Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
   7 * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
   8 */
   9
  10/*
  11 * Cross Partition Communication (XPC) support - standard version.
  12 *
  13 *	XPC provides a message passing capability that crosses partition
  14 *	boundaries. This module is made up of two parts:
  15 *
  16 *	    partition	This part detects the presence/absence of other
  17 *			partitions. It provides a heartbeat and monitors
  18 *			the heartbeats of other partitions.
  19 *
  20 *	    channel	This part manages the channels and sends/receives
  21 *			messages across them to/from other partitions.
  22 *
  23 *	There are a couple of additional functions residing in XP, which
  24 *	provide an interface to XPC for its users.
  25 *
  26 *
  27 *	Caveats:
  28 *
  29 *	  . Currently on sn2, we have no way to determine which nasid an IRQ
  30 *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
  31 *	    followed by an IPI. The amo indicates where data is to be pulled
  32 *	    from, so after the IPI arrives, the remote partition checks the amo
  33 *	    word. The IPI can actually arrive before the amo however, so other
  34 *	    code must periodically check for this case. Also, remote amo
  35 *	    operations do not reliably time out. Thus we do a remote PIO read
  36 *	    solely to know whether the remote partition is down and whether we
  37 *	    should stop sending IPIs to it. This remote PIO read operation is
  38 *	    set up in a special nofault region so SAL knows to ignore (and
  39 *	    cleanup) any errors due to the remote amo write, PIO read, and/or
  40 *	    PIO write operations.
  41 *
  42 *	    If/when new hardware solves this IPI problem, we should abandon
  43 *	    the current approach.
  44 *
  45 */
  46
  47#include <linux/module.h>
  48#include <linux/slab.h>
  49#include <linux/sysctl.h>
  50#include <linux/device.h>
  51#include <linux/delay.h>
  52#include <linux/reboot.h>
  53#include <linux/kdebug.h>
  54#include <linux/kthread.h>
  55#include "xpc.h"
  56
  57#ifdef CONFIG_X86_64
  58#include <asm/traps.h>
  59#endif
  60
  61/* define two XPC debug device structures to be used with dev_dbg() et al */
  62
  63static struct device_driver xpc_dbg_name = {
  64	.name = "xpc"
  65};
  66
  67static struct device xpc_part_dbg_subname = {
  68	.init_name = "",	/* set to "part" at xpc_init() time */
  69	.driver = &xpc_dbg_name
  70};
  71
  72static struct device xpc_chan_dbg_subname = {
  73	.init_name = "",	/* set to "chan" at xpc_init() time */
  74	.driver = &xpc_dbg_name
  75};
  76
  77struct device *xpc_part = &xpc_part_dbg_subname;
  78struct device *xpc_chan = &xpc_chan_dbg_subname;
  79
  80static int xpc_kdebug_ignore;
  81
  82/* systune related variables for /proc/sys directories */
  83
  84static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
  85static int xpc_hb_min_interval = 1;
  86static int xpc_hb_max_interval = 10;
  87
  88static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
  89static int xpc_hb_check_min_interval = 10;
  90static int xpc_hb_check_max_interval = 120;
  91
  92int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
  93static int xpc_disengage_min_timelimit;	/* = 0 */
  94static int xpc_disengage_max_timelimit = 120;
  95
  96static struct ctl_table xpc_sys_xpc_hb[] = {
  97	{
  98	 .procname = "hb_interval",
  99	 .data = &xpc_hb_interval,
 100	 .maxlen = sizeof(int),
 101	 .mode = 0644,
 102	 .proc_handler = proc_dointvec_minmax,
 103	 .extra1 = &xpc_hb_min_interval,
 104	 .extra2 = &xpc_hb_max_interval},
 105	{
 106	 .procname = "hb_check_interval",
 107	 .data = &xpc_hb_check_interval,
 108	 .maxlen = sizeof(int),
 109	 .mode = 0644,
 110	 .proc_handler = proc_dointvec_minmax,
 111	 .extra1 = &xpc_hb_check_min_interval,
 112	 .extra2 = &xpc_hb_check_max_interval},
 
 113};
 114static struct ctl_table xpc_sys_xpc[] = {
 
 
 
 
 115	{
 116	 .procname = "disengage_timelimit",
 117	 .data = &xpc_disengage_timelimit,
 118	 .maxlen = sizeof(int),
 119	 .mode = 0644,
 120	 .proc_handler = proc_dointvec_minmax,
 121	 .extra1 = &xpc_disengage_min_timelimit,
 122	 .extra2 = &xpc_disengage_max_timelimit},
 
 
 
 
 
 
 
 
 123};
 124
 125static struct ctl_table_header *xpc_sysctl;
 126static struct ctl_table_header *xpc_sysctl_hb;
 127
 128/* non-zero if any remote partition disengage was timed out */
 129int xpc_disengage_timedout;
 130
 131/* #of activate IRQs received and not yet processed */
 132int xpc_activate_IRQ_rcvd;
 133DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
 134
 135/* IRQ handler notifies this wait queue on receipt of an IRQ */
 136DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
 137
 138static unsigned long xpc_hb_check_timeout;
 139static struct timer_list xpc_hb_timer;
 140
 141/* notification that the xpc_hb_checker thread has exited */
 142static DECLARE_COMPLETION(xpc_hb_checker_exited);
 143
 144/* notification that the xpc_discovery thread has exited */
 145static DECLARE_COMPLETION(xpc_discovery_exited);
 146
 147static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
 148
 149static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
 150static struct notifier_block xpc_reboot_notifier = {
 151	.notifier_call = xpc_system_reboot,
 152};
 153
 154static int xpc_system_die(struct notifier_block *, unsigned long, void *);
 155static struct notifier_block xpc_die_notifier = {
 156	.notifier_call = xpc_system_die,
 157};
 158
 159struct xpc_arch_operations xpc_arch_ops;
 160
 161/*
 162 * Timer function to enforce the timelimit on the partition disengage.
 163 */
 164static void
 165xpc_timeout_partition_disengage(struct timer_list *t)
 166{
 167	struct xpc_partition *part = from_timer(part, t, disengage_timer);
 168
 169	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
 170
 171	xpc_partition_disengaged_from_timer(part);
 172
 173	DBUG_ON(part->disengage_timeout != 0);
 174	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
 175}
 176
 177/*
 178 * Timer to produce the heartbeat.  The timer structures function is
 179 * already set when this is initially called.  A tunable is used to
 180 * specify when the next timeout should occur.
 181 */
 182static void
 183xpc_hb_beater(struct timer_list *unused)
 184{
 185	xpc_arch_ops.increment_heartbeat();
 186
 187	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
 188		wake_up_interruptible(&xpc_activate_IRQ_wq);
 189
 190	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
 191	add_timer(&xpc_hb_timer);
 192}
 193
 194static void
 195xpc_start_hb_beater(void)
 196{
 197	xpc_arch_ops.heartbeat_init();
 198	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
 199	xpc_hb_beater(NULL);
 
 200}
 201
 202static void
 203xpc_stop_hb_beater(void)
 204{
 205	del_timer_sync(&xpc_hb_timer);
 206	xpc_arch_ops.heartbeat_exit();
 207}
 208
 209/*
 210 * At periodic intervals, scan through all active partitions and ensure
 211 * their heartbeat is still active.  If not, the partition is deactivated.
 212 */
 213static void
 214xpc_check_remote_hb(void)
 215{
 216	struct xpc_partition *part;
 217	short partid;
 218	enum xp_retval ret;
 219
 220	for (partid = 0; partid < xp_max_npartitions; partid++) {
 221
 222		if (xpc_exiting)
 223			break;
 224
 225		if (partid == xp_partition_id)
 226			continue;
 227
 228		part = &xpc_partitions[partid];
 229
 230		if (part->act_state == XPC_P_AS_INACTIVE ||
 231		    part->act_state == XPC_P_AS_DEACTIVATING) {
 232			continue;
 233		}
 234
 235		ret = xpc_arch_ops.get_remote_heartbeat(part);
 236		if (ret != xpSuccess)
 237			XPC_DEACTIVATE_PARTITION(part, ret);
 238	}
 239}
 240
 241/*
 242 * This thread is responsible for nearly all of the partition
 243 * activation/deactivation.
 244 */
 245static int
 246xpc_hb_checker(void *ignore)
 247{
 248	int force_IRQ = 0;
 249
 250	/* this thread was marked active by xpc_hb_init() */
 251
 252	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
 253
 254	/* set our heartbeating to other partitions into motion */
 255	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
 256	xpc_start_hb_beater();
 257
 258	while (!xpc_exiting) {
 259
 260		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
 261			"been received\n",
 262			(int)(xpc_hb_check_timeout - jiffies),
 263			xpc_activate_IRQ_rcvd);
 264
 265		/* checking of remote heartbeats is skewed by IRQ handling */
 266		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
 267			xpc_hb_check_timeout = jiffies +
 268			    (xpc_hb_check_interval * HZ);
 269
 270			dev_dbg(xpc_part, "checking remote heartbeats\n");
 271			xpc_check_remote_hb();
 
 
 
 
 
 
 
