Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Copyright (c) 2008 Nuovation System Designs, LLC
   3 *   Grant Erickson <gerickson@nuovations.com>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation; version 2 of the
   8 * License.
   9 *
  10 */
  11
  12#include <linux/edac.h>
  13#include <linux/interrupt.h>
  14#include <linux/irq.h>
  15#include <linux/kernel.h>
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/of_device.h>
  19#include <linux/of_platform.h>
  20#include <linux/types.h>
  21
  22#include <asm/dcr.h>
  23
  24#include "edac_module.h"
  25#include "ppc4xx_edac.h"
  26
  27/*
  28 * This file implements a driver for monitoring and handling events
  29 * associated with the IMB DDR2 ECC controller found in the AMCC/IBM
  30 * 405EX[r], 440SP, 440SPe, 460EX, 460GT and 460SX.
  31 *
  32 * As realized in the 405EX[r], this controller features:
  33 *
  34 *   - Support for registered- and non-registered DDR1 and DDR2 memory.
  35 *   - 32-bit or 16-bit memory interface with optional ECC.
  36 *
  37 *     o ECC support includes:
  38 *
  39 *       - 4-bit SEC/DED
  40 *       - Aligned-nibble error detect
  41 *       - Bypass mode
  42 *
  43 *   - Two (2) memory banks/ranks.
  44 *   - Up to 1 GiB per bank/rank in 32-bit mode and up to 512 MiB per
  45 *     bank/rank in 16-bit mode.
  46 *
  47 * As realized in the 440SP and 440SPe, this controller changes/adds:
  48 *
  49 *   - 64-bit or 32-bit memory interface with optional ECC.
  50 *
  51 *     o ECC support includes:
  52 *
  53 *       - 8-bit SEC/DED
  54 *       - Aligned-nibble error detect
  55 *       - Bypass mode
  56 *
  57 *   - Up to 4 GiB per bank/rank in 64-bit mode and up to 2 GiB
  58 *     per bank/rank in 32-bit mode.
  59 *
  60 * As realized in the 460EX and 460GT, this controller changes/adds:
  61 *
  62 *   - 64-bit or 32-bit memory interface with optional ECC.
  63 *
  64 *     o ECC support includes:
  65 *
  66 *       - 8-bit SEC/DED
  67 *       - Aligned-nibble error detect
  68 *       - Bypass mode
  69 *
  70 *   - Four (4) memory banks/ranks.
  71 *   - Up to 16 GiB per bank/rank in 64-bit mode and up to 8 GiB
  72 *     per bank/rank in 32-bit mode.
  73 *
  74 * At present, this driver has ONLY been tested against the controller
  75 * realization in the 405EX[r] on the AMCC Kilauea and Haleakala
  76 * boards (256 MiB w/o ECC memory soldered onto the board) and a
  77 * proprietary board based on those designs (128 MiB ECC memory, also
  78 * soldered onto the board).
  79 *
  80 * Dynamic feature detection and handling needs to be added for the
  81 * other realizations of this controller listed above.
  82 *
  83 * Eventually, this driver will likely be adapted to the above variant
  84 * realizations of this controller as well as broken apart to handle
  85 * the other known ECC-capable controllers prevalent in other 4xx
  86 * processors:
  87 *
  88 *   - IBM SDRAM (405GP, 405CR and 405EP) "ibm,sdram-4xx"
  89 *   - IBM DDR1 (440GP, 440GX, 440EP and 440GR) "ibm,sdram-4xx-ddr"
  90 *   - Denali DDR1/DDR2 (440EPX and 440GRX) "denali,sdram-4xx-ddr2"
  91 *
  92 * For this controller, unfortunately, correctable errors report
  93 * nothing more than the beat/cycle and byte/lane the correction
  94 * occurred on and the check bit group that covered the error.
  95 *
  96 * In contrast, uncorrectable errors also report the failing address,
  97 * the bus master and the transaction direction (i.e. read or write)
  98 *
  99 * Regardless of whether the error is a CE or a UE, we report the
 100 * following pieces of information in the driver-unique message to the
 101 * EDAC subsystem:
 102 *
 103 *   - Device tree path
 104 *   - Bank(s)
 105 *   - Check bit error group
 106 *   - Beat(s)/lane(s)
 107 */
 108
 109/* Preprocessor Definitions */
 110
 111#define EDAC_OPSTATE_INT_STR		"interrupt"
 112#define EDAC_OPSTATE_POLL_STR		"polled"
 113#define EDAC_OPSTATE_UNKNOWN_STR	"unknown"
 114
 115#define PPC4XX_EDAC_MODULE_NAME		"ppc4xx_edac"
 116#define PPC4XX_EDAC_MODULE_REVISION	"v1.0.0"
 117
 118#define PPC4XX_EDAC_MESSAGE_SIZE	256
 119
 120/*
 121 * Kernel logging without an EDAC instance
 122 */
 123#define ppc4xx_edac_printk(level, fmt, arg...) \
 124	edac_printk(level, "PPC4xx MC", fmt, ##arg)
 125
 126/*
 127 * Kernel logging with an EDAC instance
 128 */
 129#define ppc4xx_edac_mc_printk(level, mci, fmt, arg...) \
 130	edac_mc_chipset_printk(mci, level, "PPC4xx", fmt, ##arg)
 131
 132/*
 133 * Macros to convert bank configuration size enumerations into MiB and
 134 * page values.
 135 */
 136#define SDRAM_MBCF_SZ_MiB_MIN		4
 137#define SDRAM_MBCF_SZ_TO_MiB(n)		(SDRAM_MBCF_SZ_MiB_MIN \
 138					 << (SDRAM_MBCF_SZ_DECODE(n)))
 139#define SDRAM_MBCF_SZ_TO_PAGES(n)	(SDRAM_MBCF_SZ_MiB_MIN \
 140					 << (20 - PAGE_SHIFT + \
 141					     SDRAM_MBCF_SZ_DECODE(n)))
 142
 143/*
 144 * The ibm,sdram-4xx-ddr2 Device Control Registers (DCRs) are
 145 * indirectly accessed and have a base and length defined by the
 146 * device tree. The base can be anything; however, we expect the
 147 * length to be precisely two registers, the first for the address
 148 * window and the second for the data window.
 149 */
 150#define SDRAM_DCR_RESOURCE_LEN		2
 151#define SDRAM_DCR_ADDR_OFFSET		0
 152#define SDRAM_DCR_DATA_OFFSET		1
 153
 154/*
 155 * Device tree interrupt indices
 156 */
 157#define INTMAP_ECCDED_INDEX		0	/* Double-bit Error Detect */
 158#define INTMAP_ECCSEC_INDEX		1	/* Single-bit Error Correct */
 159
 160/* Type Definitions */
 161
 162/*
 163 * PPC4xx SDRAM memory controller private instance data
 164 */
 165struct ppc4xx_edac_pdata {
 166	dcr_host_t dcr_host;	/* Indirect DCR address/data window mapping */
 167	struct {
 168		int sec;	/* Single-bit correctable error IRQ assigned */
 169		int ded;	/* Double-bit detectable error IRQ assigned */
 170	} irqs;
 171};
 172
 173/*
 174 * Various status data gathered and manipulated when checking and
 175 * reporting ECC status.
