Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Intel 5000(P/V/X) class Memory Controllers kernel module
   3 *
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
   8 *	norsk5@xmission.com
   9 *
  10 * This module is based on the following document:
  11 *
  12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
  13 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
  14 *
  15 */
  16
  17#include <linux/module.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/pci_ids.h>
  21#include <linux/slab.h>
  22#include <linux/edac.h>
  23#include <asm/mmzone.h>
  24
  25#include "edac_module.h"
  26
  27/*
  28 * Alter this version for the I5000 module when modifications are made
  29 */
  30#define I5000_REVISION    " Ver: 2.0.12"
  31#define EDAC_MOD_STR      "i5000_edac"
  32
  33#define i5000_printk(level, fmt, arg...) \
  34        edac_printk(level, "i5000", fmt, ##arg)
  35
  36#define i5000_mc_printk(mci, level, fmt, arg...) \
  37        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
  38
  39#ifndef PCI_DEVICE_ID_INTEL_FBD_0
  40#define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
  41#endif
  42#ifndef PCI_DEVICE_ID_INTEL_FBD_1
  43#define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
  44#endif
  45
  46/* Device 16,
  47 * Function 0: System Address
  48 * Function 1: Memory Branch Map, Control, Errors Register
  49 * Function 2: FSB Error Registers
  50 *
  51 * All 3 functions of Device 16 (0,1,2) share the SAME DID
  52 */
  53#define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
  54
  55/* OFFSETS for Function 0 */
  56
  57/* OFFSETS for Function 1 */
  58#define		AMBASE			0x48
  59#define		MAXCH			0x56
  60#define		MAXDIMMPERCH		0x57
  61#define		TOLM			0x6C
  62#define		REDMEMB			0x7C
  63#define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
  64#define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
  65#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
  66#define		MIR0			0x80
  67#define		MIR1			0x84
  68#define		MIR2			0x88
  69#define		AMIR0			0x8C
  70#define		AMIR1			0x90
  71#define		AMIR2			0x94
  72
  73#define		FERR_FAT_FBD		0x98
  74#define		NERR_FAT_FBD		0x9C
  75#define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
  76#define			FERR_FAT_FBDCHAN 0x30000000
  77#define			FERR_FAT_M3ERR	0x00000004
  78#define			FERR_FAT_M2ERR	0x00000002
  79#define			FERR_FAT_M1ERR	0x00000001
  80#define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
  81						FERR_FAT_M2ERR | \
  82						FERR_FAT_M3ERR)
  83
  84#define		FERR_NF_FBD		0xA0
  85
  86/* Thermal and SPD or BFD errors */
  87#define			FERR_NF_M28ERR	0x01000000
  88#define			FERR_NF_M27ERR	0x00800000
  89#define			FERR_NF_M26ERR	0x00400000
  90#define			FERR_NF_M25ERR	0x00200000
  91#define			FERR_NF_M24ERR	0x00100000
  92#define			FERR_NF_M23ERR	0x00080000
  93#define			FERR_NF_M22ERR	0x00040000
  94#define			FERR_NF_M21ERR	0x00020000
  95
  96/* Correctable errors */
  97#define			FERR_NF_M20ERR	0x00010000
  98#define			FERR_NF_M19ERR	0x00008000
  99#define			FERR_NF_M18ERR	0x00004000
 100#define			FERR_NF_M17ERR	0x00002000
 101
 102/* Non-Retry or redundant Retry errors */
 103#define			FERR_NF_M16ERR	0x00001000
 104#define			FERR_NF_M15ERR	0x00000800
 105#define			FERR_NF_M14ERR	0x00000400
 106#define			FERR_NF_M13ERR	0x00000200
 107
 108/* Uncorrectable errors */
 109#define			FERR_NF_M12ERR	0x00000100
 110#define			FERR_NF_M11ERR	0x00000080
 111#define			FERR_NF_M10ERR	0x00000040
 112#define			FERR_NF_M9ERR	0x00000020
 113#define			FERR_NF_M8ERR	0x00000010
 114#define			FERR_NF_M7ERR	0x00000008
 115#define			FERR_NF_M6ERR	0x00000004
 116#define			FERR_NF_M5ERR	0x00000002
 117#define			FERR_NF_M4ERR	0x00000001
 118
 119#define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
 120							FERR_NF_M11ERR | \
 121							FERR_NF_M10ERR | \
 122							FERR_NF_M9ERR | \
 123							FERR_NF_M8ERR | \
 124							FERR_NF_M7ERR | \
 125							FERR_NF_M6ERR | \
 126							FERR_NF_M5ERR | \
 127							FERR_NF_M4ERR)
 128#define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
 129							FERR_NF_M19ERR | \
 130							FERR_NF_M18ERR | \
 131							FERR_NF_M17ERR)
 132#define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
 133							FERR_NF_M28ERR)
 134#define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
 135							FERR_NF_M25ERR | \
 136							FERR_NF_M24ERR | \
 137							FERR_NF_M23ERR)
 138#define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
 139#define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
 140#define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
 141							FERR_NF_M14ERR | \
 142							FERR_NF_M15ERR)
 143
 144#define		NERR_NF_FBD		0xA4
 145#define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
 146							FERR_NF_CORRECTABLE | \
 147							FERR_NF_DIMM_SPARE | \
 148							FERR_NF_THERMAL | \
 149							FERR_NF_SPD_PROTOCOL | \
 150							FERR_NF_NORTH_CRC | \
 151							FERR_NF_NON_RETRY)
 152
 153#define		EMASK_FBD		0xA8
 154#define			EMASK_FBD_M28ERR	0x08000000
 155#define			EMASK_FBD_M27ERR	0x04000000
 156#define			EMASK_FBD_M26ERR	0x02000000
 157#define			EMASK_FBD_M25ERR	0x01000000
 158#define			EMASK_FBD_M24ERR	0x00800000
 159#define			EMASK_FBD_M23ERR	0x00400000
 160#define			EMASK_FBD_M22ERR	0x00200000
 161#define			EMASK_FBD_M21ERR	0x00100000
 162#define			EMASK_FBD_M20ERR	0x00080000
 163#define			EMASK_FBD_M19ERR	0x00040000
 164#define			EMASK_FBD_M18ERR	0x00020000
 165#define			EMASK_FBD_M17ERR	0x00010000
 166
 167#define			EMASK_FBD_M15ERR	0x00004000
 168#define			EMASK_FBD_M14ERR	0x00002000
 169#define			EMASK_FBD_M13ERR	0x00001000
 170#define			EMASK_FBD_M12ERR	0x00000800
 171#define			EMASK_FBD_M11ERR	0x00000400
 172#define			EMASK_FBD_M10ERR	0x00000200
 173#define			EMASK_FBD_M9ERR		0x00000100
 174#define			EMASK_FBD_M8ERR		0x00000080
 175#define			EMASK_FBD_M7ERR		0x00000040
 176#define			EMASK_FBD_M6ERR		0x00000020
 177#define			EMASK_FBD_M5ERR		0x00000010
 178#define			EMASK_FBD_M4ERR		0x00000008
 179#define			EMASK_FBD_M3ERR		0x00000004
 180#define			EMASK_FBD_M2ERR		0x00000002
 181#define			EMASK_FBD_M1ERR		0x00000001
 182
 183#define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
 184							EMASK_FBD_M2ERR | \
 185							EMASK_FBD_M3ERR)
 186
 187#define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
 188							EMASK_FBD_M5ERR | \
 189							EMASK_FBD_M6ERR | \
 190							EMASK_FBD_M7ERR | \
 191							EMASK_FBD_M8ERR | \
 192							EMASK_FBD_M9ERR | \
 193							EMASK_FBD_M10ERR | \
 194							EMASK_FBD_M11ERR | \
 195							EMASK_FBD_M12ERR)
 196#define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
 197							EMASK_FBD_M18ERR | \
 198							EMASK_FBD_M19ERR | \
 199							EMASK_FBD_M20ERR)
 200#define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
 201							EMASK_FBD_M28ERR)
 202#define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
 203							EMASK_FBD_M25ERR | \
 204							EMASK_FBD_M24ERR | \
 205							EMASK_FBD_M23ERR)
 206#define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
 207#define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
 208#define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
 209							EMASK_FBD_M14ERR | \
 210							EMASK_FBD_M13ERR)
 211
 212#define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
 213					ENABLE_EMASK_FBD_NORTH_CRC | \
 214					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
 215					ENABLE_EMASK_FBD_THERMALS | \
 216					ENABLE_EMASK_FBD_DIMM_SPARE | \
 217					ENABLE_EMASK_FBD_FATAL_ERRORS | \
 218					ENABLE_EMASK_FBD_CORRECTABLE | \
 219					ENABLE_EMASK_FBD_UNCORRECTABLE)
 220
 221#define		ERR0_FBD		0xAC
 222#define		ERR1_FBD		0xB0
 223#define		ERR2_FBD		0xB4
 224#define		MCERR_FBD		0xB8
 225#define		NRECMEMA		0xBE
 226#define			NREC_BANK(x)		(((x)>>12) & 0x7)
 227#define			NREC_RDWR(x)		(((x)>>11) & 1)
 228#define			NREC_RANK(x)		(((x)>>8) & 0x7)
 229#define		NRECMEMB		0xC0
 230#define			NREC_CAS(x)		(((x)>>16) & 0xFFF)
 231#define			NREC_RAS(x)		((x) & 0x7FFF)
 232#define		NRECFGLOG		0xC4
 233#define		NREEECFBDA		0xC8
 234#define		NREEECFBDB		0xCC
 235#define		NREEECFBDC		0xD0
 236#define		NREEECFBDD		0xD4
 237#define		NREEECFBDE		0xD8
 238#define		REDMEMA			0xDC
 239#define		RECMEMA			0xE2
 240#define			REC_BANK(x)		(((x)>>12) & 0x7)
 241#define			REC_RDWR(x)		(((x)>>11) & 1)
 242#define			REC_RANK(x)		(((x)>>8) & 0x7)
 243#define		RECMEMB			0xE4
 244#define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
 245#define			REC_RAS(x)		((x) & 0x7FFF)
 246#define		RECFGLOG		0xE8
 247#define		RECFBDA			0xEC
 248#define		RECFBDB			0xF0
 249#define		RECFBDC			0xF4
 250#define		RECFBDD			0xF8
 251#define		RECFBDE			0xFC
 252
 253/* OFFSETS for Function 2 */
 254
 255/*
 256 * Device 21,
 257 * Function 0: Memory Map Branch 0
 258 *
 259 * Device 22,
 260 * Function 0: Memory Map Branch 1
 261 */
 262#define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
 263#define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
 264
 265#define AMB_PRESENT_0	0x64
 266#define AMB_PRESENT_1	0x66
 267#define MTR0		0x80
 268#define MTR1		0x84
 269#define MTR2		0x88
 270#define MTR3		0x8C
 271
 272#define NUM_MTRS		4
 273#define CHANNELS_PER_BRANCH	2
 274#define MAX_BRANCHES		2
 275
 276/* Defines to extract the various fields from the
 277 *	MTRx - Memory Technology Registers
 278 */
 279#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
 280#define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
 281#define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
 282#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 283#define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
 284#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
 285#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
 286#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
 287#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
 288#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
 289
 290/* enables the report of miscellaneous messages as CE errors - default off */
 291static int misc_messages;
 292
 293/* Enumeration of supported devices */
 294enum i5000_chips {
 295	I5000P = 0,
 296	I5000V = 1,		/* future */
 297	I5000X = 2		/* future */
 298};
 299
 300/* Device name and register DID (Device ID) */
 301struct i5000_dev_info {
 302	const char *ctl_name;	/* name for this device */
 303	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
 304};
 305
 306/* Table of devices attributes supported by this driver */
 307static const struct i5000_dev_info i5000_devs[] = {
 308	[I5000P] = {
 309		.ctl_name = "I5000",
 310		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
 311	},
 312};
 313
 314struct i5000_dimm_info {
 315	int megabytes;		/* size, 0 means not present  */
 316	int dual_rank;
 317};
 318
 319#define	MAX_CHANNELS	6	/* max possible channels */
 320#define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
 321
 322/* driver private data structure */
 323struct i5000_pvt {
 324	struct pci_dev *system_address;	/* 16.0 */
 325	struct pci_dev *branchmap_werrors;	/* 16.1 */
 326	struct pci_dev *fsb_error_regs;	/* 16.2 */
 327	struct pci_dev *branch_0;	/* 21.0 */
 328	struct pci_dev *branch_1;	/* 22.0 */
 329
 330	u16 tolm;		/* top of low memory */
 331	union {
 332		u64 ambase;		/* AMB BAR */
 333		struct {
 334			u32 ambase_bottom;
 335			u32 ambase_top;
 336		} u __packed;
 337	};
 338
 339	u16 mir0, mir1, mir2;
 340
 341	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
 342	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
 343	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
 344
 345	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
 346	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
 347	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
 348
 349	/* DIMM information matrix, allocating architecture maximums */
 350	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
 351
 352	/* Actual values for this controller */
 353	int maxch;		/* Max channels */
 354	int maxdimmperch;	/* Max DIMMs per channel */
 355};
 356
 357/* I5000 MCH error information retrieved from Hardware */
 358struct i5000_error_info {
 359
 360	/* These registers are always read from the MC */