 272		}
 273
 274		/* check for outstanding IRQs */
 275		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
 276			force_IRQ = 0;
 277			dev_dbg(xpc_part, "processing activate IRQs "
 278				"received\n");
 279			xpc_arch_ops.process_activate_IRQ_rcvd();
 280		}
 281
 282		/* wait for IRQ or timeout */
 283		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
 284					       (time_is_before_eq_jiffies(
 285						xpc_hb_check_timeout) ||
 286						xpc_activate_IRQ_rcvd > 0 ||
 287						xpc_exiting));
 288	}
 289
 290	xpc_stop_hb_beater();
 291
 292	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
 293
 294	/* mark this thread as having exited */
 295	complete(&xpc_hb_checker_exited);
 296	return 0;
 297}
 298
 299/*
 300 * This thread will attempt to discover other partitions to activate
 301 * based on info provided by SAL. This new thread is short lived and
 302 * will exit once discovery is complete.
 303 */
 304static int
 305xpc_initiate_discovery(void *ignore)
 306{
 307	xpc_discovery();
 308
 309	dev_dbg(xpc_part, "discovery thread is exiting\n");
 310
 311	/* mark this thread as having exited */
 312	complete(&xpc_discovery_exited);
 313	return 0;
 314}
 315
 316/*
 317 * The first kthread assigned to a newly activated partition is the one
 318 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
 319 * that kthread until the partition is brought down, at which time that kthread
 320 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
 321 * that XPC has dismantled all communication infrastructure for the associated
 322 * partition.) This kthread becomes the channel manager for that partition.
 323 *
 324 * Each active partition has a channel manager, who, besides connecting and
 325 * disconnecting channels, will ensure that each of the partition's connected
 326 * channels has the required number of assigned kthreads to get the work done.
 327 */
 328static void
 329xpc_channel_mgr(struct xpc_partition *part)
 330{
 331	while (part->act_state != XPC_P_AS_DEACTIVATING ||
 332	       atomic_read(&part->nchannels_active) > 0 ||
 333	       !xpc_partition_disengaged(part)) {
 334
 335		xpc_process_sent_chctl_flags(part);
 336
 337		/*
 338		 * Wait until we've been requested to activate kthreads or
 339		 * all of the channel's message queues have been torn down or
 340		 * a signal is pending.
 341		 *
 342		 * The channel_mgr_requests is set to 1 after being awakened,
 343		 * This is done to prevent the channel mgr from making one pass
 344		 * through the loop for each request, since he will
 345		 * be servicing all the requests in one pass. The reason it's
 346		 * set to 1 instead of 0 is so that other kthreads will know
 347		 * that the channel mgr is running and won't bother trying to
 348		 * wake him up.
 349		 */
 350		atomic_dec(&part->channel_mgr_requests);
 351		(void)wait_event_interruptible(part->channel_mgr_wq,
 352				(atomic_read(&part->channel_mgr_requests) > 0 ||
 353				 part->chctl.all_flags != 0 ||
 354				 (part->act_state == XPC_P_AS_DEACTIVATING &&
 355				 atomic_read(&part->nchannels_active) == 0 &&
 356				 xpc_partition_disengaged(part))));
 357		atomic_set(&part->channel_mgr_requests, 1);
 358	}
 359}
 360
 361/*
 362 * Guarantee that the kzalloc'd memory is cacheline aligned.
 363 */
 364void *
 365xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
 366{
 367	/* see if kzalloc will give us cachline aligned memory by default */
 368	*base = kzalloc(size, flags);
 369	if (*base == NULL)
 370		return NULL;
 371
 372	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
 373		return *base;
 374
 375	kfree(*base);
 376
 377	/* nope, we'll have to do it ourselves */
 378	*base = kzalloc(size + L1_CACHE_BYTES, flags);
 379	if (*base == NULL)
 380		return NULL;
 381
 382	return (void *)L1_CACHE_ALIGN((u64)*base);
 383}
 384
 385/*
 386 * Setup the channel structures necessary to support XPartition Communication
 387 * between the specified remote partition and the local one.
 388 */
 389static enum xp_retval
 390xpc_setup_ch_structures(struct xpc_partition *part)
 391{
 392	enum xp_retval ret;
 393	int ch_number;
 394	struct xpc_channel *ch;
 395	short partid = XPC_PARTID(part);
 396
 397	/*
 398	 * Allocate all of the channel structures as a contiguous chunk of
 399	 * memory.
 400	 */
 401	DBUG_ON(part->channels != NULL);
 402	part->channels = kcalloc(XPC_MAX_NCHANNELS,
 403				 sizeof(struct xpc_channel),
 404				 GFP_KERNEL);
 405	if (part->channels == NULL) {
 406		dev_err(xpc_chan, "can't get memory for channels\n");
 407		return xpNoMemory;
 408	}
 409
 410	/* allocate the remote open and close args */
 411
 412	part->remote_openclose_args =
 413	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
 414					  GFP_KERNEL, &part->
 415					  remote_openclose_args_base);
 416	if (part->remote_openclose_args == NULL) {
 417		dev_err(xpc_chan, "can't get memory for remote connect args\n");
 418		ret = xpNoMemory;
 419		goto out_1;
 420	}
 421
 422	part->chctl.all_flags = 0;
 423	spin_lock_init(&part->chctl_lock);
 424
 425	atomic_set(&part->channel_mgr_requests, 1);
 426	init_waitqueue_head(&part->channel_mgr_wq);
 427
 428	part->nchannels = XPC_MAX_NCHANNELS;
 429
 430	atomic_set(&part->nchannels_active, 0);
 431	atomic_set(&part->nchannels_engaged, 0);
 432
 433	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
 434		ch = &part->channels[ch_number];
 435
 436		ch->partid = partid;
 437		ch->number = ch_number;
 438		ch->flags = XPC_C_DISCONNECTED;
 439
 440		atomic_set(&ch->kthreads_assigned, 0);
 441		atomic_set(&ch->kthreads_idle, 0);
 442		atomic_set(&ch->kthreads_active, 0);
 443
 444		atomic_set(&ch->references, 0);
 445		atomic_set(&ch->n_to_notify, 0);
 446
 447		spin_lock_init(&ch->lock);
 448		init_completion(&ch->wdisconnect_wait);
 449
 450		atomic_set(&ch->n_on_msg_allocate_wq, 0);
 451		init_waitqueue_head(&ch->msg_allocate_wq);
 452		init_waitqueue_head(&ch->idle_wq);
 453	}
 454
 455	ret = xpc_arch_ops.setup_ch_structures(part);
 456	if (ret != xpSuccess)
 457		goto out_2;
 458
 459	/*
 460	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
 461	 * we're declaring that this partition is ready to go.
 462	 */
 463	part->setup_state = XPC_P_SS_SETUP;
 464
 465	return xpSuccess;
 466
 467	/* setup of ch structures failed */
 468out_2:
 469	kfree(part->remote_openclose_args_base);
 470	part->remote_openclose_args = NULL;
 471out_1:
 472	kfree(part->channels);
 473	part->channels = NULL;
 474	return ret;
 475}
 476
 477/*
 478 * Teardown the channel structures necessary to support XPartition Communication
 479 * between the specified remote partition and the local one.
 480 */
 481static void
 482xpc_teardown_ch_structures(struct xpc_partition *part)
 483{
 484	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
 485	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
 486
 487	/*
 488	 * Make this partition inaccessible to local processes by marking it
 489	 * as no longer setup. Then wait before proceeding with the teardown
 490	 * until all existing references cease.
 491	 */
 492	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
 493	part->setup_state = XPC_P_SS_WTEARDOWN;
 494
 495	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
 496
 497	/* now we can begin tearing down the infrastructure */
 498
 499	xpc_arch_ops.teardown_ch_structures(part);
 500
 501	kfree(part->remote_openclose_args_base);
 502	part->remote_openclose_args = NULL;
 503	kfree(part->channels);
 504	part->channels = NULL;
 505
 506	part->setup_state = XPC_P_SS_TORNDOWN;
 507}
 508
 509/*
 510 * When XPC HB determines that a partition has come up, it will create a new
 511 * kthread and that kthread will call this function to attempt to set up the
 512 * basic infrastructure used for Cross Partition Communication with the newly
 513 * upped partition.
 514 *
 515 * The kthread that was created by XPC HB and which setup the XPC
 516 * infrastructure will remain assigned to the partition becoming the channel
 517 * manager for that partition until the partition is deactivating, at which
 518 * time the kthread will teardown the XPC infrastructure and then exit.
 519 */
 520static int
 521xpc_activating(void *__partid)
 522{
 523	short partid = (u64)__partid;
 524	struct xpc_partition *part = &xpc_partitions[partid];
 525	unsigned long irq_flags;
 526
 527	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
 528
 529	spin_lock_irqsave(&part->act_lock, irq_flags);
 530
 531	if (part->act_state == XPC_P_AS_DEACTIVATING) {
 532		part->act_state = XPC_P_AS_INACTIVE;
 533		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 534		part->remote_rp_pa = 0;
 535		return 0;
 536	}
 537
 538	/* indicate the thread is activating */
 539	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
 540	part->act_state = XPC_P_AS_ACTIVATING;
 541
 542	XPC_SET_REASON(part, 0, 0);
 543	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 544
 545	dev_dbg(xpc_part, "activating partition %d\n", partid);
 546
 547	xpc_arch_ops.allow_hb(partid);
 548
 549	if (xpc_setup_ch_structures(part) == xpSuccess) {
 550		(void)xpc_part_ref(part);	/* this will always succeed */
 551
 552		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
 553			xpc_mark_partition_active(part);
 554			xpc_channel_mgr(part);
 555			/* won't return until partition is deactivating */
 556		}
 557
 558		xpc_part_deref(part);
 559		xpc_teardown_ch_structures(part);
 560	}
 561
 562	xpc_arch_ops.disallow_hb(partid);
 563	xpc_mark_partition_inactive(part);
 564
 565	if (part->reason == xpReactivating) {
 566		/* interrupting ourselves results in activating partition */
 567		xpc_arch_ops.request_partition_reactivation(part);
 568	}
 569
 570	return 0;
 571}
 572
 573void
 574xpc_activate_partition(struct xpc_partition *part)
 575{
 576	short partid = XPC_PARTID(part);
 577	unsigned long irq_flags;
 578	struct task_struct *kthread;
 579
 580	spin_lock_irqsave(&part->act_lock, irq_flags);
 581
 582	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
 583
 584	part->act_state = XPC_P_AS_ACTIVATION_REQ;
 585	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
 586
 587	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 588
 589	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
 590			      partid);
 591	if (IS_ERR(kthread)) {
 592		spin_lock_irqsave(&part->act_lock, irq_flags);
 593		part->act_state = XPC_P_AS_INACTIVE;
 594		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
 595		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 596	}
 597}
 598
 599void
 600xpc_activate_kthreads(struct xpc_channel *ch, int needed)
 601{
 602	int idle = atomic_read(&ch->kthreads_idle);
 603	int assigned = atomic_read(&ch->kthreads_assigned);
 604	int wakeup;
 605
 606	DBUG_ON(needed <= 0);
 607
 608	if (idle > 0) {
 609		wakeup = (needed > idle) ? idle : needed;
 610		needed -= wakeup;
 611
 612		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
 613			"channel=%d\n", wakeup, ch->partid, ch->number);
 614
 615		/* only wakeup the requested number of kthreads */
 616		wake_up_nr(&ch->idle_wq, wakeup);
 617	}
 618
 619	if (needed <= 0)
 620		return;
 621
 622	if (needed + assigned > ch->kthreads_assigned_limit) {
 623		needed = ch->kthreads_assigned_limit - assigned;
 624		if (needed <= 0)
 625			return;
 626	}
 627
 628	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
 629		needed, ch->partid, ch->number);
 630
 631	xpc_create_kthreads(ch, needed, 0);
 632}
 633
 634/*
 635 * This function is where XPC's kthreads wait for messages to deliver.
 636 */
 637static void
 638xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
 639{
 640	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 641		xpc_arch_ops.n_of_deliverable_payloads;
 642
 643	do {
 644		/* deliver messages to their intended recipients */
 645
 646		while (n_of_deliverable_payloads(ch) > 0 &&
 647		       !(ch->flags & XPC_C_DISCONNECTING)) {
 648			xpc_deliver_payload(ch);
 649		}
 650
 651		if (atomic_inc_return(&ch->kthreads_idle) >
 652		    ch->kthreads_idle_limit) {
 653			/* too many idle kthreads on this channel */
 654			atomic_dec(&ch->kthreads_idle);
 655			break;
 656		}
 657
 658		dev_dbg(xpc_chan, "idle kthread calling "
 659			"wait_event_interruptible_exclusive()\n");
 660
 661		(void)wait_event_interruptible_exclusive(ch->idle_wq,
 662				(n_of_deliverable_payloads(ch) > 0 ||
 663				 (ch->flags & XPC_C_DISCONNECTING)));
 664
 665		atomic_dec(&ch->kthreads_idle);
 666
 667	} while (!(ch->flags & XPC_C_DISCONNECTING));
 668}
 669
 670static int
 671xpc_kthread_start(void *args)
 672{
 673	short partid = XPC_UNPACK_ARG1(args);
 674	u16 ch_number = XPC_UNPACK_ARG2(args);
 675	struct xpc_partition *part = &xpc_partitions[partid];
 676	struct xpc_channel *ch;
 677	int n_needed;
 678	unsigned long irq_flags;
 679	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 680		xpc_arch_ops.n_of_deliverable_payloads;
 681
 682	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
 683		partid, ch_number);
 684
 685	ch = &part->channels[ch_number];
 686
 687	if (!(ch->flags & XPC_C_DISCONNECTING)) {
 688
 689		/* let registerer know that connection has been established */
 690
 691		spin_lock_irqsave(&ch->lock, irq_flags);
 692		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
 693			ch->flags |= XPC_C_CONNECTEDCALLOUT;
 694			spin_unlock_irqrestore(&ch->lock, irq_flags);
 695
 696			xpc_connected_callout(ch);
 697
 698			spin_lock_irqsave(&ch->lock, irq_flags);
 699			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
 700			spin_unlock_irqrestore(&ch->lock, irq_flags);
 701
 702			/*
 703			 * It is possible that while the callout was being
 704			 * made that the remote partition sent some messages.
 705			 * If that is the case, we may need to activate
 706			 * additional kthreads to help deliver them. We only
 707			 * need one less than total #of messages to deliver.
 708			 */
 709			n_needed = n_of_deliverable_payloads(ch) - 1;
 710			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
 711				xpc_activate_kthreads(ch, n_needed);
 712
 713		} else {
 714			spin_unlock_irqrestore(&ch->lock, irq_flags);
 715		}
 716
 717		xpc_kthread_waitmsgs(part, ch);
 718	}
 719
 720	/* let registerer know that connection is disconnecting */
 721
 722	spin_lock_irqsave(&ch->lock, irq_flags);
 723	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
 724	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
 725		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
 726		spin_unlock_irqrestore(&ch->lock, irq_flags);
 727
 728		xpc_disconnect_callout(ch, xpDisconnecting);
 729
 730		spin_lock_irqsave(&ch->lock, irq_flags);
 731		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
 732	}
 733	spin_unlock_irqrestore(&ch->lock, irq_flags);
 734
 735	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 736	    atomic_dec_return(&part->nchannels_engaged) == 0) {
 737		xpc_arch_ops.indicate_partition_disengaged(part);
 738	}
 739
 740	xpc_msgqueue_deref(ch);
 741
 742	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
 743		partid, ch_number);
 744
 745	xpc_part_deref(part);
 746	return 0;
 747}
 748
 749/*
 750 * For each partition that XPC has established communications with, there is
 751 * a minimum of one kernel thread assigned to perform any operation that
 752 * may potentially sleep or block (basically the callouts to the asynchronous
 753 * functions registered via xpc_connect()).
 754 *
 755 * Additional kthreads are created and destroyed by XPC as the workload
 756 * demands.
 757 *
 758 * A kthread is assigned to one of the active channels that exists for a given
 759 * partition.
 760 */
 761void
 762xpc_create_kthreads(struct xpc_channel *ch, int needed,
 763		    int ignore_disconnecting)
 764{
 765	unsigned long irq_flags;
 766	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
 767	struct xpc_partition *part = &xpc_partitions[ch->partid];
 768	struct task_struct *kthread;
 769	void (*indicate_partition_disengaged) (struct xpc_partition *) =
 770		xpc_arch_ops.indicate_partition_disengaged;
 771
 772	while (needed-- > 0) {
 773
 774		/*
 775		 * The following is done on behalf of the newly created
 776		 * kthread. That kthread is responsible for doing the
 777		 * counterpart to the following before it exits.
 778		 */
 779		if (ignore_disconnecting) {
 780			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
 781				/* kthreads assigned had gone to zero */
 782				BUG_ON(!(ch->flags &
 783					 XPC_C_DISCONNECTINGCALLOUT_MADE));
 784				break;
 785			}
 786
 787		} else if (ch->flags & XPC_C_DISCONNECTING) {
 788			break;
 789
 790		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
 791			   atomic_inc_return(&part->nchannels_engaged) == 1) {
 792			xpc_arch_ops.indicate_partition_engaged(part);
 793		}
 794		(void)xpc_part_ref(part);
 795		xpc_msgqueue_ref(ch);
 796
 797		kthread = kthread_run(xpc_kthread_start, (void *)args,
 798				      "xpc%02dc%d", ch->partid, ch->number);
 799		if (IS_ERR(kthread)) {
 800			/* the fork failed */
 801
 802			/*
 803			 * NOTE: if (ignore_disconnecting &&
 804			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
 805			 * then we'll deadlock if all other kthreads assigned
 806			 * to this channel are blocked in the channel's
 807			 * registerer, because the only thing that will unblock
 808			 * them is the xpDisconnecting callout that this
 809			 * failed kthread_run() would have made.
 810			 */
 811
 812			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 813			    atomic_dec_return(&part->nchannels_engaged) == 0) {
 814				indicate_partition_disengaged(part);
 815			}
 816			xpc_msgqueue_deref(ch);
 817			xpc_part_deref(part);
 818
 819			if (atomic_read(&ch->kthreads_assigned) <
 820			    ch->kthreads_idle_limit) {
 821				/*
 822				 * Flag this as an error only if we have an
 823				 * insufficient #of kthreads for the channel
 824				 * to function.
 825				 */
 826				spin_lock_irqsave(&ch->lock, irq_flags);
 827				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
 828						       &irq_flags);
 829				spin_unlock_irqrestore(&ch->lock, irq_flags);
 830			}
 831			break;
 832		}
 833	}
 834}
 835
 836void
 837xpc_disconnect_wait(int ch_number)
 838{
 839	unsigned long irq_flags;
 840	short partid;
 841	struct xpc_partition *part;
 842	struct xpc_channel *ch;
 843	int wakeup_channel_mgr;
 844
 845	/* now wait for all callouts to the caller's function to cease */
 846	for (partid = 0; partid < xp_max_npartitions; partid++) {
 847		part = &xpc_partitions[partid];
 848
 849		if (!xpc_part_ref(part))
 850			continue;
 851
 852		ch = &part->channels[ch_number];
 853
 854		if (!(ch->flags & XPC_C_WDISCONNECT)) {
 855			xpc_part_deref(part);
 856			continue;
 857		}
 858
 859		wait_for_completion(&ch->wdisconnect_wait);
 860
 861		spin_lock_irqsave(&ch->lock, irq_flags);
 862		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
 863		wakeup_channel_mgr = 0;
 864
 865		if (ch->delayed_chctl_flags) {
 866			if (part->act_state != XPC_P_AS_DEACTIVATING) {
 867				spin_lock(&part->chctl_lock);
 868				part->chctl.flags[ch->number] |=
 869				    ch->delayed_chctl_flags;
 870				spin_unlock(&part->chctl_lock);
 871				wakeup_channel_mgr = 1;
 872			}
 873			ch->delayed_chctl_flags = 0;
 874		}
 875
 876		ch->flags &= ~XPC_C_WDISCONNECT;
 877		spin_unlock_irqrestore(&ch->lock, irq_flags);
 878
 879		if (wakeup_channel_mgr)
 880			xpc_wakeup_channel_mgr(part);
 881
 882		xpc_part_deref(part);
 883	}
 884}
 885
 886static int
 887xpc_setup_partitions(void)
 888{
 889	short partid;
 890	struct xpc_partition *part;
 891
 892	xpc_partitions = kcalloc(xp_max_npartitions,
 893				 sizeof(struct xpc_partition),
 894				 GFP_KERNEL);
 895	if (xpc_partitions == NULL) {
 896		dev_err(xpc_part, "can't get memory for partition structure\n");
 897		return -ENOMEM;
 898	}
 899
 900	/*
 901	 * The first few fields of each entry of xpc_partitions[] need to
 902	 * be initialized now so that calls to xpc_connect() and
 903	 * xpc_disconnect() can be made prior to the activation of any remote
 904	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
 905	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
 906	 * PARTITION HAS BEEN ACTIVATED.
 907	 */
 908	for (partid = 0; partid < xp_max_npartitions; partid++) {
 909		part = &xpc_partitions[partid];
 910
 911		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
 912
 913		part->activate_IRQ_rcvd = 0;
 914		spin_lock_init(&part->act_lock);
 915		part->act_state = XPC_P_AS_INACTIVE;
 916		XPC_SET_REASON(part, 0, 0);
 917
 918		timer_setup(&part->disengage_timer,
 919			    xpc_timeout_partition_disengage, 0);
 
