, first_empty_slot;
3096 u32 bits;
3097
3098 /* short cut the special case */
3099 if (vlan == 0)
3100 return 0;
3101
3102 /* if vlvf_bypass is set we don't want to use an empty slot, we
3103 * will simply bypass the VLVF if there are no entries present in the
3104 * VLVF that contain our VLAN
3105 */
3106 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3107
3108 /* add VLAN enable bit for comparison */
3109 vlan |= IXGBE_VLVF_VIEN;
3110
3111 /* Search for the vlan id in the VLVF entries. Save off the first empty
3112 * slot found along the way.
3113 *
3114 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3115 */
3116 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3117 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3118 if (bits == vlan)
3119 return regindex;
3120 if (!first_empty_slot && !bits)
3121 first_empty_slot = regindex;
3122 }
3123
3124 /* If we are here then we didn't find the VLAN. Return first empty
3125 * slot we found during our search, else error.
3126 */
3127 if (!first_empty_slot)
3128 hw_dbg(hw, "No space in VLVF.\n");
3129
3130 return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3131}
3132
3133/**
3134 * ixgbe_set_vfta_generic - Set VLAN filter table
3135 * @hw: pointer to hardware structure
3136 * @vlan: VLAN id to write to VLAN filter
3137 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3138 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3139 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3140 *
3141 * Turn on/off specified VLAN in the VLAN filter table.
3142 **/
3143s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3144 bool vlan_on, bool vlvf_bypass)
3145{
3146 u32 regidx, vfta_delta, vfta, bits;
3147 s32 vlvf_index;
3148
3149 if ((vlan > 4095) || (vind > 63))
3150 return IXGBE_ERR_PARAM;
3151
3152 /*
3153 * this is a 2 part operation - first the VFTA, then the
3154 * VLVF and VLVFB if VT Mode is set
3155 * We don't write the VFTA until we know the VLVF part succeeded.
3156 */
3157
3158 /* Part 1
3159 * The VFTA is a bitstring made up of 128 32-bit registers
3160 * that enable the particular VLAN id, much like the MTA:
3161 * bits[11-5]: which register
3162 * bits[4-0]: which bit in the register
3163 */
3164 regidx = vlan / 32;
3165 vfta_delta = BIT(vlan % 32);
3166 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3167
3168 /* vfta_delta represents the difference between the current value
3169 * of vfta and the value we want in the register. Since the diff
3170 * is an XOR mask we can just update vfta using an XOR.
3171 */
3172 vfta_delta &= vlan_on ? ~vfta : vfta;
3173 vfta ^= vfta_delta;
3174
3175 /* Part 2
3176 * If VT Mode is set
3177 * Either vlan_on
3178 * make sure the vlan is in VLVF
3179 * set the vind bit in the matching VLVFB
3180 * Or !vlan_on
3181 * clear the pool bit and possibly the vind
3182 */
3183 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3184 goto vfta_update;
3185
3186 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3187 if (vlvf_index < 0) {
3188 if (vlvf_bypass)
3189 goto vfta_update;
3190 return vlvf_index;
3191 }
3192
3193 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3194
3195 /* set the pool bit */
3196 bits |= BIT(vind % 32);
3197 if (vlan_on)
3198 goto vlvf_update;
3199
3200 /* clear the pool bit */
3201 bits ^= BIT(vind % 32);
3202
3203 if (!bits &&
3204 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3205 /* Clear VFTA first, then disable VLVF. Otherwise
3206 * we run the risk of stray packets leaking into
3207 * the PF via the default pool
3208 */
3209 if (vfta_delta)
3210 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3211
3212 /* disable VLVF and clear remaining bit from pool */
3213 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3214 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3215
3216 return 0;
3217 }
3218
3219 /* If there are still bits set in the VLVFB registers
3220 * for the VLAN ID indicated we need to see if the
3221 * caller is requesting that we clear the VFTA entry bit.
