Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * cs_dsp.c  --  Cirrus Logic DSP firmware support
   4 *
   5 * Based on sound/soc/codecs/wm_adsp.c
   6 *
   7 * Copyright 2012 Wolfson Microelectronics plc
   8 * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
   9 *                         Cirrus Logic International Semiconductor Ltd.
  10 */
  11
  12#include <linux/ctype.h>
  13#include <linux/debugfs.h>
  14#include <linux/delay.h>
  15#include <linux/minmax.h>
  16#include <linux/module.h>
  17#include <linux/moduleparam.h>
  18#include <linux/seq_file.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#include <linux/firmware/cirrus/cs_dsp.h>
  23#include <linux/firmware/cirrus/wmfw.h>
  24
  25#define cs_dsp_err(_dsp, fmt, ...) \
  26	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
  27#define cs_dsp_warn(_dsp, fmt, ...) \
  28	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
  29#define cs_dsp_info(_dsp, fmt, ...) \
  30	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
  31#define cs_dsp_dbg(_dsp, fmt, ...) \
  32	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
  33
  34#define ADSP1_CONTROL_1                   0x00
  35#define ADSP1_CONTROL_2                   0x02
  36#define ADSP1_CONTROL_3                   0x03
  37#define ADSP1_CONTROL_4                   0x04
  38#define ADSP1_CONTROL_5                   0x06
  39#define ADSP1_CONTROL_6                   0x07
  40#define ADSP1_CONTROL_7                   0x08
  41#define ADSP1_CONTROL_8                   0x09
  42#define ADSP1_CONTROL_9                   0x0A
  43#define ADSP1_CONTROL_10                  0x0B
  44#define ADSP1_CONTROL_11                  0x0C
  45#define ADSP1_CONTROL_12                  0x0D
  46#define ADSP1_CONTROL_13                  0x0F
  47#define ADSP1_CONTROL_14                  0x10
  48#define ADSP1_CONTROL_15                  0x11
  49#define ADSP1_CONTROL_16                  0x12
  50#define ADSP1_CONTROL_17                  0x13
  51#define ADSP1_CONTROL_18                  0x14
  52#define ADSP1_CONTROL_19                  0x16
  53#define ADSP1_CONTROL_20                  0x17
  54#define ADSP1_CONTROL_21                  0x18
  55#define ADSP1_CONTROL_22                  0x1A
  56#define ADSP1_CONTROL_23                  0x1B
  57#define ADSP1_CONTROL_24                  0x1C
  58#define ADSP1_CONTROL_25                  0x1E
  59#define ADSP1_CONTROL_26                  0x20
  60#define ADSP1_CONTROL_27                  0x21
  61#define ADSP1_CONTROL_28                  0x22
  62#define ADSP1_CONTROL_29                  0x23
  63#define ADSP1_CONTROL_30                  0x24
  64#define ADSP1_CONTROL_31                  0x26
  65
  66/*
  67 * ADSP1 Control 19
  68 */
  69#define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
  70#define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
  71#define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
  72
  73/*
  74 * ADSP1 Control 30
  75 */
  76#define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
  77#define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
  78#define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
  79#define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
  80#define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
  81#define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
  82#define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
  83#define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
  84#define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
  85#define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
  86#define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
  87#define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
  88#define ADSP1_START                       0x0001  /* DSP1_START */
  89#define ADSP1_START_MASK                  0x0001  /* DSP1_START */
  90#define ADSP1_START_SHIFT                      0  /* DSP1_START */
  91#define ADSP1_START_WIDTH                      1  /* DSP1_START */
  92
  93/*
  94 * ADSP1 Control 31
  95 */
  96#define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
  97#define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
  98#define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
  99
 100#define ADSP2_CONTROL                     0x0
 101#define ADSP2_CLOCKING                    0x1
 102#define ADSP2V2_CLOCKING                  0x2
 103#define ADSP2_STATUS1                     0x4
 104#define ADSP2_WDMA_CONFIG_1               0x30
 105#define ADSP2_WDMA_CONFIG_2               0x31
 106#define ADSP2V2_WDMA_CONFIG_2             0x32
 107#define ADSP2_RDMA_CONFIG_1               0x34
 108
 109#define ADSP2_SCRATCH0                    0x40
 110#define ADSP2_SCRATCH1                    0x41
 111#define ADSP2_SCRATCH2                    0x42
 112#define ADSP2_SCRATCH3                    0x43
 113
 114#define ADSP2V2_SCRATCH0_1                0x40
 115#define ADSP2V2_SCRATCH2_3                0x42
 116
 117/*
 118 * ADSP2 Control
 119 */
 120#define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
 121#define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
 122#define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
 123#define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
 124#define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
 125#define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
 126#define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
 127#define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
 128#define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
 129#define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
 130#define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
 131#define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
 132#define ADSP2_START                       0x0001  /* DSP1_START */
 133#define ADSP2_START_MASK                  0x0001  /* DSP1_START */
 134#define ADSP2_START_SHIFT                      0  /* DSP1_START */
 135#define ADSP2_START_WIDTH                      1  /* DSP1_START */
 136
 137/*
 138 * ADSP2 clocking
 139 */
 140#define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
 141#define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
 142#define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
 143
 144/*
 145 * ADSP2V2 clocking
 146 */
 147#define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
 148#define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
 149#define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
 150
 151#define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
 152#define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
 153#define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
 154
 155/*
 156 * ADSP2 Status 1
 157 */
 158#define ADSP2_RAM_RDY                     0x0001
 159#define ADSP2_RAM_RDY_MASK                0x0001
 160#define ADSP2_RAM_RDY_SHIFT                    0
 161#define ADSP2_RAM_RDY_WIDTH                    1
 162
 163/*
 164 * ADSP2 Lock support
 165 */
 166#define ADSP2_LOCK_CODE_0                    0x5555
 167#define ADSP2_LOCK_CODE_1                    0xAAAA
 168
 169#define ADSP2_WATCHDOG                       0x0A
 170#define ADSP2_BUS_ERR_ADDR                   0x52
 171#define ADSP2_REGION_LOCK_STATUS             0x64
 172#define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
 173#define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
 174#define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
 175#define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
 176#define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
 177#define ADSP2_LOCK_REGION_CTRL               0x7A
 178#define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
 179
 180#define ADSP2_REGION_LOCK_ERR_MASK           0x8000
 181#define ADSP2_ADDR_ERR_MASK                  0x4000
 182#define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
 183#define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
 184#define ADSP2_CTRL_ERR_EINT                  0x0001
 185
 186#define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
 187#define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
 188#define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
 189#define ADSP2_PMEM_ERR_ADDR_SHIFT            16
 190#define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
 191
 192#define ADSP2_LOCK_REGION_SHIFT              16
 193
 194/*
 195 * Event control messages
 196 */
 197#define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
 198
 199/*
 200 * HALO system info
 201 */
 202#define HALO_AHBM_WINDOW_DEBUG_0             0x02040
 203#define HALO_AHBM_WINDOW_DEBUG_1             0x02044
 204
 205/*
 206 * HALO core
 207 */
 208#define HALO_SCRATCH1                        0x005c0
 209#define HALO_SCRATCH2                        0x005c8
 210#define HALO_SCRATCH3                        0x005d0
 211#define HALO_SCRATCH4                        0x005d8
 212#define HALO_CCM_CORE_CONTROL                0x41000
 213#define HALO_CORE_SOFT_RESET                 0x00010
 214#define HALO_WDT_CONTROL                     0x47000
 215
 216/*
 217 * HALO MPU banks
 218 */
 219#define HALO_MPU_XMEM_ACCESS_0               0x43000
 220#define HALO_MPU_YMEM_ACCESS_0               0x43004
 221#define HALO_MPU_WINDOW_ACCESS_0             0x43008
 222#define HALO_MPU_XREG_ACCESS_0               0x4300C
 223#define HALO_MPU_YREG_ACCESS_0               0x43014
 224#define HALO_MPU_XMEM_ACCESS_1               0x43018
 225#define HALO_MPU_YMEM_ACCESS_1               0x4301C
 226#define HALO_MPU_WINDOW_ACCESS_1             0x43020
 227#define HALO_MPU_XREG_ACCESS_1               0x43024
 228#define HALO_MPU_YREG_ACCESS_1               0x4302C
 229#define HALO_MPU_XMEM_ACCESS_2               0x43030
 230#define HALO_MPU_YMEM_ACCESS_2               0x43034
 231#define HALO_MPU_WINDOW_ACCESS_2             0x43038
 232#define HALO_MPU_XREG_ACCESS_2               0x4303C
 233#define HALO_MPU_YREG_ACCESS_2               0x43044
 234#define HALO_MPU_XMEM_ACCESS_3               0x43048
 235#define HALO_MPU_YMEM_ACCESS_3               0x4304C
 236#define HALO_MPU_WINDOW_ACCESS_3             0x43050
 237#define HALO_MPU_XREG_ACCESS_3               0x43054
 238#define HALO_MPU_YREG_ACCESS_3               0x4305C
 239#define HALO_MPU_XM_VIO_ADDR                 0x43100
 240#define HALO_MPU_XM_VIO_STATUS               0x43104
 241#define HALO_MPU_YM_VIO_ADDR                 0x43108
 242#define HALO_MPU_YM_VIO_STATUS               0x4310C
 243#define HALO_MPU_PM_VIO_ADDR                 0x43110
 244#define HALO_MPU_PM_VIO_STATUS               0x43114
 245#define HALO_MPU_LOCK_CONFIG                 0x43140
 246
 247/*
 248 * HALO_AHBM_WINDOW_DEBUG_1
 249 */
 250#define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
 251#define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
 252#define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
 253
 254/*
 255 * HALO_CCM_CORE_CONTROL
 256 */
 257#define HALO_CORE_RESET                     0x00000200
 258#define HALO_CORE_EN                        0x00000001
 259
 260/*
 261 * HALO_CORE_SOFT_RESET
 262 */
 263#define HALO_CORE_SOFT_RESET_MASK           0x00000001
 264
 265/*
 266 * HALO_WDT_CONTROL
 267 */
 268#define HALO_WDT_EN_MASK                    0x00000001
 269
 270/*
 271 * HALO_MPU_?M_VIO_STATUS
 272 */
 273#define HALO_MPU_VIO_STS_MASK               0x007e0000
 274#define HALO_MPU_VIO_STS_SHIFT                      17
 275#define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
 276#define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
 277#define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
 278
 279/*
 280 * Write Sequence
 281 */
 282#define WSEQ_OP_MAX_WORDS	3
 283#define WSEQ_END_OF_SCRIPT	0xFFFFFF
 284
 285struct cs_dsp_ops {
 286	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
 287	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
 288				    const char * const file,
 289				    unsigned int pos,
 290				    const struct firmware *firmware);
 291	int (*setup_algs)(struct cs_dsp *dsp);
 292	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
 293				      unsigned int offset);
 294
 295	void (*show_fw_status)(struct cs_dsp *dsp);
 296	void (*stop_watchdog)(struct cs_dsp *dsp);
 297
 298	int (*enable_memory)(struct cs_dsp *dsp);
 299	void (*disable_memory)(struct cs_dsp *dsp);
 300	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
 301
 302	int (*enable_core)(struct cs_dsp *dsp);
 303	void (*disable_core)(struct cs_dsp *dsp);
 304
 305	int (*start_core)(struct cs_dsp *dsp);
 306	void (*stop_core)(struct cs_dsp *dsp);
 307};
 308
 309static const struct cs_dsp_ops cs_dsp_adsp1_ops;
 310static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
 311static const struct cs_dsp_ops cs_dsp_halo_ops;
 312static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
 313
 314struct cs_dsp_buf {
 315	struct list_head list;
 316	void *buf;
 317};
 318
 319static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
 320					   struct list_head *list)
 321{
 322	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
 323
 324	if (buf == NULL)
 325		return NULL;
 326
 327	buf->buf = vmalloc(len);
 328	if (!buf->buf) {
 329		kfree(buf);
 330		return NULL;
 331	}
 332	memcpy(buf->buf, src, len);
 333
 334	if (list)
 335		list_add_tail(&buf->list, list);
 336
 337	return buf;
 338}
 339
 340static void cs_dsp_buf_free(struct list_head *list)
 341{
 342	while (!list_empty(list)) {
 343		struct cs_dsp_buf *buf = list_first_entry(list,
 344							  struct cs_dsp_buf,
 345							  list);
 346		list_del(&buf->list);
 347		vfree(buf->buf);
 348		kfree(buf);
 349	}
 350}
 351
 352/**
 353 * cs_dsp_mem_region_name() - Return a name string for a memory type
 354 * @type: the memory type to match
 355 *
 356 * Return: A const string identifying the memory region.