 361	u32 ferr_fat_fbd;	/* First Errors Fatal */
 362	u32 nerr_fat_fbd;	/* Next Errors Fatal */
 363	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
 364	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
 365
 366	/* These registers are input ONLY if there was a Recoverable  Error */
 367	u32 redmemb;		/* Recoverable Mem Data Error log B */
 368	u16 recmema;		/* Recoverable Mem Error log A */
 369	u32 recmemb;		/* Recoverable Mem Error log B */
 370
 371	/* These registers are input ONLY if there was a
 372	 * Non-Recoverable Error */
 373	u16 nrecmema;		/* Non-Recoverable Mem log A */
 374	u32 nrecmemb;		/* Non-Recoverable Mem log B */
 375
 376};
 377
 378static struct edac_pci_ctl_info *i5000_pci;
 379
 380/*
 381 *	i5000_get_error_info	Retrieve the hardware error information from
 382 *				the hardware and cache it in the 'info'
 383 *				structure
 384 */
 385static void i5000_get_error_info(struct mem_ctl_info *mci,
 386				 struct i5000_error_info *info)
 387{
 388	struct i5000_pvt *pvt;
 389	u32 value;
 390
 391	pvt = mci->pvt_info;
 392
 393	/* read in the 1st FATAL error register */
 394	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 395
 396	/* Mask only the bits that the doc says are valid
 397	 */
 398	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 399
 400	/* If there is an error, then read in the */
 401	/* NEXT FATAL error register and the Memory Error Log Register A */
 402	if (value & FERR_FAT_MASK) {
 403		info->ferr_fat_fbd = value;
 404
 405		/* harvest the various error data we need */
 406		pci_read_config_dword(pvt->branchmap_werrors,
 407				NERR_FAT_FBD, &info->nerr_fat_fbd);
 408		pci_read_config_word(pvt->branchmap_werrors,
 409				NRECMEMA, &info->nrecmema);
 410		pci_read_config_dword(pvt->branchmap_werrors,
 411				NRECMEMB, &info->nrecmemb);
 412
 413		/* Clear the error bits, by writing them back */
 414		pci_write_config_dword(pvt->branchmap_werrors,
 415				FERR_FAT_FBD, value);
 416	} else {
 417		info->ferr_fat_fbd = 0;
 418		info->nerr_fat_fbd = 0;
 419		info->nrecmema = 0;
 420		info->nrecmemb = 0;
 421	}
 422
 423	/* read in the 1st NON-FATAL error register */
 424	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 425
 426	/* If there is an error, then read in the 1st NON-FATAL error
 427	 * register as well */
 428	if (value & FERR_NF_MASK) {
 429		info->ferr_nf_fbd = value;
 430
 431		/* harvest the various error data we need */
 432		pci_read_config_dword(pvt->branchmap_werrors,
 433				NERR_NF_FBD, &info->nerr_nf_fbd);
 434		pci_read_config_word(pvt->branchmap_werrors,
 435				RECMEMA, &info->recmema);
 436		pci_read_config_dword(pvt->branchmap_werrors,
 437				RECMEMB, &info->recmemb);
 438		pci_read_config_dword(pvt->branchmap_werrors,
 439				REDMEMB, &info->redmemb);
 440
 441		/* Clear the error bits, by writing them back */
 442		pci_write_config_dword(pvt->branchmap_werrors,
 443				FERR_NF_FBD, value);
 444	} else {
 445		info->ferr_nf_fbd = 0;
 446		info->nerr_nf_fbd = 0;
 447		info->recmema = 0;
 448		info->recmemb = 0;
 449		info->redmemb = 0;
 450	}
 451}
 452
 453/*
 454 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 455 * 					struct i5000_error_info *info,
 456 * 					int handle_errors);
 457 *
 458 *	handle the Intel FATAL errors, if any
 459 */
 460static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 461					struct i5000_error_info *info,
 462					int handle_errors)
 463{
 464	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
 465	char *specific = NULL;
 466	u32 allErrors;
 467	int channel;
 468	int bank;
 469	int rank;
 470	int rdwr;
 471	int ras, cas;
 472
 473	/* mask off the Error bits that are possible */
 474	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 475	if (!allErrors)
 476		return;		/* if no error, return now */
 477
 478	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
 479
 480	/* Use the NON-Recoverable macros to extract data */
 481	bank = NREC_BANK(info->nrecmema);
 482	rank = NREC_RANK(info->nrecmema);
 483	rdwr = NREC_RDWR(info->nrecmema);
 484	ras = NREC_RAS(info->nrecmemb);
 485	cas = NREC_CAS(info->nrecmemb);
 486
 487	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 488		 rank, channel, bank,
 489		 rdwr ? "Write" : "Read", ras, cas);
 490
 491	/* Only 1 bit will be on */
 492	switch (allErrors) {
 493	case FERR_FAT_M1ERR:
 494		specific = "Alert on non-redundant retry or fast "
 495				"reset timeout";
 496		break;
 497	case FERR_FAT_M2ERR:
 498		specific = "Northbound CRC error on non-redundant "
 499				"retry";
 500		break;
 501	case FERR_FAT_M3ERR:
 502		{
 503		static int done;
 504
 505		/*
 506		 * This error is generated to inform that the intelligent
 507		 * throttling is disabled and the temperature passed the
 508		 * specified middle point. Since this is something the BIOS
 509		 * should take care of, we'll warn only once to avoid
 510		 * worthlessly flooding the log.
 511		 */
 512		if (done)
 513			return;
 514		done++;
 515
 516		specific = ">Tmid Thermal event with intelligent "
 517			   "throttling disabled";
 518		}
 519		break;
 520	}
 521
 522	/* Form out message */
 523	snprintf(msg, sizeof(msg),
 524		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
 525		 bank, ras, cas, allErrors, specific);
 526
 527	/* Call the helper to output message */
 528	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
 529			     channel >> 1, channel & 1, rank,
 530			     rdwr ? "Write error" : "Read error",
 531			     msg);
 532}
 533
 534/*
 535 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 536 * 				struct i5000_error_info *info,
 537 * 				int handle_errors);
 538 *
 539 *	handle the Intel NON-FATAL errors, if any
 540 */
 541static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
 542					struct i5000_error_info *info,
 543					int handle_errors)
 544{
 545	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
 546	char *specific = NULL;
 547	u32 allErrors;
 548	u32 ue_errors;
 549	u32 ce_errors;
 550	u32 misc_errors;
 551	int branch;
 552	int channel;
 553	int bank;
 554	int rank;
 555	int rdwr;
 556	int ras, cas;
 557
 558	/* mask off the Error bits that are possible */
 559	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
 560	if (!allErrors)
 561		return;		/* if no error, return now */
 562
 563	/* ONLY ONE of the possible error bits will be set, as per the docs */
 564	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
 565	if (ue_errors) {
 566		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
 567
 568		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 569
 570		/*
 571		 * According with i5000 datasheet, bit 28 has no significance
 572		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
 573		 */
 574		channel = branch & 2;
 575
 576		bank = NREC_BANK(info->nrecmema);
 577		rank = NREC_RANK(info->nrecmema);
 578		rdwr = NREC_RDWR(info->nrecmema);
 579		ras = NREC_RAS(info->nrecmemb);
 580		cas = NREC_CAS(info->nrecmemb);
 581
 582		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 583			 rank, channel, channel + 1, branch >> 1, bank,
 584			 rdwr ? "Write" : "Read", ras, cas);
 585
 586		switch (ue_errors) {
 587		case FERR_NF_M12ERR:
 588			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
 589			break;
 590		case FERR_NF_M11ERR:
 591			specific = "Non-Aliased Uncorrectable Spare-Copy "
 592					"Data ECC";
 593			break;
 594		case FERR_NF_M10ERR:
 595			specific = "Non-Aliased Uncorrectable Mirrored Demand "
 596					"Data ECC";
 597			break;
 598		case FERR_NF_M9ERR:
 599			specific = "Non-Aliased Uncorrectable Non-Mirrored "
 600					"Demand Data ECC";
 601			break;
 602		case FERR_NF_M8ERR:
 603			specific = "Aliased Uncorrectable Patrol Data ECC";
 604			break;
 605		case FERR_NF_M7ERR:
 606			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
 607			break;
 608		case FERR_NF_M6ERR:
 609			specific = "Aliased Uncorrectable Mirrored Demand "
 610					"Data ECC";
 611			break;
 612		case FERR_NF_M5ERR:
 613			specific = "Aliased Uncorrectable Non-Mirrored Demand "
 614					"Data ECC";
 615			break;
 616		case FERR_NF_M4ERR:
 617			specific = "Uncorrectable Data ECC on Replay";
 618			break;
 619		}
 620
 621		/* Form out message */
 622		snprintf(msg, sizeof(msg),
 623			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
 624			 rank, bank, ras, cas, ue_errors, specific);
 625
 626		/* Call the helper to output message */
 627		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
 628				channel >> 1, -1, rank,
 629				rdwr ? "Write error" : "Read error",
 630				msg);
 631	}
 632
 633	/* Check correctable errors */
 634	ce_errors = allErrors & FERR_NF_CORRECTABLE;
 635	if (ce_errors) {
 636		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
 637
 638		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 639
 640		channel = 0;
 641		if (REC_ECC_LOCATOR_ODD(info->redmemb))
 642			channel = 1;
 643
 644		/* Convert channel to be based from zero, instead of
 645		 * from branch base of 0 */
 646		channel += branch;
 647
 648		bank = REC_BANK(info->recmema);
 649		rank = REC_RANK(info->recmema);
 650		rdwr = REC_RDWR(info->recmema);
 651		ras = REC_RAS(info->recmemb);
 652		cas = REC_CAS(info->recmemb);
 653
 654		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 655			 rank, channel, branch >> 1, bank,
 656			 rdwr ? "Write" : "Read", ras, cas);
 657
 658		switch (ce_errors) {
 659		case FERR_NF_M17ERR:
 660			specific = "Correctable Non-Mirrored Demand Data ECC";
 661			break;
 662		case FERR_NF_M18ERR:
 663			specific = "Correctable Mirrored Demand Data ECC";
 664			break;
 665		case FERR_NF_M19ERR:
 666			specific = "Correctable Spare-Copy Data ECC";
 667			break;
 668		case FERR_NF_M20ERR:
 669			specific = "Correctable Patrol Data ECC";
 670			break;
 671		}
 672
 673		/* Form out message */
 674		snprintf(msg, sizeof(msg),
 675			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
 676			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
 677			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
 678			 specific);
 679
 680		/* Call the helper to output message */
 681		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 682				channel >> 1, channel % 2, rank,
 683				rdwr ? "Write error" : "Read error",
 684				msg);
 685	}
 686
 687	if (!misc_messages)
 688		return;
 689
 690	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
 691				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
 692	if (misc_errors) {
 693		switch (misc_errors) {
 694		case FERR_NF_M13ERR:
 695			specific = "Non-Retry or Redundant Retry FBD Memory "
 696					"Alert or Redundant Fast Reset Timeout";
 697			break;
 698		case FERR_NF_M14ERR:
 699			specific = "Non-Retry or Redundant Retry FBD "
 700					"Configuration Alert";
 701			break;
 702		case FERR_NF_M15ERR:
 703			specific = "Non-Retry or Redundant Retry FBD "
 704					"Northbound CRC error on read data";
 705			break;
 706		case FERR_NF_M21ERR:
 707			specific = "FBD Northbound CRC error on "
 708					"FBD Sync Status";
 709			break;
 710		case FERR_NF_M22ERR:
 711			specific = "SPD protocol error";
 712			break;
 713		case FERR_NF_M27ERR:
 714			specific = "DIMM-spare copy started";
 715			break;
 716		case FERR_NF_M28ERR:
 717			specific = "DIMM-spare copy completed";
 718			break;
 719		}
 720		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 721
 722		/* Form out message */
 723		snprintf(msg, sizeof(msg),
 724			 "Err=%#x (%s)", misc_errors, specific);
 725
 726		/* Call the helper to output message */
 727		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 728				branch >> 1, -1, -1,
 729				"Misc error", msg);
 730	}
 731}
 732
 733/*
 734 *	i5000_process_error_info	Process the error info that is
 735 *	in the 'info' structure, previously retrieved from hardware
 736 */
 737static void i5000_process_error_info(struct mem_ctl_info *mci,
 738				struct i5000_error_info *info,
 739				int handle_errors)
 740{
 741	/* First handle any fatal errors that occurred */
 742	i5000_process_fatal_error_info(mci, info, handle_errors);
 743
 744	/* now handle any non-fatal errors that occurred */
 745	i5000_process_nonfatal_error_info(mci, info, handle_errors);
 746}
 747
 748/*
 749 *	i5000_clear_error	Retrieve any error from the hardware
 750 *				but do NOT process that error.