 
 920
 921		part->setup_state = XPC_P_SS_UNSET;
 922		init_waitqueue_head(&part->teardown_wq);
 923		atomic_set(&part->references, 0);
 924	}
 925
 926	return xpc_arch_ops.setup_partitions();
 927}
 928
 929static void
 930xpc_teardown_partitions(void)
 931{
 932	xpc_arch_ops.teardown_partitions();
 933	kfree(xpc_partitions);
 934}
 935
 936static void
 937xpc_do_exit(enum xp_retval reason)
 938{
 939	short partid;
 940	int active_part_count, printed_waiting_msg = 0;
 941	struct xpc_partition *part;
 942	unsigned long printmsg_time, disengage_timeout = 0;
 943
 944	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
 945	DBUG_ON(xpc_exiting == 1);
 946
 947	/*
 948	 * Let the heartbeat checker thread and the discovery thread
 949	 * (if one is running) know that they should exit. Also wake up
 950	 * the heartbeat checker thread in case it's sleeping.
 951	 */
 952	xpc_exiting = 1;
 953	wake_up_interruptible(&xpc_activate_IRQ_wq);
 954
 955	/* wait for the discovery thread to exit */
 956	wait_for_completion(&xpc_discovery_exited);
 957
 958	/* wait for the heartbeat checker thread to exit */
 959	wait_for_completion(&xpc_hb_checker_exited);
 960
 961	/* sleep for a 1/3 of a second or so */
 962	(void)msleep_interruptible(300);
 963
 964	/* wait for all partitions to become inactive */
 965
 966	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
 967	xpc_disengage_timedout = 0;
 968
 969	do {
 970		active_part_count = 0;
 971
 972		for (partid = 0; partid < xp_max_npartitions; partid++) {
 973			part = &xpc_partitions[partid];
 974
 975			if (xpc_partition_disengaged(part) &&
 976			    part->act_state == XPC_P_AS_INACTIVE) {
 977				continue;
 978			}
 979
 980			active_part_count++;
 981
 982			XPC_DEACTIVATE_PARTITION(part, reason);
 983
 984			if (part->disengage_timeout > disengage_timeout)
 985				disengage_timeout = part->disengage_timeout;
 986		}
 987
 988		if (xpc_arch_ops.any_partition_engaged()) {
 989			if (time_is_before_jiffies(printmsg_time)) {
 990				dev_info(xpc_part, "waiting for remote "
 991					 "partitions to deactivate, timeout in "
 992					 "%ld seconds\n", (disengage_timeout -
 993					 jiffies) / HZ);
 994				printmsg_time = jiffies +
 995				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
 996				printed_waiting_msg = 1;
 997			}
 998
 999		} else if (active_part_count > 0) {
1000			if (printed_waiting_msg) {
1001				dev_info(xpc_part, "waiting for local partition"
1002					 " to deactivate\n");
1003				printed_waiting_msg = 0;
1004			}
1005
1006		} else {
1007			if (!xpc_disengage_timedout) {
1008				dev_info(xpc_part, "all partitions have "
1009					 "deactivated\n");
1010			}
1011			break;
1012		}
1013
1014		/* sleep for a 1/3 of a second or so */
1015		(void)msleep_interruptible(300);
1016
1017	} while (1);
1018
1019	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1020
1021	xpc_teardown_rsvd_page();
1022
1023	if (reason == xpUnloading) {
1024		(void)unregister_die_notifier(&xpc_die_notifier);
1025		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1026	}
1027
1028	/* clear the interface to XPC's functions */
1029	xpc_clear_interface();
1030
1031	if (xpc_sysctl)
1032		unregister_sysctl_table(xpc_sysctl);
1033	if (xpc_sysctl_hb)
1034		unregister_sysctl_table(xpc_sysctl_hb);
1035
1036	xpc_teardown_partitions();
1037
1038	if (is_uv_system())
 
