Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Support for Marvell's crypto engine which can be found on some Orion5X
   3 * boards.
   4 *
   5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
   6 * License: GPLv2
   7 *
   8 */
   9#include <crypto/aes.h>
  10#include <crypto/algapi.h>
  11#include <linux/crypto.h>
  12#include <linux/genalloc.h>
  13#include <linux/interrupt.h>
  14#include <linux/io.h>
  15#include <linux/kthread.h>
  16#include <linux/platform_device.h>
  17#include <linux/scatterlist.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/clk.h>
  21#include <crypto/internal/hash.h>
  22#include <crypto/sha.h>
  23#include <linux/of.h>
  24#include <linux/of_platform.h>
  25#include <linux/of_irq.h>
  26
  27#include "mv_cesa.h"
  28
  29#define MV_CESA	"MV-CESA:"
  30#define MAX_HW_HASH_SIZE	0xFFFF
  31#define MV_CESA_EXPIRE		500 /* msec */
  32
  33#define MV_CESA_DEFAULT_SRAM_SIZE	2048
  34
  35/*
  36 * STM:
  37 *   /---------------------------------------\
  38 *   |					     | request complete
  39 *  \./					     |
  40 * IDLE -> new request -> BUSY -> done -> DEQUEUE
  41 *                         /°\               |
  42 *			    |		     | more scatter entries
  43 *			    \________________/
  44 */
  45enum engine_status {
  46	ENGINE_IDLE,
  47	ENGINE_BUSY,
  48	ENGINE_W_DEQUEUE,
  49};
  50
  51/**
  52 * struct req_progress - used for every crypt request
  53 * @src_sg_it:		sg iterator for src
  54 * @dst_sg_it:		sg iterator for dst
  55 * @sg_src_left:	bytes left in src to process (scatter list)
  56 * @src_start:		offset to add to src start position (scatter list)
  57 * @crypt_len:		length of current hw crypt/hash process
  58 * @hw_nbytes:		total bytes to process in hw for this request
  59 * @copy_back:		whether to copy data back (crypt) or not (hash)
  60 * @sg_dst_left:	bytes left dst to process in this scatter list
  61 * @dst_start:		offset to add to dst start position (scatter list)
  62 * @hw_processed_bytes:	number of bytes processed by hw (request).
  63 *
  64 * sg helper are used to iterate over the scatterlist. Since the size of the
  65 * SRAM may be less than the scatter size, this struct struct is used to keep
  66 * track of progress within current scatterlist.
  67 */
  68struct req_progress {
  69	struct sg_mapping_iter src_sg_it;
  70	struct sg_mapping_iter dst_sg_it;
  71	void (*complete) (void);
  72	void (*process) (int is_first);
  73
  74	/* src mostly */
  75	int sg_src_left;
  76	int src_start;
  77	int crypt_len;
  78	int hw_nbytes;
  79	/* dst mostly */
  80	int copy_back;
  81	int sg_dst_left;
  82	int dst_start;
  83	int hw_processed_bytes;
  84};
  85
  86struct crypto_priv {
  87	void __iomem *reg;
  88	void __iomem *sram;
  89	struct gen_pool *sram_pool;
  90	dma_addr_t sram_dma;
  91	int irq;
  92	struct clk *clk;
  93	struct task_struct *queue_th;
  94
  95	/* the lock protects queue and eng_st */
  96	spinlock_t lock;
  97	struct crypto_queue queue;
  98	enum engine_status eng_st;
  99	struct timer_list completion_timer;
 100	struct crypto_async_request *cur_req;
 101	struct req_progress p;
 102	int max_req_size;
 103	int sram_size;
 104	int has_sha1;
 105	int has_hmac_sha1;
 106};
 107
 108static struct crypto_priv *cpg;
 109
 110struct mv_ctx {
 111	u8 aes_enc_key[AES_KEY_LEN];
 112	u32 aes_dec_key[8];
 113	int key_len;
 114	u32 need_calc_aes_dkey;
 115};
 116
 117enum crypto_op {
 118	COP_AES_ECB,
 119	COP_AES_CBC,
 120};
 121
 122struct mv_req_ctx {
 123	enum crypto_op op;
 124	int decrypt;
 125};
 126
 127enum hash_op {
 128	COP_SHA1,
 129	COP_HMAC_SHA1
 130};
 131
 132struct mv_tfm_hash_ctx {
 133	struct crypto_shash *fallback;
 134	struct crypto_shash *base_hash;
 135	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 136	int count_add;
 137	enum hash_op op;
 138};
 139
 140struct mv_req_hash_ctx {
 141	u64 count;
 142	u32 state[SHA1_DIGEST_SIZE / 4];
 143	u8 buffer[SHA1_BLOCK_SIZE];
 144	int first_hash;		/* marks that we don't have previous state */
 145	int last_chunk;		/* marks that this is the 'final' request */
 146	int extra_bytes;	/* unprocessed bytes in buffer */
 147	enum hash_op op;
 148	int count_add;
 149};
 150
 151static void mv_completion_timer_callback(unsigned long unused)
 152{
 153	int active = readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_EN_SEC_ACCL0;