 357 */
 358const char *cs_dsp_mem_region_name(unsigned int type)
 359{
 360	switch (type) {
 361	case WMFW_ADSP1_PM:
 362		return "PM";
 363	case WMFW_HALO_PM_PACKED:
 364		return "PM_PACKED";
 365	case WMFW_ADSP1_DM:
 366		return "DM";
 367	case WMFW_ADSP2_XM:
 368		return "XM";
 369	case WMFW_HALO_XM_PACKED:
 370		return "XM_PACKED";
 371	case WMFW_ADSP2_YM:
 372		return "YM";
 373	case WMFW_HALO_YM_PACKED:
 374		return "YM_PACKED";
 375	case WMFW_ADSP1_ZM:
 376		return "ZM";
 377	default:
 378		return NULL;
 379	}
 380}
 381EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, "FW_CS_DSP");
 382
 383#ifdef CONFIG_DEBUG_FS
 384static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
 385{
 386	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
 387
 388	kfree(dsp->wmfw_file_name);
 389	dsp->wmfw_file_name = tmp;
 390}
 391
 392static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
 393{
 394	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
 395
 396	kfree(dsp->bin_file_name);
 397	dsp->bin_file_name = tmp;
 398}
 399
 400static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
 401{
 402	kfree(dsp->wmfw_file_name);
 403	kfree(dsp->bin_file_name);
 404	dsp->wmfw_file_name = NULL;
 405	dsp->bin_file_name = NULL;
 406}
 407
 408static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
 409					char __user *user_buf,
 410					size_t count, loff_t *ppos)
 411{
 412	struct cs_dsp *dsp = file->private_data;
 413	ssize_t ret;
 414
 415	mutex_lock(&dsp->pwr_lock);
 416
 417	if (!dsp->wmfw_file_name || !dsp->booted)
 418		ret = 0;
 419	else
 420		ret = simple_read_from_buffer(user_buf, count, ppos,
 421					      dsp->wmfw_file_name,
 422					      strlen(dsp->wmfw_file_name));
 423
 424	mutex_unlock(&dsp->pwr_lock);
 425	return ret;
 426}
 427
 428static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
 429				       char __user *user_buf,
 430				       size_t count, loff_t *ppos)
 431{
 432	struct cs_dsp *dsp = file->private_data;
 433	ssize_t ret;
 434
 435	mutex_lock(&dsp->pwr_lock);
 436
 437	if (!dsp->bin_file_name || !dsp->booted)
 438		ret = 0;
 439	else
 440		ret = simple_read_from_buffer(user_buf, count, ppos,
 441					      dsp->bin_file_name,
 442					      strlen(dsp->bin_file_name));
 443
 444	mutex_unlock(&dsp->pwr_lock);
 445	return ret;
 446}
 447
 448static const struct {
 449	const char *name;
 450	const struct file_operations fops;
 451} cs_dsp_debugfs_fops[] = {
 452	{
 453		.name = "wmfw_file_name",
 454		.fops = {
 455			.open = simple_open,
 456			.read = cs_dsp_debugfs_wmfw_read,
 457		},
 458	},
 459	{
 460		.name = "bin_file_name",
 461		.fops = {
 462			.open = simple_open,
 463			.read = cs_dsp_debugfs_bin_read,
 464		},
 465	},
 466};
 467
 468static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
 469				 unsigned int off);
 470
 471static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
 472{
 473	struct cs_dsp *dsp = s->private;
 474	struct cs_dsp_coeff_ctl *ctl;
 475	unsigned int reg;
 476
 477	list_for_each_entry(ctl, &dsp->ctl_list, list) {
 478		cs_dsp_coeff_base_reg(ctl, &reg, 0);
 479		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
 480			   ctl->subname_len, ctl->subname, ctl->len,
 481			   cs_dsp_mem_region_name(ctl->alg_region.type),
 482			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
 483			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
 484			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
 485			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
 486			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
 487			   ctl->enabled ? "enabled" : "disabled",
 488			   ctl->set ? "dirty" : "clean");
 489	}
 490
 491	return 0;
 492}
 493DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
 494
 495/**
 496 * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
 497 * @dsp: pointer to DSP structure
 498 * @debugfs_root: pointer to debugfs directory in which to create this DSP
 499 *                representation
 500 */
 501void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
 502{
 503	struct dentry *root = NULL;
 504	int i;
 505
 506	root = debugfs_create_dir(dsp->name, debugfs_root);
 507
 508	debugfs_create_bool("booted", 0444, root, &dsp->booted);
 509	debugfs_create_bool("running", 0444, root, &dsp->running);
 510	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
 511	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
 512
 513	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
 514		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
 515				    dsp, &cs_dsp_debugfs_fops[i].fops);
 516
 517	debugfs_create_file("controls", 0444, root, dsp,
 518			    &cs_dsp_debugfs_read_controls_fops);
 519
 520	dsp->debugfs_root = root;
 521}
 522EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
 523
 524/**
 525 * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
 526 * @dsp: pointer to DSP structure
 527 */
 528void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
 529{
 530	cs_dsp_debugfs_clear(dsp);
 531	debugfs_remove_recursive(dsp->debugfs_root);
 532	dsp->debugfs_root = ERR_PTR(-ENODEV);
 533}
 534EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
 535#else
 536void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
 537{
 538}
 539EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
 540
 541void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
 542{
 543}
 544EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
 545
 546static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
 547						const char *s)
 548{
 549}
 550
 551static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
 552					       const char *s)
 553{
 554}
 555
 556static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
 557{
 558}
 559#endif
 560
 561static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
 562						      int type)
 563{
 564	int i;
 565
 566	for (i = 0; i < dsp->num_mems; i++)
 567		if (dsp->mem[i].type == type)
 568			return &dsp->mem[i];
 569
 570	return NULL;
 571}
 572
 573static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
 574					 unsigned int offset)
 575{
 576	switch (mem->type) {
 577	case WMFW_ADSP1_PM:
 578		return mem->base + (offset * 3);
 579	case WMFW_ADSP1_DM:
 580	case WMFW_ADSP2_XM:
 581	case WMFW_ADSP2_YM:
 582	case WMFW_ADSP1_ZM:
 583		return mem->base + (offset * 2);
 584	default:
 585		WARN(1, "Unknown memory region type");
 586		return offset;
 587	}
 588}
 589
 590static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
 591					      unsigned int offset)
 592{
 593	switch (mem->type) {
 594	case WMFW_ADSP2_XM:
 595	case WMFW_ADSP2_YM:
 596		return mem->base + (offset * 4);
 597	case WMFW_HALO_XM_PACKED:
 598	case WMFW_HALO_YM_PACKED:
 599		return (mem->base + (offset * 3)) & ~0x3;
 600	case WMFW_HALO_PM_PACKED:
 601		return mem->base + (offset * 5);
 602	default:
 603		WARN(1, "Unknown memory region type");
 604		return offset;
 605	}
 606}
 607
 608static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
 609				  int noffs, unsigned int *offs)
 610{
 611	unsigned int i;
 612	int ret;
 613
 614	for (i = 0; i < noffs; ++i) {
 615		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
 616		if (ret) {
 617			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
 618			return;
 619		}
 620	}
 621}
 622
 623static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
 624{
 625	unsigned int offs[] = {
 626		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
 627	};
 628
 629	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
 630
 631	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
 632		   offs[0], offs[1], offs[2], offs[3]);
 633}
 634
 635static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
 636{
 637	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
 638
 639	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
 640
 641	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
 642		   offs[0] & 0xFFFF, offs[0] >> 16,
 643		   offs[1] & 0xFFFF, offs[1] >> 16);
 644}
 645
 646static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
 647{
 648	unsigned int offs[] = {
 649		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
 650	};
 651
 652	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
 653
 654	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
 655		   offs[0], offs[1], offs[2], offs[3]);
 656}
 657
 658static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
 659				 unsigned int off)
 660{
 661	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
 662	struct cs_dsp *dsp = ctl->dsp;
 663	const struct cs_dsp_region *mem;
 664
 665	mem = cs_dsp_find_region(dsp, alg_region->type);
 666	if (!mem) {
 667		cs_dsp_err(dsp, "No base for region %x\n",
 668			   alg_region->type);
 669		return -EINVAL;
 670	}
 671
 672	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
 673
 674	return 0;
 675}
 676
 677/**
 678 * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
 679 * @ctl: pointer to acked coefficient control
 680 * @event_id: the value to write to the given acked control
 681 *
 682 * Once the value has been written to the control the function shall block
 683 * until the running firmware acknowledges the write or timeout is exceeded.
 684 *
 685 * Must be called with pwr_lock held.
 686 *
 687 * Return: Zero for success, a negative number on error.
 688 */
 689int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
 690{
 691	struct cs_dsp *dsp = ctl->dsp;
 692	__be32 val = cpu_to_be32(event_id);
 693	unsigned int reg;
 694	int i, ret;
 695
 696	lockdep_assert_held(&dsp->pwr_lock);
 697
 698	if (!dsp->running)
 699		return -EPERM;
 700
 701	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
 702	if (ret)
 703		return ret;
 704
 705	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
 706		   event_id, ctl->alg_region.alg,
 707		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
 708
 709	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
 710	if (ret) {
 711		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
 712		return ret;
 713	}
 714
 715	/*
 716	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
 717	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
 718	 * to ack instantly so we do the first 1ms delay before reading the
 719	 * control to avoid a pointless bus transaction
 720	 */
 721	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
 722		switch (i) {
 723		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
 724			usleep_range(1000, 2000);
 725			i++;
 726			break;
 727		default:
 728			usleep_range(10000, 20000);
 729			i += 10;
 730			break;
 731		}
 732
 733		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
 734		if (ret) {
 735			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
 736			return ret;
 737		}
 738
 739		if (val == 0) {
 740			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
 741			return 0;
 742		}
 743	}
 744
 745	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
 746		    reg, ctl->alg_region.alg,
 747		    cs_dsp_mem_region_name(ctl->alg_region.type),
 748		    ctl->offset);
 749
 750	return -ETIMEDOUT;
 751}
 752EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, "FW_CS_DSP");
 753
 754static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
 755				       unsigned int off, const void *buf, size_t len)
 756{
 757	struct cs_dsp *dsp = ctl->dsp;
 758	void *scratch;
 759	int ret;
 760	unsigned int reg;
 761
 762	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
 763	if (ret)
 764		return ret;
 765
 766	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
 767	if (!scratch)
 768		return -ENOMEM;
 769
 770	ret = regmap_raw_write(dsp->regmap, reg, scratch,
 771			       len);
 772	if (ret) {
 773		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
 774			   len, reg, ret);
 775		kfree(scratch);
 776		return ret;
 777	}
 778	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
 779
 780	kfree(scratch);
 781
 782	return 0;
 783}
 784
 785/**
 786 * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
 787 * @ctl: pointer to coefficient control
 788 * @off: word offset at which data should be written
 789 * @buf: the buffer to write to the given control
 790 * @len: the length of the buffer in bytes
 791 *
 792 * Must be called with pwr_lock held.
 793 *
 794 * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
 795 */
 796int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
 797			    unsigned int off, const void *buf, size_t len)
 798{
 799	int ret = 0;
 800
 801	if (!ctl)
 802		return -ENOENT;
 803
 804	lockdep_assert_held(&ctl->dsp->pwr_lock);
 805
 806	if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
 807		return -EPERM;
 808
 809	if (len + off * sizeof(u32) > ctl->len)
 810		return -EINVAL;
 811
 812	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
 813		ret = -EPERM;
 814	} else if (buf != ctl->cache) {
 815		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
 816			memcpy(ctl->cache + off * sizeof(u32), buf, len);
 817		else
 818			return 0;
 819	}
 820
 821	ctl->set = 1;
 822	if (ctl->enabled && ctl->dsp->running)
 823		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
 824
 825	if (ret < 0)
 826		return ret;
 827
 828	return 1;
 829}
 830EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, "FW_CS_DSP");
 831
 832/**
 833 * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
 834 * @ctl: pointer to coefficient control
 835 * @off: word offset at which data should be written
 836 * @buf: the buffer to write to the given control
 837 * @len: the length of the buffer in bytes
 838 *
 839 * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
 840 *
 841 * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
 842 */
 843int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
 844				     unsigned int off, const void *buf, size_t len)
 845{
 846	struct cs_dsp *dsp = ctl->dsp;
 847	int ret;
 848
 849	lockdep_assert_not_held(&dsp->pwr_lock);
 850
 851	mutex_lock(&dsp->pwr_lock);
 852	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
 853	mutex_unlock(&dsp->pwr_lock);
 854
 855	return ret;
 856}
 857EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
 858
 859static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
 860				      unsigned int off, void *buf, size_t len)
 861{
 862	struct cs_dsp *dsp = ctl->dsp;
 863	void *scratch;
 864	int ret;
 865	unsigned int reg;
 866
 867	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
 868	if (ret)
 869		return ret;
 870
 871	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
 872	if (!scratch)
 873		return -ENOMEM;
 874
 875	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
 876	if (ret) {
 877		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
 878			   len, reg, ret);
 879		kfree(scratch);
 880		return ret;
 881	}
 882	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
 883
 884	memcpy(buf, scratch, len);
 885	kfree(scratch);
 886
 887	return 0;
 888}
 889
 890/**
 891 * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
 892 * @ctl: pointer to coefficient control
 893 * @off: word offset at which data should be read
 894 * @buf: the buffer to store to the given control
 895 * @len: the length of the buffer in bytes
 896 *
 897 * Must be called with pwr_lock held.
 898 *
 899 * Return: Zero for success, a negative number on error.