3222 * If the caller has requested that we clear the VFTA
3223 * entry bit but there are still pools/VFs using this VLAN
3224 * ID entry then ignore the request. We're not worried
3225 * about the case where we're turning the VFTA VLAN ID
3226 * entry bit on, only when requested to turn it off as
3227 * there may be multiple pools and/or VFs using the
3228 * VLAN ID entry. In that case we cannot clear the
3229 * VFTA bit until all pools/VFs using that VLAN ID have also
3230 * been cleared. This will be indicated by "bits" being
3231 * zero.
3232 */
3233 vfta_delta = 0;
3234
3235vlvf_update:
3236 /* record pool change and enable VLAN ID if not already enabled */
3237 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3238 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3239
3240vfta_update:
3241 /* Update VFTA now that we are ready for traffic */
3242 if (vfta_delta)
3243 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3244
3245 return 0;
3246}
3247
3248/**
3249 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3250 * @hw: pointer to hardware structure
3251 *
3252 * Clears the VLAN filer table, and the VMDq index associated with the filter
3253 **/
3254s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3255{
3256 u32 offset;
3257
3258 for (offset = 0; offset < hw->mac.vft_size; offset++)
3259 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3260
3261 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3262 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3263 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3264 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3265 }
3266
3267 return 0;
3268}
3269
3270/**
3271 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3272 * @hw: pointer to hardware structure
3273 *
3274 * Contains the logic to identify if we need to verify link for the
3275 * crosstalk fix
3276 **/
3277static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3278{
3279 /* Does FW say we need the fix */
3280 if (!hw->need_crosstalk_fix)
3281 return false;
3282
3283 /* Only consider SFP+ PHYs i.e. media type fiber */
3284 switch (hw->mac.ops.get_media_type(hw)) {
3285 case ixgbe_media_type_fiber:
3286 case ixgbe_media_type_fiber_qsfp:
3287 break;
3288 default:
3289 return false;
3290 }
3291
3292 return true;
3293}
3294
3295/**
3296 * ixgbe_check_mac_link_generic - Determine link and speed status
3297 * @hw: pointer to hardware structure
3298 * @speed: pointer to link speed
3299 * @link_up: true when link is up
3300 * @link_up_wait_to_complete: bool used to wait for link up or not
3301 *
3302 * Reads the links register to determine if link is up and the current speed
3303 **/
3304s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3305 bool *link_up, bool link_up_wait_to_complete)
3306{
3307 u32 links_reg, links_orig;
3308 u32 i;
3309
3310 /* If Crosstalk fix enabled do the sanity check of making sure
3311 * the SFP+ cage is full.
3312 */
3313 if (ixgbe_need_crosstalk_fix(hw)) {
3314 u32 sfp_cage_full;
3315
3316 switch (hw->mac.type) {
3317 case ixgbe_mac_82599EB:
3318 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3319 IXGBE_ESDP_SDP2;
3320 break;
3321 case ixgbe_mac_X550EM_x:
3322 case ixgbe_mac_x550em_a:
3323 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3324 IXGBE_ESDP_SDP0;
3325 break;
3326 default:
3327 /* sanity check - No SFP+ devices here */
3328 sfp_cage_full = false;
3329 break;
3330 }
3331
3332 if (!sfp_cage_full) {
3333 *link_up = false;
3334 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3335 return 0;
3336 }
3337 }
3338
3339 /* clear the old state */
3340 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3341
3342 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3343
3344 if (links_orig != links_reg) {
3345 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3346 links_orig, links_reg);
3347 }
3348
3349 if (link_up_wait_to_complete) {
3350 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3351 if (links_reg & IXGBE_LINKS_UP) {
3352 *link_up = true;
3353 break;
3354 } else {
3355 *link_up = false;
3356 }
3357 msleep(100);
3358 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3359 }
3360 } else {
3361 if (links_reg & IXGBE_LINKS_UP)
3362 *link_up = true;
3363 else
3364 *link_up = false;
3365 }
3366
3367 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3368 case IXGBE_LINKS_SPEED_10G_82599:
3369 if ((hw->mac.type >= ixgbe_mac_X550) &&
3370 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3371 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3372 else
3373 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3374 break;
3375 case IXGBE_LINKS_SPEED_1G_82599:
3376 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3377 break;
3378 case IXGBE_LINKS_SPEED_100_82599:
3379 if ((hw->mac.type >= ixgbe_mac_X550) &&
3380 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3381 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3382 else
3383 *speed = IXGBE_LINK_SPEED_100_FULL;
3384 break;
3385 default:
3386 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3387 }
3388
3389 return 0;
3390}
3391
3392/**
3393 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3394 * the EEPROM
3395 * @hw: pointer to hardware structure
3396 * @wwnn_prefix: the alternative WWNN prefix
3397 * @wwpn_prefix: the alternative WWPN prefix
3398 *
3399 * This function will read the EEPROM from the alternative SAN MAC address
3400 * block to check the support for the alternative WWNN/WWPN prefix support.