 176 */
 177struct ppc4xx_ecc_status {
 178	u32 ecces;
 179	u32 besr;
 180	u32 bearh;
 181	u32 bearl;
 182	u32 wmirq;
 183};
 184
 185/* Function Prototypes */
 186
 187static int ppc4xx_edac_probe(struct platform_device *device);
 188static int ppc4xx_edac_remove(struct platform_device *device);
 189
 190/* Global Variables */
 191
 192/*
 193 * Device tree node type and compatible tuples this driver can match
 194 * on.
 195 */
 196static const struct of_device_id ppc4xx_edac_match[] = {
 197	{
 198		.compatible	= "ibm,sdram-4xx-ddr2"
 199	},
 200	{ }
 201};
 202MODULE_DEVICE_TABLE(of, ppc4xx_edac_match);
 203
 204static struct platform_driver ppc4xx_edac_driver = {
 205	.probe			= ppc4xx_edac_probe,
 206	.remove			= ppc4xx_edac_remove,
 207	.driver = {
 208		.name = PPC4XX_EDAC_MODULE_NAME,
 209		.of_match_table = ppc4xx_edac_match,
 210	},
 211};
 212
 213/*
 214 * TODO: The row and channel parameters likely need to be dynamically
 215 * set based on the aforementioned variant controller realizations.
 216 */
 217static const unsigned ppc4xx_edac_nr_csrows = 2;
 218static const unsigned ppc4xx_edac_nr_chans = 1;
 219
 220/*
 221 * Strings associated with PLB master IDs capable of being posted in
 222 * SDRAM_BESR or SDRAM_WMIRQ on uncorrectable ECC errors.
 223 */
 224static const char * const ppc4xx_plb_masters[9] = {
 225	[SDRAM_PLB_M0ID_ICU]	= "ICU",
 226	[SDRAM_PLB_M0ID_PCIE0]	= "PCI-E 0",
 227	[SDRAM_PLB_M0ID_PCIE1]	= "PCI-E 1",
 228	[SDRAM_PLB_M0ID_DMA]	= "DMA",
 229	[SDRAM_PLB_M0ID_DCU]	= "DCU",
 230	[SDRAM_PLB_M0ID_OPB]	= "OPB",
 231	[SDRAM_PLB_M0ID_MAL]	= "MAL",
 232	[SDRAM_PLB_M0ID_SEC]	= "SEC",
 233	[SDRAM_PLB_M0ID_AHB]	= "AHB"
 234};
 235
 236/**
 237 * mfsdram - read and return controller register data
 238 * @dcr_host: A pointer to the DCR mapping.
 239 * @idcr_n: The indirect DCR register to read.
 240 *
 241 * This routine reads and returns the data associated with the
 242 * controller's specified indirect DCR register.
 243 *
 244 * Returns the read data.
 245 */
 246static inline u32
 247mfsdram(const dcr_host_t *dcr_host, unsigned int idcr_n)
 248{
 249	return __mfdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET,
 250			dcr_host->base + SDRAM_DCR_DATA_OFFSET,
 251			idcr_n);
 252}
 253
 254/**
 255 * mtsdram - write controller register data
 256 * @dcr_host: A pointer to the DCR mapping.
 257 * @idcr_n: The indirect DCR register to write.
 258 * @value: The data to write.
 259 *
 260 * This routine writes the provided data to the controller's specified
 261 * indirect DCR register.
 262 */
 263static inline void
 264mtsdram(const dcr_host_t *dcr_host, unsigned int idcr_n, u32 value)
 265{
 266	return __mtdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET,
 267			dcr_host->base + SDRAM_DCR_DATA_OFFSET,
 268			idcr_n,
 269			value);
 270}
 271
 272/**
 273 * ppc4xx_edac_check_bank_error - check a bank for an ECC bank error
 274 * @status: A pointer to the ECC status structure to check for an
 275 *          ECC bank error.
 276 * @bank: The bank to check for an ECC error.
 277 *
 278 * This routine determines whether the specified bank has an ECC
 279 * error.
 280 *
 281 * Returns true if the specified bank has an ECC error; otherwise,
 282 * false.
 283 */
 284static bool
 285ppc4xx_edac_check_bank_error(const struct ppc4xx_ecc_status *status,
 286			     unsigned int bank)
 287{
 288	switch (bank) {
 289	case 0:
 290		return status->ecces & SDRAM_ECCES_BK0ER;
 291	case 1:
 292		return status->ecces & SDRAM_ECCES_BK1ER;
 293	default:
 294		return false;
 295	}
 296}
 297
 298/**
 299 * ppc4xx_edac_generate_bank_message - generate interpretted bank status message
 300 * @mci: A pointer to the EDAC memory controller instance associated
 301 *       with the bank message being generated.
 302 * @status: A pointer to the ECC status structure to generate the
 303 *          message from.
 304 * @buffer: A pointer to the buffer in which to generate the
 305 *          message.
 306 * @size: The size, in bytes, of space available in buffer.
 307 *
 308 * This routine generates to the provided buffer the portion of the
 309 * driver-unique report message associated with the ECCESS[BKNER]
 310 * field of the specified ECC status.
 311 *
 312 * Returns the number of characters generated on success; otherwise, <
 313 * 0 on error.
 314 */
 315static int
 316ppc4xx_edac_generate_bank_message(const struct mem_ctl_info *mci,
 317				  const struct ppc4xx_ecc_status *status,
 318				  char *buffer,
 319				  size_t size)
 320{
 321	int n, total = 0;
 322	unsigned int row, rows;
 323
 324	n = snprintf(buffer, size, "%s: Banks: ", mci->dev_name);
 325
 326	if (n < 0 || n >= size)
 327		goto fail;
 328
 329	buffer += n;
 330	size -= n;
 331	total += n;
 332
 333	for (rows = 0, row = 0; row < mci->nr_csrows; row++) {
 334		if (ppc4xx_edac_check_bank_error(status, row)) {
 335			n = snprintf(buffer, size, "%s%u",
 336					(rows++ ? ", " : ""), row);
 337
 338			if (n < 0 || n >= size)
 339				goto fail;
 340
 341			buffer += n;
 342			size -= n;
 343			total += n;
 344		}
 345	}
 346
 347	n = snprintf(buffer, size, "%s; ", rows ? "" : "None");
 348
 349	if (n < 0 || n >= size)
 350		goto fail;
 351
 352	buffer += n;
 353	size -= n;
 354	total += n;
 355
 356 fail:
 357	return total;
 358}
 359
 360/**
 361 * ppc4xx_edac_generate_checkbit_message - generate interpretted checkbit message
 362 * @mci: A pointer to the EDAC memory controller instance associated
 363 *       with the checkbit message being generated.