 751 *				Used for 'clearing' out of previous errors
 752 *				Called by the Core module.
 753 */
 754static void i5000_clear_error(struct mem_ctl_info *mci)
 755{
 756	struct i5000_error_info info;
 757
 758	i5000_get_error_info(mci, &info);
 759}
 760
 761/*
 762 *	i5000_check_error	Retrieve and process errors reported by the
 763 *				hardware. Called by the Core module.
 764 */
 765static void i5000_check_error(struct mem_ctl_info *mci)
 766{
 767	struct i5000_error_info info;
 768
 769	i5000_get_error_info(mci, &info);
 770	i5000_process_error_info(mci, &info, 1);
 771}
 772
 773/*
 774 *	i5000_get_devices	Find and perform 'get' operation on the MCH's
 775 *			device/functions we want to reference for this driver
 776 *
 777 *			Need to 'get' device 16 func 1 and func 2
 778 */
 779static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
 780{
 781	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
 782	struct i5000_pvt *pvt;
 783	struct pci_dev *pdev;
 784
 785	pvt = mci->pvt_info;
 786
 787	/* Attempt to 'get' the MCH register we want */
 788	pdev = NULL;
 789	while (1) {
 790		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 791				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 792
 793		/* End of list, leave */
 794		if (pdev == NULL) {
 795			i5000_printk(KERN_ERR,
 796				"'system address,Process Bus' "
 797				"device not found:"
 798				"vendor 0x%x device 0x%x FUNC 1 "
 799				"(broken BIOS?)\n",
 800				PCI_VENDOR_ID_INTEL,
 801				PCI_DEVICE_ID_INTEL_I5000_DEV16);
 802
 803			return 1;
 804		}
 805
 806		/* Scan for device 16 func 1 */
 807		if (PCI_FUNC(pdev->devfn) == 1)
 808			break;
 809	}
 810
 811	pvt->branchmap_werrors = pdev;
 812
 813	/* Attempt to 'get' the MCH register we want */
 814	pdev = NULL;
 815	while (1) {
 816		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 817				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 818
 819		if (pdev == NULL) {
 820			i5000_printk(KERN_ERR,
 821				"MC: 'branchmap,control,errors' "
 822				"device not found:"
 823				"vendor 0x%x device 0x%x Func 2 "
 824				"(broken BIOS?)\n",
 825				PCI_VENDOR_ID_INTEL,
 826				PCI_DEVICE_ID_INTEL_I5000_DEV16);
 827
 828			pci_dev_put(pvt->branchmap_werrors);
 829			return 1;
 830		}
 831
 832		/* Scan for device 16 func 1 */
 833		if (PCI_FUNC(pdev->devfn) == 2)
 834			break;
 835	}
 836
 837	pvt->fsb_error_regs = pdev;
 838
 839	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 840		 pci_name(pvt->system_address),
 841		 pvt->system_address->vendor, pvt->system_address->device);
 842	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 843		 pci_name(pvt->branchmap_werrors),
 844		 pvt->branchmap_werrors->vendor,
 845		 pvt->branchmap_werrors->device);
 846	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 847		 pci_name(pvt->fsb_error_regs),
 848		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 849
 850	pdev = NULL;
 851	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 852			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
 853
 854	if (pdev == NULL) {
 855		i5000_printk(KERN_ERR,
 856			"MC: 'BRANCH 0' device not found:"
 857			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 858			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
 859
 860		pci_dev_put(pvt->branchmap_werrors);
 861		pci_dev_put(pvt->fsb_error_regs);
 862		return 1;
 863	}
 864
 865	pvt->branch_0 = pdev;
 866
 867	/* If this device claims to have more than 2 channels then
 868	 * fetch Branch 1's information
 869	 */
 870	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
 871		pdev = NULL;
 872		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 873				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
 874
 875		if (pdev == NULL) {
 876			i5000_printk(KERN_ERR,
 877				"MC: 'BRANCH 1' device not found:"
 878				"vendor 0x%x device 0x%x Func 0 "
 879				"(broken BIOS?)\n",
 880				PCI_VENDOR_ID_INTEL,
 881				PCI_DEVICE_ID_I5000_BRANCH_1);
 882
 883			pci_dev_put(pvt->branchmap_werrors);
 884			pci_dev_put(pvt->fsb_error_regs);
 885			pci_dev_put(pvt->branch_0);
 886			return 1;
 887		}
 888
 889		pvt->branch_1 = pdev;
 890	}
 891
 892	return 0;
 893}
 894
 895/*
 896 *	i5000_put_devices	'put' all the devices that we have
 897 *				reserved via 'get'
 898 */
 899static void i5000_put_devices(struct mem_ctl_info *mci)
 900{
 901	struct i5000_pvt *pvt;
 902
 903	pvt = mci->pvt_info;
 904
 905	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
 906	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
 907	pci_dev_put(pvt->branch_0);	/* DEV 21 */
 908
 909	/* Only if more than 2 channels do we release the second branch */
 910	if (pvt->maxch >= CHANNELS_PER_BRANCH)
 911		pci_dev_put(pvt->branch_1);	/* DEV 22 */
 912}
 913
 914/*
 915 *	determine_amb_resent
 916 *
 917 *		the information is contained in NUM_MTRS different registers
 918 *		determineing which of the NUM_MTRS requires knowing
 919 *		which channel is in question
 920 *
 921 *	2 branches, each with 2 channels
 922 *		b0_ambpresent0 for channel '0'
 923 *		b0_ambpresent1 for channel '1'
 924 *		b1_ambpresent0 for channel '2'
 925 *		b1_ambpresent1 for channel '3'
 926 */
 927static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
 928{
 929	int amb_present;
 930
 931	if (channel < CHANNELS_PER_BRANCH) {
 932		if (channel & 0x1)
 933			amb_present = pvt->b0_ambpresent1;
 934		else
 935			amb_present = pvt->b0_ambpresent0;
 936	} else {
 937		if (channel & 0x1)
 938			amb_present = pvt->b1_ambpresent1;
 939		else
 940			amb_present = pvt->b1_ambpresent0;
 941	}
 942
 943	return amb_present;
 944}
 945
 946/*
 947 * determine_mtr(pvt, csrow, channel)
 948 *
 949 *	return the proper MTR register as determine by the csrow and channel desired
 950 */
 951static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
 952{
 953	int mtr;
 954
 955	if (channel < CHANNELS_PER_BRANCH)
 956		mtr = pvt->b0_mtr[slot];
 957	else
 958		mtr = pvt->b1_mtr[slot];
 959
 960	return mtr;
 961}
 962
 963/*
 964 */
 965static void decode_mtr(int slot_row, u16 mtr)
 966{
 967	int ans;
 968
 969	ans = MTR_DIMMS_PRESENT(mtr);
 970
 971	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
 972		 slot_row, mtr, ans ? "" : "NOT ");
 973	if (!ans)
 974		return;
 975
 976	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 977	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 978	edac_dbg(2, "\t\tNUMRANK: %s\n",
 979		 MTR_DIMM_RANK(mtr) ? "double" : "single");
 980	edac_dbg(2, "\t\tNUMROW: %s\n",
 981		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 982		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 983		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 984		 "reserved");
 985	edac_dbg(2, "\t\tNUMCOL: %s\n",
 986		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 987		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 988		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 989		 "reserved");
 990}
 991
 992static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
 993			struct i5000_dimm_info *dinfo)
 994{
 995	int mtr;
 996	int amb_present_reg;
 997	int addrBits;
 998
 999	mtr = determine_mtr(pvt, slot, channel);
1000	if (MTR_DIMMS_PRESENT(mtr)) {
1001		amb_present_reg = determine_amb_present_reg(pvt, channel);
1002
1003		/* Determine if there is a DIMM present in this DIMM slot */
1004		if (amb_present_reg) {
1005			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006
1007			/* Start with the number of bits for a Bank
1008				* on the DRAM */
1009			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1010			/* Add the number of ROW bits */
1011			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1012			/* add the number of COLUMN bits */
1013			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1014
1015			/* Dual-rank memories have twice the size */
1016			if (dinfo->dual_rank)
1017				addrBits++;
1018
1019			addrBits += 6;	/* add 64 bits per DIMM */
1020			addrBits -= 20;	/* divide by 2^^20 */
1021			addrBits -= 3;	/* 8 bits per bytes */
1022
1023			dinfo->megabytes = 1 << addrBits;
1024		}
1025	}
1026}
1027
1028/*
1029 *	calculate_dimm_size
1030 *
1031 *	also will output a DIMM matrix map, if debug is enabled, for viewing
1032 *	how the DIMMs are populated
1033 */
1034static void calculate_dimm_size(struct i5000_pvt *pvt)
1035{
1036	struct i5000_dimm_info *dinfo;
1037	int slot, channel, branch;
1038	char *p, *mem_buffer;
1039	int space, n;
1040
1041	/* ================= Generate some debug output ================= */
1042	space = PAGE_SIZE;
1043	mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044	if (p == NULL) {
1045		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046			__FILE__, __func__);
1047		return;
1048	}
1049
1050	/* Scan all the actual slots
1051	 * and calculate the information for each DIMM
1052	 * Start with the highest slot first, to display it first
1053	 * and work toward the 0th slot
1054	 */
1055	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056
1057		/* on an odd slot, first output a 'boundary' marker,
1058		 * then reset the message buffer  */
1059		if (slot & 0x1) {
1060			n = snprintf(p, space, "--------------------------"
1061				"--------------------------------");
1062			p += n;
1063			space -= n;
1064			edac_dbg(2, "%s\n", mem_buffer);
1065			p = mem_buffer;
1066			space = PAGE_SIZE;
1067		}
1068		n = snprintf(p, space, "slot %2d    ", slot);
1069		p += n;
1070		space -= n;
1071
1072		for (channel = 0; channel < pvt->maxch; channel++) {
1073			dinfo = &pvt->dimm_info[slot][channel];
1074			handle_channel(pvt, slot, channel, dinfo);
1075			if (dinfo->megabytes)
1076				n = snprintf(p, space, "%4d MB %dR| ",
1077					     dinfo->megabytes, dinfo->dual_rank + 1);
1078			else
1079				n = snprintf(p, space, "%4d MB   | ", 0);
1080			p += n;
1081			space -= n;
1082		}
1083		p += n;
1084		space -= n;
1085		edac_dbg(2, "%s\n", mem_buffer);
1086		p = mem_buffer;
1087		space = PAGE_SIZE;
1088	}
1089
1090	/* Output the last bottom 'boundary' marker */
1091	n = snprintf(p, space, "--------------------------"
1092		"--------------------------------");
1093	p += n;
1094	space -= n;
1095	edac_dbg(2, "%s\n", mem_buffer);
1096	p = mem_buffer;
1097	space = PAGE_SIZE;
1098
1099	/* now output the 'channel' labels */
1100	n = snprintf(p, space, "           ");
1101	p += n;
1102	space -= n;
1103	for (channel = 0; channel < pvt->maxch; channel++) {
1104		n = snprintf(p, space, "channel %d | ", channel);
1105		p += n;
1106		space -= n;
1107	}
1108	edac_dbg(2, "%s\n", mem_buffer);
1109	p = mem_buffer;
1110	space = PAGE_SIZE;
1111
1112	n = snprintf(p, space, "           ");
1113	p += n;
1114	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115		n = snprintf(p, space, "       branch %d       | ", branch);
1116		p += n;
1117		space -= n;
1118	}
1119
1120	/* output the last message and free buffer */
1121	edac_dbg(2, "%s\n", mem_buffer);
1122	kfree(mem_buffer);
1123}
1124
1125/*
1126 *	i5000_get_mc_regs	read in the necessary registers and
1127 *				cache locally
1128 *
1129 *			Fills in the private data members
1130 */
1131static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132{
1133	struct i5000_pvt *pvt;
1134	u32 actual_tolm;
1135	u16 limit;
1136	int slot_row;
 
 
1137	int way0, way1;
1138
1139	pvt = mci->pvt_info;
1140
1141	pci_read_config_dword(pvt->system_address, AMBASE,
1142			&pvt->u.ambase_bottom);
1143	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1144			&pvt->u.ambase_top);
1145
 
 
 
1146	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1147		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1148
1149	/* Get the Branch Map regs */
1150	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1151	pvt->tolm >>= 12;
1152	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1153		 pvt->tolm, pvt->tolm);
1154
1155	actual_tolm = pvt->tolm << 28;
1156	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1157		 actual_tolm, actual_tolm);
1158
1159	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1160	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1161	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1162
1163	/* Get the MIR[0-2] regs */
1164	limit = (pvt->mir0 >> 4) & 0x0FFF;
1165	way0 = pvt->mir0 & 0x1;
1166	way1 = pvt->mir0 & 0x2;
1167	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1168		 limit, way1, way0);
1169	limit = (pvt->mir1 >> 4) & 0x0FFF;
1170	way0 = pvt->mir1 & 0x1;
1171	way1 = pvt->mir1 & 0x2;
1172	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1173		 limit, way1, way0);
1174	limit = (pvt->mir2 >> 4) & 0x0FFF;
1175	way0 = pvt->mir2 & 0x1;
1176	way1 = pvt->mir2 & 0x2;
1177	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1178		 limit, way1, way0);
1179
1180	/* Get the MTR[0-3] regs */
1181	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1182		int where = MTR0 + (slot_row * sizeof(u32));
1183
1184		pci_read_config_word(pvt->branch_0, where,
1185				&pvt->b0_mtr[slot_row]);
1186
1187		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1188			 slot_row, where, pvt->b0_mtr[slot_row]);
1189
1190		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1191			pci_read_config_word(pvt->branch_1, where,
1192					&pvt->b1_mtr[slot_row]);
1193			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1194				 slot_row, where, pvt->b1_mtr[slot_row]);
1195		} else {
1196			pvt->b1_mtr[slot_row] = 0;
1197		}
1198	}
1199
1200	/* Read and dump branch 0's MTRs */
1201	edac_dbg(2, "Memory Technology Registers:\n");
1202	edac_dbg(2, "   Branch 0:\n");
1203	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1204		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1205	}
1206	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1207			&pvt->b0_ambpresent0);
1208	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1209	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1210			&pvt->b0_ambpresent1);
1211	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1212
1213	/* Only if we have 2 branchs (4 channels) */
1214	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1215		pvt->b1_ambpresent0 = 0;
1216		pvt->b1_ambpresent1 = 0;
1217	} else {
1218		/* Read and dump  branch 1's MTRs */
1219		edac_dbg(2, "   Branch 1:\n");
1220		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1221			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1222		}
1223		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1224				&pvt->b1_ambpresent0);
1225		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1226			 pvt->b1_ambpresent0);
1227		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1228				&pvt->b1_ambpresent1);
1229		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1230			 pvt->b1_ambpresent1);
1231	}
1232
1233	/* Go and determine the size of each DIMM and place in an
1234	 * orderly matrix */
1235	calculate_dimm_size(pvt);
1236}
1237
1238/*
1239 *	i5000_init_csrows	Initialize the 'csrows' table within
1240 *				the mci control	structure with the
1241 *				addressing of memory.