3401 **/
3402s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3403 u16 *wwpn_prefix)
3404{
3405 u16 offset, caps;
3406 u16 alt_san_mac_blk_offset;
3407
3408 /* clear output first */
3409 *wwnn_prefix = 0xFFFF;
3410 *wwpn_prefix = 0xFFFF;
3411
3412 /* check if alternative SAN MAC is supported */
3413 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3414 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3415 goto wwn_prefix_err;
3416
3417 if ((alt_san_mac_blk_offset == 0) ||
3418 (alt_san_mac_blk_offset == 0xFFFF))
3419 return 0;
3420
3421 /* check capability in alternative san mac address block */
3422 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3423 if (hw->eeprom.ops.read(hw, offset, &caps))
3424 goto wwn_prefix_err;
3425 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3426 return 0;
3427
3428 /* get the corresponding prefix for WWNN/WWPN */
3429 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3430 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3431 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3432
3433 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3434 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3435 goto wwn_prefix_err;
3436
3437 return 0;
3438
3439wwn_prefix_err:
3440 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3441 return 0;
3442}
3443
3444/**
3445 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3446 * @hw: pointer to hardware structure
3447 * @enable: enable or disable switch for MAC anti-spoofing
3448 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3449 *
3450 **/
3451void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3452{
3453 int vf_target_reg = vf >> 3;
3454 int vf_target_shift = vf % 8;
3455 u32 pfvfspoof;
3456
3457 if (hw->mac.type == ixgbe_mac_82598EB)
3458 return;
3459
3460 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3461 if (enable)
3462 pfvfspoof |= BIT(vf_target_shift);
3463 else
3464 pfvfspoof &= ~BIT(vf_target_shift);
3465 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3466}
3467
3468/**
3469 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3470 * @hw: pointer to hardware structure
3471 * @enable: enable or disable switch for VLAN anti-spoofing
3472 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3473 *
3474 **/
3475void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3476{
3477 int vf_target_reg = vf >> 3;
3478 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3479 u32 pfvfspoof;
3480
3481 if (hw->mac.type == ixgbe_mac_82598EB)
3482 return;
3483
3484 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3485 if (enable)
3486 pfvfspoof |= BIT(vf_target_shift);
3487 else
3488 pfvfspoof &= ~BIT(vf_target_shift);
3489 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3490}
3491
3492/**
3493 * ixgbe_get_device_caps_generic - Get additional device capabilities
3494 * @hw: pointer to hardware structure
3495 * @device_caps: the EEPROM word with the extra device capabilities
3496 *
3497 * This function will read the EEPROM location for the device capabilities,
3498 * and return the word through device_caps.
3499 **/
3500s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3501{
3502 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3503
3504 return 0;
3505}
3506
3507/**
3508 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3509 * @hw: pointer to hardware structure
3510 * @num_pb: number of packet buffers to allocate
3511 * @headroom: reserve n KB of headroom
3512 * @strategy: packet buffer allocation strategy
3513 **/
3514void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3515 int num_pb,
3516 u32 headroom,
3517 int strategy)
3518{
3519 u32 pbsize = hw->mac.rx_pb_size;
3520 int i = 0;
3521 u32 rxpktsize, txpktsize, txpbthresh;
3522
3523 /* Reserve headroom */
3524 pbsize -= headroom;
3525
3526 if (!num_pb)
3527 num_pb = 1;
3528
3529 /* Divide remaining packet buffer space amongst the number
3530 * of packet buffers requested using supplied strategy.
