Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
 
 
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
  19#include "dm-audit.h"
  20#include <linux/module.h>
  21#include <linux/reboot.h>
  22#include <linux/scatterlist.h>
  23#include <linux/string.h>
  24#include <linux/jump_label.h>
  25#include <linux/security.h>
  26
  27#define DM_MSG_PREFIX			"verity"
  28
  29#define DM_VERITY_ENV_LENGTH		42
  30#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  31
  32#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  33
  34#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  35
  36#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  37#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
  38#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
  39#define DM_VERITY_OPT_ERROR_RESTART	"restart_on_error"
  40#define DM_VERITY_OPT_ERROR_PANIC	"panic_on_error"
  41#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  42#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
  43#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
  44
  45#define DM_VERITY_OPTS_MAX		(5 + DM_VERITY_OPTS_FEC + \
  46					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  47
  48static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  49
  50module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
  51
  52static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
  53
  54/* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
  55static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
  56
  57struct dm_verity_prefetch_work {
  58	struct work_struct work;
  59	struct dm_verity *v;
  60	unsigned short ioprio;
  61	sector_t block;
  62	unsigned int n_blocks;
  63};
  64
  65/*
  66 * Auxiliary structure appended to each dm-bufio buffer. If the value
  67 * hash_verified is nonzero, hash of the block has been verified.
  68 *
  69 * The variable hash_verified is set to 0 when allocating the buffer, then
  70 * it can be changed to 1 and it is never reset to 0 again.
  71 *
  72 * There is no lock around this value, a race condition can at worst cause
  73 * that multiple processes verify the hash of the same buffer simultaneously
  74 * and write 1 to hash_verified simultaneously.
  75 * This condition is harmless, so we don't need locking.
  76 */
  77struct buffer_aux {
  78	int hash_verified;
  79};
  80
  81/*
  82 * Initialize struct buffer_aux for a freshly created buffer.
  83 */
  84static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  85{
  86	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  87
  88	aux->hash_verified = 0;
  89}
  90
  91/*
  92 * Translate input sector number to the sector number on the target device.
  93 */
  94static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  95{
  96	return dm_target_offset(v->ti, bi_sector);
  97}
  98
  99/*
 100 * Return hash position of a specified block at a specified tree level
 101 * (0 is the lowest level).
 102 * The lowest "hash_per_block_bits"-bits of the result denote hash position
 103 * inside a hash block. The remaining bits denote location of the hash block.
 104 */
 105static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
 106					 int level)
 107{
 108	return block >> (level * v->hash_per_block_bits);
 109}
 110
 111static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
 112				const u8 *data, size_t len,
 113				struct crypto_wait *wait)
 114{
 115	struct scatterlist sg;
 116
 117	if (likely(!is_vmalloc_addr(data))) {
 118		sg_init_one(&sg, data, len);
 119		ahash_request_set_crypt(req, &sg, NULL, len);
 120		return crypto_wait_req(crypto_ahash_update(req), wait);
 121	}
 122
 123	do {
 124		int r;
 125		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 126
 127		flush_kernel_vmap_range((void *)data, this_step);
 128		sg_init_table(&sg, 1);
 129		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 130		ahash_request_set_crypt(req, &sg, NULL, this_step);
 131		r = crypto_wait_req(crypto_ahash_update(req), wait);
 132		if (unlikely(r))
 133			return r;
 134		data += this_step;
 135		len -= this_step;
 136	} while (len);
 137
 138	return 0;
 139}
 140
 141/*
 142 * Wrapper for crypto_ahash_init, which handles verity salting.
 143 */
 144static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
 145				struct crypto_wait *wait, bool may_sleep)
 146{
 147	int r;
 148
 149	ahash_request_set_tfm(req, v->ahash_tfm);
 150	ahash_request_set_callback(req,
 151		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
 152		crypto_req_done, (void *)wait);
 153	crypto_init_wait(wait);
 154
 155	r = crypto_wait_req(crypto_ahash_init(req), wait);
 156
 157	if (unlikely(r < 0)) {
 158		if (r != -ENOMEM)
 159			DMERR("crypto_ahash_init failed: %d", r);
 160		return r;
 161	}
 162
 163	if (likely(v->salt_size && (v->version >= 1)))
 164		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165
 166	return r;
 167}
 168
 169static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
 170			      u8 *digest, struct crypto_wait *wait)
 171{
 172	int r;
 173
 174	if (unlikely(v->salt_size && (!v->version))) {
 175		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
 176
 177		if (r < 0) {
 178			DMERR("%s failed updating salt: %d", __func__, r);
 179			goto out;
 180		}
 181	}
 182
 183	ahash_request_set_crypt(req, NULL, digest, 0);
 184	r = crypto_wait_req(crypto_ahash_final(req), wait);
 185out:
 
 
 186	return r;
 187}
 188
 189int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
 190		const u8 *data, size_t len, u8 *digest, bool may_sleep)
 191{
 192	int r;
 193
 194	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
 195		struct ahash_request *req = verity_io_hash_req(v, io);
 196		struct crypto_wait wait;
 197
 198		r = verity_ahash_init(v, req, &wait, may_sleep) ?:
 199		    verity_ahash_update(v, req, data, len, &wait) ?:
 200		    verity_ahash_final(v, req, digest, &wait);
 201	} else {
 202		struct shash_desc *desc = verity_io_hash_req(v, io);
 203
 204		desc->tfm = v->shash_tfm;
 205		r = crypto_shash_import(desc, v->initial_hashstate) ?:
 206		    crypto_shash_finup(desc, data, len, digest);
 207	}
 208	if (unlikely(r))
 209		DMERR("Error hashing block: %d", r);
 210	return r;
 211}
 212
 213static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 214				 sector_t *hash_block, unsigned int *offset)
 215{
 216	sector_t position = verity_position_at_level(v, block, level);
 217	unsigned int idx;
 218
 219	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 220
 221	if (!offset)
 222		return;
 223
 224	idx = position & ((1 << v->hash_per_block_bits) - 1);
 225	if (!v->version)
 226		*offset = idx * v->digest_size;
 227	else
 228		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 229}
 230
 231/*
 232 * Handle verification errors.
 233 */
 234static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 235			     unsigned long long block)
 236{
 237	char verity_env[DM_VERITY_ENV_LENGTH];
 238	char *envp[] = { verity_env, NULL };
 239	const char *type_str = "";
 240	struct mapped_device *md = dm_table_get_md(v->ti->table);
 241
 242	/* Corruption should be visible in device status in all modes */
 243	v->hash_failed = true;
 244
 245	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 246		goto out;
 247
 248	v->corrupted_errs++;
 249
 250	switch (type) {
 251	case DM_VERITY_BLOCK_TYPE_DATA:
 252		type_str = "data";
 253		break;
 254	case DM_VERITY_BLOCK_TYPE_METADATA:
 255		type_str = "metadata";
 256		break;
 257	default:
 258		BUG();
 259	}
 260
 261	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 262		    type_str, block);
 263
 264	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
 265		DMERR("%s: reached maximum errors", v->data_dev->name);
 266		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
 267	}
 268
 269	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 270		DM_VERITY_ENV_VAR_NAME, type, block);
 271
 272	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 273
 274out:
 275	if (v->mode == DM_VERITY_MODE_LOGGING)
 276		return 0;
 277
 278	if (v->mode == DM_VERITY_MODE_RESTART)
 279		kernel_restart("dm-verity device corrupted");
 280
 281	if (v->mode == DM_VERITY_MODE_PANIC)
 282		panic("dm-verity device corrupted");
 283
 284	return 1;
 285}
 286
 287/*
 288 * Verify hash of a metadata block pertaining to the specified data block
 289 * ("block" argument) at a specified level ("level" argument).
 290 *
 291 * On successful return, verity_io_want_digest(v, io) contains the hash value
 292 * for a lower tree level or for the data block (if we're at the lowest level).
 293 *
 294 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 295 * If "skip_unverified" is false, unverified buffer is hashed and verified
 296 * against current value of verity_io_want_digest(v, io).
 297 */
 298static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 299			       sector_t block, int level, bool skip_unverified,
 300			       u8 *want_digest)
 301{
 302	struct dm_buffer *buf;
 303	struct buffer_aux *aux;
 304	u8 *data;
 305	int r;
 306	sector_t hash_block;
 307	unsigned int offset;
 308	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 309
 310	verity_hash_at_level(v, block, level, &hash_block, &offset);
 311
 312	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
 313		data = dm_bufio_get(v->bufio, hash_block, &buf);
 314		if (data == NULL) {
 315			/*
 316			 * In tasklet and the hash was not in the bufio cache.
 317			 * Return early and resume execution from a work-queue
 318			 * to read the hash from disk.
 319			 */
 320			return -EAGAIN;
 321		}
 322	} else {
 323		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
 324						&buf, bio_prio(bio));
 325	}
 326
 327	if (IS_ERR(data))
 328		return PTR_ERR(data);
 329
 330	aux = dm_bufio_get_aux_data(buf);
 331
 332	if (!aux->hash_verified) {
 333		if (skip_unverified) {
 334			r = 1;
 335			goto release_ret_r;
 336		}
 337
 338		r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
 339				verity_io_real_digest(v, io), !io->in_bh);
 
 340		if (unlikely(r < 0))
 341			goto release_ret_r;
 342
 343		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 344				  v->digest_size) == 0))
 345			aux->hash_verified = 1;
 346		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
 347			/*
 348			 * Error handling code (FEC included) cannot be run in a
 349			 * tasklet since it may sleep, so fallback to work-queue.
 350			 */
 351			r = -EAGAIN;
 352			goto release_ret_r;
 353		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
 354					     hash_block, data) == 0)
 355			aux->hash_verified = 1;
 356		else if (verity_handle_err(v,
 357					   DM_VERITY_BLOCK_TYPE_METADATA,
 358					   hash_block)) {
 359			struct bio *bio;
 360			io->had_mismatch = true;
 361			bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 362			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
 363					 block, 0);
 364			r = -EIO;
 365			goto release_ret_r;
 366		}
 367	}
 368
 369	data += offset;
 370	memcpy(want_digest, data, v->digest_size);
 371	r = 0;
 372
 373release_ret_r:
 374	dm_bufio_release(buf);
 375	return r;
 376}
 377
 378/*
 379 * Find a hash for a given block, write it to digest and verify the integrity
 380 * of the hash tree if necessary.
 381 */
 382int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 383			  sector_t block, u8 *digest, bool *is_zero)
 384{
 385	int r = 0, i;
 386
 387	if (likely(v->levels)) {
 388		/*
 389		 * First, we try to get the requested hash for
 390		 * the current block. If the hash block itself is
 391		 * verified, zero is returned. If it isn't, this
 392		 * function returns 1 and we fall back to whole
 393		 * chain verification.
 394		 */
 395		r = verity_verify_level(v, io, block, 0, true, digest);
 396		if (likely(r <= 0))
 397			goto out;
 398	}
 399
 400	memcpy(digest, v->root_digest, v->digest_size);
 401
 402	for (i = v->levels - 1; i >= 0; i--) {
 403		r = verity_verify_level(v, io, block, i, false, digest);
 404		if (unlikely(r))
 405			goto out;
 406	}
 407out:
 408	if (!r && v->zero_digest)
 409		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 410	else
 411		*is_zero = false;
 412
 413	return r;
 414}
 415
 416static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
 417				   sector_t cur_block, u8 *dest)
 