1242 *
1243 *	return:
1244 *		0	success
1245 *		1	no actual memory found on this MC
1246 */
1247static int i5000_init_csrows(struct mem_ctl_info *mci)
1248{
1249	struct i5000_pvt *pvt;
1250	struct dimm_info *dimm;
1251	int empty;
1252	int max_csrows;
1253	int mtr;
1254	int csrow_megs;
1255	int channel;
1256	int slot;
1257
1258	pvt = mci->pvt_info;
 
 
1259	max_csrows = pvt->maxdimmperch * 2;
1260
1261	empty = 1;		/* Assume NO memory */
1262
1263	/*
1264	 * FIXME: The memory layout used to map slot/channel into the
1265	 * real memory architecture is weird: branch+slot are "csrows"
1266	 * and channel is channel. That required an extra array (dimm_info)
1267	 * to map the dimms. A good cleanup would be to remove this array,
1268	 * and do a loop here with branch, channel, slot
1269	 */
1270	for (slot = 0; slot < max_csrows; slot++) {
1271		for (channel = 0; channel < pvt->maxch; channel++) {
1272
1273			mtr = determine_mtr(pvt, slot, channel);
1274
1275			if (!MTR_DIMMS_PRESENT(mtr))
1276				continue;
1277
1278			dimm = edac_get_dimm(mci, channel / MAX_BRANCHES,
1279					     channel % MAX_BRANCHES, slot);
 
1280
1281			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1282			dimm->grain = 8;
1283
1284			/* Assume DDR2 for now */
1285			dimm->mtype = MEM_FB_DDR2;
1286
1287			/* ask what device type on this row */
1288			if (MTR_DRAM_WIDTH(mtr) == 8)
1289				dimm->dtype = DEV_X8;
1290			else
1291				dimm->dtype = DEV_X4;
1292
1293			dimm->edac_mode = EDAC_S8ECD8ED;
1294			dimm->nr_pages = csrow_megs << 8;
1295		}
1296
1297		empty = 0;
1298	}
1299
1300	return empty;
1301}
1302
1303/*
1304 *	i5000_enable_error_reporting
1305 *			Turn on the memory reporting features of the hardware
1306 */
1307static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1308{
1309	struct i5000_pvt *pvt;
1310	u32 fbd_error_mask;
1311
1312	pvt = mci->pvt_info;
1313
1314	/* Read the FBD Error Mask Register */
1315	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1316			&fbd_error_mask);
1317
1318	/* Enable with a '0' */
1319	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1320
1321	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1322			fbd_error_mask);
1323}
1324
1325/*
1326 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1327 *
1328 *	ask the device how many channels are present and how many CSROWS
1329 *	 as well
1330 */
1331static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1332					int *num_dimms_per_channel,
1333					int *num_channels)
1334{
1335	u8 value;
1336
1337	/* Need to retrieve just how many channels and dimms per channel are
1338	 * supported on this memory controller
1339	 */
1340	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1341	*num_dimms_per_channel = (int)value;
1342
1343	pci_read_config_byte(pdev, MAXCH, &value);
1344	*num_channels = (int)value;
1345}
1346
1347/*
1348 *	i5000_probe1	Probe for ONE instance of device to see if it is
1349 *			present.
1350 *	return:
1351 *		0 for FOUND a device
1352 *		< 0 for error code
1353 */
1354static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1355{
1356	struct mem_ctl_info *mci;
1357	struct edac_mc_layer layers[3];
1358	struct i5000_pvt *pvt;
1359	int num_channels;
1360	int num_dimms_per_channel;
1361
1362	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1363		 pdev->bus->number,
1364		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1365
1366	/* We only are looking for func 0 of the set */
1367	if (PCI_FUNC(pdev->devfn) != 0)
1368		return -ENODEV;
1369
1370	/* Ask the devices for the number of CSROWS and CHANNELS so
1371	 * that we can calculate the memory resources, etc
1372	 *
1373	 * The Chipset will report what it can handle which will be greater
1374	 * or equal to what the motherboard manufacturer will implement.
1375	 *
1376	 * As we don't have a motherboard identification routine to determine
1377	 * actual number of slots/dimms per channel, we thus utilize the
1378	 * resource as specified by the chipset. Thus, we might have
1379	 * have more DIMMs per channel than actually on the mobo, but this
1380	 * allows the driver to support up to the chipset max, without
1381	 * some fancy mobo determination.
1382	 */
1383	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1384					&num_channels);
1385
1386	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
1387		 num_channels, num_dimms_per_channel);
1388
1389	/* allocate a new MC control structure */
1390
1391	layers[0].type = EDAC_MC_LAYER_BRANCH;
1392	layers[0].size = MAX_BRANCHES;
1393	layers[0].is_virt_csrow = false;
1394	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1395	layers[1].size = num_channels / MAX_BRANCHES;
1396	layers[1].is_virt_csrow = false;
1397	layers[2].type = EDAC_MC_LAYER_SLOT;
1398	layers[2].size = num_dimms_per_channel;
1399	layers[2].is_virt_csrow = true;
1400	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1401	if (mci == NULL)
1402		return -ENOMEM;
1403
1404	edac_dbg(0, "MC: mci = %p\n", mci);
1405
1406	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1407
1408	pvt = mci->pvt_info;
1409	pvt->system_address = pdev;	/* Record this device in our private */
1410	pvt->maxch = num_channels;
1411	pvt->maxdimmperch = num_dimms_per_channel;
1412
1413	/* 'get' the pci devices we want to reserve for our use */
1414	if (i5000_get_devices(mci, dev_idx))
1415		goto fail0;
1416
1417	/* Time to get serious */
1418	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
1419
1420	mci->mc_idx = 0;
1421	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1422	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1423	mci->edac_cap = EDAC_FLAG_NONE;
1424	mci->mod_name = "i5000_edac.c";
 
1425	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1426	mci->dev_name = pci_name(pdev);
1427	mci->ctl_page_to_phys = NULL;
1428
1429	/* Set the function pointer to an actual operation function */
1430	mci->edac_check = i5000_check_error;
1431
1432	/* initialize the MC control structure 'csrows' table
1433	 * with the mapping and control information */
1434	if (i5000_init_csrows(mci)) {
1435		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1436		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1437	} else {
1438		edac_dbg(1, "MC: Enable error reporting now\n");
1439		i5000_enable_error_reporting(mci);
1440	}
1441
1442	/* add this new MC control structure to EDAC's list of MCs */
1443	if (edac_mc_add_mc(mci)) {
1444		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1445		/* FIXME: perhaps some code should go here that disables error
1446		 * reporting if we just enabled it
1447		 */
1448		goto fail1;
1449	}
1450
1451	i5000_clear_error(mci);
1452
1453	/* allocating generic PCI control info */
1454	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1455	if (!i5000_pci) {
1456		printk(KERN_WARNING
1457			"%s(): Unable to create PCI control\n",
1458			__func__);
1459		printk(KERN_WARNING
1460			"%s(): PCI error report via EDAC not setup\n",
1461			__func__);
1462	}
1463
1464	return 0;
1465
1466	/* Error exit unwinding stack */
1467fail1:
1468
1469	i5000_put_devices(mci);
1470
1471fail0:
1472	edac_mc_free(mci);
1473	return -ENODEV;
1474}
1475
1476/*
1477 *	i5000_init_one	constructor for one instance of device
1478 *
1479 * 	returns:
1480 *		negative on error
1481 *		count (>= 0)
1482 */
1483static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1484{
1485	int rc;
1486
1487	edac_dbg(0, "MC:\n");
1488
1489	/* wake up device */
1490	rc = pci_enable_device(pdev);
1491	if (rc)
1492		return rc;
1493
1494	/* now probe and enable the device */
1495	return i5000_probe1(pdev, id->driver_data);
1496}
1497
1498/*
1499 *	i5000_remove_one	destructor for one instance of device
1500 *
1501 */
1502static void i5000_remove_one(struct pci_dev *pdev)
1503{
1504	struct mem_ctl_info *mci;
1505
1506	edac_dbg(0, "\n");
1507
1508	if (i5000_pci)
1509		edac_pci_release_generic_ctl(i5000_pci);
1510
1511	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1512		return;
1513
1514	/* retrieve references to resources, and free those resources */
1515	i5000_put_devices(mci);
1516	edac_mc_free(mci);
1517}
1518
1519/*
1520 *	pci_device_id	table for which devices we are looking for
1521 *
1522 *	The "E500P" device is the first device supported.