 900 */
 901int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
 902			   unsigned int off, void *buf, size_t len)
 903{
 904	int ret = 0;
 905
 906	if (!ctl)
 907		return -ENOENT;
 908
 909	lockdep_assert_held(&ctl->dsp->pwr_lock);
 910
 911	if (len + off * sizeof(u32) > ctl->len)
 912		return -EINVAL;
 913
 914	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
 915		if (ctl->enabled && ctl->dsp->running)
 916			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
 917		else
 918			return -EPERM;
 919	} else {
 920		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
 921			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
 922
 923		if (buf != ctl->cache)
 924			memcpy(buf, ctl->cache + off * sizeof(u32), len);
 925	}
 926
 927	return ret;
 928}
 929EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, "FW_CS_DSP");
 930
 931/**
 932 * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
 933 * @ctl: pointer to coefficient control
 934 * @off: word offset at which data should be read
 935 * @buf: the buffer to store to the given control
 936 * @len: the length of the buffer in bytes
 937 *
 938 * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
 939 *
 940 * Return: Zero for success, a negative number on error.
 941 */
 942int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
 943				    unsigned int off, void *buf, size_t len)
 944{
 945	struct cs_dsp *dsp = ctl->dsp;
 946	int ret;
 947
 948	lockdep_assert_not_held(&dsp->pwr_lock);
 949
 950	mutex_lock(&dsp->pwr_lock);
 951	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
 952	mutex_unlock(&dsp->pwr_lock);
 953
 954	return ret;
 955}
 956EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
 957
 958static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
 959{
 960	struct cs_dsp_coeff_ctl *ctl;
 961	int ret;
 962
 963	list_for_each_entry(ctl, &dsp->ctl_list, list) {
 964		if (!ctl->enabled || ctl->set)
 965			continue;
 966		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
 967			continue;
 968
 969		/*
 970		 * For readable controls populate the cache from the DSP memory.
 971		 * For non-readable controls the cache was zero-filled when
 972		 * created so we don't need to do anything.
 973		 */
 974		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
 975			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
 976			if (ret < 0)
 977				return ret;
 978		}
 979	}
 980
 981	return 0;
 982}
 983
 984static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
 985{
 986	struct cs_dsp_coeff_ctl *ctl;
 987	int ret;
 988
 989	list_for_each_entry(ctl, &dsp->ctl_list, list) {
 990		if (!ctl->enabled)
 991			continue;
 992		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
 993			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
 994							  ctl->len);
 995			if (ret < 0)
 996				return ret;
 997		}
 998	}
 999
1000	return 0;
1001}
1002
1003static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
1004					 unsigned int event)
1005{
1006	struct cs_dsp_coeff_ctl *ctl;
1007	int ret;
1008
1009	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1010		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1011			continue;
1012
1013		if (!ctl->enabled)
1014			continue;
1015
1016		ret = cs_dsp_coeff_write_acked_control(ctl, event);
1017		if (ret)
1018			cs_dsp_warn(dsp,
1019				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
1020				    event, ctl->alg_region.alg, ret);
1021	}
1022}
1023
1024static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1025{
1026	kfree(ctl->cache);
1027	kfree(ctl->subname);
1028	kfree(ctl);
1029}
1030
1031static int cs_dsp_create_control(struct cs_dsp *dsp,
1032				 const struct cs_dsp_alg_region *alg_region,
1033				 unsigned int offset, unsigned int len,
1034				 const char *subname, unsigned int subname_len,
1035				 unsigned int flags, unsigned int type)
1036{
1037	struct cs_dsp_coeff_ctl *ctl;
1038	int ret;
1039
1040	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1041		if (ctl->fw_name == dsp->fw_name &&
1042		    ctl->alg_region.alg == alg_region->alg &&
1043		    ctl->alg_region.type == alg_region->type) {
1044			if ((!subname && !ctl->subname) ||
1045			    (subname && (ctl->subname_len == subname_len) &&
1046			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1047				if (!ctl->enabled)
1048					ctl->enabled = 1;
1049				return 0;
1050			}
1051		}
1052	}
1053
1054	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1055	if (!ctl)
1056		return -ENOMEM;
1057
1058	ctl->fw_name = dsp->fw_name;
1059	ctl->alg_region = *alg_region;
1060	if (subname && dsp->wmfw_ver >= 2) {
1061		ctl->subname_len = subname_len;
1062		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1063		if (!ctl->subname) {
1064			ret = -ENOMEM;
1065			goto err_ctl;
1066		}
1067	}
1068	ctl->enabled = 1;
1069	ctl->set = 0;
1070	ctl->dsp = dsp;
1071
1072	ctl->flags = flags;
1073	ctl->type = type;
1074	ctl->offset = offset;
1075	ctl->len = len;
1076	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1077	if (!ctl->cache) {
1078		ret = -ENOMEM;
1079		goto err_ctl_subname;
1080	}
1081
1082	list_add(&ctl->list, &dsp->ctl_list);
1083
1084	if (dsp->client_ops->control_add) {
1085		ret = dsp->client_ops->control_add(ctl);
1086		if (ret)
1087			goto err_list_del;
1088	}
1089
1090	return 0;
1091
1092err_list_del:
1093	list_del(&ctl->list);
1094	kfree(ctl->cache);
1095err_ctl_subname:
1096	kfree(ctl->subname);
1097err_ctl:
1098	kfree(ctl);
1099
1100	return ret;
1101}
1102
1103struct cs_dsp_coeff_parsed_alg {
1104	int id;
1105	const u8 *name;
1106	int name_len;
1107	int ncoeff;
1108};
1109
1110struct cs_dsp_coeff_parsed_coeff {
1111	int offset;
1112	int mem_type;
1113	const u8 *name;
1114	int name_len;
1115	unsigned int ctl_type;
1116	int flags;
1117	int len;
1118};
1119
1120static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1121				     const u8 **str)
1122{
1123	int length, total_field_len;
1124
1125	/* String fields are at least one __le32 */
1126	if (sizeof(__le32) > avail) {
1127		*pos = NULL;
1128		return 0;
1129	}
1130
1131	switch (bytes) {
1132	case 1:
1133		length = **pos;
1134		break;
1135	case 2:
1136		length = le16_to_cpu(*((__le16 *)*pos));
1137		break;
1138	default:
1139		return 0;
1140	}
1141
1142	total_field_len = ((length + bytes) + 3) & ~0x03;
1143	if ((unsigned int)total_field_len > avail) {
1144		*pos = NULL;
1145		return 0;
1146	}
1147
1148	if (str)
1149		*str = *pos + bytes;
1150
1151	*pos += total_field_len;
1152
1153	return length;
1154}
1155
1156static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1157{
1158	int val = 0;
1159
1160	switch (bytes) {
1161	case 2:
1162		val = le16_to_cpu(*((__le16 *)*pos));
1163		break;
1164	case 4:
1165		val = le32_to_cpu(*((__le32 *)*pos));
1166		break;
1167	default:
1168		break;
1169	}
1170
1171	*pos += bytes;
1172
1173	return val;
1174}
1175
1176static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1177				  const struct wmfw_region *region,
1178				  struct cs_dsp_coeff_parsed_alg *blk)
1179{
1180	const struct wmfw_adsp_alg_data *raw;
1181	unsigned int data_len = le32_to_cpu(region->len);
1182	unsigned int pos;
1183	const u8 *tmp;
1184
1185	raw = (const struct wmfw_adsp_alg_data *)region->data;
1186
1187	switch (dsp->wmfw_ver) {
1188	case 0:
1189	case 1:
1190		if (sizeof(*raw) > data_len)
1191			return -EOVERFLOW;
1192
1193		blk->id = le32_to_cpu(raw->id);
1194		blk->name = raw->name;
1195		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1196		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1197
1198		pos = sizeof(*raw);
1199		break;
1200	default:
1201		if (sizeof(raw->id) > data_len)
1202			return -EOVERFLOW;
1203
1204		tmp = region->data;
1205		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1206		pos = tmp - region->data;
1207
1208		tmp = &region->data[pos];
1209		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1210							  &blk->name);
1211		if (!tmp)
1212			return -EOVERFLOW;
1213
1214		pos = tmp - region->data;
1215		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1216		if (!tmp)
1217			return -EOVERFLOW;
1218
1219		pos = tmp - region->data;
1220		if (sizeof(raw->ncoeff) > (data_len - pos))
1221			return -EOVERFLOW;
1222
1223		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1224		pos += sizeof(raw->ncoeff);
1225		break;
1226	}
1227
1228	if ((int)blk->ncoeff < 0)
1229		return -EOVERFLOW;
1230
1231	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1232	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1233	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1234
1235	return pos;
1236}
1237
1238static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1239				    const struct wmfw_region *region,
1240				    unsigned int pos,
1241				    struct cs_dsp_coeff_parsed_coeff *blk)
1242{
1243	const struct wmfw_adsp_coeff_data *raw;
1244	unsigned int data_len = le32_to_cpu(region->len);
1245	unsigned int blk_len, blk_end_pos;
1246	const u8 *tmp;
1247
1248	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1249	if (sizeof(raw->hdr) > (data_len - pos))
1250		return -EOVERFLOW;
1251
1252	blk_len = le32_to_cpu(raw->hdr.size);
1253	if (blk_len > S32_MAX)
1254		return -EOVERFLOW;
1255
1256	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1257		return -EOVERFLOW;
1258
1259	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1260
1261	blk->offset = le16_to_cpu(raw->hdr.offset);
1262	blk->mem_type = le16_to_cpu(raw->hdr.type);
1263
1264	switch (dsp->wmfw_ver) {
1265	case 0:
1266	case 1:
1267		if (sizeof(*raw) > (data_len - pos))
1268			return -EOVERFLOW;
1269
1270		blk->name = raw->name;
1271		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1272		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1273		blk->flags = le16_to_cpu(raw->flags);
1274		blk->len = le32_to_cpu(raw->len);
1275		break;
1276	default:
1277		pos += sizeof(raw->hdr);
1278		tmp = &region->data[pos];
1279		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1280							  &blk->name);
1281		if (!tmp)
1282			return -EOVERFLOW;
1283
1284		pos = tmp - region->data;
1285		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1286		if (!tmp)
1287			return -EOVERFLOW;
1288
1289		pos = tmp - region->data;
1290		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1291		if (!tmp)
1292			return -EOVERFLOW;
1293
1294		pos = tmp - region->data;
1295		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1296		    (data_len - pos))
1297			return -EOVERFLOW;
1298
1299		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1300		pos += sizeof(raw->ctl_type);
1301		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1302		pos += sizeof(raw->flags);
1303		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1304		break;
1305	}
1306
1307	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1308	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1309	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1310	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1311	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1312	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1313
1314	return blk_end_pos;
1315}
1316
1317static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1318				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1319				    unsigned int f_required,
1320				    unsigned int f_illegal)
1321{
1322	if ((coeff_blk->flags & f_illegal) ||
1323	    ((coeff_blk->flags & f_required) != f_required)) {
1324		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1325			   coeff_blk->flags, coeff_blk->ctl_type);
1326		return -EINVAL;
1327	}
1328
1329	return 0;
1330}
1331
1332static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1333			      const struct wmfw_region *region)
1334{
1335	struct cs_dsp_alg_region alg_region = {};