 
 
 
 
 
 
 418{
 419	struct page *page;
 420	void *buffer;
 421	int r;
 422	struct dm_io_request io_req;
 423	struct dm_io_region io_loc;
 424
 425	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
 426	buffer = page_to_virt(page);
 
 
 
 427
 428	io_req.bi_opf = REQ_OP_READ;
 429	io_req.mem.type = DM_IO_KMEM;
 430	io_req.mem.ptr.addr = buffer;
 431	io_req.notify.fn = NULL;
 432	io_req.client = v->io;
 433	io_loc.bdev = v->data_dev->bdev;
 434	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
 435	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
 436	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
 437	if (unlikely(r))
 438		goto free_ret;
 439
 440	r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
 441			verity_io_real_digest(v, io), true);
 442	if (unlikely(r))
 443		goto free_ret;
 444
 445	if (memcmp(verity_io_real_digest(v, io),
 446		   verity_io_want_digest(v, io), v->digest_size)) {
 447		r = -EIO;
 448		goto free_ret;
 449	}
 450
 451	memcpy(dest, buffer, 1 << v->data_dev_block_bits);
 452	r = 0;
 453free_ret:
 454	mempool_free(page, &v->recheck_pool);
 455
 456	return r;
 
 
 
 
 
 
 
 
 
 
 457}
 458
 459static int verity_handle_data_hash_mismatch(struct dm_verity *v,
 460					    struct dm_verity_io *io,
 461					    struct bio *bio, sector_t blkno,
 462					    u8 *data)
 463{
 464	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
 465		/*
 466		 * Error handling code (FEC included) cannot be run in the
 467		 * BH workqueue, so fallback to a standard workqueue.
 468		 */
 469		return -EAGAIN;
 470	}
 471	if (verity_recheck(v, io, blkno, data) == 0) {
 472		if (v->validated_blocks)
 473			set_bit(blkno, v->validated_blocks);
 474		return 0;
 475	}
 476#if defined(CONFIG_DM_VERITY_FEC)
 477	if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
 478			      data) == 0)
 479		return 0;
 480#endif
 481	if (bio->bi_status)
 482		return -EIO; /* Error correction failed; Just return error */
 483
 484	if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
 485		io->had_mismatch = true;
 486		dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
 487		return -EIO;
 488	}
 489	return 0;
 490}
 491
 492/*
 493 * Verify one "dm_verity_io" structure.
 494 */
 495static int verity_verify_io(struct dm_verity_io *io)
 496{
 
 497	struct dm_verity *v = io->v;
 498	const unsigned int block_size = 1 << v->data_dev_block_bits;
 499	struct bvec_iter iter_copy;
 500	struct bvec_iter *iter;
 501	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 502	unsigned int b;
 503
 504	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
 505		/*
 506		 * Copy the iterator in case we need to restart
 507		 * verification in a work-queue.
 508		 */
 509		iter_copy = io->iter;
 510		iter = &iter_copy;
 511	} else
 512		iter = &io->iter;
 513
 514	for (b = 0; b < io->n_blocks;
 515	     b++, bio_advance_iter(bio, iter, block_size)) {
 516		int r;
 517		sector_t cur_block = io->block + b;
 518		bool is_zero;
 519		struct bio_vec bv;
 520		void *data;
 521
 522		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
 523		    likely(test_bit(cur_block, v->validated_blocks)))
 524			continue;
 525
 526		r = verity_hash_for_block(v, io, cur_block,
 527					  verity_io_want_digest(v, io),
 528					  &is_zero);
 529		if (unlikely(r < 0))
 530			return r;
 531
 532		bv = bio_iter_iovec(bio, *iter);
 533		if (unlikely(bv.bv_len < block_size)) {
 534			/*
 535			 * Data block spans pages.  This should not happen,
 536			 * since dm-verity sets dma_alignment to the data block
 537			 * size minus 1, and dm-verity also doesn't allow the
 538			 * data block size to be greater than PAGE_SIZE.
 539			 */
 540			DMERR_LIMIT("unaligned io (data block spans pages)");
 541			return -EIO;
 542		}
 543
 544		data = bvec_kmap_local(&bv);
 545
 546		if (is_zero) {
 547			/*
 548			 * If we expect a zero block, don't validate, just
 549			 * return zeros.
 550			 */
 551			memset(data, 0, block_size);
 552			kunmap_local(data);
 
 
 
 553			continue;
 554		}
 555
 556		r = verity_hash(v, io, data, block_size,
 557				verity_io_real_digest(v, io), !io->in_bh);
 558		if (unlikely(r < 0)) {
 559			kunmap_local(data);
 
 
 
 
 
 
 