 
1039		xpc_exit_uv();
1040}
1041
1042/*
1043 * This function is called when the system is being rebooted.
1044 */
1045static int
1046xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1047{
1048	enum xp_retval reason;
1049
1050	switch (event) {
1051	case SYS_RESTART:
1052		reason = xpSystemReboot;
1053		break;
1054	case SYS_HALT:
1055		reason = xpSystemHalt;
1056		break;
1057	case SYS_POWER_OFF:
1058		reason = xpSystemPoweroff;
1059		break;
1060	default:
1061		reason = xpSystemGoingDown;
1062	}
1063
1064	xpc_do_exit(reason);
1065	return NOTIFY_DONE;
1066}
1067
1068/* Used to only allow one cpu to complete disconnect */
1069static unsigned int xpc_die_disconnecting;
1070
1071/*
1072 * Notify other partitions to deactivate from us by first disengaging from all
1073 * references to our memory.
1074 */
1075static void
1076xpc_die_deactivate(void)
1077{
1078	struct xpc_partition *part;
1079	short partid;
1080	int any_engaged;
1081	long keep_waiting;
1082	long wait_to_print;
1083
1084	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1085		return;
1086
1087	/* keep xpc_hb_checker thread from doing anything (just in case) */
1088	xpc_exiting = 1;
1089
1090	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1091
1092	for (partid = 0; partid < xp_max_npartitions; partid++) {
1093		part = &xpc_partitions[partid];
1094
1095		if (xpc_arch_ops.partition_engaged(partid) ||
1096		    part->act_state != XPC_P_AS_INACTIVE) {
1097			xpc_arch_ops.request_partition_deactivation(part);
1098			xpc_arch_ops.indicate_partition_disengaged(part);
1099		}
1100	}
1101
1102	/*
1103	 * Though we requested that all other partitions deactivate from us,
1104	 * we only wait until they've all disengaged or we've reached the
1105	 * defined timelimit.
1106	 *
1107	 * Given that one iteration through the following while-loop takes
1108	 * approximately 200 microseconds, calculate the #of loops to take
1109	 * before bailing and the #of loops before printing a waiting message.
1110	 */
1111	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1112	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1113
1114	while (1) {
1115		any_engaged = xpc_arch_ops.any_partition_engaged();
1116		if (!any_engaged) {
1117			dev_info(xpc_part, "all partitions have deactivated\n");
1118			break;
1119		}
1120
1121		if (!keep_waiting--) {
1122			for (partid = 0; partid < xp_max_npartitions;
1123			     partid++) {
1124				if (xpc_arch_ops.partition_engaged(partid)) {
1125					dev_info(xpc_part, "deactivate from "
1126						 "remote partition %d timed "
1127						 "out\n", partid);
1128				}
1129			}
1130			break;
1131		}
1132
1133		if (!wait_to_print--) {
1134			dev_info(xpc_part, "waiting for remote partitions to "
1135				 "deactivate, timeout in %ld seconds\n",
1136				 keep_waiting / (1000 * 5));
1137			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1138			    1000 * 5;
1139		}
1140
1141		udelay(200);
1142	}
1143}
1144
1145/*
1146 * This function is called when the system is being restarted or halted due
1147 * to some sort of system failure. If this is the case we need to notify the
1148 * other partitions to disengage from all references to our memory.
1149 * This function can also be called when our heartbeater could be offlined
1150 * for a time. In this case we need to notify other partitions to not worry
1151 * about the lack of a heartbeat.
1152 */
1153static int
1154xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1155{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156	struct die_args *die_args = _die_args;
1157
1158	switch (event) {
1159	case DIE_TRAP:
1160		if (die_args->trapnr == X86_TRAP_DF)
1161			xpc_die_deactivate();
1162
1163		if (((die_args->trapnr == X86_TRAP_MF) ||
1164		     (die_args->trapnr == X86_TRAP_XF)) &&
1165		    !user_mode(die_args->regs))
1166			xpc_die_deactivate();
1167
1168		break;
1169	case DIE_INT3:
1170	case DIE_DEBUG:
1171		break;
1172	case DIE_OOPS:
1173	case DIE_GPF:
1174	default:
1175		xpc_die_deactivate();
1176	}
 
1177
1178	return NOTIFY_DONE;
1179}
1180
1181static int __init
1182xpc_init(void)
1183{
1184	int ret;
1185	struct task_struct *kthread;
1186
1187	dev_set_name(xpc_part, "part");
1188	dev_set_name(xpc_chan, "chan");
1189
1190	if (is_uv_system()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191		ret = xpc_init_uv();
1192
1193	} else {
1194		ret = -ENODEV;
1195	}
1196
1197	if (ret != 0)
1198		return ret;
1199
1200	ret = xpc_setup_partitions();
1201	if (ret != 0) {
1202		dev_err(xpc_part, "can't get memory for partition structure\n");
1203		goto out_1;
1204	}
1205
1206	xpc_sysctl = register_sysctl("xpc", xpc_sys_xpc);
1207	xpc_sysctl_hb = register_sysctl("xpc/hb", xpc_sys_xpc_hb);
1208
1209	/*
1210	 * Fill the partition reserved page with the information needed by
1211	 * other partitions to discover we are alive and establish initial
1212	 * communications.
1213	 */
1214	ret = xpc_setup_rsvd_page();
1215	if (ret != 0) {
1216		dev_err(xpc_part, "can't setup our reserved page\n");
1217		goto out_2;
1218	}
1219
1220	/* add ourselves to the reboot_notifier_list */
1221	ret = register_reboot_notifier(&xpc_reboot_notifier);
1222	if (ret != 0)
1223		dev_warn(xpc_part, "can't register reboot notifier\n");
1224
1225	/* add ourselves to the die_notifier list */
1226	ret = register_die_notifier(&xpc_die_notifier);
1227	if (ret != 0)
1228		dev_warn(xpc_part, "can't register die notifier\n");
1229
1230	/*
1231	 * The real work-horse behind xpc.  This processes incoming
1232	 * interrupts and monitors remote heartbeats.
1233	 */
1234	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1235	if (IS_ERR(kthread)) {
1236		dev_err(xpc_part, "failed while forking hb check thread\n");
1237		ret = -EBUSY;
1238		goto out_3;
1239	}
1240
1241	/*
1242	 * Startup a thread that will attempt to discover other partitions to
1243	 * activate based on info provided by SAL. This new thread is short
1244	 * lived and will exit once discovery is complete.
1245	 */
1246	kthread = kthread_run(xpc_initiate_discovery, NULL,
1247			      XPC_DISCOVERY_THREAD_NAME);
1248	if (IS_ERR(kthread)) {
1249		dev_err(xpc_part, "failed while forking discovery thread\n");
1250
1251		/* mark this new thread as a non-starter */
1252		complete(&xpc_discovery_exited);
1253
1254		xpc_do_exit(xpUnloading);
1255		return -EBUSY;
1256	}
1257
1258	/* set the interface to point at XPC's functions */
1259	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1260			  xpc_initiate_send, xpc_initiate_send_notify,
1261			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1262
1263	return 0;
1264
1265	/* initialization was not successful */
1266out_3:
1267	xpc_teardown_rsvd_page();
1268
1269	(void)unregister_die_notifier(&xpc_die_notifier);
1270	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1271out_2:
1272	if (xpc_sysctl_hb)
1273		unregister_sysctl_table(xpc_sysctl_hb);
1274	if (xpc_sysctl)
1275		unregister_sysctl_table(xpc_sysctl);
1276
1277	xpc_teardown_partitions();
1278out_1:
1279	if (is_uv_system())
 
 
1280		xpc_exit_uv();
1281	return ret;
1282}
1283
1284module_init(xpc_init);
1285
1286static void __exit
1287xpc_exit(void)
1288{
1289	xpc_do_exit(xpUnloading);
1290}
1291
1292module_exit(xpc_exit);
1293
1294MODULE_AUTHOR("Silicon Graphics, Inc.");
1295MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1296MODULE_LICENSE("GPL");
1297
1298module_param(xpc_hb_interval, int, 0);
1299MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1300		 "heartbeat increments.");
1301
1302module_param(xpc_hb_check_interval, int, 0);
1303MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1304		 "heartbeat checks.");
1305
1306module_param(xpc_disengage_timelimit, int, 0);
1307MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1308		 "for disengage to complete.");
1309
1310module_param(xpc_kdebug_ignore, int, 0);
1311MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1312		 "other partitions when dropping into kdebug.");
v4.10.11
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
 