1336	struct cs_dsp_coeff_parsed_alg alg_blk;
1337	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1338	int i, pos, ret;
1339
1340	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1341	if (pos < 0)
1342		return pos;
1343
1344	for (i = 0; i < alg_blk.ncoeff; i++) {
1345		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1346		if (pos < 0)
1347			return pos;
1348
1349		switch (coeff_blk.ctl_type) {
1350		case WMFW_CTL_TYPE_BYTES:
1351			break;
1352		case WMFW_CTL_TYPE_ACKED:
1353			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1354				continue;	/* ignore */
1355
1356			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1357						       WMFW_CTL_FLAG_VOLATILE |
1358						       WMFW_CTL_FLAG_WRITEABLE |
1359						       WMFW_CTL_FLAG_READABLE,
1360						       0);
1361			if (ret)
1362				return -EINVAL;
1363			break;
1364		case WMFW_CTL_TYPE_HOSTEVENT:
1365		case WMFW_CTL_TYPE_FWEVENT:
1366			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1367						       WMFW_CTL_FLAG_SYS |
1368						       WMFW_CTL_FLAG_VOLATILE |
1369						       WMFW_CTL_FLAG_WRITEABLE |
1370						       WMFW_CTL_FLAG_READABLE,
1371						       0);
1372			if (ret)
1373				return -EINVAL;
1374			break;
1375		case WMFW_CTL_TYPE_HOST_BUFFER:
1376			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1377						       WMFW_CTL_FLAG_SYS |
1378						       WMFW_CTL_FLAG_VOLATILE |
1379						       WMFW_CTL_FLAG_READABLE,
1380						       0);
1381			if (ret)
1382				return -EINVAL;
1383			break;
1384		default:
1385			cs_dsp_err(dsp, "Unknown control type: %d\n",
1386				   coeff_blk.ctl_type);
1387			return -EINVAL;
1388		}
1389
1390		alg_region.type = coeff_blk.mem_type;
1391		alg_region.alg = alg_blk.id;
1392
1393		ret = cs_dsp_create_control(dsp, &alg_region,
1394					    coeff_blk.offset,
1395					    coeff_blk.len,
1396					    coeff_blk.name,
1397					    coeff_blk.name_len,
1398					    coeff_blk.flags,
1399					    coeff_blk.ctl_type);
1400		if (ret < 0)
1401			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1402				   coeff_blk.name_len, coeff_blk.name, ret);
1403	}
1404
1405	return 0;
1406}
1407
1408static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1409					     const char * const file,
1410					     unsigned int pos,
1411					     const struct firmware *firmware)
1412{
1413	const struct wmfw_adsp1_sizes *adsp1_sizes;
1414
1415	adsp1_sizes = (void *)&firmware->data[pos];
1416	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1417		cs_dsp_err(dsp, "%s: file truncated\n", file);
1418		return 0;
1419	}
1420
1421	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1422		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1423		   le32_to_cpu(adsp1_sizes->zm));
1424
1425	return pos + sizeof(*adsp1_sizes);
1426}
1427
1428static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1429					     const char * const file,
1430					     unsigned int pos,
1431					     const struct firmware *firmware)
1432{
1433	const struct wmfw_adsp2_sizes *adsp2_sizes;
1434
1435	adsp2_sizes = (void *)&firmware->data[pos];
1436	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1437		cs_dsp_err(dsp, "%s: file truncated\n", file);
1438		return 0;
1439	}
1440
1441	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1442		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1443		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1444
1445	return pos + sizeof(*adsp2_sizes);
1446}
1447
1448static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1449{
1450	switch (version) {
1451	case 0:
1452		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1453		return true;
1454	case 1:
1455	case 2:
1456		return true;
1457	default:
1458		return false;
1459	}
1460}
1461
1462static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1463{
1464	switch (version) {
1465	case 3:
1466		return true;
1467	default:
1468		return false;
1469	}
1470}
1471
1472static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1473		       const char *file)
1474{
1475	LIST_HEAD(buf_list);
1476	struct regmap *regmap = dsp->regmap;
1477	unsigned int pos = 0;
1478	const struct wmfw_header *header;
1479	const struct wmfw_footer *footer;
1480	const struct wmfw_region *region;
1481	const struct cs_dsp_region *mem;
1482	const char *region_name;
1483	struct cs_dsp_buf *buf;
1484	unsigned int reg;
1485	int regions = 0;
1486	int ret, offset, type;
1487
1488	if (!firmware)
1489		return 0;
1490
1491	ret = -EINVAL;
1492
1493	if (sizeof(*header) >= firmware->size) {
1494		ret = -EOVERFLOW;
1495		goto out_fw;
1496	}
1497
1498	header = (void *)&firmware->data[0];
1499
1500	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1501		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1502		goto out_fw;
1503	}
1504
1505	if (!dsp->ops->validate_version(dsp, header->ver)) {
1506		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1507			   file, header->ver);
1508		goto out_fw;
1509	}
1510
1511	dsp->wmfw_ver = header->ver;
1512
1513	if (header->core != dsp->type) {
1514		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1515			   file, header->core, dsp->type);
1516		goto out_fw;
1517	}
1518
1519	pos = sizeof(*header);
1520	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1521	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1522		ret = -EOVERFLOW;
1523		goto out_fw;
1524	}
1525
1526	footer = (void *)&firmware->data[pos];
1527	pos += sizeof(*footer);
1528
1529	if (le32_to_cpu(header->len) != pos) {
1530		ret = -EOVERFLOW;
1531		goto out_fw;
1532	}
1533
1534	cs_dsp_info(dsp, "%s: format %d timestamp %#llx\n", file, header->ver,
1535		    le64_to_cpu(footer->timestamp));
1536
1537	while (pos < firmware->size) {
1538		/* Is there enough data for a complete block header? */
1539		if (sizeof(*region) > firmware->size - pos) {
1540			ret = -EOVERFLOW;
1541			goto out_fw;
1542		}
1543
1544		region = (void *)&(firmware->data[pos]);
1545
1546		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1547			ret = -EOVERFLOW;
1548			goto out_fw;
1549		}
1550
1551		region_name = "Unknown";
1552		reg = 0;
1553		offset = le32_to_cpu(region->offset) & 0xffffff;
1554		type = be32_to_cpu(region->type) & 0xff;
1555
1556		switch (type) {
1557		case WMFW_INFO_TEXT:
1558		case WMFW_NAME_TEXT:
1559			region_name = "Info/Name";
1560			cs_dsp_info(dsp, "%s: %.*s\n", file,
1561				    min(le32_to_cpu(region->len), 100), region->data);
1562			break;
1563		case WMFW_ALGORITHM_DATA:
1564			region_name = "Algorithm";
1565			ret = cs_dsp_parse_coeff(dsp, region);
1566			if (ret != 0)
1567				goto out_fw;
1568			break;
1569		case WMFW_ABSOLUTE:
1570			region_name = "Absolute";
1571			reg = offset;
1572			break;
1573		case WMFW_ADSP1_PM:
1574		case WMFW_ADSP1_DM:
1575		case WMFW_ADSP2_XM:
1576		case WMFW_ADSP2_YM:
1577		case WMFW_ADSP1_ZM:
1578		case WMFW_HALO_PM_PACKED:
1579		case WMFW_HALO_XM_PACKED:
1580		case WMFW_HALO_YM_PACKED:
1581			mem = cs_dsp_find_region(dsp, type);
1582			if (!mem) {
1583				cs_dsp_err(dsp, "No region of type: %x\n", type);
1584				ret = -EINVAL;
1585				goto out_fw;
1586			}
1587
1588			region_name = cs_dsp_mem_region_name(type);
1589			reg = dsp->ops->region_to_reg(mem, offset);
1590			break;
1591		default:
1592			cs_dsp_warn(dsp,
1593				    "%s.%d: Unknown region type %x at %d(%x)\n",
1594				    file, regions, type, pos, pos);
1595			break;
1596		}
1597
1598		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1599			   regions, le32_to_cpu(region->len), offset,
1600			   region_name);
1601
1602		if (reg) {
1603			buf = cs_dsp_buf_alloc(region->data,
1604					       le32_to_cpu(region->len),
1605					       &buf_list);
1606			if (!buf) {
1607				cs_dsp_err(dsp, "Out of memory\n");
1608				ret = -ENOMEM;
1609				goto out_fw;
1610			}
1611
1612			ret = regmap_raw_write(regmap, reg, buf->buf,
1613					       le32_to_cpu(region->len));
1614			if (ret != 0) {
1615				cs_dsp_err(dsp,
1616					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1617					   file, regions,
1618					   le32_to_cpu(region->len), offset,
1619					   region_name, ret);
1620				goto out_fw;
1621			}
1622		}
1623
1624		pos += le32_to_cpu(region->len) + sizeof(*region);
1625		regions++;
1626	}
1627
1628	if (pos > firmware->size)
1629		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1630			    file, regions, pos - firmware->size);
1631
1632	cs_dsp_debugfs_save_wmfwname(dsp, file);
1633
1634out_fw:
1635	cs_dsp_buf_free(&buf_list);
1636
1637	if (ret == -EOVERFLOW)
1638		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1639
1640	return ret;
1641}
1642
1643/**
1644 * cs_dsp_get_ctl() - Finds a matching coefficient control
1645 * @dsp: pointer to DSP structure
1646 * @name: pointer to string to match with a control's subname
1647 * @type: the algorithm type to match
1648 * @alg: the algorithm id to match
1649 *
1650 * Find cs_dsp_coeff_ctl with input name as its subname
1651 *
1652 * Return: pointer to the control on success, NULL if not found
1653 */
1654struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1655					unsigned int alg)
1656{
1657	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1658
1659	lockdep_assert_held(&dsp->pwr_lock);
1660
1661	list_for_each_entry(pos, &dsp->ctl_list, list) {
1662		if (!pos->subname)
1663			continue;
1664		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1665		    pos->fw_name == dsp->fw_name &&
1666		    pos->alg_region.alg == alg &&
1667		    pos->alg_region.type == type) {
1668			rslt = pos;
1669			break;
1670		}
1671	}
1672
1673	return rslt;
1674}
1675EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, "FW_CS_DSP");
1676
1677static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1678				  const struct cs_dsp_alg_region *alg_region)
1679{
1680	struct cs_dsp_coeff_ctl *ctl;
1681
1682	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1683		if (ctl->fw_name == dsp->fw_name &&
1684		    alg_region->alg == ctl->alg_region.alg &&
1685		    alg_region->type == ctl->alg_region.type) {
1686			ctl->alg_region.base = alg_region->base;
1687		}
1688	}
1689}
1690
1691static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1692			      const struct cs_dsp_region *mem,
1693			      unsigned int pos, unsigned int len)
1694{
1695	void *alg;
1696	unsigned int reg;
1697	int ret;
1698	__be32 val;
1699
1700	if (n_algs == 0) {
1701		cs_dsp_err(dsp, "No algorithms\n");
1702		return ERR_PTR(-EINVAL);
1703	}
1704
1705	if (n_algs > 1024) {
1706		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1707		return ERR_PTR(-EINVAL);
1708	}
1709
1710	/* Read the terminator first to validate the length */
1711	reg = dsp->ops->region_to_reg(mem, pos + len);
1712
1713	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1714	if (ret != 0) {
1715		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1716			   ret);
1717		return ERR_PTR(ret);
1718	}
1719
1720	if (be32_to_cpu(val) != 0xbedead)
1721		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1722			    reg, be32_to_cpu(val));
1723
1724	/* Convert length from DSP words to bytes */
1725	len *= sizeof(u32);
1726
1727	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1728	if (!alg)
1729		return ERR_PTR(-ENOMEM);
1730
1731	reg = dsp->ops->region_to_reg(mem, pos);
1732
1733	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1734	if (ret != 0) {
1735		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1736		kfree(alg);
1737		return ERR_PTR(ret);
1738	}
1739
1740	return alg;
1741}
1742
1743/**
1744 * cs_dsp_find_alg_region() - Finds a matching algorithm region
1745 * @dsp: pointer to DSP structure
1746 * @type: the algorithm type to match
1747 * @id: the algorithm id to match
1748 *
1749 * Return: Pointer to matching algorithm region, or NULL if not found.