 560			return r;
 561		}
 562
 563		if (likely(memcmp(verity_io_real_digest(v, io),
 564				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 565			if (v->validated_blocks)
 566				set_bit(cur_block, v->validated_blocks);
 567			kunmap_local(data);
 568			continue;
 569		}
 570		r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
 571						     data);
 572		kunmap_local(data);
 573		if (unlikely(r))
 574			return r;
 575	}
 576
 577	return 0;
 578}
 579
 580/*
 581 * Skip verity work in response to I/O error when system is shutting down.
 582 */
 583static inline bool verity_is_system_shutting_down(void)
 584{
 585	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 586		|| system_state == SYSTEM_RESTART;
 587}
 588
 589static void restart_io_error(struct work_struct *w)
 590{
 591	kernel_restart("dm-verity device has I/O error");
 592}
 593
 594/*
 595 * End one "io" structure with a given error.
 596 */
 597static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 598{
 599	struct dm_verity *v = io->v;
 600	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 601
 602	bio->bi_end_io = io->orig_bi_end_io;
 603	bio->bi_status = status;
 604
 605	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
 606		verity_fec_finish_io(io);
 607
 608	if (unlikely(status != BLK_STS_OK) &&
 609	    unlikely(!(bio->bi_opf & REQ_RAHEAD)) &&
 610	    !io->had_mismatch &&
 611	    !verity_is_system_shutting_down()) {
 612		if (v->error_mode == DM_VERITY_MODE_PANIC) {
 613			panic("dm-verity device has I/O error");
 614		}
 615		if (v->error_mode == DM_VERITY_MODE_RESTART) {
 616			static DECLARE_WORK(restart_work, restart_io_error);
 617			queue_work(v->verify_wq, &restart_work);
 618			/*
 619			 * We deliberately don't call bio_endio here, because
 620			 * the machine will be restarted anyway.
 621			 */
 622			return;
 623		}
 624	}
 625
 626	bio_endio(bio);
 627}
 628
 629static void verity_work(struct work_struct *w)
 630{
 631	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 632
 633	io->in_bh = false;
 634
 635	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 636}
 637
 638static void verity_bh_work(struct work_struct *w)
 639{
 640	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
 641	int err;
 642
 643	io->in_bh = true;
 644	err = verity_verify_io(io);
 645	if (err == -EAGAIN || err == -ENOMEM) {
 646		/* fallback to retrying with work-queue */
 647		INIT_WORK(&io->work, verity_work);
 648		queue_work(io->v->verify_wq, &io->work);
 649		return;
 650	}
 651
 652	verity_finish_io(io, errno_to_blk_status(err));
 653}
 654
 655static void verity_end_io(struct bio *bio)
 656{
 657	struct dm_verity_io *io = bio->bi_private;
 658
 659	if (bio->bi_status &&
 660	    (!verity_fec_is_enabled(io->v) ||
 661	     verity_is_system_shutting_down() ||
 662	     (bio->bi_opf & REQ_RAHEAD))) {
 663		verity_finish_io(io, bio->bi_status);
 664		return;
 665	}
 666
 667	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
 668		INIT_WORK(&io->bh_work, verity_bh_work);
 669		queue_work(system_bh_wq, &io->bh_work);
 670	} else {
 671		INIT_WORK(&io->work, verity_work);
 672		queue_work(io->v->verify_wq, &io->work);
 673	}
 674}
 675
 676/*
 677 * Prefetch buffers for the specified io.
 678 * The root buffer is not prefetched, it is assumed that it will be cached
 679 * all the time.
 680 */
 681static void verity_prefetch_io(struct work_struct *work)
 682{
 683	struct dm_verity_prefetch_work *pw =
 684		container_of(work, struct dm_verity_prefetch_work, work);
 685	struct dm_verity *v = pw->v;
 686	int i;
 687
 688	for (i = v->levels - 2; i >= 0; i--) {
 689		sector_t hash_block_start;
 690		sector_t hash_block_end;
 691
 692		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 693		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 694
 695		if (!i) {
 696			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
 697
 698			cluster >>= v->data_dev_block_bits;
 699			if (unlikely(!cluster))
 700				goto no_prefetch_cluster;
 701
 702			if (unlikely(cluster & (cluster - 1)))
 703				cluster = 1 << __fls(cluster);
 704
 705			hash_block_start &= ~(sector_t)(cluster - 1);
 706			hash_block_end |= cluster - 1;
 707			if (unlikely(hash_block_end >= v->hash_blocks))
 708				hash_block_end = v->hash_blocks - 1;
 709		}
 710no_prefetch_cluster:
 711		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
 712					hash_block_end - hash_block_start + 1,
 713					pw->ioprio);
 714	}
 715
 716	kfree(pw);
 717}
 718
 719static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
 720				   unsigned short ioprio)
 721{
 722	sector_t block = io->block;
 723	unsigned int n_blocks = io->n_blocks;
 724	struct dm_verity_prefetch_work *pw;
 725
 726	if (v->validated_blocks) {
 727		while (n_blocks && test_bit(block, v->validated_blocks)) {
 728			block++;
 729			n_blocks--;
 730		}
 731		while (n_blocks && test_bit(block + n_blocks - 1,
 732					    v->validated_blocks))
 733			n_blocks--;
 734		if (!n_blocks)
 735			return;
 736	}
 737
 738	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 739		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 740
 741	if (!pw)
 742		return;
 743
 744	INIT_WORK(&pw->work, verity_prefetch_io);
 745	pw->v = v;
 746	pw->block = block;
 747	pw->n_blocks = n_blocks;
 748	pw->ioprio = ioprio;
 749	queue_work(v->verify_wq, &pw->work);
 750}
 751
 752/*
 753 * Bio map function. It allocates dm_verity_io structure and bio vector and
 754 * fills them. Then it issues prefetches and the I/O.
 755 */
 756static int verity_map(struct dm_target *ti, struct bio *bio)
 757{
 758	struct dm_verity *v = ti->private;
 759	struct dm_verity_io *io;
 760
 761	bio_set_dev(bio, v->data_dev->bdev);
 762	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 763
 764	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 765	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 766		DMERR_LIMIT("unaligned io");
 767		return DM_MAPIO_KILL;
 768	}
 769
 770	if (bio_end_sector(bio) >>
 771	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 772		DMERR_LIMIT("io out of range");
 773		return DM_MAPIO_KILL;
 774	}
 775
 776	if (bio_data_dir(bio) == WRITE)
 777		return DM_MAPIO_KILL;
 778
 779	io = dm_per_bio_data(bio, ti->per_io_data_size);
 780	io->v = v;
 781	io->orig_bi_end_io = bio->bi_end_io;
 782	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 783	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 784	io->had_mismatch = false;
 785
 786	bio->bi_end_io = verity_end_io;
 787	bio->bi_private = io;
 788	io->iter = bio->bi_iter;
 789
 790	verity_fec_init_io(io);
 791
 792	verity_submit_prefetch(v, io, bio_prio(bio));
 793
 794	submit_bio_noacct(bio);
 795
 796	return DM_MAPIO_SUBMITTED;
 797}
 798
 799/*
 800 * Status: V (valid) or C (corruption found)
 801 */
 802static void verity_status(struct dm_target *ti, status_type_t type,
 803			  unsigned int status_flags, char *result, unsigned int maxlen)
 804{
 805	struct dm_verity *v = ti->private;
 806	unsigned int args = 0;
 807	unsigned int sz = 0;
 808	unsigned int x;
 809
 810	switch (type) {
 811	case STATUSTYPE_INFO:
 812		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 813		break;
 814	case STATUSTYPE_TABLE:
 815		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 816			v->version,
 817			v->data_dev->name,
 818			v->hash_dev->name,
 819			1 << v->data_dev_block_bits,
 820			1 << v->hash_dev_block_bits,
 821			(unsigned long long)v->data_blocks,
 822			(unsigned long long)v->hash_start,
 823			v->alg_name
 824			);
 825		for (x = 0; x < v->digest_size; x++)
 826			DMEMIT("%02x", v->root_digest[x]);
 827		DMEMIT(" ");
 828		if (!v->salt_size)
 829			DMEMIT("-");
 830		else
 831			for (x = 0; x < v->salt_size; x++)
 832				DMEMIT("%02x", v->salt[x]);
 833		if (v->mode != DM_VERITY_MODE_EIO)
 834			args++;
 835		if (v->error_mode != DM_VERITY_MODE_EIO)
 836			args++;
 837		if (verity_fec_is_enabled(v))
 838			args += DM_VERITY_OPTS_FEC;
 839		if (v->zero_digest)
 840			args++;
 841		if (v->validated_blocks)
 842			args++;
 843		if (v->use_bh_wq)
 844			args++;
 845		if (v->signature_key_desc)
 846			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 847		if (!args)
 848			return;
 849		DMEMIT(" %u", args);
 850		if (v->mode != DM_VERITY_MODE_EIO) {
 851			DMEMIT(" ");
 852			switch (v->mode) {
 853			case DM_VERITY_MODE_LOGGING:
 854				DMEMIT(DM_VERITY_OPT_LOGGING);
 855				break;
 856			case DM_VERITY_MODE_RESTART:
 857				DMEMIT(DM_VERITY_OPT_RESTART);
 858				break;
 859			case DM_VERITY_MODE_PANIC:
 860				DMEMIT(DM_VERITY_OPT_PANIC);
 861				break;
 862			default:
 863				BUG();
 864			}
 865		}
 866		if (v->error_mode != DM_VERITY_MODE_EIO) {
 867			DMEMIT(" ");
 868			switch (v->error_mode) {
 869			case DM_VERITY_MODE_RESTART:
 870				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
 871				break;
 872			case DM_VERITY_MODE_PANIC:
 873				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
 874				break;
 875			default:
 876				BUG();
 877			}
 878		}
 879		if (v->zero_digest)
 880			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 881		if (v->validated_blocks)
 882			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 883		if (v->use_bh_wq)
 884			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
 885		sz = verity_fec_status_table(v, sz, result, maxlen);
 886		if (v->signature_key_desc)
 887			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 888				" %s", v->signature_key_desc);
 889		break;
 890
 891	case STATUSTYPE_IMA:
 892		DMEMIT_TARGET_NAME_VERSION(ti->type);
 893		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
 894		DMEMIT(",verity_version=%u", v->version);
 895		DMEMIT(",data_device_name=%s", v->data_dev->name);
 896		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
 897		DMEMIT(",verity_algorithm=%s", v->alg_name);
 898
 899		DMEMIT(",root_digest=");
 900		for (x = 0; x < v->digest_size; x++)
 901			DMEMIT("%02x", v->root_digest[x]);
 902
 903		DMEMIT(",salt=");
 904		if (!v->salt_size)
 905			DMEMIT("-");
 906		else
 907			for (x = 0; x < v->salt_size; x++)
 908				DMEMIT("%02x", v->salt[x]);
 909
 910		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
 911		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
 912		if (v->signature_key_desc)
 913			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
 914
 915		if (v->mode != DM_VERITY_MODE_EIO) {
 916			DMEMIT(",verity_mode=");
 917			switch (v->mode) {
 918			case DM_VERITY_MODE_LOGGING:
 919				DMEMIT(DM_VERITY_OPT_LOGGING);
 920				break;
 921			case DM_VERITY_MODE_RESTART:
 922				DMEMIT(DM_VERITY_OPT_RESTART);
 923				break;
 924			case DM_VERITY_MODE_PANIC:
 925				DMEMIT(DM_VERITY_OPT_PANIC);
 926				break;
 927			default:
 928				DMEMIT("invalid");
 929			}
 930		}
 931		if (v->error_mode != DM_VERITY_MODE_EIO) {
 932			DMEMIT(",verity_error_mode=");
 933			switch (v->error_mode) {
 934			case DM_VERITY_MODE_RESTART:
 935				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
 936				break;
 937			case DM_VERITY_MODE_PANIC:
 938				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
 939				break;
 940			default:
 941				DMEMIT("invalid");
 942			}
 943		}
 944		DMEMIT(";");
 945		break;
 946	}
 947}
 948
 949static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 
 950{
 951	struct dm_verity *v = ti->private;
 952
 953	*bdev = v->data_dev->bdev;
 954
 955	if (ti->len != bdev_nr_sectors(v->data_dev->bdev))
 
