Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2015 Google, Inc.
  4 *
  5 * Author: Sami Tolvanen <samitolvanen@google.com>
 
 
 
 
 
  6 */
  7
  8#include "dm-verity-fec.h"
  9#include <linux/math64.h>
 10
 11#define DM_MSG_PREFIX	"verity-fec"
 12
 13/*
 14 * If error correction has been configured, returns true.
 15 */
 16bool verity_fec_is_enabled(struct dm_verity *v)
 17{
 18	return v->fec && v->fec->dev;
 19}
 20
 21/*
 22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
 23 * length fields.
 24 */
 25static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
 26{
 27	return (struct dm_verity_fec_io *)
 28		((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io));
 29}
 30
 31/*
 32 * Return an interleaved offset for a byte in RS block.
 33 */
 34static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
 35{
 36	u32 mod;
 37
 38	mod = do_div(offset, v->fec->rsn);
 39	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
 40}
 41
 42/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43 * Read error-correcting codes for the requested RS block. Returns a pointer
 44 * to the data block. Caller is responsible for releasing buf.
 45 */
 46static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
 47			   unsigned int *offset, unsigned int par_buf_offset,
 48			   struct dm_buffer **buf, unsigned short ioprio)
 49{
 50	u64 position, block, rem;
 51	u8 *res;
 52
 53	/* We have already part of parity bytes read, skip to the next block */
 54	if (par_buf_offset)
 55		index++;
 56
 57	position = (index + rsb) * v->fec->roots;
 58	block = div64_u64_rem(position, v->fec->io_size, &rem);
 59	*offset = par_buf_offset ? 0 : (unsigned int)rem;
 60
 61	res = dm_bufio_read_with_ioprio(v->fec->bufio, block, buf, ioprio);
 62	if (IS_ERR(res)) {
 63		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
 64		      v->data_dev->name, (unsigned long long)rsb,
 65		      (unsigned long long)block, PTR_ERR(res));
 
 66		*buf = NULL;
 67	}
 68
 69	return res;
 70}
 71
 72/* Loop over each preallocated buffer slot. */
 73#define fec_for_each_prealloc_buffer(__i) \
 74	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
 75
 76/* Loop over each extra buffer slot. */
 77#define fec_for_each_extra_buffer(io, __i) \
 78	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
 79
 80/* Loop over each allocated buffer. */
 81#define fec_for_each_buffer(io, __i) \
 82	for (__i = 0; __i < (io)->nbufs; __i++)
 83
 84/* Loop over each RS block in each allocated buffer. */
 85#define fec_for_each_buffer_rs_block(io, __i, __j) \
 86	fec_for_each_buffer(io, __i) \
 87		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
 88
 89/*
 90 * Return a pointer to the current RS block when called inside
 91 * fec_for_each_buffer_rs_block.
 92 */
 93static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
 94				      struct dm_verity_fec_io *fio,
 95				      unsigned int i, unsigned int j)
 96{
 97	return &fio->bufs[i][j * v->fec->rsn];
 98}
 99
100/*
101 * Return an index to the current RS block when called inside
102 * fec_for_each_buffer_rs_block.
103 */
104static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j)
105{
106	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
107}
108
109/*
110 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
111 * starting from block_offset.
112 */
113static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_io *io,
114			   struct dm_verity_fec_io *fio, u64 rsb, int byte_index,
115			   unsigned int block_offset, int neras)
116{
117	int r, corrected = 0, res;
118	struct dm_buffer *buf;
119	unsigned int n, i, j, offset, par_buf_offset = 0;
120	uint16_t par_buf[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
121	u8 *par, *block;
122	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
123
124	par = fec_read_parity(v, rsb, block_offset, &offset,
125			      par_buf_offset, &buf, bio_prio(bio));
126	if (IS_ERR(par))
127		return PTR_ERR(par);
128
129	/*
130	 * Decode the RS blocks we have in bufs. Each RS block results in
131	 * one corrected target byte and consumes fec->roots parity bytes.
132	 */
133	fec_for_each_buffer_rs_block(fio, n, i) {
134		block = fec_buffer_rs_block(v, fio, n, i);
135		for (j = 0; j < v->fec->roots - par_buf_offset; j++)
136			par_buf[par_buf_offset + j] = par[offset + j];
137		/* Decode an RS block using Reed-Solomon */
138		res = decode_rs8(fio->rs, block, par_buf, v->fec->rsn,
139				 NULL, neras, fio->erasures, 0, NULL);
140		if (res < 0) {
141			r = res;
142			goto error;
143		}
144
145		corrected += res;
146		fio->output[block_offset] = block[byte_index];
147
148		block_offset++;
149		if (block_offset >= 1 << v->data_dev_block_bits)
150			goto done;
151
152		/* Read the next block when we run out of parity bytes */
153		offset += (v->fec->roots - par_buf_offset);
154		/* Check if parity bytes are split between blocks */
155		if (offset < v->fec->io_size && (offset + v->fec->roots) > v->fec->io_size) {
156			par_buf_offset = v->fec->io_size - offset;
157			for (j = 0; j < par_buf_offset; j++)
158				par_buf[j] = par[offset + j];
159			offset += par_buf_offset;
160		} else
161			par_buf_offset = 0;
162
163		if (offset >= v->fec->io_size) {
164			dm_bufio_release(buf);
165
166			par = fec_read_parity(v, rsb, block_offset, &offset,
167					      par_buf_offset, &buf, bio_prio(bio));
168			if (IS_ERR(par))
169				return PTR_ERR(par);
170		}
171	}
172done:
173	r = corrected;
174error:
175	dm_bufio_release(buf);
176
177	if (r < 0 && neras)
178		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
179			    v->data_dev->name, (unsigned long long)rsb, r);
180	else if (r > 0)
181		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
182			     v->data_dev->name, (unsigned long long)rsb, r);
183
184	return r;
185}
186
187/*
188 * Locate data block erasures using verity hashes.
189 */
190static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
191			  u8 *want_digest, u8 *data)
192{
193	if (unlikely(verity_hash(v, io, data, 1 << v->data_dev_block_bits,
194				 verity_io_real_digest(v, io), true)))
 
