Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
 
 
 
 
 
 
 
 
 
 
 
 
 
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
 
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/platform_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
 
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87				    __func__, __LINE__, #expr); \
  88			     panic(FORE200E "%s", __func__); \
  89			 }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
 
 
 
 
  96
  97MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
  98MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 
 
  99
 100static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 101    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 102    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 103};
 104
 105static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 106    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 107    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 108};
 109
 110
 111#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 112static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 113#endif
 114
 115
 116#if 0 /* currently unused */
 117static int 
 118fore200e_fore2atm_aal(enum fore200e_aal aal)
 119{
 120    switch(aal) {
 121    case FORE200E_AAL0:  return ATM_AAL0;
 122    case FORE200E_AAL34: return ATM_AAL34;
 123    case FORE200E_AAL5:  return ATM_AAL5;
 124    }
 125
 126    return -EINVAL;
 127}
 128#endif
 129
 130
 131static enum fore200e_aal
 132fore200e_atm2fore_aal(int aal)
 133{
 134    switch(aal) {
 135    case ATM_AAL0:  return FORE200E_AAL0;
 136    case ATM_AAL34: return FORE200E_AAL34;
 137    case ATM_AAL1:
 138    case ATM_AAL2:
 139    case ATM_AAL5:  return FORE200E_AAL5;
 140    }
 141
 142    return -EINVAL;
 143}
 144
 145
 146static char*
 147fore200e_irq_itoa(int irq)
 148{
 149    static char str[8];
 150    sprintf(str, "%d", irq);
 151    return str;
 152}
 153
 154
 155/* allocate and align a chunk of memory intended to hold the data behing exchanged
 156   between the driver and the adapter (using streaming DVMA) */
 157
 158static int
 159fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 160{
 161    unsigned long offset = 0;
 162
 163    if (alignment <= sizeof(int))
 164	alignment = 0;
 165
 166    chunk->alloc_size = size + alignment;
 
 167    chunk->direction  = direction;
 168
 169    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 170    if (chunk->alloc_addr == NULL)
 171	return -ENOMEM;
 172
 173    if (alignment > 0)
 174	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 175    
 176    chunk->align_addr = chunk->alloc_addr + offset;
 177
 178    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 179				     size, direction);
 180    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 181	kfree(chunk->alloc_addr);
 182	return -ENOMEM;
 183    }
 184    return 0;
 185}
 186
 187
 188/* free a chunk of memory */
 189
 190static void
 191fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 192{
 193    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 194		     chunk->direction);
 195    kfree(chunk->alloc_addr);
 196}
 197
 198/*
 199 * Allocate a DMA consistent chunk of memory intended to act as a communication
 200 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 201 * and the adapter.
 202 */
 203static int
 204fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 205		int size, int nbr, int alignment)
 206{
 207	/* returned chunks are page-aligned */
 208	chunk->alloc_size = size * nbr;
 209	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 210					       &chunk->dma_addr, GFP_KERNEL);
 211	if (!chunk->alloc_addr)
 212		return -ENOMEM;
 213	chunk->align_addr = chunk->alloc_addr;
 214	return 0;
 215}
 216
 217/*
 218 * Free a DMA consistent chunk of memory.
 219 */
 220static void
 221fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 222{
 223	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 224			  chunk->dma_addr);
 225}
 226
 227static void
 228fore200e_spin(int msecs)
 229{
 230    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 231    while (time_before(jiffies, timeout));
 232}
 233
 234
 235static int
 236fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 237{
 238    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 239    int           ok;
 240
 241    mb();
 242    do {
 243	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 244	    break;
 245
 246    } while (time_before(jiffies, timeout));
 247
 248#if 1
 249    if (!ok) {
 250	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 251	       *addr, val);
 252    }
 253#endif
 254
 255    return ok;
 256}
 257
 258
 259static int
 260fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 261{
 262    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 263    int           ok;
 264
 265    do {
 266	if ((ok = (fore200e->bus->read(addr) == val)))
 267	    break;
 268
 269    } while (time_before(jiffies, timeout));
 270
 271#if 1
 272    if (!ok) {
 273	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 274	       fore200e->bus->read(addr), val);
 275    }
 276#endif
 277
 278    return ok;
 279}
 280
 281
 282static void
 283fore200e_free_rx_buf(struct fore200e* fore200e)
 284{
 285    int scheme, magn, nbr;
 286    struct buffer* buffer;
 287
 288    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 289	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 290
 291	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 292
 293		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 294
 295		    struct chunk* data = &buffer[ nbr ].data;
 296
 297		    if (data->alloc_addr != NULL)
 298			fore200e_chunk_free(fore200e, data);
 299		}
 300	    }
 301	}
 302    }
 303}
 304
 305
 306static void
 307fore200e_uninit_bs_queue(struct fore200e* fore200e)
 308{
 309    int scheme, magn;
 310    
 311    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 312	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 313
 314	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 315	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 316	    
 317	    if (status->alloc_addr)
 318		fore200e_dma_chunk_free(fore200e, status);
 319	    
 320	    if (rbd_block->alloc_addr)
 321		fore200e_dma_chunk_free(fore200e, rbd_block);
 322	}
 323    }
 324}
 325
 326
 327static int
 328fore200e_reset(struct fore200e* fore200e, int diag)
 329{
 330    int ok;
 331
 332    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 333    
 334    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 335
 336    fore200e->bus->reset(fore200e);
 337
 338    if (diag) {
 339	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 340	if (ok == 0) {
 341	    
 342	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 343	    return -ENODEV;
 344	}
 345
 346	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 347	
 348	fore200e->state = FORE200E_STATE_RESET;
 349    }
 350
 351    return 0;
 352}
 353
 354
 355static void
 356fore200e_shutdown(struct fore200e* fore200e)
 357{
 358    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 359	   fore200e->name, fore200e->phys_base, 
 360	   fore200e_irq_itoa(fore200e->irq));
 361    
 362    if (fore200e->state > FORE200E_STATE_RESET) {
 363	/* first, reset the board to prevent further interrupts or data transfers */
 364	fore200e_reset(fore200e, 0);
 365    }
 366    
 367    /* then, release all allocated resources */
 368    switch(fore200e->state) {
 369
 370    case FORE200E_STATE_COMPLETE:
 371	kfree(fore200e->stats);
 372
 373	fallthrough;
 374    case FORE200E_STATE_IRQ:
 375	free_irq(fore200e->irq, fore200e->atm_dev);
 376
 377	fallthrough;
 378    case FORE200E_STATE_ALLOC_BUF:
 379	fore200e_free_rx_buf(fore200e);
 380
 381	fallthrough;
 382    case FORE200E_STATE_INIT_BSQ:
 383	fore200e_uninit_bs_queue(fore200e);
 384
 385	fallthrough;
 386    case FORE200E_STATE_INIT_RXQ:
 387	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 388	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 389
 390	fallthrough;
 391    case FORE200E_STATE_INIT_TXQ:
 392	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 393	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 394
 395	fallthrough;
 396    case FORE200E_STATE_INIT_CMDQ:
 397	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 398
 399	fallthrough;
 400    case FORE200E_STATE_INITIALIZE:
 401	/* nothing to do for that state */
 402
 403    case FORE200E_STATE_START_FW:
 404	/* nothing to do for that state */
 405
 406    case FORE200E_STATE_RESET:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_MAP:
 410	fore200e->bus->unmap(fore200e);
 411
 412	fallthrough;
 413    case FORE200E_STATE_CONFIGURE:
 414	/* nothing to do for that state */
 415
 416    case FORE200E_STATE_REGISTER:
 417	/* XXX shouldn't we *start* by deregistering the device? */
 418	atm_dev_deregister(fore200e->atm_dev);
 419
 420	fallthrough;
 421    case FORE200E_STATE_BLANK:
 422	/* nothing to do for that state */
 423	break;
 424    }
 425}
 426
 427
 428#ifdef CONFIG_PCI
 429
 430static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 431{
 432    /* on big-endian hosts, the board is configured to convert
 433       the endianess of slave RAM accesses  */
 434    return le32_to_cpu(readl(addr));
 435}
 436
 437
 438static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 439{
 440    /* on big-endian hosts, the board is configured to convert
 441       the endianess of slave RAM accesses  */
 442    writel(cpu_to_le32(val), addr);
 443}
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445static int
 446fore200e_pca_irq_check(struct fore200e* fore200e)
 447{
 448    /* this is a 1 bit register */
 449    int irq_posted = readl(fore200e->regs.pca.psr);
 450
 451#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 452    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 453	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 454    }
 455#endif
 456
 457    return irq_posted;
 458}
 459
 460
 461static void
 462fore200e_pca_irq_ack(struct fore200e* fore200e)
 463{
 464    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 465}
 466
 467
 468static void
 469fore200e_pca_reset(struct fore200e* fore200e)
 470{
 471    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 472    fore200e_spin(10);
 473    writel(0, fore200e->regs.pca.hcr);
 474}
 475
 476
 477static int fore200e_pca_map(struct fore200e* fore200e)
 478{
 479    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 480
 481    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 482    
 483    if (fore200e->virt_base == NULL) {
 484	printk(FORE200E "can't map device %s\n", fore200e->name);
 485	return -EFAULT;
 486    }
 487
 488    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 489
 490    /* gain access to the PCA specific registers  */
 491    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 492    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 493    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 494
 495    fore200e->state = FORE200E_STATE_MAP;
 496    return 0;
 497}
 498
 499
 500static void
 501fore200e_pca_unmap(struct fore200e* fore200e)
 502{
 503    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 504
 505    if (fore200e->virt_base != NULL)
 506	iounmap(fore200e->virt_base);
 507}
 508
 509
 510static int fore200e_pca_configure(struct fore200e *fore200e)
 511{
 512    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 513    u8              master_ctrl, latency;
 514
 515    DPRINTK(2, "device %s being configured\n", fore200e->name);
 516
 517    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 518	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 519	return -EIO;
 520    }
 521
 522    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 523
 524    master_ctrl = master_ctrl
 525#if defined(__BIG_ENDIAN)
 526	/* request the PCA board to convert the endianess of slave RAM accesses */
 527	| PCA200E_CTRL_CONVERT_ENDIAN
 528#endif
 529#if 0
 530        | PCA200E_CTRL_DIS_CACHE_RD
 531        | PCA200E_CTRL_DIS_WRT_INVAL
 532        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 533        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 534#endif
 535	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 536    
 537    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 538
 539    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 540       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 541       this may impact the performances of other PCI devices on the same bus, though */
 542    latency = 192;
 543    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 544
 545    fore200e->state = FORE200E_STATE_CONFIGURE;
 546    return 0;
 547}
 548
 549
 550static int __init
 551fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 552{
 553    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 554    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 555    struct prom_opcode      opcode;
 556    int                     ok;
 557    u32                     prom_dma;
 558
 559    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 560
 561    opcode.opcode = OPCODE_GET_PROM;
 562    opcode.pad    = 0;
 563
 564    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 565			      DMA_FROM_DEVICE);
 566    if (dma_mapping_error(fore200e->dev, prom_dma))
 567	return -ENOMEM;
 568
 569    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 570    
 571    *entry->status = STATUS_PENDING;
 572
 573    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 574
 575    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 576
 577    *entry->status = STATUS_FREE;
 578
 579    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 580
 581    if (ok == 0) {
 582	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 583	return -EIO;
 584    }
 585
 586#if defined(__BIG_ENDIAN)
 587    
 588#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 589
 590    /* MAC address is stored as little-endian */
 591    swap_here(&prom->mac_addr[0]);
 592    swap_here(&prom->mac_addr[4]);
 593#endif
 594    
 595    return 0;
 596}
 597
 598
 599static int
 600fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 601{
 602    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 603
 604    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 605		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 606}
 607
 608static const struct fore200e_bus fore200e_pci_ops = {
 609	.model_name		= "PCA-200E",
 610	.proc_name		= "pca200e",
 611	.descr_alignment	= 32,
 612	.buffer_alignment	= 4,
 613	.status_alignment	= 32,
 614	.read			= fore200e_pca_read,
 615	.write			= fore200e_pca_write,
 616	.configure		= fore200e_pca_configure,
 617	.map			= fore200e_pca_map,
 618	.reset			= fore200e_pca_reset,
 619	.prom_read		= fore200e_pca_prom_read,
 620	.unmap			= fore200e_pca_unmap,
 621	.irq_check		= fore200e_pca_irq_check,
 622	.irq_ack		= fore200e_pca_irq_ack,
 623	.proc_read		= fore200e_pca_proc_read,
 624};
 625#endif /* CONFIG_PCI */
 626
 