 956		return 1;
 957	return 0;
 958}
 959
 960static int verity_iterate_devices(struct dm_target *ti,
 961				  iterate_devices_callout_fn fn, void *data)
 962{
 963	struct dm_verity *v = ti->private;
 964
 965	return fn(ti, v->data_dev, 0, ti->len, data);
 966}
 967
 968static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 969{
 970	struct dm_verity *v = ti->private;
 971
 972	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 973		limits->logical_block_size = 1 << v->data_dev_block_bits;
 974
 975	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 976		limits->physical_block_size = 1 << v->data_dev_block_bits;
 977
 978	limits->io_min = limits->logical_block_size;
 979
 980	/*
 981	 * Similar to what dm-crypt does, opt dm-verity out of support for
 982	 * direct I/O that is aligned to less than the traditional direct I/O
 983	 * alignment requirement of logical_block_size.  This prevents dm-verity
 984	 * data blocks from crossing pages, eliminating various edge cases.
 985	 */
 986	limits->dma_alignment = limits->logical_block_size - 1;
 987}
 988
 989#ifdef CONFIG_SECURITY
 990
 991static int verity_init_sig(struct dm_verity *v, const void *sig,
 992			   size_t sig_size)
 993{
 994	v->sig_size = sig_size;
 995
 996	if (sig) {
 997		v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
 998		if (!v->root_digest_sig)
 999			return -ENOMEM;
1000	}
1001
1002	return 0;
1003}
1004
1005static void verity_free_sig(struct dm_verity *v)
1006{
1007	kfree(v->root_digest_sig);
1008}
1009
1010#else
1011
1012static inline int verity_init_sig(struct dm_verity *v, const void *sig,
1013				  size_t sig_size)
1014{
1015	return 0;
1016}
1017
1018static inline void verity_free_sig(struct dm_verity *v)
1019{
1020}
1021
1022#endif /* CONFIG_SECURITY */
1023
1024static void verity_dtr(struct dm_target *ti)
1025{
1026	struct dm_verity *v = ti->private;
1027
1028	if (v->verify_wq)
1029		destroy_workqueue(v->verify_wq);
1030
1031	mempool_exit(&v->recheck_pool);
1032	if (v->io)
1033		dm_io_client_destroy(v->io);
1034
1035	if (v->bufio)
1036		dm_bufio_client_destroy(v->bufio);
1037
1038	kvfree(v->validated_blocks);
1039	kfree(v->salt);
1040	kfree(v->initial_hashstate);
1041	kfree(v->root_digest);
1042	kfree(v->zero_digest);
1043	verity_free_sig(v);
1044
1045	if (v->ahash_tfm) {
1046		static_branch_dec(&ahash_enabled);
1047		crypto_free_ahash(v->ahash_tfm);
1048	} else {
1049		crypto_free_shash(v->shash_tfm);
1050	}
1051
1052	kfree(v->alg_name);
1053
1054	if (v->hash_dev)
1055		dm_put_device(ti, v->hash_dev);
1056
1057	if (v->data_dev)
1058		dm_put_device(ti, v->data_dev);
1059
1060	verity_fec_dtr(v);
1061
1062	kfree(v->signature_key_desc);
1063
1064	if (v->use_bh_wq)
1065		static_branch_dec(&use_bh_wq_enabled);
1066
1067	kfree(v);
1068
1069	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1070}
1071
1072static int verity_alloc_most_once(struct dm_verity *v)
1073{
1074	struct dm_target *ti = v->ti;
1075
1076	/* the bitset can only handle INT_MAX blocks */
1077	if (v->data_blocks > INT_MAX) {
1078		ti->error = "device too large to use check_at_most_once";
1079		return -E2BIG;
1080	}
1081
1082	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1083				       sizeof(unsigned long),
1084				       GFP_KERNEL);
1085	if (!v->validated_blocks) {
1086		ti->error = "failed to allocate bitset for check_at_most_once";
1087		return -ENOMEM;
1088	}
1089
1090	return 0;
1091}
1092
1093static int verity_alloc_zero_digest(struct dm_verity *v)
1094{
1095	int r = -ENOMEM;
1096	struct dm_verity_io *io;
1097	u8 *zero_data;
1098
1099	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1100
1101	if (!v->zero_digest)
1102		return r;
1103
1104	io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
1105
1106	if (!io)
1107		return r; /* verity_dtr will free zero_digest */
1108
1109	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1110
1111	if (!zero_data)
1112		goto out;
1113
1114	r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1115			v->zero_digest, true);
1116
1117out:
1118	kfree(io);
1119	kfree(zero_data);
1120
1121	return r;
1122}
1123
1124static inline bool verity_is_verity_mode(const char *arg_name)
1125{
1126	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1127		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1128		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1129}
1130
1131static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1132{
1133	if (v->mode)
1134		return -EINVAL;
1135
1136	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1137		v->mode = DM_VERITY_MODE_LOGGING;
1138	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1139		v->mode = DM_VERITY_MODE_RESTART;
1140	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1141		v->mode = DM_VERITY_MODE_PANIC;
1142
1143	return 0;
1144}
1145
1146static inline bool verity_is_verity_error_mode(const char *arg_name)
1147{
1148	return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) ||
1149		!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC));
1150}
1151
1152static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name)
1153{
1154	if (v->error_mode)
1155		return -EINVAL;
1156
1157	if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART))
1158		v->error_mode = DM_VERITY_MODE_RESTART;
1159	else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC))
1160		v->error_mode = DM_VERITY_MODE_PANIC;
1161
1162	return 0;
1163}
1164
1165static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1166				 struct dm_verity_sig_opts *verify_args,
1167				 bool only_modifier_opts)
1168{
1169	int r = 0;
1170	unsigned int argc;
1171	struct dm_target *ti = v->ti;
1172	const char *arg_name;
1173
1174	static const struct dm_arg _args[] = {
1175		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1176	};
1177
1178	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1179	if (r)
1180		return -EINVAL;
1181
1182	if (!argc)
1183		return 0;
1184
1185	do {
1186		arg_name = dm_shift_arg(as);
1187		argc--;
1188
1189		if (verity_is_verity_mode(arg_name)) {
1190			if (only_modifier_opts)
1191				continue;
1192			r = verity_parse_verity_mode(v, arg_name);
1193			if (r) {
1194				ti->error = "Conflicting error handling parameters";
1195				return r;
1196			}
1197			continue;
1198
1199		} else if (verity_is_verity_error_mode(arg_name)) {
1200			if (only_modifier_opts)
1201				continue;
1202			r = verity_parse_verity_error_mode(v, arg_name);
1203			if (r) {
1204				ti->error = "Conflicting error handling parameters";
1205				return r;
1206			}
1207			continue;
1208
1209		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1210			if (only_modifier_opts)
1211				continue;
1212			r = verity_alloc_zero_digest(v);
1213			if (r) {
1214				ti->error = "Cannot allocate zero digest";
1215				return r;
1216			}
1217			continue;
1218
1219		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1220			if (only_modifier_opts)
1221				continue;
1222			r = verity_alloc_most_once(v);
1223			if (r)
1224				return r;
1225			continue;
1226
1227		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1228			v->use_bh_wq = true;
1229			static_branch_inc(&use_bh_wq_enabled);
1230			continue;
1231
1232		} else if (verity_is_fec_opt_arg(arg_name)) {
1233			if (only_modifier_opts)
1234				continue;
1235			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1236			if (r)
1237				return r;
1238			continue;
1239
1240		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1241			if (only_modifier_opts)
1242				continue;
1243			r = verity_verify_sig_parse_opt_args(as, v,
1244							     verify_args,
1245							     &argc, arg_name);
1246			if (r)
1247				return r;
1248			continue;
1249
1250		} else if (only_modifier_opts) {
1251			/*
1252			 * Ignore unrecognized opt, could easily be an extra
1253			 * argument to an option whose parsing was skipped.
1254			 * Normal parsing (@only_modifier_opts=false) will
1255			 * properly parse all options (and their extra args).
1256			 */
1257			continue;
1258		}
1259
1260		DMERR("Unrecognized verity feature request: %s", arg_name);
1261		ti->error = "Unrecognized verity feature request";
1262		return -EINVAL;
1263	} while (argc && !r);
1264
1265	return r;
1266}
1267
1268static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1269{
1270	struct dm_target *ti = v->ti;
1271	struct crypto_ahash *ahash;
1272	struct crypto_shash *shash = NULL;
1273	const char *driver_name;
1274
1275	v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1276	if (!v->alg_name) {
1277		ti->error = "Cannot allocate algorithm name";
1278		return -ENOMEM;
1279	}
1280
1281	/*
1282	 * Allocate the hash transformation object that this dm-verity instance
1283	 * will use.  The vast majority of dm-verity users use CPU-based
1284	 * hashing, so when possible use the shash API to minimize the crypto
1285	 * API overhead.  If the ahash API resolves to a different driver
1286	 * (likely an off-CPU hardware offload), use ahash instead.  Also use
1287	 * ahash if the obsolete dm-verity format with the appended salt is
1288	 * being used, so that quirk only needs to be handled in one place.
1289	 */
1290	ahash = crypto_alloc_ahash(alg_name, 0,
1291				   v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1292	if (IS_ERR(ahash)) {
1293		ti->error = "Cannot initialize hash function";
1294		return PTR_ERR(ahash);
1295	}
1296	driver_name = crypto_ahash_driver_name(ahash);
1297	if (v->version >= 1 /* salt prepended, not appended? */) {
1298		shash = crypto_alloc_shash(alg_name, 0, 0);
1299		if (!IS_ERR(shash) &&
1300		    strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
1301			/*
1302			 * ahash gave a different driver than shash, so probably
1303			 * this is a case of real hardware offload.  Use ahash.
1304			 */
1305			crypto_free_shash(shash);
1306			shash = NULL;
1307		}
1308	}
1309	if (!IS_ERR_OR_NULL(shash)) {
1310		crypto_free_ahash(ahash);
1311		ahash = NULL;
1312		v->shash_tfm = shash;
1313		v->digest_size = crypto_shash_digestsize(shash);
1314		v->hash_reqsize = sizeof(struct shash_desc) +
1315				  crypto_shash_descsize(shash);
1316		DMINFO("%s using shash \"%s\"", alg_name, driver_name);
1317	} else {
1318		v->ahash_tfm = ahash;
1319		static_branch_inc(&ahash_enabled);
1320		v->digest_size = crypto_ahash_digestsize(ahash);
1321		v->hash_reqsize = sizeof(struct ahash_request) +
1322				  crypto_ahash_reqsize(ahash);
1323		DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
1324	}
1325	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1326		ti->error = "Digest size too big";
1327		return -EINVAL;
1328	}
1329	return 0;
1330}
1331
1332static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1333{
1334	struct dm_target *ti = v->ti;
1335
1336	if (strcmp(arg, "-") != 0) {
1337		v->salt_size = strlen(arg) / 2;
1338		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1339		if (!v->salt) {
1340			ti->error = "Cannot allocate salt";
1341			return -ENOMEM;
1342		}
1343		if (strlen(arg) != v->salt_size * 2 ||
1344		    hex2bin(v->salt, arg, v->salt_size)) {
1345			ti->error = "Invalid salt";
1346			return -EINVAL;
1347		}
1348	}
1349	if (v->shash_tfm) {
1350		SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1351		int r;
1352
1353		/*
1354		 * Compute the pre-salted hash state that can be passed to
1355		 * crypto_shash_import() for each block later.
1356		 */
1357		v->initial_hashstate = kmalloc(
1358			crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1359		if (!v->initial_hashstate) {
1360			ti->error = "Cannot allocate initial hash state";
1361			return -ENOMEM;
1362		}
1363		desc->tfm = v->shash_tfm;
1364		r = crypto_shash_init(desc) ?:
1365		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
1366		    crypto_shash_export(desc, v->initial_hashstate);
1367		if (r) {
1368			ti->error = "Cannot set up initial hash state";
1369			return r;
1370		}
1371	}
1372	return 0;
1373}
1374
1375/*
1376 * Target parameters:
1377 *	<version>	The current format is version 1.
1378 *			Vsn 0 is compatible with original Chromium OS releases.
1379 *	<data device>
1380 *	<hash device>
1381 *	<data block size>
1382 *	<hash block size>
1383 *	<the number of data blocks>
1384 *	<hash start block>
1385 *	<algorithm>
1386 *	<digest>
1387 *	<salt>		Hex string or "-" if no salt.
1388 */
1389static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1390{
1391	struct dm_verity *v;
1392	struct dm_verity_sig_opts verify_args = {0};
1393	struct dm_arg_set as;
1394	unsigned int num;
1395	unsigned long long num_ll;
1396	int r;
1397	int i;
1398	sector_t hash_position;
1399	char dummy;
1400	char *root_hash_digest_to_validate;
1401
1402	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1403	if (!v) {
1404		ti->error = "Cannot allocate verity structure";
1405		return -ENOMEM;
1406	}
1407	ti->private = v;
1408	v->ti = ti;
1409
1410	r = verity_fec_ctr_alloc(v);
1411	if (r)
1412		goto bad;
1413
1414	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1415		ti->error = "Device must be readonly";
1416		r = -EINVAL;
1417		goto bad;
1418	}
1419
1420	if (argc < 10) {
1421		ti->error = "Not enough arguments";
1422		r = -EINVAL;
1423		goto bad;
1424	}
1425
1426	/* Parse optional parameters that modify primary args */
1427	if (argc > 10) {
1428		as.argc = argc - 10;
1429		as.argv = argv + 10;
1430		r = verity_parse_opt_args(&as, v, &verify_args, true);
1431		if (r < 0)
1432			goto bad;
1433	}
1434
1435	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1436	    num > 1) {
1437		ti->error = "Invalid version";
1438		r = -EINVAL;
1439		goto bad;
1440	}
1441	v->version = num;
1442
1443	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1444	if (r) {
1445		ti->error = "Data device lookup failed";
1446		goto bad;
1447	}
1448
1449	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1450	if (r) {
1451		ti->error = "Hash device lookup failed";
1452		goto bad;
1453	}
1454
1455	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1456	    !num || (num & (num - 1)) ||
1457	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1458	    num > PAGE_SIZE) {
1459		ti->error = "Invalid data device block size";
1460		r = -EINVAL;
1461		goto bad;
1462	}
1463	v->data_dev_block_bits = __ffs(num);
1464
1465	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1466	    !num || (num & (num - 1)) ||
1467	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1468	    num > INT_MAX) {
1469		ti->error = "Invalid hash device block size";
1470		r = -EINVAL;
1471		goto bad;
1472	}
1473	v->hash_dev_block_bits = __ffs(num);
1474
1475	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1476	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1477	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1478		ti->error = "Invalid data blocks";
1479		r = -EINVAL;
1480		goto bad;
1481	}
1482	v->data_blocks = num_ll;
1483
1484	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1485		ti->error = "Data device is too small";
1486		r = -EINVAL;
1487		goto bad;
1488	}
1489
1490	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1491	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1492	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1493		ti->error = "Invalid hash start";
1494		r = -EINVAL;
1495		goto bad;
1496	}
1497	v->hash_start = num_ll;
1498
1499	r = verity_setup_hash_alg(v, argv[7]);
1500	if (r)
 