1523 */
1524static const struct pci_device_id i5000_pci_tbl[] = {
1525	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1526	 .driver_data = I5000P},
1527
1528	{0,}			/* 0 terminated list. */
1529};
1530
1531MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1532
1533/*
1534 *	i5000_driver	pci_driver structure for this module
1535 *
1536 */
1537static struct pci_driver i5000_driver = {
1538	.name = KBUILD_BASENAME,
1539	.probe = i5000_init_one,
1540	.remove = i5000_remove_one,
1541	.id_table = i5000_pci_tbl,
1542};
1543
1544/*
1545 *	i5000_init		Module entry function
1546 *			Try to initialize this module for its devices
1547 */
1548static int __init i5000_init(void)
1549{
1550	int pci_rc;
1551
1552	edac_dbg(2, "MC:\n");
1553
1554	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1555	opstate_init();
1556
1557	pci_rc = pci_register_driver(&i5000_driver);
1558
1559	return (pci_rc < 0) ? pci_rc : 0;
1560}
1561
1562/*
1563 *	i5000_exit()	Module exit function
1564 *			Unregister the driver
1565 */
1566static void __exit i5000_exit(void)
1567{
1568	edac_dbg(2, "MC:\n");
1569	pci_unregister_driver(&i5000_driver);
1570}
1571
1572module_init(i5000_init);
1573module_exit(i5000_exit);
1574
1575MODULE_LICENSE("GPL");
1576MODULE_AUTHOR("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1577MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " I5000_REVISION);
 
 
1578
1579module_param(edac_op_state, int, 0444);
1580MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1581module_param(misc_messages, int, 0444);
1582MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
v4.10.11
   1/*
   2 * Intel 5000(P/V/X) class Memory Controllers kernel module
   3 *
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
   8 *	norsk5@xmission.com
   9 *
  10 * This module is based on the following document:
  11 *
  12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
  13 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
  14 *
  15 */
  16
  17#include <linux/module.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/pci_ids.h>
  21#include <linux/slab.h>
  22#include <linux/edac.h>
  23#include <asm/mmzone.h>
  24
  25#include "edac_module.h"
  26
  27/*
  28 * Alter this version for the I5000 module when modifications are made
  29 */
  30#define I5000_REVISION    " Ver: 2.0.12"
  31#define EDAC_MOD_STR      "i5000_edac"
  32
  33#define i5000_printk(level, fmt, arg...) \
  34        edac_printk(level, "i5000", fmt, ##arg)
  35
  36#define i5000_mc_printk(mci, level, fmt, arg...) \
  37        edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
  38
  39#ifndef PCI_DEVICE_ID_INTEL_FBD_0
  40#define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
  41#endif
  42#ifndef PCI_DEVICE_ID_INTEL_FBD_1
  43#define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
  44#endif
  45
  46/* Device 16,
  47 * Function 0: System Address
  48 * Function 1: Memory Branch Map, Control, Errors Register
  49 * Function 2: FSB Error Registers
  50 *
  51 * All 3 functions of Device 16 (0,1,2) share the SAME DID
  52 */
  53#define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
  54
  55/* OFFSETS for Function 0 */
  56
  57/* OFFSETS for Function 1 */
  58#define		AMBASE			0x48
  59#define		MAXCH			0x56
  60#define		MAXDIMMPERCH		0x57
  61#define		TOLM			0x6C
  62#define		REDMEMB			0x7C
  63#define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
  64#define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
  65#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
  66#define		MIR0			0x80
  67#define		MIR1			0x84
  68#define		MIR2			0x88
  69#define		AMIR0			0x8C
  70#define		AMIR1			0x90
  71#define		AMIR2			0x94
  72
  73#define		FERR_FAT_FBD		0x98
  74#define		NERR_FAT_FBD		0x9C
  75#define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
  76#define			FERR_FAT_FBDCHAN 0x30000000
  77#define			FERR_FAT_M3ERR	0x00000004
  78#define			FERR_FAT_M2ERR	0x00000002
  79#define			FERR_FAT_M1ERR	0x00000001
  80#define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
  81						FERR_FAT_M2ERR | \
  82						FERR_FAT_M3ERR)
  83
  84#define		FERR_NF_FBD		0xA0
  85
  86/* Thermal and SPD or BFD errors */
  87#define			FERR_NF_M28ERR	0x01000000
  88#define			FERR_NF_M27ERR	0x00800000
  89#define			FERR_NF_M26ERR	0x00400000
  90#define			FERR_NF_M25ERR	0x00200000
  91#define			FERR_NF_M24ERR	0x00100000
  92#define			FERR_NF_M23ERR	0x00080000
  93#define			FERR_NF_M22ERR	0x00040000
  94#define			FERR_NF_M21ERR	0x00020000
  95
  96/* Correctable errors */
  97#define			FERR_NF_M20ERR	0x00010000
  98#define			FERR_NF_M19ERR	0x00008000
  99#define			FERR_NF_M18ERR	0x00004000
 100#define			FERR_NF_M17ERR	0x00002000
 101
 102/* Non-Retry or redundant Retry errors */
 103#define			FERR_NF_M16ERR	0x00001000
 104#define			FERR_NF_M15ERR	0x00000800
 105#define			FERR_NF_M14ERR	0x00000400
 106#define			FERR_NF_M13ERR	0x00000200
 107
 108/* Uncorrectable errors */
 109#define			FERR_NF_M12ERR	0x00000100
 110#define			FERR_NF_M11ERR	0x00000080
 111#define			FERR_NF_M10ERR	0x00000040
 112#define			FERR_NF_M9ERR	0x00000020
 113#define			FERR_NF_M8ERR	0x00000010
 114#define			FERR_NF_M7ERR	0x00000008
 115#define			FERR_NF_M6ERR	0x00000004
 116#define			FERR_NF_M5ERR	0x00000002
 117#define			FERR_NF_M4ERR	0x00000001
 118
 119#define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
 120							FERR_NF_M11ERR | \
 121							FERR_NF_M10ERR | \
 122							FERR_NF_M9ERR | \
 123							FERR_NF_M8ERR | \
 124							FERR_NF_M7ERR | \
 125							FERR_NF_M6ERR | \
 126							FERR_NF_M5ERR | \
 127							FERR_NF_M4ERR)
 128#define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
 129							FERR_NF_M19ERR | \
 130							FERR_NF_M18ERR | \
 131							FERR_NF_M17ERR)
 132#define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
 133							FERR_NF_M28ERR)
 134#define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
 135							FERR_NF_M25ERR | \
 136							FERR_NF_M24ERR | \
 137							FERR_NF_M23ERR)
 138#define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
 139#define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
 140#define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
 141							FERR_NF_M14ERR | \
 142							FERR_NF_M15ERR)
 143
 144#define		NERR_NF_FBD		0xA4
 145#define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
 146							FERR_NF_CORRECTABLE | \
 147							FERR_NF_DIMM_SPARE | \
 148							FERR_NF_THERMAL | \
 149							FERR_NF_SPD_PROTOCOL | \
 150							FERR_NF_NORTH_CRC | \
 151							FERR_NF_NON_RETRY)
 152
 153#define		EMASK_FBD		0xA8
 154#define			EMASK_FBD_M28ERR	0x08000000
 155#define			EMASK_FBD_M27ERR	0x04000000
 156#define			EMASK_FBD_M26ERR	0x02000000
 157#define			EMASK_FBD_M25ERR	0x01000000
 158#define			EMASK_FBD_M24ERR	0x00800000
 159#define			EMASK_FBD_M23ERR	0x00400000
 160#define			EMASK_FBD_M22ERR	0x00200000
 161#define			EMASK_FBD_M21ERR	0x00100000
 162#define			EMASK_FBD_M20ERR	0x00080000
 163#define			EMASK_FBD_M19ERR	0x00040000
 164#define			EMASK_FBD_M18ERR	0x00020000
 165#define			EMASK_FBD_M17ERR	0x00010000
 166
 167#define			EMASK_FBD_M15ERR	0x00004000
 168#define			EMASK_FBD_M14ERR	0x00002000
 169#define			EMASK_FBD_M13ERR	0x00001000
 170#define			EMASK_FBD_M12ERR	0x00000800
 171#define			EMASK_FBD_M11ERR	0x00000400
 172#define			EMASK_FBD_M10ERR	0x00000200
 173#define			EMASK_FBD_M9ERR		0x00000100
 174#define			EMASK_FBD_M8ERR		0x00000080
 175#define			EMASK_FBD_M7ERR		0x00000040
 176#define			EMASK_FBD_M6ERR		0x00000020
 177#define			EMASK_FBD_M5ERR		0x00000010
 178#define			EMASK_FBD_M4ERR		0x00000008
 179#define			EMASK_FBD_M3ERR		0x00000004
 180#define			EMASK_FBD_M2ERR		0x00000002
 181#define			EMASK_FBD_M1ERR		0x00000001
 182
 183#define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
 184							EMASK_FBD_M2ERR | \
 185							EMASK_FBD_M3ERR)
 186
 187#define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
 188							EMASK_FBD_M5ERR | \
 189							EMASK_FBD_M6ERR | \
 190							EMASK_FBD_M7ERR | \
 191							EMASK_FBD_M8ERR | \
 192							EMASK_FBD_M9ERR | \
 193							EMASK_FBD_M10ERR | \
 194							EMASK_FBD_M11ERR | \
 195							EMASK_FBD_M12ERR)
 196#define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
 197							EMASK_FBD_M18ERR | \
 198							EMASK_FBD_M19ERR | \
 199							EMASK_FBD_M20ERR)
 200#define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
 201							EMASK_FBD_M28ERR)
 202#define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
 203							EMASK_FBD_M25ERR | \
 204							EMASK_FBD_M24ERR | \
 205							EMASK_FBD_M23ERR)
 206#define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
 207#define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
 208#define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
 209							EMASK_FBD_M14ERR | \
 210							EMASK_FBD_M13ERR)
 211
 212#define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
 213					ENABLE_EMASK_FBD_NORTH_CRC | \
 214					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
 215					ENABLE_EMASK_FBD_THERMALS | \
 216					ENABLE_EMASK_FBD_DIMM_SPARE | \
 217					ENABLE_EMASK_FBD_FATAL_ERRORS | \
 218					ENABLE_EMASK_FBD_CORRECTABLE | \
 219					ENABLE_EMASK_FBD_UNCORRECTABLE)
 220
 221#define		ERR0_FBD		0xAC
 222#define		ERR1_FBD		0xB0
 223#define		ERR2_FBD		0xB4
 224#define		MCERR_FBD		0xB8
 225#define		NRECMEMA		0xBE
 226#define			NREC_BANK(x)		(((x)>>12) & 0x7)
 227#define			NREC_RDWR(x)		(((x)>>11) & 1)
 228#define			NREC_RANK(x)		(((x)>>8) & 0x7)
 229#define		NRECMEMB		0xC0
 230#define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
 231#define			NREC_RAS(x)		((x) & 0x7FFF)
 232#define		NRECFGLOG		0xC4
 233#define		NREEECFBDA		0xC8
 234#define		NREEECFBDB		0xCC
 235#define		NREEECFBDC		0xD0
 236#define		NREEECFBDD		0xD4
 237#define		NREEECFBDE		0xD8
 238#define		REDMEMA			0xDC
 239#define		RECMEMA			0xE2
 240#define			REC_BANK(x)		(((x)>>12) & 0x7)
 241#define			REC_RDWR(x)		(((x)>>11) & 1)
 242#define			REC_RANK(x)		(((x)>>8) & 0x7)
 243#define		RECMEMB			0xE4
 244#define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
 245#define			REC_RAS(x)		((x) & 0x7FFF)
 246#define		RECFGLOG		0xE8
 247#define		RECFBDA			0xEC
 248#define		RECFBDB			0xF0
 249#define		RECFBDC			0xF4
 250#define		RECFBDD			0xF8
 251#define		RECFBDE			0xFC
 252
 253/* OFFSETS for Function 2 */
 254
 255/*
 256 * Device 21,
 257 * Function 0: Memory Map Branch 0
 258 *
 259 * Device 22,
 260 * Function 0: Memory Map Branch 1
 261 */
 262#define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
 263#define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
 264
 265#define AMB_PRESENT_0	0x64
 266#define AMB_PRESENT_1	0x66
 267#define MTR0		0x80
 268#define MTR1		0x84
 269#define MTR2		0x88
 270#define MTR3		0x8C
 271
 272#define NUM_MTRS		4
 273#define CHANNELS_PER_BRANCH	2
 274#define MAX_BRANCHES		2
 275
 276/* Defines to extract the various fields from the
 277 *	MTRx - Memory Technology Registers
 278 */
 279#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
 280#define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
 281#define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
 282#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
 283#define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
 284#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
 285#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
 286#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
 287#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
 288#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
 289
 290/* enables the report of miscellaneous messages as CE errors - default off */
 291static int misc_messages;
 292
 293/* Enumeration of supported devices */
 294enum i5000_chips {
 295	I5000P = 0,
 296	I5000V = 1,		/* future */
 297	I5000X = 2		/* future */
 298};
 299
 300/* Device name and register DID (Device ID) */
 301struct i5000_dev_info {
 302	const char *ctl_name;	/* name for this device */
 303	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
 304};
 305
 306/* Table of devices attributes supported by this driver */
 307static const struct i5000_dev_info i5000_devs[] = {
 308	[I5000P] = {
 309		.ctl_name = "I5000",
 310		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
 311	},
 312};
 313
 314struct i5000_dimm_info {
 315	int megabytes;		/* size, 0 means not present  */
 316	int dual_rank;
 317};
 318
 319#define	MAX_CHANNELS	6	/* max possible channels */
 320#define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
 321
 322/* driver private data structure */
 323struct i5000_pvt {
 324	struct pci_dev *system_address;	/* 16.0 */
 325	struct pci_dev *branchmap_werrors;	/* 16.1 */
 326	struct pci_dev *fsb_error_regs;	/* 16.2 */
 327	struct pci_dev *branch_0;	/* 21.0 */
 328	struct pci_dev *branch_1;	/* 22.0 */
 329
 330	u16 tolm;		/* top of low memory */
 331	union {
 332		u64 ambase;		/* AMB BAR */
 333		struct {
 334			u32 ambase_bottom;
 335			u32 ambase_top;
 336		} u __packed;
 337	};
 338
 339	u16 mir0, mir1, mir2;
 340