195		return 0;
196
197	return memcmp(verity_io_real_digest(v, io), want_digest,
198		      v->digest_size) != 0;
199}
200
201/*
202 * Read data blocks that are part of the RS block and deinterleave as much as
203 * fits into buffers. Check for erasure locations if @neras is non-NULL.
204 */
205static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
206			 u64 rsb, u64 target, unsigned int block_offset,
207			 int *neras)
208{
209	bool is_zero;
210	int i, j, target_index = -1;
211	struct dm_buffer *buf;
212	struct dm_bufio_client *bufio;
213	struct dm_verity_fec_io *fio = fec_io(io);
214	u64 block, ileaved;
215	u8 *bbuf, *rs_block;
216	u8 want_digest[HASH_MAX_DIGESTSIZE];
217	unsigned int n, k;
218	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
219
220	if (neras)
221		*neras = 0;
222
223	if (WARN_ON(v->digest_size > sizeof(want_digest)))
224		return -EINVAL;
225
226	/*
227	 * read each of the rsn data blocks that are part of the RS block, and
228	 * interleave contents to available bufs
229	 */
230	for (i = 0; i < v->fec->rsn; i++) {
231		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
232
233		/*
234		 * target is the data block we want to correct, target_index is
235		 * the index of this block within the rsn RS blocks
236		 */
237		if (ileaved == target)
238			target_index = i;
239
240		block = ileaved >> v->data_dev_block_bits;
241		bufio = v->fec->data_bufio;
242
243		if (block >= v->data_blocks) {
244			block -= v->data_blocks;
245
246			/*
247			 * blocks outside the area were assumed to contain
248			 * zeros when encoding data was generated
249			 */
250			if (unlikely(block >= v->fec->hash_blocks))
251				continue;
252
253			block += v->hash_start;
254			bufio = v->bufio;
255		}
256
257		bbuf = dm_bufio_read_with_ioprio(bufio, block, &buf, bio_prio(bio));
258		if (IS_ERR(bbuf)) {
259			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
260				     v->data_dev->name,
261				     (unsigned long long)rsb,
262				     (unsigned long long)block, PTR_ERR(bbuf));
263
264			/* assume the block is corrupted */
265			if (neras && *neras <= v->fec->roots)
266				fio->erasures[(*neras)++] = i;
267
268			continue;
269		}
270
271		/* locate erasures if the block is on the data device */
272		if (bufio == v->fec->data_bufio &&
273		    verity_hash_for_block(v, io, block, want_digest,
274					  &is_zero) == 0) {
275			/* skip known zero blocks entirely */
276			if (is_zero)
277				goto done;
278
279			/*
280			 * skip if we have already found the theoretical
281			 * maximum number (i.e. fec->roots) of erasures
282			 */
283			if (neras && *neras <= v->fec->roots &&
284			    fec_is_erasure(v, io, want_digest, bbuf))
285				fio->erasures[(*neras)++] = i;
286		}
287
288		/*
289		 * deinterleave and copy the bytes that fit into bufs,
290		 * starting from block_offset
291		 */
292		fec_for_each_buffer_rs_block(fio, n, j) {
293			k = fec_buffer_rs_index(n, j) + block_offset;
294
295			if (k >= 1 << v->data_dev_block_bits)
296				goto done;
297
298			rs_block = fec_buffer_rs_block(v, fio, n, j);
299			rs_block[i] = bbuf[k];
300		}
301done:
302		dm_bufio_release(buf);
303	}
304
305	return target_index;
306}
307
308/*
309 * Allocate RS control structure and FEC buffers from preallocated mempools,
310 * and attempt to allocate as many extra buffers as available.
311 */
312static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
313{
314	unsigned int n;
315
316	if (!fio->rs)
317		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
 
 
 
 
 
318
319	fec_for_each_prealloc_buffer(n) {
320		if (fio->bufs[n])
321			continue;
322
323		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
324		if (unlikely(!fio->bufs[n])) {
325			DMERR("failed to allocate FEC buffer");
326			return -ENOMEM;
327		}
328	}
329
330	/* try to allocate the maximum number of buffers */
331	fec_for_each_extra_buffer(fio, n) {
332		if (fio->bufs[n])
333			continue;
334
335		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
336		/* we can manage with even one buffer if necessary */
337		if (unlikely(!fio->bufs[n]))
338			break;
339	}
340	fio->nbufs = n;
341
342	if (!fio->output)
343		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
 
 
 
 
 