 627#ifdef CONFIG_SBUS
 628
 629static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 630{
 631    return sbus_readl(addr);
 632}
 633
 634static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 635{
 636    sbus_writel(val, addr);
 637}
 638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 640{
 641	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 642	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 643}
 644
 645static int fore200e_sba_irq_check(struct fore200e *fore200e)
 646{
 647	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 648}
 649
 650static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 651{
 652	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 653	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 654}
 655
 656static void fore200e_sba_reset(struct fore200e *fore200e)
 657{
 658	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 659	fore200e_spin(10);
 660	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 661}
 662
 663static int __init fore200e_sba_map(struct fore200e *fore200e)
 664{
 665	struct platform_device *op = to_platform_device(fore200e->dev);
 666	unsigned int bursts;
 667
 668	/* gain access to the SBA specific registers  */
 669	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 670	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 671	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 672	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 673
 674	if (!fore200e->virt_base) {
 675		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 676		return -EFAULT;
 677	}
 678
 679	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 680    
 681	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 682
 683	/* get the supported DVMA burst sizes */
 684	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 685
 686	if (sbus_can_dma_64bit())
 687		sbus_set_sbus64(&op->dev, bursts);
 688
 689	fore200e->state = FORE200E_STATE_MAP;
 690	return 0;
 691}
 692
 693static void fore200e_sba_unmap(struct fore200e *fore200e)
 694{
 695	struct platform_device *op = to_platform_device(fore200e->dev);
 696
 697	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 698	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 699	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 700	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 701}
 702
 703static int __init fore200e_sba_configure(struct fore200e *fore200e)
 704{
 705	fore200e->state = FORE200E_STATE_CONFIGURE;
 706	return 0;
 707}
 708
 709static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 710{
 711	struct platform_device *op = to_platform_device(fore200e->dev);
 712	const u8 *prop;
 713	int len;
 714
 715	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 716	if (!prop)
 717		return -ENODEV;
 718	memcpy(&prom->mac_addr[4], prop, 4);
 719
 720	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 721	if (!prop)
 722		return -ENODEV;
 723	memcpy(&prom->mac_addr[2], prop, 4);
 724
 725	prom->serial_number = of_getintprop_default(op->dev.of_node,
 726						    "serialnumber", 0);
 727	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 728						  "promversion", 0);
 729    
 730	return 0;
 731}
 732
 733static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 734{
 735	struct platform_device *op = to_platform_device(fore200e->dev);
 736	const struct linux_prom_registers *regs;
 737
 738	regs = of_get_property(op->dev.of_node, "reg", NULL);
 739
 740	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 741		       (regs ? regs->which_io : 0), op->dev.of_node);
 742}
 743
 744static const struct fore200e_bus fore200e_sbus_ops = {
 745	.model_name		= "SBA-200E",
 746	.proc_name		= "sba200e",
 747	.descr_alignment	= 32,
 748	.buffer_alignment	= 64,
 749	.status_alignment	= 32,
 750	.read			= fore200e_sba_read,
 751	.write			= fore200e_sba_write,
 752	.configure		= fore200e_sba_configure,
 753	.map			= fore200e_sba_map,
 754	.reset			= fore200e_sba_reset,
 755	.prom_read		= fore200e_sba_prom_read,
 756	.unmap			= fore200e_sba_unmap,
 757	.irq_enable		= fore200e_sba_irq_enable,
 758	.irq_check		= fore200e_sba_irq_check,
 759	.irq_ack		= fore200e_sba_irq_ack,
 760	.proc_read		= fore200e_sba_proc_read,
 761};
 762#endif /* CONFIG_SBUS */
 763
 
 764static void
 765fore200e_tx_irq(struct fore200e* fore200e)
 766{
 767    struct host_txq*        txq = &fore200e->host_txq;
 768    struct host_txq_entry*  entry;
 769    struct atm_vcc*         vcc;
 770    struct fore200e_vc_map* vc_map;
 771
 772    if (fore200e->host_txq.txing == 0)
 773	return;
 774
 775    for (;;) {
 776	
 777	entry = &txq->host_entry[ txq->tail ];
 778
 779        if ((*entry->status & STATUS_COMPLETE) == 0) {
 780	    break;
 781	}
 782
 783	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 784		entry, txq->tail, entry->vc_map, entry->skb);
 785
 786	/* free copy of misaligned data */
 787	kfree(entry->data);
 788	
 789	/* remove DMA mapping */
 790	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 791				 DMA_TO_DEVICE);
 792
 793	vc_map = entry->vc_map;
 794
 795	/* vcc closed since the time the entry was submitted for tx? */
 796	if ((vc_map->vcc == NULL) ||
 797	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 798
 799	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 800		    fore200e->atm_dev->number);
 801
 802	    dev_kfree_skb_any(entry->skb);
 803	}
 804	else {
 805	    ASSERT(vc_map->vcc);
 806
 807	    /* vcc closed then immediately re-opened? */
 808	    if (vc_map->incarn != entry->incarn) {
 809
 810		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 811		   if the same vcc is immediately re-opened, those pending PDUs must
 812		   not be popped after the completion of their emission, as they refer
 813		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 814		   would be decremented by the size of the (unrelated) skb, possibly
 815		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 816		   we thus bind the tx entry to the current incarnation of the vcc
 817		   when the entry is submitted for tx. When the tx later completes,
 818		   if the incarnation number of the tx entry does not match the one
 819		   of the vcc, then this implies that the vcc has been closed then re-opened.
 820		   we thus just drop the skb here. */
 821
 822		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 823			fore200e->atm_dev->number);
 824
 825		dev_kfree_skb_any(entry->skb);
 826	    }
 827	    else {
 828		vcc = vc_map->vcc;
 829		ASSERT(vcc);
 830
 831		/* notify tx completion */
 832		if (vcc->pop) {
 833		    vcc->pop(vcc, entry->skb);
 834		}
 835		else {
 836		    dev_kfree_skb_any(entry->skb);
 837		}
 838
 
 
 
 
 
 839		/* check error condition */
 840		if (*entry->status & STATUS_ERROR)
 841		    atomic_inc(&vcc->stats->tx_err);
 842		else
 843		    atomic_inc(&vcc->stats->tx);
 844	    }
 845	}
 846
 847	*entry->status = STATUS_FREE;
 848
 849	fore200e->host_txq.txing--;
 850
 851	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 852    }
 853}
 854
 855
 856#ifdef FORE200E_BSQ_DEBUG
 857int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 858{
 859    struct buffer* buffer;
 860    int count = 0;
 861
 862    buffer = bsq->freebuf;
 863    while (buffer) {
 864
 865	if (buffer->supplied) {
 866	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 867		   where, scheme, magn, buffer->index);
 868	}
 869
 870	if (buffer->magn != magn) {
 871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 872		   where, scheme, magn, buffer->index, buffer->magn);
 873	}
 874
 875	if (buffer->scheme != scheme) {
 876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 877		   where, scheme, magn, buffer->index, buffer->scheme);
 878	}
 879
 880	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 882		   where, scheme, magn, buffer->index);
 883	}
 884
 885	count++;
 886	buffer = buffer->next;
 887    }
 888
 889    if (count != bsq->freebuf_count) {
 890	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 891	       where, scheme, magn, count, bsq->freebuf_count);
 892    }
 893    return 0;
 894}
 895#endif
 896
 897
 898static void
 899fore200e_supply(struct fore200e* fore200e)
 900{
 901    int  scheme, magn, i;
 902
 903    struct host_bsq*       bsq;
 904    struct host_bsq_entry* entry;
 905    struct buffer*         buffer;
 906
 907    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 908	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 909
 910	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 911
 912#ifdef FORE200E_BSQ_DEBUG
 913	    bsq_audit(1, bsq, scheme, magn);
 914#endif
 915	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 916
 917		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 918			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 919
 920		entry = &bsq->host_entry[ bsq->head ];
 921
 922		for (i = 0; i < RBD_BLK_SIZE; i++) {
 923
 924		    /* take the first buffer in the free buffer list */
 925		    buffer = bsq->freebuf;
 926		    if (!buffer) {
 927			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 928			       scheme, magn, bsq->freebuf_count);
 929			return;
 930		    }
 931		    bsq->freebuf = buffer->next;
 932		    
 933#ifdef FORE200E_BSQ_DEBUG
 934		    if (buffer->supplied)
 935			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 936			       scheme, magn, buffer->index);
 937		    buffer->supplied = 1;
 938#endif
 939		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 940		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 941		}
 942
 943		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 944
 945 		/* decrease accordingly the number of free rx buffers */
 946		bsq->freebuf_count -= RBD_BLK_SIZE;
 947
 948		*entry->status = STATUS_PENDING;
 949		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 950	    }
 951	}
 952    }
 953}
 954
 955
 956static int
 957fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 958{
 959    struct sk_buff*      skb;
 960    struct buffer*       buffer;
 961    struct fore200e_vcc* fore200e_vcc;
 962    int                  i, pdu_len = 0;
 963#ifdef FORE200E_52BYTE_AAL0_SDU
 964    u32                  cell_header = 0;
 965#endif
 966
 967    ASSERT(vcc);
 968    
 969    fore200e_vcc = FORE200E_VCC(vcc);
 970    ASSERT(fore200e_vcc);
 971
 972#ifdef FORE200E_52BYTE_AAL0_SDU
 973    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 974
 975	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 976	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 977                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 978                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 979                       rpd->atm_header.clp;
 980	pdu_len = 4;
 981    }
 982#endif
 983    
 984    /* compute total PDU length */
 985    for (i = 0; i < rpd->nseg; i++)
 986	pdu_len += rpd->rsd[ i ].length;
 987    
 988    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 989    if (skb == NULL) {
 990	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 991
 992	atomic_inc(&vcc->stats->rx_drop);
 993	return -ENOMEM;
 994    } 
 995
 996    __net_timestamp(skb);
 997    
 998#ifdef FORE200E_52BYTE_AAL0_SDU
 999    if (cell_header) {
1000	*((u32*)skb_put(skb, 4)) = cell_header;
1001    }
1002#endif
1003
1004    /* reassemble segments */
1005    for (i = 0; i < rpd->nseg; i++) {
1006	
1007	/* rebuild rx buffer address from rsd handle */
1008	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1009	
1010	/* Make device DMA transfer visible to CPU.  */
1011	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1012				rpd->rsd[i].length, DMA_FROM_DEVICE);
1013	
1014	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1015
1016	/* Now let the device get at it again.  */
1017	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1018				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1019    }
1020
1021    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1022    
1023    if (pdu_len < fore200e_vcc->rx_min_pdu)
1024	fore200e_vcc->rx_min_pdu = pdu_len;
1025    if (pdu_len > fore200e_vcc->rx_max_pdu)
1026	fore200e_vcc->rx_max_pdu = pdu_len;
1027    fore200e_vcc->rx_pdu++;
1028
1029    /* push PDU */
1030    if (atm_charge(vcc, skb->truesize) == 0) {
1031
1032	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1033		vcc->itf, vcc->vpi, vcc->vci);
1034
1035	dev_kfree_skb_any(skb);
1036
1037	atomic_inc(&vcc->stats->rx_drop);
1038	return -ENOMEM;
1039    }
1040
 