1750 */
1751struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1752						 int type, unsigned int id)
1753{
1754	struct cs_dsp_alg_region *alg_region;
1755
1756	lockdep_assert_held(&dsp->pwr_lock);
1757
1758	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1759		if (id == alg_region->alg && type == alg_region->type)
1760			return alg_region;
1761	}
1762
1763	return NULL;
1764}
1765EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, "FW_CS_DSP");
1766
1767static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1768						      int type, __be32 id,
1769						      __be32 ver, __be32 base)
1770{
1771	struct cs_dsp_alg_region *alg_region;
1772
1773	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1774	if (!alg_region)
1775		return ERR_PTR(-ENOMEM);
1776
1777	alg_region->type = type;
1778	alg_region->alg = be32_to_cpu(id);
1779	alg_region->ver = be32_to_cpu(ver);
1780	alg_region->base = be32_to_cpu(base);
1781
1782	list_add_tail(&alg_region->list, &dsp->alg_regions);
1783
1784	if (dsp->wmfw_ver > 0)
1785		cs_dsp_ctl_fixup_base(dsp, alg_region);
1786
1787	return alg_region;
1788}
1789
1790static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1791{
1792	struct cs_dsp_alg_region *alg_region;
1793
1794	while (!list_empty(&dsp->alg_regions)) {
1795		alg_region = list_first_entry(&dsp->alg_regions,
1796					      struct cs_dsp_alg_region,
1797					      list);
1798		list_del(&alg_region->list);
1799		kfree(alg_region);
1800	}
1801}
1802
1803static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1804					struct wmfw_id_hdr *fw, int nalgs)
1805{
1806	dsp->fw_id = be32_to_cpu(fw->id);
1807	dsp->fw_id_version = be32_to_cpu(fw->ver);
1808
1809	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1810		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1811		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1812		    nalgs);
1813}
1814
1815static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1816					   struct wmfw_v3_id_hdr *fw, int nalgs)
1817{
1818	dsp->fw_id = be32_to_cpu(fw->id);
1819	dsp->fw_id_version = be32_to_cpu(fw->ver);
1820	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1821
1822	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1823		    dsp->fw_id, dsp->fw_vendor_id,
1824		    (dsp->fw_id_version & 0xff0000) >> 16,
1825		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1826		    nalgs);
1827}
1828
1829static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1830				 int nregions, const int *type, __be32 *base)
1831{
1832	struct cs_dsp_alg_region *alg_region;
1833	int i;
1834
1835	for (i = 0; i < nregions; i++) {
1836		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1837		if (IS_ERR(alg_region))
1838			return PTR_ERR(alg_region);
1839	}
1840
1841	return 0;
1842}
1843
1844static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1845{
1846	struct wmfw_adsp1_id_hdr adsp1_id;
1847	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1848	struct cs_dsp_alg_region *alg_region;
1849	const struct cs_dsp_region *mem;
1850	unsigned int pos, len;
1851	size_t n_algs;
1852	int i, ret;
1853
1854	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1855	if (WARN_ON(!mem))
1856		return -EINVAL;
1857
1858	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1859			      sizeof(adsp1_id));
1860	if (ret != 0) {
1861		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1862			   ret);
1863		return ret;
1864	}
1865
1866	n_algs = be32_to_cpu(adsp1_id.n_algs);
1867
1868	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1869
1870	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1871					  adsp1_id.fw.id, adsp1_id.fw.ver,
1872					  adsp1_id.zm);
1873	if (IS_ERR(alg_region))
1874		return PTR_ERR(alg_region);
1875
1876	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1877					  adsp1_id.fw.id, adsp1_id.fw.ver,
1878					  adsp1_id.dm);
1879	if (IS_ERR(alg_region))
1880		return PTR_ERR(alg_region);
1881
1882	/* Calculate offset and length in DSP words */
1883	pos = sizeof(adsp1_id) / sizeof(u32);
1884	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1885
1886	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1887	if (IS_ERR(adsp1_alg))
1888		return PTR_ERR(adsp1_alg);
1889
1890	for (i = 0; i < n_algs; i++) {
1891		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1892			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1893			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1894			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1895			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1896			    be32_to_cpu(adsp1_alg[i].dm),
1897			    be32_to_cpu(adsp1_alg[i].zm));
1898
1899		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1900						  adsp1_alg[i].alg.id,
1901						  adsp1_alg[i].alg.ver,
1902						  adsp1_alg[i].dm);
1903		if (IS_ERR(alg_region)) {
1904			ret = PTR_ERR(alg_region);
1905			goto out;
1906		}
1907		if (dsp->wmfw_ver == 0) {
1908			if (i + 1 < n_algs) {
1909				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1910				len -= be32_to_cpu(adsp1_alg[i].dm);
1911				len *= 4;
1912				cs_dsp_create_control(dsp, alg_region, 0,
1913						      len, NULL, 0, 0,
1914						      WMFW_CTL_TYPE_BYTES);
1915			} else {
1916				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1917					    be32_to_cpu(adsp1_alg[i].alg.id));
1918			}
1919		}
1920
1921		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1922						  adsp1_alg[i].alg.id,
1923						  adsp1_alg[i].alg.ver,
1924						  adsp1_alg[i].zm);
1925		if (IS_ERR(alg_region)) {
1926			ret = PTR_ERR(alg_region);
1927			goto out;
1928		}
1929		if (dsp->wmfw_ver == 0) {
1930			if (i + 1 < n_algs) {
1931				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1932				len -= be32_to_cpu(adsp1_alg[i].zm);
1933				len *= 4;
1934				cs_dsp_create_control(dsp, alg_region, 0,
1935						      len, NULL, 0, 0,
1936						      WMFW_CTL_TYPE_BYTES);
1937			} else {
1938				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1939					    be32_to_cpu(adsp1_alg[i].alg.id));
1940			}
1941		}
1942	}
1943
1944out:
1945	kfree(adsp1_alg);
1946	return ret;
1947}
1948
1949static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1950{
1951	struct wmfw_adsp2_id_hdr adsp2_id;
1952	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1953	struct cs_dsp_alg_region *alg_region;
1954	const struct cs_dsp_region *mem;
1955	unsigned int pos, len;
1956	size_t n_algs;
1957	int i, ret;
1958
1959	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1960	if (WARN_ON(!mem))
1961		return -EINVAL;
1962
1963	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1964			      sizeof(adsp2_id));
1965	if (ret != 0) {
1966		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1967			   ret);
1968		return ret;
1969	}
1970
1971	n_algs = be32_to_cpu(adsp2_id.n_algs);
1972
1973	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1974
1975	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1976					  adsp2_id.fw.id, adsp2_id.fw.ver,
1977					  adsp2_id.xm);
1978	if (IS_ERR(alg_region))
1979		return PTR_ERR(alg_region);
1980
1981	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1982					  adsp2_id.fw.id, adsp2_id.fw.ver,
1983					  adsp2_id.ym);
1984	if (IS_ERR(alg_region))
1985		return PTR_ERR(alg_region);
1986
1987	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1988					  adsp2_id.fw.id, adsp2_id.fw.ver,
1989					  adsp2_id.zm);
1990	if (IS_ERR(alg_region))
1991		return PTR_ERR(alg_region);
1992
1993	/* Calculate offset and length in DSP words */
1994	pos = sizeof(adsp2_id) / sizeof(u32);
1995	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1996
1997	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1998	if (IS_ERR(adsp2_alg))
1999		return PTR_ERR(adsp2_alg);
2000
2001	for (i = 0; i < n_algs; i++) {
2002		cs_dsp_dbg(dsp,
2003			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2004			   i, be32_to_cpu(adsp2_alg[i].alg.id),
2005			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2006			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2007			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2008			   be32_to_cpu(adsp2_alg[i].xm),
2009			   be32_to_cpu(adsp2_alg[i].ym),
2010			   be32_to_cpu(adsp2_alg[i].zm));
2011
2012		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2013						  adsp2_alg[i].alg.id,
2014						  adsp2_alg[i].alg.ver,
2015						  adsp2_alg[i].xm);
2016		if (IS_ERR(alg_region)) {
2017			ret = PTR_ERR(alg_region);
2018			goto out;
2019		}
2020		if (dsp->wmfw_ver == 0) {
2021			if (i + 1 < n_algs) {
2022				len = be32_to_cpu(adsp2_alg[i + 1].xm);
2023				len -= be32_to_cpu(adsp2_alg[i].xm);
2024				len *= 4;
2025				cs_dsp_create_control(dsp, alg_region, 0,
2026						      len, NULL, 0, 0,
2027						      WMFW_CTL_TYPE_BYTES);
2028			} else {
2029				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2030					    be32_to_cpu(adsp2_alg[i].alg.id));
2031			}
2032		}
2033
2034		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2035						  adsp2_alg[i].alg.id,
2036						  adsp2_alg[i].alg.ver,
2037						  adsp2_alg[i].ym);
2038		if (IS_ERR(alg_region)) {
2039			ret = PTR_ERR(alg_region);
2040			goto out;
2041		}
2042		if (dsp->wmfw_ver == 0) {
2043			if (i + 1 < n_algs) {
2044				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2045				len -= be32_to_cpu(adsp2_alg[i].ym);
2046				len *= 4;
2047				cs_dsp_create_control(dsp, alg_region, 0,
2048						      len, NULL, 0, 0,
2049						      WMFW_CTL_TYPE_BYTES);
2050			} else {
2051				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2052					    be32_to_cpu(adsp2_alg[i].alg.id));
2053			}
2054		}
2055
2056		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2057						  adsp2_alg[i].alg.id,
2058						  adsp2_alg[i].alg.ver,
2059						  adsp2_alg[i].zm);
2060		if (IS_ERR(alg_region)) {
2061			ret = PTR_ERR(alg_region);
2062			goto out;
2063		}
2064		if (dsp->wmfw_ver == 0) {
2065			if (i + 1 < n_algs) {
2066				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2067				len -= be32_to_cpu(adsp2_alg[i].zm);
2068				len *= 4;
2069				cs_dsp_create_control(dsp, alg_region, 0,
2070						      len, NULL, 0, 0,
2071						      WMFW_CTL_TYPE_BYTES);
2072			} else {
2073				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2074					    be32_to_cpu(adsp2_alg[i].alg.id));
2075			}
2076		}
2077	}
2078
2079out:
2080	kfree(adsp2_alg);
2081	return ret;
2082}
2083
2084static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2085				      __be32 xm_base, __be32 ym_base)
2086{
2087	static const int types[] = {
2088		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2089		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2090	};
2091	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2092
2093	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2094}
2095
2096static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2097{
2098	struct wmfw_halo_id_hdr halo_id;
2099	struct wmfw_halo_alg_hdr *halo_alg;
2100	const struct cs_dsp_region *mem;
2101	unsigned int pos, len;
2102	size_t n_algs;
2103	int i, ret;
2104
2105	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2106	if (WARN_ON(!mem))
2107		return -EINVAL;
2108
2109	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2110			      sizeof(halo_id));
2111	if (ret != 0) {
2112		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2113			   ret);
2114		return ret;
2115	}
2116
2117	n_algs = be32_to_cpu(halo_id.n_algs);
2118
2119	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2120
2121	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2122					 halo_id.xm_base, halo_id.ym_base);
2123	if (ret)
2124		return ret;
2125
2126	/* Calculate offset and length in DSP words */
2127	pos = sizeof(halo_id) / sizeof(u32);
2128	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2129
2130	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2131	if (IS_ERR(halo_alg))
2132		return PTR_ERR(halo_alg);
2133
2134	for (i = 0; i < n_algs; i++) {
2135		cs_dsp_dbg(dsp,
2136			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2137			   i, be32_to_cpu(halo_alg[i].alg.id),
2138			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2139			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2140			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2141			   be32_to_cpu(halo_alg[i].xm_base),
2142			   be32_to_cpu(halo_alg[i].ym_base));
2143
2144		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2145						 halo_alg[i].alg.ver,
2146						 halo_alg[i].xm_base,
2147						 halo_alg[i].ym_base);
2148		if (ret)
2149			goto out;
2150	}
2151
2152out:
2153	kfree(halo_alg);
2154	return ret;
2155}
2156
2157static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2158			     const char *file)
2159{
2160	LIST_HEAD(buf_list);
2161	struct regmap *regmap = dsp->regmap;
2162	struct wmfw_coeff_hdr *hdr;
2163	struct wmfw_coeff_item *blk;
2164	const struct cs_dsp_region *mem;
2165	struct cs_dsp_alg_region *alg_region;
2166	const char *region_name;
2167	int ret, pos, blocks, type, offset, reg, version;
2168	struct cs_dsp_buf *buf;
2169
2170	if (!firmware)
2171		return 0;
2172
2173	ret = -EINVAL;
2174
2175	if (sizeof(*hdr) >= firmware->size) {
2176		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2177			   file, firmware->size);
2178		goto out_fw;
2179	}
2180
2181	hdr = (void *)&firmware->data[0];
2182	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2183		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2184		goto out_fw;
2185	}
2186
2187	switch (be32_to_cpu(hdr->rev) & 0xff) {
2188	case 1:
2189	case 2:
2190		break;
2191	default:
2192		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2193			   file, be32_to_cpu(hdr->rev) & 0xff);
2194		ret = -EINVAL;
2195		goto out_fw;
2196	}
2197
2198	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2199		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2200		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2201		    le32_to_cpu(hdr->ver) & 0xff);
2202
2203	pos = le32_to_cpu(hdr->len);
2204
2205	blocks = 0;
2206	while (pos < firmware->size) {
2207		/* Is there enough data for a complete block header? */
2208		if (sizeof(*blk) > firmware->size - pos) {
2209			ret = -EOVERFLOW;
2210			goto out_fw;
2211		}
2212
2213		blk = (void *)(&firmware->data[pos]);
2214
2215		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2216			ret = -EOVERFLOW;
2217			goto out_fw;
2218		}
2219
2220		type = le16_to_cpu(blk->type);
2221		offset = le16_to_cpu(blk->offset);
2222		version = le32_to_cpu(blk->ver) >> 8;
2223
2224		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2225			   file, blocks, le32_to_cpu(blk->id),
2226			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2227			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2228			   le32_to_cpu(blk->ver) & 0xff);
2229		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2230			   file, blocks, le32_to_cpu(blk->len), offset, type);
2231
2232		reg = 0;
2233		region_name = "Unknown";
2234		switch (type) {
2235		case (WMFW_NAME_TEXT << 8):
2236			cs_dsp_info(dsp, "%s: %.*s\n", dsp->fw_name,
2237				    min(le32_to_cpu(blk->len), 100), blk->data);
2238			break;
2239		case (WMFW_INFO_TEXT << 8):
2240		case (WMFW_METADATA << 8):
2241			break;
2242		case (WMFW_ABSOLUTE << 8):
2243			/*
2244			 * Old files may use this for global
2245			 * coefficients.