 
344
345	return 0;
346}
347
348/*
349 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
350 * zeroed before deinterleaving.
351 */
352static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
353{
354	unsigned int n;
355
356	fec_for_each_buffer(fio, n)
357		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
358
359	memset(fio->erasures, 0, sizeof(fio->erasures));
360}
361
362/*
363 * Decode all RS blocks in a single data block and return the target block
364 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
365 * hashes to locate erasures.
366 */
367static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
368			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
369			  bool use_erasures)
370{
371	int r, neras = 0;
372	unsigned int pos;
373
374	r = fec_alloc_bufs(v, fio);
375	if (unlikely(r < 0))
376		return r;
377
378	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
379		fec_init_bufs(v, fio);
380
381		r = fec_read_bufs(v, io, rsb, offset, pos,
382				  use_erasures ? &neras : NULL);
383		if (unlikely(r < 0))
384			return r;
385
386		r = fec_decode_bufs(v, io, fio, rsb, r, pos, neras);
387		if (r < 0)
388			return r;
389
390		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
391	}
392
393	/* Always re-validate the corrected block against the expected hash */
394	r = verity_hash(v, io, fio->output, 1 << v->data_dev_block_bits,
395			verity_io_real_digest(v, io), true);
 
396	if (unlikely(r < 0))
397		return r;
398
399	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
400		   v->digest_size)) {
401		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
402			    v->data_dev->name, (unsigned long long)rsb, neras);
403		return -EILSEQ;
404	}
405
406	return 0;
407}
408
409/* Correct errors in a block. Copies corrected block to dest. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
411		      enum verity_block_type type, sector_t block, u8 *dest)
 
412{
413	int r;
414	struct dm_verity_fec_io *fio = fec_io(io);
415	u64 offset, res, rsb;
416
417	if (!verity_fec_is_enabled(v))
418		return -EOPNOTSUPP;
419
420	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
421		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
422		return -EIO;
423	}
424
425	fio->level++;
426
427	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
428		block = block - v->hash_start + v->data_blocks;
429
430	/*
431	 * For RS(M, N), the continuous FEC data is divided into blocks of N
432	 * bytes. Since block size may not be divisible by N, the last block
433	 * is zero padded when decoding.
434	 *
435	 * Each byte of the block is covered by a different RS(M, N) code,
436	 * and each code is interleaved over N blocks to make it less likely
437	 * that bursty corruption will leave us in unrecoverable state.
438	 */
439
440	offset = block << v->data_dev_block_bits;
441	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
442
443	/*
444	 * The base RS block we can feed to the interleaver to find out all
445	 * blocks required for decoding.
446	 */
447	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
448
449	/*
450	 * Locating erasures is slow, so attempt to recover the block without
451	 * them first. Do a second attempt with erasures if the corruption is
452	 * bad enough.
453	 */
454	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
455	if (r < 0) {
456		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
457		if (r < 0)
458			goto done;
459	}
460
461	memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
 
 
 
 
 