 
1041    vcc->push(vcc, skb);
1042    atomic_inc(&vcc->stats->rx);
1043
 
 
1044    return 0;
1045}
1046
1047
1048static void
1049fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1050{
1051    struct host_bsq* bsq;
1052    struct buffer*   buffer;
1053    int              i;
1054    
1055    for (i = 0; i < rpd->nseg; i++) {
1056
1057	/* rebuild rx buffer address from rsd handle */
1058	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1059
1060	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1061
1062#ifdef FORE200E_BSQ_DEBUG
1063	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1064
1065	if (buffer->supplied == 0)
1066	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1067		   buffer->scheme, buffer->magn, buffer->index);
1068	buffer->supplied = 0;
1069#endif
1070
1071	/* re-insert the buffer into the free buffer list */
1072	buffer->next = bsq->freebuf;
1073	bsq->freebuf = buffer;
1074
1075	/* then increment the number of free rx buffers */
1076	bsq->freebuf_count++;
1077    }
1078}
1079
1080
1081static void
1082fore200e_rx_irq(struct fore200e* fore200e)
1083{
1084    struct host_rxq*        rxq = &fore200e->host_rxq;
1085    struct host_rxq_entry*  entry;
1086    struct atm_vcc*         vcc;
1087    struct fore200e_vc_map* vc_map;
1088
1089    for (;;) {
1090	
1091	entry = &rxq->host_entry[ rxq->head ];
1092
1093	/* no more received PDUs */
1094	if ((*entry->status & STATUS_COMPLETE) == 0)
1095	    break;
1096
1097	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1098
1099	if ((vc_map->vcc == NULL) ||
1100	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1101
1102	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1103		    fore200e->atm_dev->number,
1104		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1105	}
1106	else {
1107	    vcc = vc_map->vcc;
1108	    ASSERT(vcc);
1109
1110	    if ((*entry->status & STATUS_ERROR) == 0) {
1111
1112		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1113	    }
1114	    else {
1115		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1116			fore200e->atm_dev->number,
1117			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1118		atomic_inc(&vcc->stats->rx_err);
1119	    }
1120	}
1121
1122	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1123
1124	fore200e_collect_rpd(fore200e, entry->rpd);
1125
1126	/* rewrite the rpd address to ack the received PDU */
1127	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1128	*entry->status = STATUS_FREE;
1129
1130	fore200e_supply(fore200e);
1131    }
1132}
1133
1134
1135#ifndef FORE200E_USE_TASKLET
1136static void
1137fore200e_irq(struct fore200e* fore200e)
1138{
1139    unsigned long flags;
1140
1141    spin_lock_irqsave(&fore200e->q_lock, flags);
1142    fore200e_rx_irq(fore200e);
1143    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1144
1145    spin_lock_irqsave(&fore200e->q_lock, flags);
1146    fore200e_tx_irq(fore200e);
1147    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1148}
1149#endif
1150
1151
1152static irqreturn_t
1153fore200e_interrupt(int irq, void* dev)
1154{
1155    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1156
1157    if (fore200e->bus->irq_check(fore200e) == 0) {
1158	
1159	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1160	return IRQ_NONE;
1161    }
1162    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1163
1164#ifdef FORE200E_USE_TASKLET
1165    tasklet_schedule(&fore200e->tx_tasklet);
1166    tasklet_schedule(&fore200e->rx_tasklet);
1167#else
1168    fore200e_irq(fore200e);
1169#endif
1170    
1171    fore200e->bus->irq_ack(fore200e);
1172    return IRQ_HANDLED;
1173}
1174
1175
1176#ifdef FORE200E_USE_TASKLET
1177static void
1178fore200e_tx_tasklet(unsigned long data)
1179{
1180    struct fore200e* fore200e = (struct fore200e*) data;
1181    unsigned long flags;
1182
1183    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1184
1185    spin_lock_irqsave(&fore200e->q_lock, flags);
1186    fore200e_tx_irq(fore200e);
1187    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1188}
1189
1190
1191static void
1192fore200e_rx_tasklet(unsigned long data)
1193{
1194    struct fore200e* fore200e = (struct fore200e*) data;
1195    unsigned long    flags;
1196
1197    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1198
1199    spin_lock_irqsave(&fore200e->q_lock, flags);
1200    fore200e_rx_irq((struct fore200e*) data);
1201    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1202}
1203#endif
1204
1205
1206static int
1207fore200e_select_scheme(struct atm_vcc* vcc)
1208{
1209    /* fairly balance the VCs over (identical) buffer schemes */
1210    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1211
1212    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1213	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1214
1215    return scheme;
1216}
1217
1218
1219static int 
1220fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1221{
1222    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1223    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1224    struct activate_opcode   activ_opcode;
1225    struct deactivate_opcode deactiv_opcode;
1226    struct vpvc              vpvc;
1227    int                      ok;
1228    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1229
1230    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1231    
1232    if (activate) {
1233	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1234	
1235	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1236	activ_opcode.aal    = aal;
1237	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1238	activ_opcode.pad    = 0;
1239    }
1240    else {
1241	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1242	deactiv_opcode.pad    = 0;
1243    }
1244
1245    vpvc.vci = vcc->vci;
1246    vpvc.vpi = vcc->vpi;
1247
1248    *entry->status = STATUS_PENDING;
1249
1250    if (activate) {
1251
1252#ifdef FORE200E_52BYTE_AAL0_SDU
1253	mtu = 48;
1254#endif
1255	/* the MTU is not used by the cp, except in the case of AAL0 */
1256	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1257	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1258	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1259    }
1260    else {
1261	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1262	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1263    }
1264
1265    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1266
1267    *entry->status = STATUS_FREE;
1268
1269    if (ok == 0) {
1270	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1271	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1272	return -EIO;
1273    }
1274
1275    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1276	    activate ? "open" : "clos");
1277
1278    return 0;
1279}
1280
1281
1282#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1283
1284static void
1285fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1286{
1287    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1288    
1289	/* compute the data cells to idle cells ratio from the tx PCR */
1290	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1291	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1292    }
1293    else {
1294	/* disable rate control */
1295	rate->data_cells = rate->idle_cells = 0;
1296    }
1297}
1298
1299
1300static int
1301fore200e_open(struct atm_vcc *vcc)
1302{
1303    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1304    struct fore200e_vcc*    fore200e_vcc;
1305    struct fore200e_vc_map* vc_map;
1306    unsigned long	    flags;
1307    int			    vci = vcc->vci;
1308    short		    vpi = vcc->vpi;
1309
1310    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1311    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1312
1313    spin_lock_irqsave(&fore200e->q_lock, flags);
1314
1315    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1316    if (vc_map->vcc) {
1317
1318	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1319
1320	printk(FORE200E "VC %d.%d.%d already in use\n",
1321	       fore200e->atm_dev->number, vpi, vci);
1322
1323	return -EINVAL;
1324    }
1325
1326    vc_map->vcc = vcc;
1327
1328    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1329
1330    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1331    if (fore200e_vcc == NULL) {
1332	vc_map->vcc = NULL;
1333	return -ENOMEM;
1334    }
1335
1336    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1337	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1338	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1339	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1340	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1341	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1342	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1343    
1344    /* pseudo-CBR bandwidth requested? */
1345    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1346	
1347	mutex_lock(&fore200e->rate_mtx);
1348	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1349	    mutex_unlock(&fore200e->rate_mtx);
1350
1351	    kfree(fore200e_vcc);
1352	    vc_map->vcc = NULL;
1353	    return -EAGAIN;
1354	}
1355
1356	/* reserve bandwidth */
1357	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1358	mutex_unlock(&fore200e->rate_mtx);
1359    }
1360    
1361    vcc->itf = vcc->dev->number;
1362
1363    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1364    set_bit(ATM_VF_ADDR, &vcc->flags);
1365
1366    vcc->dev_data = fore200e_vcc;
1367    
1368    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1369
1370	vc_map->vcc = NULL;
1371
1372	clear_bit(ATM_VF_ADDR, &vcc->flags);
1373	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1374
1375	vcc->dev_data = NULL;
1376
1377	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1378
1379	kfree(fore200e_vcc);
1380	return -EINVAL;
1381    }
1382    
1383    /* compute rate control parameters */
1384    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1385	
1386	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1387	set_bit(ATM_VF_HASQOS, &vcc->flags);
1388
1389	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1390		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1391		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1392		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1393    }
1394    
1395    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1396    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1397    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1398
1399    /* new incarnation of the vcc */
1400    vc_map->incarn = ++fore200e->incarn_count;
1401
1402    /* VC unusable before this flag is set */
1403    set_bit(ATM_VF_READY, &vcc->flags);
1404
1405    return 0;
1406}
1407
1408
1409static void
1410fore200e_close(struct atm_vcc* vcc)
1411{
 