 154
 155	printk(KERN_ERR MV_CESA
 156	       "completion timer expired (CESA %sactive), cleaning up.\n",
 157	       active ? "" : "in");
 158
 159	del_timer(&cpg->completion_timer);
 160	writel(SEC_CMD_DISABLE_SEC, cpg->reg + SEC_ACCEL_CMD);
 161	while(readl(cpg->reg + SEC_ACCEL_CMD) & SEC_CMD_DISABLE_SEC)
 162		printk(KERN_INFO MV_CESA "%s: waiting for engine finishing\n", __func__);
 163	cpg->eng_st = ENGINE_W_DEQUEUE;
 164	wake_up_process(cpg->queue_th);
 165}
 166
 167static void mv_setup_timer(void)
 168{
 169	setup_timer(&cpg->completion_timer, &mv_completion_timer_callback, 0);
 170	mod_timer(&cpg->completion_timer,
 171			jiffies + msecs_to_jiffies(MV_CESA_EXPIRE));
 172}
 173
 174static void compute_aes_dec_key(struct mv_ctx *ctx)
 175{
 176	struct crypto_aes_ctx gen_aes_key;
 177	int key_pos;
 178
 179	if (!ctx->need_calc_aes_dkey)
 180		return;
 181
 182	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 183
 184	key_pos = ctx->key_len + 24;
 185	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 186	switch (ctx->key_len) {
 187	case AES_KEYSIZE_256:
 188		key_pos -= 2;
 189		/* fall */
 190	case AES_KEYSIZE_192:
 191		key_pos -= 2;
 192		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 193				4 * 4);
 194		break;
 195	}
 196	ctx->need_calc_aes_dkey = 0;
 197}
 198
 199static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 200		unsigned int len)
 201{
 202	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 203	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 204
 205	switch (len) {
 206	case AES_KEYSIZE_128:
 207	case AES_KEYSIZE_192:
 208	case AES_KEYSIZE_256:
 209		break;
 210	default:
 211		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 212		return -EINVAL;
 213	}
 214	ctx->key_len = len;
 215	ctx->need_calc_aes_dkey = 1;
 216
 217	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 218	return 0;
 219}
 220
 221static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 222{
 223	int ret;
 224	void *sbuf;
 225	int copy_len;
 226
 227	while (len) {
 228		if (!p->sg_src_left) {
 229			ret = sg_miter_next(&p->src_sg_it);
 230			BUG_ON(!ret);
 231			p->sg_src_left = p->src_sg_it.length;
 232			p->src_start = 0;
 233		}
 234
 235		sbuf = p->src_sg_it.addr + p->src_start;
 236
 237		copy_len = min(p->sg_src_left, len);
 238		memcpy(dbuf, sbuf, copy_len);
 239
 240		p->src_start += copy_len;
 241		p->sg_src_left -= copy_len;
 242
 243		len -= copy_len;
 244		dbuf += copy_len;
 245	}
 246}
 247
 248static void setup_data_in(void)
 249{
 250	struct req_progress *p = &cpg->p;
 251	int data_in_sram =
 252	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 253	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 254			data_in_sram - p->crypt_len);
 255	p->crypt_len = data_in_sram;
 256}
 257
 258static void mv_process_current_q(int first_block)
 259{
 260	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 261	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 262	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 263	struct sec_accel_config op;
 264
 265	switch (req_ctx->op) {
 266	case COP_AES_ECB:
 267		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 268		break;
 269	case COP_AES_CBC:
 270	default:
 271		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 272		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 273			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 274		if (first_block)
 275			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 276		break;
 277	}
 278	if (req_ctx->decrypt) {
 279		op.config |= CFG_DIR_DEC;
 280		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 281				AES_KEY_LEN);
 282	} else {
 283		op.config |= CFG_DIR_ENC;
 284		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 285				AES_KEY_LEN);
 286	}
 287
 288	switch (ctx->key_len) {
 289	case AES_KEYSIZE_128:
 290		op.config |= CFG_AES_LEN_128;
 291		break;
 292	case AES_KEYSIZE_192:
 293		op.config |= CFG_AES_LEN_192;
 294		break;
 295	case AES_KEYSIZE_256:
 296		op.config |= CFG_AES_LEN_256;
 297		break;
 298	}
 299	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 300		ENC_P_DST(SRAM_DATA_OUT_START);
 301	op.enc_key_p = SRAM_DATA_KEY_P;
 302
 303	setup_data_in();
 304	op.enc_len = cpg->p.crypt_len;
 305	memcpy(cpg->sram + SRAM_CONFIG, &op,
