Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4 * All rights reserved.
5 */
6
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/mod_devicetable.h>
11#include <linux/interrupt.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/delay.h>
15#include <linux/mm.h>
16#include <linux/dma-mapping.h>
17#include <linux/scatterlist.h>
18#include <linux/highmem.h>
19#include <linux/crypto.h>
20#include <linux/hw_random.h>
21#include <linux/ktime.h>
22
23#include <crypto/algapi.h>
24#include <crypto/internal/des.h>
25#include <crypto/internal/skcipher.h>
26
27static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29MODULE_PARM_DESC(hifn_pll_ref,
30 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32static atomic_t hifn_dev_number;
33
34#define ACRYPTO_OP_DECRYPT 0
35#define ACRYPTO_OP_ENCRYPT 1
36#define ACRYPTO_OP_HMAC 2
37#define ACRYPTO_OP_RNG 3
38
39#define ACRYPTO_MODE_ECB 0
40#define ACRYPTO_MODE_CBC 1
41#define ACRYPTO_MODE_CFB 2
42#define ACRYPTO_MODE_OFB 3
43
44#define ACRYPTO_TYPE_AES_128 0
45#define ACRYPTO_TYPE_AES_192 1
46#define ACRYPTO_TYPE_AES_256 2
47#define ACRYPTO_TYPE_3DES 3
48#define ACRYPTO_TYPE_DES 4
49
50#define PCI_VENDOR_ID_HIFN 0x13A3
51#define PCI_DEVICE_ID_HIFN_7955 0x0020
52#define PCI_DEVICE_ID_HIFN_7956 0x001d
53
54/* I/O region sizes */
55
56#define HIFN_BAR0_SIZE 0x1000
57#define HIFN_BAR1_SIZE 0x2000
58#define HIFN_BAR2_SIZE 0x8000
59
60/* DMA registres */
61
62#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
63#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
64#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
65#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
66#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
67#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
68#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
69#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
70#define HIFN_CHIP_ID 0x98 /* Chip ID */
71
72/*
73 * Processing Unit Registers (offset from BASEREG0)
74 */
75#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
76#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
77#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
78#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
79#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
80#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
81#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
82#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
83#define HIFN_0_SPACESIZE 0x20 /* Register space size */
84
85/* Processing Unit Control Register (HIFN_0_PUCTRL) */
86#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
87#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
88#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
89#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
90#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
91
92/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
94#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
95#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
96#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
97#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
98#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
99#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
100#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
101#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
102#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
103
104/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
106#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
107#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
108#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
109#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
110#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
111#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
112#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
113#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
114#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
115#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
116#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
117#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
118#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
119#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
120#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
121#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
122#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
123#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
124#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
125#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
126#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
127#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
128
129/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
131#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
132#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
133#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
134#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
135#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
136#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
137#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
138#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
139#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
140
141/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
143#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
144#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
145#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
146#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
147#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
148#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
149#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
150#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
151#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
152#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
153#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
154#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
155#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
156#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
157#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
158#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
159
160/* FIFO Status Register (HIFN_0_FIFOSTAT) */
161#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
162#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
163
164/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
166
167/*
168 * DMA Interface Registers (offset from BASEREG1)
169 */
170#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
171#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
172#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
173#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
174#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
175#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
176#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
177#define HIFN_1_PLL 0x4c /* 795x: PLL config */
178#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
179#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
180#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
181#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
182#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
183#define HIFN_1_REVID 0x98 /* Revision ID */
184#define HIFN_1_UNLOCK_SECRET1 0xf4
185#define HIFN_1_UNLOCK_SECRET2 0xfc
186#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
187#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
188#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
189#define HIFN_1_PUB_OP 0x308 /* Public Operand */
190#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
191#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
192#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
193#define HIFN_1_RNG_DATA 0x318 /* RNG data */
194#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
195#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
196
197/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
199#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
200#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
201#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
202#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
203#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
204#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
205#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
206#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
207#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
208#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
209#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
210#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
211#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
212#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
213#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
214#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
215#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
216#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
217#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
218#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
219#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
220#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
221#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
222#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
223#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
224#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
225#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
226#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
227#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
228#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
229#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
230#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
231#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
232#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
233#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
234#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
235#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
236
237/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
239#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
240#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
241#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
242#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
243#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
244#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
245#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
246#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
247#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
248#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
249#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
250#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
251#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
252#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
253#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
254#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
255#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
256#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
257#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
258#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
259#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
260
261/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
263#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
264#define HIFN_DMACNFG_UNLOCK 0x00000800
265#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
266#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
267#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
268#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
269#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
270
271/* PLL configuration register */
272#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
273#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
274#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
275#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
276#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
277#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
278#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
279#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
280#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
281#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
282#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
283#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
284#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
285#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
286#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
287#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
288#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
289
290#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
291
292/* Public key reset register (HIFN_1_PUB_RESET) */
293#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
294
295/* Public base address register (HIFN_1_PUB_BASE) */
296#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
297
298/* Public operand length register (HIFN_1_PUB_OPLEN) */
299#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
300#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
301#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
302#define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
303#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
304#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
305
306/* Public operation register (HIFN_1_PUB_OP) */
307#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
308#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
309#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
310#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
311#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
312#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
313#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
314#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
315#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
316#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
317#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
318#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
319#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
320#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
321#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
322#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
323#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
324#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
325#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
326#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
327
328/* Public status register (HIFN_1_PUB_STATUS) */
329#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
330#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
331
332/* Public interrupt enable register (HIFN_1_PUB_IEN) */
333#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
334
335/* Random number generator config register (HIFN_1_RNG_CONFIG) */
336#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
337
338#define HIFN_NAMESIZE 32
339#define HIFN_MAX_RESULT_ORDER 5
340
341#define HIFN_D_CMD_RSIZE (24 * 1)
342#define HIFN_D_SRC_RSIZE (80 * 1)
343#define HIFN_D_DST_RSIZE (80 * 1)
344#define HIFN_D_RES_RSIZE (24 * 1)
345
346#define HIFN_D_DST_DALIGN 4
347
348#define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
349
350#define AES_MIN_KEY_SIZE 16
351#define AES_MAX_KEY_SIZE 32
352
353#define HIFN_DES_KEY_LENGTH 8
354#define HIFN_3DES_KEY_LENGTH 24
355#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
356#define HIFN_IV_LENGTH 8
357#define HIFN_AES_IV_LENGTH 16
358#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
359
360#define HIFN_MAC_KEY_LENGTH 64
361#define HIFN_MD5_LENGTH 16
362#define HIFN_SHA1_LENGTH 20
363#define HIFN_MAC_TRUNC_LENGTH 12
364
365#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
366#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
367#define HIFN_USED_RESULT 12
368
369struct hifn_desc {
370 volatile __le32 l;
371 volatile __le32 p;
372};
373
374struct hifn_dma {
375 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
376 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
377 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
378 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
379
380 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383 /*
384 * Our current positions for insertion and removal from the descriptor
385 * rings.
386 */
387 volatile int cmdi, srci, dsti, resi;
388 volatile int cmdu, srcu, dstu, resu;
389 int cmdk, srck, dstk, resk;
390};
391
392#define HIFN_FLAG_CMD_BUSY (1 << 0)
393#define HIFN_FLAG_SRC_BUSY (1 << 1)
394#define HIFN_FLAG_DST_BUSY (1 << 2)
395#define HIFN_FLAG_RES_BUSY (1 << 3)
396#define HIFN_FLAG_OLD_KEY (1 << 4)
397
398#define HIFN_DEFAULT_ACTIVE_NUM 5
399
400struct hifn_device {
401 char name[HIFN_NAMESIZE];
402
403 int irq;
404
405 struct pci_dev *pdev;
406 void __iomem *bar[3];
407
408 void *desc_virt;
409 dma_addr_t desc_dma;
410
411 u32 dmareg;
412
413 void *sa[HIFN_D_RES_RSIZE];
414
415 spinlock_t lock;
416
417 u32 flags;
418 int active, started;
419 struct delayed_work work;
420 unsigned long reset;
421 unsigned long success;
422 unsigned long prev_success;
423
424 u8 snum;
425
426 struct tasklet_struct tasklet;
427
428 struct crypto_queue queue;
429 struct list_head alg_list;
430
431 unsigned int pk_clk_freq;
432
433#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 unsigned int rng_wait_time;
435 ktime_t rngtime;
436 struct hwrng rng;
437#endif
438};
439
440#define HIFN_D_LENGTH 0x0000ffff
441#define HIFN_D_NOINVALID 0x01000000
442#define HIFN_D_MASKDONEIRQ 0x02000000
443#define HIFN_D_DESTOVER 0x04000000
444#define HIFN_D_OVER 0x08000000
445#define HIFN_D_LAST 0x20000000
446#define HIFN_D_JUMP 0x40000000
447#define HIFN_D_VALID 0x80000000
448
449struct hifn_base_command {
450 volatile __le16 masks;
451 volatile __le16 session_num;
452 volatile __le16 total_source_count;
453 volatile __le16 total_dest_count;
454};
455
456#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
457#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
458#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
459#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
460#define HIFN_BASE_CMD_DECODE 0x2000
461#define HIFN_BASE_CMD_SRCLEN_M 0xc000
462#define HIFN_BASE_CMD_SRCLEN_S 14
463#define HIFN_BASE_CMD_DSTLEN_M 0x3000
464#define HIFN_BASE_CMD_DSTLEN_S 12
465#define HIFN_BASE_CMD_LENMASK_HI 0x30000
466#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
467
468/*
469 * Structure to help build up the command data structure.
470 */
471struct hifn_crypt_command {
472 volatile __le16 masks;
473 volatile __le16 header_skip;
474 volatile __le16 source_count;
475 volatile __le16 reserved;
476};
477
478#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
479#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
480#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
481#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
482#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
483#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
484#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
485#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
486#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
487#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
488#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
489#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
490#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
491#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
492#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
493#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
494#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
495#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
496#define HIFN_CRYPT_CMD_SRCLEN_S 14
497
498#define HIFN_MAC_CMD_ALG_MASK 0x0001
499#define HIFN_MAC_CMD_ALG_SHA1 0x0000
500#define HIFN_MAC_CMD_ALG_MD5 0x0001
501#define HIFN_MAC_CMD_MODE_MASK 0x000c
502#define HIFN_MAC_CMD_MODE_HMAC 0x0000
503#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
504#define HIFN_MAC_CMD_MODE_HASH 0x0008
505#define HIFN_MAC_CMD_MODE_FULL 0x0004
506#define HIFN_MAC_CMD_TRUNC 0x0010
507#define HIFN_MAC_CMD_RESULT 0x0020
508#define HIFN_MAC_CMD_APPEND 0x0040
509#define HIFN_MAC_CMD_SRCLEN_M 0xc000
510#define HIFN_MAC_CMD_SRCLEN_S 14
511
512/*
513 * MAC POS IPsec initiates authentication after encryption on encodes
514 * and before decryption on decodes.
515 */
516#define HIFN_MAC_CMD_POS_IPSEC 0x0200
517#define HIFN_MAC_CMD_NEW_KEY 0x0800
518
519#define HIFN_COMP_CMD_SRCLEN_M 0xc000
520#define HIFN_COMP_CMD_SRCLEN_S 14
521#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
522#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
523#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
524#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
525#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
526#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
527#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
528#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
529
530struct hifn_base_result {
531 volatile __le16 flags;
532 volatile __le16 session;
533 volatile __le16 src_cnt; /* 15:0 of source count */
534 volatile __le16 dst_cnt; /* 15:0 of dest count */
535};
536
537#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
538#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
539#define HIFN_BASE_RES_SRCLEN_S 14
540#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
541#define HIFN_BASE_RES_DSTLEN_S 12
542
543struct hifn_comp_result {
544 volatile __le16 flags;
545 volatile __le16 crc;
546};
547
548#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
549#define HIFN_COMP_RES_LCB_S 8
550#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
551#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
552#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
553
554struct hifn_mac_result {
555 volatile __le16 flags;
556 volatile __le16 reserved;
557 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
558};
559
560#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
561#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
562
563struct hifn_crypt_result {
564 volatile __le16 flags;
565 volatile __le16 reserved;
566};
567
568#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
569
570#ifndef HIFN_POLL_FREQUENCY
571#define HIFN_POLL_FREQUENCY 0x1
572#endif
573
574#ifndef HIFN_POLL_SCALAR
575#define HIFN_POLL_SCALAR 0x0
576#endif
577
578#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
579#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
580
581struct hifn_crypto_alg {
582 struct list_head entry;
583 struct skcipher_alg alg;
584 struct hifn_device *dev;
585};
586
587#define ASYNC_SCATTERLIST_CACHE 16
588
589#define ASYNC_FLAGS_MISALIGNED (1 << 0)
590
591struct hifn_cipher_walk {
592 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
593 u32 flags;
594 int num;
595};
596
597struct hifn_context {
598 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
599 struct hifn_device *dev;
600 unsigned int keysize;
601};
602
603struct hifn_request_context {
604 u8 *iv;
605 unsigned int ivsize;
606 u8 op, type, mode, unused;
607 struct hifn_cipher_walk walk;
608};
609
610#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
611
612static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
613{
614 return readl(dev->bar[0] + reg);
615}
616
617static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
618{
619 return readl(dev->bar[1] + reg);
620}
621
622static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
623{
624 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
625}
626
627static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
628{
629 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
630}
631
632static void hifn_wait_puc(struct hifn_device *dev)
633{
634 int i;
635 u32 ret;
636
637 for (i = 10000; i > 0; --i) {
638 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
639 if (!(ret & HIFN_PUCTRL_RESET))
640 break;
641
642 udelay(1);
643 }
644
645 if (!i)
646 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
647}
648
649static void hifn_reset_puc(struct hifn_device *dev)
650{
651 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
652 hifn_wait_puc(dev);
653}
654
655static void hifn_stop_device(struct hifn_device *dev)
656{
657 hifn_write_1(dev, HIFN_1_DMA_CSR,
658 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
659 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
660 hifn_write_0(dev, HIFN_0_PUIER, 0);
661 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
662}
663
664static void hifn_reset_dma(struct hifn_device *dev, int full)
665{
666 hifn_stop_device(dev);
667
668 /*
669 * Setting poll frequency and others to 0.
670 */
671 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
672 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
673 mdelay(1);
674
675 /*
676 * Reset DMA.