1412    struct fore200e_vcc*    fore200e_vcc;
1413    struct fore200e*        fore200e;
1414    struct fore200e_vc_map* vc_map;
1415    unsigned long           flags;
1416
1417    ASSERT(vcc);
1418    fore200e = FORE200E_DEV(vcc->dev);
1419
1420    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1421    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1422
1423    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1424
1425    clear_bit(ATM_VF_READY, &vcc->flags);
1426
1427    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1428
1429    spin_lock_irqsave(&fore200e->q_lock, flags);
1430
1431    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1432
1433    /* the vc is no longer considered as "in use" by fore200e_open() */
1434    vc_map->vcc = NULL;
1435
1436    vcc->itf = vcc->vci = vcc->vpi = 0;
1437
1438    fore200e_vcc = FORE200E_VCC(vcc);
1439    vcc->dev_data = NULL;
1440
1441    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1442
1443    /* release reserved bandwidth, if any */
1444    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1445
1446	mutex_lock(&fore200e->rate_mtx);
1447	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1448	mutex_unlock(&fore200e->rate_mtx);
1449
1450	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1451    }
1452
1453    clear_bit(ATM_VF_ADDR, &vcc->flags);
1454    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1455
1456    ASSERT(fore200e_vcc);
1457    kfree(fore200e_vcc);
1458}
1459
1460
1461static int
1462fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1463{
1464    struct fore200e*        fore200e;
1465    struct fore200e_vcc*    fore200e_vcc;
1466    struct fore200e_vc_map* vc_map;
1467    struct host_txq*        txq;
1468    struct host_txq_entry*  entry;
1469    struct tpd*             tpd;
1470    struct tpd_haddr        tpd_haddr;
1471    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1472    int                     tx_copy      = 0;
1473    int                     tx_len       = skb->len;
1474    u32*                    cell_header  = NULL;
1475    unsigned char*          skb_data;
1476    int                     skb_len;
1477    unsigned char*          data;
1478    unsigned long           flags;
1479
1480    if (!vcc)
1481        return -EINVAL;
1482
1483    fore200e = FORE200E_DEV(vcc->dev);
1484    fore200e_vcc = FORE200E_VCC(vcc);
1485
1486    if (!fore200e)
1487        return -EINVAL;
1488
1489    txq = &fore200e->host_txq;
1490    if (!fore200e_vcc)
1491        return -EINVAL;
1492
1493    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1494	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1495	dev_kfree_skb_any(skb);
1496	return -EINVAL;
1497    }
1498
1499#ifdef FORE200E_52BYTE_AAL0_SDU
1500    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1501	cell_header = (u32*) skb->data;
1502	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1503	skb_len     = tx_len = skb->len  - 4;
1504
1505	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1506    }
1507    else 
1508#endif
1509    {
1510	skb_data = skb->data;
1511	skb_len  = skb->len;
1512    }
1513    
1514    if (((unsigned long)skb_data) & 0x3) {
1515
1516	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1517	tx_copy = 1;
1518	tx_len  = skb_len;
1519    }
1520
1521    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1522
1523        /* this simply NUKES the PCA board */
1524	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1525	tx_copy = 1;
1526	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1527    }
1528    
1529    if (tx_copy) {
1530	data = kmalloc(tx_len, GFP_ATOMIC);
1531	if (data == NULL) {
1532	    if (vcc->pop) {
1533		vcc->pop(vcc, skb);
1534	    }
1535	    else {
1536		dev_kfree_skb_any(skb);
1537	    }
1538	    return -ENOMEM;
1539	}
1540
1541	memcpy(data, skb_data, skb_len);
1542	if (skb_len < tx_len)
1543	    memset(data + skb_len, 0x00, tx_len - skb_len);
1544    }
1545    else {
1546	data = skb_data;
1547    }
1548
1549    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1550    ASSERT(vc_map->vcc == vcc);
1551
1552  retry_here:
1553
1554    spin_lock_irqsave(&fore200e->q_lock, flags);
1555
1556    entry = &txq->host_entry[ txq->head ];
1557
1558    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1559
1560	/* try to free completed tx queue entries */
1561	fore200e_tx_irq(fore200e);
1562
1563	if (*entry->status != STATUS_FREE) {
1564
1565	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1566
1567	    /* retry once again? */
1568	    if (--retry > 0) {
1569		udelay(50);
1570		goto retry_here;
1571	    }
1572
1573	    atomic_inc(&vcc->stats->tx_err);
1574
1575	    fore200e->tx_sat++;
1576	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1577		    fore200e->name, fore200e->cp_queues->heartbeat);
1578	    if (vcc->pop) {
1579		vcc->pop(vcc, skb);
1580	    }
1581	    else {
1582		dev_kfree_skb_any(skb);
1583	    }
1584
1585	    if (tx_copy)
1586		kfree(data);
1587
1588	    return -ENOBUFS;
1589	}
1590    }
1591
1592    entry->incarn = vc_map->incarn;
1593    entry->vc_map = vc_map;
1594    entry->skb    = skb;
1595    entry->data   = tx_copy ? data : NULL;
1596
1597    tpd = entry->tpd;
1598    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1599					  DMA_TO_DEVICE);
1600    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1601	if (tx_copy)
1602	    kfree(data);
1603	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1604	return -ENOMEM;
1605    }
1606    tpd->tsd[ 0 ].length = tx_len;
1607
1608    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1609    txq->txing++;
1610
1611    /* The dma_map call above implies a dma_sync so the device can use it,
1612     * thus no explicit dma_sync call is necessary here.
1613     */
1614    
1615    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1616	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1617	    tpd->tsd[0].length, skb_len);
1618
1619    if (skb_len < fore200e_vcc->tx_min_pdu)
1620	fore200e_vcc->tx_min_pdu = skb_len;
1621    if (skb_len > fore200e_vcc->tx_max_pdu)
1622	fore200e_vcc->tx_max_pdu = skb_len;
1623    fore200e_vcc->tx_pdu++;
1624
1625    /* set tx rate control information */
1626    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1627    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1628
1629    if (cell_header) {
1630	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1631	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1632	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1633	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1634	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1635    }
1636    else {
1637	/* set the ATM header, common to all cells conveying the PDU */
1638	tpd->atm_header.clp = 0;
1639	tpd->atm_header.plt = 0;
1640	tpd->atm_header.vci = vcc->vci;
1641	tpd->atm_header.vpi = vcc->vpi;
1642	tpd->atm_header.gfc = 0;
1643    }
1644
1645    tpd->spec.length = tx_len;
1646    tpd->spec.nseg   = 1;
1647    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1648    tpd->spec.intr   = 1;
1649
1650    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1651    tpd_haddr.pad   = 0;
1652    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1653
1654    *entry->status = STATUS_PENDING;
1655    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1656
1657    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1658
1659    return 0;
1660}
1661
1662
1663static int
1664fore200e_getstats(struct fore200e* fore200e)
1665{
1666    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1667    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1668    struct stats_opcode     opcode;
1669    int                     ok;
1670    u32                     stats_dma_addr;
1671
1672    if (fore200e->stats == NULL) {
1673	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1674	if (fore200e->stats == NULL)
1675	    return -ENOMEM;
1676    }
1677    
1678    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1679				    sizeof(struct stats), DMA_FROM_DEVICE);
1680    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1681    	return -ENOMEM;
1682    
1683    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1684
1685    opcode.opcode = OPCODE_GET_STATS;
1686    opcode.pad    = 0;
1687
1688    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1689    
1690    *entry->status = STATUS_PENDING;
1691
1692    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1693
1694    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1695
1696    *entry->status = STATUS_FREE;
1697
1698    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1699    
1700    if (ok == 0) {
1701	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1702	return -EIO;
1703    }
1704
1705    return 0;
1706}
1707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708#if 0 /* currently unused */
1709static int
1710fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1711{
1712    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1713    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1714    struct oc3_opcode       opcode;
1715    int                     ok;
1716    u32                     oc3_regs_dma_addr;
1717
1718    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1719
1720    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1721
1722    opcode.opcode = OPCODE_GET_OC3;
1723    opcode.reg    = 0;
1724    opcode.value  = 0;
1725    opcode.mask   = 0;
1726
1727    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1728    
1729    *entry->status = STATUS_PENDING;
1730
1731    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1732
1733    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1734
1735    *entry->status = STATUS_FREE;
1736
1737    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738    
1739    if (ok == 0) {
1740	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1741	return -EIO;
1742    }
1743
1744    return 0;
1745}
1746#endif
1747
1748
1749static int
1750fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1751{
1752    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1753    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1754    struct oc3_opcode       opcode;
1755    int                     ok;
1756
1757    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1758
1759    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761    opcode.opcode = OPCODE_SET_OC3;
1762    opcode.reg    = reg;
1763    opcode.value  = value;
1764    opcode.mask   = mask;
1765
1766    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    if (ok == 0) {
1777	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1778	return -EIO;
1779    }
1780
1781    return 0;
1782}
1783
1784
1785static int
1786fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1787{
1788    u32 mct_value, mct_mask;
1789    int error;
1790
1791    if (!capable(CAP_NET_ADMIN))
1792	return -EPERM;
1793    
1794    switch (loop_mode) {
1795
1796    case ATM_LM_NONE:
1797	mct_value = 0; 
1798	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1799	break;
1800	
1801    case ATM_LM_LOC_PHY:
1802	mct_value = mct_mask = SUNI_MCT_DLE;
1803	break;
1804
1805    case ATM_LM_RMT_PHY:
1806	mct_value = mct_mask = SUNI_MCT_LLE;
1807	break;
1808
1809    default:
1810	return -EINVAL;
1811    }
1812
1813    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1814    if (error == 0)
1815	fore200e->loop_mode = loop_mode;
1816
1817    return error;
1818}
1819
1820
1821static int
1822fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1823{
1824    struct sonet_stats tmp;
1825
1826    if (fore200e_getstats(fore200e) < 0)
1827	return -EIO;
1828
1829    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1830    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1831    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1832    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1833    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1834    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1835    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1836    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1837	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1838	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1839    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1840	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1841	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1842
1843    if (arg)
1844	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1845    
1846    return 0;
1847}
1848
1849
1850static int
1851fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1852{
1853    struct fore200e* fore200e = FORE200E_DEV(dev);
1854    
1855    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1856
1857    switch (cmd) {
1858
1859    case SONET_GETSTAT:
1860	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1861
1862    case SONET_GETDIAG:
1863	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1864
1865    case ATM_SETLOOP:
1866	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1867
1868    case ATM_GETLOOP:
1869	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1870
1871    case ATM_QUERYLOOP:
1872	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1873    }
1874
1875    return -ENOSYS; /* not implemented */
1876}
1877
1878
1879static int
1880fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1881{
1882    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1883    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1884
1885    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1886	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1887	return -EINVAL;
1888    }
1889
1890    DPRINTK(2, "change_qos %d.%d.%d, "
1891	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1892	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1893	    "available_cell_rate = %u",
1894	    vcc->itf, vcc->vpi, vcc->vci,
1895	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1896	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1897	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1898	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1899	    flags, fore200e->available_cell_rate);
1900
1901    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1902
1903	mutex_lock(&fore200e->rate_mtx);
1904	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1905	    mutex_unlock(&fore200e->rate_mtx);
1906	    return -EAGAIN;
1907	}
1908
1909	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1910	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1911
1912	mutex_unlock(&fore200e->rate_mtx);
1913	
1914	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1915	
1916	/* update rate control parameters */
1917	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1918
1919	set_bit(ATM_VF_HASQOS, &vcc->flags);
1920
1921	return 0;
1922    }
1923    
1924    return -EINVAL;
1925}
1926    
1927
1928static int fore200e_irq_request(struct fore200e *fore200e)
1929{
1930    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1931
1932	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1933	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1934	return -EBUSY;
1935    }
1936
1937    printk(FORE200E "IRQ %s reserved for device %s\n",
1938	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939
1940#ifdef FORE200E_USE_TASKLET
1941    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1942    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1943#endif
1944
1945    fore200e->state = FORE200E_STATE_IRQ;
1946    return 0;
1947}
1948
1949
1950static int fore200e_get_esi(struct fore200e *fore200e)
1951{
1952    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1953    int ok, i;
1954
1955    if (!prom)
1956	return -ENOMEM;
1957
1958    ok = fore200e->bus->prom_read(fore200e, prom);
1959    if (ok < 0) {
1960	kfree(prom);
1961	return -EBUSY;
1962    }
1963	
1964    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1965	   fore200e->name, 
1966	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1967	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1968	
1969    for (i = 0; i < ESI_LEN; i++) {
1970	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1971    }
1972    
1973    kfree(prom);
1974
1975    return 0;
1976}
1977
1978
1979static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1980{
1981    int scheme, magn, nbr, size, i;
1982
1983    struct host_bsq* bsq;
1984    struct buffer*   buffer;
1985
1986    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1987	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1988
1989	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1990
1991	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1992	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1993
1994	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1995
1996	    /* allocate the array of receive buffers */
1997	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
1998                                           GFP_KERNEL);
1999
2000	    if (buffer == NULL)
2001		return -ENOMEM;
2002
2003	    bsq->freebuf = NULL;
2004
2005	    for (i = 0; i < nbr; i++) {
2006
2007		buffer[ i ].scheme = scheme;
2008		buffer[ i ].magn   = magn;
2009#ifdef FORE200E_BSQ_DEBUG
2010		buffer[ i ].index  = i;
2011		buffer[ i ].supplied = 0;
2012#endif
2013
2014		/* allocate the receive buffer body */
2015		if (fore200e_chunk_alloc(fore200e,
2016					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2017					 DMA_FROM_DEVICE) < 0) {
2018		    
2019		    while (i > 0)
2020			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2021		    kfree(buffer);
2022		    
2023		    return -ENOMEM;
2024		}
2025
2026		/* insert the buffer into the free buffer list */
2027		buffer[ i ].next = bsq->freebuf;
2028		bsq->freebuf = &buffer[ i ];
2029	    }
2030	    /* all the buffers are free, initially */
2031	    bsq->freebuf_count = nbr;
2032
2033#ifdef FORE200E_BSQ_DEBUG
2034	    bsq_audit(3, bsq, scheme, magn);
2035#endif
2036	}
2037    }
2038
2039    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2040    return 0;
2041}
2042
2043
2044static int fore200e_init_bs_queue(struct fore200e *fore200e)
2045{
2046    int scheme, magn, i;
2047
2048    struct host_bsq*     bsq;
2049    struct cp_bsq_entry __iomem * cp_entry;
2050
2051    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2052	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2053
2054	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2055
2056	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2057
2058	    /* allocate and align the array of status words */
2059	    if (fore200e_dma_chunk_alloc(fore200e,
2060					       &bsq->status,
2061					       sizeof(enum status), 
2062					       QUEUE_SIZE_BS,
2063					       fore200e->bus->status_alignment) < 0) {
2064		return -ENOMEM;
2065	    }
2066
2067	    /* allocate and align the array of receive buffer descriptors */
2068	    if (fore200e_dma_chunk_alloc(fore200e,
2069					       &bsq->rbd_block,
2070					       sizeof(struct rbd_block),
2071					       QUEUE_SIZE_BS,
2072					       fore200e->bus->descr_alignment) < 0) {
2073		
2074		fore200e_dma_chunk_free(fore200e, &bsq->status);
2075		return -ENOMEM;
2076	    }
2077	    
2078	    /* get the base address of the cp resident buffer supply queue entries */
2079	    cp_entry = fore200e->virt_base + 
2080		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2081	    
2082	    /* fill the host resident and cp resident buffer supply queue entries */
2083	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2084		
2085		bsq->host_entry[ i ].status = 
2086		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2087	        bsq->host_entry[ i ].rbd_block =
2088		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2089		bsq->host_entry[ i ].rbd_block_dma =
2090		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2091		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2092		
2093		*bsq->host_entry[ i ].status = STATUS_FREE;
2094		
2095		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2096				     &cp_entry[ i ].status_haddr);
2097	    }
2098	}
2099    }
2100
2101    fore200e->state = FORE200E_STATE_INIT_BSQ;
2102    return 0;
2103}
2104
2105
2106static int fore200e_init_rx_queue(struct fore200e *fore200e)
2107{
2108    struct host_rxq*     rxq =  &fore200e->host_rxq;
2109    struct cp_rxq_entry __iomem * cp_entry;
2110    int i;
2111
2112    DPRINTK(2, "receive queue is being initialized\n");
2113
2114    /* allocate and align the array of status words */
2115    if (fore200e_dma_chunk_alloc(fore200e,
2116				       &rxq->status,
2117				       sizeof(enum status), 
2118				       QUEUE_SIZE_RX,
2119				       fore200e->bus->status_alignment) < 0) {
2120	return -ENOMEM;
2121    }
2122
2123    /* allocate and align the array of receive PDU descriptors */
2124    if (fore200e_dma_chunk_alloc(fore200e,
2125				       &rxq->rpd,
2126				       sizeof(struct rpd), 
2127				       QUEUE_SIZE_RX,
2128				       fore200e->bus->descr_alignment) < 0) {
2129	
2130	fore200e_dma_chunk_free(fore200e, &rxq->status);
2131	return -ENOMEM;
2132    }
2133
2134    /* get the base address of the cp resident rx queue entries */
2135    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2136
2137    /* fill the host resident and cp resident rx entries */
2138    for (i=0; i < QUEUE_SIZE_RX; i++) {
2139	
2140	rxq->host_entry[ i ].status = 
2141	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2142	rxq->host_entry[ i ].rpd = 
2143	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2144	rxq->host_entry[ i ].rpd_dma = 
2145	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2146	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2147
2148	*rxq->host_entry[ i ].status = STATUS_FREE;
2149
2150	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2151			     &cp_entry[ i ].status_haddr);
2152
2153	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2154			     &cp_entry[ i ].rpd_haddr);
2155    }
2156
2157    /* set the head entry of the queue */
2158    rxq->head = 0;
2159
2160    fore200e->state = FORE200E_STATE_INIT_RXQ;
2161    return 0;
2162}
2163
2164
2165static int fore200e_init_tx_queue(struct fore200e *fore200e)
2166{
2167    struct host_txq*     txq =  &fore200e->host_txq;
2168    struct cp_txq_entry __iomem * cp_entry;
2169    int i;
2170
2171    DPRINTK(2, "transmit queue is being initialized\n");
2172
2173    /* allocate and align the array of status words */
2174    if (fore200e_dma_chunk_alloc(fore200e,
2175				       &txq->status,
2176				       sizeof(enum status), 
2177				       QUEUE_SIZE_TX,
2178				       fore200e->bus->status_alignment) < 0) {
2179	return -ENOMEM;
2180    }
2181
2182    /* allocate and align the array of transmit PDU descriptors */
2183    if (fore200e_dma_chunk_alloc(fore200e,
2184				       &txq->tpd,
2185				       sizeof(struct tpd), 
2186				       QUEUE_SIZE_TX,
2187				       fore200e->bus->descr_alignment) < 0) {
2188	
2189	fore200e_dma_chunk_free(fore200e, &txq->status);
2190	return -ENOMEM;
2191    }
2192
2193    /* get the base address of the cp resident tx queue entries */
2194    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2195
2196    /* fill the host resident and cp resident tx entries */
2197    for (i=0; i < QUEUE_SIZE_TX; i++) {
2198	
2199	txq->host_entry[ i ].status = 
2200	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2201	txq->host_entry[ i ].tpd = 
2202	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2203	txq->host_entry[ i ].tpd_dma  = 
2204                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2205	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2206
2207	*txq->host_entry[ i ].status = STATUS_FREE;
2208	
2209	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2210			     &cp_entry[ i ].status_haddr);
2211	
2212        /* although there is a one-to-one mapping of tx queue entries and tpds,
2213	   we do not write here the DMA (physical) base address of each tpd into
2214	   the related cp resident entry, because the cp relies on this write
2215	   operation to detect that a new pdu has been submitted for tx */
2216    }
2217
2218    /* set the head and tail entries of the queue */
2219    txq->head = 0;
2220    txq->tail = 0;
2221
2222    fore200e->state = FORE200E_STATE_INIT_TXQ;
2223    return 0;
2224}
2225
2226
2227static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2228{
2229    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2230    struct cp_cmdq_entry __iomem * cp_entry;
2231    int i;
2232
2233    DPRINTK(2, "command queue is being initialized\n");
2234
2235    /* allocate and align the array of status words */
2236    if (fore200e_dma_chunk_alloc(fore200e,
2237				       &cmdq->status,
2238				       sizeof(enum status), 
2239				       QUEUE_SIZE_CMD,
2240				       fore200e->bus->status_alignment) < 0) {
2241	return -ENOMEM;
2242    }
2243    
2244    /* get the base address of the cp resident cmd queue entries */
2245    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2246
2247    /* fill the host resident and cp resident cmd entries */
2248    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2249	
2250	cmdq->host_entry[ i ].status   = 
2251                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2252	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2253
2254	*cmdq->host_entry[ i ].status = STATUS_FREE;
2255
2256	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2257                             &cp_entry[ i ].status_haddr);
2258    }
2259
2260    /* set the head entry of the queue */
2261    cmdq->head = 0;
2262
2263    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2264    return 0;
2265}
2266
2267
2268static void fore200e_param_bs_queue(struct fore200e *fore200e,
2269				    enum buffer_scheme scheme,
2270				    enum buffer_magn magn, int queue_length,
2271				    int pool_size, int supply_blksize)
2272{
2273    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2274
2275    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2276    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2277    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2278    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2279}
2280
2281
2282static int fore200e_initialize(struct fore200e *fore200e)
2283{
2284    struct cp_queues __iomem * cpq;
2285    int               ok, scheme, magn;
2286
2287    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2288
2289    mutex_init(&fore200e->rate_mtx);
2290    spin_lock_init(&fore200e->q_lock);
2291
2292    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2293
2294    /* enable cp to host interrupts */
2295    fore200e->bus->write(1, &cpq->imask);
2296
2297    if (fore200e->bus->irq_enable)
2298	fore200e->bus->irq_enable(fore200e);
2299    
2300    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2301
2302    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2303    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2304    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2305
2306    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2307    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2308
2309    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2310	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2311	    fore200e_param_bs_queue(fore200e, scheme, magn,
2312				    QUEUE_SIZE_BS, 
2313				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2314				    RBD_BLK_SIZE);
2315
2316    /* issue the initialize command */
2317    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2318    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2319
2320    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2321    if (ok == 0) {
2322	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2323	return -ENODEV;
2324    }
2325
2326    printk(FORE200E "device %s initialized\n", fore200e->name);
2327
2328    fore200e->state = FORE200E_STATE_INITIALIZE;
2329    return 0;
2330}
2331
2332
2333static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2334{
2335    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2336
2337#if 0
2338    printk("%c", c);
2339#endif
2340    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2341}
2342
2343
2344static int fore200e_monitor_getc(struct fore200e *fore200e)
2345{
2346    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2347    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2348    int                c;
2349
2350    while (time_before(jiffies, timeout)) {
2351
2352	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2353
2354	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2355
2356	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2357#if 0
2358	    printk("%c", c & 0xFF);
2359#endif
2360	    return c & 0xFF;
2361	}
2362    }
2363
2364    return -1;
2365}
2366
2367
2368static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2369{
2370    while (*str) {
2371
2372	/* the i960 monitor doesn't accept any new character if it has something to say */
2373	while (fore200e_monitor_getc(fore200e) >= 0);
2374	
2375	fore200e_monitor_putc(fore200e, *str++);
2376    }
2377
2378    while (fore200e_monitor_getc(fore200e) >= 0);
2379}
2380
2381#ifdef __LITTLE_ENDIAN
2382#define FW_EXT ".bin"
2383#else
2384#define FW_EXT "_ecd.bin2"
2385#endif
2386
2387static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2388{
2389    const struct firmware *firmware;
 