3531 */
3532 switch (strategy) {
3533 case (PBA_STRATEGY_WEIGHTED):
3534 /* pba_80_48 strategy weight first half of packet buffer with
3535 * 5/8 of the packet buffer space.
3536 */
3537 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3538 pbsize -= rxpktsize * (num_pb / 2);
3539 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3540 for (; i < (num_pb / 2); i++)
3541 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3542 /* Fall through to configure remaining packet buffers */
3543 case (PBA_STRATEGY_EQUAL):
3544 /* Divide the remaining Rx packet buffer evenly among the TCs */
3545 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3546 for (; i < num_pb; i++)
3547 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3548 break;
3549 default:
3550 break;
3551 }
3552
3553 /*
3554 * Setup Tx packet buffer and threshold equally for all TCs
3555 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3556 * 10 since the largest packet we support is just over 9K.
3557 */
3558 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3559 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3560 for (i = 0; i < num_pb; i++) {
3561 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3562 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3563 }
3564
3565 /* Clear unused TCs, if any, to zero buffer size*/
3566 for (; i < IXGBE_MAX_PB; i++) {
3567 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3568 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3569 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3570 }
3571}
3572
3573/**
3574 * ixgbe_calculate_checksum - Calculate checksum for buffer
3575 * @buffer: pointer to EEPROM
3576 * @length: size of EEPROM to calculate a checksum for
3577 *
3578 * Calculates the checksum for some buffer on a specified length. The
3579 * checksum calculated is returned.
3580 **/
3581static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3582{
3583 u32 i;
3584 u8 sum = 0;
3585
3586 if (!buffer)
3587 return 0;
3588
3589 for (i = 0; i < length; i++)
3590 sum += buffer[i];
3591
3592 return (u8) (0 - sum);
3593}
3594
3595/**
3596 * ixgbe_host_interface_command - Issue command to manageability block
3597 * @hw: pointer to the HW structure
3598 * @buffer: contains the command to write and where the return status will
3599 * be placed
3600 * @length: length of buffer, must be multiple of 4 bytes
3601 * @timeout: time in ms to wait for command completion
3602 * @return_data: read and return data from the buffer (true) or not (false)
3603 * Needed because FW structures are big endian and decoding of
3604 * these fields can be 8 bit or 16 bit based on command. Decoding
3605 * is not easily understood without making a table of commands.
3606 * So we will leave this up to the caller to read back the data
3607 * in these cases.
3608 *
3609 * Communicates with the manageability block. On success return 0
3610 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3611 **/
3612s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3613 u32 length, u32 timeout,
3614 bool return_data)
3615{
3616 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3617 u32 hicr, i, bi, fwsts;
3618 u16 buf_len, dword_len;
3619 union {
3620 struct ixgbe_hic_hdr hdr;
3621 u32 u32arr[1];
3622 } *bp = buffer;
3623 s32 status;
3624
3625 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3626 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3627 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3628 }
3629 /* Take management host interface semaphore */
3630 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3631 if (status)
3632 return status;
3633
3634 /* Set bit 9 of FWSTS clearing FW reset indication */
3635 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3636 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3637
3638 /* Check that the host interface is enabled. */
3639 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3640 if (!(hicr & IXGBE_HICR_EN)) {
3641 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3642 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3643 goto rel_out;
3644 }
3645
3646 /* Calculate length in DWORDs. We must be DWORD aligned */
3647 if (length % sizeof(u32)) {
3648 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3649 status = IXGBE_ERR_INVALID_ARGUMENT;
3650 goto rel_out;
3651 }
3652
3653 dword_len = length >> 2;
3654
3655 /* The device driver writes the relevant command block
3656 * into the ram area.