 341	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
 342	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
 343	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
 344
 345	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
 346	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
 347	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
 348
 349	/* DIMM information matrix, allocating architecture maximums */
 350	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
 351
 352	/* Actual values for this controller */
 353	int maxch;		/* Max channels */
 354	int maxdimmperch;	/* Max DIMMs per channel */
 355};
 356
 357/* I5000 MCH error information retrieved from Hardware */
 358struct i5000_error_info {
 359
 360	/* These registers are always read from the MC */
 361	u32 ferr_fat_fbd;	/* First Errors Fatal */
 362	u32 nerr_fat_fbd;	/* Next Errors Fatal */
 363	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
 364	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
 365
 366	/* These registers are input ONLY if there was a Recoverable  Error */
 367	u32 redmemb;		/* Recoverable Mem Data Error log B */
 368	u16 recmema;		/* Recoverable Mem Error log A */
 369	u32 recmemb;		/* Recoverable Mem Error log B */
 370
 371	/* These registers are input ONLY if there was a
 372	 * Non-Recoverable Error */
 373	u16 nrecmema;		/* Non-Recoverable Mem log A */
 374	u16 nrecmemb;		/* Non-Recoverable Mem log B */
 375
 376};
 377
 378static struct edac_pci_ctl_info *i5000_pci;
 379
 380/*
 381 *	i5000_get_error_info	Retrieve the hardware error information from
 382 *				the hardware and cache it in the 'info'
 383 *				structure
 384 */
 385static void i5000_get_error_info(struct mem_ctl_info *mci,
 386				 struct i5000_error_info *info)
 387{
 388	struct i5000_pvt *pvt;
 389	u32 value;
 390
 391	pvt = mci->pvt_info;
 392
 393	/* read in the 1st FATAL error register */
 394	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
 395
 396	/* Mask only the bits that the doc says are valid
 397	 */
 398	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
 399
 400	/* If there is an error, then read in the */
 401	/* NEXT FATAL error register and the Memory Error Log Register A */
 402	if (value & FERR_FAT_MASK) {
 403		info->ferr_fat_fbd = value;
 404
 405		/* harvest the various error data we need */
 406		pci_read_config_dword(pvt->branchmap_werrors,
 407				NERR_FAT_FBD, &info->nerr_fat_fbd);
 408		pci_read_config_word(pvt->branchmap_werrors,
 409				NRECMEMA, &info->nrecmema);
 410		pci_read_config_word(pvt->branchmap_werrors,
 411				NRECMEMB, &info->nrecmemb);
 412
 413		/* Clear the error bits, by writing them back */
 414		pci_write_config_dword(pvt->branchmap_werrors,
 415				FERR_FAT_FBD, value);
 416	} else {
 417		info->ferr_fat_fbd = 0;
 418		info->nerr_fat_fbd = 0;
 419		info->nrecmema = 0;
 420		info->nrecmemb = 0;
 421	}
 422
 423	/* read in the 1st NON-FATAL error register */
 424	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
 425
 426	/* If there is an error, then read in the 1st NON-FATAL error
 427	 * register as well */
 428	if (value & FERR_NF_MASK) {
 429		info->ferr_nf_fbd = value;
 430
 431		/* harvest the various error data we need */
 432		pci_read_config_dword(pvt->branchmap_werrors,
 433				NERR_NF_FBD, &info->nerr_nf_fbd);
 434		pci_read_config_word(pvt->branchmap_werrors,
 435				RECMEMA, &info->recmema);
 436		pci_read_config_dword(pvt->branchmap_werrors,
 437				RECMEMB, &info->recmemb);
 438		pci_read_config_dword(pvt->branchmap_werrors,
 439				REDMEMB, &info->redmemb);
 440
 441		/* Clear the error bits, by writing them back */
 442		pci_write_config_dword(pvt->branchmap_werrors,
 443				FERR_NF_FBD, value);
 444	} else {
 445		info->ferr_nf_fbd = 0;
 446		info->nerr_nf_fbd = 0;
 447		info->recmema = 0;
 448		info->recmemb = 0;
 449		info->redmemb = 0;
 450	}
 451}
 452
 453/*
 454 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 455 * 					struct i5000_error_info *info,
 456 * 					int handle_errors);
 457 *
 458 *	handle the Intel FATAL errors, if any
 459 */
 460static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 461					struct i5000_error_info *info,
 462					int handle_errors)
 463{
 464	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
 465	char *specific = NULL;
 466	u32 allErrors;
 467	int channel;
 468	int bank;
 469	int rank;
 470	int rdwr;
 471	int ras, cas;
 472
 473	/* mask off the Error bits that are possible */
 474	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
 475	if (!allErrors)
 476		return;		/* if no error, return now */
 477
 478	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
 479
 480	/* Use the NON-Recoverable macros to extract data */
 481	bank = NREC_BANK(info->nrecmema);
 482	rank = NREC_RANK(info->nrecmema);
 483	rdwr = NREC_RDWR(info->nrecmema);
 484	ras = NREC_RAS(info->nrecmemb);
 485	cas = NREC_CAS(info->nrecmemb);
 486
 487	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 488		 rank, channel, bank,
 489		 rdwr ? "Write" : "Read", ras, cas);
 490
 491	/* Only 1 bit will be on */
 492	switch (allErrors) {
 493	case FERR_FAT_M1ERR:
 494		specific = "Alert on non-redundant retry or fast "
 495				"reset timeout";
 496		break;
 497	case FERR_FAT_M2ERR:
 498		specific = "Northbound CRC error on non-redundant "
 499				"retry";
 500		break;
 501	case FERR_FAT_M3ERR:
 502		{
 503		static int done;
 504
 505		/*
 506		 * This error is generated to inform that the intelligent
 507		 * throttling is disabled and the temperature passed the
 508		 * specified middle point. Since this is something the BIOS
 509		 * should take care of, we'll warn only once to avoid
 510		 * worthlessly flooding the log.
 511		 */
 512		if (done)
 513			return;
 514		done++;
 515
 516		specific = ">Tmid Thermal event with intelligent "
 517			   "throttling disabled";
 518		}
 519		break;
 520	}
 521
 522	/* Form out message */
 523	snprintf(msg, sizeof(msg),
 524		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
 525		 bank, ras, cas, allErrors, specific);
 526
 527	/* Call the helper to output message */
 528	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
 529			     channel >> 1, channel & 1, rank,
 530			     rdwr ? "Write error" : "Read error",
 531			     msg);
 532}
 533
 534/*
 535 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
 536 * 				struct i5000_error_info *info,
 537 * 				int handle_errors);
 538 *
 539 *	handle the Intel NON-FATAL errors, if any
 540 */
 541static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
 542					struct i5000_error_info *info,
 543					int handle_errors)
 544{
 545	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
 546	char *specific = NULL;
 547	u32 allErrors;
 548	u32 ue_errors;
 549	u32 ce_errors;
 550	u32 misc_errors;
 551	int branch;
 552	int channel;
 553	int bank;
 554	int rank;
 555	int rdwr;
 556	int ras, cas;
 557
 558	/* mask off the Error bits that are possible */
 559	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
 560	if (!allErrors)
 561		return;		/* if no error, return now */
 562
 563	/* ONLY ONE of the possible error bits will be set, as per the docs */
 564	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
 565	if (ue_errors) {
 566		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
 567
 568		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 569
 570		/*
 571		 * According with i5000 datasheet, bit 28 has no significance
 572		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
 573		 */
 574		channel = branch & 2;
 575
 576		bank = NREC_BANK(info->nrecmema);
 577		rank = NREC_RANK(info->nrecmema);
 578		rdwr = NREC_RDWR(info->nrecmema);
 579		ras = NREC_RAS(info->nrecmemb);
 580		cas = NREC_CAS(info->nrecmemb);
 581
 582		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 583			 rank, channel, channel + 1, branch >> 1, bank,
 584			 rdwr ? "Write" : "Read", ras, cas);
 585
 586		switch (ue_errors) {
 587		case FERR_NF_M12ERR:
 588			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
 589			break;
 590		case FERR_NF_M11ERR:
 591			specific = "Non-Aliased Uncorrectable Spare-Copy "
 592					"Data ECC";
 593			break;
 594		case FERR_NF_M10ERR:
 595			specific = "Non-Aliased Uncorrectable Mirrored Demand "
 596					"Data ECC";
 597			break;
 598		case FERR_NF_M9ERR:
 599			specific = "Non-Aliased Uncorrectable Non-Mirrored "
 600					"Demand Data ECC";
 601			break;
 602		case FERR_NF_M8ERR:
 603			specific = "Aliased Uncorrectable Patrol Data ECC";
 604			break;
 605		case FERR_NF_M7ERR:
 606			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
 607			break;
 608		case FERR_NF_M6ERR:
 609			specific = "Aliased Uncorrectable Mirrored Demand "
 610					"Data ECC";
 611			break;
 612		case FERR_NF_M5ERR:
 613			specific = "Aliased Uncorrectable Non-Mirrored Demand "
 614					"Data ECC";
 615			break;
 616		case FERR_NF_M4ERR:
 617			specific = "Uncorrectable Data ECC on Replay";
 618			break;
 619		}
 620
 621		/* Form out message */
 622		snprintf(msg, sizeof(msg),
 623			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
 624			 rank, bank, ras, cas, ue_errors, specific);
 625
 626		/* Call the helper to output message */
 627		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
 628				channel >> 1, -1, rank,
 629				rdwr ? "Write error" : "Read error",
 630				msg);
 631	}
 632
 633	/* Check correctable errors */
 634	ce_errors = allErrors & FERR_NF_CORRECTABLE;
 635	if (ce_errors) {
 636		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
 637
 638		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 639
 640		channel = 0;
 641		if (REC_ECC_LOCATOR_ODD(info->redmemb))
 642			channel = 1;
 643
 644		/* Convert channel to be based from zero, instead of
 645		 * from branch base of 0 */
 646		channel += branch;
 647
 648		bank = REC_BANK(info->recmema);
 649		rank = REC_RANK(info->recmema);
 650		rdwr = REC_RDWR(info->recmema);
 651		ras = REC_RAS(info->recmemb);
 652		cas = REC_CAS(info->recmemb);
 653
 654		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
 655			 rank, channel, branch >> 1, bank,
 656			 rdwr ? "Write" : "Read", ras, cas);
 657
 658		switch (ce_errors) {
 659		case FERR_NF_M17ERR:
 660			specific = "Correctable Non-Mirrored Demand Data ECC";
 661			break;
 662		case FERR_NF_M18ERR:
 663			specific = "Correctable Mirrored Demand Data ECC";
 664			break;
 665		case FERR_NF_M19ERR:
 666			specific = "Correctable Spare-Copy Data ECC";
 667			break;
 668		case FERR_NF_M20ERR:
 669			specific = "Correctable Patrol Data ECC";
 670			break;
 671		}
 672
 673		/* Form out message */
 674		snprintf(msg, sizeof(msg),
 675			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
 676			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
 677			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
 678			 specific);
 679
 680		/* Call the helper to output message */
 681		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 682				channel >> 1, channel % 2, rank,
 683				rdwr ? "Write error" : "Read error",
 684				msg);
 685	}
 686
 687	if (!misc_messages)
 688		return;
 689
 690	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
 691				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
 692	if (misc_errors) {
 693		switch (misc_errors) {
 694		case FERR_NF_M13ERR:
 695			specific = "Non-Retry or Redundant Retry FBD Memory "
 696					"Alert or Redundant Fast Reset Timeout";
 697			break;
 698		case FERR_NF_M14ERR:
 699			specific = "Non-Retry or Redundant Retry FBD "
 700					"Configuration Alert";
 701			break;
 702		case FERR_NF_M15ERR:
 703			specific = "Non-Retry or Redundant Retry FBD "
 704					"Northbound CRC error on read data";
 705			break;
 706		case FERR_NF_M21ERR:
 707			specific = "FBD Northbound CRC error on "
 708					"FBD Sync Status";
 709			break;
 710		case FERR_NF_M22ERR:
 711			specific = "SPD protocol error";
 712			break;
 713		case FERR_NF_M27ERR:
 714			specific = "DIMM-spare copy started";
 715			break;
 716		case FERR_NF_M28ERR:
 717			specific = "DIMM-spare copy completed";
 718			break;
 719		}
 720		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
 721
 722		/* Form out message */
 723		snprintf(msg, sizeof(msg),
 724			 "Err=%#x (%s)", misc_errors, specific);
 725
 726		/* Call the helper to output message */
 727		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
 728				branch >> 1, -1, -1,
 729				"Misc error", msg);
 730	}
 731}
 732
 733/*
 734 *	i5000_process_error_info	Process the error info that is
 735 *	in the 'info' structure, previously retrieved from hardware
 736 */
 737static void i5000_process_error_info(struct mem_ctl_info *mci,
 738				struct i5000_error_info *info,
 739				int handle_errors)
 740{
 741	/* First handle any fatal errors that occurred */
 742	i5000_process_fatal_error_info(mci, info, handle_errors);
 743
 744	/* now handle any non-fatal errors that occurred */
 745	i5000_process_nonfatal_error_info(mci, info, handle_errors);
 746}
 747
 748/*
 749 *	i5000_clear_error	Retrieve any error from the hardware
 750 *				but do NOT process that error.