2390    const struct fw_header *fw_header;
2391    const __le32 *fw_data;
2392    u32 fw_size;
2393    u32 __iomem *load_addr;
2394    char buf[48];
2395    int err;
 
 
 
 
 
 
 
 
 
2396
2397    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2398    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2399	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2400	return err;
2401    }
2402
2403    fw_data = (const __le32 *)firmware->data;
2404    fw_size = firmware->size / sizeof(u32);
2405    fw_header = (const struct fw_header *)firmware->data;
2406    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2407
2408    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2409	    fore200e->name, load_addr, fw_size);
2410
2411    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2412	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2413	goto release;
2414    }
2415
2416    for (; fw_size--; fw_data++, load_addr++)
2417	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2418
2419    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2420
2421#if defined(__sparc_v9__)
2422    /* reported to be required by SBA cards on some sparc64 hosts */
2423    fore200e_spin(100);
2424#endif
2425
2426    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2427    fore200e_monitor_puts(fore200e, buf);
2428
2429    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2430	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2431	goto release;
2432    }
2433
2434    printk(FORE200E "device %s firmware started\n", fore200e->name);
2435
2436    fore200e->state = FORE200E_STATE_START_FW;
2437    err = 0;
2438
2439release:
2440    release_firmware(firmware);
2441    return err;
2442}
2443
2444
2445static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2446{
2447    struct atm_dev* atm_dev;
2448
2449    DPRINTK(2, "device %s being registered\n", fore200e->name);
2450
2451    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2452                               -1, NULL);
2453    if (atm_dev == NULL) {
2454	printk(FORE200E "unable to register device %s\n", fore200e->name);
2455	return -ENODEV;
2456    }
2457
2458    atm_dev->dev_data = fore200e;
2459    fore200e->atm_dev = atm_dev;
2460
2461    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2462    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2463
2464    fore200e->available_cell_rate = ATM_OC3_PCR;
2465
2466    fore200e->state = FORE200E_STATE_REGISTER;
2467    return 0;
2468}
2469
2470
2471static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2472{
2473    if (fore200e_register(fore200e, parent) < 0)
2474	return -ENODEV;
2475    
2476    if (fore200e->bus->configure(fore200e) < 0)
2477	return -ENODEV;
2478
2479    if (fore200e->bus->map(fore200e) < 0)
2480	return -ENODEV;
2481
2482    if (fore200e_reset(fore200e, 1) < 0)
2483	return -ENODEV;
2484
2485    if (fore200e_load_and_start_fw(fore200e) < 0)
2486	return -ENODEV;
2487
2488    if (fore200e_initialize(fore200e) < 0)
2489	return -ENODEV;
2490
2491    if (fore200e_init_cmd_queue(fore200e) < 0)
2492	return -ENOMEM;
2493
2494    if (fore200e_init_tx_queue(fore200e) < 0)
2495	return -ENOMEM;
2496
2497    if (fore200e_init_rx_queue(fore200e) < 0)
2498	return -ENOMEM;
2499
2500    if (fore200e_init_bs_queue(fore200e) < 0)
2501	return -ENOMEM;
2502
2503    if (fore200e_alloc_rx_buf(fore200e) < 0)
2504	return -ENOMEM;
2505
2506    if (fore200e_get_esi(fore200e) < 0)
2507	return -EIO;
2508
2509    if (fore200e_irq_request(fore200e) < 0)
2510	return -EBUSY;
2511
2512    fore200e_supply(fore200e);
2513
2514    /* all done, board initialization is now complete */
2515    fore200e->state = FORE200E_STATE_COMPLETE;
2516    return 0;
2517}
2518
2519#ifdef CONFIG_SBUS
 
2520static int fore200e_sba_probe(struct platform_device *op)
2521{
 
 
2522	struct fore200e *fore200e;
2523	static int index = 0;
2524	int err;
2525
 
 
 
 
 
2526	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2527	if (!fore200e)
2528		return -ENOMEM;
2529
2530	fore200e->bus = &fore200e_sbus_ops;
2531	fore200e->dev = &op->dev;
2532	fore200e->irq = op->archdata.irqs[0];
2533	fore200e->phys_base = op->resource[0].start;
2534
2535	sprintf(fore200e->name, "SBA-200E-%d", index);
2536
2537	err = fore200e_init(fore200e, &op->dev);
2538	if (err < 0) {
2539		fore200e_shutdown(fore200e);
2540		kfree(fore200e);
2541		return err;
2542	}
2543
2544	index++;
2545	dev_set_drvdata(&op->dev, fore200e);
2546
2547	return 0;
2548}
2549
2550static void fore200e_sba_remove(struct platform_device *op)
2551{
2552	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2553
2554	fore200e_shutdown(fore200e);
2555	kfree(fore200e);
 
 
2556}
2557
2558static const struct of_device_id fore200e_sba_match[] = {
2559	{
2560		.name = SBA200E_PROM_NAME,
 
2561	},
2562	{},
2563};
2564MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2565
2566static struct platform_driver fore200e_sba_driver = {
2567	.driver = {
2568		.name = "fore_200e",
2569		.of_match_table = fore200e_sba_match,
2570	},
2571	.probe		= fore200e_sba_probe,
2572	.remove		= fore200e_sba_remove,
2573};
2574#endif
2575
2576#ifdef CONFIG_PCI
2577static int fore200e_pca_detect(struct pci_dev *pci_dev,
2578			       const struct pci_device_id *pci_ent)
2579{
 
2580    struct fore200e* fore200e;
2581    int err = 0;
2582    static int index = 0;
2583
2584    if (pci_enable_device(pci_dev)) {
2585	err = -EINVAL;
2586	goto out;
2587    }
2588
2589    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2590	err = -EINVAL;
2591	goto out;
2592    }
2593    
2594    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2595    if (fore200e == NULL) {
2596	err = -ENOMEM;
2597	goto out_disable;
2598    }
2599
2600    fore200e->bus       = &fore200e_pci_ops;
2601    fore200e->dev	= &pci_dev->dev;
2602    fore200e->irq       = pci_dev->irq;
2603    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2604
2605    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2606
2607    pci_set_master(pci_dev);
2608
2609    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
 
2610	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2611
2612    sprintf(fore200e->name, "PCA-200E-%d", index);
2613
2614    err = fore200e_init(fore200e, &pci_dev->dev);
2615    if (err < 0) {
2616	fore200e_shutdown(fore200e);
2617	goto out_free;
2618    }
2619
2620    ++index;
2621    pci_set_drvdata(pci_dev, fore200e);
2622
2623out:
2624    return err;
2625
2626out_free:
2627    kfree(fore200e);
2628out_disable:
2629    pci_disable_device(pci_dev);
2630    goto out;
2631}
2632
2633
2634static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2635{
2636    struct fore200e *fore200e;
2637
2638    fore200e = pci_get_drvdata(pci_dev);
2639
2640    fore200e_shutdown(fore200e);
2641    kfree(fore200e);
2642    pci_disable_device(pci_dev);
2643}
2644
2645
2646static const struct pci_device_id fore200e_pca_tbl[] = {
2647    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
 