3657 */
3658 for (i = 0; i < dword_len; i++)
3659 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3660 i, cpu_to_le32(bp->u32arr[i]));
3661
3662 /* Setting this bit tells the ARC that a new command is pending. */
3663 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3664
3665 for (i = 0; i < timeout; i++) {
3666 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3667 if (!(hicr & IXGBE_HICR_C))
3668 break;
3669 usleep_range(1000, 2000);
3670 }
3671
3672 /* Check command successful completion. */
3673 if ((timeout && i == timeout) ||
3674 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
3675 hw_dbg(hw, "Command has failed with no status valid.\n");
3676 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3677 goto rel_out;
3678 }
3679
3680 if (!return_data)
3681 goto rel_out;
3682
3683 /* Calculate length in DWORDs */
3684 dword_len = hdr_size >> 2;
3685
3686 /* first pull in the header so we know the buffer length */
3687 for (bi = 0; bi < dword_len; bi++) {
3688 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3689 le32_to_cpus(&bp->u32arr[bi]);
3690 }
3691
3692 /* If there is any thing in data position pull it in */
3693 buf_len = bp->hdr.buf_len;
3694 if (!buf_len)
3695 goto rel_out;
3696
3697 if (length < round_up(buf_len, 4) + hdr_size) {
3698 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3699 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3700 goto rel_out;
3701 }
3702
3703 /* Calculate length in DWORDs, add 3 for odd lengths */
3704 dword_len = (buf_len + 3) >> 2;
3705
3706 /* Pull in the rest of the buffer (bi is where we left off) */
3707 for (; bi <= dword_len; bi++) {
3708 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3709 le32_to_cpus(&bp->u32arr[bi]);
3710 }
3711
3712rel_out:
3713 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3714
3715 return status;
3716}
3717
3718/**
3719 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3720 * @hw: pointer to the HW structure
3721 * @maj: driver version major number
3722 * @min: driver version minor number
3723 * @build: driver version build number
3724 * @sub: driver version sub build number
3725 *
3726 * Sends driver version number to firmware through the manageability
3727 * block. On success return 0
3728 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3729 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3730 **/
3731s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3732 u8 build, u8 sub)
3733{
3734 struct ixgbe_hic_drv_info fw_cmd;
3735 int i;
3736 s32 ret_val;
3737
3738 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3739 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3740 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3741 fw_cmd.port_num = hw->bus.func;
3742 fw_cmd.ver_maj = maj;
3743 fw_cmd.ver_min = min;
3744 fw_cmd.ver_build = build;
3745 fw_cmd.ver_sub = sub;
3746 fw_cmd.hdr.checksum = 0;
3747 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3748 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3749 fw_cmd.pad = 0;
3750 fw_cmd.pad2 = 0;
3751
3752 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3753 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3754 sizeof(fw_cmd),
3755 IXGBE_HI_COMMAND_TIMEOUT,
3756 true);
3757 if (ret_val != 0)
3758 continue;
3759
3760 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3761 FW_CEM_RESP_STATUS_SUCCESS)
3762 ret_val = 0;
3763 else
3764 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3765
3766 break;
3767 }
3768
3769 return ret_val;
3770}
3771
3772/**
3773 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3774 * @hw: pointer to the hardware structure
3775 *
3776 * The 82599 and x540 MACs can experience issues if TX work is still pending
3777 * when a reset occurs. This function prevents this by flushing the PCIe
3778 * buffers on the system.
3779 **/
3780void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3781{
3782 u32 gcr_ext, hlreg0, i, poll;
3783 u16 value;
3784
3785 /*
3786 * If double reset is not requested then all transactions should
3787 * already be clear and as such there is no work to do
3788 */
3789 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3790 return;
3791
3792 /*
3793 * Set loopback enable to prevent any transmits from being sent
3794 * should the link come up. This assumes that the RXCTRL.RXEN bit
3795 * has already been cleared.
3796 */
3797 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3798 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3799
3800 /* wait for a last completion before clearing buffers */
3801 IXGBE_WRITE_FLUSH(hw);
3802 usleep_range(3000, 6000);
3803
3804 /* Before proceeding, make sure that the PCIe block does not have
3805 * transactions pending.