   6 * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
   7 */
   8
   9/*
  10 * Cross Partition Communication (XPC) support - standard version.
  11 *
  12 *	XPC provides a message passing capability that crosses partition
  13 *	boundaries. This module is made up of two parts:
  14 *
  15 *	    partition	This part detects the presence/absence of other
  16 *			partitions. It provides a heartbeat and monitors
  17 *			the heartbeats of other partitions.
  18 *
  19 *	    channel	This part manages the channels and sends/receives
  20 *			messages across them to/from other partitions.
  21 *
  22 *	There are a couple of additional functions residing in XP, which
  23 *	provide an interface to XPC for its users.
  24 *
  25 *
  26 *	Caveats:
  27 *
  28 *	  . Currently on sn2, we have no way to determine which nasid an IRQ
  29 *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
  30 *	    followed by an IPI. The amo indicates where data is to be pulled
  31 *	    from, so after the IPI arrives, the remote partition checks the amo
  32 *	    word. The IPI can actually arrive before the amo however, so other
  33 *	    code must periodically check for this case. Also, remote amo
  34 *	    operations do not reliably time out. Thus we do a remote PIO read
  35 *	    solely to know whether the remote partition is down and whether we
  36 *	    should stop sending IPIs to it. This remote PIO read operation is
  37 *	    set up in a special nofault region so SAL knows to ignore (and
  38 *	    cleanup) any errors due to the remote amo write, PIO read, and/or
  39 *	    PIO write operations.
  40 *
  41 *	    If/when new hardware solves this IPI problem, we should abandon
  42 *	    the current approach.
  43 *
  44 */
  45
  46#include <linux/module.h>
  47#include <linux/slab.h>
  48#include <linux/sysctl.h>
  49#include <linux/device.h>
  50#include <linux/delay.h>
  51#include <linux/reboot.h>
  52#include <linux/kdebug.h>
  53#include <linux/kthread.h>
  54#include "xpc.h"
  55
  56#ifdef CONFIG_X86_64
  57#include <asm/traps.h>
  58#endif
  59
  60/* define two XPC debug device structures to be used with dev_dbg() et al */
  61
  62struct device_driver xpc_dbg_name = {
  63	.name = "xpc"
  64};
  65
  66struct device xpc_part_dbg_subname = {
  67	.init_name = "",	/* set to "part" at xpc_init() time */
  68	.driver = &xpc_dbg_name
  69};
  70
  71struct device xpc_chan_dbg_subname = {
  72	.init_name = "",	/* set to "chan" at xpc_init() time */
  73	.driver = &xpc_dbg_name
  74};
  75
  76struct device *xpc_part = &xpc_part_dbg_subname;
  77struct device *xpc_chan = &xpc_chan_dbg_subname;
  78
  79static int xpc_kdebug_ignore;
  80
  81/* systune related variables for /proc/sys directories */
  82
  83static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
  84static int xpc_hb_min_interval = 1;
  85static int xpc_hb_max_interval = 10;
  86
  87static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
  88static int xpc_hb_check_min_interval = 10;
  89static int xpc_hb_check_max_interval = 120;
  90
  91int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
  92static int xpc_disengage_min_timelimit;	/* = 0 */
  93static int xpc_disengage_max_timelimit = 120;
  94
  95static struct ctl_table xpc_sys_xpc_hb_dir[] = {
  96	{
  97	 .procname = "hb_interval",
  98	 .data = &xpc_hb_interval,
  99	 .maxlen = sizeof(int),
 100	 .mode = 0644,
 101	 .proc_handler = proc_dointvec_minmax,
 102	 .extra1 = &xpc_hb_min_interval,
 103	 .extra2 = &xpc_hb_max_interval},
 104	{
 105	 .procname = "hb_check_interval",
 106	 .data = &xpc_hb_check_interval,
 107	 .maxlen = sizeof(int),
 108	 .mode = 0644,
 109	 .proc_handler = proc_dointvec_minmax,
 110	 .extra1 = &xpc_hb_check_min_interval,
 111	 .extra2 = &xpc_hb_check_max_interval},
 112	{}
 113};
 114static struct ctl_table xpc_sys_xpc_dir[] = {
 115	{
 116	 .procname = "hb",
 117	 .mode = 0555,
 118	 .child = xpc_sys_xpc_hb_dir},
 119	{
 120	 .procname = "disengage_timelimit",
 121	 .data = &xpc_disengage_timelimit,
 122	 .maxlen = sizeof(int),
 123	 .mode = 0644,
 124	 .proc_handler = proc_dointvec_minmax,
 125	 .extra1 = &xpc_disengage_min_timelimit,
 126	 .extra2 = &xpc_disengage_max_timelimit},
 127	{}
 128};
 129static struct ctl_table xpc_sys_dir[] = {
 130	{
 131	 .procname = "xpc",
 132	 .mode = 0555,
 133	 .child = xpc_sys_xpc_dir},
 134	{}
 135};
 
 136static struct ctl_table_header *xpc_sysctl;
 
 137
 138/* non-zero if any remote partition disengage was timed out */
 139int xpc_disengage_timedout;
 140
 141/* #of activate IRQs received and not yet processed */
 142int xpc_activate_IRQ_rcvd;
 143DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
 144
 145/* IRQ handler notifies this wait queue on receipt of an IRQ */
 146DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
 147
 148static unsigned long xpc_hb_check_timeout;
 149static struct timer_list xpc_hb_timer;
 150
 151/* notification that the xpc_hb_checker thread has exited */
 152static DECLARE_COMPLETION(xpc_hb_checker_exited);
 153
 154/* notification that the xpc_discovery thread has exited */
 155static DECLARE_COMPLETION(xpc_discovery_exited);
 156
 157static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
 158
 159static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
 160static struct notifier_block xpc_reboot_notifier = {
 161	.notifier_call = xpc_system_reboot,
 162};
 163
 164static int xpc_system_die(struct notifier_block *, unsigned long, void *);
 165static struct notifier_block xpc_die_notifier = {
 166	.notifier_call = xpc_system_die,
 167};
 168
 169struct xpc_arch_operations xpc_arch_ops;
 170
 171/*
 172 * Timer function to enforce the timelimit on the partition disengage.
 173 */
 174static void
 175xpc_timeout_partition_disengage(unsigned long data)
 176{
 177	struct xpc_partition *part = (struct xpc_partition *)data;
 178
 179	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
 180
 181	(void)xpc_partition_disengaged(part);
 182
 183	DBUG_ON(part->disengage_timeout != 0);
 184	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
 185}
 186
 187/*
 188 * Timer to produce the heartbeat.  The timer structures function is
 189 * already set when this is initially called.  A tunable is used to
 190 * specify when the next timeout should occur.
 191 */
 192static void
 193xpc_hb_beater(unsigned long dummy)
 194{
 195	xpc_arch_ops.increment_heartbeat();
 196
 197	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
 198		wake_up_interruptible(&xpc_activate_IRQ_wq);
 199
 200	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
 201	add_timer(&xpc_hb_timer);
 202}
 203
 204static void
 205xpc_start_hb_beater(void)
 206{
 207	xpc_arch_ops.heartbeat_init();
 208	init_timer(&xpc_hb_timer);
 209	xpc_hb_timer.function = xpc_hb_beater;
 210	xpc_hb_beater(0);
 211}
 212
 213static void
 214xpc_stop_hb_beater(void)
 215{
 216	del_timer_sync(&xpc_hb_timer);
 217	xpc_arch_ops.heartbeat_exit();
 218}
 219
 220/*
 221 * At periodic intervals, scan through all active partitions and ensure
 222 * their heartbeat is still active.  If not, the partition is deactivated.
 223 */
 224static void
 225xpc_check_remote_hb(void)
 226{
 227	struct xpc_partition *part;
 228	short partid;
 229	enum xp_retval ret;
 230
 231	for (partid = 0; partid < xp_max_npartitions; partid++) {
 232
 233		if (xpc_exiting)
 234			break;
 235
 236		if (partid == xp_partition_id)
 237			continue;
 238
 239		part = &xpc_partitions[partid];
 240
 241		if (part->act_state == XPC_P_AS_INACTIVE ||
 242		    part->act_state == XPC_P_AS_DEACTIVATING) {
 243			continue;
 244		}
 245
 246		ret = xpc_arch_ops.get_remote_heartbeat(part);
 247		if (ret != xpSuccess)
 248			XPC_DEACTIVATE_PARTITION(part, ret);
 249	}
 250}
 251
 252/*
 253 * This thread is responsible for nearly all of the partition
 254 * activation/deactivation.
 255 */
 256static int
 257xpc_hb_checker(void *ignore)
 258{
 259	int force_IRQ = 0;
 260
 261	/* this thread was marked active by xpc_hb_init() */
 262
 263	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
 264
 265	/* set our heartbeating to other partitions into motion */
 266	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
 267	xpc_start_hb_beater();
 268
 269	while (!xpc_exiting) {
 270
 271		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
 272			"been received\n",
 273			(int)(xpc_hb_check_timeout - jiffies),
 274			xpc_activate_IRQ_rcvd);
 275
 276		/* checking of remote heartbeats is skewed by IRQ handling */
 277		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
 278			xpc_hb_check_timeout = jiffies +
 279			    (xpc_hb_check_interval * HZ);
 280
 281			dev_dbg(xpc_part, "checking remote heartbeats\n");
 282			xpc_check_remote_hb();
 283
 284			/*
 285			 * On sn2 we need to periodically recheck to ensure no
 286			 * IRQ/amo pairs have been missed.
 287			 */
 288			if (is_shub())
 289				force_IRQ = 1;
 290		}
 291
 292		/* check for outstanding IRQs */
 293		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
 294			force_IRQ = 0;
 295			dev_dbg(xpc_part, "processing activate IRQs "
 296				"received\n");
 297			xpc_arch_ops.process_activate_IRQ_rcvd();
 298		}
 299
 300		/* wait for IRQ or timeout */
 301		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
 302					       (time_is_before_eq_jiffies(
 303						xpc_hb_check_timeout) ||
 304						xpc_activate_IRQ_rcvd > 0 ||
 305						xpc_exiting));
 306	}
 307
 308	xpc_stop_hb_beater();
 309
 310	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
 311
 312	/* mark this thread as having exited */
 313	complete(&xpc_hb_checker_exited);
 314	return 0;
 315}
 316
 317/*
 318 * This thread will attempt to discover other partitions to activate
 319 * based on info provided by SAL. This new thread is short lived and
 320 * will exit once discovery is complete.
 321 */
 322static int
 323xpc_initiate_discovery(void *ignore)
 324{
 325	xpc_discovery();
 326
 327	dev_dbg(xpc_part, "discovery thread is exiting\n");
 328
 329	/* mark this thread as having exited */
 330	complete(&xpc_discovery_exited);
 331	return 0;
 332}
 333
 334/*
 335 * The first kthread assigned to a newly activated partition is the one
 336 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
 337 * that kthread until the partition is brought down, at which time that kthread
 338 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
 339 * that XPC has dismantled all communication infrastructure for the associated
 340 * partition.) This kthread becomes the channel manager for that partition.
 341 *
 342 * Each active partition has a channel manager, who, besides connecting and
 343 * disconnecting channels, will ensure that each of the partition's connected
 344 * channels has the required number of assigned kthreads to get the work done.
 345 */
 346static void
 347xpc_channel_mgr(struct xpc_partition *part)
 348{
 349	while (part->act_state != XPC_P_AS_DEACTIVATING ||
 350	       atomic_read(&part->nchannels_active) > 0 ||
 351	       !xpc_partition_disengaged(part)) {
 352
 353		xpc_process_sent_chctl_flags(part);
 354
 355		/*
 356		 * Wait until we've been requested to activate kthreads or
 357		 * all of the channel's message queues have been torn down or
 358		 * a signal is pending.
 359		 *
 360		 * The channel_mgr_requests is set to 1 after being awakened,
 361		 * This is done to prevent the channel mgr from making one pass
 362		 * through the loop for each request, since he will
 363		 * be servicing all the requests in one pass. The reason it's
 364		 * set to 1 instead of 0 is so that other kthreads will know
 365		 * that the channel mgr is running and won't bother trying to
 366		 * wake him up.
 367		 */
 368		atomic_dec(&part->channel_mgr_requests);
 369		(void)wait_event_interruptible(part->channel_mgr_wq,
 370				(atomic_read(&part->channel_mgr_requests) > 0 ||
 371				 part->chctl.all_flags != 0 ||
 372				 (part->act_state == XPC_P_AS_DEACTIVATING &&
 373				 atomic_read(&part->nchannels_active) == 0 &&
 374				 xpc_partition_disengaged(part))));
 375		atomic_set(&part->channel_mgr_requests, 1);
 376	}
 377}
 378
 379/*
 380 * Guarantee that the kzalloc'd memory is cacheline aligned.
 381 */
 382void *
 383xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
 384{
 385	/* see if kzalloc will give us cachline aligned memory by default */
 386	*base = kzalloc(size, flags);
 387	if (*base == NULL)
 388		return NULL;
 389
 390	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
 391		return *base;
 392
 393	kfree(*base);
 394
 395	/* nope, we'll have to do it ourselves */
 396	*base = kzalloc(size + L1_CACHE_BYTES, flags);
 397	if (*base == NULL)
 398		return NULL;
 399
 400	return (void *)L1_CACHE_ALIGN((u64)*base);
 401}
 402
 403/*
 404 * Setup the channel structures necessary to support XPartition Communication
 405 * between the specified remote partition and the local one.
 406 */
 407static enum xp_retval
 408xpc_setup_ch_structures(struct xpc_partition *part)
 409{
 410	enum xp_retval ret;
 411	int ch_number;
 412	struct xpc_channel *ch;
 413	short partid = XPC_PARTID(part);
 414
 415	/*
 416	 * Allocate all of the channel structures as a contiguous chunk of
 417	 * memory.
 418	 */
 419	DBUG_ON(part->channels != NULL);
 420	part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
 