677 */
678 if (full) {
679 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
680 mdelay(1);
681 } else {
682 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
683 HIFN_DMACNFG_MSTRESET);
684 hifn_reset_puc(dev);
685 }
686
687 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689
690 hifn_reset_puc(dev);
691}
692
693static u32 hifn_next_signature(u32 a, u_int cnt)
694{
695 int i;
696 u32 v;
697
698 for (i = 0; i < cnt; i++) {
699 /* get the parity */
700 v = a & 0x80080125;
701 v ^= v >> 16;
702 v ^= v >> 8;
703 v ^= v >> 4;
704 v ^= v >> 2;
705 v ^= v >> 1;
706
707 a = (v & 1) ^ (a << 1);
708 }
709
710 return a;
711}
712
713static struct pci2id {
714 u_short pci_vendor;
715 u_short pci_prod;
716 char card_id[13];
717} pci2id[] = {
718 {
719 PCI_VENDOR_ID_HIFN,
720 PCI_DEVICE_ID_HIFN_7955,
721 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
722 0x00, 0x00, 0x00, 0x00, 0x00 }
723 },
724 {
725 PCI_VENDOR_ID_HIFN,
726 PCI_DEVICE_ID_HIFN_7956,
727 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
728 0x00, 0x00, 0x00, 0x00, 0x00 }
729 }
730};
731
732#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
733static int hifn_rng_data_present(struct hwrng *rng, int wait)
734{
735 struct hifn_device *dev = (struct hifn_device *)rng->priv;
736 s64 nsec;
737
738 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
739 nsec -= dev->rng_wait_time;
740 if (nsec <= 0)
741 return 1;
742 if (!wait)
743 return 0;
744 ndelay(nsec);
745 return 1;
746}
747
748static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
749{
750 struct hifn_device *dev = (struct hifn_device *)rng->priv;
751
752 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
753 dev->rngtime = ktime_get();
754 return 4;
755}
756
757static int hifn_register_rng(struct hifn_device *dev)
758{
759 /*
760 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
761 */
762 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
763 dev->pk_clk_freq) * 256;
764
765 dev->rng.name = dev->name;
766 dev->rng.data_present = hifn_rng_data_present;
767 dev->rng.data_read = hifn_rng_data_read;
768 dev->rng.priv = (unsigned long)dev;
769
770 return hwrng_register(&dev->rng);
771}
772
773static void hifn_unregister_rng(struct hifn_device *dev)
774{
775 hwrng_unregister(&dev->rng);
776}
777#else
778#define hifn_register_rng(dev) 0
779#define hifn_unregister_rng(dev)
780#endif
781
782static int hifn_init_pubrng(struct hifn_device *dev)
783{
784 int i;
785
786 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
787 HIFN_PUBRST_RESET);
788
789 for (i = 100; i > 0; --i) {
790 mdelay(1);
791
792 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
793 break;
794 }
795
796 if (!i) {
797 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
798 } else {
799 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
800 dev->dmareg |= HIFN_DMAIER_PUBDONE;
801 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
802
803 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
804 }
805
806 /* Enable RNG engine. */
807
808 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
809 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
810 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
811
812#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
813 /* First value must be discarded */
814 hifn_read_1(dev, HIFN_1_RNG_DATA);
815 dev->rngtime = ktime_get();
816#endif
817 return 0;
818}
819
820static int hifn_enable_crypto(struct hifn_device *dev)
821{
822 u32 dmacfg, addr;
823 char *offtbl = NULL;
824 int i;
825
826 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
827 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
828 pci2id[i].pci_prod == dev->pdev->device) {
829 offtbl = pci2id[i].card_id;
830 break;
831 }
832 }
833
834 if (!offtbl) {
835 dev_err(&dev->pdev->dev, "Unknown card!\n");
836 return -ENODEV;
837 }
838
839 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
840
841 hifn_write_1(dev, HIFN_1_DMA_CNFG,
842 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
843 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
844 mdelay(1);
845 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
846 mdelay(1);
847 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
848 mdelay(1);
849
850 for (i = 0; i < 12; ++i) {
851 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
852 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
853
854 mdelay(1);
855 }
856 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
857
858 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
859
860 return 0;
861}
862
863static void hifn_init_dma(struct hifn_device *dev)
864{
865 struct hifn_dma *dma = dev->desc_virt;
866 u32 dptr = dev->desc_dma;
867 int i;
868
869 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
870 dma->cmdr[i].p = __cpu_to_le32(dptr +
871 offsetof(struct hifn_dma, command_bufs[i][0]));
872 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
873 dma->resr[i].p = __cpu_to_le32(dptr +
874 offsetof(struct hifn_dma, result_bufs[i][0]));
875
876 /* Setup LAST descriptors. */
877 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
878 offsetof(struct hifn_dma, cmdr[0]));
879 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
880 offsetof(struct hifn_dma, srcr[0]));
881 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
882 offsetof(struct hifn_dma, dstr[0]));
883 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
884 offsetof(struct hifn_dma, resr[0]));
885
886 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
887 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
888 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
889}
890
891/*
892 * Initialize the PLL. We need to know the frequency of the reference clock
893 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
894 * allows us to operate without the risk of overclocking the chip. If it
895 * actually uses 33MHz, the chip will operate at half the speed, this can be
896 * overridden by specifying the frequency as module parameter (pci33).
897 *
898 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
899 * stable clock and the PCI clock frequency may vary, so the default is the
900 * external clock. There is no way to find out its frequency, we default to
901 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
902 * has an external crystal populated at 66MHz.
903 */
904static void hifn_init_pll(struct hifn_device *dev)
905{
906 unsigned int freq, m;
907 u32 pllcfg;
908
909 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
910
911 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
912 pllcfg |= HIFN_PLL_REF_CLK_PLL;
913 else
914 pllcfg |= HIFN_PLL_REF_CLK_HBI;
915
916 if (hifn_pll_ref[3] != '\0')
917 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
918 else {
919 freq = 66;
920 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
921 freq, hifn_pll_ref);
922 }
923
924 m = HIFN_PLL_FCK_MAX / freq;
925
926 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
927 if (m <= 8)
928 pllcfg |= HIFN_PLL_IS_1_8;
929 else
930 pllcfg |= HIFN_PLL_IS_9_12;
931
932 /* Select clock source and enable clock bypass */
933 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
934 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
935
936 /* Let the chip lock to the input clock */
937 mdelay(10);
938
939 /* Disable clock bypass */
940 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
941 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
942
943 /* Switch the engines to the PLL */
944 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
945 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
946
947 /*
948 * The Fpk_clk runs at half the total speed. Its frequency is needed to
949 * calculate the minimum time between two reads of the rng. Since 33MHz
950 * is actually 33.333... we overestimate the frequency here, resulting
951 * in slightly larger intervals.
952 */
953 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
954}
955
956static void hifn_init_registers(struct hifn_device *dev)
957{
958 u32 dptr = dev->desc_dma;
959
960 /* Initialization magic... */
961 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
962 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
963 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
964
965 /* write all 4 ring address registers */
966 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
967 offsetof(struct hifn_dma, cmdr[0]));
968 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
969 offsetof(struct hifn_dma, srcr[0]));
970 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
971 offsetof(struct hifn_dma, dstr[0]));
972 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
973 offsetof(struct hifn_dma, resr[0]));
974
975 mdelay(2);
976#if 0
977 hifn_write_1(dev, HIFN_1_DMA_CSR,
978 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
979 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
980 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
981 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
982 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
983 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
984 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
985 HIFN_DMACSR_S_WAIT |
986 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
987 HIFN_DMACSR_C_WAIT |
988 HIFN_DMACSR_ENGINE |
989 HIFN_DMACSR_PUBDONE);
990#else
991 hifn_write_1(dev, HIFN_1_DMA_CSR,
992 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
993 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
994 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
995 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
996 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
997 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
998 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
999 HIFN_DMACSR_S_WAIT |
1000 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1001 HIFN_DMACSR_C_WAIT |
1002 HIFN_DMACSR_ENGINE |
1003 HIFN_DMACSR_PUBDONE);
1004#endif
1005 hifn_read_1(dev, HIFN_1_DMA_CSR);
1006
1007 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1008 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1009 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1010 HIFN_DMAIER_ENGINE;
1011 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1012
1013 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1014 hifn_read_1(dev, HIFN_1_DMA_IER);
1015#if 0
1016 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1017 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1018 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1019 HIFN_PUCNFG_DRAM);
1020#else
1021 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1022#endif
1023 hifn_init_pll(dev);
1024
1025 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1026 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1027 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1028 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1029 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1030}
1031
1032static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1033 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1034{
1035 struct hifn_base_command *base_cmd;
1036 u8 *buf_pos = buf;
1037
1038 base_cmd = (struct hifn_base_command *)buf_pos;
1039 base_cmd->masks = __cpu_to_le16(mask);
1040 base_cmd->total_source_count =
1041 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1042 base_cmd->total_dest_count =
1043 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1044
1045 dlen >>= 16;
1046 slen >>= 16;
1047 base_cmd->session_num = __cpu_to_le16(snum |
1048 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1049 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1050
1051 return sizeof(struct hifn_base_command);
1052}
1053
1054static int hifn_setup_crypto_command(struct hifn_device *dev,
1055 u8 *buf, unsigned dlen, unsigned slen,
1056 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1057{
1058 struct hifn_dma *dma = dev->desc_virt;
1059 struct hifn_crypt_command *cry_cmd;
1060 u8 *buf_pos = buf;
1061 u16 cmd_len;
1062
1063 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1064
1065 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1066 dlen >>= 16;
1067 cry_cmd->masks = __cpu_to_le16(mode |
1068 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1069 HIFN_CRYPT_CMD_SRCLEN_M));
1070 cry_cmd->header_skip = 0;
1071 cry_cmd->reserved = 0;
1072
1073 buf_pos += sizeof(struct hifn_crypt_command);
1074
1075 dma->cmdu++;
1076 if (dma->cmdu > 1) {
1077 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1078 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1079 }
1080
1081 if (keylen) {
1082 memcpy(buf_pos, key, keylen);
1083 buf_pos += keylen;
1084 }
1085 if (ivsize) {
1086 memcpy(buf_pos, iv, ivsize);
1087 buf_pos += ivsize;
1088 }
1089
1090 cmd_len = buf_pos - buf;
1091
1092 return cmd_len;
1093}
1094
1095static int hifn_setup_cmd_desc(struct hifn_device *dev,
1096 struct hifn_context *ctx, struct hifn_request_context *rctx,
1097 void *priv, unsigned int nbytes)
1098{
1099 struct hifn_dma *dma = dev->desc_virt;
1100 int cmd_len, sa_idx;
1101 u8 *buf, *buf_pos;
1102 u16 mask;
1103
1104 sa_idx = dma->cmdi;
1105 buf_pos = buf = dma->command_bufs[dma->cmdi];
1106
1107 mask = 0;
1108 switch (rctx->op) {
1109 case ACRYPTO_OP_DECRYPT:
1110 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1111 break;
1112 case ACRYPTO_OP_ENCRYPT:
1113 mask = HIFN_BASE_CMD_CRYPT;
1114 break;
1115 case ACRYPTO_OP_HMAC:
1116 mask = HIFN_BASE_CMD_MAC;
1117 break;
1118 default:
1119 goto err_out;
1120 }
1121
1122 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1123 nbytes, mask, dev->snum);
1124
1125 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1126 u16 md = 0;
1127
1128 if (ctx->keysize)
1129 md |= HIFN_CRYPT_CMD_NEW_KEY;
1130 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1131 md |= HIFN_CRYPT_CMD_NEW_IV;
1132
1133 switch (rctx->mode) {
1134 case ACRYPTO_MODE_ECB:
1135 md |= HIFN_CRYPT_CMD_MODE_ECB;
1136 break;
1137 case ACRYPTO_MODE_CBC:
1138 md |= HIFN_CRYPT_CMD_MODE_CBC;
1139 break;
1140 case ACRYPTO_MODE_CFB:
1141 md |= HIFN_CRYPT_CMD_MODE_CFB;
1142 break;
1143 case ACRYPTO_MODE_OFB:
1144 md |= HIFN_CRYPT_CMD_MODE_OFB;
1145 break;
1146 default:
1147 goto err_out;
1148 }
1149
1150 switch (rctx->type) {
1151 case ACRYPTO_TYPE_AES_128:
1152 if (ctx->keysize != 16)
1153 goto err_out;
1154 md |= HIFN_CRYPT_CMD_KSZ_128 |
1155 HIFN_CRYPT_CMD_ALG_AES;
1156 break;
1157 case ACRYPTO_TYPE_AES_192:
1158 if (ctx->keysize != 24)
1159 goto err_out;
1160 md |= HIFN_CRYPT_CMD_KSZ_192 |
1161 HIFN_CRYPT_CMD_ALG_AES;
1162 break;
1163 case ACRYPTO_TYPE_AES_256:
1164 if (ctx->keysize != 32)
1165 goto err_out;
1166 md |= HIFN_CRYPT_CMD_KSZ_256 |
1167 HIFN_CRYPT_CMD_ALG_AES;
1168 break;
1169 case ACRYPTO_TYPE_3DES:
1170 if (ctx->keysize != 24)
1171 goto err_out;
1172 md |= HIFN_CRYPT_CMD_ALG_3DES;
1173 break;
1174 case ACRYPTO_TYPE_DES:
1175 if (ctx->keysize != 8)
1176 goto err_out;
1177 md |= HIFN_CRYPT_CMD_ALG_DES;
1178 break;
1179 default:
1180 goto err_out;
1181 }
1182
1183 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1184 nbytes, nbytes, ctx->key, ctx->keysize,
1185 rctx->iv, rctx->ivsize, md);
1186 }
1187
1188 dev->sa[sa_idx] = priv;
1189 dev->started++;
1190
1191 cmd_len = buf_pos - buf;
1192 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1193 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1194
1195 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1196 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1197 HIFN_D_VALID | HIFN_D_LAST |
1198 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1199 dma->cmdi = 0;
1200 } else {
1201 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1202 }
1203
1204 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1205 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1206 dev->flags |= HIFN_FLAG_CMD_BUSY;
1207 }
1208 return 0;
1209
1210err_out:
1211 return -EINVAL;
1212}
1213
1214static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1215 unsigned int offset, unsigned int size, int last)
1216{
1217 struct hifn_dma *dma = dev->desc_virt;
1218 int idx;
1219 dma_addr_t addr;
1220
1221 addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1222 DMA_TO_DEVICE);
1223
1224 idx = dma->srci;
1225
1226 dma->srcr[idx].p = __cpu_to_le32(addr);
1227 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1228 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1229
1230 if (++idx == HIFN_D_SRC_RSIZE) {
1231 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1232 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1233 (last ? HIFN_D_LAST : 0));
1234 idx = 0;
1235 }
1236
1237 dma->srci = idx;
1238 dma->srcu++;
1239
1240 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1241 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1242 dev->flags |= HIFN_FLAG_SRC_BUSY;
1243 }
1244
1245 return size;
1246}
1247
1248static void hifn_setup_res_desc(struct hifn_device *dev)
1249{
1250 struct hifn_dma *dma = dev->desc_virt;
1251
1252 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1253 HIFN_D_VALID | HIFN_D_LAST);
1254 /*
1255 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1256 * HIFN_D_LAST);
1257 */
1258
1259 if (++dma->resi == HIFN_D_RES_RSIZE) {
1260 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1261 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1262 dma->resi = 0;
1263 }
1264
1265 dma->resu++;
1266
1267 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1268 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1269 dev->flags |= HIFN_FLAG_RES_BUSY;
1270 }
1271}
1272
1273static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1274 unsigned offset, unsigned size, int last)
1275{
1276 struct hifn_dma *dma = dev->desc_virt;
1277 int idx;
1278 dma_addr_t addr;
1279
1280 addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1281 DMA_FROM_DEVICE);
1282
1283 idx = dma->dsti;
1284 dma->dstr[idx].p = __cpu_to_le32(addr);
1285 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1286 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1287
1288 if (++idx == HIFN_D_DST_RSIZE) {
1289 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1290 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1291 (last ? HIFN_D_LAST : 0));
1292 idx = 0;
1293 }
1294 dma->dsti = idx;
1295 dma->dstu++;
1296
1297 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1298 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1299 dev->flags |= HIFN_FLAG_DST_BUSY;
1300 }
1301}
1302
1303static int hifn_setup_dma(struct hifn_device *dev,
1304 struct hifn_context *ctx, struct hifn_request_context *rctx,
1305 struct scatterlist *src, struct scatterlist *dst,
1306 unsigned int nbytes, void *priv)
1307{
1308 struct scatterlist *t;
1309 struct page *spage, *dpage;
1310 unsigned int soff, doff;
1311 unsigned int n, len;
1312
1313 n = nbytes;
1314 while (n) {
1315 spage = sg_page(src);
1316 soff = src->offset;
1317 len = min(src->length, n);
1318
1319 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1320
1321 src++;
1322 n -= len;
1323 }
1324
1325 t = &rctx->walk.cache[0];
1326 n = nbytes;
1327 while (n) {
1328 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1329 BUG_ON(!sg_page(t));
1330 dpage = sg_page(t);
1331 doff = 0;
1332 len = t->length;
1333 } else {
1334 BUG_ON(!sg_page(dst));
1335 dpage = sg_page(dst);
1336 doff = dst->offset;
1337 len = dst->length;
1338 }
1339 len = min(len, n);
1340
1341 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1342
1343 dst++;
1344 t++;
1345 n -= len;
1346 }
1347
1348 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1349 hifn_setup_res_desc(dev);
1350 return 0;
1351}
1352
1353static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1354 int num, gfp_t gfp_flags)
1355{
1356 int i;
1357
1358 num = min(ASYNC_SCATTERLIST_CACHE, num);
1359 sg_init_table(w->cache, num);
1360
1361 w->num = 0;
1362 for (i = 0; i < num; ++i) {
1363 struct page *page = alloc_page(gfp_flags);
1364 struct scatterlist *s;
1365
1366 if (!page)
1367 break;
1368
1369 s = &w->cache[i];
1370
1371 sg_set_page(s, page, PAGE_SIZE, 0);
1372 w->num++;
1373 }
1374
1375 return i;
1376}
1377
1378static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1379{
1380 int i;
1381
1382 for (i = 0; i < w->num; ++i) {
1383 struct scatterlist *s = &w->cache[i];
1384
1385 __free_page(sg_page(s));
1386
1387 s->length = 0;
1388 }
1389
1390 w->num = 0;
1391}
1392
1393static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1394 unsigned int size, unsigned int *nbytesp)
1395{
1396 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1397 int idx = 0;
1398
1399 if (drest < size || size > nbytes)
1400 return -EINVAL;
1401
1402 while (size) {
1403 copy = min3(drest, size, dst->length);
1404
1405 size -= copy;
1406 drest -= copy;
1407 nbytes -= copy;
1408
1409 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1410 __func__, copy, size, drest, nbytes);
1411
1412 dst++;
1413 idx++;
1414 }
1415
1416 *nbytesp = nbytes;
1417 *drestp = drest;
1418
1419 return idx;
1420}
1421
1422static int hifn_cipher_walk(struct skcipher_request *req,
1423 struct hifn_cipher_walk *w)
1424{
1425 struct scatterlist *dst, *t;
1426 unsigned int nbytes = req->cryptlen, offset, copy, diff;
1427 int idx, tidx, err;
1428
1429 tidx = idx = 0;
1430 offset = 0;
1431 while (nbytes) {
1432 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1433 return -EINVAL;
1434
1435 dst = &req->dst[idx];
1436
1437 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1438 __func__, dst->length, dst->offset, offset, nbytes);
1439
1440 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1441 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1442 offset) {
1443 unsigned slen = min(dst->length - offset, nbytes);
1444 unsigned dlen = PAGE_SIZE;
1445
1446 t = &w->cache[idx];
1447
1448 err = skcipher_add(&dlen, dst, slen, &nbytes);
1449 if (err < 0)
1450 return err;
1451
1452 idx += err;
1453
1454 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1455 diff = slen & (HIFN_D_DST_DALIGN - 1);
1456
1457 if (dlen < nbytes) {
1458 /*
1459 * Destination page does not have enough space
1460 * to put there additional blocksized chunk,
1461 * so we mark that page as containing only
1462 * blocksize aligned chunks:
1463 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1464 * and increase number of bytes to be processed
1465 * in next chunk:
1466 * nbytes += diff;
1467 */
1468 nbytes += diff;
1469
1470 /*
1471 * Temporary of course...