462
463done:
464	fio->level--;
465	return r;
466}
467
468/*
469 * Clean up per-bio data.
470 */
471void verity_fec_finish_io(struct dm_verity_io *io)
472{
473	unsigned int n;
474	struct dm_verity_fec *f = io->v->fec;
475	struct dm_verity_fec_io *fio = fec_io(io);
476
477	if (!verity_fec_is_enabled(io->v))
478		return;
479
480	mempool_free(fio->rs, &f->rs_pool);
481
482	fec_for_each_prealloc_buffer(n)
483		mempool_free(fio->bufs[n], &f->prealloc_pool);
484
485	fec_for_each_extra_buffer(fio, n)
486		mempool_free(fio->bufs[n], &f->extra_pool);
487
488	mempool_free(fio->output, &f->output_pool);
489}
490
491/*
492 * Initialize per-bio data.
493 */
494void verity_fec_init_io(struct dm_verity_io *io)
495{
496	struct dm_verity_fec_io *fio = fec_io(io);
497
498	if (!verity_fec_is_enabled(io->v))
499		return;
500
501	fio->rs = NULL;
502	memset(fio->bufs, 0, sizeof(fio->bufs));
503	fio->nbufs = 0;
504	fio->output = NULL;
505	fio->level = 0;
506}
507
508/*
509 * Append feature arguments and values to the status table.
510 */
511unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
512				 char *result, unsigned int maxlen)
513{
514	if (!verity_fec_is_enabled(v))
515		return sz;
516
517	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
518	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
519	       DM_VERITY_OPT_FEC_START " %llu "
520	       DM_VERITY_OPT_FEC_ROOTS " %d",
521	       v->fec->dev->name,
522	       (unsigned long long)v->fec->blocks,
523	       (unsigned long long)v->fec->start,
524	       v->fec->roots);
525
526	return sz;
527}
528
529void verity_fec_dtr(struct dm_verity *v)
530{
531	struct dm_verity_fec *f = v->fec;
532
533	if (!verity_fec_is_enabled(v))
534		goto out;
535
536	mempool_exit(&f->rs_pool);
537	mempool_exit(&f->prealloc_pool);
538	mempool_exit(&f->extra_pool);
539	mempool_exit(&f->output_pool);
540	kmem_cache_destroy(f->cache);
541
542	if (f->data_bufio)
543		dm_bufio_client_destroy(f->data_bufio);
544	if (f->bufio)
545		dm_bufio_client_destroy(f->bufio);
546
547	if (f->dev)
548		dm_put_device(v->ti, f->dev);
549out:
550	kfree(f);
551	v->fec = NULL;
552}
553
554static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
555{
556	struct dm_verity *v = pool_data;
557
558	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
559}
560
561static void fec_rs_free(void *element, void *pool_data)
562{
563	struct rs_control *rs = element;
564
565	if (rs)
566		free_rs(rs);
567}
568
569bool verity_is_fec_opt_arg(const char *arg_name)
570{
571	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
572		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
573		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
574		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
575}
576
577int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
578			      unsigned int *argc, const char *arg_name)
579{
580	int r;
581	struct dm_target *ti = v->ti;
582	const char *arg_value;
583	unsigned long long num_ll;
584	unsigned char num_c;
585	char dummy;
586
587	if (!*argc) {
588		ti->error = "FEC feature arguments require a value";
589		return -EINVAL;
590	}
591
592	arg_value = dm_shift_arg(as);
593	(*argc)--;
594
595	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
596		r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev);
597		if (r) {
598			ti->error = "FEC device lookup failed";
599			return r;
600		}
601
602	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
603		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
604		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
605		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
606			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
607			return -EINVAL;
608		}
609		v->fec->blocks = num_ll;
610
611	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
612		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
613		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
614		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
615			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
616			return -EINVAL;
617		}
618		v->fec->start = num_ll;
619
620	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
621		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
622		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
623		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
624			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
625			return -EINVAL;
626		}
627		v->fec->roots = num_c;
628
629	} else {
630		ti->error = "Unrecognized verity FEC feature request";
631		return -EINVAL;
632	}
633
634	return 0;
635}
636
637/*
638 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
639 */
640int verity_fec_ctr_alloc(struct dm_verity *v)
641{
642	struct dm_verity_fec *f;
643
644	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
645	if (!f) {
646		v->ti->error = "Cannot allocate FEC structure";
647		return -ENOMEM;
648	}
649	v->fec = f;
650
651	return 0;
652}
653
654/*
655 * Validate arguments and preallocate memory. Must be called after arguments
656 * have been parsed using verity_fec_parse_opt_args.
657 */
658int verity_fec_ctr(struct dm_verity *v)
659{
660	struct dm_verity_fec *f = v->fec;
661	struct dm_target *ti = v->ti;
662	u64 hash_blocks, fec_blocks;
663	int ret;
664
665	if (!verity_fec_is_enabled(v)) {
666		verity_fec_dtr(v);
667		return 0;
668	}
669
670	/*
671	 * FEC is computed over data blocks, possible metadata, and
672	 * hash blocks. In other words, FEC covers total of fec_blocks
673	 * blocks consisting of the following:
674	 *
675	 *  data blocks | hash blocks | metadata (optional)
676	 *
677	 * We allow metadata after hash blocks to support a use case
678	 * where all data is stored on the same device and FEC covers
679	 * the entire area.
680	 *
681	 * If metadata is included, we require it to be available on the
682	 * hash device after the hash blocks.
683	 */
684
685	hash_blocks = v->hash_blocks - v->hash_start;
686
687	/*
688	 * Require matching block sizes for data and hash devices for
689	 * simplicity.
690	 */
691	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
692		ti->error = "Block sizes must match to use FEC";
693		return -EINVAL;
694	}
695
696	if (!f->roots) {
697		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
698		return -EINVAL;
699	}
700	f->rsn = DM_VERITY_FEC_RSM - f->roots;
701
702	if (!f->blocks) {
703		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
704		return -EINVAL;
705	}
706
707	f->rounds = f->blocks;
708	if (sector_div(f->rounds, f->rsn))
709		f->rounds++;
710
711	/*
712	 * Due to optional metadata, f->blocks can be larger than
713	 * data_blocks and hash_blocks combined.
714	 */
715	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
716		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
717		return -EINVAL;
718	}
719
720	/*
721	 * Metadata is accessed through the hash device, so we require
722	 * it to be large enough.
723	 */
724	f->hash_blocks = f->blocks - v->data_blocks;
725	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
726		ti->error = "Hash device is too small for "
727			DM_VERITY_OPT_FEC_BLOCKS;
728		return -E2BIG;
729	}
730
731	f->io_size = 1 << v->data_dev_block_bits;
732
733	f->bufio = dm_bufio_client_create(f->dev->bdev,
734					  f->io_size,
735					  1, 0, NULL, NULL, 0);
736	if (IS_ERR(f->bufio)) {
737		ti->error = "Cannot initialize FEC bufio client";
738		return PTR_ERR(f->bufio);
739	}
740
741	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
742
743	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
744	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
745		ti->error = "FEC device is too small";
746		return -E2BIG;
747	}
748
749	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
750					       1 << v->data_dev_block_bits,
751					       1, 0, NULL, NULL, 0);
752	if (IS_ERR(f->data_bufio)) {
753		ti->error = "Cannot initialize FEC data bufio client";
754		return PTR_ERR(f->data_bufio);
755	}
756
757	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
758		ti->error = "Data device is too small";
759		return -E2BIG;
760	}
761
762	/* Preallocate an rs_control structure for each worker thread */
763	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
764			   fec_rs_free, (void *) v);
765	if (ret) {
766		ti->error = "Cannot allocate RS pool";
767		return ret;
768	}
769
770	f->cache = kmem_cache_create("dm_verity_fec_buffers",
771				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
772				     0, 0, NULL);
773	if (!f->cache) {
774		ti->error = "Cannot create FEC buffer cache";
775		return -ENOMEM;
776	}
777
778	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
779	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
780				     DM_VERITY_FEC_BUF_PREALLOC,
781				     f->cache);
782	if (ret) {
783		ti->error = "Cannot allocate FEC buffer prealloc pool";
784		return ret;
785	}
786
787	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
788	if (ret) {
789		ti->error = "Cannot allocate FEC buffer extra pool";
790		return ret;
791	}
792
793	/* Preallocate an output buffer for each thread */
794	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
795					1 << v->data_dev_block_bits);
796	if (ret) {
797		ti->error = "Cannot allocate FEC output pool";
798		return ret;
799	}
800
801	/* Reserve space for our per-bio data */
802	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
803
804	return 0;
805}
v4.10.11
 