 421				 GFP_KERNEL);
 422	if (part->channels == NULL) {
 423		dev_err(xpc_chan, "can't get memory for channels\n");
 424		return xpNoMemory;
 425	}
 426
 427	/* allocate the remote open and close args */
 428
 429	part->remote_openclose_args =
 430	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
 431					  GFP_KERNEL, &part->
 432					  remote_openclose_args_base);
 433	if (part->remote_openclose_args == NULL) {
 434		dev_err(xpc_chan, "can't get memory for remote connect args\n");
 435		ret = xpNoMemory;
 436		goto out_1;
 437	}
 438
 439	part->chctl.all_flags = 0;
 440	spin_lock_init(&part->chctl_lock);
 441
 442	atomic_set(&part->channel_mgr_requests, 1);
 443	init_waitqueue_head(&part->channel_mgr_wq);
 444
 445	part->nchannels = XPC_MAX_NCHANNELS;
 446
 447	atomic_set(&part->nchannels_active, 0);
 448	atomic_set(&part->nchannels_engaged, 0);
 449
 450	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
 451		ch = &part->channels[ch_number];
 452
 453		ch->partid = partid;
 454		ch->number = ch_number;
 455		ch->flags = XPC_C_DISCONNECTED;
 456
 457		atomic_set(&ch->kthreads_assigned, 0);
 458		atomic_set(&ch->kthreads_idle, 0);
 459		atomic_set(&ch->kthreads_active, 0);
 460
 461		atomic_set(&ch->references, 0);
 462		atomic_set(&ch->n_to_notify, 0);
 463
 464		spin_lock_init(&ch->lock);
 465		init_completion(&ch->wdisconnect_wait);
 466
 467		atomic_set(&ch->n_on_msg_allocate_wq, 0);
 468		init_waitqueue_head(&ch->msg_allocate_wq);
 469		init_waitqueue_head(&ch->idle_wq);
 470	}
 471
 472	ret = xpc_arch_ops.setup_ch_structures(part);
 473	if (ret != xpSuccess)
 474		goto out_2;
 475
 476	/*
 477	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
 478	 * we're declaring that this partition is ready to go.
 479	 */
 480	part->setup_state = XPC_P_SS_SETUP;
 481
 482	return xpSuccess;
 483
 484	/* setup of ch structures failed */
 485out_2:
 486	kfree(part->remote_openclose_args_base);
 487	part->remote_openclose_args = NULL;
 488out_1:
 489	kfree(part->channels);
 490	part->channels = NULL;
 491	return ret;
 492}
 493
 494/*
 495 * Teardown the channel structures necessary to support XPartition Communication
 496 * between the specified remote partition and the local one.
 497 */
 498static void
 499xpc_teardown_ch_structures(struct xpc_partition *part)
 500{
 501	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
 502	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
 503
 504	/*
 505	 * Make this partition inaccessible to local processes by marking it
 506	 * as no longer setup. Then wait before proceeding with the teardown
 507	 * until all existing references cease.
 508	 */
 509	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
 510	part->setup_state = XPC_P_SS_WTEARDOWN;
 511
 512	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
 513
 514	/* now we can begin tearing down the infrastructure */
 515
 516	xpc_arch_ops.teardown_ch_structures(part);
 517
 518	kfree(part->remote_openclose_args_base);
 519	part->remote_openclose_args = NULL;
 520	kfree(part->channels);
 521	part->channels = NULL;
 522
 523	part->setup_state = XPC_P_SS_TORNDOWN;
 524}
 525
 526/*
 527 * When XPC HB determines that a partition has come up, it will create a new
 528 * kthread and that kthread will call this function to attempt to set up the
 529 * basic infrastructure used for Cross Partition Communication with the newly
 530 * upped partition.
 531 *
 532 * The kthread that was created by XPC HB and which setup the XPC
 533 * infrastructure will remain assigned to the partition becoming the channel
 534 * manager for that partition until the partition is deactivating, at which
 535 * time the kthread will teardown the XPC infrastructure and then exit.
 536 */
 537static int
 538xpc_activating(void *__partid)
 539{
 540	short partid = (u64)__partid;
 541	struct xpc_partition *part = &xpc_partitions[partid];
 542	unsigned long irq_flags;
 543
 544	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
 545
 546	spin_lock_irqsave(&part->act_lock, irq_flags);
 547
 548	if (part->act_state == XPC_P_AS_DEACTIVATING) {
 549		part->act_state = XPC_P_AS_INACTIVE;
 550		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 551		part->remote_rp_pa = 0;
 552		return 0;
 553	}
 554
 555	/* indicate the thread is activating */
 556	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
 557	part->act_state = XPC_P_AS_ACTIVATING;
 558
 559	XPC_SET_REASON(part, 0, 0);
 560	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 561
 562	dev_dbg(xpc_part, "activating partition %d\n", partid);
 563
 564	xpc_arch_ops.allow_hb(partid);
 565
 566	if (xpc_setup_ch_structures(part) == xpSuccess) {
 567		(void)xpc_part_ref(part);	/* this will always succeed */
 568
 569		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
 570			xpc_mark_partition_active(part);
 571			xpc_channel_mgr(part);
 572			/* won't return until partition is deactivating */
 573		}
 574
 575		xpc_part_deref(part);
 576		xpc_teardown_ch_structures(part);
 577	}
 578
 579	xpc_arch_ops.disallow_hb(partid);
 580	xpc_mark_partition_inactive(part);
 581
 582	if (part->reason == xpReactivating) {
 583		/* interrupting ourselves results in activating partition */
 584		xpc_arch_ops.request_partition_reactivation(part);
 585	}
 586
 587	return 0;
 588}
 589
 590void
 591xpc_activate_partition(struct xpc_partition *part)
 592{
 593	short partid = XPC_PARTID(part);
 594	unsigned long irq_flags;
 595	struct task_struct *kthread;
 596
 597	spin_lock_irqsave(&part->act_lock, irq_flags);
 598
 599	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
 600
 601	part->act_state = XPC_P_AS_ACTIVATION_REQ;
 602	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
 603
 604	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 605
 606	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
 607			      partid);
 608	if (IS_ERR(kthread)) {
 609		spin_lock_irqsave(&part->act_lock, irq_flags);
 610		part->act_state = XPC_P_AS_INACTIVE;
 611		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
 612		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 613	}
 614}
 615
 616void
 617xpc_activate_kthreads(struct xpc_channel *ch, int needed)
 618{
 619	int idle = atomic_read(&ch->kthreads_idle);
 620	int assigned = atomic_read(&ch->kthreads_assigned);
 621	int wakeup;
 622
 623	DBUG_ON(needed <= 0);
 624
 625	if (idle > 0) {
 626		wakeup = (needed > idle) ? idle : needed;
 627		needed -= wakeup;
 628
 629		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
 630			"channel=%d\n", wakeup, ch->partid, ch->number);
 631
 632		/* only wakeup the requested number of kthreads */
 633		wake_up_nr(&ch->idle_wq, wakeup);
 634	}
 635
 636	if (needed <= 0)
 637		return;
 638
 639	if (needed + assigned > ch->kthreads_assigned_limit) {
 640		needed = ch->kthreads_assigned_limit - assigned;
 641		if (needed <= 0)
 642			return;
 643	}
 644
 645	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
 646		needed, ch->partid, ch->number);
 647
 648	xpc_create_kthreads(ch, needed, 0);
 649}
 650
 651/*
 652 * This function is where XPC's kthreads wait for messages to deliver.
 653 */
 654static void
 655xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
 656{
 657	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 658		xpc_arch_ops.n_of_deliverable_payloads;
 659
 660	do {
 661		/* deliver messages to their intended recipients */
 662
 663		while (n_of_deliverable_payloads(ch) > 0 &&
 664		       !(ch->flags & XPC_C_DISCONNECTING)) {
 665			xpc_deliver_payload(ch);
 666		}
 667
 668		if (atomic_inc_return(&ch->kthreads_idle) >
 669		    ch->kthreads_idle_limit) {
 670			/* too many idle kthreads on this channel */
 671			atomic_dec(&ch->kthreads_idle);
 672			break;
 673		}
 674
 675		dev_dbg(xpc_chan, "idle kthread calling "
 676			"wait_event_interruptible_exclusive()\n");
 677
 678		(void)wait_event_interruptible_exclusive(ch->idle_wq,
 679				(n_of_deliverable_payloads(ch) > 0 ||
 680				 (ch->flags & XPC_C_DISCONNECTING)));
 681
 682		atomic_dec(&ch->kthreads_idle);
 683
 684	} while (!(ch->flags & XPC_C_DISCONNECTING));
 685}
 686
 687static int
 688xpc_kthread_start(void *args)
 689{
 690	short partid = XPC_UNPACK_ARG1(args);
 691	u16 ch_number = XPC_UNPACK_ARG2(args);
 692	struct xpc_partition *part = &xpc_partitions[partid];
 693	struct xpc_channel *ch;
 694	int n_needed;
 695	unsigned long irq_flags;
 696	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 697		xpc_arch_ops.n_of_deliverable_payloads;
 698
 699	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
 700		partid, ch_number);
 701
 702	ch = &part->channels[ch_number];
 703
 704	if (!(ch->flags & XPC_C_DISCONNECTING)) {
 705
 706		/* let registerer know that connection has been established */
 707
 708		spin_lock_irqsave(&ch->lock, irq_flags);
 709		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
 710			ch->flags |= XPC_C_CONNECTEDCALLOUT;
 711			spin_unlock_irqrestore(&ch->lock, irq_flags);
 712
 713			xpc_connected_callout(ch);
 714
 715			spin_lock_irqsave(&ch->lock, irq_flags);
 716			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
 717			spin_unlock_irqrestore(&ch->lock, irq_flags);
 718
 719			/*
 720			 * It is possible that while the callout was being
 721			 * made that the remote partition sent some messages.
 722			 * If that is the case, we may need to activate
 723			 * additional kthreads to help deliver them. We only
 724			 * need one less than total #of messages to deliver.
 725			 */
 726			n_needed = n_of_deliverable_payloads(ch) - 1;
 727			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
 728				xpc_activate_kthreads(ch, n_needed);
 729
 730		} else {
 731			spin_unlock_irqrestore(&ch->lock, irq_flags);
 732		}
 733
 734		xpc_kthread_waitmsgs(part, ch);
 735	}
 736
 737	/* let registerer know that connection is disconnecting */
 738
 739	spin_lock_irqsave(&ch->lock, irq_flags);
 740	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
 741	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
 742		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
 743		spin_unlock_irqrestore(&ch->lock, irq_flags);
 744
 745		xpc_disconnect_callout(ch, xpDisconnecting);
 746
 747		spin_lock_irqsave(&ch->lock, irq_flags);
 748		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
 749	}
 750	spin_unlock_irqrestore(&ch->lock, irq_flags);
 751
 752	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 753	    atomic_dec_return(&part->nchannels_engaged) == 0) {
 754		xpc_arch_ops.indicate_partition_disengaged(part);
 755	}
 756
 757	xpc_msgqueue_deref(ch);
 758
 759	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
 760		partid, ch_number);
 761
 762	xpc_part_deref(part);
 763	return 0;
 764}
 765
 766/*
 767 * For each partition that XPC has established communications with, there is
 768 * a minimum of one kernel thread assigned to perform any operation that
 769 * may potentially sleep or block (basically the callouts to the asynchronous
 770 * functions registered via xpc_connect()).
 771 *
 772 * Additional kthreads are created and destroyed by XPC as the workload
 773 * demands.
 774 *
 775 * A kthread is assigned to one of the active channels that exists for a given
 776 * partition.
 777 */
 778void
 779xpc_create_kthreads(struct xpc_channel *ch, int needed,
 780		    int ignore_disconnecting)
 781{
 782	unsigned long irq_flags;
 783	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
 784	struct xpc_partition *part = &xpc_partitions[ch->partid];
 785	struct task_struct *kthread;
 786	void (*indicate_partition_disengaged) (struct xpc_partition *) =
 787		xpc_arch_ops.indicate_partition_disengaged;
 788
 789	while (needed-- > 0) {
 790
 791		/*
 792		 * The following is done on behalf of the newly created
 793		 * kthread. That kthread is responsible for doing the
 794		 * counterpart to the following before it exits.
 795		 */
 796		if (ignore_disconnecting) {
 797			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
 798				/* kthreads assigned had gone to zero */
 799				BUG_ON(!(ch->flags &
 800					 XPC_C_DISCONNECTINGCALLOUT_MADE));
 801				break;
 802			}
 803
 804		} else if (ch->flags & XPC_C_DISCONNECTING) {
 805			break;
 806
 807		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
 808			   atomic_inc_return(&part->nchannels_engaged) == 1) {
 809			xpc_arch_ops.indicate_partition_engaged(part);
 810		}
 811		(void)xpc_part_ref(part);
 812		xpc_msgqueue_ref(ch);
 813
 814		kthread = kthread_run(xpc_kthread_start, (void *)args,
 815				      "xpc%02dc%d", ch->partid, ch->number);
 816		if (IS_ERR(kthread)) {
 817			/* the fork failed */
 818
 819			/*
 820			 * NOTE: if (ignore_disconnecting &&
 821			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
 822			 * then we'll deadlock if all other kthreads assigned
 823			 * to this channel are blocked in the channel's
 824			 * registerer, because the only thing that will unblock
 825			 * them is the xpDisconnecting callout that this
 826			 * failed kthread_run() would have made.
 827			 */
 828
 829			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 830			    atomic_dec_return(&part->nchannels_engaged) == 0) {
 831				indicate_partition_disengaged(part);
 832			}
 833			xpc_msgqueue_deref(ch);
 834			xpc_part_deref(part);
 835
 836			if (atomic_read(&ch->kthreads_assigned) <
 837			    ch->kthreads_idle_limit) {
 838				/*
 839				 * Flag this as an error only if we have an
 840				 * insufficient #of kthreads for the channel
 841				 * to function.
 842				 */
 843				spin_lock_irqsave(&ch->lock, irq_flags);
 844				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
 845						       &irq_flags);
 846				spin_unlock_irqrestore(&ch->lock, irq_flags);
 847			}
 848			break;
 849		}
 850	}
 851}
 852
 853void
 854xpc_disconnect_wait(int ch_number)
 855{
 856	unsigned long irq_flags;
 857	short partid;
 858	struct xpc_partition *part;
 859	struct xpc_channel *ch;
 860	int wakeup_channel_mgr;
 861
 862	/* now wait for all callouts to the caller's function to cease */
 863	for (partid = 0; partid < xp_max_npartitions; partid++) {
 864		part = &xpc_partitions[partid];
 865
 866		if (!xpc_part_ref(part))
 867			continue;
 868
 869		ch = &part->channels[ch_number];
 870
 871		if (!(ch->flags & XPC_C_WDISCONNECT)) {
 872			xpc_part_deref(part);
 873			continue;
 874		}
 875
 876		wait_for_completion(&ch->wdisconnect_wait);
 877
 878		spin_lock_irqsave(&ch->lock, irq_flags);
 879		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
 880		wakeup_channel_mgr = 0;
 881
 882		if (ch->delayed_chctl_flags) {
 883			if (part->act_state != XPC_P_AS_DEACTIVATING) {
 884				spin_lock(&part->chctl_lock);
 885				part->chctl.flags[ch->number] |=
 886				    ch->delayed_chctl_flags;
 887				spin_unlock(&part->chctl_lock);
 888				wakeup_channel_mgr = 1;
 889			}
 890			ch->delayed_chctl_flags = 0;
 891		}
 892
 893		ch->flags &= ~XPC_C_WDISCONNECT;
 894		spin_unlock_irqrestore(&ch->lock, irq_flags);
 895
 896		if (wakeup_channel_mgr)
 897			xpc_wakeup_channel_mgr(part);
 898
 899		xpc_part_deref(part);
 900	}
 901}
 902
 903static int
 904xpc_setup_partitions(void)
 905{
 906	short partid;
 907	struct xpc_partition *part;
 908
 909	xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
 910				 xp_max_npartitions, GFP_KERNEL);
 