 751 *				Used for 'clearing' out of previous errors
 752 *				Called by the Core module.
 753 */
 754static void i5000_clear_error(struct mem_ctl_info *mci)
 755{
 756	struct i5000_error_info info;
 757
 758	i5000_get_error_info(mci, &info);
 759}
 760
 761/*
 762 *	i5000_check_error	Retrieve and process errors reported by the
 763 *				hardware. Called by the Core module.
 764 */
 765static void i5000_check_error(struct mem_ctl_info *mci)
 766{
 767	struct i5000_error_info info;
 768	edac_dbg(4, "MC%d\n", mci->mc_idx);
 769	i5000_get_error_info(mci, &info);
 770	i5000_process_error_info(mci, &info, 1);
 771}
 772
 773/*
 774 *	i5000_get_devices	Find and perform 'get' operation on the MCH's
 775 *			device/functions we want to reference for this driver
 776 *
 777 *			Need to 'get' device 16 func 1 and func 2
 778 */
 779static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
 780{
 781	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
 782	struct i5000_pvt *pvt;
 783	struct pci_dev *pdev;
 784
 785	pvt = mci->pvt_info;
 786
 787	/* Attempt to 'get' the MCH register we want */
 788	pdev = NULL;
 789	while (1) {
 790		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 791				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 792
 793		/* End of list, leave */
 794		if (pdev == NULL) {
 795			i5000_printk(KERN_ERR,
 796				"'system address,Process Bus' "
 797				"device not found:"
 798				"vendor 0x%x device 0x%x FUNC 1 "
 799				"(broken BIOS?)\n",
 800				PCI_VENDOR_ID_INTEL,
 801				PCI_DEVICE_ID_INTEL_I5000_DEV16);
 802
 803			return 1;
 804		}
 805
 806		/* Scan for device 16 func 1 */
 807		if (PCI_FUNC(pdev->devfn) == 1)
 808			break;
 809	}
 810
 811	pvt->branchmap_werrors = pdev;
 812
 813	/* Attempt to 'get' the MCH register we want */
 814	pdev = NULL;
 815	while (1) {
 816		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 817				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
 818
 819		if (pdev == NULL) {
 820			i5000_printk(KERN_ERR,
 821				"MC: 'branchmap,control,errors' "
 822				"device not found:"
 823				"vendor 0x%x device 0x%x Func 2 "
 824				"(broken BIOS?)\n",
 825				PCI_VENDOR_ID_INTEL,
 826				PCI_DEVICE_ID_INTEL_I5000_DEV16);
 827
 828			pci_dev_put(pvt->branchmap_werrors);
 829			return 1;
 830		}
 831
 832		/* Scan for device 16 func 1 */
 833		if (PCI_FUNC(pdev->devfn) == 2)
 834			break;
 835	}
 836
 837	pvt->fsb_error_regs = pdev;
 838
 839	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
 840		 pci_name(pvt->system_address),
 841		 pvt->system_address->vendor, pvt->system_address->device);
 842	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
 843		 pci_name(pvt->branchmap_werrors),
 844		 pvt->branchmap_werrors->vendor,
 845		 pvt->branchmap_werrors->device);
 846	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
 847		 pci_name(pvt->fsb_error_regs),
 848		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
 849
 850	pdev = NULL;
 851	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 852			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
 853
 854	if (pdev == NULL) {
 855		i5000_printk(KERN_ERR,
 856			"MC: 'BRANCH 0' device not found:"
 857			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
 858			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
 859
 860		pci_dev_put(pvt->branchmap_werrors);
 861		pci_dev_put(pvt->fsb_error_regs);
 862		return 1;
 863	}
 864
 865	pvt->branch_0 = pdev;
 866
 867	/* If this device claims to have more than 2 channels then
 868	 * fetch Branch 1's information
 869	 */
 870	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
 871		pdev = NULL;
 872		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 873				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
 874
 875		if (pdev == NULL) {
 876			i5000_printk(KERN_ERR,
 877				"MC: 'BRANCH 1' device not found:"
 878				"vendor 0x%x device 0x%x Func 0 "
 879				"(broken BIOS?)\n",
 880				PCI_VENDOR_ID_INTEL,
 881				PCI_DEVICE_ID_I5000_BRANCH_1);
 882
 883			pci_dev_put(pvt->branchmap_werrors);
 884			pci_dev_put(pvt->fsb_error_regs);
 885			pci_dev_put(pvt->branch_0);
 886			return 1;
 887		}
 888
 889		pvt->branch_1 = pdev;
 890	}
 891
 892	return 0;
 893}
 894
 895/*
 896 *	i5000_put_devices	'put' all the devices that we have
 897 *				reserved via 'get'
 898 */
 899static void i5000_put_devices(struct mem_ctl_info *mci)
 900{
 901	struct i5000_pvt *pvt;
 902
 903	pvt = mci->pvt_info;
 904
 905	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
 906	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
 907	pci_dev_put(pvt->branch_0);	/* DEV 21 */
 908
 909	/* Only if more than 2 channels do we release the second branch */
 910	if (pvt->maxch >= CHANNELS_PER_BRANCH)
 911		pci_dev_put(pvt->branch_1);	/* DEV 22 */
 912}
 913
 914/*
 915 *	determine_amb_resent
 916 *
 917 *		the information is contained in NUM_MTRS different registers
 918 *		determineing which of the NUM_MTRS requires knowing
 919 *		which channel is in question
 920 *
 921 *	2 branches, each with 2 channels
 922 *		b0_ambpresent0 for channel '0'
 923 *		b0_ambpresent1 for channel '1'
 924 *		b1_ambpresent0 for channel '2'
 925 *		b1_ambpresent1 for channel '3'
 926 */
 927static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
 928{
 929	int amb_present;
 930
 931	if (channel < CHANNELS_PER_BRANCH) {
 932		if (channel & 0x1)
 933			amb_present = pvt->b0_ambpresent1;
 934		else
 935			amb_present = pvt->b0_ambpresent0;
 936	} else {
 937		if (channel & 0x1)
 938			amb_present = pvt->b1_ambpresent1;
 939		else
 940			amb_present = pvt->b1_ambpresent0;
 941	}
 942
 943	return amb_present;
 944}
 945
 946/*
 947 * determine_mtr(pvt, csrow, channel)
 948 *
 949 *	return the proper MTR register as determine by the csrow and channel desired
 950 */
 951static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
 952{
 953	int mtr;
 954
 955	if (channel < CHANNELS_PER_BRANCH)
 956		mtr = pvt->b0_mtr[slot];
 957	else
 958		mtr = pvt->b1_mtr[slot];
 959
 960	return mtr;
 961}
 962
 963/*
 964 */
 965static void decode_mtr(int slot_row, u16 mtr)
 966{
 967	int ans;
 968
 969	ans = MTR_DIMMS_PRESENT(mtr);
 970
 971	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
 972		 slot_row, mtr, ans ? "" : "NOT ");
 973	if (!ans)
 974		return;
 975
 976	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
 977	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
 978	edac_dbg(2, "\t\tNUMRANK: %s\n",
 979		 MTR_DIMM_RANK(mtr) ? "double" : "single");
 980	edac_dbg(2, "\t\tNUMROW: %s\n",
 981		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
 982		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
 983		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
 984		 "reserved");
 985	edac_dbg(2, "\t\tNUMCOL: %s\n",
 986		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
 987		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
 988		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
 989		 "reserved");
 990}
 991
 992static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
 993			struct i5000_dimm_info *dinfo)
 994{
 995	int mtr;
 996	int amb_present_reg;
 997	int addrBits;
 998
 999	mtr = determine_mtr(pvt, slot, channel);
1000	if (MTR_DIMMS_PRESENT(mtr)) {
1001		amb_present_reg = determine_amb_present_reg(pvt, channel);
1002
1003		/* Determine if there is a DIMM present in this DIMM slot */
1004		if (amb_present_reg) {
1005			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006
1007			/* Start with the number of bits for a Bank
1008				* on the DRAM */
1009			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1010			/* Add the number of ROW bits */
1011			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1012			/* add the number of COLUMN bits */
1013			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1014
1015			/* Dual-rank memories have twice the size */
1016			if (dinfo->dual_rank)
1017				addrBits++;
1018
1019			addrBits += 6;	/* add 64 bits per DIMM */
1020			addrBits -= 20;	/* divide by 2^^20 */
1021			addrBits -= 3;	/* 8 bits per bytes */
1022
1023			dinfo->megabytes = 1 << addrBits;
1024		}
1025	}
1026}
1027
1028/*
1029 *	calculate_dimm_size
1030 *
1031 *	also will output a DIMM matrix map, if debug is enabled, for viewing
1032 *	how the DIMMs are populated
1033 */
1034static void calculate_dimm_size(struct i5000_pvt *pvt)
1035{
1036	struct i5000_dimm_info *dinfo;
1037	int slot, channel, branch;
1038	char *p, *mem_buffer;
1039	int space, n;
1040
1041	/* ================= Generate some debug output ================= */
1042	space = PAGE_SIZE;
1043	mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044	if (p == NULL) {
1045		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046			__FILE__, __func__);
1047		return;
1048	}
1049
1050	/* Scan all the actual slots
1051	 * and calculate the information for each DIMM
1052	 * Start with the highest slot first, to display it first
1053	 * and work toward the 0th slot
1054	 */
1055	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056
1057		/* on an odd slot, first output a 'boundary' marker,
1058		 * then reset the message buffer  */
1059		if (slot & 0x1) {
1060			n = snprintf(p, space, "--------------------------"
1061				"--------------------------------");
1062			p += n;
1063			space -= n;
1064			edac_dbg(2, "%s\n", mem_buffer);
1065			p = mem_buffer;
1066			space = PAGE_SIZE;
1067		}
1068		n = snprintf(p, space, "slot %2d    ", slot);
1069		p += n;
1070		space -= n;
1071
1072		for (channel = 0; channel < pvt->maxch; channel++) {
1073			dinfo = &pvt->dimm_info[slot][channel];
1074			handle_channel(pvt, slot, channel, dinfo);
1075			if (dinfo->megabytes)
1076				n = snprintf(p, space, "%4d MB %dR| ",
1077					     dinfo->megabytes, dinfo->dual_rank + 1);
1078			else
1079				n = snprintf(p, space, "%4d MB   | ", 0);
1080			p += n;
1081			space -= n;
1082		}
1083		p += n;
1084		space -= n;
1085		edac_dbg(2, "%s\n", mem_buffer);
1086		p = mem_buffer;
1087		space = PAGE_SIZE;
1088	}
1089
1090	/* Output the last bottom 'boundary' marker */
1091	n = snprintf(p, space, "--------------------------"
1092		"--------------------------------");
1093	p += n;
1094	space -= n;
1095	edac_dbg(2, "%s\n", mem_buffer);
1096	p = mem_buffer;
1097	space = PAGE_SIZE;
1098
1099	/* now output the 'channel' labels */
1100	n = snprintf(p, space, "           ");
1101	p += n;
1102	space -= n;
1103	for (channel = 0; channel < pvt->maxch; channel++) {
1104		n = snprintf(p, space, "channel %d | ", channel);
1105		p += n;
1106		space -= n;
1107	}
1108	edac_dbg(2, "%s\n", mem_buffer);
1109	p = mem_buffer;
1110	space = PAGE_SIZE;
1111
1112	n = snprintf(p, space, "           ");
1113	p += n;
1114	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115		n = snprintf(p, space, "       branch %d       | ", branch);
1116		p += n;
1117		space -= n;
1118	}
1119
1120	/* output the last message and free buffer */
1121	edac_dbg(2, "%s\n", mem_buffer);
1122	kfree(mem_buffer);
1123}
1124
1125/*
1126 *	i5000_get_mc_regs	read in the necessary registers and
1127 *				cache locally
1128 *
1129 *			Fills in the private data members
1130 */
1131static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132{
1133	struct i5000_pvt *pvt;
1134	u32 actual_tolm;
1135	u16 limit;
1136	int slot_row;
1137	int maxch;
1138	int maxdimmperch;
1139	int way0, way1;
1140
1141	pvt = mci->pvt_info;
1142
1143	pci_read_config_dword(pvt->system_address, AMBASE,
1144			&pvt->u.ambase_bottom);
1145	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1146			&pvt->u.ambase_top);
1147
1148	maxdimmperch = pvt->maxdimmperch;
1149	maxch = pvt->maxch;
1150
1151	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1152		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1153
1154	/* Get the Branch Map regs */
1155	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1156	pvt->tolm >>= 12;
1157	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1158		 pvt->tolm, pvt->tolm);
1159
1160	actual_tolm = pvt->tolm << 28;
1161	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1162		 actual_tolm, actual_tolm);
1163
1164	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1165	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1166	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1167
1168	/* Get the MIR[0-2] regs */
1169	limit = (pvt->mir0 >> 4) & 0x0FFF;
1170	way0 = pvt->mir0 & 0x1;
1171	way1 = pvt->mir0 & 0x2;
1172	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1173		 limit, way1, way0);
1174	limit = (pvt->mir1 >> 4) & 0x0FFF;
1175	way0 = pvt->mir1 & 0x1;
1176	way1 = pvt->mir1 & 0x2;
1177	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1178		 limit, way1, way0);
1179	limit = (pvt->mir2 >> 4) & 0x0FFF;
1180	way0 = pvt->mir2 & 0x1;
1181	way1 = pvt->mir2 & 0x2;
1182	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1183		 limit, way1, way0);
1184
1185	/* Get the MTR[0-3] regs */
1186	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1187		int where = MTR0 + (slot_row * sizeof(u32));
1188
1189		pci_read_config_word(pvt->branch_0, where,
1190				&pvt->b0_mtr[slot_row]);
1191
1192		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1193			 slot_row, where, pvt->b0_mtr[slot_row]);
1194
1195		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1196			pci_read_config_word(pvt->branch_1, where,
1197					&pvt->b1_mtr[slot_row]);
1198			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1199				 slot_row, where, pvt->b1_mtr[slot_row]);
1200		} else {
1201			pvt->b1_mtr[slot_row] = 0;
1202		}
1203	}
1204
1205	/* Read and dump branch 0's MTRs */
1206	edac_dbg(2, "Memory Technology Registers:\n");
1207	edac_dbg(2, "   Branch 0:\n");
1208	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1209		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1210	}
1211	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1212			&pvt->b0_ambpresent0);
1213	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1214	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1215			&pvt->b0_ambpresent1);
1216	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1217
1218	/* Only if we have 2 branchs (4 channels) */
1219	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1220		pvt->b1_ambpresent0 = 0;
1221		pvt->b1_ambpresent1 = 0;
1222	} else {
1223		/* Read and dump  branch 1's MTRs */
1224		edac_dbg(2, "   Branch 1:\n");
1225		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1226			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1227		}
1228		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1229				&pvt->b1_ambpresent0);
1230		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1231			 pvt->b1_ambpresent0);
1232		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1233				&pvt->b1_ambpresent1);
1234		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1235			 pvt->b1_ambpresent1);
1236	}
1237
1238	/* Go and determine the size of each DIMM and place in an
1239	 * orderly matrix */
1240	calculate_dimm_size(pvt);
1241}
1242
1243/*
1244 *	i5000_init_csrows	Initialize the 'csrows' table within
1245 *				the mci control	structure with the
1246 *				addressing of memory.