 306			sizeof(struct sec_accel_config));
 307
 308	/* GO */
 309	mv_setup_timer();
 310	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 311}
 312
 313static void mv_crypto_algo_completion(void)
 314{
 315	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 316	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 317
 318	sg_miter_stop(&cpg->p.src_sg_it);
 319	sg_miter_stop(&cpg->p.dst_sg_it);
 320
 321	if (req_ctx->op != COP_AES_CBC)
 322		return ;
 323
 324	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 325}
 326
 327static void mv_process_hash_current(int first_block)
 328{
 329	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 330	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 331	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 332	struct req_progress *p = &cpg->p;
 333	struct sec_accel_config op = { 0 };
 334	int is_last;
 335
 336	switch (req_ctx->op) {
 337	case COP_SHA1:
 338	default:
 339		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 340		break;
 341	case COP_HMAC_SHA1:
 342		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 343		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 344				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 345		break;
 346	}
 347
 348	op.mac_src_p =
 349		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 350		req_ctx->
 351		count);
 352
 353	setup_data_in();
 354
 355	op.mac_digest =
 356		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 357	op.mac_iv =
 358		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 359		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 360
 361	is_last = req_ctx->last_chunk
 362		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 363		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
 364	if (req_ctx->first_hash) {
 365		if (is_last)
 366			op.config |= CFG_NOT_FRAG;
 367		else
 368			op.config |= CFG_FIRST_FRAG;
 369
 370		req_ctx->first_hash = 0;
 371	} else {
 372		if (is_last)
 373			op.config |= CFG_LAST_FRAG;
 374		else
 375			op.config |= CFG_MID_FRAG;
 376
 377		if (first_block) {
 378			writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 379			writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 380			writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 381			writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 382			writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 383		}
 384	}
 385
 386	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 387
 388	/* GO */
 389	mv_setup_timer();
 390	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 391}
 392
 393static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 394					  struct shash_desc *desc)
 395{
 396	int i;
 397	struct sha1_state shash_state;
 398
 399	shash_state.count = ctx->count + ctx->count_add;
 400	for (i = 0; i < 5; i++)
 401		shash_state.state[i] = ctx->state[i];
 402	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 403	return crypto_shash_import(desc, &shash_state);
 404}
 405
 406static int mv_hash_final_fallback(struct ahash_request *req)
 407{
 408	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 409	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 410	SHASH_DESC_ON_STACK(shash, tfm_ctx->fallback);
 411	int rc;
 412
 413	shash->tfm = tfm_ctx->fallback;
 414	shash->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 415	if (unlikely(req_ctx->first_hash)) {
 416		crypto_shash_init(shash);
 417		crypto_shash_update(shash, req_ctx->buffer,
 418				    req_ctx->extra_bytes);
 419	} else {
 420		/* only SHA1 for now....
 421		 */
 422		rc = mv_hash_import_sha1_ctx(req_ctx, shash);
 423		if (rc)
 424			goto out;
 425	}
 426	rc = crypto_shash_final(shash, req->result);
 427out:
 428	return rc;
 429}
 430
 431static void mv_save_digest_state(struct mv_req_hash_ctx *ctx)
 432{
 433	ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 434	ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 435	ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 436	ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 437	ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 438}
 439
 440static void mv_hash_algo_completion(void)
 441{
 442	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 443	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 444
 445	if (ctx->extra_bytes)