1472 * Kick author if you will catch this one.
1473 */
1474 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1475 __func__, dlen, nbytes, slen, offset);
1476 pr_err("%s: please contact author to fix this "
1477 "issue, generally you should not catch "
1478 "this path under any condition but who "
1479 "knows how did you use crypto code.\n"
1480 "Thank you.\n", __func__);
1481 BUG();
1482 } else {
1483 copy += diff + nbytes;
1484
1485 dst = &req->dst[idx];
1486
1487 err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1488 if (err < 0)
1489 return err;
1490
1491 idx += err;
1492 }
1493
1494 t->length = copy;
1495 t->offset = offset;
1496 } else {
1497 nbytes -= min(dst->length, nbytes);
1498 idx++;
1499 }
1500
1501 tidx++;
1502 }
1503
1504 return tidx;
1505}
1506
1507static int hifn_setup_session(struct skcipher_request *req)
1508{
1509 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1510 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1511 struct hifn_device *dev = ctx->dev;
1512 unsigned long dlen, flags;
1513 unsigned int nbytes = req->cryptlen, idx = 0;
1514 int err = -EINVAL, sg_num;
1515 struct scatterlist *dst;
1516
1517 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1518 goto err_out_exit;
1519
1520 rctx->walk.flags = 0;
1521
1522 while (nbytes) {
1523 dst = &req->dst[idx];
1524 dlen = min(dst->length, nbytes);
1525
1526 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1527 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1528 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1529
1530 nbytes -= dlen;
1531 idx++;
1532 }
1533
1534 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1535 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1536 if (err < 0)
1537 return err;
1538 }
1539
1540 sg_num = hifn_cipher_walk(req, &rctx->walk);
1541 if (sg_num < 0) {
1542 err = sg_num;
1543 goto err_out_exit;
1544 }
1545
1546 spin_lock_irqsave(&dev->lock, flags);
1547 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1548 err = -EAGAIN;
1549 goto err_out;
1550 }
1551
1552 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1553 if (err)
1554 goto err_out;
1555
1556 dev->snum++;
1557
1558 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1559 spin_unlock_irqrestore(&dev->lock, flags);
1560
1561 return 0;
1562
1563err_out:
1564 spin_unlock_irqrestore(&dev->lock, flags);
1565err_out_exit:
1566 if (err) {
1567 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1568 "type: %u, err: %d.\n",
1569 rctx->iv, rctx->ivsize,
1570 ctx->key, ctx->keysize,
1571 rctx->mode, rctx->op, rctx->type, err);
1572 }
1573
1574 return err;
1575}
1576
1577static int hifn_start_device(struct hifn_device *dev)
1578{
1579 int err;
1580
1581 dev->started = dev->active = 0;
1582 hifn_reset_dma(dev, 1);
1583
1584 err = hifn_enable_crypto(dev);
1585 if (err)
1586 return err;
1587
1588 hifn_reset_puc(dev);
1589
1590 hifn_init_dma(dev);
1591
1592 hifn_init_registers(dev);
1593
1594 hifn_init_pubrng(dev);
1595
1596 return 0;
1597}
1598
1599static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1600 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1601{
1602 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1603 void *daddr;
1604 int idx = 0;
1605
1606 if (srest < size || size > nbytes)
1607 return -EINVAL;
1608
1609 while (size) {
1610 copy = min3(srest, dst->length, size);
1611
1612 daddr = kmap_atomic(sg_page(dst));
1613 memcpy(daddr + dst->offset + offset, saddr, copy);
1614 kunmap_atomic(daddr);
1615
1616 nbytes -= copy;
1617 size -= copy;
1618 srest -= copy;
1619 saddr += copy;
1620 offset = 0;
1621
1622 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1623 __func__, copy, size, srest, nbytes);
1624
1625 dst++;
1626 idx++;
1627 }
1628
1629 *nbytesp = nbytes;
1630 *srestp = srest;
1631
1632 return idx;
1633}
1634
1635static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1636{
1637 unsigned long flags;
1638
1639 spin_lock_irqsave(&dev->lock, flags);
1640 dev->sa[i] = NULL;
1641 dev->started--;
1642 if (dev->started < 0)
1643 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1644 dev->started);
1645 spin_unlock_irqrestore(&dev->lock, flags);
1646 BUG_ON(dev->started < 0);
1647}
1648
1649static void hifn_process_ready(struct skcipher_request *req, int error)
1650{
1651 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1652
1653 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1654 unsigned int nbytes = req->cryptlen;
1655 int idx = 0, err;
1656 struct scatterlist *dst, *t;
1657 void *saddr;
1658
1659 while (nbytes) {
1660 t = &rctx->walk.cache[idx];
1661 dst = &req->dst[idx];
1662
1663 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1664 "sg_page(dst): %p, dst->length: %u, "
1665 "nbytes: %u.\n",
1666 __func__, sg_page(t), t->length,
1667 sg_page(dst), dst->length, nbytes);
1668
1669 if (!t->length) {
1670 nbytes -= min(dst->length, nbytes);
1671 idx++;
1672 continue;
1673 }
1674
1675 saddr = kmap_atomic(sg_page(t));
1676
1677 err = skcipher_get(saddr, &t->length, t->offset,
1678 dst, nbytes, &nbytes);
1679 if (err < 0) {
1680 kunmap_atomic(saddr);
1681 break;
1682 }
1683
1684 idx += err;
1685 kunmap_atomic(saddr);
1686 }
1687
1688 hifn_cipher_walk_exit(&rctx->walk);
1689 }
1690
1691 skcipher_request_complete(req, error);
1692}
1693
1694static void hifn_clear_rings(struct hifn_device *dev, int error)
1695{
1696 struct hifn_dma *dma = dev->desc_virt;
1697 int i, u;
1698
1699 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1700 "k: %d.%d.%d.%d.\n",
1701 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1702 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1703 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1704
1705 i = dma->resk; u = dma->resu;
1706 while (u != 0) {
1707 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1708 break;
1709
1710 if (dev->sa[i]) {
1711 dev->success++;
1712 dev->reset = 0;
1713 hifn_process_ready(dev->sa[i], error);
1714 hifn_complete_sa(dev, i);
1715 }
1716
1717 if (++i == HIFN_D_RES_RSIZE)
1718 i = 0;
1719 u--;
1720 }
1721 dma->resk = i; dma->resu = u;
1722
1723 i = dma->srck; u = dma->srcu;
1724 while (u != 0) {
1725 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1726 break;
1727 if (++i == HIFN_D_SRC_RSIZE)
1728 i = 0;
1729 u--;
1730 }
1731 dma->srck = i; dma->srcu = u;
1732
1733 i = dma->cmdk; u = dma->cmdu;
1734 while (u != 0) {
1735 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1736 break;
1737 if (++i == HIFN_D_CMD_RSIZE)
1738 i = 0;
1739 u--;
1740 }
1741 dma->cmdk = i; dma->cmdu = u;
1742
1743 i = dma->dstk; u = dma->dstu;
1744 while (u != 0) {
1745 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1746 break;
1747 if (++i == HIFN_D_DST_RSIZE)
1748 i = 0;
1749 u--;
1750 }
1751 dma->dstk = i; dma->dstu = u;
1752
1753 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1754 "k: %d.%d.%d.%d.\n",
1755 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1756 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1757 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1758}
1759
1760static void hifn_work(struct work_struct *work)
1761{
1762 struct delayed_work *dw = to_delayed_work(work);
1763 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1764 unsigned long flags;
1765 int reset = 0;
1766 u32 r = 0;
1767
1768 spin_lock_irqsave(&dev->lock, flags);
1769 if (dev->active == 0) {
1770 struct hifn_dma *dma = dev->desc_virt;
1771
1772 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1773 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1774 r |= HIFN_DMACSR_C_CTRL_DIS;
1775 }
1776 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1777 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1778 r |= HIFN_DMACSR_S_CTRL_DIS;
1779 }
1780 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1781 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1782 r |= HIFN_DMACSR_D_CTRL_DIS;
1783 }
1784 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1785 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1786 r |= HIFN_DMACSR_R_CTRL_DIS;
1787 }
1788 if (r)
1789 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1790 } else
1791 dev->active--;
1792
1793 if ((dev->prev_success == dev->success) && dev->started)
1794 reset = 1;
1795 dev->prev_success = dev->success;
1796 spin_unlock_irqrestore(&dev->lock, flags);
1797
1798 if (reset) {
1799 if (++dev->reset >= 5) {
1800 int i;
1801 struct hifn_dma *dma = dev->desc_virt;
1802
1803 dev_info(&dev->pdev->dev,
1804 "r: %08x, active: %d, started: %d, "
1805 "success: %lu: qlen: %u/%u, reset: %d.\n",
1806 r, dev->active, dev->started,
1807 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1808 reset);
1809
1810 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1811 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1812 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1813 if (dev->sa[i]) {
1814 hifn_process_ready(dev->sa[i], -ENODEV);
1815 hifn_complete_sa(dev, i);
1816 }
1817 }
1818 pr_info("\n");
1819
1820 hifn_reset_dma(dev, 1);
1821 hifn_stop_device(dev);
1822 hifn_start_device(dev);
1823 dev->reset = 0;
1824 }
1825
1826 tasklet_schedule(&dev->tasklet);
1827 }
1828
1829 schedule_delayed_work(&dev->work, HZ);
1830}
1831
1832static irqreturn_t hifn_interrupt(int irq, void *data)
1833{
1834 struct hifn_device *dev = data;
1835 struct hifn_dma *dma = dev->desc_virt;
1836 u32 dmacsr, restart;
1837
1838 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1839
1840 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1841 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1842 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1843 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1844 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1845
1846 if ((dmacsr & dev->dmareg) == 0)
1847 return IRQ_NONE;
1848
1849 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1850
1851 if (dmacsr & HIFN_DMACSR_ENGINE)
1852 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1853 if (dmacsr & HIFN_DMACSR_PUBDONE)
1854 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1855 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1856
1857 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1858 if (restart) {
1859 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1860
1861 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1862 !!(dmacsr & HIFN_DMACSR_R_OVER),
1863 !!(dmacsr & HIFN_DMACSR_D_OVER),
1864 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1865 if (!!(puisr & HIFN_PUISR_DSTOVER))
1866 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1867 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1868 HIFN_DMACSR_D_OVER));
1869 }
1870
1871 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1872 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1873 if (restart) {
1874 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1875 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1876 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1877 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1878 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1879 hifn_reset_dma(dev, 1);
1880 hifn_init_dma(dev);
1881 hifn_init_registers(dev);
1882 }
1883
1884 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1885 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1886 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1887 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1888 }
1889
1890 tasklet_schedule(&dev->tasklet);
1891
1892 return IRQ_HANDLED;
1893}
1894
1895static void hifn_flush(struct hifn_device *dev)
1896{
1897 unsigned long flags;
1898 struct crypto_async_request *async_req;
1899 struct skcipher_request *req;
1900 struct hifn_dma *dma = dev->desc_virt;
1901 int i;
1902
1903 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1904 struct hifn_desc *d = &dma->resr[i];
1905
1906 if (dev->sa[i]) {
1907 hifn_process_ready(dev->sa[i],
1908 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1909 hifn_complete_sa(dev, i);
1910 }
1911 }
1912
1913 spin_lock_irqsave(&dev->lock, flags);
1914 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1915 req = skcipher_request_cast(async_req);
1916 spin_unlock_irqrestore(&dev->lock, flags);
1917
1918 hifn_process_ready(req, -ENODEV);
1919
1920 spin_lock_irqsave(&dev->lock, flags);
1921 }
1922 spin_unlock_irqrestore(&dev->lock, flags);
1923}
1924
1925static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1926 unsigned int len)
1927{
1928 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1929 struct hifn_device *dev = ctx->dev;
1930 int err;
1931
1932 err = verify_skcipher_des_key(cipher, key);
1933 if (err)
1934 return err;
1935
1936 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1937
1938 memcpy(ctx->key, key, len);
1939 ctx->keysize = len;
1940
1941 return 0;
1942}
1943
1944static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1945 unsigned int len)
1946{
1947 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1948 struct hifn_device *dev = ctx->dev;
1949 int err;
1950
1951 err = verify_skcipher_des3_key(cipher, key);
1952 if (err)
1953 return err;
1954
1955 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1956
1957 memcpy(ctx->key, key, len);
1958 ctx->keysize = len;
1959
1960 return 0;
1961}
1962
1963static int hifn_handle_req(struct skcipher_request *req)
1964{
1965 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1966 struct hifn_device *dev = ctx->dev;
1967 int err = -EAGAIN;
1968
1969 if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1970 err = hifn_setup_session(req);
1971
1972 if (err == -EAGAIN) {
1973 unsigned long flags;
1974
1975 spin_lock_irqsave(&dev->lock, flags);
1976 err = crypto_enqueue_request(&dev->queue, &req->base);
1977 spin_unlock_irqrestore(&dev->lock, flags);
1978 }
1979
1980 return err;
1981}
1982
1983static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1984 u8 type, u8 mode)
1985{
1986 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1987 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1988 unsigned ivsize;
1989
1990 ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1991
1992 if (req->iv && mode != ACRYPTO_MODE_ECB) {
1993 if (type == ACRYPTO_TYPE_AES_128)
1994 ivsize = HIFN_AES_IV_LENGTH;
1995 else if (type == ACRYPTO_TYPE_DES)
1996 ivsize = HIFN_DES_KEY_LENGTH;
1997 else if (type == ACRYPTO_TYPE_3DES)
1998 ivsize = HIFN_3DES_KEY_LENGTH;
1999 }
2000
2001 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2002 if (ctx->keysize == 24)
2003 type = ACRYPTO_TYPE_AES_192;
2004 else if (ctx->keysize == 32)
2005 type = ACRYPTO_TYPE_AES_256;
2006 }
2007
2008 rctx->op = op;
2009 rctx->mode = mode;
2010 rctx->type = type;
2011 rctx->iv = req->iv;
2012 rctx->ivsize = ivsize;
2013
2014 /*
2015 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2016 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2017 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2018 */
2019
2020 return hifn_handle_req(req);
2021}
2022
2023static int hifn_process_queue(struct hifn_device *dev)
2024{
2025 struct crypto_async_request *async_req, *backlog;
2026 struct skcipher_request *req;
2027 unsigned long flags;
2028 int err = 0;
2029
2030 while (dev->started < HIFN_QUEUE_LENGTH) {
2031 spin_lock_irqsave(&dev->lock, flags);
2032 backlog = crypto_get_backlog(&dev->queue);
2033 async_req = crypto_dequeue_request(&dev->queue);
2034 spin_unlock_irqrestore(&dev->lock, flags);
2035
2036 if (!async_req)
2037 break;
2038
2039 if (backlog)
2040 crypto_request_complete(backlog, -EINPROGRESS);
2041
2042 req = skcipher_request_cast(async_req);
2043
2044 err = hifn_handle_req(req);
2045 if (err)
2046 break;
2047 }
2048
2049 return err;
2050}
2051
2052static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2053 u8 type, u8 mode)
2054{
2055 int err;
2056 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2057 struct hifn_device *dev = ctx->dev;
2058
2059 err = hifn_setup_crypto_req(req, op, type, mode);
2060 if (err)
2061 return err;
2062
2063 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2064 hifn_process_queue(dev);
2065
2066 return -EINPROGRESS;
2067}
2068
2069/*
2070 * AES ecryption functions.