  1/*
  2 * Copyright (C) 2015 Google, Inc.
  3 *
  4 * Author: Sami Tolvanen <samitolvanen@google.com>
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License as published by the Free
  8 * Software Foundation; either version 2 of the License, or (at your option)
  9 * any later version.
 10 */
 11
 12#include "dm-verity-fec.h"
 13#include <linux/math64.h>
 14
 15#define DM_MSG_PREFIX	"verity-fec"
 16
 17/*
 18 * If error correction has been configured, returns true.
 19 */
 20bool verity_fec_is_enabled(struct dm_verity *v)
 21{
 22	return v->fec && v->fec->dev;
 23}
 24
 25/*
 26 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
 27 * length fields.
 28 */
 29static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
 30{
 31	return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
 
 32}
 33
 34/*
 35 * Return an interleaved offset for a byte in RS block.
 36 */
 37static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
 38{
 39	u32 mod;
 40
 41	mod = do_div(offset, v->fec->rsn);
 42	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
 43}
 44
 45/*
 46 * Decode an RS block using Reed-Solomon.
 47 */
 48static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
 49			  u8 *data, u8 *fec, int neras)
 50{
 51	int i;
 52	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
 53
 54	for (i = 0; i < v->fec->roots; i++)
 55		par[i] = fec[i];
 56
 57	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
 58			  fio->erasures, 0, NULL);
 59}
 60
 61/*
 62 * Read error-correcting codes for the requested RS block. Returns a pointer
 63 * to the data block. Caller is responsible for releasing buf.
 64 */
 65static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
 66			   unsigned *offset, struct dm_buffer **buf)
 
 67{
 68	u64 position, block;
 69	u8 *res;
 70
 
 
 
 
 71	position = (index + rsb) * v->fec->roots;
 72	block = position >> v->data_dev_block_bits;
 73	*offset = (unsigned)(position - (block << v->data_dev_block_bits));
 74
 75	res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
 76	if (unlikely(IS_ERR(res))) {
 77		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
 78		      v->data_dev->name, (unsigned long long)rsb,
 79		      (unsigned long long)(v->fec->start + block),
 80		      PTR_ERR(res));
 81		*buf = NULL;
 82	}
 83
 84	return res;
 85}
 86
 87/* Loop over each preallocated buffer slot. */
 88#define fec_for_each_prealloc_buffer(__i) \
 89	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
 90
 91/* Loop over each extra buffer slot. */
 92#define fec_for_each_extra_buffer(io, __i) \
 93	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
 94
 95/* Loop over each allocated buffer. */
 96#define fec_for_each_buffer(io, __i) \
 97	for (__i = 0; __i < (io)->nbufs; __i++)
 98
 99/* Loop over each RS block in each allocated buffer. */
100#define fec_for_each_buffer_rs_block(io, __i, __j) \
101	fec_for_each_buffer(io, __i) \
102		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
103
104/*
105 * Return a pointer to the current RS block when called inside
106 * fec_for_each_buffer_rs_block.
107 */
108static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
109				      struct dm_verity_fec_io *fio,
110				      unsigned i, unsigned j)
111{
112	return &fio->bufs[i][j * v->fec->rsn];
113}
114
115/*
116 * Return an index to the current RS block when called inside
117 * fec_for_each_buffer_rs_block.
118 */
119static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
120{
121	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
122}
123
124/*
125 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
126 * starting from block_offset.
127 */
128static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
129			   u64 rsb, int byte_index, unsigned block_offset,
130			   int neras)
131{
132	int r, corrected = 0, res;
133	struct dm_buffer *buf;
134	unsigned n, i, offset;
 
135	u8 *par, *block;
 
136
137	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
 
138	if (IS_ERR(par))
139		return PTR_ERR(par);
140
141	/*
142	 * Decode the RS blocks we have in bufs. Each RS block results in
143	 * one corrected target byte and consumes fec->roots parity bytes.
144	 */
145	fec_for_each_buffer_rs_block(fio, n, i) {
146		block = fec_buffer_rs_block(v, fio, n, i);
147		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
 
 
 
 
148		if (res < 0) {
149			r = res;
150			goto error;
151		}
152
153		corrected += res;
154		fio->output[block_offset] = block[byte_index];
155
156		block_offset++;
157		if (block_offset >= 1 << v->data_dev_block_bits)
158			goto done;
159
160		/* read the next block when we run out of parity bytes */
161		offset += v->fec->roots;
162		if (offset >= 1 << v->data_dev_block_bits) {
 
 
 
 
 
 
 
 
 
163			dm_bufio_release(buf);
164
165			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
166			if (unlikely(IS_ERR(par)))
 
167				return PTR_ERR(par);
168		}
169	}
170done:
171	r = corrected;
172error:
173	dm_bufio_release(buf);
174
175	if (r < 0 && neras)
176		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
177			    v->data_dev->name, (unsigned long long)rsb, r);
178	else if (r > 0)
179		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
180			     v->data_dev->name, (unsigned long long)rsb, r);
181
182	return r;
183}
184
185/*
186 * Locate data block erasures using verity hashes.
187 */
188static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
189			  u8 *want_digest, u8 *data)
190{
191	if (unlikely(verity_hash(v, verity_io_hash_desc(v, io),
192				 data, 1 << v->data_dev_block_bits,
193				 verity_io_real_digest(v, io))))
194		return 0;
195
196	return memcmp(verity_io_real_digest(v, io), want_digest,
197		      v->digest_size) != 0;
198}
199
200/*
201 * Read data blocks that are part of the RS block and deinterleave as much as
202 * fits into buffers. Check for erasure locations if @neras is non-NULL.
203 */
204static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
205			 u64 rsb, u64 target, unsigned block_offset,
206			 int *neras)
207{
208	bool is_zero;
209	int i, j, target_index = -1;
210	struct dm_buffer *buf;
211	struct dm_bufio_client *bufio;
212	struct dm_verity_fec_io *fio = fec_io(io);
213	u64 block, ileaved;
214	u8 *bbuf, *rs_block;
215	u8 want_digest[v->digest_size];
216	unsigned n, k;
 