 446		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 447	sg_miter_stop(&cpg->p.src_sg_it);
 448
 449	if (likely(ctx->last_chunk)) {
 450		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 451			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 452			       crypto_ahash_digestsize(crypto_ahash_reqtfm
 453						       (req)));
 454		} else {
 455			mv_save_digest_state(ctx);
 456			mv_hash_final_fallback(req);
 457		}
 458	} else {
 459		mv_save_digest_state(ctx);
 460	}
 461}
 462
 463static void dequeue_complete_req(void)
 464{
 465	struct crypto_async_request *req = cpg->cur_req;
 466	void *buf;
 467	int ret;
 468	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 469	if (cpg->p.copy_back) {
 470		int need_copy_len = cpg->p.crypt_len;
 471		int sram_offset = 0;
 472		do {
 473			int dst_copy;
 474
 475			if (!cpg->p.sg_dst_left) {
 476				ret = sg_miter_next(&cpg->p.dst_sg_it);
 477				BUG_ON(!ret);
 478				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 479				cpg->p.dst_start = 0;
 480			}
 481
 482			buf = cpg->p.dst_sg_it.addr;
 483			buf += cpg->p.dst_start;
 484
 485			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 486
 487			memcpy(buf,
 488			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 489			       dst_copy);
 490			sram_offset += dst_copy;
 491			cpg->p.sg_dst_left -= dst_copy;
 492			need_copy_len -= dst_copy;
 493			cpg->p.dst_start += dst_copy;
 494		} while (need_copy_len > 0);
 495	}
 496
 497	cpg->p.crypt_len = 0;
 498
 499	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 500	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 501		/* process next scatter list entry */
 502		cpg->eng_st = ENGINE_BUSY;
 503		cpg->p.process(0);
 504	} else {
 505		cpg->p.complete();
 506		cpg->eng_st = ENGINE_IDLE;
 507		local_bh_disable();
 508		req->complete(req, 0);
 509		local_bh_enable();
 510	}
 511}
 512
 513static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 514{
 515	int i = 0;
 516	size_t cur_len;
 517
 518	while (sl) {
 519		cur_len = sl[i].length;
 520		++i;
 521		if (total_bytes > cur_len)
 522			total_bytes -= cur_len;
 523		else
 524			break;
 525	}
 526
 527	return i;
 528}
 529
 530static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 531{
 532	struct req_progress *p = &cpg->p;
 533	int num_sgs;
 534
 535	cpg->cur_req = &req->base;
 536	memset(p, 0, sizeof(struct req_progress));
 537	p->hw_nbytes = req->nbytes;
 538	p->complete = mv_crypto_algo_completion;
 539	p->process = mv_process_current_q;
 540	p->copy_back = 1;
 541
 542	num_sgs = count_sgs(req->src, req->nbytes);
 543	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 544
 545	num_sgs = count_sgs(req->dst, req->nbytes);
 546	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 547
 548	mv_process_current_q(1);
 549}
 550
 551static void mv_start_new_hash_req(struct ahash_request *req)
 552{
 553	struct req_progress *p = &cpg->p;
 554	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 555	int num_sgs, hw_bytes, old_extra_bytes, rc;
 556	cpg->cur_req = &req->base;
 557	memset(p, 0, sizeof(struct req_progress));
 558	hw_bytes = req->nbytes + ctx->extra_bytes;
 559	old_extra_bytes = ctx->extra_bytes;
 560
 561	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 562	if (ctx->extra_bytes != 0
 563	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 564		hw_bytes -= ctx->extra_bytes;
 565	else
 566		ctx->extra_bytes = 0;
 567
 568	num_sgs = count_sgs(req->src, req->nbytes);
 569	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 570
 571	if (hw_bytes) {
 572		p->hw_nbytes = hw_bytes;
 573		p->complete = mv_hash_algo_completion;
 574		p->process = mv_process_hash_current;
 575
 576		if (unlikely(old_extra_bytes)) {
 577			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 578			       old_extra_bytes);
 579			p->crypt_len = old_extra_bytes;
 580		}
 581
 582		mv_process_hash_current(1);
 583	} else {
 584		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 585				ctx->extra_bytes - old_extra_bytes);
 586		sg_miter_stop(&p->src_sg_it);
 587		if (ctx->last_chunk)
 588			rc = mv_hash_final_fallback(req);
 589		else
 590			rc = 0;
 591		cpg->eng_st = ENGINE_IDLE;
 592		local_bh_disable();
 593		req->base.complete(&req->base, rc);
 594		local_bh_enable();
 595	}
 596}
 597
 598static int queue_manag(void *data)