2071 */
2072static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2073{
2074 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2075 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2076}
2077static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2078{
2079 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2080 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2081}
2082
2083/*
2084 * AES decryption functions.
2085 */
2086static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2087{
2088 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2089 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2090}
2091static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2092{
2093 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2094 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2095}
2096
2097/*
2098 * DES ecryption functions.
2099 */
2100static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2101{
2102 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2103 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2104}
2105static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2106{
2107 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2108 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2109}
2110
2111/*
2112 * DES decryption functions.
2113 */
2114static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2115{
2116 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2117 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2118}
2119static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2120{
2121 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2122 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2123}
2124
2125/*
2126 * 3DES ecryption functions.
2127 */
2128static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2129{
2130 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2131 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2132}
2133static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2134{
2135 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2136 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2137}
2138
2139/* 3DES decryption functions. */
2140static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2141{
2142 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2143 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2144}
2145static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2146{
2147 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2148 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2149}
2150
2151struct hifn_alg_template {
2152 char name[CRYPTO_MAX_ALG_NAME];
2153 char drv_name[CRYPTO_MAX_ALG_NAME];
2154 unsigned int bsize;
2155 struct skcipher_alg skcipher;
2156};
2157
2158static const struct hifn_alg_template hifn_alg_templates[] = {
2159 /*
2160 * 3DES ECB and CBC modes.
2161 */
2162 {
2163 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2164 .skcipher = {
2165 .ivsize = HIFN_IV_LENGTH,
2166 .min_keysize = HIFN_3DES_KEY_LENGTH,
2167 .max_keysize = HIFN_3DES_KEY_LENGTH,
2168 .setkey = hifn_des3_setkey,
2169 .encrypt = hifn_encrypt_3des_cbc,
2170 .decrypt = hifn_decrypt_3des_cbc,
2171 },
2172 },
2173 {
2174 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2175 .skcipher = {
2176 .min_keysize = HIFN_3DES_KEY_LENGTH,
2177 .max_keysize = HIFN_3DES_KEY_LENGTH,
2178 .setkey = hifn_des3_setkey,
2179 .encrypt = hifn_encrypt_3des_ecb,
2180 .decrypt = hifn_decrypt_3des_ecb,
2181 },
2182 },
2183
2184 /*
2185 * DES ECB and CBC modes.
2186 */
2187 {
2188 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2189 .skcipher = {
2190 .ivsize = HIFN_IV_LENGTH,
2191 .min_keysize = HIFN_DES_KEY_LENGTH,
2192 .max_keysize = HIFN_DES_KEY_LENGTH,
2193 .setkey = hifn_setkey,
2194 .encrypt = hifn_encrypt_des_cbc,
2195 .decrypt = hifn_decrypt_des_cbc,
2196 },
2197 },
2198 {
2199 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2200 .skcipher = {
2201 .min_keysize = HIFN_DES_KEY_LENGTH,
2202 .max_keysize = HIFN_DES_KEY_LENGTH,
2203 .setkey = hifn_setkey,
2204 .encrypt = hifn_encrypt_des_ecb,
2205 .decrypt = hifn_decrypt_des_ecb,
2206 },
2207 },
2208
2209 /*
2210 * AES ECB and CBC modes.
2211 */
2212 {
2213 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2214 .skcipher = {
2215 .min_keysize = AES_MIN_KEY_SIZE,
2216 .max_keysize = AES_MAX_KEY_SIZE,
2217 .setkey = hifn_setkey,
2218 .encrypt = hifn_encrypt_aes_ecb,
2219 .decrypt = hifn_decrypt_aes_ecb,
2220 },
2221 },
2222 {
2223 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2224 .skcipher = {
2225 .ivsize = HIFN_AES_IV_LENGTH,
2226 .min_keysize = AES_MIN_KEY_SIZE,
2227 .max_keysize = AES_MAX_KEY_SIZE,
2228 .setkey = hifn_setkey,
2229 .encrypt = hifn_encrypt_aes_cbc,
2230 .decrypt = hifn_decrypt_aes_cbc,
2231 },
2232 },
2233};
2234
2235static int hifn_init_tfm(struct crypto_skcipher *tfm)
2236{
2237 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2238 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2239 struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2240
2241 ctx->dev = ha->dev;
2242 crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2243
2244 return 0;
2245}
2246
2247static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2248{
2249 struct hifn_crypto_alg *alg;
2250 int err;
2251
2252 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2253 if (!alg)
2254 return -ENOMEM;
2255
2256 alg->alg = t->skcipher;
2257 alg->alg.init = hifn_init_tfm;
2258
2259 err = -EINVAL;
2260 if (snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
2261 "%s", t->name) >= CRYPTO_MAX_ALG_NAME)
2262 goto out_free_alg;
2263 if (snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
2264 "%s-%s", t->drv_name, dev->name) >= CRYPTO_MAX_ALG_NAME)
2265 goto out_free_alg;
2266
2267 alg->alg.base.cra_priority = 300;
2268 alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2269 alg->alg.base.cra_blocksize = t->bsize;
2270 alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2271 alg->alg.base.cra_alignmask = 0;
2272 alg->alg.base.cra_module = THIS_MODULE;
2273
2274 alg->dev = dev;
2275
2276 list_add_tail(&alg->entry, &dev->alg_list);
2277
2278 err = crypto_register_skcipher(&alg->alg);
2279 if (err) {
2280 list_del(&alg->entry);
2281out_free_alg:
2282 kfree(alg);
2283 }
2284
2285 return err;
2286}
2287
2288static void hifn_unregister_alg(struct hifn_device *dev)
2289{
2290 struct hifn_crypto_alg *a, *n;
2291
2292 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2293 list_del(&a->entry);
2294 crypto_unregister_skcipher(&a->alg);
2295 kfree(a);
2296 }
2297}
2298
2299static int hifn_register_alg(struct hifn_device *dev)
2300{
2301 int i, err;
2302
2303 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2304 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2305 if (err)
2306 goto err_out_exit;
2307 }
2308
2309 return 0;
2310
2311err_out_exit:
2312 hifn_unregister_alg(dev);
2313 return err;
2314}
2315
2316static void hifn_tasklet_callback(unsigned long data)
2317{
2318 struct hifn_device *dev = (struct hifn_device *)data;
2319
2320 /*
2321 * This is ok to call this without lock being held,
2322 * althogh it modifies some parameters used in parallel,
2323 * (like dev->success), but they are used in process
2324 * context or update is atomic (like setting dev->sa[i] to NULL).
2325 */
2326 hifn_clear_rings(dev, 0);
2327
2328 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2329 hifn_process_queue(dev);
2330}
2331
2332static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2333{
2334 int err, i;
2335 struct hifn_device *dev;
2336 char name[8];
2337
2338 err = pci_enable_device(pdev);
2339 if (err)
2340 return err;
2341 pci_set_master(pdev);
2342
2343 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2344 if (err)
2345 goto err_out_disable_pci_device;
2346
2347 snprintf(name, sizeof(name), "hifn%d",
2348 atomic_inc_return(&hifn_dev_number) - 1);
2349
2350 err = pci_request_regions(pdev, name);
2351 if (err)
2352 goto err_out_disable_pci_device;
2353
2354 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2355 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2356 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2357 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2358 err = -ENODEV;
2359 goto err_out_free_regions;
2360 }
2361
2362 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2363 GFP_KERNEL);
2364 if (!dev) {
2365 err = -ENOMEM;
2366 goto err_out_free_regions;
2367 }
2368
2369 INIT_LIST_HEAD(&dev->alg_list);
2370
2371 snprintf(dev->name, sizeof(dev->name), "%s", name);
2372 spin_lock_init(&dev->lock);
2373
2374 for (i = 0; i < 3; ++i) {
2375 unsigned long addr, size;
2376
2377 addr = pci_resource_start(pdev, i);
2378 size = pci_resource_len(pdev, i);
2379
2380 dev->bar[i] = ioremap(addr, size);
2381 if (!dev->bar[i]) {
2382 err = -ENOMEM;
2383 goto err_out_unmap_bars;
2384 }
2385 }
2386
2387 dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2388 sizeof(struct hifn_dma),
2389 &dev->desc_dma, GFP_KERNEL);
2390 if (!dev->desc_virt) {
2391 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2392 err = -ENOMEM;
2393 goto err_out_unmap_bars;
2394 }
2395
2396 dev->pdev = pdev;
2397 dev->irq = pdev->irq;
2398
2399 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2400 dev->sa[i] = NULL;
2401
2402 pci_set_drvdata(pdev, dev);
2403
2404 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2405
2406 crypto_init_queue(&dev->queue, 1);
2407
2408 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2409 if (err) {
2410 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2411 dev->irq, err);
2412 dev->irq = 0;
2413 goto err_out_free_desc;
2414 }
2415
2416 err = hifn_start_device(dev);
2417 if (err)
2418 goto err_out_free_irq;
2419
2420 err = hifn_register_rng(dev);
2421 if (err)
2422 goto err_out_stop_device;
2423
2424 err = hifn_register_alg(dev);
2425 if (err)
2426 goto err_out_unregister_rng;
2427
2428 INIT_DELAYED_WORK(&dev->work, hifn_work);
2429 schedule_delayed_work(&dev->work, HZ);
2430
2431 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2432 "successfully registered as %s.\n",
2433 pci_name(pdev), dev->name);
2434
2435 return 0;
2436
2437err_out_unregister_rng:
2438 hifn_unregister_rng(dev);
2439err_out_stop_device:
2440 hifn_reset_dma(dev, 1);
2441 hifn_stop_device(dev);
2442err_out_free_irq:
2443 free_irq(dev->irq, dev);
2444 tasklet_kill(&dev->tasklet);
2445err_out_free_desc:
2446 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2447 dev->desc_dma);
2448
2449err_out_unmap_bars:
2450 for (i = 0; i < 3; ++i)
2451 if (dev->bar[i])
2452 iounmap(dev->bar[i]);
2453 kfree(dev);
2454
2455err_out_free_regions:
2456 pci_release_regions(pdev);
2457
2458err_out_disable_pci_device:
2459 pci_disable_device(pdev);
2460
2461 return err;
2462}
2463
2464static void hifn_remove(struct pci_dev *pdev)
2465{
2466 int i;
2467 struct hifn_device *dev;
2468
2469 dev = pci_get_drvdata(pdev);
2470
2471 if (dev) {
2472 cancel_delayed_work_sync(&dev->work);
2473
2474 hifn_unregister_rng(dev);
2475 hifn_unregister_alg(dev);
2476 hifn_reset_dma(dev, 1);
2477 hifn_stop_device(dev);
2478
2479 free_irq(dev->irq, dev);
2480 tasklet_kill(&dev->tasklet);
2481
2482 hifn_flush(dev);
2483
2484 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2485 dev->desc_virt, dev->desc_dma);
2486 for (i = 0; i < 3; ++i)
2487 if (dev->bar[i])
2488 iounmap(dev->bar[i]);
2489
2490 kfree(dev);
2491 }
2492
2493 pci_release_regions(pdev);
2494 pci_disable_device(pdev);
2495}
2496
2497static struct pci_device_id hifn_pci_tbl[] = {
2498 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2499 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2500 { 0 }
2501};
2502MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2503
2504static struct pci_driver hifn_pci_driver = {
2505 .name = "hifn795x",
2506 .id_table = hifn_pci_tbl,
2507 .probe = hifn_probe,
2508 .remove = hifn_remove,
2509};
2510
2511static int __init hifn_init(void)
2512{
2513 unsigned int freq;
2514 int err;
2515
2516 if (strncmp(hifn_pll_ref, "ext", 3) &&
2517 strncmp(hifn_pll_ref, "pci", 3)) {
2518 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2519 return -EINVAL;
2520 }
2521
2522 /*
2523 * For the 7955/7956 the reference clock frequency must be in the
2524 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2525 * but this chip is currently not supported.