 364 * @status: A pointer to the ECC status structure to generate the
 365 *          message from.
 366 * @buffer: A pointer to the buffer in which to generate the
 367 *          message.
 368 * @size: The size, in bytes, of space available in buffer.
 369 *
 370 * This routine generates to the provided buffer the portion of the
 371 * driver-unique report message associated with the ECCESS[CKBER]
 372 * field of the specified ECC status.
 373 *
 374 * Returns the number of characters generated on success; otherwise, <
 375 * 0 on error.
 376 */
 377static int
 378ppc4xx_edac_generate_checkbit_message(const struct mem_ctl_info *mci,
 379				      const struct ppc4xx_ecc_status *status,
 380				      char *buffer,
 381				      size_t size)
 382{
 383	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
 384	const char *ckber = NULL;
 385
 386	switch (status->ecces & SDRAM_ECCES_CKBER_MASK) {
 387	case SDRAM_ECCES_CKBER_NONE:
 388		ckber = "None";
 389		break;
 390	case SDRAM_ECCES_CKBER_32_ECC_0_3:
 391		ckber = "ECC0:3";
 392		break;
 393	case SDRAM_ECCES_CKBER_32_ECC_4_8:
 394		switch (mfsdram(&pdata->dcr_host, SDRAM_MCOPT1) &
 395			SDRAM_MCOPT1_WDTH_MASK) {
 396		case SDRAM_MCOPT1_WDTH_16:
 397			ckber = "ECC0:3";
 398			break;
 399		case SDRAM_MCOPT1_WDTH_32:
 400			ckber = "ECC4:8";
 401			break;
 402		default:
 403			ckber = "Unknown";
 404			break;
 405		}
 406		break;
 407	case SDRAM_ECCES_CKBER_32_ECC_0_8:
 408		ckber = "ECC0:8";
 409		break;
 410	default:
 411		ckber = "Unknown";
 412		break;
 413	}
 414
 415	return snprintf(buffer, size, "Checkbit Error: %s", ckber);
 416}
 417
 418/**
 419 * ppc4xx_edac_generate_lane_message - generate interpretted byte lane message
 420 * @mci: A pointer to the EDAC memory controller instance associated
 421 *       with the byte lane message being generated.
 422 * @status: A pointer to the ECC status structure to generate the
 423 *          message from.
 424 * @buffer: A pointer to the buffer in which to generate the
 425 *          message.
 426 * @size: The size, in bytes, of space available in buffer.
 427 *
 428 * This routine generates to the provided buffer the portion of the
 429 * driver-unique report message associated with the ECCESS[BNCE]
 430 * field of the specified ECC status.
 431 *
 432 * Returns the number of characters generated on success; otherwise, <
 433 * 0 on error.
 434 */
 435static int
 436ppc4xx_edac_generate_lane_message(const struct mem_ctl_info *mci,
 437				  const struct ppc4xx_ecc_status *status,
 438				  char *buffer,
 439				  size_t size)
 440{
 441	int n, total = 0;
 442	unsigned int lane, lanes;
 443	const unsigned int first_lane = 0;
 444	const unsigned int lane_count = 16;
 445
 446	n = snprintf(buffer, size, "; Byte Lane Errors: ");
 447
 448	if (n < 0 || n >= size)
 449		goto fail;
 450
 451	buffer += n;
 452	size -= n;
 453	total += n;
 454
 455	for (lanes = 0, lane = first_lane; lane < lane_count; lane++) {
 456		if ((status->ecces & SDRAM_ECCES_BNCE_ENCODE(lane)) != 0) {
 457			n = snprintf(buffer, size,
 458				     "%s%u",
 459				     (lanes++ ? ", " : ""), lane);
 460
 461			if (n < 0 || n >= size)
 462				goto fail;
 463
 464			buffer += n;
 465			size -= n;
 466			total += n;
 467		}
 468	}
 469
 470	n = snprintf(buffer, size, "%s; ", lanes ? "" : "None");
 471
 472	if (n < 0 || n >= size)
 473		goto fail;
 474
 475	buffer += n;
 476	size -= n;
 477	total += n;
 478
 479 fail:
 480	return total;
 481}
 482
 483/**
 484 * ppc4xx_edac_generate_ecc_message - generate interpretted ECC status message
 485 * @mci: A pointer to the EDAC memory controller instance associated
 486 *       with the ECCES message being generated.
 487 * @status: A pointer to the ECC status structure to generate the
 488 *          message from.
 489 * @buffer: A pointer to the buffer in which to generate the
 490 *          message.
 491 * @size: The size, in bytes, of space available in buffer.
 492 *
 493 * This routine generates to the provided buffer the portion of the
 494 * driver-unique report message associated with the ECCESS register of
 495 * the specified ECC status.
 496 *
 497 * Returns the number of characters generated on success; otherwise, <
 498 * 0 on error.
 499 */
 500static int
 501ppc4xx_edac_generate_ecc_message(const struct mem_ctl_info *mci,
 502				 const struct ppc4xx_ecc_status *status,
 503				 char *buffer,
 504				 size_t size)
 505{
 506	int n, total = 0;
 507
 508	n = ppc4xx_edac_generate_bank_message(mci, status, buffer, size);
 509
 510	if (n < 0 || n >= size)
 511		goto fail;
 512
 513	buffer += n;
 514	size -= n;
 515	total += n;
 516
 517	n = ppc4xx_edac_generate_checkbit_message(mci, status, buffer, size);
 518
 519	if (n < 0 || n >= size)
 520		goto fail;
 521
 522	buffer += n;
 523	size -= n;
 524	total += n;
 525
 526	n = ppc4xx_edac_generate_lane_message(mci, status, buffer, size);
 527
 528	if (n < 0 || n >= size)
 529		goto fail;
 530
 531	buffer += n;
 532	size -= n;
 533	total += n;
 534
 535 fail:
 536	return total;
 537}
 538
 539/**
 540 * ppc4xx_edac_generate_plb_message - generate interpretted PLB status message
 541 * @mci: A pointer to the EDAC memory controller instance associated
 542 *       with the PLB message being generated.
 543 * @status: A pointer to the ECC status structure to generate the
 544 *          message from.
 545 * @buffer: A pointer to the buffer in which to generate the
 546 *          message.
 547 * @size: The size, in bytes, of space available in buffer.
 548 *
 549 * This routine generates to the provided buffer the portion of the
 550 * driver-unique report message associated with the PLB-related BESR
 551 * and/or WMIRQ registers of the specified ECC status.
 552 *
 553 * Returns the number of characters generated on success; otherwise, <
 554 * 0 on error.