 599{
 600	cpg->eng_st = ENGINE_IDLE;
 601	do {
 602		struct crypto_async_request *async_req = NULL;
 603		struct crypto_async_request *backlog = NULL;
 604
 605		__set_current_state(TASK_INTERRUPTIBLE);
 606
 607		if (cpg->eng_st == ENGINE_W_DEQUEUE)
 608			dequeue_complete_req();
 609
 610		spin_lock_irq(&cpg->lock);
 611		if (cpg->eng_st == ENGINE_IDLE) {
 612			backlog = crypto_get_backlog(&cpg->queue);
 613			async_req = crypto_dequeue_request(&cpg->queue);
 614			if (async_req) {
 615				BUG_ON(cpg->eng_st != ENGINE_IDLE);
 616				cpg->eng_st = ENGINE_BUSY;
 617			}
 618		}
 619		spin_unlock_irq(&cpg->lock);
 620
 621		if (backlog) {
 622			backlog->complete(backlog, -EINPROGRESS);
 623			backlog = NULL;
 624		}
 625
 626		if (async_req) {
 627			if (crypto_tfm_alg_type(async_req->tfm) !=
 628			    CRYPTO_ALG_TYPE_AHASH) {
 629				struct ablkcipher_request *req =
 630				    ablkcipher_request_cast(async_req);
 631				mv_start_new_crypt_req(req);
 632			} else {
 633				struct ahash_request *req =
 634				    ahash_request_cast(async_req);
 635				mv_start_new_hash_req(req);
 636			}
 637			async_req = NULL;
 638		}
 639
 640		schedule();
 641
 642	} while (!kthread_should_stop());
 643	return 0;
 644}
 645
 646static int mv_handle_req(struct crypto_async_request *req)
 647{
 648	unsigned long flags;
 649	int ret;
 650
 651	spin_lock_irqsave(&cpg->lock, flags);
 652	ret = crypto_enqueue_request(&cpg->queue, req);
 653	spin_unlock_irqrestore(&cpg->lock, flags);
 654	wake_up_process(cpg->queue_th);
 655	return ret;
 656}
 657
 658static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 659{
 660	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 661
 662	req_ctx->op = COP_AES_ECB;
 663	req_ctx->decrypt = 0;
 664
 665	return mv_handle_req(&req->base);
 666}
 667
 668static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 669{
 670	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 671	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 672
 673	req_ctx->op = COP_AES_ECB;
 674	req_ctx->decrypt = 1;
 675
 676	compute_aes_dec_key(ctx);
 677	return mv_handle_req(&req->base);
 678}
 679
 680static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 681{
 682	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 683
 684	req_ctx->op = COP_AES_CBC;
 685	req_ctx->decrypt = 0;
 686
 687	return mv_handle_req(&req->base);
 688}
 689
 690static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 691{
 692	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 693	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 694
 695	req_ctx->op = COP_AES_CBC;
 696	req_ctx->decrypt = 1;
 697
 698	compute_aes_dec_key(ctx);
 699	return mv_handle_req(&req->base);
 700}
 701
 702static int mv_cra_init(struct crypto_tfm *tfm)
 703{
 704	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 705	return 0;
 706}
 707
 708static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 709				 int is_last, unsigned int req_len,
 710				 int count_add)
 711{
 712	memset(ctx, 0, sizeof(*ctx));
 713	ctx->op = op;
 714	ctx->count = req_len;
 715	ctx->first_hash = 1;
 716	ctx->last_chunk = is_last;
 717	ctx->count_add = count_add;
 718}
 719
 720static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 721				   unsigned req_len)
 722{
 723	ctx->last_chunk = is_last;
 724	ctx->count += req_len;
 725}
 726
 727static int mv_hash_init(struct ahash_request *req)
 728{
 729	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 730	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 731			     tfm_ctx->count_add);
 732	return 0;
 733}
 734
 735static int mv_hash_update(struct ahash_request *req)
 736{
 737	if (!req->nbytes)
 738		return 0;
 739
 740	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 741	return mv_handle_req(&req->base);
 742}
 743
 744static int mv_hash_final(struct ahash_request *req)
 745{
 746	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 747
 748	ahash_request_set_crypt(req, NULL, req->result, 0);
 749	mv_update_hash_req_ctx(ctx, 1, 0);
 750	return mv_handle_req(&req->base);
 751}
 752
 753static int mv_hash_finup(struct ahash_request *req)
 754{
 755	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 756	return mv_handle_req(&req->base);
 757}
 758
 759static int mv_hash_digest(struct ahash_request *req)
 760{