2526 */
2527 if (hifn_pll_ref[3] != '\0') {
2528 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2529 if (freq < 20 || freq > 100) {
2530 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2531 "be in the range of 20-100");
2532 return -EINVAL;
2533 }
2534 }
2535
2536 err = pci_register_driver(&hifn_pci_driver);
2537 if (err < 0) {
2538 pr_err("Failed to register PCI driver for %s device.\n",
2539 hifn_pci_driver.name);
2540 return -ENODEV;
2541 }
2542
2543 pr_info("Driver for HIFN 795x crypto accelerator chip "
2544 "has been successfully registered.\n");
2545
2546 return 0;
2547}
2548
2549static void __exit hifn_fini(void)
2550{
2551 pci_unregister_driver(&hifn_pci_driver);
2552
2553 pr_info("Driver for HIFN 795x crypto accelerator chip "
2554 "has been successfully unregistered.\n");
2555}
2556
2557module_init(hifn_init);
2558module_exit(hifn_fini);
2559
2560MODULE_LICENSE("GPL");
2561MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2562MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
1/*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/moduleparam.h>
19#include <linux/mod_devicetable.h>
20#include <linux/interrupt.h>
21#include <linux/pci.h>
22#include <linux/slab.h>
23#include <linux/delay.h>
24#include <linux/mm.h>
25#include <linux/dma-mapping.h>
26#include <linux/scatterlist.h>
27#include <linux/highmem.h>
28#include <linux/crypto.h>
29#include <linux/hw_random.h>
30#include <linux/ktime.h>
31
32#include <crypto/algapi.h>
33#include <crypto/des.h>
34
35static char hifn_pll_ref[sizeof("extNNN")] = "ext";
36module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
37MODULE_PARM_DESC(hifn_pll_ref,
38 "PLL reference clock (pci[freq] or ext[freq], default ext)");
39
40static atomic_t hifn_dev_number;
41
42#define ACRYPTO_OP_DECRYPT 0
43#define ACRYPTO_OP_ENCRYPT 1
44#define ACRYPTO_OP_HMAC 2
45#define ACRYPTO_OP_RNG 3
46
47#define ACRYPTO_MODE_ECB 0
48#define ACRYPTO_MODE_CBC 1
49#define ACRYPTO_MODE_CFB 2
50#define ACRYPTO_MODE_OFB 3
51
52#define ACRYPTO_TYPE_AES_128 0
53#define ACRYPTO_TYPE_AES_192 1
54#define ACRYPTO_TYPE_AES_256 2
55#define ACRYPTO_TYPE_3DES 3
56#define ACRYPTO_TYPE_DES 4
57
58#define PCI_VENDOR_ID_HIFN 0x13A3
59#define PCI_DEVICE_ID_HIFN_7955 0x0020
60#define PCI_DEVICE_ID_HIFN_7956 0x001d
61
62/* I/O region sizes */
63
64#define HIFN_BAR0_SIZE 0x1000
65#define HIFN_BAR1_SIZE 0x2000
66#define HIFN_BAR2_SIZE 0x8000
67
68/* DMA registres */
69
70#define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
71#define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
72#define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
73#define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
74#define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
75#define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
76#define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
77#define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
78#define HIFN_CHIP_ID 0x98 /* Chip ID */
79
80/*
81 * Processing Unit Registers (offset from BASEREG0)
82 */
83#define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
84#define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
85#define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
86#define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
87#define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
88#define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
89#define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
90#define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
91#define HIFN_0_SPACESIZE 0x20 /* Register space size */
92
93/* Processing Unit Control Register (HIFN_0_PUCTRL) */
94#define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
95#define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
96#define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
97#define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
98#define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
99
100/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
101#define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
102#define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
103#define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
104#define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
105#define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
106#define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
107#define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
108#define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
109#define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
110#define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
111
112/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
113#define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
114#define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
115#define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
116#define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
117#define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
118#define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
119#define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
120#define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
121#define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
122#define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
123#define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
124#define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
125#define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
126#define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
127#define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
128#define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
129#define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
130#define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
131#define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
132#define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
133#define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
134#define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
135#define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
136
137/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
138#define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
139#define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
140#define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
141#define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
142#define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
143#define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
144#define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
145#define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
146#define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
147#define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
148
149/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
150#define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
151#define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
152#define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
153#define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
154#define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
155#define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
156#define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
157#define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
158#define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
159#define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
160#define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
161#define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
162#define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
163#define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
164#define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
165#define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
166#define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
167
168/* FIFO Status Register (HIFN_0_FIFOSTAT) */
169#define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
170#define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
171
172/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
173#define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
174
175/*
176 * DMA Interface Registers (offset from BASEREG1)
177 */
178#define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
179#define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
180#define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
181#define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
182#define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
183#define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
184#define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
185#define HIFN_1_PLL 0x4c /* 795x: PLL config */
186#define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
187#define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
188#define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
189#define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
190#define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
191#define HIFN_1_REVID 0x98 /* Revision ID */
192#define HIFN_1_UNLOCK_SECRET1 0xf4
193#define HIFN_1_UNLOCK_SECRET2 0xfc
194#define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
195#define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
196#define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
197#define HIFN_1_PUB_OP 0x308 /* Public Operand */
198#define HIFN_1_PUB_STATUS 0x30c /* Public Status */
199#define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
200#define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
201#define HIFN_1_RNG_DATA 0x318 /* RNG data */
202#define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
203#define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
204
205/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
206#define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
207#define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
208#define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
209#define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
210#define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
211#define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
212#define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
213#define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
214#define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
215#define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
216#define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
217#define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
218#define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
219#define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
220#define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
221#define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
222#define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
223#define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
224#define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
225#define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
226#define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
227#define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
228#define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
229#define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
230#define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
231#define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
232#define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
233#define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
234#define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
235#define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
236#define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
237#define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
238#define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
239#define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
240#define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
241#define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
242#define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
243#define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
244
245/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
246#define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
247#define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
248#define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
249#define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
250#define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
251#define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
252#define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
253#define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
254#define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
255#define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
256#define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
257#define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
258#define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
259#define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
260#define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
261#define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
262#define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
263#define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
264#define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
265#define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
266#define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
267#define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
268
269/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
270#define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
271#define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
272#define HIFN_DMACNFG_UNLOCK 0x00000800
273#define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
274#define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
275#define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
276#define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
277#define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
278
279/* PLL configuration register */
280#define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
281#define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
282#define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
283#define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
284#define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
285#define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
286#define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
287#define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
288#define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
289#define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
290#define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
291#define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
292#define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
293#define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
294#define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
295#define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
296#define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
297
298#define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
299
300/* Public key reset register (HIFN_1_PUB_RESET) */
301#define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
302
303/* Public base address register (HIFN_1_PUB_BASE) */
304#define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
305
306/* Public operand length register (HIFN_1_PUB_OPLEN) */
307#define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
308#define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
309#define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
310#define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
311#define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
312#define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
313
314/* Public operation register (HIFN_1_PUB_OP) */
315#define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
316#define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
317#define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
318#define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
319#define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
320#define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
321#define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
322#define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
323#define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
324#define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
325#define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
326#define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
327#define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
328#define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
329#define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
330#define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
331#define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
332#define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
333#define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
334#define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
335
336/* Public status register (HIFN_1_PUB_STATUS) */
337#define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
338#define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
339
340/* Public interrupt enable register (HIFN_1_PUB_IEN) */
341#define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
342
343/* Random number generator config register (HIFN_1_RNG_CONFIG) */
344#define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
345
346#define HIFN_NAMESIZE 32
347#define HIFN_MAX_RESULT_ORDER 5
348
349#define HIFN_D_CMD_RSIZE (24 * 1)
350#define HIFN_D_SRC_RSIZE (80 * 1)
351#define HIFN_D_DST_RSIZE (80 * 1)
352#define HIFN_D_RES_RSIZE (24 * 1)
353
354#define HIFN_D_DST_DALIGN 4
355
356#define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
357
358#define AES_MIN_KEY_SIZE 16
359#define AES_MAX_KEY_SIZE 32
360
361#define HIFN_DES_KEY_LENGTH 8
362#define HIFN_3DES_KEY_LENGTH 24
363#define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
364#define HIFN_IV_LENGTH 8
365#define HIFN_AES_IV_LENGTH 16
366#define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
367
368#define HIFN_MAC_KEY_LENGTH 64
369#define HIFN_MD5_LENGTH 16
370#define HIFN_SHA1_LENGTH 20
371#define HIFN_MAC_TRUNC_LENGTH 12
372
373#define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
374#define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
375#define HIFN_USED_RESULT 12
376
377struct hifn_desc {
378 volatile __le32 l;
379 volatile __le32 p;
380};
381
382struct hifn_dma {
383 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
384 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
385 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
386 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
387
388 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
389 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
390
391 /*
392 * Our current positions for insertion and removal from the descriptor
393 * rings.
394 */
395 volatile int cmdi, srci, dsti, resi;
396 volatile int cmdu, srcu, dstu, resu;
397 int cmdk, srck, dstk, resk;
398};
399
400#define HIFN_FLAG_CMD_BUSY (1 << 0)
401#define HIFN_FLAG_SRC_BUSY (1 << 1)
402#define HIFN_FLAG_DST_BUSY (1 << 2)
403#define HIFN_FLAG_RES_BUSY (1 << 3)
404#define HIFN_FLAG_OLD_KEY (1 << 4)
405
406#define HIFN_DEFAULT_ACTIVE_NUM 5
407
408struct hifn_device {
409 char name[HIFN_NAMESIZE];
410
411 int irq;
412
413 struct pci_dev *pdev;
414 void __iomem *bar[3];
415
416 void *desc_virt;
417 dma_addr_t desc_dma;
418
419 u32 dmareg;
420
421 void *sa[HIFN_D_RES_RSIZE];
422
423 spinlock_t lock;
424
425 u32 flags;
426 int active, started;
427 struct delayed_work work;
428 unsigned long reset;
429 unsigned long success;
430 unsigned long prev_success;
431
432 u8 snum;
433
434 struct tasklet_struct tasklet;
435
436 struct crypto_queue queue;
437 struct list_head alg_list;
438
439 unsigned int pk_clk_freq;
440
441#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
442 unsigned int rng_wait_time;
443 ktime_t rngtime;
444 struct hwrng rng;
445#endif
446};
447
448#define HIFN_D_LENGTH 0x0000ffff
449#define HIFN_D_NOINVALID 0x01000000
450#define HIFN_D_MASKDONEIRQ 0x02000000
451#define HIFN_D_DESTOVER 0x04000000
452#define HIFN_D_OVER 0x08000000
453#define HIFN_D_LAST 0x20000000
454#define HIFN_D_JUMP 0x40000000
455#define HIFN_D_VALID 0x80000000
456
457struct hifn_base_command {
458 volatile __le16 masks;
459 volatile __le16 session_num;
460 volatile __le16 total_source_count;
461 volatile __le16 total_dest_count;
462};
463
464#define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
465#define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
466#define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
467#define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
468#define HIFN_BASE_CMD_DECODE 0x2000
469#define HIFN_BASE_CMD_SRCLEN_M 0xc000
470#define HIFN_BASE_CMD_SRCLEN_S 14
471#define HIFN_BASE_CMD_DSTLEN_M 0x3000
472#define HIFN_BASE_CMD_DSTLEN_S 12
473#define HIFN_BASE_CMD_LENMASK_HI 0x30000
474#define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
475
476/*
477 * Structure to help build up the command data structure.
478 */
479struct hifn_crypt_command {
480 volatile __le16 masks;
481 volatile __le16 header_skip;
482 volatile __le16 source_count;
483 volatile __le16 reserved;
484};
485
486#define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
487#define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
488#define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
489#define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
490#define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
491#define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
492#define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
493#define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
494#define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
495#define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
496#define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
497#define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
498#define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
499#define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
500#define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
501#define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
502#define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
503#define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
504#define HIFN_CRYPT_CMD_SRCLEN_S 14
505
506/*
507 * Structure to help build up the command data structure.
508 */
509struct hifn_mac_command {
510 volatile __le16 masks;
511 volatile __le16 header_skip;
512 volatile __le16 source_count;
513 volatile __le16 reserved;
514};
515
516#define HIFN_MAC_CMD_ALG_MASK 0x0001
517#define HIFN_MAC_CMD_ALG_SHA1 0x0000
518#define HIFN_MAC_CMD_ALG_MD5 0x0001
519#define HIFN_MAC_CMD_MODE_MASK 0x000c
520#define HIFN_MAC_CMD_MODE_HMAC 0x0000
521#define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
522#define HIFN_MAC_CMD_MODE_HASH 0x0008
523#define HIFN_MAC_CMD_MODE_FULL 0x0004
524#define HIFN_MAC_CMD_TRUNC 0x0010
525#define HIFN_MAC_CMD_RESULT 0x0020
526#define HIFN_MAC_CMD_APPEND 0x0040
527#define HIFN_MAC_CMD_SRCLEN_M 0xc000
528#define HIFN_MAC_CMD_SRCLEN_S 14
529
530/*
531 * MAC POS IPsec initiates authentication after encryption on encodes
532 * and before decryption on decodes.
533 */
534#define HIFN_MAC_CMD_POS_IPSEC 0x0200
535#define HIFN_MAC_CMD_NEW_KEY 0x0800
536
537struct hifn_comp_command {
538 volatile __le16 masks;
539 volatile __le16 header_skip;
540 volatile __le16 source_count;
541 volatile __le16 reserved;
542};
543
544#define HIFN_COMP_CMD_SRCLEN_M 0xc000
545#define HIFN_COMP_CMD_SRCLEN_S 14
546#define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
547#define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
548#define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
549#define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
550#define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
551#define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
552#define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
553#define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
554
555struct hifn_base_result {
556 volatile __le16 flags;
557 volatile __le16 session;
558 volatile __le16 src_cnt; /* 15:0 of source count */
559 volatile __le16 dst_cnt; /* 15:0 of dest count */
560};
561
562#define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
563#define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
564#define HIFN_BASE_RES_SRCLEN_S 14
565#define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
566#define HIFN_BASE_RES_DSTLEN_S 12
567
568struct hifn_comp_result {
569 volatile __le16 flags;
570 volatile __le16 crc;
571};
572
573#define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
574#define HIFN_COMP_RES_LCB_S 8
575#define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
576#define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
577#define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
578
579struct hifn_mac_result {
580 volatile __le16 flags;
581 volatile __le16 reserved;
582 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
583};
584
585#define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
586#define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
587
588struct hifn_crypt_result {
589 volatile __le16 flags;
590 volatile __le16 reserved;
591};
592
593#define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
594
595#ifndef HIFN_POLL_FREQUENCY
596#define HIFN_POLL_FREQUENCY 0x1
597#endif
598
599#ifndef HIFN_POLL_SCALAR
600#define HIFN_POLL_SCALAR 0x0
601#endif
602
603#define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
604#define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
605
606struct hifn_crypto_alg {
607 struct list_head entry;
608 struct crypto_alg alg;
609 struct hifn_device *dev;
610};
611
612#define ASYNC_SCATTERLIST_CACHE 16
613
614#define ASYNC_FLAGS_MISALIGNED (1 << 0)
615
616struct hifn_cipher_walk {
617 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
618 u32 flags;
619 int num;
620};
621
622struct hifn_context {
623 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
624 struct hifn_device *dev;
625 unsigned int keysize;
626};
627
628struct hifn_request_context {
629 u8 *iv;
630 unsigned int ivsize;
631 u8 op, type, mode, unused;
632 struct hifn_cipher_walk walk;
633};
634
635#define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
636
637static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
638{
639 return readl(dev->bar[0] + reg);
640}
641
642static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
643{
644 return readl(dev->bar[1] + reg);
645}
646
647static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
648{
649 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
650}
651
652static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
653{
654 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
655}
656
657static void hifn_wait_puc(struct hifn_device *dev)
658{
659 int i;
660 u32 ret;
661
662 for (i = 10000; i > 0; --i) {
663 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
664 if (!(ret & HIFN_PUCTRL_RESET))
665 break;
666
667 udelay(1);
668 }
669
670 if (!i)
671 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
672}
673
674static void hifn_reset_puc(struct hifn_device *dev)
675{
676 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
677 hifn_wait_puc(dev);
678}
679
680static void hifn_stop_device(struct hifn_device *dev)
681{
682 hifn_write_1(dev, HIFN_1_DMA_CSR,
683 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
684 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
685 hifn_write_0(dev, HIFN_0_PUIER, 0);
686 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
687}
688
689static void hifn_reset_dma(struct hifn_device *dev, int full)
690{
691 hifn_stop_device(dev);
692
693 /*
694 * Setting poll frequency and others to 0.
695 */
696 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
697 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
698 mdelay(1);
699
700 /*
701 * Reset DMA.