 555 */
 556static int
 557ppc4xx_edac_generate_plb_message(const struct mem_ctl_info *mci,
 558				 const struct ppc4xx_ecc_status *status,
 559				 char *buffer,
 560				 size_t size)
 561{
 562	unsigned int master;
 563	bool read;
 564
 565	if ((status->besr & SDRAM_BESR_MASK) == 0)
 566		return 0;
 567
 568	if ((status->besr & SDRAM_BESR_M0ET_MASK) == SDRAM_BESR_M0ET_NONE)
 569		return 0;
 570
 571	read = ((status->besr & SDRAM_BESR_M0RW_MASK) == SDRAM_BESR_M0RW_READ);
 572
 573	master = SDRAM_BESR_M0ID_DECODE(status->besr);
 574
 575	return snprintf(buffer, size,
 576			"%s error w/ PLB master %u \"%s\"; ",
 577			(read ? "Read" : "Write"),
 578			master,
 579			(((master >= SDRAM_PLB_M0ID_FIRST) &&
 580			  (master <= SDRAM_PLB_M0ID_LAST)) ?
 581			 ppc4xx_plb_masters[master] : "UNKNOWN"));
 582}
 583
 584/**
 585 * ppc4xx_edac_generate_message - generate interpretted status message
 586 * @mci: A pointer to the EDAC memory controller instance associated
 587 *       with the driver-unique message being generated.
 588 * @status: A pointer to the ECC status structure to generate the
 589 *          message from.
 590 * @buffer: A pointer to the buffer in which to generate the
 591 *          message.
 592 * @size: The size, in bytes, of space available in buffer.
 593 *
 594 * This routine generates to the provided buffer the driver-unique
 595 * EDAC report message from the specified ECC status.
 596 */
 597static void
 598ppc4xx_edac_generate_message(const struct mem_ctl_info *mci,
 599			     const struct ppc4xx_ecc_status *status,
 600			     char *buffer,
 601			     size_t size)
 602{
 603	int n;
 604
 605	if (buffer == NULL || size == 0)
 606		return;
 607
 608	n = ppc4xx_edac_generate_ecc_message(mci, status, buffer, size);
 609
 610	if (n < 0 || n >= size)
 611		return;
 612
 613	buffer += n;
 614	size -= n;
 615
 616	ppc4xx_edac_generate_plb_message(mci, status, buffer, size);
 617}
 618
 619#ifdef DEBUG
 620/**
 621 * ppc4xx_ecc_dump_status - dump controller ECC status registers
 622 * @mci: A pointer to the EDAC memory controller instance
 623 *       associated with the status being dumped.
 624 * @status: A pointer to the ECC status structure to generate the
 625 *          dump from.
 626 *
 627 * This routine dumps to the kernel log buffer the raw and
 628 * interpretted specified ECC status.
 629 */
 630static void
 631ppc4xx_ecc_dump_status(const struct mem_ctl_info *mci,
 632		       const struct ppc4xx_ecc_status *status)
 633{
 634	char message[PPC4XX_EDAC_MESSAGE_SIZE];
 635
 636	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
 637
 638	ppc4xx_edac_mc_printk(KERN_INFO, mci,
 639			      "\n"
 640			      "\tECCES: 0x%08x\n"
 641			      "\tWMIRQ: 0x%08x\n"
 642			      "\tBESR:  0x%08x\n"
 643			      "\tBEAR:  0x%08x%08x\n"
 644			      "\t%s\n",
 645			      status->ecces,
 646			      status->wmirq,
 647			      status->besr,
 648			      status->bearh,
 649			      status->bearl,
 650			      message);
 651}
 652#endif /* DEBUG */
 653
 654/**
 655 * ppc4xx_ecc_get_status - get controller ECC status
 656 * @mci: A pointer to the EDAC memory controller instance
 657 *       associated with the status being retrieved.
 658 * @status: A pointer to the ECC status structure to populate the
 659 *          ECC status with.
 660 *
 661 * This routine reads and masks, as appropriate, all the relevant
 662 * status registers that deal with ibm,sdram-4xx-ddr2 ECC errors.
 663 * While we read all of them, for correctable errors, we only expect
 664 * to deal with ECCES. For uncorrectable errors, we expect to deal
 665 * with all of them.
 666 */
 667static void
 668ppc4xx_ecc_get_status(const struct mem_ctl_info *mci,
 669		      struct ppc4xx_ecc_status *status)
 670{
 671	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
 672	const dcr_host_t *dcr_host = &pdata->dcr_host;
 673
 674	status->ecces = mfsdram(dcr_host, SDRAM_ECCES) & SDRAM_ECCES_MASK;
 675	status->wmirq = mfsdram(dcr_host, SDRAM_WMIRQ) & SDRAM_WMIRQ_MASK;
 676	status->besr  = mfsdram(dcr_host, SDRAM_BESR)  & SDRAM_BESR_MASK;
 677	status->bearl = mfsdram(dcr_host, SDRAM_BEARL);
 678	status->bearh = mfsdram(dcr_host, SDRAM_BEARH);
 679}
 680
 681/**
 682 * ppc4xx_ecc_clear_status - clear controller ECC status
 683 * @mci: A pointer to the EDAC memory controller instance
 684 *       associated with the status being cleared.
 685 * @status: A pointer to the ECC status structure containing the
 686 *          values to write to clear the ECC status.
 687 *
 688 * This routine clears--by writing the masked (as appropriate) status
 689 * values back to--the status registers that deal with
 690 * ibm,sdram-4xx-ddr2 ECC errors.
 691 */
 692static void
 693ppc4xx_ecc_clear_status(const struct mem_ctl_info *mci,
 694			const struct ppc4xx_ecc_status *status)
 695{
 696	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
 697	const dcr_host_t *dcr_host = &pdata->dcr_host;
 698
 699	mtsdram(dcr_host, SDRAM_ECCES,	status->ecces & SDRAM_ECCES_MASK);
 700	mtsdram(dcr_host, SDRAM_WMIRQ,	status->wmirq & SDRAM_WMIRQ_MASK);
 701	mtsdram(dcr_host, SDRAM_BESR,	status->besr & SDRAM_BESR_MASK);
 702	mtsdram(dcr_host, SDRAM_BEARL,	0);
 703	mtsdram(dcr_host, SDRAM_BEARH,	0);
 704}
 705
 706/**
 707 * ppc4xx_edac_handle_ce - handle controller correctable ECC error (CE)
 708 * @mci: A pointer to the EDAC memory controller instance
 709 *       associated with the correctable error being handled and reported.
 710 * @status: A pointer to the ECC status structure associated with
 711 *          the correctable error being handled and reported.
 712 *
 713 * This routine handles an ibm,sdram-4xx-ddr2 controller ECC
 714 * correctable error. Per the aforementioned discussion, there's not
 715 * enough status available to use the full EDAC correctable error
 716 * interface, so we just pass driver-unique message to the "no info"
 717 * interface.