 
 
 
 
 
 
 
 
 
1501		goto bad;
 
 
 
 
 
 
 
 
 
1502
1503	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1504	if (!v->root_digest) {
1505		ti->error = "Cannot allocate root digest";
1506		r = -ENOMEM;
1507		goto bad;
1508	}
1509	if (strlen(argv[8]) != v->digest_size * 2 ||
1510	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1511		ti->error = "Invalid root digest";
1512		r = -EINVAL;
1513		goto bad;
1514	}
1515	root_hash_digest_to_validate = argv[8];
1516
1517	r = verity_setup_salt_and_hashstate(v, argv[9]);
1518	if (r)
1519		goto bad;
 
 
 
 
 
 
 
 
 
 
 
 
1520
1521	argv += 10;
1522	argc -= 10;
1523
1524	/* Optional parameters */
1525	if (argc) {
1526		as.argc = argc;
1527		as.argv = argv;
1528		r = verity_parse_opt_args(&as, v, &verify_args, false);
 
1529		if (r < 0)
1530			goto bad;
1531	}
1532
1533	/* Root hash signature is  a optional parameter*/
1534	r = verity_verify_root_hash(root_hash_digest_to_validate,
1535				    strlen(root_hash_digest_to_validate),
1536				    verify_args.sig,
1537				    verify_args.sig_size);
1538	if (r < 0) {
1539		ti->error = "Root hash verification failed";
1540		goto bad;
1541	}
1542
1543	r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1544	if (r < 0) {
1545		ti->error = "Cannot allocate root digest signature";
1546		goto bad;
1547	}
1548
1549	v->hash_per_block_bits =
1550		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1551
1552	v->levels = 0;
1553	if (v->data_blocks)
1554		while (v->hash_per_block_bits * v->levels < 64 &&
1555		       (unsigned long long)(v->data_blocks - 1) >>
1556		       (v->hash_per_block_bits * v->levels))
1557			v->levels++;
1558
1559	if (v->levels > DM_VERITY_MAX_LEVELS) {
1560		ti->error = "Too many tree levels";
1561		r = -E2BIG;
1562		goto bad;
1563	}
1564
1565	hash_position = v->hash_start;
1566	for (i = v->levels - 1; i >= 0; i--) {
1567		sector_t s;
1568
1569		v->hash_level_block[i] = hash_position;
1570		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1571					>> ((i + 1) * v->hash_per_block_bits);
1572		if (hash_position + s < hash_position) {
1573			ti->error = "Hash device offset overflow";
1574			r = -E2BIG;
1575			goto bad;
1576		}
1577		hash_position += s;
1578	}
1579	v->hash_blocks = hash_position;
1580
1581	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1582	if (unlikely(r)) {
1583		ti->error = "Cannot allocate mempool";
1584		goto bad;
1585	}
1586
1587	v->io = dm_io_client_create();
1588	if (IS_ERR(v->io)) {
1589		r = PTR_ERR(v->io);
1590		v->io = NULL;
1591		ti->error = "Cannot allocate dm io";
1592		goto bad;
1593	}
1594
1595	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1596		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1597		dm_bufio_alloc_callback, NULL,
1598		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1599	if (IS_ERR(v->bufio)) {
1600		ti->error = "Cannot initialize dm-bufio";
1601		r = PTR_ERR(v->bufio);
1602		v->bufio = NULL;
1603		goto bad;
1604	}
1605
1606	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1607		ti->error = "Hash device is too small";
1608		r = -E2BIG;
1609		goto bad;
1610	}
1611
1612	/*
1613	 * Using WQ_HIGHPRI improves throughput and completion latency by
1614	 * reducing wait times when reading from a dm-verity device.
1615	 *
1616	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1617	 * allows verify_wq to preempt softirq since verification in BH workqueue
1618	 * will fall-back to using it for error handling (or if the bufio cache
1619	 * doesn't have required hashes).
1620	 */
1621	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1622	if (!v->verify_wq) {
1623		ti->error = "Cannot allocate workqueue";
1624		r = -ENOMEM;
1625		goto bad;
1626	}
1627
1628	ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize;
 
1629
1630	r = verity_fec_ctr(v);
1631	if (r)
1632		goto bad;
1633
1634	ti->per_io_data_size = roundup(ti->per_io_data_size,
1635				       __alignof__(struct dm_verity_io));
1636
1637	verity_verify_sig_opts_cleanup(&verify_args);
1638
1639	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1640
1641	return 0;
1642
1643bad:
1644
1645	verity_verify_sig_opts_cleanup(&verify_args);
1646	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1647	verity_dtr(ti);
1648
1649	return r;
1650}
1651
1652/*
1653 * Get the verity mode (error behavior) of a verity target.
1654 *
1655 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1656 * target.
1657 */
1658int dm_verity_get_mode(struct dm_target *ti)
1659{
1660	struct dm_verity *v = ti->private;
1661
1662	if (!dm_is_verity_target(ti))
1663		return -EINVAL;
1664
1665	return v->mode;
1666}
1667
1668/*
1669 * Get the root digest of a verity target.
1670 *
1671 * Returns a copy of the root digest, the caller is responsible for
1672 * freeing the memory of the digest.
1673 */
1674int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1675{
1676	struct dm_verity *v = ti->private;
1677
1678	if (!dm_is_verity_target(ti))
1679		return -EINVAL;
1680
1681	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1682	if (*root_digest == NULL)
1683		return -ENOMEM;
1684
1685	*digest_size = v->digest_size;
1686
1687	return 0;
1688}
1689
1690#ifdef CONFIG_SECURITY
1691
1692#ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1693
1694static int verity_security_set_signature(struct block_device *bdev,
1695					 struct dm_verity *v)
1696{
1697	/*
1698	 * if the dm-verity target is unsigned, v->root_digest_sig will
1699	 * be NULL, and the hook call is still required to let LSMs mark
1700	 * the device as unsigned. This information is crucial for LSMs to
1701	 * block operations such as execution on unsigned files
1702	 */
1703	return security_bdev_setintegrity(bdev,
1704					  LSM_INT_DMVERITY_SIG_VALID,
1705					  v->root_digest_sig,
1706					  v->sig_size);
1707}
1708
1709#else
1710
1711static inline int verity_security_set_signature(struct block_device *bdev,
1712						struct dm_verity *v)
1713{
1714	return 0;
1715}
1716
1717#endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1718
1719/*
1720 * Expose verity target's root hash and signature data to LSMs before resume.
1721 *
1722 * Returns 0 on success, or -ENOMEM if the system is out of memory.
1723 */
1724static int verity_preresume(struct dm_target *ti)
1725{
1726	struct block_device *bdev;
1727	struct dm_verity_digest root_digest;
1728	struct dm_verity *v;
1729	int r;
1730
1731	v = ti->private;
1732	bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1733	root_digest.digest = v->root_digest;
1734	root_digest.digest_len = v->digest_size;
1735	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm)
1736		root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm);
1737	else
1738		root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1739
1740	r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1741				       sizeof(root_digest));
1742	if (r)
1743		return r;
1744
1745	r =  verity_security_set_signature(bdev, v);
1746	if (r)
1747		goto bad;
1748
1749	return 0;
1750
1751bad:
1752
1753	security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1754
1755	return r;
1756}
1757
1758#endif /* CONFIG_SECURITY */
1759
1760static struct target_type verity_target = {
1761	.name		= "verity",
1762/* Note: the LSMs depend on the singleton and immutable features */
1763	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1764	.version	= {1, 10, 0},
1765	.module		= THIS_MODULE,
1766	.ctr		= verity_ctr,
1767	.dtr		= verity_dtr,
1768	.map		= verity_map,
1769	.status		= verity_status,
1770	.prepare_ioctl	= verity_prepare_ioctl,
1771	.iterate_devices = verity_iterate_devices,
1772	.io_hints	= verity_io_hints,
1773#ifdef CONFIG_SECURITY
1774	.preresume	= verity_preresume,
1775#endif /* CONFIG_SECURITY */
1776};
1777module_dm(verity);
1778
1779/*
1780 * Check whether a DM target is a verity target.
1781 */
1782bool dm_is_verity_target(struct dm_target *ti)
1783{
1784	return ti->type == &verity_target;
 
 
 
 
 
 
 
 
 
 
 
1785}
 
 
 
1786
1787MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1788MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1789MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1790MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1791MODULE_LICENSE("GPL");
v4.10.11
 