702 */
703 if (full) {
704 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
705 mdelay(1);
706 } else {
707 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
708 HIFN_DMACNFG_MSTRESET);
709 hifn_reset_puc(dev);
710 }
711
712 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
713 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
714
715 hifn_reset_puc(dev);
716}
717
718static u32 hifn_next_signature(u32 a, u_int cnt)
719{
720 int i;
721 u32 v;
722
723 for (i = 0; i < cnt; i++) {
724 /* get the parity */
725 v = a & 0x80080125;
726 v ^= v >> 16;
727 v ^= v >> 8;
728 v ^= v >> 4;
729 v ^= v >> 2;
730 v ^= v >> 1;
731
732 a = (v & 1) ^ (a << 1);
733 }
734
735 return a;
736}
737
738static struct pci2id {
739 u_short pci_vendor;
740 u_short pci_prod;
741 char card_id[13];
742} pci2id[] = {
743 {
744 PCI_VENDOR_ID_HIFN,
745 PCI_DEVICE_ID_HIFN_7955,
746 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
747 0x00, 0x00, 0x00, 0x00, 0x00 }
748 },
749 {
750 PCI_VENDOR_ID_HIFN,
751 PCI_DEVICE_ID_HIFN_7956,
752 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
753 0x00, 0x00, 0x00, 0x00, 0x00 }
754 }
755};
756
757#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
758static int hifn_rng_data_present(struct hwrng *rng, int wait)
759{
760 struct hifn_device *dev = (struct hifn_device *)rng->priv;
761 s64 nsec;
762
763 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
764 nsec -= dev->rng_wait_time;
765 if (nsec <= 0)
766 return 1;
767 if (!wait)
768 return 0;
769 ndelay(nsec);
770 return 1;
771}
772
773static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
774{
775 struct hifn_device *dev = (struct hifn_device *)rng->priv;
776
777 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
778 dev->rngtime = ktime_get();
779 return 4;
780}
781
782static int hifn_register_rng(struct hifn_device *dev)
783{
784 /*
785 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
786 */
787 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
788 dev->pk_clk_freq) * 256;
789
790 dev->rng.name = dev->name;
791 dev->rng.data_present = hifn_rng_data_present,
792 dev->rng.data_read = hifn_rng_data_read,
793 dev->rng.priv = (unsigned long)dev;
794
795 return hwrng_register(&dev->rng);
796}
797
798static void hifn_unregister_rng(struct hifn_device *dev)
799{
800 hwrng_unregister(&dev->rng);
801}
802#else
803#define hifn_register_rng(dev) 0
804#define hifn_unregister_rng(dev)
805#endif
806
807static int hifn_init_pubrng(struct hifn_device *dev)
808{
809 int i;
810
811 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
812 HIFN_PUBRST_RESET);
813
814 for (i = 100; i > 0; --i) {
815 mdelay(1);
816
817 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
818 break;
819 }
820
821 if (!i) {
822 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
823 } else {
824 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
825 dev->dmareg |= HIFN_DMAIER_PUBDONE;
826 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
827
828 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
829 }
830
831 /* Enable RNG engine. */
832
833 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
834 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
835 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
836
837#ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
838 /* First value must be discarded */
839 hifn_read_1(dev, HIFN_1_RNG_DATA);
840 dev->rngtime = ktime_get();
841#endif
842 return 0;
843}
844
845static int hifn_enable_crypto(struct hifn_device *dev)
846{
847 u32 dmacfg, addr;
848 char *offtbl = NULL;
849 int i;
850
851 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
852 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
853 pci2id[i].pci_prod == dev->pdev->device) {
854 offtbl = pci2id[i].card_id;
855 break;
856 }
857 }
858
859 if (!offtbl) {
860 dev_err(&dev->pdev->dev, "Unknown card!\n");
861 return -ENODEV;
862 }
863
864 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
865
866 hifn_write_1(dev, HIFN_1_DMA_CNFG,
867 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
868 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
869 mdelay(1);
870 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
871 mdelay(1);
872 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
873 mdelay(1);
874
875 for (i = 0; i < 12; ++i) {
876 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
877 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
878
879 mdelay(1);
880 }
881 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
882
883 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
884
885 return 0;
886}
887
888static void hifn_init_dma(struct hifn_device *dev)
889{
890 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
891 u32 dptr = dev->desc_dma;
892 int i;
893
894 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
895 dma->cmdr[i].p = __cpu_to_le32(dptr +
896 offsetof(struct hifn_dma, command_bufs[i][0]));
897 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
898 dma->resr[i].p = __cpu_to_le32(dptr +
899 offsetof(struct hifn_dma, result_bufs[i][0]));
900
901 /* Setup LAST descriptors. */
902 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
903 offsetof(struct hifn_dma, cmdr[0]));
904 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
905 offsetof(struct hifn_dma, srcr[0]));
906 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
907 offsetof(struct hifn_dma, dstr[0]));
908 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
909 offsetof(struct hifn_dma, resr[0]));
910
911 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
912 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
913 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
914}
915
916/*
917 * Initialize the PLL. We need to know the frequency of the reference clock
918 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
919 * allows us to operate without the risk of overclocking the chip. If it
920 * actually uses 33MHz, the chip will operate at half the speed, this can be
921 * overridden by specifying the frequency as module parameter (pci33).
922 *
923 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
924 * stable clock and the PCI clock frequency may vary, so the default is the
925 * external clock. There is no way to find out its frequency, we default to
926 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
927 * has an external crystal populated at 66MHz.
928 */
929static void hifn_init_pll(struct hifn_device *dev)
930{
931 unsigned int freq, m;
932 u32 pllcfg;
933
934 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
935
936 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
937 pllcfg |= HIFN_PLL_REF_CLK_PLL;
938 else
939 pllcfg |= HIFN_PLL_REF_CLK_HBI;
940
941 if (hifn_pll_ref[3] != '\0')
942 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
943 else {
944 freq = 66;
945 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
946 freq, hifn_pll_ref);
947 }
948
949 m = HIFN_PLL_FCK_MAX / freq;
950
951 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
952 if (m <= 8)
953 pllcfg |= HIFN_PLL_IS_1_8;
954 else
955 pllcfg |= HIFN_PLL_IS_9_12;
956
957 /* Select clock source and enable clock bypass */
958 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
959 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
960
961 /* Let the chip lock to the input clock */
962 mdelay(10);
963
964 /* Disable clock bypass */
965 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
966 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
967
968 /* Switch the engines to the PLL */
969 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
970 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
971
972 /*
973 * The Fpk_clk runs at half the total speed. Its frequency is needed to
974 * calculate the minimum time between two reads of the rng. Since 33MHz
975 * is actually 33.333... we overestimate the frequency here, resulting
976 * in slightly larger intervals.
977 */
978 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
979}
980
981static void hifn_init_registers(struct hifn_device *dev)
982{
983 u32 dptr = dev->desc_dma;
984
985 /* Initialization magic... */
986 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
987 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
988 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
989
990 /* write all 4 ring address registers */
991 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
992 offsetof(struct hifn_dma, cmdr[0]));
993 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
994 offsetof(struct hifn_dma, srcr[0]));
995 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
996 offsetof(struct hifn_dma, dstr[0]));
997 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
998 offsetof(struct hifn_dma, resr[0]));
999
1000 mdelay(2);
1001#if 0
1002 hifn_write_1(dev, HIFN_1_DMA_CSR,
1003 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1004 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1005 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1006 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1007 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1008 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1009 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1010 HIFN_DMACSR_S_WAIT |
1011 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1012 HIFN_DMACSR_C_WAIT |
1013 HIFN_DMACSR_ENGINE |
1014 HIFN_DMACSR_PUBDONE);
1015#else
1016 hifn_write_1(dev, HIFN_1_DMA_CSR,
1017 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1018 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1019 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1020 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1021 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1022 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1023 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1024 HIFN_DMACSR_S_WAIT |
1025 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1026 HIFN_DMACSR_C_WAIT |
1027 HIFN_DMACSR_ENGINE |
1028 HIFN_DMACSR_PUBDONE);
1029#endif
1030 hifn_read_1(dev, HIFN_1_DMA_CSR);
1031
1032 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1033 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1034 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1035 HIFN_DMAIER_ENGINE;
1036 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1037
1038 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1039 hifn_read_1(dev, HIFN_1_DMA_IER);
1040#if 0
1041 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1042 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1043 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1044 HIFN_PUCNFG_DRAM);
1045#else
1046 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1047#endif
1048 hifn_init_pll(dev);
1049
1050 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1051 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1052 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1053 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1054 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1055}
1056
1057static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1058 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1059{
1060 struct hifn_base_command *base_cmd;
1061 u8 *buf_pos = buf;
1062
1063 base_cmd = (struct hifn_base_command *)buf_pos;
1064 base_cmd->masks = __cpu_to_le16(mask);
1065 base_cmd->total_source_count =
1066 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1067 base_cmd->total_dest_count =
1068 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1069
1070 dlen >>= 16;
1071 slen >>= 16;
1072 base_cmd->session_num = __cpu_to_le16(snum |
1073 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1074 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1075
1076 return sizeof(struct hifn_base_command);
1077}
1078
1079static int hifn_setup_crypto_command(struct hifn_device *dev,
1080 u8 *buf, unsigned dlen, unsigned slen,
1081 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1082{
1083 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1084 struct hifn_crypt_command *cry_cmd;
1085 u8 *buf_pos = buf;
1086 u16 cmd_len;
1087
1088 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1089
1090 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1091 dlen >>= 16;
1092 cry_cmd->masks = __cpu_to_le16(mode |
1093 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1094 HIFN_CRYPT_CMD_SRCLEN_M));
1095 cry_cmd->header_skip = 0;
1096 cry_cmd->reserved = 0;
1097
1098 buf_pos += sizeof(struct hifn_crypt_command);
1099
1100 dma->cmdu++;
1101 if (dma->cmdu > 1) {
1102 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1103 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1104 }
1105
1106 if (keylen) {
1107 memcpy(buf_pos, key, keylen);
1108 buf_pos += keylen;
1109 }
1110 if (ivsize) {
1111 memcpy(buf_pos, iv, ivsize);
1112 buf_pos += ivsize;
1113 }
1114
1115 cmd_len = buf_pos - buf;
1116
1117 return cmd_len;
1118}
1119
1120static int hifn_setup_cmd_desc(struct hifn_device *dev,
1121 struct hifn_context *ctx, struct hifn_request_context *rctx,
1122 void *priv, unsigned int nbytes)
1123{
1124 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1125 int cmd_len, sa_idx;
1126 u8 *buf, *buf_pos;
1127 u16 mask;
1128
1129 sa_idx = dma->cmdi;
1130 buf_pos = buf = dma->command_bufs[dma->cmdi];
1131
1132 mask = 0;
1133 switch (rctx->op) {
1134 case ACRYPTO_OP_DECRYPT:
1135 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1136 break;
1137 case ACRYPTO_OP_ENCRYPT:
1138 mask = HIFN_BASE_CMD_CRYPT;
1139 break;
1140 case ACRYPTO_OP_HMAC:
1141 mask = HIFN_BASE_CMD_MAC;
1142 break;
1143 default:
1144 goto err_out;
1145 }
1146
1147 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1148 nbytes, mask, dev->snum);
1149
1150 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1151 u16 md = 0;
1152
1153 if (ctx->keysize)
1154 md |= HIFN_CRYPT_CMD_NEW_KEY;
1155 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1156 md |= HIFN_CRYPT_CMD_NEW_IV;
1157
1158 switch (rctx->mode) {
1159 case ACRYPTO_MODE_ECB:
1160 md |= HIFN_CRYPT_CMD_MODE_ECB;
1161 break;
1162 case ACRYPTO_MODE_CBC:
1163 md |= HIFN_CRYPT_CMD_MODE_CBC;
1164 break;
1165 case ACRYPTO_MODE_CFB:
1166 md |= HIFN_CRYPT_CMD_MODE_CFB;
1167 break;
1168 case ACRYPTO_MODE_OFB:
1169 md |= HIFN_CRYPT_CMD_MODE_OFB;
1170 break;
1171 default:
1172 goto err_out;
1173 }
1174
1175 switch (rctx->type) {
1176 case ACRYPTO_TYPE_AES_128:
1177 if (ctx->keysize != 16)
1178 goto err_out;
1179 md |= HIFN_CRYPT_CMD_KSZ_128 |
1180 HIFN_CRYPT_CMD_ALG_AES;
1181 break;
1182 case ACRYPTO_TYPE_AES_192:
1183 if (ctx->keysize != 24)
1184 goto err_out;
1185 md |= HIFN_CRYPT_CMD_KSZ_192 |
1186 HIFN_CRYPT_CMD_ALG_AES;
1187 break;
1188 case ACRYPTO_TYPE_AES_256:
1189 if (ctx->keysize != 32)
1190 goto err_out;
1191 md |= HIFN_CRYPT_CMD_KSZ_256 |
1192 HIFN_CRYPT_CMD_ALG_AES;
1193 break;
1194 case ACRYPTO_TYPE_3DES:
1195 if (ctx->keysize != 24)
1196 goto err_out;
1197 md |= HIFN_CRYPT_CMD_ALG_3DES;
1198 break;
1199 case ACRYPTO_TYPE_DES:
1200 if (ctx->keysize != 8)
1201 goto err_out;
1202 md |= HIFN_CRYPT_CMD_ALG_DES;
1203 break;
1204 default:
1205 goto err_out;
1206 }
1207
1208 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1209 nbytes, nbytes, ctx->key, ctx->keysize,
1210 rctx->iv, rctx->ivsize, md);
1211 }
1212
1213 dev->sa[sa_idx] = priv;
1214 dev->started++;
1215
1216 cmd_len = buf_pos - buf;
1217 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1218 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1219
1220 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1221 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1222 HIFN_D_VALID | HIFN_D_LAST |
1223 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1224 dma->cmdi = 0;
1225 } else {
1226 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1227 }
1228
1229 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1230 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1231 dev->flags |= HIFN_FLAG_CMD_BUSY;
1232 }
1233 return 0;
1234
1235err_out:
1236 return -EINVAL;
1237}
1238
1239static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1240 unsigned int offset, unsigned int size, int last)
1241{
1242 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1243 int idx;
1244 dma_addr_t addr;
1245
1246 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1247
1248 idx = dma->srci;
1249
1250 dma->srcr[idx].p = __cpu_to_le32(addr);
1251 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1252 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1253
1254 if (++idx == HIFN_D_SRC_RSIZE) {
1255 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1256 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1257 (last ? HIFN_D_LAST : 0));
1258 idx = 0;
1259 }
1260
1261 dma->srci = idx;
1262 dma->srcu++;
1263
1264 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1265 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1266 dev->flags |= HIFN_FLAG_SRC_BUSY;
1267 }
1268
1269 return size;
1270}
1271
1272static void hifn_setup_res_desc(struct hifn_device *dev)
1273{
1274 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1275
1276 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1277 HIFN_D_VALID | HIFN_D_LAST);
1278 /*
1279 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1280 * HIFN_D_LAST);
1281 */
1282
1283 if (++dma->resi == HIFN_D_RES_RSIZE) {
1284 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1285 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1286 dma->resi = 0;
1287 }
1288
1289 dma->resu++;
1290
1291 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1292 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1293 dev->flags |= HIFN_FLAG_RES_BUSY;
1294 }
1295}
1296
1297static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1298 unsigned offset, unsigned size, int last)
1299{
1300 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1301 int idx;
1302 dma_addr_t addr;
1303
1304 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1305
1306 idx = dma->dsti;
1307 dma->dstr[idx].p = __cpu_to_le32(addr);
1308 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1309 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1310
1311 if (++idx == HIFN_D_DST_RSIZE) {
1312 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1313 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1314 (last ? HIFN_D_LAST : 0));
1315 idx = 0;
1316 }
1317 dma->dsti = idx;
1318 dma->dstu++;
1319
1320 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1321 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1322 dev->flags |= HIFN_FLAG_DST_BUSY;
1323 }
1324}
1325
1326static int hifn_setup_dma(struct hifn_device *dev,
1327 struct hifn_context *ctx, struct hifn_request_context *rctx,
1328 struct scatterlist *src, struct scatterlist *dst,
1329 unsigned int nbytes, void *priv)
1330{
1331 struct scatterlist *t;
1332 struct page *spage, *dpage;
1333 unsigned int soff, doff;
1334 unsigned int n, len;
1335
1336 n = nbytes;
1337 while (n) {
1338 spage = sg_page(src);
1339 soff = src->offset;
1340 len = min(src->length, n);
1341
1342 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1343
1344 src++;
1345 n -= len;
1346 }
1347
1348 t = &rctx->walk.cache[0];
1349 n = nbytes;
1350 while (n) {
1351 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1352 BUG_ON(!sg_page(t));
1353 dpage = sg_page(t);
1354 doff = 0;
1355 len = t->length;
1356 } else {
1357 BUG_ON(!sg_page(dst));
1358 dpage = sg_page(dst);
1359 doff = dst->offset;
1360 len = dst->length;
1361 }
1362 len = min(len, n);
1363
1364 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1365
1366 dst++;
1367 t++;
1368 n -= len;
1369 }
1370
1371 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1372 hifn_setup_res_desc(dev);
1373 return 0;
1374}
1375
1376static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1377 int num, gfp_t gfp_flags)
1378{
1379 int i;
1380
1381 num = min(ASYNC_SCATTERLIST_CACHE, num);
1382 sg_init_table(w->cache, num);
1383
1384 w->num = 0;
1385 for (i = 0; i < num; ++i) {
1386 struct page *page = alloc_page(gfp_flags);
1387 struct scatterlist *s;
1388
1389 if (!page)
1390 break;
1391
1392 s = &w->cache[i];
1393
1394 sg_set_page(s, page, PAGE_SIZE, 0);
1395 w->num++;
1396 }
1397
1398 return i;
1399}
1400
1401static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1402{
1403 int i;
1404
1405 for (i = 0; i < w->num; ++i) {
1406 struct scatterlist *s = &w->cache[i];
1407
1408 __free_page(sg_page(s));
1409
1410 s->length = 0;
1411 }
1412
1413 w->num = 0;
1414}
1415
1416static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1417 unsigned int size, unsigned int *nbytesp)
1418{
1419 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1420 int idx = 0;
1421
1422 if (drest < size || size > nbytes)
1423 return -EINVAL;
1424
1425 while (size) {
1426 copy = min3(drest, size, dst->length);
1427
1428 size -= copy;
1429 drest -= copy;
1430 nbytes -= copy;
1431
1432 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1433 __func__, copy, size, drest, nbytes);
1434
1435 dst++;
1436 idx++;
1437 }
1438
1439 *nbytesp = nbytes;
1440 *drestp = drest;
1441
1442 return idx;
1443}
1444
1445static int hifn_cipher_walk(struct ablkcipher_request *req,
1446 struct hifn_cipher_walk *w)
1447{
1448 struct scatterlist *dst, *t;
1449 unsigned int nbytes = req->nbytes, offset, copy, diff;
1450 int idx, tidx, err;
1451
1452 tidx = idx = 0;
1453 offset = 0;
1454 while (nbytes) {
1455 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1456 return -EINVAL;
1457
1458 dst = &req->dst[idx];
1459
1460 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1461 __func__, dst->length, dst->offset, offset, nbytes);
1462
1463 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1464 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1465 offset) {
1466 unsigned slen = min(dst->length - offset, nbytes);
1467 unsigned dlen = PAGE_SIZE;
1468
1469 t = &w->cache[idx];
1470
1471 err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1472 if (err < 0)
1473 return err;
1474
1475 idx += err;
1476
1477 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1478 diff = slen & (HIFN_D_DST_DALIGN - 1);
1479
1480 if (dlen < nbytes) {
1481 /*
1482 * Destination page does not have enough space
1483 * to put there additional blocksized chunk,
1484 * so we mark that page as containing only
1485 * blocksize aligned chunks:
1486 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1487 * and increase number of bytes to be processed
1488 * in next chunk:
1489 * nbytes += diff;
1490 */
1491 nbytes += diff;
1492
1493 /*
1494 * Temporary of course...