 718 */
 719static void
 720ppc4xx_edac_handle_ce(struct mem_ctl_info *mci,
 721		      const struct ppc4xx_ecc_status *status)
 722{
 723	int row;
 724	char message[PPC4XX_EDAC_MESSAGE_SIZE];
 725
 726	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
 727
 728	for (row = 0; row < mci->nr_csrows; row++)
 729		if (ppc4xx_edac_check_bank_error(status, row))
 730			edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
 731					     0, 0, 0,
 732					     row, 0, -1,
 733					     message, "");
 734}
 735
 736/**
 737 * ppc4xx_edac_handle_ue - handle controller uncorrectable ECC error (UE)
 738 * @mci: A pointer to the EDAC memory controller instance
 739 *       associated with the uncorrectable error being handled and
 740 *       reported.
 741 * @status: A pointer to the ECC status structure associated with
 742 *          the uncorrectable error being handled and reported.
 743 *
 744 * This routine handles an ibm,sdram-4xx-ddr2 controller ECC
 745 * uncorrectable error.
 746 */
 747static void
 748ppc4xx_edac_handle_ue(struct mem_ctl_info *mci,
 749		      const struct ppc4xx_ecc_status *status)
 750{
 751	const u64 bear = ((u64)status->bearh << 32 | status->bearl);
 752	const unsigned long page = bear >> PAGE_SHIFT;
 753	const unsigned long offset = bear & ~PAGE_MASK;
 754	int row;
 755	char message[PPC4XX_EDAC_MESSAGE_SIZE];
 756
 757	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
 758
 759	for (row = 0; row < mci->nr_csrows; row++)
 760		if (ppc4xx_edac_check_bank_error(status, row))
 761			edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
 762					     page, offset, 0,
 763					     row, 0, -1,
 764					     message, "");
 765}
 766
 767/**
 768 * ppc4xx_edac_check - check controller for ECC errors
 769 * @mci: A pointer to the EDAC memory controller instance
 770 *       associated with the ibm,sdram-4xx-ddr2 controller being
 771 *       checked.
 772 *
 773 * This routine is used to check and post ECC errors and is called by
 774 * both the EDAC polling thread and this driver's CE and UE interrupt
 775 * handler.
 776 */
 777static void
 778ppc4xx_edac_check(struct mem_ctl_info *mci)
 779{
 780#ifdef DEBUG
 781	static unsigned int count;
 782#endif
 783	struct ppc4xx_ecc_status status;
 784
 785	ppc4xx_ecc_get_status(mci, &status);
 786
 787#ifdef DEBUG
 788	if (count++ % 30 == 0)
 789		ppc4xx_ecc_dump_status(mci, &status);
 790#endif
 791
 792	if (status.ecces & SDRAM_ECCES_UE)
 793		ppc4xx_edac_handle_ue(mci, &status);
 794
 795	if (status.ecces & SDRAM_ECCES_CE)
 796		ppc4xx_edac_handle_ce(mci, &status);
 797
 798	ppc4xx_ecc_clear_status(mci, &status);
 799}
 800
 801/**
 802 * ppc4xx_edac_isr - SEC (CE) and DED (UE) interrupt service routine
 803 * @irq:    The virtual interrupt number being serviced.
 804 * @dev_id: A pointer to the EDAC memory controller instance
 805 *          associated with the interrupt being handled.
 806 *
 807 * This routine implements the interrupt handler for both correctable
 808 * (CE) and uncorrectable (UE) ECC errors for the ibm,sdram-4xx-ddr2
 809 * controller. It simply calls through to the same routine used during
 810 * polling to check, report and clear the ECC status.
 811 *
 812 * Unconditionally returns IRQ_HANDLED.
 813 */
 814static irqreturn_t
 815ppc4xx_edac_isr(int irq, void *dev_id)
 816{
 817	struct mem_ctl_info *mci = dev_id;
 818
 819	ppc4xx_edac_check(mci);
 820
 821	return IRQ_HANDLED;
 822}
 823
 824/**
 825 * ppc4xx_edac_get_dtype - return the controller memory width
 826 * @mcopt1: The 32-bit Memory Controller Option 1 register value
 827 *          currently set for the controller, from which the width
 828 *          is derived.
 829 *
 830 * This routine returns the EDAC device type width appropriate for the
 831 * current controller configuration.
 832 *
 833 * TODO: This needs to be conditioned dynamically through feature
 834 * flags or some such when other controller variants are supported as
 835 * the 405EX[r] is 16-/32-bit and the others are 32-/64-bit with the
 836 * 16- and 64-bit field definition/value/enumeration (b1) overloaded
 837 * among them.
 838 *
 839 * Returns a device type width enumeration.
 840 */
 841static enum dev_type ppc4xx_edac_get_dtype(u32 mcopt1)
 842{
 843	switch (mcopt1 & SDRAM_MCOPT1_WDTH_MASK) {
 844	case SDRAM_MCOPT1_WDTH_16:
 845		return DEV_X2;
 846	case SDRAM_MCOPT1_WDTH_32:
 847		return DEV_X4;
 848	default:
 849		return DEV_UNKNOWN;
 850	}
 851}
 852
 853/**
 854 * ppc4xx_edac_get_mtype - return controller memory type
 855 * @mcopt1: The 32-bit Memory Controller Option 1 register value
 856 *          currently set for the controller, from which the memory type
 857 *          is derived.
 858 *
 859 * This routine returns the EDAC memory type appropriate for the
 860 * current controller configuration.
 861 *
 862 * Returns a memory type enumeration.
 863 */
 864static enum mem_type ppc4xx_edac_get_mtype(u32 mcopt1)
 865{
 866	bool rden = ((mcopt1 & SDRAM_MCOPT1_RDEN_MASK) == SDRAM_MCOPT1_RDEN);
 867
 868	switch (mcopt1 & SDRAM_MCOPT1_DDR_TYPE_MASK) {
 869	case SDRAM_MCOPT1_DDR2_TYPE:
 870		return rden ? MEM_RDDR2 : MEM_DDR2;
 871	case SDRAM_MCOPT1_DDR1_TYPE:
 872		return rden ? MEM_RDDR : MEM_DDR;
 873	default:
 874		return MEM_UNKNOWN;
 875	}
 876}
 877
 878/**
 879 * ppc4xx_edac_init_csrows - initialize driver instance rows
 880 * @mci: A pointer to the EDAC memory controller instance
 881 *       associated with the ibm,sdram-4xx-ddr2 controller for which
 882 *       the csrows (i.e. banks/ranks) are being initialized.
 883 * @mcopt1: The 32-bit Memory Controller Option 1 register value
 884 *          currently set for the controller, from which bank width
 885 *          and memory typ information is derived.
 886 *
 887 * This routine initializes the virtual "chip select rows" associated
 888 * with the EDAC memory controller instance. An ibm,sdram-4xx-ddr2
 889 * controller bank/rank is mapped to a row.