3806 */
3807 poll = ixgbe_pcie_timeout_poll(hw);
3808 for (i = 0; i < poll; i++) {
3809 usleep_range(100, 200);
3810 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3811 if (ixgbe_removed(hw->hw_addr))
3812 break;
3813 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3814 break;
3815 }
3816
3817 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3818 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3819 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3820 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3821
3822 /* Flush all writes and allow 20usec for all transactions to clear */
3823 IXGBE_WRITE_FLUSH(hw);
3824 udelay(20);
3825
3826 /* restore previous register values */
3827 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3828 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3829}
3830
3831static const u8 ixgbe_emc_temp_data[4] = {
3832 IXGBE_EMC_INTERNAL_DATA,
3833 IXGBE_EMC_DIODE1_DATA,
3834 IXGBE_EMC_DIODE2_DATA,
3835 IXGBE_EMC_DIODE3_DATA
3836};
3837static const u8 ixgbe_emc_therm_limit[4] = {
3838 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3839 IXGBE_EMC_DIODE1_THERM_LIMIT,
3840 IXGBE_EMC_DIODE2_THERM_LIMIT,
3841 IXGBE_EMC_DIODE3_THERM_LIMIT
3842};
3843
3844/**
3845 * ixgbe_get_ets_data - Extracts the ETS bit data
3846 * @hw: pointer to hardware structure
3847 * @ets_cfg: extected ETS data
3848 * @ets_offset: offset of ETS data
3849 *
3850 * Returns error code.
3851 **/
3852static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3853 u16 *ets_offset)
3854{
3855 s32 status;
3856
3857 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3858 if (status)
3859 return status;
3860
3861 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3862 return IXGBE_NOT_IMPLEMENTED;
3863
3864 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3865 if (status)
3866 return status;
3867
3868 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3869 return IXGBE_NOT_IMPLEMENTED;
3870
3871 return 0;
3872}
3873
3874/**
3875 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3876 * @hw: pointer to hardware structure
3877 *
3878 * Returns the thermal sensor data structure
3879 **/
3880s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3881{
3882 s32 status;
3883 u16 ets_offset;
3884 u16 ets_cfg;
3885 u16 ets_sensor;
3886 u8 num_sensors;
3887 u8 i;
3888 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3889
3890 /* Only support thermal sensors attached to physical port 0 */
3891 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3892 return IXGBE_NOT_IMPLEMENTED;
3893
3894 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3895 if (status)
3896 return status;
3897
3898 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3899 if (num_sensors > IXGBE_MAX_SENSORS)
3900 num_sensors = IXGBE_MAX_SENSORS;
3901
3902 for (i = 0; i < num_sensors; i++) {
3903 u8 sensor_index;
3904 u8 sensor_location;
3905
3906 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3907 &ets_sensor);
3908 if (status)
3909 return status;
3910
3911 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3912 IXGBE_ETS_DATA_INDEX_SHIFT);
3913 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3914 IXGBE_ETS_DATA_LOC_SHIFT);
3915
3916 if (sensor_location != 0) {
3917 status = hw->phy.ops.read_i2c_byte(hw,
3918 ixgbe_emc_temp_data[sensor_index],
3919 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3920 &data->sensor[i].temp);
3921 if (status)
3922 return status;
3923 }
3924 }
3925
3926 return 0;
3927}
3928
3929/**
3930 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3931 * @hw: pointer to hardware structure
3932 *
3933 * Inits the thermal sensor thresholds according to the NVM map
3934 * and save off the threshold and location values into mac.thermal_sensor_data
3935 **/
3936s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3937{
3938 s32 status;
3939 u16 ets_offset;
3940 u16 ets_cfg;
3941 u16 ets_sensor;
3942 u8 low_thresh_delta;
3943 u8 num_sensors;
3944 u8 therm_limit;
3945 u8 i;
3946 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3947
3948 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3949
3950 /* Only support thermal sensors attached to physical port 0 */
3951 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3952 return IXGBE_NOT_IMPLEMENTED;
3953
3954 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3955 if (status)
3956 return status;
3957
3958 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3959 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3960 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3961 if (num_sensors > IXGBE_MAX_SENSORS)
3962 num_sensors = IXGBE_MAX_SENSORS;
3963
3964 for (i = 0; i < num_sensors; i++) {
3965 u8 sensor_index;
3966 u8 sensor_location;
3967