2648    { 0, }
2649};
2650
2651MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2652
2653static struct pci_driver fore200e_pca_driver = {
2654    .name =     "fore_200e",
2655    .probe =    fore200e_pca_detect,
2656    .remove =   fore200e_pca_remove_one,
2657    .id_table = fore200e_pca_tbl,
2658};
2659#endif
2660
2661static int __init fore200e_module_init(void)
2662{
2663	int err = 0;
2664
2665	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2666
2667#ifdef CONFIG_SBUS
2668	err = platform_driver_register(&fore200e_sba_driver);
2669	if (err)
2670		return err;
2671#endif
2672
2673#ifdef CONFIG_PCI
2674	err = pci_register_driver(&fore200e_pca_driver);
2675#endif
2676
2677#ifdef CONFIG_SBUS
2678	if (err)
2679		platform_driver_unregister(&fore200e_sba_driver);
2680#endif
2681
2682	return err;
2683}
2684
2685static void __exit fore200e_module_cleanup(void)
2686{
2687#ifdef CONFIG_PCI
2688	pci_unregister_driver(&fore200e_pca_driver);
2689#endif
2690#ifdef CONFIG_SBUS
2691	platform_driver_unregister(&fore200e_sba_driver);
2692#endif
2693}
2694
2695static int
2696fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2697{
2698    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2699    struct fore200e_vcc* fore200e_vcc;
2700    struct atm_vcc*      vcc;
2701    int                  i, len, left = *pos;
2702    unsigned long        flags;
2703
2704    if (!left--) {
2705
2706	if (fore200e_getstats(fore200e) < 0)
2707	    return -EIO;
2708
2709	len = sprintf(page,"\n"
2710		       " device:\n"
2711		       "   internal name:\t\t%s\n", fore200e->name);
2712
2713	/* print bus-specific information */
2714	if (fore200e->bus->proc_read)
2715	    len += fore200e->bus->proc_read(fore200e, page + len);
2716	
2717	len += sprintf(page + len,
2718		"   interrupt line:\t\t%s\n"
2719		"   physical base address:\t0x%p\n"
2720		"   virtual base address:\t0x%p\n"
2721		"   factory address (ESI):\t%pM\n"
2722		"   board serial number:\t\t%d\n\n",
2723		fore200e_irq_itoa(fore200e->irq),
2724		(void*)fore200e->phys_base,
2725		fore200e->virt_base,
2726		fore200e->esi,
2727		fore200e->esi[4] * 256 + fore200e->esi[5]);
2728
2729	return len;
2730    }
2731
2732    if (!left--)
2733	return sprintf(page,
2734		       "   free small bufs, scheme 1:\t%d\n"
2735		       "   free large bufs, scheme 1:\t%d\n"
2736		       "   free small bufs, scheme 2:\t%d\n"
2737		       "   free large bufs, scheme 2:\t%d\n",
2738		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2739		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2740		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2741		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2742
2743    if (!left--) {
2744	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2745
2746	len = sprintf(page,"\n\n"
2747		      " cell processor:\n"
2748		      "   heartbeat state:\t\t");
2749	
2750	if (hb >> 16 != 0xDEAD)
2751	    len += sprintf(page + len, "0x%08x\n", hb);
2752	else
2753	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2754
2755	return len;
2756    }
2757
2758    if (!left--) {
2759	static const char* media_name[] = {
2760	    "unshielded twisted pair",
2761	    "multimode optical fiber ST",
2762	    "multimode optical fiber SC",
2763	    "single-mode optical fiber ST",
2764	    "single-mode optical fiber SC",
2765	    "unknown"
2766	};
2767
2768	static const char* oc3_mode[] = {
2769	    "normal operation",
2770	    "diagnostic loopback",
2771	    "line loopback",
2772	    "unknown"
2773	};
2774
2775	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2776	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2777	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2778	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2779	u32 oc3_index;
2780
2781	if (media_index > 4)
2782		media_index = 5;
2783	
2784	switch (fore200e->loop_mode) {
2785	    case ATM_LM_NONE:    oc3_index = 0;
2786		                 break;
2787	    case ATM_LM_LOC_PHY: oc3_index = 1;
2788		                 break;
2789	    case ATM_LM_RMT_PHY: oc3_index = 2;
2790		                 break;
2791	    default:             oc3_index = 3;
2792	}
2793
2794	return sprintf(page,
2795		       "   firmware release:\t\t%d.%d.%d\n"
2796		       "   monitor release:\t\t%d.%d\n"
2797		       "   media type:\t\t\t%s\n"
2798		       "   OC-3 revision:\t\t0x%x\n"
2799                       "   OC-3 mode:\t\t\t%s",
2800		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2801		       mon960_release >> 16, mon960_release << 16 >> 16,
2802		       media_name[ media_index ],
2803		       oc3_revision,
2804		       oc3_mode[ oc3_index ]);
2805    }
2806
2807    if (!left--) {
2808	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2809
2810	return sprintf(page,
2811		       "\n\n"
2812		       " monitor:\n"
2813		       "   version number:\t\t%d\n"
2814		       "   boot status word:\t\t0x%08x\n",
2815		       fore200e->bus->read(&cp_monitor->mon_version),
2816		       fore200e->bus->read(&cp_monitor->bstat));
2817    }
2818
2819    if (!left--)
2820	return sprintf(page,
2821		       "\n"
2822		       " device statistics:\n"
2823		       "  4b5b:\n"
2824		       "     crc_header_errors:\t\t%10u\n"
2825		       "     framing_errors:\t\t%10u\n",
2826		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2827		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2828    
2829    if (!left--)
2830	return sprintf(page, "\n"
2831		       "  OC-3:\n"
2832		       "     section_bip8_errors:\t%10u\n"
2833		       "     path_bip8_errors:\t\t%10u\n"
2834		       "     line_bip24_errors:\t\t%10u\n"
2835		       "     line_febe_errors:\t\t%10u\n"
2836		       "     path_febe_errors:\t\t%10u\n"
2837		       "     corr_hcs_errors:\t\t%10u\n"
2838		       "     ucorr_hcs_errors:\t\t%10u\n",
2839		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2840		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2841		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2842		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2843		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2844		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2845		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2846
2847    if (!left--)
2848	return sprintf(page,"\n"
2849		       "   ATM:\t\t\t\t     cells\n"
2850		       "     TX:\t\t\t%10u\n"
2851		       "     RX:\t\t\t%10u\n"
2852		       "     vpi out of range:\t\t%10u\n"
2853		       "     vpi no conn:\t\t%10u\n"
2854		       "     vci out of range:\t\t%10u\n"
2855		       "     vci no conn:\t\t%10u\n",
2856		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2857		       be32_to_cpu(fore200e->stats->atm.cells_received),
2858		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2859		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2860		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2861		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2862    
2863    if (!left--)
2864	return sprintf(page,"\n"
2865		       "   AAL0:\t\t\t     cells\n"
2866		       "     TX:\t\t\t%10u\n"
2867		       "     RX:\t\t\t%10u\n"
2868		       "     dropped:\t\t\t%10u\n",
2869		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2870		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2871		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2872    
2873    if (!left--)
2874	return sprintf(page,"\n"
2875		       "   AAL3/4:\n"
2876		       "     SAR sublayer:\t\t     cells\n"
2877		       "       TX:\t\t\t%10u\n"
2878		       "       RX:\t\t\t%10u\n"
2879		       "       dropped:\t\t\t%10u\n"
2880		       "       CRC errors:\t\t%10u\n"
2881		       "       protocol errors:\t\t%10u\n\n"
2882		       "     CS  sublayer:\t\t      PDUs\n"
2883		       "       TX:\t\t\t%10u\n"
2884		       "       RX:\t\t\t%10u\n"
2885		       "       dropped:\t\t\t%10u\n"
2886		       "       protocol errors:\t\t%10u\n",
2887		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2888		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2889		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2890		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2891		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2892		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2893		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2894		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2895		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2896    
2897    if (!left--)
2898	return sprintf(page,"\n"
2899		       "   AAL5:\n"
2900		       "     SAR sublayer:\t\t     cells\n"
2901		       "       TX:\t\t\t%10u\n"
2902		       "       RX:\t\t\t%10u\n"
2903		       "       dropped:\t\t\t%10u\n"
2904		       "       congestions:\t\t%10u\n\n"
2905		       "     CS  sublayer:\t\t      PDUs\n"
2906		       "       TX:\t\t\t%10u\n"
2907		       "       RX:\t\t\t%10u\n"
2908		       "       dropped:\t\t\t%10u\n"
2909		       "       CRC errors:\t\t%10u\n"
2910		       "       protocol errors:\t\t%10u\n",
2911		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2912		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2913		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2914		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2915		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2916		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2917		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2918		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2919		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2920    
2921    if (!left--)
2922	return sprintf(page,"\n"
2923		       "   AUX:\t\t       allocation failures\n"
2924		       "     small b1:\t\t\t%10u\n"
2925		       "     large b1:\t\t\t%10u\n"
2926		       "     small b2:\t\t\t%10u\n"
2927		       "     large b2:\t\t\t%10u\n"
2928		       "     RX PDUs:\t\t\t%10u\n"
2929		       "     TX PDUs:\t\t\t%10lu\n",
2930		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2931		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2932		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2933		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2934		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2935		       fore200e->tx_sat);
2936    
2937    if (!left--)
2938	return sprintf(page,"\n"
2939		       " receive carrier:\t\t\t%s\n",
2940		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2941    
2942    if (!left--) {
2943        return sprintf(page,"\n"
2944		       " VCCs:\n  address   VPI VCI   AAL "
2945		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2946    }
2947
2948    for (i = 0; i < NBR_CONNECT; i++) {
2949
2950	vcc = fore200e->vc_map[i].vcc;
2951
2952	if (vcc == NULL)
2953	    continue;
2954
2955	spin_lock_irqsave(&fore200e->q_lock, flags);
2956
2957	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2958
2959	    fore200e_vcc = FORE200E_VCC(vcc);
2960	    ASSERT(fore200e_vcc);
2961
2962	    len = sprintf(page,
2963			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2964			  vcc,
2965			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2966			  fore200e_vcc->tx_pdu,
2967			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2968			  fore200e_vcc->tx_max_pdu,
2969			  fore200e_vcc->rx_pdu,
2970			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2971			  fore200e_vcc->rx_max_pdu);
2972
2973	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2974	    return len;
2975	}
2976
2977	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2978    }
2979    
2980    return 0;
2981}
2982
2983module_init(fore200e_module_init);
2984module_exit(fore200e_module_cleanup);
2985
2986
2987static const struct atmdev_ops fore200e_ops = {
 
2988	.open       = fore200e_open,
2989	.close      = fore200e_close,
2990	.ioctl      = fore200e_ioctl,
 
 
2991	.send       = fore200e_send,
2992	.change_qos = fore200e_change_qos,
2993	.proc_read  = fore200e_proc_read,
2994	.owner      = THIS_MODULE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995};
2996
2997MODULE_LICENSE("GPL");
2998#ifdef CONFIG_PCI
2999#ifdef __LITTLE_ENDIAN__
3000MODULE_FIRMWARE("pca200e.bin");
3001#else
3002MODULE_FIRMWARE("pca200e_ecd.bin2");
3003#endif
3004#endif /* CONFIG_PCI */
3005#ifdef CONFIG_SBUS
3006MODULE_FIRMWARE("sba200e_ecd.bin2");
3007#endif
v4.10.11
 
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
 
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <linux/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100				    __func__, __LINE__, #expr); \
 101			     panic(FORE200E "%s", __func__); \
 102			 }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183	alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191	return -ENOMEM;
 192
 193    if (alignment > 0)
 194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 
 
 
 
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 
 
 
 210
 211    kfree(chunk->alloc_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212}
 213
 
 
 
 
 
 
 
 
 
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232	    break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239	       *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254	if ((ok = (fore200e->bus->read(addr) == val)))
 255	    break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262	       fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283		    struct chunk* data = &buffer[ nbr ].data;
 284
 285		    if (data->alloc_addr != NULL)
 286			fore200e_chunk_free(fore200e, data);
 287		}
 288	    }
 289	}
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304	    
 305	    if (status->alloc_addr)
 306		fore200e->bus->dma_chunk_free(fore200e, status);
 307	    
 308	    if (rbd_block->alloc_addr)
 309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310	}
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328	if (ok == 0) {
 329	    
 330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331	    return -ENODEV;
 332	}
 333
 334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335	
 336	fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347	   fore200e->name, fore200e->phys_base, 
 348	   fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351	/* first, reset the board to prevent further interrupts or data transfers */
 352	fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359	kfree(fore200e->stats);
 360
 
 361    case FORE200E_STATE_IRQ:
 362	free_irq(fore200e->irq, fore200e->atm_dev);
 363
 
 364    case FORE200E_STATE_ALLOC_BUF:
 365	fore200e_free_rx_buf(fore200e);
 366
 
 367    case FORE200E_STATE_INIT_BSQ:
 368	fore200e_uninit_bs_queue(fore200e);
 369
 
 370    case FORE200E_STATE_INIT_RXQ:
 371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 
 374    case FORE200E_STATE_INIT_TXQ:
 375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 
 378    case FORE200E_STATE_INIT_CMDQ:
 379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 
 381    case FORE200E_STATE_INITIALIZE:
 382	/* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385	/* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388	/* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391	fore200e->bus->unmap(fore200e);
 392
 
 393    case FORE200E_STATE_CONFIGURE:
 394	/* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397	/* XXX shouldn't we *start* by deregistering the device? */
 398	atm_dev_deregister(fore200e->atm_dev);
 399
 
 400    case FORE200E_STATE_BLANK:
 401	/* nothing to do for that state */
 402	break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431	    virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441	    dma_addr, size, direction);
 442
 443    dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469			     int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
 474					   chunk->alloc_size,
 475					   &chunk->dma_addr,
 476					   GFP_KERNEL);
 477    
 478    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 479	return -ENOMEM;
 480
 481    chunk->align_addr = chunk->alloc_addr;
 482    
 483    return 0;
 484}
 485
 486
 487/* free a DMA consistent chunk of memory */
 488
 489static void
 490fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 491{
 492    dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
 493			chunk->alloc_size,
 494			chunk->alloc_addr,
 495			chunk->dma_addr);
 496}
 497
 498
 499static int
 500fore200e_pca_irq_check(struct fore200e* fore200e)
 501{
 502    /* this is a 1 bit register */
 503    int irq_posted = readl(fore200e->regs.pca.psr);
 504
 505#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 506    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 507	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 508    }
 509#endif
 510
 511    return irq_posted;
 512}
 513
 514
 515static void
 516fore200e_pca_irq_ack(struct fore200e* fore200e)
 517{
 518    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 519}
 520
 521
 522static void
 523fore200e_pca_reset(struct fore200e* fore200e)
 524{
 525    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 526    fore200e_spin(10);
 527    writel(0, fore200e->regs.pca.hcr);
 528}
 529
 530
 531static int fore200e_pca_map(struct fore200e* fore200e)
 532{
 533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 534
 535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 536    
 537    if (fore200e->virt_base == NULL) {
 538	printk(FORE200E "can't map device %s\n", fore200e->name);
 539	return -EFAULT;
 540    }
 541
 542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 543
 544    /* gain access to the PCA specific registers  */
 545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 548
 549    fore200e->state = FORE200E_STATE_MAP;
 550    return 0;
 551}
 552
 553
 554static void
 555fore200e_pca_unmap(struct fore200e* fore200e)
 556{
 557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 558
 559    if (fore200e->virt_base != NULL)
 560	iounmap(fore200e->virt_base);
 561}
 562
 563
 564static int fore200e_pca_configure(struct fore200e *fore200e)
 565{
 566    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 567    u8              master_ctrl, latency;
 568
 569    DPRINTK(2, "device %s being configured\n", fore200e->name);
 570
 571    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 572	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 573	return -EIO;
 574    }
 575
 576    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 577
 578    master_ctrl = master_ctrl
 579#if defined(__BIG_ENDIAN)
 580	/* request the PCA board to convert the endianess of slave RAM accesses */
 581	| PCA200E_CTRL_CONVERT_ENDIAN
 582#endif
 583#if 0
 584        | PCA200E_CTRL_DIS_CACHE_RD
 585        | PCA200E_CTRL_DIS_WRT_INVAL
 586        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 587        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 588#endif
 589	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 590    
 591    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 592
 593    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 594       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 595       this may impact the performances of other PCI devices on the same bus, though */
 596    latency = 192;
 597    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 598
 599    fore200e->state = FORE200E_STATE_CONFIGURE;
 600    return 0;
 601}
 602
 603
 604static int __init
 605fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 606{
 607    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 608    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 609    struct prom_opcode      opcode;
 610    int                     ok;
 611    u32                     prom_dma;
 612
 613    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 614
 615    opcode.opcode = OPCODE_GET_PROM;
 616    opcode.pad    = 0;
 617
 618    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 
 