 890 *
 891 * Returns 0 if OK; otherwise, -EINVAL if the memory bank size
 892 * configuration cannot be determined.
 893 */
 894static int ppc4xx_edac_init_csrows(struct mem_ctl_info *mci, u32 mcopt1)
 895{
 896	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
 897	int status = 0;
 898	enum mem_type mtype;
 899	enum dev_type dtype;
 900	enum edac_type edac_mode;
 901	int row, j;
 902	u32 mbxcf, size, nr_pages;
 903
 904	/* Establish the memory type and width */
 905
 906	mtype = ppc4xx_edac_get_mtype(mcopt1);
 907	dtype = ppc4xx_edac_get_dtype(mcopt1);
 908
 909	/* Establish EDAC mode */
 910
 911	if (mci->edac_cap & EDAC_FLAG_SECDED)
 912		edac_mode = EDAC_SECDED;
 913	else if (mci->edac_cap & EDAC_FLAG_EC)
 914		edac_mode = EDAC_EC;
 915	else
 916		edac_mode = EDAC_NONE;
 917
 918	/*
 919	 * Initialize each chip select row structure which correspond
 920	 * 1:1 with a controller bank/rank.
 921	 */
 922
 923	for (row = 0; row < mci->nr_csrows; row++) {
 924		struct csrow_info *csi = mci->csrows[row];
 925
 926		/*
 927		 * Get the configuration settings for this
 928		 * row/bank/rank and skip disabled banks.
 929		 */
 930
 931		mbxcf = mfsdram(&pdata->dcr_host, SDRAM_MBXCF(row));
 932
 933		if ((mbxcf & SDRAM_MBCF_BE_MASK) != SDRAM_MBCF_BE_ENABLE)
 934			continue;
 935
 936		/* Map the bank configuration size setting to pages. */
 937
 938		size = mbxcf & SDRAM_MBCF_SZ_MASK;
 939
 940		switch (size) {
 941		case SDRAM_MBCF_SZ_4MB:
 942		case SDRAM_MBCF_SZ_8MB:
 943		case SDRAM_MBCF_SZ_16MB:
 944		case SDRAM_MBCF_SZ_32MB:
 945		case SDRAM_MBCF_SZ_64MB:
 946		case SDRAM_MBCF_SZ_128MB:
 947		case SDRAM_MBCF_SZ_256MB:
 948		case SDRAM_MBCF_SZ_512MB:
 949		case SDRAM_MBCF_SZ_1GB:
 950		case SDRAM_MBCF_SZ_2GB:
 951		case SDRAM_MBCF_SZ_4GB:
 952		case SDRAM_MBCF_SZ_8GB:
 953			nr_pages = SDRAM_MBCF_SZ_TO_PAGES(size);
 954			break;
 955		default:
 956			ppc4xx_edac_mc_printk(KERN_ERR, mci,
 957					      "Unrecognized memory bank %d "
 958					      "size 0x%08x\n",
 959					      row, SDRAM_MBCF_SZ_DECODE(size));
 960			status = -EINVAL;
 961			goto done;
 962		}
 963
 964		/*
 965		 * It's unclear exactly what grain should be set to
 966		 * here. The SDRAM_ECCES register allows resolution of
 967		 * an error down to a nibble which would potentially
 968		 * argue for a grain of '1' byte, even though we only
 969		 * know the associated address for uncorrectable
 970		 * errors. This value is not used at present for
 971		 * anything other than error reporting so getting it
 972		 * wrong should be of little consequence. Other
 973		 * possible values would be the PLB width (16), the
 974		 * page size (PAGE_SIZE) or the memory width (2 or 4).
 975		 */
 976		for (j = 0; j < csi->nr_channels; j++) {
 977			struct dimm_info *dimm = csi->channels[j]->dimm;
 978
 979			dimm->nr_pages  = nr_pages / csi->nr_channels;
 980			dimm->grain	= 1;
 981
 982			dimm->mtype	= mtype;
 983			dimm->dtype	= dtype;
 984
 985			dimm->edac_mode	= edac_mode;
 986		}
 987	}
 988
 989 done:
 990	return status;
 991}
 992
 993/**
 994 * ppc4xx_edac_mc_init - initialize driver instance
 995 * @mci: A pointer to the EDAC memory controller instance being
 996 *       initialized.
 997 * @op: A pointer to the OpenFirmware device tree node associated
 998 *      with the controller this EDAC instance is bound to.
 999 * @dcr_host: A pointer to the DCR data containing the DCR mapping
1000 *            for this controller instance.
1001 * @mcopt1: The 32-bit Memory Controller Option 1 register value
1002 *          currently set for the controller, from which ECC capabilities
1003 *          and scrub mode are derived.
1004 *
1005 * This routine performs initialization of the EDAC memory controller
1006 * instance and related driver-private data associated with the
1007 * ibm,sdram-4xx-ddr2 memory controller the instance is bound to.
1008 *
1009 * Returns 0 if OK; otherwise, < 0 on error.
1010 */
1011static int ppc4xx_edac_mc_init(struct mem_ctl_info *mci,
1012			       struct platform_device *op,
1013			       const dcr_host_t *dcr_host, u32 mcopt1)
1014{
1015	int status = 0;
1016	const u32 memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK);
1017	struct ppc4xx_edac_pdata *pdata = NULL;
1018	const struct device_node *np = op->dev.of_node;
1019
1020	if (of_match_device(ppc4xx_edac_match, &op->dev) == NULL)
1021		return -EINVAL;
1022
1023	/* Initial driver pointers and private data */
1024
1025	mci->pdev		= &op->dev;
1026
1027	dev_set_drvdata(mci->pdev, mci);
1028
1029	pdata			= mci->pvt_info;
1030
1031	pdata->dcr_host		= *dcr_host;
1032
1033	/* Initialize controller capabilities and configuration */
1034
1035	mci->mtype_cap		= (MEM_FLAG_DDR | MEM_FLAG_RDDR |
1036				   MEM_FLAG_DDR2 | MEM_FLAG_RDDR2);
1037
1038	mci->edac_ctl_cap	= (EDAC_FLAG_NONE |
1039				   EDAC_FLAG_EC |
1040				   EDAC_FLAG_SECDED);
1041
1042	mci->scrub_cap		= SCRUB_NONE;
1043	mci->scrub_mode		= SCRUB_NONE;
1044
1045	/*
1046	 * Update the actual capabilites based on the MCOPT1[MCHK]
1047	 * settings. Scrubbing is only useful if reporting is enabled.