 911	if (xpc_partitions == NULL) {
 912		dev_err(xpc_part, "can't get memory for partition structure\n");
 913		return -ENOMEM;
 914	}
 915
 916	/*
 917	 * The first few fields of each entry of xpc_partitions[] need to
 918	 * be initialized now so that calls to xpc_connect() and
 919	 * xpc_disconnect() can be made prior to the activation of any remote
 920	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
 921	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
 922	 * PARTITION HAS BEEN ACTIVATED.
 923	 */
 924	for (partid = 0; partid < xp_max_npartitions; partid++) {
 925		part = &xpc_partitions[partid];
 926
 927		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
 928
 929		part->activate_IRQ_rcvd = 0;
 930		spin_lock_init(&part->act_lock);
 931		part->act_state = XPC_P_AS_INACTIVE;
 932		XPC_SET_REASON(part, 0, 0);
 933
 934		init_timer(&part->disengage_timer);
 935		part->disengage_timer.function =
 936		    xpc_timeout_partition_disengage;
 937		part->disengage_timer.data = (unsigned long)part;
 938
 939		part->setup_state = XPC_P_SS_UNSET;
 940		init_waitqueue_head(&part->teardown_wq);
 941		atomic_set(&part->references, 0);
 942	}
 943
 944	return xpc_arch_ops.setup_partitions();
 945}
 946
 947static void
 948xpc_teardown_partitions(void)
 949{
 950	xpc_arch_ops.teardown_partitions();
 951	kfree(xpc_partitions);
 952}
 953
 954static void
 955xpc_do_exit(enum xp_retval reason)
 956{
 957	short partid;
 958	int active_part_count, printed_waiting_msg = 0;
 959	struct xpc_partition *part;
 960	unsigned long printmsg_time, disengage_timeout = 0;
 961
 962	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
 963	DBUG_ON(xpc_exiting == 1);
 964
 965	/*
 966	 * Let the heartbeat checker thread and the discovery thread
 967	 * (if one is running) know that they should exit. Also wake up
 968	 * the heartbeat checker thread in case it's sleeping.
 969	 */
 970	xpc_exiting = 1;
 971	wake_up_interruptible(&xpc_activate_IRQ_wq);
 972
 973	/* wait for the discovery thread to exit */
 974	wait_for_completion(&xpc_discovery_exited);
 975
 976	/* wait for the heartbeat checker thread to exit */
 977	wait_for_completion(&xpc_hb_checker_exited);
 978
 979	/* sleep for a 1/3 of a second or so */
 980	(void)msleep_interruptible(300);
 981
 982	/* wait for all partitions to become inactive */
 983
 984	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
 985	xpc_disengage_timedout = 0;
 986
 987	do {
 988		active_part_count = 0;
 989
 990		for (partid = 0; partid < xp_max_npartitions; partid++) {
 991			part = &xpc_partitions[partid];
 992
 993			if (xpc_partition_disengaged(part) &&
 994			    part->act_state == XPC_P_AS_INACTIVE) {
 995				continue;
 996			}
 997
 998			active_part_count++;
 999
1000			XPC_DEACTIVATE_PARTITION(part, reason);
1001
1002			if (part->disengage_timeout > disengage_timeout)
1003				disengage_timeout = part->disengage_timeout;
1004		}
1005
1006		if (xpc_arch_ops.any_partition_engaged()) {
1007			if (time_is_before_jiffies(printmsg_time)) {
1008				dev_info(xpc_part, "waiting for remote "
1009					 "partitions to deactivate, timeout in "
1010					 "%ld seconds\n", (disengage_timeout -
1011					 jiffies) / HZ);
1012				printmsg_time = jiffies +
1013				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1014				printed_waiting_msg = 1;
1015			}
1016
1017		} else if (active_part_count > 0) {
1018			if (printed_waiting_msg) {
1019				dev_info(xpc_part, "waiting for local partition"
1020					 " to deactivate\n");
1021				printed_waiting_msg = 0;
1022			}
1023
1024		} else {
1025			if (!xpc_disengage_timedout) {
1026				dev_info(xpc_part, "all partitions have "
1027					 "deactivated\n");
1028			}
1029			break;
1030		}
1031
1032		/* sleep for a 1/3 of a second or so */
1033		(void)msleep_interruptible(300);
1034
1035	} while (1);
1036
1037	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1038
1039	xpc_teardown_rsvd_page();
1040
1041	if (reason == xpUnloading) {
1042		(void)unregister_die_notifier(&xpc_die_notifier);
1043		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1044	}
1045
1046	/* clear the interface to XPC's functions */
1047	xpc_clear_interface();
1048
1049	if (xpc_sysctl)
1050		unregister_sysctl_table(xpc_sysctl);
 