3968 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3969 hw_err(hw, "eeprom read at offset %d failed\n",
3970 ets_offset + 1 + i);
3971 continue;
3972 }
3973 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3974 IXGBE_ETS_DATA_INDEX_SHIFT);
3975 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3976 IXGBE_ETS_DATA_LOC_SHIFT);
3977 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3978
3979 hw->phy.ops.write_i2c_byte(hw,
3980 ixgbe_emc_therm_limit[sensor_index],
3981 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3982
3983 if (sensor_location == 0)
3984 continue;
3985
3986 data->sensor[i].location = sensor_location;
3987 data->sensor[i].caution_thresh = therm_limit;
3988 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3989 }
3990
3991 return 0;
3992}
3993
3994void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3995{
3996 u32 rxctrl;
3997
3998 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3999 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4000 if (hw->mac.type != ixgbe_mac_82598EB) {
4001 u32 pfdtxgswc;
4002
4003 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4004 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4005 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4006 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4007 hw->mac.set_lben = true;
4008 } else {
4009 hw->mac.set_lben = false;
4010 }
4011 }
4012 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4013 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4014 }
4015}
4016
4017void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4018{
4019 u32 rxctrl;
4020
4021 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4022 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4023
4024 if (hw->mac.type != ixgbe_mac_82598EB) {
4025 if (hw->mac.set_lben) {
4026 u32 pfdtxgswc;
4027
4028 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4029 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4030 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4031 hw->mac.set_lben = false;
4032 }
4033 }
4034}
4035
4036/** ixgbe_mng_present - returns true when management capability is present
4037 * @hw: pointer to hardware structure
4038 **/
4039bool ixgbe_mng_present(struct ixgbe_hw *hw)
4040{
4041 u32 fwsm;
4042
4043 if (hw->mac.type < ixgbe_mac_82599EB)
4044 return false;
4045
4046 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4047 fwsm &= IXGBE_FWSM_MODE_MASK;
4048 return fwsm == IXGBE_FWSM_FW_MODE_PT;
4049}
4050
4051/**
4052 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4053 * @hw: pointer to hardware structure
4054 * @speed: new link speed
4055 * @autoneg_wait_to_complete: true when waiting for completion is needed
4056 *
4057 * Set the link speed in the MAC and/or PHY register and restarts link.
4058 */
4059s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4060 ixgbe_link_speed speed,
4061 bool autoneg_wait_to_complete)
4062{
4063 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4064 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4065 s32 status = 0;
4066 u32 speedcnt = 0;
4067 u32 i = 0;
4068 bool autoneg, link_up = false;
4069
4070 /* Mask off requested but non-supported speeds */
4071 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4072 if (status)
4073 return status;
4074
4075 speed &= link_speed;
4076
4077 /* Try each speed one by one, highest priority first. We do this in
4078 * software because 10Gb fiber doesn't support speed autonegotiation.
4079 */
4080 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4081 speedcnt++;
4082 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4083
4084 /* If we already have link at this speed, just jump out */
4085 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4086 false);
4087 if (status)
4088 return status;
4089
4090 if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
4091 goto out;
4092
4093 /* Set the module link speed */
4094 switch (hw->phy.media_type) {
4095 case ixgbe_media_type_fiber:
4096 hw->mac.ops.set_rate_select_speed(hw,
4097 IXGBE_LINK_SPEED_10GB_FULL);
4098 break;
4099 case ixgbe_media_type_fiber_qsfp:
4100 /* QSFP module automatically detects MAC link speed */
4101 break;
4102 default:
4103 hw_dbg(hw, "Unexpected media type\n");
4104 break;
4105 }
4106
4107 /* Allow module to change analog characteristics (1G->10G) */
4108 msleep(40);
4109
4110 status = hw->mac.ops.setup_mac_link(hw,
4111 IXGBE_LINK_SPEED_10GB_FULL,
4112 autoneg_wait_to_complete);
4113 if (status)
4114 return status;
4115
4116 /* Flap the Tx laser if it has not already been done */
4117 if (hw->mac.ops.flap_tx_laser)
4118 hw->mac.ops.flap_tx_laser(hw);
4119
4120 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4121 * Section 73.10.2, we may have to wait up to 500ms if KR is
4122 * attempted. 82599 uses the same timing for 10g SFI.