1048	 */
1049
1050	switch (memcheck) {
1051	case SDRAM_MCOPT1_MCHK_CHK:
1052		mci->edac_cap	= EDAC_FLAG_EC;
1053		break;
1054	case SDRAM_MCOPT1_MCHK_CHK_REP:
1055		mci->edac_cap	= (EDAC_FLAG_EC | EDAC_FLAG_SECDED);
1056		mci->scrub_mode	= SCRUB_SW_SRC;
1057		break;
1058	default:
1059		mci->edac_cap	= EDAC_FLAG_NONE;
1060		break;
1061	}
1062
1063	/* Initialize strings */
1064
1065	mci->mod_name		= PPC4XX_EDAC_MODULE_NAME;
1066	mci->mod_ver		= PPC4XX_EDAC_MODULE_REVISION;
1067	mci->ctl_name		= ppc4xx_edac_match->compatible,
1068	mci->dev_name		= np->full_name;
1069
1070	/* Initialize callbacks */
1071
1072	mci->edac_check		= ppc4xx_edac_check;
1073	mci->ctl_page_to_phys	= NULL;
1074
1075	/* Initialize chip select rows */
1076
1077	status = ppc4xx_edac_init_csrows(mci, mcopt1);
1078
1079	if (status)
1080		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1081				      "Failed to initialize rows!\n");
1082
1083	return status;
1084}
1085
1086/**
1087 * ppc4xx_edac_register_irq - setup and register controller interrupts
1088 * @op: A pointer to the OpenFirmware device tree node associated
1089 *      with the controller this EDAC instance is bound to.
1090 * @mci: A pointer to the EDAC memory controller instance
1091 *       associated with the ibm,sdram-4xx-ddr2 controller for which
1092 *       interrupts are being registered.
1093 *
1094 * This routine parses the correctable (CE) and uncorrectable error (UE)
1095 * interrupts from the device tree node and maps and assigns them to
1096 * the associated EDAC memory controller instance.
1097 *
1098 * Returns 0 if OK; otherwise, -ENODEV if the interrupts could not be
1099 * mapped and assigned.
1100 */
1101static int ppc4xx_edac_register_irq(struct platform_device *op,
1102				    struct mem_ctl_info *mci)
1103{
1104	int status = 0;
1105	int ded_irq, sec_irq;
1106	struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
1107	struct device_node *np = op->dev.of_node;
1108
1109	ded_irq = irq_of_parse_and_map(np, INTMAP_ECCDED_INDEX);
1110	sec_irq = irq_of_parse_and_map(np, INTMAP_ECCSEC_INDEX);
1111
1112	if (!ded_irq || !sec_irq) {
1113		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1114				      "Unable to map interrupts.\n");
1115		status = -ENODEV;
1116		goto fail;
1117	}
1118
1119	status = request_irq(ded_irq,
1120			     ppc4xx_edac_isr,
1121			     0,
1122			     "[EDAC] MC ECCDED",
1123			     mci);
1124
1125	if (status < 0) {
1126		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1127				      "Unable to request irq %d for ECC DED",
1128				      ded_irq);
1129		status = -ENODEV;
1130		goto fail1;
1131	}
1132
1133	status = request_irq(sec_irq,
1134			     ppc4xx_edac_isr,
1135			     0,
1136			     "[EDAC] MC ECCSEC",
1137			     mci);
1138
1139	if (status < 0) {
1140		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1141				      "Unable to request irq %d for ECC SEC",
1142				      sec_irq);
1143		status = -ENODEV;
1144		goto fail2;
1145	}
1146
1147	ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCDED irq is %d\n", ded_irq);
1148	ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCSEC irq is %d\n", sec_irq);
1149
1150	pdata->irqs.ded = ded_irq;
1151	pdata->irqs.sec = sec_irq;
1152
1153	return 0;
1154
1155 fail2:
1156	free_irq(sec_irq, mci);
1157
1158 fail1:
1159	free_irq(ded_irq, mci);
1160
1161 fail:
1162	return status;
1163}
1164
1165/**
1166 * ppc4xx_edac_map_dcrs - locate and map controller registers
1167 * @np: A pointer to the device tree node containing the DCR
1168 *      resources to map.
1169 * @dcr_host: A pointer to the DCR data to populate with the
1170 *            DCR mapping.
1171 *
1172 * This routine attempts to locate in the device tree and map the DCR
1173 * register resources associated with the controller's indirect DCR
1174 * address and data windows.
1175 *
1176 * Returns 0 if the DCRs were successfully mapped; otherwise, < 0 on
1177 * error.
1178 */
1179static int ppc4xx_edac_map_dcrs(const struct device_node *np,
1180				dcr_host_t *dcr_host)
1181{
1182	unsigned int dcr_base, dcr_len;
1183
1184	if (np == NULL || dcr_host == NULL)
1185		return -EINVAL;
1186
1187	/* Get the DCR resource extent and sanity check the values. */
1188
1189	dcr_base = dcr_resource_start(np, 0);
1190	dcr_len = dcr_resource_len(np, 0);
1191
1192	if (dcr_base == 0 || dcr_len == 0) {
1193		ppc4xx_edac_printk(KERN_ERR,
1194				   "Failed to obtain DCR property.\n");
1195		return -ENODEV;
1196	}
1197
1198	if (dcr_len != SDRAM_DCR_RESOURCE_LEN) {
1199		ppc4xx_edac_printk(KERN_ERR,
1200				   "Unexpected DCR length %d, expected %d.\n",
1201				   dcr_len, SDRAM_DCR_RESOURCE_LEN);
1202		return -ENODEV;
1203	}
1204
1205	/*  Attempt to map the DCR extent. */
1206
1207	*dcr_host = dcr_map(np, dcr_base, dcr_len);
1208
1209	if (!DCR_MAP_OK(*dcr_host)) {
1210		ppc4xx_edac_printk(KERN_INFO, "Failed to map DCRs.\n");
1211		    return -ENODEV;
1212	}
1213
1214	return 0;
1215}
1216
1217/**
1218 * ppc4xx_edac_probe - check controller and bind driver
1219 * @op: A pointer to the OpenFirmware device tree node associated
1220 *      with the controller being probed for driver binding.
1221 *
1222 * This routine probes a specific ibm,sdram-4xx-ddr2 controller
1223 * instance for binding with the driver.
1224 *
1225 * Returns 0 if the controller instance was successfully bound to the
1226 * driver; otherwise, < 0 on error.
1227 */
1228static int ppc4xx_edac_probe(struct platform_device *op)
1229{
1230	int status = 0;
1231	u32 mcopt1, memcheck;
1232	dcr_host_t dcr_host;
1233	const struct device_node *np = op->dev.of_node;
1234	struct mem_ctl_info *mci = NULL;
1235	struct edac_mc_layer layers[2];
1236	static int ppc4xx_edac_instance;
1237
1238	/*
1239	 * At this point, we only support the controller realized on
1240	 * the AMCC PPC 405EX[r]. Reject anything else.
1241	 */
1242
1243	if (!of_device_is_compatible(np, "ibm,sdram-405ex") &&
1244	    !of_device_is_compatible(np, "ibm,sdram-405exr")) {
1245		ppc4xx_edac_printk(KERN_NOTICE,
1246				   "Only the PPC405EX[r] is supported.\n");
1247		return -ENODEV;
1248	}
1249
1250	/*
1251	 * Next, get the DCR property and attempt to map it so that we
1252	 * can probe the controller.