217
218	if (neras)
219		*neras = 0;
220
 
 
 
221	/*
222	 * read each of the rsn data blocks that are part of the RS block, and
223	 * interleave contents to available bufs
224	 */
225	for (i = 0; i < v->fec->rsn; i++) {
226		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
227
228		/*
229		 * target is the data block we want to correct, target_index is
230		 * the index of this block within the rsn RS blocks
231		 */
232		if (ileaved == target)
233			target_index = i;
234
235		block = ileaved >> v->data_dev_block_bits;
236		bufio = v->fec->data_bufio;
237
238		if (block >= v->data_blocks) {
239			block -= v->data_blocks;
240
241			/*
242			 * blocks outside the area were assumed to contain
243			 * zeros when encoding data was generated
244			 */
245			if (unlikely(block >= v->fec->hash_blocks))
246				continue;
247
248			block += v->hash_start;
249			bufio = v->bufio;
250		}
251
252		bbuf = dm_bufio_read(bufio, block, &buf);
253		if (unlikely(IS_ERR(bbuf))) {
254			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
255				     v->data_dev->name,
256				     (unsigned long long)rsb,
257				     (unsigned long long)block, PTR_ERR(bbuf));
258
259			/* assume the block is corrupted */
260			if (neras && *neras <= v->fec->roots)
261				fio->erasures[(*neras)++] = i;
262
263			continue;
264		}
265
266		/* locate erasures if the block is on the data device */
267		if (bufio == v->fec->data_bufio &&
268		    verity_hash_for_block(v, io, block, want_digest,
269					  &is_zero) == 0) {
270			/* skip known zero blocks entirely */
271			if (is_zero)
272				goto done;
273
274			/*
275			 * skip if we have already found the theoretical
276			 * maximum number (i.e. fec->roots) of erasures
277			 */
278			if (neras && *neras <= v->fec->roots &&
279			    fec_is_erasure(v, io, want_digest, bbuf))
280				fio->erasures[(*neras)++] = i;
281		}
282
283		/*
284		 * deinterleave and copy the bytes that fit into bufs,
285		 * starting from block_offset
286		 */
287		fec_for_each_buffer_rs_block(fio, n, j) {
288			k = fec_buffer_rs_index(n, j) + block_offset;
289
290			if (k >= 1 << v->data_dev_block_bits)
291				goto done;
292
293			rs_block = fec_buffer_rs_block(v, fio, n, j);
294			rs_block[i] = bbuf[k];
295		}
296done:
297		dm_bufio_release(buf);
298	}
299
300	return target_index;
301}
302
303/*
304 * Allocate RS control structure and FEC buffers from preallocated mempools,
305 * and attempt to allocate as many extra buffers as available.
306 */
307static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
308{
309	unsigned n;
310
311	if (!fio->rs) {
312		fio->rs = mempool_alloc(v->fec->rs_pool, 0);
313		if (unlikely(!fio->rs)) {
314			DMERR("failed to allocate RS");
315			return -ENOMEM;
316		}
317	}
318
319	fec_for_each_prealloc_buffer(n) {
320		if (fio->bufs[n])
321			continue;
322
323		fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOIO);
324		if (unlikely(!fio->bufs[n])) {
325			DMERR("failed to allocate FEC buffer");
326			return -ENOMEM;
327		}
328	}
329
330	/* try to allocate the maximum number of buffers */
331	fec_for_each_extra_buffer(fio, n) {
332		if (fio->bufs[n])
333			continue;
334
335		fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOIO);
336		/* we can manage with even one buffer if necessary */
337		if (unlikely(!fio->bufs[n]))
338			break;
339	}
340	fio->nbufs = n;
341
342	if (!fio->output) {
343		fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
344
345		if (!fio->output) {
346			DMERR("failed to allocate FEC page");
347			return -ENOMEM;
348		}
349	}
350
351	return 0;
352}
353
354/*
355 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
356 * zeroed before deinterleaving.
357 */
358static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
359{
360	unsigned n;
361
362	fec_for_each_buffer(fio, n)
363		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
364
365	memset(fio->erasures, 0, sizeof(fio->erasures));
366}
367
368/*
369 * Decode all RS blocks in a single data block and return the target block
370 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
371 * hashes to locate erasures.
372 */
373static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
374			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
375			  bool use_erasures)
376{
377	int r, neras = 0;
378	unsigned pos;
379
380	r = fec_alloc_bufs(v, fio);
381	if (unlikely(r < 0))
382		return r;
383
384	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
385		fec_init_bufs(v, fio);
386
387		r = fec_read_bufs(v, io, rsb, offset, pos,
388				  use_erasures ? &neras : NULL);
389		if (unlikely(r < 0))
390			return r;
391
392		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
393		if (r < 0)
394			return r;
395
396		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
397	}
398
399	/* Always re-validate the corrected block against the expected hash */
400	r = verity_hash(v, verity_io_hash_desc(v, io), fio->output,
401			1 << v->data_dev_block_bits,
402			verity_io_real_digest(v, io));
403	if (unlikely(r < 0))
404		return r;
405
406	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
407		   v->digest_size)) {
408		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
409			    v->data_dev->name, (unsigned long long)rsb, neras);
410		return -EILSEQ;
411	}
412
413	return 0;
414}
415
416static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
417		       size_t len)
418{
419	struct dm_verity_fec_io *fio = fec_io(io);
420
421	memcpy(data, &fio->output[fio->output_pos], len);
422	fio->output_pos += len;
423
424	return 0;
425}
426
427/*
428 * Correct errors in a block. Copies corrected block to dest if non-NULL,
429 * otherwise to a bio_vec starting from iter.
430 */
431int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
432		      enum verity_block_type type, sector_t block, u8 *dest,
433		      struct bvec_iter *iter)
434{
435	int r;
436	struct dm_verity_fec_io *fio = fec_io(io);
437	u64 offset, res, rsb;
438
439	if (!verity_fec_is_enabled(v))
440		return -EOPNOTSUPP;
441
442	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
443		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
444		return -EIO;
445	}
446
447	fio->level++;
448
449	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
450		block += v->data_blocks;
451
452	/*
453	 * For RS(M, N), the continuous FEC data is divided into blocks of N
454	 * bytes. Since block size may not be divisible by N, the last block
455	 * is zero padded when decoding.
456	 *
457	 * Each byte of the block is covered by a different RS(M, N) code,
458	 * and each code is interleaved over N blocks to make it less likely
459	 * that bursty corruption will leave us in unrecoverable state.
460	 */
461
462	offset = block << v->data_dev_block_bits;
463	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
464
465	/*
466	 * The base RS block we can feed to the interleaver to find out all
467	 * blocks required for decoding.
468	 */
469	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
470
471	/*
472	 * Locating erasures is slow, so attempt to recover the block without
473	 * them first. Do a second attempt with erasures if the corruption is
474	 * bad enough.
475	 */
476	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
477	if (r < 0) {
478		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
479		if (r < 0)
480			goto done;
481	}
482
483	if (dest)
484		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
485	else if (iter) {
486		fio->output_pos = 0;
487		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
488	}
489
490done:
491	fio->level--;
492	return r;
493}
494
495/*
496 * Clean up per-bio data.
497 */
498void verity_fec_finish_io(struct dm_verity_io *io)
499{
500	unsigned n;
501	struct dm_verity_fec *f = io->v->fec;
502	struct dm_verity_fec_io *fio = fec_io(io);
503
504	if (!verity_fec_is_enabled(io->v))
505		return;
506
507	mempool_free(fio->rs, f->rs_pool);
508
509	fec_for_each_prealloc_buffer(n)
510		mempool_free(fio->bufs[n], f->prealloc_pool);
511
512	fec_for_each_extra_buffer(fio, n)
513		mempool_free(fio->bufs[n], f->extra_pool);
514
515	mempool_free(fio->output, f->output_pool);
516}
517
518/*
519 * Initialize per-bio data.
520 */
521void verity_fec_init_io(struct dm_verity_io *io)
522{
523	struct dm_verity_fec_io *fio = fec_io(io);
524
525	if (!verity_fec_is_enabled(io->v))
526		return;
527
528	fio->rs = NULL;
529	memset(fio->bufs, 0, sizeof(fio->bufs));
530	fio->nbufs = 0;
531	fio->output = NULL;
532	fio->level = 0;
533}
534
535/*
536 * Append feature arguments and values to the status table.
537 */
538unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
539				 char *result, unsigned maxlen)
540{
541	if (!verity_fec_is_enabled(v))
542		return sz;
543
544	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
545	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
546	       DM_VERITY_OPT_FEC_START " %llu "
547	       DM_VERITY_OPT_FEC_ROOTS " %d",
548	       v->fec->dev->name,
549	       (unsigned long long)v->fec->blocks,
550	       (unsigned long long)v->fec->start,
551	       v->fec->roots);
552
553	return sz;
554}
555
556void verity_fec_dtr(struct dm_verity *v)
557{
558	struct dm_verity_fec *f = v->fec;
559
560	if (!verity_fec_is_enabled(v))
561		goto out;
562
563	mempool_destroy(f->rs_pool);
564	mempool_destroy(f->prealloc_pool);
565	mempool_destroy(f->extra_pool);
 