 
1051
1052	xpc_teardown_partitions();
1053
1054	if (is_shub())
1055		xpc_exit_sn2();
1056	else if (is_uv())
1057		xpc_exit_uv();
1058}
1059
1060/*
1061 * This function is called when the system is being rebooted.
1062 */
1063static int
1064xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1065{
1066	enum xp_retval reason;
1067
1068	switch (event) {
1069	case SYS_RESTART:
1070		reason = xpSystemReboot;
1071		break;
1072	case SYS_HALT:
1073		reason = xpSystemHalt;
1074		break;
1075	case SYS_POWER_OFF:
1076		reason = xpSystemPoweroff;
1077		break;
1078	default:
1079		reason = xpSystemGoingDown;
1080	}
1081
1082	xpc_do_exit(reason);
1083	return NOTIFY_DONE;
1084}
1085
1086/* Used to only allow one cpu to complete disconnect */
1087static unsigned int xpc_die_disconnecting;
1088
1089/*
1090 * Notify other partitions to deactivate from us by first disengaging from all
1091 * references to our memory.
1092 */
1093static void
1094xpc_die_deactivate(void)
1095{
1096	struct xpc_partition *part;
1097	short partid;
1098	int any_engaged;
1099	long keep_waiting;
1100	long wait_to_print;
1101
1102	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1103		return;
1104
1105	/* keep xpc_hb_checker thread from doing anything (just in case) */
1106	xpc_exiting = 1;
1107
1108	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1109
1110	for (partid = 0; partid < xp_max_npartitions; partid++) {
1111		part = &xpc_partitions[partid];
1112
1113		if (xpc_arch_ops.partition_engaged(partid) ||
1114		    part->act_state != XPC_P_AS_INACTIVE) {
1115			xpc_arch_ops.request_partition_deactivation(part);
1116			xpc_arch_ops.indicate_partition_disengaged(part);
1117		}
1118	}
1119
1120	/*
1121	 * Though we requested that all other partitions deactivate from us,
1122	 * we only wait until they've all disengaged or we've reached the
1123	 * defined timelimit.
1124	 *
1125	 * Given that one iteration through the following while-loop takes
1126	 * approximately 200 microseconds, calculate the #of loops to take
1127	 * before bailing and the #of loops before printing a waiting message.
1128	 */
1129	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1130	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1131
1132	while (1) {
1133		any_engaged = xpc_arch_ops.any_partition_engaged();
1134		if (!any_engaged) {
1135			dev_info(xpc_part, "all partitions have deactivated\n");
1136			break;
1137		}
1138
1139		if (!keep_waiting--) {
1140			for (partid = 0; partid < xp_max_npartitions;
1141			     partid++) {
1142				if (xpc_arch_ops.partition_engaged(partid)) {
1143					dev_info(xpc_part, "deactivate from "
1144						 "remote partition %d timed "
1145						 "out\n", partid);
1146				}
1147			}
1148			break;
1149		}
1150
1151		if (!wait_to_print--) {
1152			dev_info(xpc_part, "waiting for remote partitions to "
1153				 "deactivate, timeout in %ld seconds\n",
1154				 keep_waiting / (1000 * 5));
1155			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1156			    1000 * 5;
1157		}
1158
1159		udelay(200);
1160	}
1161}
1162
1163/*
1164 * This function is called when the system is being restarted or halted due
1165 * to some sort of system failure. If this is the case we need to notify the
1166 * other partitions to disengage from all references to our memory.
1167 * This function can also be called when our heartbeater could be offlined
1168 * for a time. In this case we need to notify other partitions to not worry
1169 * about the lack of a heartbeat.
1170 */
1171static int
1172xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1173{
1174#ifdef CONFIG_IA64		/* !!! temporary kludge */
1175	switch (event) {
1176	case DIE_MACHINE_RESTART:
1177	case DIE_MACHINE_HALT:
1178		xpc_die_deactivate();
1179		break;
1180
1181	case DIE_KDEBUG_ENTER:
1182		/* Should lack of heartbeat be ignored by other partitions? */
1183		if (!xpc_kdebug_ignore)
1184			break;
1185
1186		/* fall through */
1187	case DIE_MCA_MONARCH_ENTER:
1188	case DIE_INIT_MONARCH_ENTER:
1189		xpc_arch_ops.offline_heartbeat();
1190		break;
1191
1192	case DIE_KDEBUG_LEAVE:
1193		/* Is lack of heartbeat being ignored by other partitions? */
1194		if (!xpc_kdebug_ignore)
1195			break;
1196
1197		/* fall through */
1198	case DIE_MCA_MONARCH_LEAVE:
1199	case DIE_INIT_MONARCH_LEAVE:
1200		xpc_arch_ops.online_heartbeat();
1201		break;
1202	}
1203#else
1204	struct die_args *die_args = _die_args;
1205
1206	switch (event) {
1207	case DIE_TRAP:
1208		if (die_args->trapnr == X86_TRAP_DF)
1209			xpc_die_deactivate();
1210
1211		if (((die_args->trapnr == X86_TRAP_MF) ||
1212		     (die_args->trapnr == X86_TRAP_XF)) &&
1213		    !user_mode(die_args->regs))
1214			xpc_die_deactivate();
1215
1216		break;
1217	case DIE_INT3:
1218	case DIE_DEBUG:
1219		break;
1220	case DIE_OOPS:
1221	case DIE_GPF:
1222	default:
1223		xpc_die_deactivate();
1224	}
1225#endif
1226
1227	return NOTIFY_DONE;
1228}
1229
1230int __init
1231xpc_init(void)
1232{
1233	int ret;
1234	struct task_struct *kthread;
1235
1236	dev_set_name(xpc_part, "part");
1237	dev_set_name(xpc_chan, "chan");
1238
1239	if (is_shub()) {
1240		/*
1241		 * The ia64-sn2 architecture supports at most 64 partitions.
1242		 * And the inability to unregister remote amos restricts us
1243		 * further to only support exactly 64 partitions on this
1244		 * architecture, no less.
1245		 */
1246		if (xp_max_npartitions != 64) {
1247			dev_err(xpc_part, "max #of partitions not set to 64\n");
1248			ret = -EINVAL;
1249		} else {
1250			ret = xpc_init_sn2();
1251		}
1252
1253	} else if (is_uv()) {
1254		ret = xpc_init_uv();
1255
1256	} else {
1257		ret = -ENODEV;
1258	}
1259
1260	if (ret != 0)
1261		return ret;
1262
1263	ret = xpc_setup_partitions();
1264	if (ret != 0) {
1265		dev_err(xpc_part, "can't get memory for partition structure\n");
1266		goto out_1;
1267	}
1268
1269	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
 
1270
1271	/*
1272	 * Fill the partition reserved page with the information needed by
1273	 * other partitions to discover we are alive and establish initial
1274	 * communications.
1275	 */
1276	ret = xpc_setup_rsvd_page();
1277	if (ret != 0) {
1278		dev_err(xpc_part, "can't setup our reserved page\n");
1279		goto out_2;
1280	}
1281
1282	/* add ourselves to the reboot_notifier_list */
1283	ret = register_reboot_notifier(&xpc_reboot_notifier);
1284	if (ret != 0)
1285		dev_warn(xpc_part, "can't register reboot notifier\n");
1286
1287	/* add ourselves to the die_notifier list */
1288	ret = register_die_notifier(&xpc_die_notifier);
1289	if (ret != 0)
1290		dev_warn(xpc_part, "can't register die notifier\n");
1291
1292	/*
1293	 * The real work-horse behind xpc.  This processes incoming
1294	 * interrupts and monitors remote heartbeats.
1295	 */
1296	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1297	if (IS_ERR(kthread)) {
1298		dev_err(xpc_part, "failed while forking hb check thread\n");
1299		ret = -EBUSY;
1300		goto out_3;
1301	}
1302
1303	/*
1304	 * Startup a thread that will attempt to discover other partitions to
1305	 * activate based on info provided by SAL. This new thread is short
1306	 * lived and will exit once discovery is complete.
1307	 */
1308	kthread = kthread_run(xpc_initiate_discovery, NULL,
1309			      XPC_DISCOVERY_THREAD_NAME);
1310	if (IS_ERR(kthread)) {
1311		dev_err(xpc_part, "failed while forking discovery thread\n");
1312
1313		/* mark this new thread as a non-starter */
1314		complete(&xpc_discovery_exited);
1315
1316		xpc_do_exit(xpUnloading);
1317		return -EBUSY;
1318	}
1319
1320	/* set the interface to point at XPC's functions */
1321	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1322			  xpc_initiate_send, xpc_initiate_send_notify,
1323			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1324
1325	return 0;
1326
1327	/* initialization was not successful */
1328out_3:
1329	xpc_teardown_rsvd_page();
1330
1331	(void)unregister_die_notifier(&xpc_die_notifier);
1332	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1333out_2:
 
 
1334	if (xpc_sysctl)
1335		unregister_sysctl_table(xpc_sysctl);
1336
1337	xpc_teardown_partitions();
1338out_1:
1339	if (is_shub())
1340		xpc_exit_sn2();
1341	else if (is_uv())
1342		xpc_exit_uv();
1343	return ret;
1344}
1345
1346module_init(xpc_init);
1347
1348void __exit
1349xpc_exit(void)
1350{
1351	xpc_do_exit(xpUnloading);
1352}
1353
1354module_exit(xpc_exit);
1355
1356MODULE_AUTHOR("Silicon Graphics, Inc.");
1357MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1358MODULE_LICENSE("GPL");
1359
1360module_param(xpc_hb_interval, int, 0);
1361MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1362		 "heartbeat increments.");
1363
1364module_param(xpc_hb_check_interval, int, 0);
1365MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1366		 "heartbeat checks.");
1367
1368module_param(xpc_disengage_timelimit, int, 0);
1369MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1370		 "for disengage to complete.");
1371
1372module_param(xpc_kdebug_ignore, int, 0);
1373MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1374		 "other partitions when dropping into kdebug.");