1495 * Kick author if you will catch this one.
1496 */
1497 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1498 __func__, dlen, nbytes, slen, offset);
1499 pr_err("%s: please contact author to fix this "
1500 "issue, generally you should not catch "
1501 "this path under any condition but who "
1502 "knows how did you use crypto code.\n"
1503 "Thank you.\n", __func__);
1504 BUG();
1505 } else {
1506 copy += diff + nbytes;
1507
1508 dst = &req->dst[idx];
1509
1510 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1511 if (err < 0)
1512 return err;
1513
1514 idx += err;
1515 }
1516
1517 t->length = copy;
1518 t->offset = offset;
1519 } else {
1520 nbytes -= min(dst->length, nbytes);
1521 idx++;
1522 }
1523
1524 tidx++;
1525 }
1526
1527 return tidx;
1528}
1529
1530static int hifn_setup_session(struct ablkcipher_request *req)
1531{
1532 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1533 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1534 struct hifn_device *dev = ctx->dev;
1535 unsigned long dlen, flags;
1536 unsigned int nbytes = req->nbytes, idx = 0;
1537 int err = -EINVAL, sg_num;
1538 struct scatterlist *dst;
1539
1540 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1541 goto err_out_exit;
1542
1543 rctx->walk.flags = 0;
1544
1545 while (nbytes) {
1546 dst = &req->dst[idx];
1547 dlen = min(dst->length, nbytes);
1548
1549 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1550 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1551 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1552
1553 nbytes -= dlen;
1554 idx++;
1555 }
1556
1557 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1558 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1559 if (err < 0)
1560 return err;
1561 }
1562
1563 sg_num = hifn_cipher_walk(req, &rctx->walk);
1564 if (sg_num < 0) {
1565 err = sg_num;
1566 goto err_out_exit;
1567 }
1568
1569 spin_lock_irqsave(&dev->lock, flags);
1570 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1571 err = -EAGAIN;
1572 goto err_out;
1573 }
1574
1575 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1576 if (err)
1577 goto err_out;
1578
1579 dev->snum++;
1580
1581 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1582 spin_unlock_irqrestore(&dev->lock, flags);
1583
1584 return 0;
1585
1586err_out:
1587 spin_unlock_irqrestore(&dev->lock, flags);
1588err_out_exit:
1589 if (err) {
1590 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1591 "type: %u, err: %d.\n",
1592 rctx->iv, rctx->ivsize,
1593 ctx->key, ctx->keysize,
1594 rctx->mode, rctx->op, rctx->type, err);
1595 }
1596
1597 return err;
1598}
1599
1600static int hifn_start_device(struct hifn_device *dev)
1601{
1602 int err;
1603
1604 dev->started = dev->active = 0;
1605 hifn_reset_dma(dev, 1);
1606
1607 err = hifn_enable_crypto(dev);
1608 if (err)
1609 return err;
1610
1611 hifn_reset_puc(dev);
1612
1613 hifn_init_dma(dev);
1614
1615 hifn_init_registers(dev);
1616
1617 hifn_init_pubrng(dev);
1618
1619 return 0;
1620}
1621
1622static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1623 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1624{
1625 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1626 void *daddr;
1627 int idx = 0;
1628
1629 if (srest < size || size > nbytes)
1630 return -EINVAL;
1631
1632 while (size) {
1633 copy = min3(srest, dst->length, size);
1634
1635 daddr = kmap_atomic(sg_page(dst));
1636 memcpy(daddr + dst->offset + offset, saddr, copy);
1637 kunmap_atomic(daddr);
1638
1639 nbytes -= copy;
1640 size -= copy;
1641 srest -= copy;
1642 saddr += copy;
1643 offset = 0;
1644
1645 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1646 __func__, copy, size, srest, nbytes);
1647
1648 dst++;
1649 idx++;
1650 }
1651
1652 *nbytesp = nbytes;
1653 *srestp = srest;
1654
1655 return idx;
1656}
1657
1658static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1659{
1660 unsigned long flags;
1661
1662 spin_lock_irqsave(&dev->lock, flags);
1663 dev->sa[i] = NULL;
1664 dev->started--;
1665 if (dev->started < 0)
1666 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1667 dev->started);
1668 spin_unlock_irqrestore(&dev->lock, flags);
1669 BUG_ON(dev->started < 0);
1670}
1671
1672static void hifn_process_ready(struct ablkcipher_request *req, int error)
1673{
1674 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1675
1676 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1677 unsigned int nbytes = req->nbytes;
1678 int idx = 0, err;
1679 struct scatterlist *dst, *t;
1680 void *saddr;
1681
1682 while (nbytes) {
1683 t = &rctx->walk.cache[idx];
1684 dst = &req->dst[idx];
1685
1686 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1687 "sg_page(dst): %p, dst->length: %u, "
1688 "nbytes: %u.\n",
1689 __func__, sg_page(t), t->length,
1690 sg_page(dst), dst->length, nbytes);
1691
1692 if (!t->length) {
1693 nbytes -= min(dst->length, nbytes);
1694 idx++;
1695 continue;
1696 }
1697
1698 saddr = kmap_atomic(sg_page(t));
1699
1700 err = ablkcipher_get(saddr, &t->length, t->offset,
1701 dst, nbytes, &nbytes);
1702 if (err < 0) {
1703 kunmap_atomic(saddr);
1704 break;
1705 }
1706
1707 idx += err;
1708 kunmap_atomic(saddr);
1709 }
1710
1711 hifn_cipher_walk_exit(&rctx->walk);
1712 }
1713
1714 req->base.complete(&req->base, error);
1715}
1716
1717static void hifn_clear_rings(struct hifn_device *dev, int error)
1718{
1719 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1720 int i, u;
1721
1722 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1723 "k: %d.%d.%d.%d.\n",
1724 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1725 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1726 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1727
1728 i = dma->resk; u = dma->resu;
1729 while (u != 0) {
1730 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1731 break;
1732
1733 if (dev->sa[i]) {
1734 dev->success++;
1735 dev->reset = 0;
1736 hifn_process_ready(dev->sa[i], error);
1737 hifn_complete_sa(dev, i);
1738 }
1739
1740 if (++i == HIFN_D_RES_RSIZE)
1741 i = 0;
1742 u--;
1743 }
1744 dma->resk = i; dma->resu = u;
1745
1746 i = dma->srck; u = dma->srcu;
1747 while (u != 0) {
1748 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1749 break;
1750 if (++i == HIFN_D_SRC_RSIZE)
1751 i = 0;
1752 u--;
1753 }
1754 dma->srck = i; dma->srcu = u;
1755
1756 i = dma->cmdk; u = dma->cmdu;
1757 while (u != 0) {
1758 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1759 break;
1760 if (++i == HIFN_D_CMD_RSIZE)
1761 i = 0;
1762 u--;
1763 }
1764 dma->cmdk = i; dma->cmdu = u;
1765
1766 i = dma->dstk; u = dma->dstu;
1767 while (u != 0) {
1768 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1769 break;
1770 if (++i == HIFN_D_DST_RSIZE)
1771 i = 0;
1772 u--;
1773 }
1774 dma->dstk = i; dma->dstu = u;
1775
1776 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1777 "k: %d.%d.%d.%d.\n",
1778 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1779 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1780 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1781}
1782
1783static void hifn_work(struct work_struct *work)
1784{
1785 struct delayed_work *dw = to_delayed_work(work);
1786 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1787 unsigned long flags;
1788 int reset = 0;
1789 u32 r = 0;
1790
1791 spin_lock_irqsave(&dev->lock, flags);
1792 if (dev->active == 0) {
1793 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1794
1795 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1796 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1797 r |= HIFN_DMACSR_C_CTRL_DIS;
1798 }
1799 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1800 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1801 r |= HIFN_DMACSR_S_CTRL_DIS;
1802 }
1803 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1804 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1805 r |= HIFN_DMACSR_D_CTRL_DIS;
1806 }
1807 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1808 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1809 r |= HIFN_DMACSR_R_CTRL_DIS;
1810 }
1811 if (r)
1812 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1813 } else
1814 dev->active--;
1815
1816 if ((dev->prev_success == dev->success) && dev->started)
1817 reset = 1;
1818 dev->prev_success = dev->success;
1819 spin_unlock_irqrestore(&dev->lock, flags);
1820
1821 if (reset) {
1822 if (++dev->reset >= 5) {
1823 int i;
1824 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1825
1826 dev_info(&dev->pdev->dev,
1827 "r: %08x, active: %d, started: %d, "
1828 "success: %lu: qlen: %u/%u, reset: %d.\n",
1829 r, dev->active, dev->started,
1830 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1831 reset);
1832
1833 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1834 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1835 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1836 if (dev->sa[i]) {
1837 hifn_process_ready(dev->sa[i], -ENODEV);
1838 hifn_complete_sa(dev, i);
1839 }
1840 }
1841 pr_info("\n");
1842
1843 hifn_reset_dma(dev, 1);
1844 hifn_stop_device(dev);
1845 hifn_start_device(dev);
1846 dev->reset = 0;
1847 }
1848
1849 tasklet_schedule(&dev->tasklet);
1850 }
1851
1852 schedule_delayed_work(&dev->work, HZ);
1853}
1854
1855static irqreturn_t hifn_interrupt(int irq, void *data)
1856{
1857 struct hifn_device *dev = (struct hifn_device *)data;
1858 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1859 u32 dmacsr, restart;
1860
1861 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1862
1863 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1864 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1865 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1866 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1867 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1868
1869 if ((dmacsr & dev->dmareg) == 0)
1870 return IRQ_NONE;
1871
1872 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1873
1874 if (dmacsr & HIFN_DMACSR_ENGINE)
1875 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1876 if (dmacsr & HIFN_DMACSR_PUBDONE)
1877 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1878 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1879
1880 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1881 if (restart) {
1882 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1883
1884 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1885 !!(dmacsr & HIFN_DMACSR_R_OVER),
1886 !!(dmacsr & HIFN_DMACSR_D_OVER),
1887 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1888 if (!!(puisr & HIFN_PUISR_DSTOVER))
1889 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1890 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1891 HIFN_DMACSR_D_OVER));
1892 }
1893
1894 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1895 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1896 if (restart) {
1897 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1898 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1899 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1900 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1901 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1902 hifn_reset_dma(dev, 1);
1903 hifn_init_dma(dev);
1904 hifn_init_registers(dev);
1905 }
1906
1907 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1908 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1909 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1910 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1911 }
1912
1913 tasklet_schedule(&dev->tasklet);
1914
1915 return IRQ_HANDLED;
1916}
1917
1918static void hifn_flush(struct hifn_device *dev)
1919{
1920 unsigned long flags;
1921 struct crypto_async_request *async_req;
1922 struct ablkcipher_request *req;
1923 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1924 int i;
1925
1926 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1927 struct hifn_desc *d = &dma->resr[i];
1928
1929 if (dev->sa[i]) {
1930 hifn_process_ready(dev->sa[i],
1931 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1932 hifn_complete_sa(dev, i);
1933 }
1934 }
1935
1936 spin_lock_irqsave(&dev->lock, flags);
1937 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1938 req = ablkcipher_request_cast(async_req);
1939 spin_unlock_irqrestore(&dev->lock, flags);
1940
1941 hifn_process_ready(req, -ENODEV);
1942
1943 spin_lock_irqsave(&dev->lock, flags);
1944 }
1945 spin_unlock_irqrestore(&dev->lock, flags);
1946}
1947
1948static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1949 unsigned int len)
1950{
1951 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1952 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
1953 struct hifn_device *dev = ctx->dev;
1954
1955 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
1956 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1957 return -1;
1958 }
1959
1960 if (len == HIFN_DES_KEY_LENGTH) {
1961 u32 tmp[DES_EXPKEY_WORDS];
1962 int ret = des_ekey(tmp, key);
1963
1964 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1965 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
1966 return -EINVAL;
1967 }
1968 }
1969
1970 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1971
1972 memcpy(ctx->key, key, len);
1973 ctx->keysize = len;
1974
1975 return 0;
1976}
1977
1978static int hifn_handle_req(struct ablkcipher_request *req)
1979{
1980 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1981 struct hifn_device *dev = ctx->dev;
1982 int err = -EAGAIN;
1983
1984 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1985 err = hifn_setup_session(req);
1986
1987 if (err == -EAGAIN) {
1988 unsigned long flags;
1989
1990 spin_lock_irqsave(&dev->lock, flags);
1991 err = ablkcipher_enqueue_request(&dev->queue, req);
1992 spin_unlock_irqrestore(&dev->lock, flags);
1993 }
1994
1995 return err;
1996}
1997
1998static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
1999 u8 type, u8 mode)
2000{
2001 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2002 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2003 unsigned ivsize;
2004
2005 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2006
2007 if (req->info && mode != ACRYPTO_MODE_ECB) {
2008 if (type == ACRYPTO_TYPE_AES_128)
2009 ivsize = HIFN_AES_IV_LENGTH;
2010 else if (type == ACRYPTO_TYPE_DES)
2011 ivsize = HIFN_DES_KEY_LENGTH;
2012 else if (type == ACRYPTO_TYPE_3DES)
2013 ivsize = HIFN_3DES_KEY_LENGTH;
2014 }
2015
2016 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2017 if (ctx->keysize == 24)
2018 type = ACRYPTO_TYPE_AES_192;
2019 else if (ctx->keysize == 32)
2020 type = ACRYPTO_TYPE_AES_256;
2021 }
2022
2023 rctx->op = op;
2024 rctx->mode = mode;
2025 rctx->type = type;
2026 rctx->iv = req->info;
2027 rctx->ivsize = ivsize;
2028
2029 /*
2030 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2033 */
2034
2035 return hifn_handle_req(req);
2036}
2037
2038static int hifn_process_queue(struct hifn_device *dev)
2039{
2040 struct crypto_async_request *async_req, *backlog;
2041 struct ablkcipher_request *req;
2042 unsigned long flags;
2043 int err = 0;
2044
2045 while (dev->started < HIFN_QUEUE_LENGTH) {
2046 spin_lock_irqsave(&dev->lock, flags);
2047 backlog = crypto_get_backlog(&dev->queue);
2048 async_req = crypto_dequeue_request(&dev->queue);
2049 spin_unlock_irqrestore(&dev->lock, flags);
2050
2051 if (!async_req)
2052 break;
2053
2054 if (backlog)
2055 backlog->complete(backlog, -EINPROGRESS);
2056
2057 req = ablkcipher_request_cast(async_req);
2058
2059 err = hifn_handle_req(req);
2060 if (err)
2061 break;
2062 }
2063
2064 return err;
2065}
2066
2067static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2068 u8 type, u8 mode)
2069{
2070 int err;
2071 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2072 struct hifn_device *dev = ctx->dev;
2073
2074 err = hifn_setup_crypto_req(req, op, type, mode);
2075 if (err)
2076 return err;
2077
2078 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2079 hifn_process_queue(dev);
2080
2081 return -EINPROGRESS;
2082}
2083
2084/*
2085 * AES ecryption functions.