566	kmem_cache_destroy(f->cache);
567
568	if (f->data_bufio)
569		dm_bufio_client_destroy(f->data_bufio);
570	if (f->bufio)
571		dm_bufio_client_destroy(f->bufio);
572
573	if (f->dev)
574		dm_put_device(v->ti, f->dev);
575out:
576	kfree(f);
577	v->fec = NULL;
578}
579
580static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
581{
582	struct dm_verity *v = (struct dm_verity *)pool_data;
583
584	return init_rs(8, 0x11d, 0, 1, v->fec->roots);
585}
586
587static void fec_rs_free(void *element, void *pool_data)
588{
589	struct rs_control *rs = (struct rs_control *)element;
590
591	if (rs)
592		free_rs(rs);
593}
594
595bool verity_is_fec_opt_arg(const char *arg_name)
596{
597	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
598		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
599		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
600		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
601}
602
603int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
604			      unsigned *argc, const char *arg_name)
605{
606	int r;
607	struct dm_target *ti = v->ti;
608	const char *arg_value;
609	unsigned long long num_ll;
610	unsigned char num_c;
611	char dummy;
612
613	if (!*argc) {
614		ti->error = "FEC feature arguments require a value";
615		return -EINVAL;
616	}
617
618	arg_value = dm_shift_arg(as);
619	(*argc)--;
620
621	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
622		r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
623		if (r) {
624			ti->error = "FEC device lookup failed";
625			return r;
626		}
627
628	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
629		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
630		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
631		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
632			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
633			return -EINVAL;
634		}
635		v->fec->blocks = num_ll;
636
637	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
638		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
639		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
640		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
641			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
642			return -EINVAL;
643		}
644		v->fec->start = num_ll;
645
646	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
647		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
648		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
649		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
650			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
651			return -EINVAL;
652		}
653		v->fec->roots = num_c;
654
655	} else {
656		ti->error = "Unrecognized verity FEC feature request";
657		return -EINVAL;
658	}
659
660	return 0;
661}
662
663/*
664 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
665 */
666int verity_fec_ctr_alloc(struct dm_verity *v)
667{
668	struct dm_verity_fec *f;
669
670	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
671	if (!f) {
672		v->ti->error = "Cannot allocate FEC structure";
673		return -ENOMEM;
674	}
675	v->fec = f;
676
677	return 0;
678}
679
680/*
681 * Validate arguments and preallocate memory. Must be called after arguments
682 * have been parsed using verity_fec_parse_opt_args.
683 */
684int verity_fec_ctr(struct dm_verity *v)
685{
686	struct dm_verity_fec *f = v->fec;
687	struct dm_target *ti = v->ti;
688	u64 hash_blocks;
 