1247 *
1248 *	return:
1249 *		0	success
1250 *		1	no actual memory found on this MC
1251 */
1252static int i5000_init_csrows(struct mem_ctl_info *mci)
1253{
1254	struct i5000_pvt *pvt;
1255	struct dimm_info *dimm;
1256	int empty, channel_count;
1257	int max_csrows;
1258	int mtr;
1259	int csrow_megs;
1260	int channel;
1261	int slot;
1262
1263	pvt = mci->pvt_info;
1264
1265	channel_count = pvt->maxch;
1266	max_csrows = pvt->maxdimmperch * 2;
1267
1268	empty = 1;		/* Assume NO memory */
1269
1270	/*
1271	 * FIXME: The memory layout used to map slot/channel into the
1272	 * real memory architecture is weird: branch+slot are "csrows"
1273	 * and channel is channel. That required an extra array (dimm_info)
1274	 * to map the dimms. A good cleanup would be to remove this array,
1275	 * and do a loop here with branch, channel, slot
1276	 */
1277	for (slot = 0; slot < max_csrows; slot++) {
1278		for (channel = 0; channel < pvt->maxch; channel++) {
1279
1280			mtr = determine_mtr(pvt, slot, channel);
1281
1282			if (!MTR_DIMMS_PRESENT(mtr))
1283				continue;
1284
1285			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1286				       channel / MAX_BRANCHES,
1287				       channel % MAX_BRANCHES, slot);
1288
1289			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1290			dimm->grain = 8;
1291
1292			/* Assume DDR2 for now */
1293			dimm->mtype = MEM_FB_DDR2;
1294
1295			/* ask what device type on this row */
1296			if (MTR_DRAM_WIDTH(mtr))
1297				dimm->dtype = DEV_X8;
1298			else
1299				dimm->dtype = DEV_X4;
1300
1301			dimm->edac_mode = EDAC_S8ECD8ED;
1302			dimm->nr_pages = csrow_megs << 8;
1303		}
1304
1305		empty = 0;
1306	}
1307
1308	return empty;
1309}
1310
1311/*
1312 *	i5000_enable_error_reporting
1313 *			Turn on the memory reporting features of the hardware
1314 */
1315static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1316{
1317	struct i5000_pvt *pvt;
1318	u32 fbd_error_mask;
1319
1320	pvt = mci->pvt_info;
1321
1322	/* Read the FBD Error Mask Register */
1323	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1324			&fbd_error_mask);
1325
1326	/* Enable with a '0' */
1327	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1328
1329	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1330			fbd_error_mask);
1331}
1332
1333/*
1334 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1335 *
1336 *	ask the device how many channels are present and how many CSROWS
1337 *	 as well
1338 */
1339static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1340					int *num_dimms_per_channel,
1341					int *num_channels)
1342{
1343	u8 value;
1344
1345	/* Need to retrieve just how many channels and dimms per channel are
1346	 * supported on this memory controller
1347	 */
1348	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1349	*num_dimms_per_channel = (int)value;
1350
1351	pci_read_config_byte(pdev, MAXCH, &value);
1352	*num_channels = (int)value;
1353}
1354
1355/*
1356 *	i5000_probe1	Probe for ONE instance of device to see if it is
1357 *			present.
1358 *	return:
1359 *		0 for FOUND a device
1360 *		< 0 for error code
1361 */
1362static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1363{
1364	struct mem_ctl_info *mci;
1365	struct edac_mc_layer layers[3];
1366	struct i5000_pvt *pvt;
1367	int num_channels;
1368	int num_dimms_per_channel;
1369
1370	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1371		 pdev->bus->number,
1372		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1373
1374	/* We only are looking for func 0 of the set */
1375	if (PCI_FUNC(pdev->devfn) != 0)
1376		return -ENODEV;
1377
1378	/* Ask the devices for the number of CSROWS and CHANNELS so
1379	 * that we can calculate the memory resources, etc
1380	 *
1381	 * The Chipset will report what it can handle which will be greater
1382	 * or equal to what the motherboard manufacturer will implement.
1383	 *
1384	 * As we don't have a motherboard identification routine to determine
1385	 * actual number of slots/dimms per channel, we thus utilize the
1386	 * resource as specified by the chipset. Thus, we might have
1387	 * have more DIMMs per channel than actually on the mobo, but this
1388	 * allows the driver to support up to the chipset max, without
1389	 * some fancy mobo determination.
1390	 */
1391	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1392					&num_channels);
1393
1394	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
1395		 num_channels, num_dimms_per_channel);
1396
1397	/* allocate a new MC control structure */
1398
1399	layers[0].type = EDAC_MC_LAYER_BRANCH;
1400	layers[0].size = MAX_BRANCHES;
1401	layers[0].is_virt_csrow = false;
1402	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1403	layers[1].size = num_channels / MAX_BRANCHES;
1404	layers[1].is_virt_csrow = false;
1405	layers[2].type = EDAC_MC_LAYER_SLOT;
1406	layers[2].size = num_dimms_per_channel;
1407	layers[2].is_virt_csrow = true;
1408	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1409	if (mci == NULL)
1410		return -ENOMEM;
1411
1412	edac_dbg(0, "MC: mci = %p\n", mci);
1413
1414	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1415
1416	pvt = mci->pvt_info;
1417	pvt->system_address = pdev;	/* Record this device in our private */
1418	pvt->maxch = num_channels;
1419	pvt->maxdimmperch = num_dimms_per_channel;
1420
1421	/* 'get' the pci devices we want to reserve for our use */
1422	if (i5000_get_devices(mci, dev_idx))
1423		goto fail0;
1424
1425	/* Time to get serious */
1426	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
1427
1428	mci->mc_idx = 0;
1429	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1430	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1431	mci->edac_cap = EDAC_FLAG_NONE;
1432	mci->mod_name = "i5000_edac.c";
1433	mci->mod_ver = I5000_REVISION;
1434	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1435	mci->dev_name = pci_name(pdev);
1436	mci->ctl_page_to_phys = NULL;
1437
1438	/* Set the function pointer to an actual operation function */
1439	mci->edac_check = i5000_check_error;
1440
1441	/* initialize the MC control structure 'csrows' table
1442	 * with the mapping and control information */
1443	if (i5000_init_csrows(mci)) {
1444		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1445		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1446	} else {
1447		edac_dbg(1, "MC: Enable error reporting now\n");
1448		i5000_enable_error_reporting(mci);
1449	}
1450
1451	/* add this new MC control structure to EDAC's list of MCs */
1452	if (edac_mc_add_mc(mci)) {
1453		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1454		/* FIXME: perhaps some code should go here that disables error
1455		 * reporting if we just enabled it
1456		 */
1457		goto fail1;
1458	}
1459
1460	i5000_clear_error(mci);
1461
1462	/* allocating generic PCI control info */
1463	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1464	if (!i5000_pci) {
1465		printk(KERN_WARNING
1466			"%s(): Unable to create PCI control\n",
1467			__func__);
1468		printk(KERN_WARNING
1469			"%s(): PCI error report via EDAC not setup\n",
1470			__func__);
1471	}
1472
1473	return 0;
1474
1475	/* Error exit unwinding stack */
1476fail1:
1477
1478	i5000_put_devices(mci);
1479
1480fail0:
1481	edac_mc_free(mci);
1482	return -ENODEV;
1483}
1484
1485/*
1486 *	i5000_init_one	constructor for one instance of device
1487 *
1488 * 	returns:
1489 *		negative on error
1490 *		count (>= 0)
1491 */
1492static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1493{
1494	int rc;
1495
1496	edac_dbg(0, "MC:\n");
1497
1498	/* wake up device */
1499	rc = pci_enable_device(pdev);
1500	if (rc)
1501		return rc;
1502
1503	/* now probe and enable the device */
1504	return i5000_probe1(pdev, id->driver_data);
1505}
1506
1507/*
1508 *	i5000_remove_one	destructor for one instance of device
1509 *
1510 */
1511static void i5000_remove_one(struct pci_dev *pdev)
1512{
1513	struct mem_ctl_info *mci;
1514
1515	edac_dbg(0, "\n");
1516
1517	if (i5000_pci)
1518		edac_pci_release_generic_ctl(i5000_pci);
1519
1520	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1521		return;
1522
1523	/* retrieve references to resources, and free those resources */
1524	i5000_put_devices(mci);
1525	edac_mc_free(mci);
1526}
1527
1528/*
1529 *	pci_device_id	table for which devices we are looking for
1530 *
1531 *	The "E500P" device is the first device supported.
1532 */
1533static const struct pci_device_id i5000_pci_tbl[] = {
1534	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1535	 .driver_data = I5000P},
1536
1537	{0,}			/* 0 terminated list. */
1538};
1539
1540MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1541
1542/*
1543 *	i5000_driver	pci_driver structure for this module
1544 *
1545 */
1546static struct pci_driver i5000_driver = {
1547	.name = KBUILD_BASENAME,
1548	.probe = i5000_init_one,
1549	.remove = i5000_remove_one,
1550	.id_table = i5000_pci_tbl,
1551};
1552
1553/*
1554 *	i5000_init		Module entry function
1555 *			Try to initialize this module for its devices
1556 */
1557static int __init i5000_init(void)
1558{
1559	int pci_rc;
1560
1561	edac_dbg(2, "MC:\n");
1562
1563       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1564       opstate_init();
1565
1566	pci_rc = pci_register_driver(&i5000_driver);
1567
1568	return (pci_rc < 0) ? pci_rc : 0;
1569}
1570
1571/*
1572 *	i5000_exit()	Module exit function
1573 *			Unregister the driver
1574 */
1575static void __exit i5000_exit(void)
1576{
1577	edac_dbg(2, "MC:\n");
1578	pci_unregister_driver(&i5000_driver);
1579}
1580
1581module_init(i5000_init);
1582module_exit(i5000_exit);
1583
1584MODULE_LICENSE("GPL");
1585MODULE_AUTHOR
1586    ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1587MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1588		I5000_REVISION);
1589
1590module_param(edac_op_state, int, 0444);
1591MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1592module_param(misc_messages, int, 0444);
1593MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1594