   1/*
   2 * Copyright (C) 2012 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   7 *
   8 * This file is released under the GPLv2.
   9 *
  10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  12 * hash device. Setting this greatly improves performance when data and hash
  13 * are on the same disk on different partitions on devices with poor random
  14 * access behavior.
  15 */
  16
  17#include "dm-verity.h"
  18#include "dm-verity-fec.h"
  19
 
  20#include <linux/module.h>
  21#include <linux/reboot.h>
 
 
 
 
  22
  23#define DM_MSG_PREFIX			"verity"
  24
  25#define DM_VERITY_ENV_LENGTH		42
  26#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  27
  28#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  29
  30#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  31
  32#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  33#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
 
 
 
  34#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
 
 
 
 
 
 
 
  35
  36#define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC)
  37
  38static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  39
  40module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
 
  41
  42struct dm_verity_prefetch_work {
  43	struct work_struct work;
  44	struct dm_verity *v;
 
  45	sector_t block;
  46	unsigned n_blocks;
  47};
  48
  49/*
  50 * Auxiliary structure appended to each dm-bufio buffer. If the value
  51 * hash_verified is nonzero, hash of the block has been verified.
  52 *
  53 * The variable hash_verified is set to 0 when allocating the buffer, then
  54 * it can be changed to 1 and it is never reset to 0 again.
  55 *
  56 * There is no lock around this value, a race condition can at worst cause
  57 * that multiple processes verify the hash of the same buffer simultaneously
  58 * and write 1 to hash_verified simultaneously.
  59 * This condition is harmless, so we don't need locking.
  60 */
  61struct buffer_aux {
  62	int hash_verified;
  63};
  64
  65/*
  66 * Initialize struct buffer_aux for a freshly created buffer.
  67 */
  68static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  69{
  70	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  71
  72	aux->hash_verified = 0;
  73}
  74
  75/*
  76 * Translate input sector number to the sector number on the target device.
  77 */
  78static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  79{
  80	return v->data_start + dm_target_offset(v->ti, bi_sector);
  81}
  82
  83/*
  84 * Return hash position of a specified block at a specified tree level
  85 * (0 is the lowest level).
  86 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  87 * inside a hash block. The remaining bits denote location of the hash block.
  88 */
  89static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  90					 int level)
  91{
  92	return block >> (level * v->hash_per_block_bits);
  93}
  94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95/*
  96 * Wrapper for crypto_shash_init, which handles verity salting.
  97 */
  98static int verity_hash_init(struct dm_verity *v, struct shash_desc *desc)
 
  99{
 100	int r;
 101
 102	desc->tfm = v->tfm;
 103	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 
 
 
 104
 105	r = crypto_shash_init(desc);
 106
 107	if (unlikely(r < 0)) {
 108		DMERR("crypto_shash_init failed: %d", r);
 
 109		return r;
 110	}
 111
 112	if (likely(v->version >= 1)) {
 113		r = crypto_shash_update(desc, v->salt, v->salt_size);
 114
 115		if (unlikely(r < 0)) {
 116			DMERR("crypto_shash_update failed: %d", r);
 117			return r;
 118		}
 119	}
 120
 121	return 0;
 122}
 123
 124static int verity_hash_update(struct dm_verity *v, struct shash_desc *desc,
 125			      const u8 *data, size_t len)
 126{
 127	int r = crypto_shash_update(desc, data, len);
 128
 129	if (unlikely(r < 0))
 130		DMERR("crypto_shash_update failed: %d", r);
 131
 132	return r;
 133}
 134
 135static int verity_hash_final(struct dm_verity *v, struct shash_desc *desc,
 136			     u8 *digest)
 137{
 138	int r;
 139
 140	if (unlikely(!v->version)) {
 141		r = crypto_shash_update(desc, v->salt, v->salt_size);
 142
 143		if (r < 0) {
 144			DMERR("crypto_shash_update failed: %d", r);
 145			return r;
 146		}
 147	}
 148
 149	r = crypto_shash_final(desc, digest);
 150
 151	if (unlikely(r < 0))
 152		DMERR("crypto_shash_final failed: %d", r);
 153
 154	return r;
 155}
 156
 157int verity_hash(struct dm_verity *v, struct shash_desc *desc,
 158		const u8 *data, size_t len, u8 *digest)
 159{
 160	int r;
 161
 162	r = verity_hash_init(v, desc);
 163	if (unlikely(r < 0))
 164		return r;
 165
 166	r = verity_hash_update(v, desc, data, len);
 167	if (unlikely(r < 0))
 168		return r;
 169
 170	return verity_hash_final(v, desc, digest);
 
 
 
 
 
 
 
 
 171}
 172
 173static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 174				 sector_t *hash_block, unsigned *offset)
 175{
 176	sector_t position = verity_position_at_level(v, block, level);
 177	unsigned idx;
 178
 179	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 180
 181	if (!offset)
 182		return;
 183
 184	idx = position & ((1 << v->hash_per_block_bits) - 1);
 185	if (!v->version)
 186		*offset = idx * v->digest_size;
 187	else
 188		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 189}
 190
 191/*
 192 * Handle verification errors.
 193 */
 194static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 195			     unsigned long long block)
 196{
 197	char verity_env[DM_VERITY_ENV_LENGTH];
 198	char *envp[] = { verity_env, NULL };
 199	const char *type_str = "";
 200	struct mapped_device *md = dm_table_get_md(v->ti->table);
 201
 202	/* Corruption should be visible in device status in all modes */
 203	v->hash_failed = 1;
 204
 205	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 206		goto out;
 207
 208	v->corrupted_errs++;
 209
 210	switch (type) {
 211	case DM_VERITY_BLOCK_TYPE_DATA:
 212		type_str = "data";
 213		break;
 214	case DM_VERITY_BLOCK_TYPE_METADATA:
 215		type_str = "metadata";
 216		break;
 217	default:
 218		BUG();
 219	}
 220
 221	DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
 222		block);
 223
 224	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 225		DMERR("%s: reached maximum errors", v->data_dev->name);
 
 
 226
 227	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 228		DM_VERITY_ENV_VAR_NAME, type, block);
 229
 230	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 231
 232out:
 233	if (v->mode == DM_VERITY_MODE_LOGGING)
 234		return 0;
 235
 236	if (v->mode == DM_VERITY_MODE_RESTART)
 237		kernel_restart("dm-verity device corrupted");
 238
 
 
 
 239	return 1;
 240}
 241
 242/*
 243 * Verify hash of a metadata block pertaining to the specified data block
 244 * ("block" argument) at a specified level ("level" argument).
 245 *
 246 * On successful return, verity_io_want_digest(v, io) contains the hash value
 247 * for a lower tree level or for the data block (if we're at the lowest level).
 248 *
 249 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 250 * If "skip_unverified" is false, unverified buffer is hashed and verified
 251 * against current value of verity_io_want_digest(v, io).
 252 */
 253static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 254			       sector_t block, int level, bool skip_unverified,
 255			       u8 *want_digest)
 256{
 257	struct dm_buffer *buf;
 258	struct buffer_aux *aux;
 259	u8 *data;
 260	int r;
 261	sector_t hash_block;
 262	unsigned offset;
 
 263
 264	verity_hash_at_level(v, block, level, &hash_block, &offset);
 265
 266	data = dm_bufio_read(v->bufio, hash_block, &buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267	if (IS_ERR(data))
 268		return PTR_ERR(data);
 269
 270	aux = dm_bufio_get_aux_data(buf);
 271
 272	if (!aux->hash_verified) {
 273		if (skip_unverified) {
 274			r = 1;
 275			goto release_ret_r;
 276		}
 277
 278		r = verity_hash(v, verity_io_hash_desc(v, io),
 279				data, 1 << v->hash_dev_block_bits,
 280				verity_io_real_digest(v, io));
 281		if (unlikely(r < 0))
 282			goto release_ret_r;
 283
 284		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 285				  v->digest_size) == 0))
 286			aux->hash_verified = 1;
 287		else if (verity_fec_decode(v, io,
 288					   DM_VERITY_BLOCK_TYPE_METADATA,
 289					   hash_block, data, NULL) == 0)
 
 
 
 
 
 
 290			aux->hash_verified = 1;
 291		else if (verity_handle_err(v,
 292					   DM_VERITY_BLOCK_TYPE_METADATA,
 293					   hash_block)) {
 
 
 
 
 
 294			r = -EIO;
 295			goto release_ret_r;
 296		}
 297	}
 298
 299	data += offset;
 300	memcpy(want_digest, data, v->digest_size);
 301	r = 0;
 302
 303release_ret_r:
 304	dm_bufio_release(buf);
 305	return r;
 306}
 307
 308/*
 309 * Find a hash for a given block, write it to digest and verify the integrity
 310 * of the hash tree if necessary.
 311 */
 312int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 313			  sector_t block, u8 *digest, bool *is_zero)
 314{
 315	int r = 0, i;
 316
 317	if (likely(v->levels)) {
 318		/*
 319		 * First, we try to get the requested hash for
 320		 * the current block. If the hash block itself is
 321		 * verified, zero is returned. If it isn't, this
 322		 * function returns 1 and we fall back to whole
 323		 * chain verification.
 324		 */
 325		r = verity_verify_level(v, io, block, 0, true, digest);
 326		if (likely(r <= 0))
 327			goto out;
 328	}
 329
 330	memcpy(digest, v->root_digest, v->digest_size);
 331
 332	for (i = v->levels - 1; i >= 0; i--) {
 333		r = verity_verify_level(v, io, block, i, false, digest);
 334		if (unlikely(r))
 335			goto out;
 336	}
 337out:
 338	if (!r && v->zero_digest)
 339		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 340	else
 341		*is_zero = false;
 342
 343	return r;
 344}
 345
 346/*
 347 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 348 * starting from iter.
 349 */
 350int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 351			struct bvec_iter *iter,
 352			int (*process)(struct dm_verity *v,
 353				       struct dm_verity_io *io, u8 *data,
 354				       size_t len))
 355{
 356	unsigned todo = 1 << v->data_dev_block_bits;
 357	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 
 
 
 358
 359	do {
 360		int r;
 361		u8 *page;
 362		unsigned len;
 363		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 364
 365		page = kmap_atomic(bv.bv_page);
 366		len = bv.bv_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367
 368		if (likely(len >= todo))
 369			len = todo;
 