689
690	if (!verity_fec_is_enabled(v)) {
691		verity_fec_dtr(v);
692		return 0;
693	}
694
695	/*
696	 * FEC is computed over data blocks, possible metadata, and
697	 * hash blocks. In other words, FEC covers total of fec_blocks
698	 * blocks consisting of the following:
699	 *
700	 *  data blocks | hash blocks | metadata (optional)
701	 *
702	 * We allow metadata after hash blocks to support a use case
703	 * where all data is stored on the same device and FEC covers
704	 * the entire area.
705	 *
706	 * If metadata is included, we require it to be available on the
707	 * hash device after the hash blocks.
708	 */
709
710	hash_blocks = v->hash_blocks - v->hash_start;
711
712	/*
713	 * Require matching block sizes for data and hash devices for
714	 * simplicity.
715	 */
716	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
717		ti->error = "Block sizes must match to use FEC";
718		return -EINVAL;
719	}
720
721	if (!f->roots) {
722		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
723		return -EINVAL;
724	}
725	f->rsn = DM_VERITY_FEC_RSM - f->roots;
726
727	if (!f->blocks) {
728		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
729		return -EINVAL;
730	}
731
732	f->rounds = f->blocks;
733	if (sector_div(f->rounds, f->rsn))
734		f->rounds++;
735
736	/*
737	 * Due to optional metadata, f->blocks can be larger than
738	 * data_blocks and hash_blocks combined.
739	 */
740	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
741		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
742		return -EINVAL;
743	}
744
745	/*
746	 * Metadata is accessed through the hash device, so we require
747	 * it to be large enough.
748	 */
749	f->hash_blocks = f->blocks - v->data_blocks;
750	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
751		ti->error = "Hash device is too small for "
752			DM_VERITY_OPT_FEC_BLOCKS;
753		return -E2BIG;
754	}
755
 
 
756	f->bufio = dm_bufio_client_create(f->dev->bdev,
757					  1 << v->data_dev_block_bits,
758					  1, 0, NULL, NULL);
759	if (IS_ERR(f->bufio)) {
760		ti->error = "Cannot initialize FEC bufio client";
761		return PTR_ERR(f->bufio);
762	}
763
764	if (dm_bufio_get_device_size(f->bufio) <
765	    ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
 
 
766		ti->error = "FEC device is too small";
767		return -E2BIG;
768	}
769
770	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
771					       1 << v->data_dev_block_bits,
772					       1, 0, NULL, NULL);
773	if (IS_ERR(f->data_bufio)) {
774		ti->error = "Cannot initialize FEC data bufio client";
775		return PTR_ERR(f->data_bufio);
776	}
777
778	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
779		ti->error = "Data device is too small";
780		return -E2BIG;
781	}
782
783	/* Preallocate an rs_control structure for each worker thread */
784	f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
785				    fec_rs_free, (void *) v);
786	if (!f->rs_pool) {
787		ti->error = "Cannot allocate RS pool";
788		return -ENOMEM;
789	}
790
791	f->cache = kmem_cache_create("dm_verity_fec_buffers",
792				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
793				     0, 0, NULL);
794	if (!f->cache) {
795		ti->error = "Cannot create FEC buffer cache";
796		return -ENOMEM;
797	}
798
799	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
800	f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
801						    DM_VERITY_FEC_BUF_PREALLOC,
802						    f->cache);
803	if (!f->prealloc_pool) {
804		ti->error = "Cannot allocate FEC buffer prealloc pool";
805		return -ENOMEM;
806	}
807
808	f->extra_pool = mempool_create_slab_pool(0, f->cache);
809	if (!f->extra_pool) {
810		ti->error = "Cannot allocate FEC buffer extra pool";
811		return -ENOMEM;
812	}
813
814	/* Preallocate an output buffer for each thread */
815	f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
816						     1 << v->data_dev_block_bits);
817	if (!f->output_pool) {
818		ti->error = "Cannot allocate FEC output pool";
819		return -ENOMEM;
820	}
821
822	/* Reserve space for our per-bio data */
823	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
824
825	return 0;
826}