4123 */
4124 for (i = 0; i < 5; i++) {
4125 /* Wait for the link partner to also set speed */
4126 msleep(100);
4127
4128 /* If we have link, just jump out */
4129 status = hw->mac.ops.check_link(hw, &link_speed,
4130 &link_up, false);
4131 if (status)
4132 return status;
4133
4134 if (link_up)
4135 goto out;
4136 }
4137 }
4138
4139 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4140 speedcnt++;
4141 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4142 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4143
4144 /* If we already have link at this speed, just jump out */
4145 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4146 false);
4147 if (status)
4148 return status;
4149
4150 if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4151 goto out;
4152
4153 /* Set the module link speed */
4154 switch (hw->phy.media_type) {
4155 case ixgbe_media_type_fiber:
4156 hw->mac.ops.set_rate_select_speed(hw,
4157 IXGBE_LINK_SPEED_1GB_FULL);
4158 break;
4159 case ixgbe_media_type_fiber_qsfp:
4160 /* QSFP module automatically detects link speed */
4161 break;
4162 default:
4163 hw_dbg(hw, "Unexpected media type\n");
4164 break;
4165 }
4166
4167 /* Allow module to change analog characteristics (10G->1G) */
4168 msleep(40);
4169
4170 status = hw->mac.ops.setup_mac_link(hw,
4171 IXGBE_LINK_SPEED_1GB_FULL,
4172 autoneg_wait_to_complete);
4173 if (status)
4174 return status;
4175
4176 /* Flap the Tx laser if it has not already been done */
4177 if (hw->mac.ops.flap_tx_laser)
4178 hw->mac.ops.flap_tx_laser(hw);
4179
4180 /* Wait for the link partner to also set speed */
4181 msleep(100);
4182
4183 /* If we have link, just jump out */
4184 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4185 false);
4186 if (status)
4187 return status;
4188
4189 if (link_up)
4190 goto out;
4191 }
4192
4193 /* We didn't get link. Configure back to the highest speed we tried,
4194 * (if there was more than one). We call ourselves back with just the
4195 * single highest speed that the user requested.
4196 */
4197 if (speedcnt > 1)
4198 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4199 highest_link_speed,
4200 autoneg_wait_to_complete);
4201
4202out:
4203 /* Set autoneg_advertised value based on input link speed */
4204 hw->phy.autoneg_advertised = 0;
4205
4206 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4207 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4208
4209 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4210 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4211
4212 return status;
4213}
4214
4215/**
4216 * ixgbe_set_soft_rate_select_speed - Set module link speed
4217 * @hw: pointer to hardware structure
4218 * @speed: link speed to set
4219 *
4220 * Set module link speed via the soft rate select.
4221 */
4222void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4223 ixgbe_link_speed speed)
4224{
4225 s32 status;
4226 u8 rs, eeprom_data;
4227
4228 switch (speed) {
4229 case IXGBE_LINK_SPEED_10GB_FULL:
4230 /* one bit mask same as setting on */
4231 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4232 break;
4233 case IXGBE_LINK_SPEED_1GB_FULL:
4234 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4235 break;
4236 default:
4237 hw_dbg(hw, "Invalid fixed module speed\n");
4238 return;
4239 }
4240
4241 /* Set RS0 */
4242 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4243 IXGBE_I2C_EEPROM_DEV_ADDR2,
4244 &eeprom_data);
4245 if (status) {
4246 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4247 return;
4248 }
4249
4250 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4251
4252 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4253 IXGBE_I2C_EEPROM_DEV_ADDR2,
4254 eeprom_data);
4255 if (status) {
4256 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4257 return;
4258 }
4259}