 
 370
 371		r = process(v, io, page + bv.bv_offset, len);
 372		kunmap_atomic(page);
 373
 374		if (r < 0)
 375			return r;
 376
 377		bio_advance_iter(bio, iter, len);
 378		todo -= len;
 379	} while (todo);
 380
 381	return 0;
 382}
 383
 384static int verity_bv_hash_update(struct dm_verity *v, struct dm_verity_io *io,
 385				 u8 *data, size_t len)
 
 
 386{
 387	return verity_hash_update(v, verity_io_hash_desc(v, io), data, len);
 388}
 389
 390static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 391			  u8 *data, size_t len)
 392{
 393	memset(data, 0, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	return 0;
 395}
 396
 397/*
 398 * Verify one "dm_verity_io" structure.
 399 */
 400static int verity_verify_io(struct dm_verity_io *io)
 401{
 402	bool is_zero;
 403	struct dm_verity *v = io->v;
 404	struct bvec_iter start;
 405	unsigned b;
 
 
 
 
 
 
 
 
 
 
 
 
 
 406
 407	for (b = 0; b < io->n_blocks; b++) {
 
 408		int r;
 409		struct shash_desc *desc = verity_io_hash_desc(v, io);
 
 
 
 
 
 
 
 410
 411		r = verity_hash_for_block(v, io, io->block + b,
 412					  verity_io_want_digest(v, io),
 413					  &is_zero);
 414		if (unlikely(r < 0))
 415			return r;
 416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417		if (is_zero) {
 418			/*
 419			 * If we expect a zero block, don't validate, just
 420			 * return zeros.
 421			 */
 422			r = verity_for_bv_block(v, io, &io->iter,
 423						verity_bv_zero);
 424			if (unlikely(r < 0))
 425				return r;
 426
 427			continue;
 428		}
 429
 430		r = verity_hash_init(v, desc);
 431		if (unlikely(r < 0))
 432			return r;
 433
 434		start = io->iter;
 435		r = verity_for_bv_block(v, io, &io->iter, verity_bv_hash_update);
 436		if (unlikely(r < 0))
 437			return r;
 438
 439		r = verity_hash_final(v, desc, verity_io_real_digest(v, io));
 440		if (unlikely(r < 0))
 441			return r;
 
 442
 443		if (likely(memcmp(verity_io_real_digest(v, io),
 444				  verity_io_want_digest(v, io), v->digest_size) == 0))
 
 
 
 445			continue;
 446		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 447					   io->block + b, NULL, &start) == 0)
 448			continue;
 449		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 450					   io->block + b))
 451			return -EIO;
 452	}
 453
 454	return 0;
 455}
 456
 457/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458 * End one "io" structure with a given error.
 459 */
 460static void verity_finish_io(struct dm_verity_io *io, int error)
 461{
 462	struct dm_verity *v = io->v;
 463	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 464
 465	bio->bi_end_io = io->orig_bi_end_io;
 466	bio->bi_error = error;
 467
 468	verity_fec_finish_io(io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469
 470	bio_endio(bio);
 471}
 472
 473static void verity_work(struct work_struct *w)
 474{
 475	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 476
 477	verity_finish_io(io, verity_verify_io(io));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480static void verity_end_io(struct bio *bio)
 481{
 482	struct dm_verity_io *io = bio->bi_private;
 483
 484	if (bio->bi_error && !verity_fec_is_enabled(io->v)) {
 485		verity_finish_io(io, bio->bi_error);
 
 
 
 486		return;
 487	}
 488
 489	INIT_WORK(&io->work, verity_work);
 490	queue_work(io->v->verify_wq, &io->work);
 
 
 
 
 
 491}
 492
 493/*
 494 * Prefetch buffers for the specified io.
 495 * The root buffer is not prefetched, it is assumed that it will be cached
 496 * all the time.
 497 */
 498static void verity_prefetch_io(struct work_struct *work)
 499{
 500	struct dm_verity_prefetch_work *pw =
 501		container_of(work, struct dm_verity_prefetch_work, work);
 502	struct dm_verity *v = pw->v;
 503	int i;
 504
 505	for (i = v->levels - 2; i >= 0; i--) {
 506		sector_t hash_block_start;
 507		sector_t hash_block_end;
 
 508		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 509		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 
 510		if (!i) {
 511			unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
 512
 513			cluster >>= v->data_dev_block_bits;
 514			if (unlikely(!cluster))
 515				goto no_prefetch_cluster;
 516
 517			if (unlikely(cluster & (cluster - 1)))
 518				cluster = 1 << __fls(cluster);
 519
 520			hash_block_start &= ~(sector_t)(cluster - 1);
 521			hash_block_end |= cluster - 1;
 522			if (unlikely(hash_block_end >= v->hash_blocks))
 523				hash_block_end = v->hash_blocks - 1;
 524		}
 525no_prefetch_cluster:
 526		dm_bufio_prefetch(v->bufio, hash_block_start,
 527				  hash_block_end - hash_block_start + 1);
 
 528	}
 529
 530	kfree(pw);
 531}
 532
 533static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 
 534{
 
 
 535	struct dm_verity_prefetch_work *pw;
 536
 
 
 
 
 
 
 
 
 
 
 
 
 537	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 538		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 539
 540	if (!pw)
 541		return;
 542
 543	INIT_WORK(&pw->work, verity_prefetch_io);
 544	pw->v = v;
 545	pw->block = io->block;
 546	pw->n_blocks = io->n_blocks;
 
 547	queue_work(v->verify_wq, &pw->work);
 548}
 549
 550/*
 551 * Bio map function. It allocates dm_verity_io structure and bio vector and
 552 * fills them. Then it issues prefetches and the I/O.
 553 */
 554static int verity_map(struct dm_target *ti, struct bio *bio)
 555{
 556	struct dm_verity *v = ti->private;
 557	struct dm_verity_io *io;
 558
 559	bio->bi_bdev = v->data_dev->bdev;
 560	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 561
 562	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 563	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 564		DMERR_LIMIT("unaligned io");
 565		return -EIO;
 566	}
 567
 568	if (bio_end_sector(bio) >>
 569	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 570		DMERR_LIMIT("io out of range");
 571		return -EIO;
 572	}
 573
 574	if (bio_data_dir(bio) == WRITE)
 575		return -EIO;
 576
 577	io = dm_per_bio_data(bio, ti->per_io_data_size);
 578	io->v = v;
 579	io->orig_bi_end_io = bio->bi_end_io;
 580	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 581	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 
 582
 583	bio->bi_end_io = verity_end_io;
 584	bio->bi_private = io;
 585	io->iter = bio->bi_iter;
 586
 587	verity_fec_init_io(io);
 588
 589	verity_submit_prefetch(v, io);
 590
 591	generic_make_request(bio);
 592
 593	return DM_MAPIO_SUBMITTED;
 594}
 595
 596/*
 597 * Status: V (valid) or C (corruption found)
 598 */
 599static void verity_status(struct dm_target *ti, status_type_t type,
 600			  unsigned status_flags, char *result, unsigned maxlen)
 601{
 602	struct dm_verity *v = ti->private;
 603	unsigned args = 0;
 604	unsigned sz = 0;
 605	unsigned x;
 606
 607	switch (type) {
 608	case STATUSTYPE_INFO:
 609		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 610		break;
 611	case STATUSTYPE_TABLE:
 612		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 613			v->version,
 614			v->data_dev->name,
 615			v->hash_dev->name,
 616			1 << v->data_dev_block_bits,
 617			1 << v->hash_dev_block_bits,
 618			(unsigned long long)v->data_blocks,
 619			(unsigned long long)v->hash_start,
 620			v->alg_name
 621			);
 622		for (x = 0; x < v->digest_size; x++)
 623			DMEMIT("%02x", v->root_digest[x]);
 624		DMEMIT(" ");
 625		if (!v->salt_size)
 626			DMEMIT("-");
 627		else
 628			for (x = 0; x < v->salt_size; x++)
 629				DMEMIT("%02x", v->salt[x]);
 630		if (v->mode != DM_VERITY_MODE_EIO)
 631			args++;
 
 
 632		if (verity_fec_is_enabled(v))
 633			args += DM_VERITY_OPTS_FEC;
 634		if (v->zero_digest)
 635			args++;
 
 
 
 
 
 
 636		if (!args)
 637			return;
 638		DMEMIT(" %u", args);
 639		if (v->mode != DM_VERITY_MODE_EIO) {
 640			DMEMIT(" ");
 641			switch (v->mode) {
 642			case DM_VERITY_MODE_LOGGING:
 643				DMEMIT(DM_VERITY_OPT_LOGGING);
 644				break;
 645			case DM_VERITY_MODE_RESTART:
 646				DMEMIT(DM_VERITY_OPT_RESTART);
 647				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648			default:
 649				BUG();
 650			}
 651		}
 652		if (v->zero_digest)
 653			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 
 
 
 
 654		sz = verity_fec_status_table(v, sz, result, maxlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655		break;
 656	}
 657}
 658
 659static int verity_prepare_ioctl(struct dm_target *ti,
 660		struct block_device **bdev, fmode_t *mode)
 661{
 662	struct dm_verity *v = ti->private;
 663
 664	*bdev = v->data_dev->bdev;
 665
 666	if (v->data_start ||
 667	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
 668		return 1;
 669	return 0;
 670}
 671
 672static int verity_iterate_devices(struct dm_target *ti,
 673				  iterate_devices_callout_fn fn, void *data)
 674{
 675	struct dm_verity *v = ti->private;
 676
 677	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 678}
 679
 680static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 681{
 682	struct dm_verity *v = ti->private;
 683
 684	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 685		limits->logical_block_size = 1 << v->data_dev_block_bits;
 686
 687	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 688		limits->physical_block_size = 1 << v->data_dev_block_bits;
 689
 690	blk_limits_io_min(limits, limits->logical_block_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691}
 692
 
 
 693static void verity_dtr(struct dm_target *ti)
 694{
 695	struct dm_verity *v = ti->private;
 696
 697	if (v->verify_wq)
 698		destroy_workqueue(v->verify_wq);
 699
 
 
 
 
 700	if (v->bufio)
 701		dm_bufio_client_destroy(v->bufio);
 702
 
 703	kfree(v->salt);
 
 704	kfree(v->root_digest);
 705	kfree(v->zero_digest);
 
 706
 707	if (v->tfm)
 708		crypto_free_shash(v->tfm);
 
 
 