2246			 */
2247			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2248			    offset == 0) {
2249				region_name = "global coefficients";
2250				mem = cs_dsp_find_region(dsp, type);
2251				if (!mem) {
2252					cs_dsp_err(dsp, "No ZM\n");
2253					break;
2254				}
2255				reg = dsp->ops->region_to_reg(mem, 0);
2256
2257			} else {
2258				region_name = "register";
2259				reg = offset;
2260			}
2261			break;
2262
2263		case WMFW_ADSP1_DM:
2264		case WMFW_ADSP1_ZM:
2265		case WMFW_ADSP2_XM:
2266		case WMFW_ADSP2_YM:
2267		case WMFW_HALO_XM_PACKED:
2268		case WMFW_HALO_YM_PACKED:
2269		case WMFW_HALO_PM_PACKED:
2270			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2271				   file, blocks, le32_to_cpu(blk->len),
2272				   type, le32_to_cpu(blk->id));
2273
2274			region_name = cs_dsp_mem_region_name(type);
2275			mem = cs_dsp_find_region(dsp, type);
2276			if (!mem) {
2277				cs_dsp_err(dsp, "No base for region %x\n", type);
2278				break;
2279			}
2280
2281			alg_region = cs_dsp_find_alg_region(dsp, type,
2282							    le32_to_cpu(blk->id));
2283			if (alg_region) {
2284				if (version != alg_region->ver)
2285					cs_dsp_warn(dsp,
2286						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2287						   (version >> 16) & 0xFF,
2288						   (version >> 8) & 0xFF,
2289						   version & 0xFF,
2290						   (alg_region->ver >> 16) & 0xFF,
2291						   (alg_region->ver >> 8) & 0xFF,
2292						   alg_region->ver & 0xFF);
2293
2294				reg = alg_region->base;
2295				reg = dsp->ops->region_to_reg(mem, reg);
2296				reg += offset;
2297			} else {
2298				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2299					   region_name, le32_to_cpu(blk->id));
2300			}
2301			break;
2302
2303		default:
2304			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2305				   file, blocks, type, pos);
2306			break;
2307		}
2308
2309		if (reg) {
2310			buf = cs_dsp_buf_alloc(blk->data,
2311					       le32_to_cpu(blk->len),
2312					       &buf_list);
2313			if (!buf) {
2314				cs_dsp_err(dsp, "Out of memory\n");
2315				ret = -ENOMEM;
2316				goto out_fw;
2317			}
2318
2319			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2320				   file, blocks, le32_to_cpu(blk->len),
2321				   reg);
2322			ret = regmap_raw_write(regmap, reg, buf->buf,
2323					       le32_to_cpu(blk->len));
2324			if (ret != 0) {
2325				cs_dsp_err(dsp,
2326					   "%s.%d: Failed to write to %x in %s: %d\n",
2327					   file, blocks, reg, region_name, ret);
2328			}
2329		}
2330
2331		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2332		blocks++;
2333	}
2334
2335	if (pos > firmware->size)
2336		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2337			    file, blocks, pos - firmware->size);
2338
2339	cs_dsp_debugfs_save_binname(dsp, file);
2340
2341out_fw:
2342	cs_dsp_buf_free(&buf_list);
2343
2344	if (ret == -EOVERFLOW)
2345		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2346
2347	return ret;
2348}
2349
2350static int cs_dsp_create_name(struct cs_dsp *dsp)
2351{
2352	if (!dsp->name) {
2353		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2354					   dsp->num);
2355		if (!dsp->name)
2356			return -ENOMEM;
2357	}
2358
2359	return 0;
2360}
2361
2362static int cs_dsp_common_init(struct cs_dsp *dsp)
2363{
2364	int ret;
2365
2366	ret = cs_dsp_create_name(dsp);
2367	if (ret)
2368		return ret;
2369
2370	INIT_LIST_HEAD(&dsp->alg_regions);
2371	INIT_LIST_HEAD(&dsp->ctl_list);
2372
2373	mutex_init(&dsp->pwr_lock);
2374
2375#ifdef CONFIG_DEBUG_FS
2376	/* Ensure this is invalid if client never provides a debugfs root */
2377	dsp->debugfs_root = ERR_PTR(-ENODEV);
2378#endif
2379
2380	return 0;
2381}
2382
2383/**
2384 * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2385 * @dsp: pointer to DSP structure
2386 *
2387 * Return: Zero for success, a negative number on error.
2388 */
2389int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2390{
2391	dsp->ops = &cs_dsp_adsp1_ops;
2392
2393	return cs_dsp_common_init(dsp);
2394}
2395EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, "FW_CS_DSP");
2396
2397/**
2398 * cs_dsp_adsp1_power_up() - Load and start the named firmware
2399 * @dsp: pointer to DSP structure
2400 * @wmfw_firmware: the firmware to be sent
2401 * @wmfw_filename: file name of firmware to be sent
2402 * @coeff_firmware: the coefficient data to be sent
2403 * @coeff_filename: file name of coefficient to data be sent
2404 * @fw_name: the user-friendly firmware name
2405 *
2406 * Return: Zero for success, a negative number on error.
2407 */
2408int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2409			  const struct firmware *wmfw_firmware, const char *wmfw_filename,
2410			  const struct firmware *coeff_firmware, const char *coeff_filename,
2411			  const char *fw_name)
2412{
2413	unsigned int val;
2414	int ret;
2415
2416	mutex_lock(&dsp->pwr_lock);
2417
2418	dsp->fw_name = fw_name;
2419
2420	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2421			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2422
2423	/*
2424	 * For simplicity set the DSP clock rate to be the
2425	 * SYSCLK rate rather than making it configurable.
2426	 */
2427	if (dsp->sysclk_reg) {
2428		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2429		if (ret != 0) {
2430			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2431			goto err_mutex;
2432		}
2433
2434		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2435
2436		ret = regmap_update_bits(dsp->regmap,
2437					 dsp->base + ADSP1_CONTROL_31,
2438					 ADSP1_CLK_SEL_MASK, val);
2439		if (ret != 0) {
2440			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2441			goto err_mutex;
2442		}
2443	}
2444
2445	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2446	if (ret != 0)
2447		goto err_ena;
2448
2449	ret = cs_dsp_adsp1_setup_algs(dsp);
2450	if (ret != 0)
2451		goto err_ena;
2452
2453	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2454	if (ret != 0)
2455		goto err_ena;
2456
2457	/* Initialize caches for enabled and unset controls */
2458	ret = cs_dsp_coeff_init_control_caches(dsp);
2459	if (ret != 0)
2460		goto err_ena;
2461
2462	/* Sync set controls */
2463	ret = cs_dsp_coeff_sync_controls(dsp);
2464	if (ret != 0)
2465		goto err_ena;
2466
2467	dsp->booted = true;
2468
2469	/* Start the core running */
2470	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2471			   ADSP1_CORE_ENA | ADSP1_START,
2472			   ADSP1_CORE_ENA | ADSP1_START);
2473
2474	dsp->running = true;
2475
2476	mutex_unlock(&dsp->pwr_lock);
2477
2478	return 0;
2479
2480err_ena:
2481	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2482			   ADSP1_SYS_ENA, 0);
2483err_mutex:
2484	mutex_unlock(&dsp->pwr_lock);
2485	return ret;
2486}
2487EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, "FW_CS_DSP");
2488
2489/**
2490 * cs_dsp_adsp1_power_down() - Halts the DSP
2491 * @dsp: pointer to DSP structure
2492 */
2493void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2494{
2495	struct cs_dsp_coeff_ctl *ctl;
2496
2497	mutex_lock(&dsp->pwr_lock);
2498
2499	dsp->running = false;
2500	dsp->booted = false;
2501
2502	/* Halt the core */
2503	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2504			   ADSP1_CORE_ENA | ADSP1_START, 0);
2505
2506	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2507			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2508
2509	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2510			   ADSP1_SYS_ENA, 0);
2511
2512	list_for_each_entry(ctl, &dsp->ctl_list, list)
2513		ctl->enabled = 0;
2514
2515	cs_dsp_free_alg_regions(dsp);
2516
2517	mutex_unlock(&dsp->pwr_lock);
2518}
2519EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, "FW_CS_DSP");
2520
2521static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2522{
2523	unsigned int val;
2524	int ret, count;
2525
2526	/* Wait for the RAM to start, should be near instantaneous */
2527	for (count = 0; count < 10; ++count) {
2528		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2529		if (ret != 0)
2530			return ret;
2531
2532		if (val & ADSP2_RAM_RDY)
2533			break;
2534
2535		usleep_range(250, 500);
2536	}
2537
2538	if (!(val & ADSP2_RAM_RDY)) {
2539		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2540		return -EBUSY;
2541	}
2542
2543	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2544
2545	return 0;
2546}
2547
2548static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2549{
2550	int ret;
2551
2552	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2553				 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2554	if (ret != 0)
2555		return ret;
2556
2557	return cs_dsp_adsp2v2_enable_core(dsp);
2558}
2559
2560static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2561{
2562	struct regmap *regmap = dsp->regmap;
2563	unsigned int code0, code1, lock_reg;
2564
2565	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2566		return 0;
2567
2568	lock_regions &= CS_ADSP2_REGION_ALL;
2569	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2570
2571	while (lock_regions) {
2572		code0 = code1 = 0;
2573		if (lock_regions & BIT(0)) {
2574			code0 = ADSP2_LOCK_CODE_0;
2575			code1 = ADSP2_LOCK_CODE_1;
2576		}
2577		if (lock_regions & BIT(1)) {
2578			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2579			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2580		}
2581		regmap_write(regmap, lock_reg, code0);
2582		regmap_write(regmap, lock_reg, code1);
2583		lock_regions >>= 2;
2584		lock_reg += 2;
2585	}
2586
2587	return 0;
2588}
2589
2590static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2591{
2592	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2593				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2594}
2595
2596static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2597{
2598	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2599			   ADSP2_MEM_ENA, 0);
2600}
2601
2602static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2603{
2604	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2605	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2606	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2607
2608	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2609			   ADSP2_SYS_ENA, 0);
2610}
2611
2612static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2613{
2614	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2615	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2616	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2617}
2618
2619static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2620{
2621	struct reg_sequence config[] = {
2622		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2623		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2624		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2625		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2626		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2627		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2628		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2629		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2630		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2631		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2632		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2633		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2634		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2635		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2636		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2637		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2638		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2639		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2640		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2641		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2642		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2643		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2644		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2645	};
2646
2647	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2648}
2649
2650/**
2651 * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2652 * @dsp: pointer to DSP structure
2653 * @freq: clock rate to set
2654 *
2655 * This is only for use on ADSP2 cores.
2656 *
2657 * Return: Zero for success, a negative number on error.
2658 */
2659int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2660{
2661	int ret;
2662
2663	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2664				 ADSP2_CLK_SEL_MASK,
2665				 freq << ADSP2_CLK_SEL_SHIFT);
2666	if (ret)
2667		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2668
2669	return ret;
2670}
2671EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, "FW_CS_DSP");
2672
2673static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2674{
2675	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2676			   ADSP2_WDT_ENA_MASK, 0);
2677}
2678
2679static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2680{
2681	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2682			   HALO_WDT_EN_MASK, 0);
2683}
2684
2685/**
2686 * cs_dsp_power_up() - Downloads firmware to the DSP
2687 * @dsp: pointer to DSP structure
2688 * @wmfw_firmware: the firmware to be sent
2689 * @wmfw_filename: file name of firmware to be sent
2690 * @coeff_firmware: the coefficient data to be sent
2691 * @coeff_filename: file name of coefficient to data be sent
2692 * @fw_name: the user-friendly firmware name
2693 *
2694 * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2695 * and downloads the firmware but does not start the firmware running. The
2696 * cs_dsp booted flag will be set once completed and if the core has a low-power
2697 * memory retention mode it will be put into this state after the firmware is
2698 * downloaded.
2699 *
2700 * Return: Zero for success, a negative number on error.
2701 */
2702int cs_dsp_power_up(struct cs_dsp *dsp,
2703		    const struct firmware *wmfw_firmware, const char *wmfw_filename,
2704		    const struct firmware *coeff_firmware, const char *coeff_filename,
2705		    const char *fw_name)
2706{
2707	int ret;
2708
2709	mutex_lock(&dsp->pwr_lock);
2710
2711	dsp->fw_name = fw_name;
2712
2713	if (dsp->ops->enable_memory) {
2714		ret = dsp->ops->enable_memory(dsp);
2715		if (ret != 0)
2716			goto err_mutex;
2717	}
2718
2719	if (dsp->ops->enable_core) {
2720		ret = dsp->ops->enable_core(dsp);
2721		if (ret != 0)
2722			goto err_mem;
2723	}
2724
2725	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2726	if (ret != 0)
2727		goto err_ena;
2728
2729	ret = dsp->ops->setup_algs(dsp);
2730	if (ret != 0)
2731		goto err_ena;
2732
2733	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2734	if (ret != 0)
2735		goto err_ena;
2736
2737	/* Initialize caches for enabled and unset controls */
2738	ret = cs_dsp_coeff_init_control_caches(dsp);
2739	if (ret != 0)
2740		goto err_ena;
2741
2742	if (dsp->ops->disable_core)
2743		dsp->ops->disable_core(dsp);
2744
2745	dsp->booted = true;
2746
2747	mutex_unlock(&dsp->pwr_lock);
2748
2749	return 0;
2750err_ena:
2751	if (dsp->ops->disable_core)
2752		dsp->ops->disable_core(dsp);
2753err_mem:
2754	if (dsp->ops->disable_memory)
2755		dsp->ops->disable_memory(dsp);
2756err_mutex:
2757	mutex_unlock(&dsp->pwr_lock);
2758
2759	return ret;
2760}
2761EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, "FW_CS_DSP");
2762
2763/**
2764 * cs_dsp_power_down() - Powers-down the DSP
2765 * @dsp: pointer to DSP structure
2766 *
2767 * cs_dsp_stop() must have been called before this function. The core will be
2768 * fully powered down and so the memory will not be retained.
2769 */
2770void cs_dsp_power_down(struct cs_dsp *dsp)
2771{
2772	struct cs_dsp_coeff_ctl *ctl;
2773
2774	mutex_lock(&dsp->pwr_lock);
2775
2776	cs_dsp_debugfs_clear(dsp);
2777
2778	dsp->fw_id = 0;
2779	dsp->fw_id_version = 0;
2780
2781	dsp->booted = false;
2782
2783	if (dsp->ops->disable_memory)
2784		dsp->ops->disable_memory(dsp);
2785
2786	list_for_each_entry(ctl, &dsp->ctl_list, list)
2787		ctl->enabled = 0;
2788
2789	cs_dsp_free_alg_regions(dsp);
2790
2791	mutex_unlock(&dsp->pwr_lock);
2792
2793	cs_dsp_dbg(dsp, "Shutdown complete\n");
2794}
2795EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, "FW_CS_DSP");
2796
2797static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2798{
2799	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2800				  ADSP2_CORE_ENA | ADSP2_START,
2801				  ADSP2_CORE_ENA | ADSP2_START);
2802}
2803
2804static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2805{
2806	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2807			   ADSP2_CORE_ENA | ADSP2_START, 0);
2808}
2809
2810/**
2811 * cs_dsp_run() - Starts the firmware running
2812 * @dsp: pointer to DSP structure
2813 *
2814 * cs_dsp_power_up() must have previously been called successfully.