2086 */
2087static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2088{
2089 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2090 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2091}
2092static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2093{
2094 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2095 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2096}
2097static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2098{
2099 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2100 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2101}
2102static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2103{
2104 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2105 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2106}
2107
2108/*
2109 * AES decryption functions.
2110 */
2111static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2112{
2113 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2114 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2115}
2116static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2117{
2118 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2119 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2120}
2121static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2122{
2123 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2124 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2125}
2126static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2127{
2128 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2129 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2130}
2131
2132/*
2133 * DES ecryption functions.
2134 */
2135static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2136{
2137 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2138 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2139}
2140static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2141{
2142 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2143 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2144}
2145static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2146{
2147 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2149}
2150static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2151{
2152 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2154}
2155
2156/*
2157 * DES decryption functions.
2158 */
2159static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2160{
2161 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2162 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2163}
2164static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2165{
2166 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2167 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2168}
2169static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2170{
2171 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2172 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2173}
2174static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2175{
2176 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2178}
2179
2180/*
2181 * 3DES ecryption functions.
2182 */
2183static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2184{
2185 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2186 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2187}
2188static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2189{
2190 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2191 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2192}
2193static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2194{
2195 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2196 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2197}
2198static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2199{
2200 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2202}
2203
2204/* 3DES decryption functions. */
2205static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2206{
2207 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2208 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2209}
2210static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2211{
2212 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2213 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2214}
2215static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2216{
2217 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2218 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2219}
2220static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2221{
2222 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2224}
2225
2226struct hifn_alg_template {
2227 char name[CRYPTO_MAX_ALG_NAME];
2228 char drv_name[CRYPTO_MAX_ALG_NAME];
2229 unsigned int bsize;
2230 struct ablkcipher_alg ablkcipher;
2231};
2232
2233static struct hifn_alg_template hifn_alg_templates[] = {
2234 /*
2235 * 3DES ECB, CBC, CFB and OFB modes.
2236 */
2237 {
2238 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2239 .ablkcipher = {
2240 .min_keysize = HIFN_3DES_KEY_LENGTH,
2241 .max_keysize = HIFN_3DES_KEY_LENGTH,
2242 .setkey = hifn_setkey,
2243 .encrypt = hifn_encrypt_3des_cfb,
2244 .decrypt = hifn_decrypt_3des_cfb,
2245 },
2246 },
2247 {
2248 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2249 .ablkcipher = {
2250 .min_keysize = HIFN_3DES_KEY_LENGTH,
2251 .max_keysize = HIFN_3DES_KEY_LENGTH,
2252 .setkey = hifn_setkey,
2253 .encrypt = hifn_encrypt_3des_ofb,
2254 .decrypt = hifn_decrypt_3des_ofb,
2255 },
2256 },
2257 {
2258 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2259 .ablkcipher = {
2260 .ivsize = HIFN_IV_LENGTH,
2261 .min_keysize = HIFN_3DES_KEY_LENGTH,
2262 .max_keysize = HIFN_3DES_KEY_LENGTH,
2263 .setkey = hifn_setkey,
2264 .encrypt = hifn_encrypt_3des_cbc,
2265 .decrypt = hifn_decrypt_3des_cbc,
2266 },
2267 },
2268 {
2269 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2270 .ablkcipher = {
2271 .min_keysize = HIFN_3DES_KEY_LENGTH,
2272 .max_keysize = HIFN_3DES_KEY_LENGTH,
2273 .setkey = hifn_setkey,
2274 .encrypt = hifn_encrypt_3des_ecb,
2275 .decrypt = hifn_decrypt_3des_ecb,
2276 },
2277 },
2278
2279 /*
2280 * DES ECB, CBC, CFB and OFB modes.
2281 */
2282 {
2283 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2284 .ablkcipher = {
2285 .min_keysize = HIFN_DES_KEY_LENGTH,
2286 .max_keysize = HIFN_DES_KEY_LENGTH,
2287 .setkey = hifn_setkey,
2288 .encrypt = hifn_encrypt_des_cfb,
2289 .decrypt = hifn_decrypt_des_cfb,
2290 },
2291 },
2292 {
2293 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2294 .ablkcipher = {
2295 .min_keysize = HIFN_DES_KEY_LENGTH,
2296 .max_keysize = HIFN_DES_KEY_LENGTH,
2297 .setkey = hifn_setkey,
2298 .encrypt = hifn_encrypt_des_ofb,
2299 .decrypt = hifn_decrypt_des_ofb,
2300 },
2301 },
2302 {
2303 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2304 .ablkcipher = {
2305 .ivsize = HIFN_IV_LENGTH,
2306 .min_keysize = HIFN_DES_KEY_LENGTH,
2307 .max_keysize = HIFN_DES_KEY_LENGTH,
2308 .setkey = hifn_setkey,
2309 .encrypt = hifn_encrypt_des_cbc,
2310 .decrypt = hifn_decrypt_des_cbc,
2311 },
2312 },
2313 {
2314 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2315 .ablkcipher = {
2316 .min_keysize = HIFN_DES_KEY_LENGTH,
2317 .max_keysize = HIFN_DES_KEY_LENGTH,
2318 .setkey = hifn_setkey,
2319 .encrypt = hifn_encrypt_des_ecb,
2320 .decrypt = hifn_decrypt_des_ecb,
2321 },
2322 },
2323
2324 /*
2325 * AES ECB, CBC, CFB and OFB modes.
2326 */
2327 {
2328 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2329 .ablkcipher = {
2330 .min_keysize = AES_MIN_KEY_SIZE,
2331 .max_keysize = AES_MAX_KEY_SIZE,
2332 .setkey = hifn_setkey,
2333 .encrypt = hifn_encrypt_aes_ecb,
2334 .decrypt = hifn_decrypt_aes_ecb,
2335 },
2336 },
2337 {
2338 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2339 .ablkcipher = {
2340 .ivsize = HIFN_AES_IV_LENGTH,
2341 .min_keysize = AES_MIN_KEY_SIZE,
2342 .max_keysize = AES_MAX_KEY_SIZE,
2343 .setkey = hifn_setkey,
2344 .encrypt = hifn_encrypt_aes_cbc,
2345 .decrypt = hifn_decrypt_aes_cbc,
2346 },
2347 },
2348 {
2349 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2350 .ablkcipher = {
2351 .min_keysize = AES_MIN_KEY_SIZE,
2352 .max_keysize = AES_MAX_KEY_SIZE,
2353 .setkey = hifn_setkey,
2354 .encrypt = hifn_encrypt_aes_cfb,
2355 .decrypt = hifn_decrypt_aes_cfb,
2356 },
2357 },
2358 {
2359 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2360 .ablkcipher = {
2361 .min_keysize = AES_MIN_KEY_SIZE,
2362 .max_keysize = AES_MAX_KEY_SIZE,
2363 .setkey = hifn_setkey,
2364 .encrypt = hifn_encrypt_aes_ofb,
2365 .decrypt = hifn_decrypt_aes_ofb,
2366 },
2367 },
2368};
2369
2370static int hifn_cra_init(struct crypto_tfm *tfm)
2371{
2372 struct crypto_alg *alg = tfm->__crt_alg;
2373 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2374 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2375
2376 ctx->dev = ha->dev;
2377 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2378 return 0;
2379}
2380
2381static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2382{
2383 struct hifn_crypto_alg *alg;
2384 int err;
2385
2386 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2387 if (!alg)
2388 return -ENOMEM;
2389
2390 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2391 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2392 t->drv_name, dev->name);
2393
2394 alg->alg.cra_priority = 300;
2395 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2396 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2397 alg->alg.cra_blocksize = t->bsize;
2398 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2399 alg->alg.cra_alignmask = 0;
2400 alg->alg.cra_type = &crypto_ablkcipher_type;
2401 alg->alg.cra_module = THIS_MODULE;
2402 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2403 alg->alg.cra_init = hifn_cra_init;
2404
2405 alg->dev = dev;
2406
2407 list_add_tail(&alg->entry, &dev->alg_list);
2408
2409 err = crypto_register_alg(&alg->alg);
2410 if (err) {
2411 list_del(&alg->entry);
2412 kfree(alg);
2413 }
2414
2415 return err;
2416}
2417
2418static void hifn_unregister_alg(struct hifn_device *dev)
2419{
2420 struct hifn_crypto_alg *a, *n;
2421
2422 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2423 list_del(&a->entry);
2424 crypto_unregister_alg(&a->alg);
2425 kfree(a);
2426 }
2427}
2428
2429static int hifn_register_alg(struct hifn_device *dev)
2430{
2431 int i, err;
2432
2433 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2434 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2435 if (err)
2436 goto err_out_exit;
2437 }
2438
2439 return 0;
2440
2441err_out_exit:
2442 hifn_unregister_alg(dev);
2443 return err;
2444}
2445
2446static void hifn_tasklet_callback(unsigned long data)
2447{
2448 struct hifn_device *dev = (struct hifn_device *)data;
2449
2450 /*
2451 * This is ok to call this without lock being held,
2452 * althogh it modifies some parameters used in parallel,
2453 * (like dev->success), but they are used in process
2454 * context or update is atomic (like setting dev->sa[i] to NULL).
2455 */
2456 hifn_clear_rings(dev, 0);
2457
2458 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2459 hifn_process_queue(dev);
2460}
2461
2462static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2463{
2464 int err, i;
2465 struct hifn_device *dev;
2466 char name[8];
2467
2468 err = pci_enable_device(pdev);
2469 if (err)
2470 return err;
2471 pci_set_master(pdev);
2472
2473 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2474 if (err)
2475 goto err_out_disable_pci_device;
2476
2477 snprintf(name, sizeof(name), "hifn%d",
2478 atomic_inc_return(&hifn_dev_number) - 1);
2479
2480 err = pci_request_regions(pdev, name);
2481 if (err)
2482 goto err_out_disable_pci_device;
2483
2484 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2485 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2486 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2487 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2488 err = -ENODEV;
2489 goto err_out_free_regions;
2490 }
2491
2492 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2493 GFP_KERNEL);
2494 if (!dev) {
2495 err = -ENOMEM;
2496 goto err_out_free_regions;
2497 }
2498
2499 INIT_LIST_HEAD(&dev->alg_list);
2500
2501 snprintf(dev->name, sizeof(dev->name), "%s", name);
2502 spin_lock_init(&dev->lock);
2503
2504 for (i = 0; i < 3; ++i) {
2505 unsigned long addr, size;
2506
2507 addr = pci_resource_start(pdev, i);
2508 size = pci_resource_len(pdev, i);
2509
2510 dev->bar[i] = ioremap_nocache(addr, size);
2511 if (!dev->bar[i]) {
2512 err = -ENOMEM;
2513 goto err_out_unmap_bars;
2514 }
2515 }
2516
2517 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2518 &dev->desc_dma);
2519 if (!dev->desc_virt) {
2520 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2521 err = -ENOMEM;
2522 goto err_out_unmap_bars;
2523 }
2524
2525 dev->pdev = pdev;
2526 dev->irq = pdev->irq;
2527
2528 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2529 dev->sa[i] = NULL;
2530
2531 pci_set_drvdata(pdev, dev);
2532
2533 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2534
2535 crypto_init_queue(&dev->queue, 1);
2536
2537 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2538 if (err) {
2539 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2540 dev->irq, err);
2541 dev->irq = 0;
2542 goto err_out_free_desc;
2543 }
2544
2545 err = hifn_start_device(dev);
2546 if (err)
2547 goto err_out_free_irq;
2548
2549 err = hifn_register_rng(dev);
2550 if (err)
2551 goto err_out_stop_device;
2552
2553 err = hifn_register_alg(dev);
2554 if (err)
2555 goto err_out_unregister_rng;
2556
2557 INIT_DELAYED_WORK(&dev->work, hifn_work);
2558 schedule_delayed_work(&dev->work, HZ);
2559
2560 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2561 "successfully registered as %s.\n",
2562 pci_name(pdev), dev->name);
2563
2564 return 0;
2565
2566err_out_unregister_rng:
2567 hifn_unregister_rng(dev);
2568err_out_stop_device:
2569 hifn_reset_dma(dev, 1);
2570 hifn_stop_device(dev);
2571err_out_free_irq:
2572 free_irq(dev->irq, dev);
2573 tasklet_kill(&dev->tasklet);
2574err_out_free_desc:
2575 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2576 dev->desc_virt, dev->desc_dma);
2577
2578err_out_unmap_bars:
2579 for (i = 0; i < 3; ++i)
2580 if (dev->bar[i])
2581 iounmap(dev->bar[i]);
2582
2583err_out_free_regions:
2584 pci_release_regions(pdev);
2585
2586err_out_disable_pci_device:
2587 pci_disable_device(pdev);
2588
2589 return err;
2590}
2591
2592static void hifn_remove(struct pci_dev *pdev)
2593{
2594 int i;
2595 struct hifn_device *dev;
2596
2597 dev = pci_get_drvdata(pdev);
2598
2599 if (dev) {
2600 cancel_delayed_work_sync(&dev->work);
2601
2602 hifn_unregister_rng(dev);
2603 hifn_unregister_alg(dev);
2604 hifn_reset_dma(dev, 1);
2605 hifn_stop_device(dev);
2606
2607 free_irq(dev->irq, dev);
2608 tasklet_kill(&dev->tasklet);
2609
2610 hifn_flush(dev);
2611
2612 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2613 dev->desc_virt, dev->desc_dma);
2614 for (i = 0; i < 3; ++i)
2615 if (dev->bar[i])
2616 iounmap(dev->bar[i]);
2617
2618 kfree(dev);
2619 }
2620
2621 pci_release_regions(pdev);
2622 pci_disable_device(pdev);
2623}
2624
2625static struct pci_device_id hifn_pci_tbl[] = {
2626 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2627 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2628 { 0 }
2629};
2630MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2631
2632static struct pci_driver hifn_pci_driver = {
2633 .name = "hifn795x",
2634 .id_table = hifn_pci_tbl,
2635 .probe = hifn_probe,
2636 .remove = hifn_remove,
2637};
2638
2639static int __init hifn_init(void)
2640{
2641 unsigned int freq;
2642 int err;
2643
2644 /* HIFN supports only 32-bit addresses */
2645 BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2646
2647 if (strncmp(hifn_pll_ref, "ext", 3) &&
2648 strncmp(hifn_pll_ref, "pci", 3)) {
2649 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2650 return -EINVAL;
2651 }
2652
2653 /*
2654 * For the 7955/7956 the reference clock frequency must be in the
2655 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2656 * but this chip is currently not supported.
2657 */
2658 if (hifn_pll_ref[3] != '\0') {
2659 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2660 if (freq < 20 || freq > 100) {
2661 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2662 "be in the range of 20-100");
2663 return -EINVAL;
2664 }
2665 }
2666
2667 err = pci_register_driver(&hifn_pci_driver);
2668 if (err < 0) {
2669 pr_err("Failed to register PCI driver for %s device.\n",
2670 hifn_pci_driver.name);
2671 return -ENODEV;
2672 }
2673
2674 pr_info("Driver for HIFN 795x crypto accelerator chip "
2675 "has been successfully registered.\n");
2676
2677 return 0;
2678}
2679
2680static void __exit hifn_fini(void)
2681{
2682 pci_unregister_driver(&hifn_pci_driver);
2683
2684 pr_info("Driver for HIFN 795x crypto accelerator chip "
2685 "has been successfully unregistered.\n");
2686}
2687
2688module_init(hifn_init);
2689module_exit(hifn_fini);
2690
2691MODULE_LICENSE("GPL");
2692MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2693MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");