 
 619
 620    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 621    
 622    *entry->status = STATUS_PENDING;
 623
 624    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 625
 626    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 627
 628    *entry->status = STATUS_FREE;
 629
 630    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 631
 632    if (ok == 0) {
 633	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 634	return -EIO;
 635    }
 636
 637#if defined(__BIG_ENDIAN)
 638    
 639#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 640
 641    /* MAC address is stored as little-endian */
 642    swap_here(&prom->mac_addr[0]);
 643    swap_here(&prom->mac_addr[4]);
 644#endif
 645    
 646    return 0;
 647}
 648
 649
 650static int
 651fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 652{
 653    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 654
 655    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 656		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 657}
 658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659#endif /* CONFIG_PCI */
 660
 661
 662#ifdef CONFIG_SBUS
 663
 664static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 665{
 666    return sbus_readl(addr);
 667}
 668
 669static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 670{
 671    sbus_writel(val, addr);
 672}
 673
 674static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 675{
 676	struct platform_device *op = fore200e->bus_dev;
 677	u32 dma_addr;
 678
 679	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 680
 681	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 682		virt_addr, size, direction, dma_addr);
 683    
 684	return dma_addr;
 685}
 686
 687static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 688{
 689	struct platform_device *op = fore200e->bus_dev;
 690
 691	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 692		dma_addr, size, direction);
 693
 694	dma_unmap_single(&op->dev, dma_addr, size, direction);
 695}
 696
 697static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 698{
 699	struct platform_device *op = fore200e->bus_dev;
 700
 701	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 702    
 703	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 704}
 705
 706static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 707{
 708	struct platform_device *op = fore200e->bus_dev;
 709
 710	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 711
 712	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 713}
 714
 715/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 716 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 717 */
 718static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 719					int size, int nbr, int alignment)
 720{
 721	struct platform_device *op = fore200e->bus_dev;
 722
 723	chunk->alloc_size = chunk->align_size = size * nbr;
 724
 725	/* returned chunks are page-aligned */
 726	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 727					       &chunk->dma_addr, GFP_ATOMIC);
 728
 729	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 730		return -ENOMEM;
 731
 732	chunk->align_addr = chunk->alloc_addr;
 733    
 734	return 0;
 735}
 736
 737/* free a DVMA consistent chunk of memory */
 738static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 739{
 740	struct platform_device *op = fore200e->bus_dev;
 741
 742	dma_free_coherent(&op->dev, chunk->alloc_size,
 743			  chunk->alloc_addr, chunk->dma_addr);
 744}
 745
 746static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 747{
 748	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 749	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 750}
 751
 752static int fore200e_sba_irq_check(struct fore200e *fore200e)
 753{
 754	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 755}
 756
 757static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 758{
 759	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 760	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 761}
 762
 763static void fore200e_sba_reset(struct fore200e *fore200e)
 764{
 765	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 766	fore200e_spin(10);
 767	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 768}
 769
 770static int __init fore200e_sba_map(struct fore200e *fore200e)
 771{
 772	struct platform_device *op = fore200e->bus_dev;
 773	unsigned int bursts;
 774
 775	/* gain access to the SBA specific registers  */
 776	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 777	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 778	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 779	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 780
 781	if (!fore200e->virt_base) {
 782		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 783		return -EFAULT;
 784	}
 785
 786	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 787    
 788	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 789
 790	/* get the supported DVMA burst sizes */
 791	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 792
 793	if (sbus_can_dma_64bit())
 794		sbus_set_sbus64(&op->dev, bursts);
 795
 796	fore200e->state = FORE200E_STATE_MAP;
 797	return 0;
 798}
 799
 800static void fore200e_sba_unmap(struct fore200e *fore200e)
 801{
 802	struct platform_device *op = fore200e->bus_dev;
 803
 804	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 805	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 806	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 807	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 808}
 809
 810static int __init fore200e_sba_configure(struct fore200e *fore200e)
 811{
 812	fore200e->state = FORE200E_STATE_CONFIGURE;
 813	return 0;
 814}
 815
 816static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 817{
 818	struct platform_device *op = fore200e->bus_dev;
 819	const u8 *prop;
 820	int len;
 821
 822	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 823	if (!prop)
 824		return -ENODEV;
 825	memcpy(&prom->mac_addr[4], prop, 4);
 826
 827	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 828	if (!prop)
 829		return -ENODEV;
 830	memcpy(&prom->mac_addr[2], prop, 4);
 831
 832	prom->serial_number = of_getintprop_default(op->dev.of_node,
 833						    "serialnumber", 0);
 834	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 835						  "promversion", 0);
 836    
 837	return 0;
 838}
 839
 840static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 841{
 842	struct platform_device *op = fore200e->bus_dev;
 843	const struct linux_prom_registers *regs;
 844
 845	regs = of_get_property(op->dev.of_node, "reg", NULL);
 846
 847	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 848		       (regs ? regs->which_io : 0), op->dev.of_node->name);
 849}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850#endif /* CONFIG_SBUS */
 851
 852
 853static void
 854fore200e_tx_irq(struct fore200e* fore200e)
 855{
 856    struct host_txq*        txq = &fore200e->host_txq;
 857    struct host_txq_entry*  entry;
 858    struct atm_vcc*         vcc;
 859    struct fore200e_vc_map* vc_map;
 860
 861    if (fore200e->host_txq.txing == 0)
 862	return;
 863
 864    for (;;) {
 865	
 866	entry = &txq->host_entry[ txq->tail ];
 867
 868        if ((*entry->status & STATUS_COMPLETE) == 0) {
 869	    break;
 870	}
 871
 872	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 873		entry, txq->tail, entry->vc_map, entry->skb);
 874
 875	/* free copy of misaligned data */
 876	kfree(entry->data);
 877	
 878	/* remove DMA mapping */
 879	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 880				 DMA_TO_DEVICE);
 881
 882	vc_map = entry->vc_map;
 883
 884	/* vcc closed since the time the entry was submitted for tx? */
 885	if ((vc_map->vcc == NULL) ||
 886	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 887
 888	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 889		    fore200e->atm_dev->number);
 890
 891	    dev_kfree_skb_any(entry->skb);
 892	}
 893	else {
 894	    ASSERT(vc_map->vcc);
 895
 896	    /* vcc closed then immediately re-opened? */
 897	    if (vc_map->incarn != entry->incarn) {
 898
 899		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 900		   if the same vcc is immediately re-opened, those pending PDUs must
 901		   not be popped after the completion of their emission, as they refer
 902		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 903		   would be decremented by the size of the (unrelated) skb, possibly
 904		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 905		   we thus bind the tx entry to the current incarnation of the vcc
 906		   when the entry is submitted for tx. When the tx later completes,
 907		   if the incarnation number of the tx entry does not match the one
 908		   of the vcc, then this implies that the vcc has been closed then re-opened.
 909		   we thus just drop the skb here. */
 910
 911		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 912			fore200e->atm_dev->number);
 913
 914		dev_kfree_skb_any(entry->skb);
 915	    }
 916	    else {
 917		vcc = vc_map->vcc;
 918		ASSERT(vcc);
 919
 920		/* notify tx completion */
 921		if (vcc->pop) {
 922		    vcc->pop(vcc, entry->skb);
 923		}
 924		else {
 925		    dev_kfree_skb_any(entry->skb);
 926		}
 927#if 1
 928		/* race fixed by the above incarnation mechanism, but... */
 929		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 930		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 931		}
 932#endif
 933		/* check error condition */
 934		if (*entry->status & STATUS_ERROR)
 935		    atomic_inc(&vcc->stats->tx_err);
 936		else
 937		    atomic_inc(&vcc->stats->tx);
 938	    }
 939	}
 940
 941	*entry->status = STATUS_FREE;
 942
 943	fore200e->host_txq.txing--;
 944
 945	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 946    }
 947}
 948
 949
 950#ifdef FORE200E_BSQ_DEBUG
 951int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 952{
 953    struct buffer* buffer;
 954    int count = 0;
 955
 956    buffer = bsq->freebuf;
 957    while (buffer) {
 958
 959	if (buffer->supplied) {
 960	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 961		   where, scheme, magn, buffer->index);
 962	}
 963
 964	if (buffer->magn != magn) {
 965	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 966		   where, scheme, magn, buffer->index, buffer->magn);
 967	}
 968
 969	if (buffer->scheme != scheme) {
 970	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 971		   where, scheme, magn, buffer->index, buffer->scheme);
 972	}
 973
 974	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 975	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 976		   where, scheme, magn, buffer->index);
 977	}
 978
 979	count++;
 980	buffer = buffer->next;
 981    }
 982
 983    if (count != bsq->freebuf_count) {
 984	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 985	       where, scheme, magn, count, bsq->freebuf_count);
 986    }
 987    return 0;
 988}
 989#endif
 990
 991
 992static void
 993fore200e_supply(struct fore200e* fore200e)
 994{
 995    int  scheme, magn, i;
 996
 997    struct host_bsq*       bsq;
 998    struct host_bsq_entry* entry;
 999    struct buffer*         buffer;
1000
1001    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1002	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1003
1004	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1005
1006#ifdef FORE200E_BSQ_DEBUG
1007	    bsq_audit(1, bsq, scheme, magn);
1008#endif
1009	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1010
1011		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1012			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1013
1014		entry = &bsq->host_entry[ bsq->head ];
1015
1016		for (i = 0; i < RBD_BLK_SIZE; i++) {
1017
1018		    /* take the first buffer in the free buffer list */
1019		    buffer = bsq->freebuf;
1020		    if (!buffer) {
1021			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1022			       scheme, magn, bsq->freebuf_count);
1023			return;
1024		    }
1025		    bsq->freebuf = buffer->next;
1026		    
1027#ifdef FORE200E_BSQ_DEBUG
1028		    if (buffer->supplied)
1029			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1030			       scheme, magn, buffer->index);
1031		    buffer->supplied = 1;
1032#endif
1033		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1034		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1035		}
1036
1037		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1038
1039 		/* decrease accordingly the number of free rx buffers */
1040		bsq->freebuf_count -= RBD_BLK_SIZE;
1041
1042		*entry->status = STATUS_PENDING;
1043		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1044	    }
1045	}
1046    }
1047}
1048
1049
1050static int
1051fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1052{
1053    struct sk_buff*      skb;
1054    struct buffer*       buffer;
1055    struct fore200e_vcc* fore200e_vcc;
1056    int                  i, pdu_len = 0;
1057#ifdef FORE200E_52BYTE_AAL0_SDU
1058    u32                  cell_header = 0;
1059#endif
1060
1061    ASSERT(vcc);
1062    
1063    fore200e_vcc = FORE200E_VCC(vcc);
1064    ASSERT(fore200e_vcc);
1065
1066#ifdef FORE200E_52BYTE_AAL0_SDU
1067    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1068
1069	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1070	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1071                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1072                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1073                       rpd->atm_header.clp;
1074	pdu_len = 4;
1075    }
1076#endif
1077    
1078    /* compute total PDU length */
1079    for (i = 0; i < rpd->nseg; i++)
1080	pdu_len += rpd->rsd[ i ].length;
1081    
1082    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1083    if (skb == NULL) {
1084	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1085
1086	atomic_inc(&vcc->stats->rx_drop);
1087	return -ENOMEM;
1088    } 
1089
1090    __net_timestamp(skb);
1091    
1092#ifdef FORE200E_52BYTE_AAL0_SDU
1093    if (cell_header) {
1094	*((u32*)skb_put(skb, 4)) = cell_header;
1095    }
1096#endif
1097
1098    /* reassemble segments */
1099    for (i = 0; i < rpd->nseg; i++) {
1100	
1101	/* rebuild rx buffer address from rsd handle */
1102	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1103	
1104	/* Make device DMA transfer visible to CPU.  */
1105	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1106	
1107	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1108
1109	/* Now let the device get at it again.  */
1110	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1111    }
1112
1113    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1114    
1115    if (pdu_len < fore200e_vcc->rx_min_pdu)
1116	fore200e_vcc->rx_min_pdu = pdu_len;
1117    if (pdu_len > fore200e_vcc->rx_max_pdu)
1118	fore200e_vcc->rx_max_pdu = pdu_len;
1119    fore200e_vcc->rx_pdu++;
1120
1121    /* push PDU */
1122    if (atm_charge(vcc, skb->truesize) == 0) {
1123
1124	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1125		vcc->itf, vcc->vpi, vcc->vci);
1126
1127	dev_kfree_skb_any(skb);
1128
1129	atomic_inc(&vcc->stats->rx_drop);
1130	return -ENOMEM;
1131    }
1132
1133    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1134
1135    vcc->push(vcc, skb);
1136    atomic_inc(&vcc->stats->rx);
1137
1138    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1139
1140    return 0;
1141}
1142
1143
1144static void
1145fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1146{
1147    struct host_bsq* bsq;
1148    struct buffer*   buffer;
1149    int              i;
1150    
1151    for (i = 0; i < rpd->nseg; i++) {
1152
1153	/* rebuild rx buffer address from rsd handle */
1154	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1155
1156	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1157
1158#ifdef FORE200E_BSQ_DEBUG
1159	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1160
1161	if (buffer->supplied == 0)
1162	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1163		   buffer->scheme, buffer->magn, buffer->index);
1164	buffer->supplied = 0;
1165#endif
1166
1167	/* re-insert the buffer into the free buffer list */
1168	buffer->next = bsq->freebuf;
1169	bsq->freebuf = buffer;
1170
1171	/* then increment the number of free rx buffers */
1172	bsq->freebuf_count++;
1173    }
1174}
1175
1176
1177static void
1178fore200e_rx_irq(struct fore200e* fore200e)
1179{
1180    struct host_rxq*        rxq = &fore200e->host_rxq;
1181    struct host_rxq_entry*  entry;
1182    struct atm_vcc*         vcc;
1183    struct fore200e_vc_map* vc_map;
1184
1185    for (;;) {
1186	
1187	entry = &rxq->host_entry[ rxq->head ];
1188
1189	/* no more received PDUs */
1190	if ((*entry->status & STATUS_COMPLETE) == 0)
1191	    break;
1192
1193	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1194
1195	if ((vc_map->vcc == NULL) ||
1196	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1197
1198	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1199		    fore200e->atm_dev->number,
1200		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1201	}
1202	else {
1203	    vcc = vc_map->vcc;
1204	    ASSERT(vcc);
1205
1206	    if ((*entry->status & STATUS_ERROR) == 0) {
1207
1208		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1209	    }
1210	    else {
1211		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1212			fore200e->atm_dev->number,
1213			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1214		atomic_inc(&vcc->stats->rx_err);
1215	    }
1216	}
1217
1218	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1219
1220	fore200e_collect_rpd(fore200e, entry->rpd);
1221
1222	/* rewrite the rpd address to ack the received PDU */
1223	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1224	*entry->status = STATUS_FREE;
1225
1226	fore200e_supply(fore200e);
1227    }
1228}
1229
1230
1231#ifndef FORE200E_USE_TASKLET
1232static void
1233fore200e_irq(struct fore200e* fore200e)
1234{
1235    unsigned long flags;
1236
1237    spin_lock_irqsave(&fore200e->q_lock, flags);
1238    fore200e_rx_irq(fore200e);
1239    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1240
1241    spin_lock_irqsave(&fore200e->q_lock, flags);
1242    fore200e_tx_irq(fore200e);
1243    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1244}
1245#endif
1246
1247
1248static irqreturn_t
1249fore200e_interrupt(int irq, void* dev)
1250{
1251    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1252
1253    if (fore200e->bus->irq_check(fore200e) == 0) {
1254	
1255	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1256	return IRQ_NONE;
1257    }
1258    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1259
1260#ifdef FORE200E_USE_TASKLET
1261    tasklet_schedule(&fore200e->tx_tasklet);
1262    tasklet_schedule(&fore200e->rx_tasklet);
1263#else
1264    fore200e_irq(fore200e);
1265#endif
1266    
1267    fore200e->bus->irq_ack(fore200e);
1268    return IRQ_HANDLED;
1269}
1270
1271
1272#ifdef FORE200E_USE_TASKLET
1273static void
1274fore200e_tx_tasklet(unsigned long data)
1275{
1276    struct fore200e* fore200e = (struct fore200e*) data;
1277    unsigned long flags;
1278
1279    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1280
1281    spin_lock_irqsave(&fore200e->q_lock, flags);
1282    fore200e_tx_irq(fore200e);
1283    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1284}
1285
1286
1287static void
1288fore200e_rx_tasklet(unsigned long data)
1289{
1290    struct fore200e* fore200e = (struct fore200e*) data;
1291    unsigned long    flags;
1292
1293    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1294
1295    spin_lock_irqsave(&fore200e->q_lock, flags);
1296    fore200e_rx_irq((struct fore200e*) data);
1297    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1298}
1299#endif
1300
1301
1302static int
1303fore200e_select_scheme(struct atm_vcc* vcc)
1304{
1305    /* fairly balance the VCs over (identical) buffer schemes */
1306    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1307
1308    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1309	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1310
1311    return scheme;
1312}
1313
1314
1315static int 
1316fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1317{
1318    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1319    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1320    struct activate_opcode   activ_opcode;
1321    struct deactivate_opcode deactiv_opcode;
1322    struct vpvc              vpvc;
1323    int                      ok;
1324    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1325
1326    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1327    
1328    if (activate) {
1329	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1330	
1331	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1332	activ_opcode.aal    = aal;
1333	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1334	activ_opcode.pad    = 0;
1335    }
1336    else {
1337	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1338	deactiv_opcode.pad    = 0;
1339    }
1340
1341    vpvc.vci = vcc->vci;
1342    vpvc.vpi = vcc->vpi;
1343
1344    *entry->status = STATUS_PENDING;
1345
1346    if (activate) {
1347
1348#ifdef FORE200E_52BYTE_AAL0_SDU
1349	mtu = 48;
1350#endif
1351	/* the MTU is not used by the cp, except in the case of AAL0 */
1352	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1353	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1354	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1355    }
1356    else {
1357	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1358	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1359    }
1360
1361    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1362
1363    *entry->status = STATUS_FREE;
1364
1365    if (ok == 0) {
1366	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1367	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1368	return -EIO;
1369    }
1370
1371    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1372	    activate ? "open" : "clos");
1373
1374    return 0;
1375}
1376
1377
1378#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1379
1380static void
1381fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1382{
1383    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1384    
1385	/* compute the data cells to idle cells ratio from the tx PCR */
1386	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1387	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1388    }
1389    else {
1390	/* disable rate control */
1391	rate->data_cells = rate->idle_cells = 0;
1392    }
1393}
1394
1395
1396static int
1397fore200e_open(struct atm_vcc *vcc)
1398{
1399    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1400    struct fore200e_vcc*    fore200e_vcc;
1401    struct fore200e_vc_map* vc_map;
1402    unsigned long	    flags;
1403    int			    vci = vcc->vci;
1404    short		    vpi = vcc->vpi;
1405
1406    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1407    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1408
1409    spin_lock_irqsave(&fore200e->q_lock, flags);
1410
1411    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1412    if (vc_map->vcc) {
1413
1414	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1415
1416	printk(FORE200E "VC %d.%d.%d already in use\n",
1417	       fore200e->atm_dev->number, vpi, vci);
1418
1419	return -EINVAL;
1420    }
1421
1422    vc_map->vcc = vcc;
1423
1424    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1425
1426    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1427    if (fore200e_vcc == NULL) {
1428	vc_map->vcc = NULL;
1429	return -ENOMEM;
1430    }
1431
1432    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1433	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1434	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1435	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1436	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1437	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1438	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1439    
1440    /* pseudo-CBR bandwidth requested? */
1441    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1442	
1443	mutex_lock(&fore200e->rate_mtx);
1444	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1445	    mutex_unlock(&fore200e->rate_mtx);
1446
1447	    kfree(fore200e_vcc);
1448	    vc_map->vcc = NULL;
1449	    return -EAGAIN;
1450	}
1451
1452	/* reserve bandwidth */
1453	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1454	mutex_unlock(&fore200e->rate_mtx);
1455    }
1456    
1457    vcc->itf = vcc->dev->number;
1458
1459    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1460    set_bit(ATM_VF_ADDR, &vcc->flags);
1461
1462    vcc->dev_data = fore200e_vcc;
1463    
1464    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1465
1466	vc_map->vcc = NULL;
1467
1468	clear_bit(ATM_VF_ADDR, &vcc->flags);
1469	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1470
1471	vcc->dev_data = NULL;
1472
1473	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1474
1475	kfree(fore200e_vcc);
1476	return -EINVAL;
1477    }
1478    
1479    /* compute rate control parameters */
1480    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1481	
1482	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1483	set_bit(ATM_VF_HASQOS, &vcc->flags);
1484
1485	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1486		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1487		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1488		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1489    }
1490    
1491    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1492    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1493    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1494
1495    /* new incarnation of the vcc */
1496    vc_map->incarn = ++fore200e->incarn_count;
1497
1498    /* VC unusable before this flag is set */
1499    set_bit(ATM_VF_READY, &vcc->flags);
1500
1501    return 0;
1502}
1503
1504
1505static void
1506fore200e_close(struct atm_vcc* vcc)
1507{
1508    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1509    struct fore200e_vcc*    fore200e_vcc;
 