2815 *
2816 * Return: Zero for success, a negative number on error.
2817 */
2818int cs_dsp_run(struct cs_dsp *dsp)
2819{
2820	int ret;
2821
2822	mutex_lock(&dsp->pwr_lock);
2823
2824	if (!dsp->booted) {
2825		ret = -EIO;
2826		goto err;
2827	}
2828
2829	if (dsp->ops->enable_core) {
2830		ret = dsp->ops->enable_core(dsp);
2831		if (ret != 0)
2832			goto err;
2833	}
2834
2835	if (dsp->client_ops->pre_run) {
2836		ret = dsp->client_ops->pre_run(dsp);
2837		if (ret)
2838			goto err;
2839	}
2840
2841	/* Sync set controls */
2842	ret = cs_dsp_coeff_sync_controls(dsp);
2843	if (ret != 0)
2844		goto err;
2845
2846	if (dsp->ops->lock_memory) {
2847		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2848		if (ret != 0) {
2849			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2850			goto err;
2851		}
2852	}
2853
2854	if (dsp->ops->start_core) {
2855		ret = dsp->ops->start_core(dsp);
2856		if (ret != 0)
2857			goto err;
2858	}
2859
2860	dsp->running = true;
2861
2862	if (dsp->client_ops->post_run) {
2863		ret = dsp->client_ops->post_run(dsp);
2864		if (ret)
2865			goto err;
2866	}
2867
2868	mutex_unlock(&dsp->pwr_lock);
2869
2870	return 0;
2871
2872err:
2873	if (dsp->ops->stop_core)
2874		dsp->ops->stop_core(dsp);
2875	if (dsp->ops->disable_core)
2876		dsp->ops->disable_core(dsp);
2877	mutex_unlock(&dsp->pwr_lock);
2878
2879	return ret;
2880}
2881EXPORT_SYMBOL_NS_GPL(cs_dsp_run, "FW_CS_DSP");
2882
2883/**
2884 * cs_dsp_stop() - Stops the firmware
2885 * @dsp: pointer to DSP structure
2886 *
2887 * Memory will not be disabled so firmware will remain loaded.
2888 */
2889void cs_dsp_stop(struct cs_dsp *dsp)
2890{
2891	/* Tell the firmware to cleanup */
2892	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2893
2894	if (dsp->ops->stop_watchdog)
2895		dsp->ops->stop_watchdog(dsp);
2896
2897	/* Log firmware state, it can be useful for analysis */
2898	if (dsp->ops->show_fw_status)
2899		dsp->ops->show_fw_status(dsp);
2900
2901	mutex_lock(&dsp->pwr_lock);
2902
2903	if (dsp->client_ops->pre_stop)
2904		dsp->client_ops->pre_stop(dsp);
2905
2906	dsp->running = false;
2907
2908	if (dsp->ops->stop_core)
2909		dsp->ops->stop_core(dsp);
2910	if (dsp->ops->disable_core)
2911		dsp->ops->disable_core(dsp);
2912
2913	if (dsp->client_ops->post_stop)
2914		dsp->client_ops->post_stop(dsp);
2915
2916	mutex_unlock(&dsp->pwr_lock);
2917
2918	cs_dsp_dbg(dsp, "Execution stopped\n");
2919}
2920EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, "FW_CS_DSP");
2921
2922static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2923{
2924	int ret;
2925
2926	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2927				 HALO_CORE_RESET | HALO_CORE_EN,
2928				 HALO_CORE_RESET | HALO_CORE_EN);
2929	if (ret)
2930		return ret;
2931
2932	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2933				  HALO_CORE_RESET, 0);
2934}
2935
2936static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2937{
2938	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2939			   HALO_CORE_EN, 0);
2940
2941	/* reset halo core with CORE_SOFT_RESET */
2942	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2943			   HALO_CORE_SOFT_RESET_MASK, 1);
2944}
2945
2946/**
2947 * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2948 * @dsp: pointer to DSP structure
2949 *
2950 * Return: Zero for success, a negative number on error.
2951 */
2952int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2953{
2954	int ret;
2955
2956	switch (dsp->rev) {
2957	case 0:
2958		/*
2959		 * Disable the DSP memory by default when in reset for a small
2960		 * power saving.
2961		 */
2962		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2963					 ADSP2_MEM_ENA, 0);
2964		if (ret) {
2965			cs_dsp_err(dsp,
2966				   "Failed to clear memory retention: %d\n", ret);
2967			return ret;
2968		}
2969
2970		dsp->ops = &cs_dsp_adsp2_ops[0];
2971		break;
2972	case 1:
2973		dsp->ops = &cs_dsp_adsp2_ops[1];
2974		break;
2975	default:
2976		dsp->ops = &cs_dsp_adsp2_ops[2];
2977		break;
2978	}
2979
2980	return cs_dsp_common_init(dsp);
2981}
2982EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, "FW_CS_DSP");
2983
2984/**
2985 * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2986 * @dsp: pointer to DSP structure
2987 *
2988 * Return: Zero for success, a negative number on error.
2989 */
2990int cs_dsp_halo_init(struct cs_dsp *dsp)
2991{
2992	if (dsp->no_core_startstop)
2993		dsp->ops = &cs_dsp_halo_ao_ops;
2994	else
2995		dsp->ops = &cs_dsp_halo_ops;
2996
2997	return cs_dsp_common_init(dsp);
2998}
2999EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, "FW_CS_DSP");
3000
3001/**
3002 * cs_dsp_remove() - Clean a cs_dsp before deletion
3003 * @dsp: pointer to DSP structure
3004 */
3005void cs_dsp_remove(struct cs_dsp *dsp)
3006{
3007	struct cs_dsp_coeff_ctl *ctl;
3008
3009	while (!list_empty(&dsp->ctl_list)) {
3010		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3011
3012		if (dsp->client_ops->control_remove)
3013			dsp->client_ops->control_remove(ctl);
3014
3015		list_del(&ctl->list);
3016		cs_dsp_free_ctl_blk(ctl);
3017	}
3018}
3019EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, "FW_CS_DSP");
3020
3021/**
3022 * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3023 * @dsp: pointer to DSP structure
3024 * @mem_type: the type of DSP memory containing the data to be read
3025 * @mem_addr: the address of the data within the memory region
3026 * @num_words: the length of the data to read
3027 * @data: a buffer to store the fetched data
3028 *
3029 * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3030 * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3031 * cs_dsp_remove_padding()
3032 *
3033 * Return: Zero for success, a negative number on error.
3034 */
3035int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3036			       unsigned int num_words, __be32 *data)
3037{
3038	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3039	unsigned int reg;
3040	int ret;
3041
3042	lockdep_assert_held(&dsp->pwr_lock);
3043
3044	if (!mem)
3045		return -EINVAL;
3046
3047	reg = dsp->ops->region_to_reg(mem, mem_addr);
3048
3049	ret = regmap_raw_read(dsp->regmap, reg, data,
3050			      sizeof(*data) * num_words);
3051	if (ret < 0)
3052		return ret;
3053
3054	return 0;
3055}
3056EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, "FW_CS_DSP");
3057
3058/**
3059 * cs_dsp_read_data_word() - Reads a word from DSP memory
3060 * @dsp: pointer to DSP structure
3061 * @mem_type: the type of DSP memory containing the data to be read
3062 * @mem_addr: the address of the data within the memory region
3063 * @data: a buffer to store the fetched data
3064 *
3065 * Return: Zero for success, a negative number on error.
3066 */
3067int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3068{
3069	__be32 raw;
3070	int ret;
3071
3072	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3073	if (ret < 0)
3074		return ret;
3075
3076	*data = be32_to_cpu(raw) & 0x00ffffffu;
3077
3078	return 0;
3079}
3080EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, "FW_CS_DSP");
3081
3082/**
3083 * cs_dsp_write_data_word() - Writes a word to DSP memory
3084 * @dsp: pointer to DSP structure
3085 * @mem_type: the type of DSP memory containing the data to be written
3086 * @mem_addr: the address of the data within the memory region
3087 * @data: the data to be written
3088 *
3089 * Return: Zero for success, a negative number on error.
3090 */
3091int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3092{
3093	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3094	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3095	unsigned int reg;
3096
3097	lockdep_assert_held(&dsp->pwr_lock);
3098
3099	if (!mem)
3100		return -EINVAL;
3101
3102	reg = dsp->ops->region_to_reg(mem, mem_addr);
3103
3104	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3105}
3106EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, "FW_CS_DSP");
3107
3108/**
3109 * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3110 * @buf: buffer containing DSP words read from DSP memory
3111 * @nwords: number of words to convert
3112 *
3113 * DSP words from the register map have pad bytes and the data bytes
3114 * are in swapped order. This swaps to the native endian order and
3115 * strips the pad bytes.
3116 */
3117void cs_dsp_remove_padding(u32 *buf, int nwords)
3118{
3119	const __be32 *pack_in = (__be32 *)buf;
3120	u8 *pack_out = (u8 *)buf;
3121	int i;
3122
3123	for (i = 0; i < nwords; i++) {
3124		u32 word = be32_to_cpu(*pack_in++);
3125		*pack_out++ = (u8)word;
3126		*pack_out++ = (u8)(word >> 8);
3127		*pack_out++ = (u8)(word >> 16);
3128	}
3129}
3130EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, "FW_CS_DSP");
3131
3132/**
3133 * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3134 * @dsp: pointer to DSP structure
3135 *
3136 * The firmware and DSP state will be logged for future analysis.
3137 */
3138void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3139{
3140	unsigned int val;
3141	struct regmap *regmap = dsp->regmap;
3142	int ret = 0;
3143
3144	mutex_lock(&dsp->pwr_lock);
3145
3146	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3147	if (ret) {
3148		cs_dsp_err(dsp,
3149			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3150		goto error;
3151	}
3152
3153	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3154		cs_dsp_err(dsp, "watchdog timeout error\n");
3155		dsp->ops->stop_watchdog(dsp);
3156		if (dsp->client_ops->watchdog_expired)
3157			dsp->client_ops->watchdog_expired(dsp);
3158	}
3159
3160	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3161		if (val & ADSP2_ADDR_ERR_MASK)
3162			cs_dsp_err(dsp, "bus error: address error\n");
3163		else
3164			cs_dsp_err(dsp, "bus error: region lock error\n");
3165
3166		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3167		if (ret) {
3168			cs_dsp_err(dsp,
3169				   "Failed to read Bus Err Addr register: %d\n",
3170				   ret);
3171			goto error;
3172		}
3173
3174		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3175			   val & ADSP2_BUS_ERR_ADDR_MASK);
3176
3177		ret = regmap_read(regmap,
3178				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3179				  &val);
3180		if (ret) {
3181			cs_dsp_err(dsp,
3182				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3183				   ret);
3184			goto error;
3185		}
3186
3187		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3188			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3189		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3190			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3191			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3192	}
3193
3194	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3195			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3196
3197error:
3198	mutex_unlock(&dsp->pwr_lock);
3199}
3200EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, "FW_CS_DSP");
3201
3202/**
3203 * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3204 * @dsp: pointer to DSP structure
3205 *
3206 * The firmware and DSP state will be logged for future analysis.
3207 */
3208void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3209{
3210	struct regmap *regmap = dsp->regmap;
3211	unsigned int fault[6];
3212	struct reg_sequence clear[] = {
3213		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3214		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3215		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3216	};
3217	int ret;
3218
3219	mutex_lock(&dsp->pwr_lock);
3220
3221	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3222			  fault);
3223	if (ret) {
3224		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3225		goto exit_unlock;
3226	}
3227
3228	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3229		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3230		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3231		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3232
3233	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3234			  fault);
3235	if (ret) {
3236		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3237		goto exit_unlock;
3238	}
3239
3240	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3241
3242	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3243			       fault, ARRAY_SIZE(fault));
3244	if (ret) {
3245		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3246		goto exit_unlock;
3247	}
3248
3249	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3250	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3251	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3252
3253	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3254	if (ret)
3255		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3256
3257exit_unlock:
3258	mutex_unlock(&dsp->pwr_lock);
3259}
3260EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, "FW_CS_DSP");
3261
3262/**
3263 * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3264 * @dsp: pointer to DSP structure
3265 *
3266 * This is logged for future analysis.