 761	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 762	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 763			     req->nbytes, tfm_ctx->count_add);
 764	return mv_handle_req(&req->base);
 765}
 766
 767static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 768			     const void *ostate)
 769{
 770	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 771	int i;
 772	for (i = 0; i < 5; i++) {
 773		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 774		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 775	}
 776}
 777
 778static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 779			  unsigned int keylen)
 780{
 781	int rc;
 782	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 783	int bs, ds, ss;
 784
 785	if (!ctx->base_hash)
 786		return 0;
 787
 788	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 789	if (rc)
 790		return rc;
 791
 792	/* Can't see a way to extract the ipad/opad from the fallback tfm
 793	   so I'm basically copying code from the hmac module */
 794	bs = crypto_shash_blocksize(ctx->base_hash);
 795	ds = crypto_shash_digestsize(ctx->base_hash);
 796	ss = crypto_shash_statesize(ctx->base_hash);
 797
 798	{
 799		SHASH_DESC_ON_STACK(shash, ctx->base_hash);
 800
 801		unsigned int i;
 802		char ipad[ss];
 803		char opad[ss];
 804
 805		shash->tfm = ctx->base_hash;
 806		shash->flags = crypto_shash_get_flags(ctx->base_hash) &
 807		    CRYPTO_TFM_REQ_MAY_SLEEP;
 808
 809		if (keylen > bs) {
 810			int err;
 811
 812			err =
 813			    crypto_shash_digest(shash, key, keylen, ipad);
 814			if (err)
 815				return err;
 816
 817			keylen = ds;
 818		} else
 819			memcpy(ipad, key, keylen);
 820
 821		memset(ipad + keylen, 0, bs - keylen);
 822		memcpy(opad, ipad, bs);
 823
 824		for (i = 0; i < bs; i++) {
 825			ipad[i] ^= 0x36;
 826			opad[i] ^= 0x5c;
 827		}
 828
 829		rc = crypto_shash_init(shash) ? :
 830		    crypto_shash_update(shash, ipad, bs) ? :
 831		    crypto_shash_export(shash, ipad) ? :
 832		    crypto_shash_init(shash) ? :
 833		    crypto_shash_update(shash, opad, bs) ? :
 834		    crypto_shash_export(shash, opad);
 835
 836		if (rc == 0)
 837			mv_hash_init_ivs(ctx, ipad, opad);
 838
 839		return rc;
 840	}
 841}
 842
 843static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 844			    enum hash_op op, int count_add)
 845{
 846	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
 847	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 848	struct crypto_shash *fallback_tfm = NULL;
 849	struct crypto_shash *base_hash = NULL;
 850	int err = -ENOMEM;
 851
 852	ctx->op = op;
 853	ctx->count_add = count_add;
 854
 855	/* Allocate a fallback and abort if it failed. */
 856	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 857					  CRYPTO_ALG_NEED_FALLBACK);
 858	if (IS_ERR(fallback_tfm)) {
 859		printk(KERN_WARNING MV_CESA
 860		       "Fallback driver '%s' could not be loaded!\n",
 861		       fallback_driver_name);
 862		err = PTR_ERR(fallback_tfm);
 863		goto out;
 864	}
 865	ctx->fallback = fallback_tfm;
 866
 867	if (base_hash_name) {
 868		/* Allocate a hash to compute the ipad/opad of hmac. */
 869		base_hash = crypto_alloc_shash(base_hash_name, 0,
 870					       CRYPTO_ALG_NEED_FALLBACK);
 871		if (IS_ERR(base_hash)) {
 872			printk(KERN_WARNING MV_CESA
 873			       "Base driver '%s' could not be loaded!\n",
 874			       base_hash_name);
 875			err = PTR_ERR(base_hash);
 876			goto err_bad_base;
 877		}
 878	}
 879	ctx->base_hash = base_hash;
 880
 881	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 882				 sizeof(struct mv_req_hash_ctx) +
 883				 crypto_shash_descsize(ctx->fallback));
 884	return 0;
 885err_bad_base:
 886	crypto_free_shash(fallback_tfm);
 887out:
 888	return err;
 889}
 890
 891static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 892{
 893	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 894
 895	crypto_free_shash(ctx->fallback);
 896	if (ctx->base_hash)
 897		crypto_free_shash(ctx->base_hash);
 898}
 899
 900static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 901{
 902	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 903}
 904
 905static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 906{
 907	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 908}
 909
 910static irqreturn_t crypto_int(int irq, void *priv)