1253	 */
1254
1255	status = ppc4xx_edac_map_dcrs(np, &dcr_host);
1256
1257	if (status)
1258		return status;
1259
1260	/*
1261	 * First determine whether ECC is enabled at all. If not,
1262	 * there is no useful checking or monitoring that can be done
1263	 * for this controller.
1264	 */
1265
1266	mcopt1 = mfsdram(&dcr_host, SDRAM_MCOPT1);
1267	memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK);
1268
1269	if (memcheck == SDRAM_MCOPT1_MCHK_NON) {
1270		ppc4xx_edac_printk(KERN_INFO, "%s: No ECC memory detected or "
1271				   "ECC is disabled.\n", np->full_name);
1272		status = -ENODEV;
1273		goto done;
1274	}
1275
1276	/*
1277	 * At this point, we know ECC is enabled, allocate an EDAC
1278	 * controller instance and perform the appropriate
1279	 * initialization.
1280	 */
1281	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1282	layers[0].size = ppc4xx_edac_nr_csrows;
1283	layers[0].is_virt_csrow = true;
1284	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1285	layers[1].size = ppc4xx_edac_nr_chans;
1286	layers[1].is_virt_csrow = false;
1287	mci = edac_mc_alloc(ppc4xx_edac_instance, ARRAY_SIZE(layers), layers,
1288			    sizeof(struct ppc4xx_edac_pdata));
1289	if (mci == NULL) {
1290		ppc4xx_edac_printk(KERN_ERR, "%s: "
1291				   "Failed to allocate EDAC MC instance!\n",
1292				   np->full_name);
1293		status = -ENOMEM;
1294		goto done;
1295	}
1296
1297	status = ppc4xx_edac_mc_init(mci, op, &dcr_host, mcopt1);
1298
1299	if (status) {
1300		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1301				      "Failed to initialize instance!\n");
1302		goto fail;
1303	}
1304
1305	/*
1306	 * We have a valid, initialized EDAC instance bound to the
1307	 * controller. Attempt to register it with the EDAC subsystem
1308	 * and, if necessary, register interrupts.
1309	 */
1310
1311	if (edac_mc_add_mc(mci)) {
1312		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1313				      "Failed to add instance!\n");
1314		status = -ENODEV;
1315		goto fail;
1316	}
1317
1318	if (edac_op_state == EDAC_OPSTATE_INT) {
1319		status = ppc4xx_edac_register_irq(op, mci);
1320
1321		if (status)
1322			goto fail1;
1323	}
1324
1325	ppc4xx_edac_instance++;
1326
1327	return 0;
1328
1329 fail1:
1330	edac_mc_del_mc(mci->pdev);
1331
1332 fail:
1333	edac_mc_free(mci);
1334
1335 done:
1336	return status;
1337}
1338
1339/**
1340 * ppc4xx_edac_remove - unbind driver from controller
1341 * @op: A pointer to the OpenFirmware device tree node associated
1342 *      with the controller this EDAC instance is to be unbound/removed
1343 *      from.
1344 *
1345 * This routine unbinds the EDAC memory controller instance associated
1346 * with the specified ibm,sdram-4xx-ddr2 controller described by the
1347 * OpenFirmware device tree node passed as a parameter.
1348 *
1349 * Unconditionally returns 0.
1350 */
1351static int
1352ppc4xx_edac_remove(struct platform_device *op)
1353{
1354	struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
1355	struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
1356
1357	if (edac_op_state == EDAC_OPSTATE_INT) {
1358		free_irq(pdata->irqs.sec, mci);
1359		free_irq(pdata->irqs.ded, mci);
1360	}
1361
1362	dcr_unmap(pdata->dcr_host, SDRAM_DCR_RESOURCE_LEN);
1363
1364	edac_mc_del_mc(mci->pdev);
1365	edac_mc_free(mci);
1366
1367	return 0;
1368}
1369
1370/**
1371 * ppc4xx_edac_opstate_init - initialize EDAC reporting method
1372 *
1373 * This routine ensures that the EDAC memory controller reporting
1374 * method is mapped to a sane value as the EDAC core defines the value
1375 * to EDAC_OPSTATE_INVAL by default. We don't call the global
1376 * opstate_init as that defaults to polling and we want interrupt as
1377 * the default.
1378 */
1379static inline void __init
1380ppc4xx_edac_opstate_init(void)
1381{
1382	switch (edac_op_state) {
1383	case EDAC_OPSTATE_POLL:
1384	case EDAC_OPSTATE_INT:
1385		break;
1386	default:
1387		edac_op_state = EDAC_OPSTATE_INT;
1388		break;
1389	}
1390
1391	ppc4xx_edac_printk(KERN_INFO, "Reporting type: %s\n",
1392			   ((edac_op_state == EDAC_OPSTATE_POLL) ?
1393			    EDAC_OPSTATE_POLL_STR :
1394			    ((edac_op_state == EDAC_OPSTATE_INT) ?
1395			     EDAC_OPSTATE_INT_STR :
1396			     EDAC_OPSTATE_UNKNOWN_STR)));
1397}
1398
1399/**
1400 * ppc4xx_edac_init - driver/module insertion entry point
1401 *
1402 * This routine is the driver/module insertion entry point. It
1403 * initializes the EDAC memory controller reporting state and
1404 * registers the driver as an OpenFirmware device tree platform
1405 * driver.
1406 */
1407static int __init
1408ppc4xx_edac_init(void)
1409{
1410	ppc4xx_edac_printk(KERN_INFO, PPC4XX_EDAC_MODULE_REVISION "\n");
1411
1412	ppc4xx_edac_opstate_init();
1413
1414	return platform_driver_register(&ppc4xx_edac_driver);
1415}
1416
1417/**
1418 * ppc4xx_edac_exit - driver/module removal entry point
1419 *
1420 * This routine is the driver/module removal entry point. It
1421 * unregisters the driver as an OpenFirmware device tree platform
1422 * driver.
1423 */
1424static void __exit
1425ppc4xx_edac_exit(void)
1426{
1427	platform_driver_unregister(&ppc4xx_edac_driver);
1428}
1429
1430module_init(ppc4xx_edac_init);
1431module_exit(ppc4xx_edac_exit);
1432
1433MODULE_LICENSE("GPL v2");
1434MODULE_AUTHOR("Grant Erickson <gerickson@nuovations.com>");
1435MODULE_DESCRIPTION("EDAC MC Driver for the PPC4xx IBM DDR2 Memory Controller");
1436module_param(edac_op_state, int, 0444);
1437MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting State: "
1438		 "0=" EDAC_OPSTATE_POLL_STR ", 2=" EDAC_OPSTATE_INT_STR);