 
 709
 710	kfree(v->alg_name);
 711
 712	if (v->hash_dev)
 713		dm_put_device(ti, v->hash_dev);
 714
 715	if (v->data_dev)
 716		dm_put_device(ti, v->data_dev);
 717
 718	verity_fec_dtr(v);
 719
 
 
 
 
 
 720	kfree(v);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721}
 722
 723static int verity_alloc_zero_digest(struct dm_verity *v)
 724{
 725	int r = -ENOMEM;
 726	struct shash_desc *desc;
 727	u8 *zero_data;
 728
 729	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
 730
 731	if (!v->zero_digest)
 732		return r;
 733
 734	desc = kmalloc(v->shash_descsize, GFP_KERNEL);
 735
 736	if (!desc)
 737		return r; /* verity_dtr will free zero_digest */
 738
 739	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
 740
 741	if (!zero_data)
 742		goto out;
 743
 744	r = verity_hash(v, desc, zero_data, 1 << v->data_dev_block_bits,
 745			v->zero_digest);
 746
 747out:
 748	kfree(desc);
 749	kfree(zero_data);
 750
 751	return r;
 752}
 753
 754static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755{
 756	int r;
 757	unsigned argc;
 758	struct dm_target *ti = v->ti;
 759	const char *arg_name;
 760
 761	static struct dm_arg _args[] = {
 762		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
 763	};
 764
 765	r = dm_read_arg_group(_args, as, &argc, &ti->error);
 766	if (r)
 767		return -EINVAL;
 768
 769	if (!argc)
 770		return 0;
 771
 772	do {
 773		arg_name = dm_shift_arg(as);
 774		argc--;
 775
 776		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
 777			v->mode = DM_VERITY_MODE_LOGGING;
 
 
 
 
 
 
 778			continue;
 779
 780		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
 781			v->mode = DM_VERITY_MODE_RESTART;
 
 
 
 
 
 
 782			continue;
 783
 784		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
 
 
 785			r = verity_alloc_zero_digest(v);
 786			if (r) {
 787				ti->error = "Cannot allocate zero digest";
 788				return r;
 789			}
 790			continue;
 791
 
 
 
 
 
 
 
 
 
 
 
 
 
 792		} else if (verity_is_fec_opt_arg(arg_name)) {
 
 
 793			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
 794			if (r)
 795				return r;
 796			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797		}
 798
 
 799		ti->error = "Unrecognized verity feature request";
 800		return -EINVAL;
 801	} while (argc && !r);
 802
 803	return r;
 804}
 805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806/*
 807 * Target parameters:
 808 *	<version>	The current format is version 1.
 809 *			Vsn 0 is compatible with original Chromium OS releases.
 810 *	<data device>
 811 *	<hash device>
 812 *	<data block size>
 813 *	<hash block size>
 814 *	<the number of data blocks>
 815 *	<hash start block>
 816 *	<algorithm>
 817 *	<digest>
 818 *	<salt>		Hex string or "-" if no salt.
 819 */
 820static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
 821{
 822	struct dm_verity *v;
 
 823	struct dm_arg_set as;
 824	unsigned int num;
 825	unsigned long long num_ll;
 826	int r;
 827	int i;
 828	sector_t hash_position;
 829	char dummy;
 
 830
 831	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
 832	if (!v) {
 833		ti->error = "Cannot allocate verity structure";
 834		return -ENOMEM;
 835	}
 836	ti->private = v;
 837	v->ti = ti;
 838
 839	r = verity_fec_ctr_alloc(v);
 840	if (r)
 841		goto bad;
 842
 843	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
 844		ti->error = "Device must be readonly";
 845		r = -EINVAL;
 846		goto bad;
 847	}
 848
 849	if (argc < 10) {
 850		ti->error = "Not enough arguments";
 851		r = -EINVAL;
 852		goto bad;
 853	}
 854
 
 
 
 
 
 
 
 
 
 855	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
 856	    num > 1) {
 857		ti->error = "Invalid version";
 858		r = -EINVAL;
 859		goto bad;
 860	}
 861	v->version = num;
 862
 863	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
 864	if (r) {
 865		ti->error = "Data device lookup failed";
 866		goto bad;
 867	}
 868
 869	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
 870	if (r) {
 871		ti->error = "Hash device lookup failed";
 872		goto bad;
 873	}
 874
 875	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
 876	    !num || (num & (num - 1)) ||
 877	    num < bdev_logical_block_size(v->data_dev->bdev) ||
 878	    num > PAGE_SIZE) {
 879		ti->error = "Invalid data device block size";
 880		r = -EINVAL;
 881		goto bad;
 882	}
 883	v->data_dev_block_bits = __ffs(num);
 884
 885	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
 886	    !num || (num & (num - 1)) ||
 887	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
 888	    num > INT_MAX) {
 889		ti->error = "Invalid hash device block size";
 890		r = -EINVAL;
 891		goto bad;
 892	}
 893	v->hash_dev_block_bits = __ffs(num);
 894
 895	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
 896	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
 897	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
 898		ti->error = "Invalid data blocks";
 899		r = -EINVAL;
 900		goto bad;
 901	}
 902	v->data_blocks = num_ll;
 903
 904	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
 905		ti->error = "Data device is too small";
 906		r = -EINVAL;
 907		goto bad;
 908	}
 909
 910	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
 911	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
 912	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
 913		ti->error = "Invalid hash start";
 914		r = -EINVAL;
 915		goto bad;
 916	}
 917	v->hash_start = num_ll;
 918
 919	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
 920	if (!v->alg_name) {
 921		ti->error = "Cannot allocate algorithm name";
 922		r = -ENOMEM;
 923		goto bad;
 924	}
 925
 926	v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
 927	if (IS_ERR(v->tfm)) {
 928		ti->error = "Cannot initialize hash function";
 929		r = PTR_ERR(v->tfm);
 930		v->tfm = NULL;
 931		goto bad;
 932	}
 933	v->digest_size = crypto_shash_digestsize(v->tfm);
 934	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
 935		ti->error = "Digest size too big";
 936		r = -EINVAL;
 937		goto bad;
 938	}
 939	v->shash_descsize =
 940		sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
 941
 942	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
 943	if (!v->root_digest) {
 944		ti->error = "Cannot allocate root digest";
 945		r = -ENOMEM;
 946		goto bad;
 947	}
 948	if (strlen(argv[8]) != v->digest_size * 2 ||
 949	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
 950		ti->error = "Invalid root digest";
 951		r = -EINVAL;
 952		goto bad;
 953	}
 
 954
 955	if (strcmp(argv[9], "-")) {
 956		v->salt_size = strlen(argv[9]) / 2;
 957		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
 958		if (!v->salt) {
 959			ti->error = "Cannot allocate salt";
 960			r = -ENOMEM;
 961			goto bad;
 962		}
 963		if (strlen(argv[9]) != v->salt_size * 2 ||
 964		    hex2bin(v->salt, argv[9], v->salt_size)) {
 965			ti->error = "Invalid salt";
 966			r = -EINVAL;
 967			goto bad;
 968		}
 969	}
 970
 971	argv += 10;
 972	argc -= 10;
 973
 974	/* Optional parameters */
 975	if (argc) {
 976		as.argc = argc;
 977		as.argv = argv;
 978
 979		r = verity_parse_opt_args(&as, v);
 980		if (r < 0)
 981			goto bad;
 982	}
 983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984	v->hash_per_block_bits =
 985		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
 986
 987	v->levels = 0;
 988	if (v->data_blocks)
 989		while (v->hash_per_block_bits * v->levels < 64 &&
 990		       (unsigned long long)(v->data_blocks - 1) >>
 991		       (v->hash_per_block_bits * v->levels))
 992			v->levels++;
 993
 994	if (v->levels > DM_VERITY_MAX_LEVELS) {
 995		ti->error = "Too many tree levels";
 996		r = -E2BIG;
 997		goto bad;
 998	}
 999
1000	hash_position = v->hash_start;
1001	for (i = v->levels - 1; i >= 0; i--) {
1002		sector_t s;
 
1003		v->hash_level_block[i] = hash_position;
1004		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1005					>> ((i + 1) * v->hash_per_block_bits);
1006		if (hash_position + s < hash_position) {
1007			ti->error = "Hash device offset overflow";
1008			r = -E2BIG;
1009			goto bad;
1010		}
1011		hash_position += s;
1012	}
1013	v->hash_blocks = hash_position;
1014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1016		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1017		dm_bufio_alloc_callback, NULL);
 
1018	if (IS_ERR(v->bufio)) {
1019		ti->error = "Cannot initialize dm-bufio";
1020		r = PTR_ERR(v->bufio);
1021		v->bufio = NULL;
1022		goto bad;
1023	}
1024
1025	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1026		ti->error = "Hash device is too small";
1027		r = -E2BIG;
1028		goto bad;
1029	}
1030
1031	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1032	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
 
 
 
 
 
 
 
 
1033	if (!v->verify_wq) {
1034		ti->error = "Cannot allocate workqueue";
1035		r = -ENOMEM;
1036		goto bad;
1037	}
1038
1039	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1040				v->shash_descsize + v->digest_size * 2;
1041
1042	r = verity_fec_ctr(v);
1043	if (r)
1044		goto bad;
1045
1046	ti->per_io_data_size = roundup(ti->per_io_data_size,
1047				       __alignof__(struct dm_verity_io));
1048
 
 
 
 
1049	return 0;
1050
1051bad:
 
 
 
1052	verity_dtr(ti);
1053
1054	return r;
1055}
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057static struct target_type verity_target = {
1058	.name		= "verity",
1059	.version	= {1, 3, 0},
 
 
1060	.module		= THIS_MODULE,
1061	.ctr		= verity_ctr,
1062	.dtr		= verity_dtr,
1063	.map		= verity_map,
1064	.status		= verity_status,
1065	.prepare_ioctl	= verity_prepare_ioctl,
1066	.iterate_devices = verity_iterate_devices,
1067	.io_hints	= verity_io_hints,
 
 
 
1068};
 
1069
1070static int __init dm_verity_init(void)
 
 
 
1071{
1072	int r;
1073
1074	r = dm_register_target(&verity_target);
1075	if (r < 0)
1076		DMERR("register failed %d", r);
1077
1078	return r;
1079}
1080
1081static void __exit dm_verity_exit(void)
1082{
1083	dm_unregister_target(&verity_target);
1084}
1085
1086module_init(dm_verity_init);
1087module_exit(dm_verity_exit);
1088
1089MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1090MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1091MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1092MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1093MODULE_LICENSE("GPL");