 911{
 912	u32 val;
 913
 914	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 915	if (!(val & SEC_INT_ACCEL0_DONE))
 916		return IRQ_NONE;
 917
 918	if (!del_timer(&cpg->completion_timer)) {
 919		printk(KERN_WARNING MV_CESA
 920		       "got an interrupt but no pending timer?\n");
 921	}
 922	val &= ~SEC_INT_ACCEL0_DONE;
 923	writel(val, cpg->reg + FPGA_INT_STATUS);
 924	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 925	BUG_ON(cpg->eng_st != ENGINE_BUSY);
 926	cpg->eng_st = ENGINE_W_DEQUEUE;
 927	wake_up_process(cpg->queue_th);
 928	return IRQ_HANDLED;
 929}
 930
 931static struct crypto_alg mv_aes_alg_ecb = {
 932	.cra_name		= "ecb(aes)",
 933	.cra_driver_name	= "mv-ecb-aes",
 934	.cra_priority	= 300,
 935	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
 936			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 937	.cra_blocksize	= 16,
 938	.cra_ctxsize	= sizeof(struct mv_ctx),
 939	.cra_alignmask	= 0,
 940	.cra_type	= &crypto_ablkcipher_type,
 941	.cra_module	= THIS_MODULE,
 942	.cra_init	= mv_cra_init,
 943	.cra_u		= {
 944		.ablkcipher = {
 945			.min_keysize	=	AES_MIN_KEY_SIZE,
 946			.max_keysize	=	AES_MAX_KEY_SIZE,
 947			.setkey		=	mv_setkey_aes,
 948			.encrypt	=	mv_enc_aes_ecb,
 949			.decrypt	=	mv_dec_aes_ecb,
 950		},
 951	},
 952};
 953
 954static struct crypto_alg mv_aes_alg_cbc = {
 955	.cra_name		= "cbc(aes)",
 956	.cra_driver_name	= "mv-cbc-aes",
 957	.cra_priority	= 300,
 958	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER |
 959			  CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
 960	.cra_blocksize	= AES_BLOCK_SIZE,
 961	.cra_ctxsize	= sizeof(struct mv_ctx),
 962	.cra_alignmask	= 0,
 963	.cra_type	= &crypto_ablkcipher_type,
 964	.cra_module	= THIS_MODULE,
 965	.cra_init	= mv_cra_init,
 966	.cra_u		= {
 967		.ablkcipher = {
 968			.ivsize		=	AES_BLOCK_SIZE,
 969			.min_keysize	=	AES_MIN_KEY_SIZE,
 970			.max_keysize	=	AES_MAX_KEY_SIZE,
 971			.setkey		=	mv_setkey_aes,
 972			.encrypt	=	mv_enc_aes_cbc,
 973			.decrypt	=	mv_dec_aes_cbc,
 974		},
 975	},
 976};
 977
 978static struct ahash_alg mv_sha1_alg = {
 979	.init = mv_hash_init,
 980	.update = mv_hash_update,
 981	.final = mv_hash_final,
 982	.finup = mv_hash_finup,
 983	.digest = mv_hash_digest,
 984	.halg = {
 985		 .digestsize = SHA1_DIGEST_SIZE,
 986		 .base = {
 987			  .cra_name = "sha1",
 988			  .cra_driver_name = "mv-sha1",
 989			  .cra_priority = 300,
 990			  .cra_flags =
 991			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
 992			  CRYPTO_ALG_NEED_FALLBACK,
 993			  .cra_blocksize = SHA1_BLOCK_SIZE,
 994			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 995			  .cra_init = mv_cra_hash_sha1_init,
 996			  .cra_exit = mv_cra_hash_exit,
 997			  .cra_module = THIS_MODULE,
 998			  }
 999		 }
1000};
1001
1002static struct ahash_alg mv_hmac_sha1_alg = {
1003	.init = mv_hash_init,
1004	.update = mv_hash_update,
1005	.final = mv_hash_final,
1006	.finup = mv_hash_finup,
1007	.digest = mv_hash_digest,
1008	.setkey = mv_hash_setkey,
1009	.halg = {
1010		 .digestsize = SHA1_DIGEST_SIZE,
1011		 .base = {
1012			  .cra_name = "hmac(sha1)",
1013			  .cra_driver_name = "mv-hmac-sha1",
1014			  .cra_priority = 300,
1015			  .cra_flags =
1016			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
1017			  CRYPTO_ALG_NEED_FALLBACK,
1018			  .cra_blocksize = SHA1_BLOCK_SIZE,
1019			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
1020			  .cra_init = mv_cra_hash_hmac_sha1_init,
1021			  .cra_exit = mv_cra_hash_exit,
1022			  .cra_module = THIS_MODULE,
1023			  }
1024		 }
1025};
1026
1027static int mv_cesa_get_sram(struct platform_device *pdev,
1028			    struct crypto_priv *cp)
1029{
1030	struct resource *res;
1031	u32 sram_size = MV_CESA_DEFAULT_SRAM_SIZE;
1032
1033	of_property_read_u32(pdev->dev.of_node, "marvell,crypto-sram-size",
1034			     &sram_size);
1035
1036	cp->sram_size = sram_size;
1037	cp->sram_pool = of_gen_pool_get(pdev->dev.of_node,
1038					"marvell,crypto-srams", 0);
1039	if (cp->sram_pool) {
1040		cp->sram = gen_pool_dma_alloc(cp->sram_pool, sram_size,
1041					      &cp->sram_dma);
1042		if (cp->sram)
1043			return 0;
1044
1045		return -ENOMEM;
1046	}
1047
1048	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1049					   "sram");
1050	if (!res || resource_size(res) < cp->sram_size)