3267 */
3268void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3269{
3270	mutex_lock(&dsp->pwr_lock);
3271
3272	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3273
3274	dsp->ops->stop_watchdog(dsp);
3275	if (dsp->client_ops->watchdog_expired)
3276		dsp->client_ops->watchdog_expired(dsp);
3277
3278	mutex_unlock(&dsp->pwr_lock);
3279}
3280EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, "FW_CS_DSP");
3281
3282static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3283	.validate_version = cs_dsp_validate_version,
3284	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3285	.region_to_reg = cs_dsp_region_to_reg,
3286};
3287
3288static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3289	{
3290		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3291		.validate_version = cs_dsp_validate_version,
3292		.setup_algs = cs_dsp_adsp2_setup_algs,
3293		.region_to_reg = cs_dsp_region_to_reg,
3294
3295		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3296
3297		.enable_memory = cs_dsp_adsp2_enable_memory,
3298		.disable_memory = cs_dsp_adsp2_disable_memory,
3299
3300		.enable_core = cs_dsp_adsp2_enable_core,
3301		.disable_core = cs_dsp_adsp2_disable_core,
3302
3303		.start_core = cs_dsp_adsp2_start_core,
3304		.stop_core = cs_dsp_adsp2_stop_core,
3305
3306	},
3307	{
3308		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3309		.validate_version = cs_dsp_validate_version,
3310		.setup_algs = cs_dsp_adsp2_setup_algs,
3311		.region_to_reg = cs_dsp_region_to_reg,
3312
3313		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3314
3315		.enable_memory = cs_dsp_adsp2_enable_memory,
3316		.disable_memory = cs_dsp_adsp2_disable_memory,
3317		.lock_memory = cs_dsp_adsp2_lock,
3318
3319		.enable_core = cs_dsp_adsp2v2_enable_core,
3320		.disable_core = cs_dsp_adsp2v2_disable_core,
3321
3322		.start_core = cs_dsp_adsp2_start_core,
3323		.stop_core = cs_dsp_adsp2_stop_core,
3324	},
3325	{
3326		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3327		.validate_version = cs_dsp_validate_version,
3328		.setup_algs = cs_dsp_adsp2_setup_algs,
3329		.region_to_reg = cs_dsp_region_to_reg,
3330
3331		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3332		.stop_watchdog = cs_dsp_stop_watchdog,
3333
3334		.enable_memory = cs_dsp_adsp2_enable_memory,
3335		.disable_memory = cs_dsp_adsp2_disable_memory,
3336		.lock_memory = cs_dsp_adsp2_lock,
3337
3338		.enable_core = cs_dsp_adsp2v2_enable_core,
3339		.disable_core = cs_dsp_adsp2v2_disable_core,
3340
3341		.start_core = cs_dsp_adsp2_start_core,
3342		.stop_core = cs_dsp_adsp2_stop_core,
3343	},
3344};
3345
3346static const struct cs_dsp_ops cs_dsp_halo_ops = {
3347	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3348	.validate_version = cs_dsp_halo_validate_version,
3349	.setup_algs = cs_dsp_halo_setup_algs,
3350	.region_to_reg = cs_dsp_halo_region_to_reg,
3351
3352	.show_fw_status = cs_dsp_halo_show_fw_status,
3353	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3354
3355	.lock_memory = cs_dsp_halo_configure_mpu,
3356
3357	.start_core = cs_dsp_halo_start_core,
3358	.stop_core = cs_dsp_halo_stop_core,
3359};
3360
3361static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3362	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3363	.validate_version = cs_dsp_halo_validate_version,
3364	.setup_algs = cs_dsp_halo_setup_algs,
3365	.region_to_reg = cs_dsp_halo_region_to_reg,
3366	.show_fw_status = cs_dsp_halo_show_fw_status,
3367};
3368
3369/**
3370 * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3371 * @ch: Pointer to the chunk structure
3372 * @nbits: Number of bits to write
3373 * @val: Value to write
3374 *
3375 * This function sequentially writes values into the format required for DSP
3376 * memory, it handles both inserting of the padding bytes and converting to
3377 * big endian. Note that data is only committed to the chunk when a whole DSP
3378 * words worth of data is available.
3379 *
3380 * Return: Zero for success, a negative number on error.
3381 */
3382int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3383{
3384	int nwrite, i;
3385
3386	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3387
3388	ch->cache <<= nwrite;
3389	ch->cache |= val >> (nbits - nwrite);
3390	ch->cachebits += nwrite;
3391	nbits -= nwrite;
3392
3393	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3394		if (cs_dsp_chunk_end(ch))
3395			return -ENOSPC;
3396
3397		ch->cache &= 0xFFFFFF;
3398		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3399			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3400
3401		ch->bytes += sizeof(ch->cache);
3402		ch->cachebits = 0;
3403	}
3404
3405	if (nbits)
3406		return cs_dsp_chunk_write(ch, nbits, val);
3407
3408	return 0;
3409}
3410EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, "FW_CS_DSP");
3411
3412/**
3413 * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3414 * @ch: Pointer to the chunk structure
3415 *
3416 * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3417 * be written out it is possible that some data will remain in the cache, this
3418 * function will pad that data with zeros upto a whole DSP word and write out.
3419 *
3420 * Return: Zero for success, a negative number on error.
3421 */
3422int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3423{
3424	if (!ch->cachebits)
3425		return 0;
3426
3427	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3428}
3429EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, "FW_CS_DSP");
3430
3431/**
3432 * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3433 * @ch: Pointer to the chunk structure
3434 * @nbits: Number of bits to read
3435 *
3436 * This function sequentially reads values from a DSP memory formatted buffer,
3437 * it handles both removing of the padding bytes and converting from big endian.
3438 *
3439 * Return: A negative number is returned on error, otherwise the read value.
3440 */
3441int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3442{
3443	int nread, i;
3444	u32 result;
3445
3446	if (!ch->cachebits) {
3447		if (cs_dsp_chunk_end(ch))
3448			return -ENOSPC;
3449
3450		ch->cache = 0;
3451		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3452
3453		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3454			ch->cache |= *ch->data++;
3455
3456		ch->bytes += sizeof(ch->cache);
3457	}
3458
3459	nread = min(ch->cachebits, nbits);
3460	nbits -= nread;
3461
3462	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3463	ch->cache <<= nread;
3464	ch->cachebits -= nread;
3465
3466	if (nbits)
3467		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3468
3469	return result;
3470}
3471EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, "FW_CS_DSP");
3472
3473
3474struct cs_dsp_wseq_op {
3475	struct list_head list;
3476	u32 address;
3477	u32 data;
3478	u16 offset;
3479	u8 operation;
3480};
3481
3482static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3483{
3484	struct cs_dsp_wseq_op *op, *op_tmp;
3485
3486	list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3487		list_del(&op->list);
3488		devm_kfree(dsp->dev, op);
3489	}
3490}
3491
3492static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3493{
3494	struct cs_dsp_wseq_op *op = NULL;
3495	struct cs_dsp_chunk chunk;
3496	u8 *words;
3497	int ret;
3498
3499	if (!wseq->ctl) {
3500		cs_dsp_err(dsp, "No control for write sequence\n");
3501		return -EINVAL;
3502	}
3503
3504	words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3505	if (!words)
3506		return -ENOMEM;
3507
3508	ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3509	if (ret) {
3510		cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3511		goto err_free;
3512	}
3513
3514	INIT_LIST_HEAD(&wseq->ops);
3515
3516	chunk = cs_dsp_chunk(words, wseq->ctl->len);
3517
3518	while (!cs_dsp_chunk_end(&chunk)) {
3519		op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3520		if (!op) {
3521			ret = -ENOMEM;
3522			goto err_free;
3523		}
3524
3525		op->offset = cs_dsp_chunk_bytes(&chunk);
3526		op->operation = cs_dsp_chunk_read(&chunk, 8);
3527
3528		switch (op->operation) {
3529		case CS_DSP_WSEQ_END:
3530			op->data = WSEQ_END_OF_SCRIPT;
3531			break;
3532		case CS_DSP_WSEQ_UNLOCK:
3533			op->data = cs_dsp_chunk_read(&chunk, 16);
3534			break;
3535		case CS_DSP_WSEQ_ADDR8:
3536			op->address = cs_dsp_chunk_read(&chunk, 8);
3537			op->data = cs_dsp_chunk_read(&chunk, 32);
3538			break;
3539		case CS_DSP_WSEQ_H16:
3540		case CS_DSP_WSEQ_L16:
3541			op->address = cs_dsp_chunk_read(&chunk, 24);
3542			op->data = cs_dsp_chunk_read(&chunk, 16);
3543			break;
3544		case CS_DSP_WSEQ_FULL:
3545			op->address = cs_dsp_chunk_read(&chunk, 32);
3546			op->data = cs_dsp_chunk_read(&chunk, 32);
3547			break;
3548		default:
3549			ret = -EINVAL;
3550			cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3551			devm_kfree(dsp->dev, op);
3552			goto err_free;
3553		}
3554
3555		list_add_tail(&op->list, &wseq->ops);
3556
3557		if (op->operation == CS_DSP_WSEQ_END)
3558			break;
3559	}
3560
3561	if (op && op->operation != CS_DSP_WSEQ_END) {
3562		cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3563		ret = -ENOENT;
3564	}
3565
3566err_free:
3567	kfree(words);
3568
3569	return ret;
3570}
3571
3572/**
3573 * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3574 * @dsp: Pointer to DSP structure
3575 * @wseqs: List of write sequences to initialize
3576 * @num_wseqs: Number of write sequences to initialize
3577 *
3578 * Return: Zero for success, a negative number on error.
3579 */
3580int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3581{
3582	int i, ret;
3583
3584	lockdep_assert_held(&dsp->pwr_lock);
3585
3586	for (i = 0; i < num_wseqs; i++) {
3587		ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3588		if (ret) {
3589			cs_dsp_wseq_clear(dsp, &wseqs[i]);
3590			return ret;
3591		}
3592	}
3593
3594	return 0;
3595}
3596EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, "FW_CS_DSP");
3597
3598static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3599						  struct list_head *wseq_ops)
3600{
3601	struct cs_dsp_wseq_op *op;
3602
3603	list_for_each_entry(op, wseq_ops, list) {
3604		if (op->operation == op_code && op->address == addr)
3605			return op;
3606	}
3607
3608	return NULL;
3609}
3610
3611/**
3612 * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3613 * @dsp: Pointer to a DSP structure
3614 * @wseq: Write sequence to write to
3615 * @addr: Address of the register to be written to
3616 * @data: Data to be written
3617 * @op_code: The type of operation of the new entry
3618 * @update: If true, searches for the first entry in the write sequence with
3619 * the same address and op_code, and replaces it. If false, creates a new entry
3620 * at the tail
3621 *
3622 * This function formats register address and value pairs into the format
3623 * required for write sequence entries, and either updates or adds the
3624 * new entry into the write sequence.
3625 *
3626 * If update is set to true and no matching entry is found, it will add a new entry.
3627 *
3628 * Return: Zero for success, a negative number on error.
3629 */
3630int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3631		      u32 addr, u32 data, u8 op_code, bool update)
3632{
3633	struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3634	u32 words[WSEQ_OP_MAX_WORDS];
3635	struct cs_dsp_chunk chunk;
3636	int new_op_size, ret;
3637
3638	if (update)
3639		op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3640
3641	/* If entry to update is not found, treat it as a new operation */
3642	if (!op_new) {
3643		op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3644		if (!op_end) {
3645			cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3646			return -EINVAL;
3647		}
3648
3649		op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3650		if (!op_new)
3651			return -ENOMEM;
3652
3653		op_new->operation = op_code;
3654		op_new->address = addr;
3655		op_new->offset = op_end->offset;
3656		update = false;
3657	}
3658
3659	op_new->data = data;
3660
3661	chunk = cs_dsp_chunk(words, sizeof(words));
3662	cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3663
3664	switch (op_code) {
3665	case CS_DSP_WSEQ_FULL:
3666		cs_dsp_chunk_write(&chunk, 32, op_new->address);
3667		cs_dsp_chunk_write(&chunk, 32, op_new->data);
3668		break;
3669	case CS_DSP_WSEQ_L16:
3670	case CS_DSP_WSEQ_H16:
3671		cs_dsp_chunk_write(&chunk, 24, op_new->address);
3672		cs_dsp_chunk_write(&chunk, 16, op_new->data);
3673		break;
3674	default:
3675		ret = -EINVAL;
3676		cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3677		goto op_new_free;
3678	}
3679
3680	new_op_size = cs_dsp_chunk_bytes(&chunk);
3681
3682	if (!update) {
3683		if (wseq->ctl->len - op_end->offset < new_op_size) {
3684			cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3685			ret = -E2BIG;
3686			goto op_new_free;
3687		}
3688
3689		op_end->offset += new_op_size;
3690
3691		ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3692					      &op_end->data, sizeof(u32));
3693		if (ret)
3694			goto op_new_free;
3695
3696		list_add_tail(&op_new->list, &op_end->list);
3697	}
3698
3699	ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3700				      words, new_op_size);
3701	if (ret)
3702		goto op_new_free;
3703
3704	return 0;
3705
3706op_new_free:
3707	devm_kfree(dsp->dev, op_new);
3708
3709	return ret;
3710}
3711EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, "FW_CS_DSP");
3712
3713/**
3714 * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3715 * @dsp: Pointer to a DSP structure
3716 * @wseq: Write sequence to write to
3717 * @reg_seq: List of address-data pairs
3718 * @num_regs: Number of address-data pairs
3719 * @op_code: The types of operations of the new entries
3720 * @update: If true, searches for the first entry in the write sequence with
3721 * the same address and op_code, and replaces it. If false, creates a new entry
3722 * at the tail
3723 *
3724 * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3725 *
3726 * Return: Zero for success, a negative number on error.
3727 */
3728int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3729			    const struct reg_sequence *reg_seq, int num_regs,
3730			    u8 op_code, bool update)
3731{
3732	int i, ret;
3733
3734	for (i = 0; i < num_regs; i++) {
3735		ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3736					reg_seq[i].def, op_code, update);
3737		if (ret)
3738			return ret;
3739	}
3740
3741	return 0;
3742}
3743EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, "FW_CS_DSP");
3744
3745MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3746MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3747MODULE_LICENSE("GPL v2");