1051		return -EINVAL;
1052
1053	cp->sram = devm_ioremap_resource(&pdev->dev, res);
1054	if (IS_ERR(cp->sram))
1055		return PTR_ERR(cp->sram);
1056
1057	return 0;
1058}
1059
1060static int mv_probe(struct platform_device *pdev)
1061{
1062	struct crypto_priv *cp;
1063	struct resource *res;
1064	int irq;
1065	int ret;
1066
1067	if (cpg) {
1068		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1069		return -EEXIST;
1070	}
1071
1072	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1073	if (!res)
1074		return -ENXIO;
1075
1076	cp = devm_kzalloc(&pdev->dev, sizeof(*cp), GFP_KERNEL);
1077	if (!cp)
1078		return -ENOMEM;
1079
1080	spin_lock_init(&cp->lock);
1081	crypto_init_queue(&cp->queue, 50);
1082	cp->reg = devm_ioremap_resource(&pdev->dev, res);
1083	if (IS_ERR(cp->reg)) {
1084		ret = PTR_ERR(cp->reg);
1085		goto err;
1086	}
1087
1088	ret = mv_cesa_get_sram(pdev, cp);
1089	if (ret)
1090		goto err;
1091
1092	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1093
1094	irq = platform_get_irq(pdev, 0);
1095	if (irq < 0) {
1096		ret = irq;
1097		goto err;
1098	}
1099	cp->irq = irq;
1100
1101	platform_set_drvdata(pdev, cp);
1102	cpg = cp;
1103
1104	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1105	if (IS_ERR(cp->queue_th)) {
1106		ret = PTR_ERR(cp->queue_th);
1107		goto err;
1108	}
1109
1110	ret = request_irq(irq, crypto_int, 0, dev_name(&pdev->dev),
1111			cp);
1112	if (ret)
1113		goto err_thread;
1114
1115	/* Not all platforms can gate the clock, so it is not
1116	   an error if the clock does not exists. */
1117	cp->clk = clk_get(&pdev->dev, NULL);
1118	if (!IS_ERR(cp->clk))
1119		clk_prepare_enable(cp->clk);
1120
1121	writel(0, cpg->reg + SEC_ACCEL_INT_STATUS);
1122	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1123	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1124	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1125
1126	ret = crypto_register_alg(&mv_aes_alg_ecb);
1127	if (ret) {
1128		printk(KERN_WARNING MV_CESA
1129		       "Could not register aes-ecb driver\n");
1130		goto err_irq;
1131	}
1132
1133	ret = crypto_register_alg(&mv_aes_alg_cbc);
1134	if (ret) {
1135		printk(KERN_WARNING MV_CESA
1136		       "Could not register aes-cbc driver\n");
1137		goto err_unreg_ecb;
1138	}
1139
1140	ret = crypto_register_ahash(&mv_sha1_alg);
1141	if (ret == 0)
1142		cpg->has_sha1 = 1;
1143	else
1144		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1145
1146	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1147	if (ret == 0) {
1148		cpg->has_hmac_sha1 = 1;
1149	} else {
1150		printk(KERN_WARNING MV_CESA
1151		       "Could not register hmac-sha1 driver\n");
1152	}
1153
1154	return 0;
1155err_unreg_ecb:
1156	crypto_unregister_alg(&mv_aes_alg_ecb);
1157err_irq:
1158	free_irq(irq, cp);
1159	if (!IS_ERR(cp->clk)) {
1160		clk_disable_unprepare(cp->clk);
1161		clk_put(cp->clk);
1162	}
1163err_thread:
1164	kthread_stop(cp->queue_th);
1165err:
1166	cpg = NULL;
1167	return ret;
1168}
1169
1170static int mv_remove(struct platform_device *pdev)
1171{
1172	struct crypto_priv *cp = platform_get_drvdata(pdev);
1173
1174	crypto_unregister_alg(&mv_aes_alg_ecb);
1175	crypto_unregister_alg(&mv_aes_alg_cbc);
1176	if (cp->has_sha1)
1177		crypto_unregister_ahash(&mv_sha1_alg);
1178	if (cp->has_hmac_sha1)
1179		crypto_unregister_ahash(&mv_hmac_sha1_alg);
1180	kthread_stop(cp->queue_th);
1181	free_irq(cp->irq, cp);
1182	memset(cp->sram, 0, cp->sram_size);
1183
1184	if (!IS_ERR(cp->clk)) {
1185		clk_disable_unprepare(cp->clk);
1186		clk_put(cp->clk);
1187	}
1188
1189	cpg = NULL;
1190	return 0;
1191}
1192
1193static const struct of_device_id mv_cesa_of_match_table[] = {
1194	{ .compatible = "marvell,orion-crypto", },
1195	{ .compatible = "marvell,kirkwood-crypto", },
1196	{ .compatible = "marvell,dove-crypto", },
1197	{}
1198};
1199MODULE_DEVICE_TABLE(of, mv_cesa_of_match_table);
1200
1201static struct platform_driver marvell_crypto = {
1202	.probe		= mv_probe,
1203	.remove		= mv_remove,
1204	.driver		= {
1205		.name	= "mv_crypto",
1206		.of_match_table = mv_cesa_of_match_table,
1207	},
1208};
1209MODULE_ALIAS("platform:mv_crypto");
1210
1211module_platform_driver(marvell_crypto);
1212
1213MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1214MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1215MODULE_LICENSE("GPL");