1510    struct fore200e_vc_map* vc_map;
1511    unsigned long           flags;
1512
1513    ASSERT(vcc);
 
 
1514    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1515    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1516
1517    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1518
1519    clear_bit(ATM_VF_READY, &vcc->flags);
1520
1521    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1522
1523    spin_lock_irqsave(&fore200e->q_lock, flags);
1524
1525    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1526
1527    /* the vc is no longer considered as "in use" by fore200e_open() */
1528    vc_map->vcc = NULL;
1529
1530    vcc->itf = vcc->vci = vcc->vpi = 0;
1531
1532    fore200e_vcc = FORE200E_VCC(vcc);
1533    vcc->dev_data = NULL;
1534
1535    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1536
1537    /* release reserved bandwidth, if any */
1538    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1539
1540	mutex_lock(&fore200e->rate_mtx);
1541	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1542	mutex_unlock(&fore200e->rate_mtx);
1543
1544	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1545    }
1546
1547    clear_bit(ATM_VF_ADDR, &vcc->flags);
1548    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1549
1550    ASSERT(fore200e_vcc);
1551    kfree(fore200e_vcc);
1552}
1553
1554
1555static int
1556fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1557{
1558    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1559    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1560    struct fore200e_vc_map* vc_map;
1561    struct host_txq*        txq          = &fore200e->host_txq;
1562    struct host_txq_entry*  entry;
1563    struct tpd*             tpd;
1564    struct tpd_haddr        tpd_haddr;
1565    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1566    int                     tx_copy      = 0;
1567    int                     tx_len       = skb->len;
1568    u32*                    cell_header  = NULL;
1569    unsigned char*          skb_data;
1570    int                     skb_len;
1571    unsigned char*          data;
1572    unsigned long           flags;
1573
1574    ASSERT(vcc);
1575    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1576    ASSERT(fore200e);
1577    ASSERT(fore200e_vcc);
 
 
 
 
 
 
 
 
1578
1579    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1580	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1581	dev_kfree_skb_any(skb);
1582	return -EINVAL;
1583    }
1584
1585#ifdef FORE200E_52BYTE_AAL0_SDU
1586    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1587	cell_header = (u32*) skb->data;
1588	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1589	skb_len     = tx_len = skb->len  - 4;
1590
1591	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1592    }
1593    else 
1594#endif
1595    {
1596	skb_data = skb->data;
1597	skb_len  = skb->len;
1598    }
1599    
1600    if (((unsigned long)skb_data) & 0x3) {
1601
1602	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1603	tx_copy = 1;
1604	tx_len  = skb_len;
1605    }
1606
1607    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1608
1609        /* this simply NUKES the PCA board */
1610	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1611	tx_copy = 1;
1612	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1613    }
1614    
1615    if (tx_copy) {
1616	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1617	if (data == NULL) {
1618	    if (vcc->pop) {
1619		vcc->pop(vcc, skb);
1620	    }
1621	    else {
1622		dev_kfree_skb_any(skb);
1623	    }
1624	    return -ENOMEM;
1625	}
1626
1627	memcpy(data, skb_data, skb_len);
1628	if (skb_len < tx_len)
1629	    memset(data + skb_len, 0x00, tx_len - skb_len);
1630    }
1631    else {
1632	data = skb_data;
1633    }
1634
1635    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1636    ASSERT(vc_map->vcc == vcc);
1637
1638  retry_here:
1639
1640    spin_lock_irqsave(&fore200e->q_lock, flags);
1641
1642    entry = &txq->host_entry[ txq->head ];
1643
1644    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1645
1646	/* try to free completed tx queue entries */
1647	fore200e_tx_irq(fore200e);
1648
1649	if (*entry->status != STATUS_FREE) {
1650
1651	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1652
1653	    /* retry once again? */
1654	    if (--retry > 0) {
1655		udelay(50);
1656		goto retry_here;
1657	    }
1658
1659	    atomic_inc(&vcc->stats->tx_err);
1660
1661	    fore200e->tx_sat++;
1662	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1663		    fore200e->name, fore200e->cp_queues->heartbeat);
1664	    if (vcc->pop) {
1665		vcc->pop(vcc, skb);
1666	    }
1667	    else {
1668		dev_kfree_skb_any(skb);
1669	    }
1670
1671	    if (tx_copy)
1672		kfree(data);
1673
1674	    return -ENOBUFS;
1675	}
1676    }
1677
1678    entry->incarn = vc_map->incarn;
1679    entry->vc_map = vc_map;
1680    entry->skb    = skb;
1681    entry->data   = tx_copy ? data : NULL;
1682
1683    tpd = entry->tpd;
1684    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
 
 
 
 
 
 
 
1685    tpd->tsd[ 0 ].length = tx_len;
1686
1687    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1688    txq->txing++;
1689
1690    /* The dma_map call above implies a dma_sync so the device can use it,
1691     * thus no explicit dma_sync call is necessary here.
1692     */
1693    
1694    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1695	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1696	    tpd->tsd[0].length, skb_len);
1697
1698    if (skb_len < fore200e_vcc->tx_min_pdu)
1699	fore200e_vcc->tx_min_pdu = skb_len;
1700    if (skb_len > fore200e_vcc->tx_max_pdu)
1701	fore200e_vcc->tx_max_pdu = skb_len;
1702    fore200e_vcc->tx_pdu++;
1703
1704    /* set tx rate control information */
1705    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1706    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1707
1708    if (cell_header) {
1709	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1710	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1711	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1712	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1713	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1714    }
1715    else {
1716	/* set the ATM header, common to all cells conveying the PDU */
1717	tpd->atm_header.clp = 0;
1718	tpd->atm_header.plt = 0;
1719	tpd->atm_header.vci = vcc->vci;
1720	tpd->atm_header.vpi = vcc->vpi;
1721	tpd->atm_header.gfc = 0;
1722    }
1723
1724    tpd->spec.length = tx_len;
1725    tpd->spec.nseg   = 1;
1726    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1727    tpd->spec.intr   = 1;
1728
1729    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1730    tpd_haddr.pad   = 0;
1731    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1732
1733    *entry->status = STATUS_PENDING;
1734    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1735
1736    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1737
1738    return 0;
1739}
1740
1741
1742static int
1743fore200e_getstats(struct fore200e* fore200e)
1744{
1745    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1746    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1747    struct stats_opcode     opcode;
1748    int                     ok;
1749    u32                     stats_dma_addr;
1750
1751    if (fore200e->stats == NULL) {
1752	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1753	if (fore200e->stats == NULL)
1754	    return -ENOMEM;
1755    }
1756    
1757    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1758					    sizeof(struct stats), DMA_FROM_DEVICE);
 
 
1759    
1760    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1761
1762    opcode.opcode = OPCODE_GET_STATS;
1763    opcode.pad    = 0;
1764
1765    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1766    
1767    *entry->status = STATUS_PENDING;
1768
1769    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1770
1771    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1772
1773    *entry->status = STATUS_FREE;
1774
1775    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1776    
1777    if (ok == 0) {
1778	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1779	return -EIO;
1780    }
1781
1782    return 0;
1783}
1784
1785
1786static int
1787fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1788{
1789    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1790
1791    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1792	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1793
1794    return -EINVAL;
1795}
1796
1797
1798static int
1799fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1800{
1801    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1802    
1803    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1804	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1805    
1806    return -EINVAL;
1807}
1808
1809
1810#if 0 /* currently unused */
1811static int
1812fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1813{
1814    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1815    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1816    struct oc3_opcode       opcode;
1817    int                     ok;
1818    u32                     oc3_regs_dma_addr;
1819
1820    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1821
1822    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1823
1824    opcode.opcode = OPCODE_GET_OC3;
1825    opcode.reg    = 0;
1826    opcode.value  = 0;
1827    opcode.mask   = 0;
1828
1829    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1830    
1831    *entry->status = STATUS_PENDING;
1832
1833    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1834
1835    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1836
1837    *entry->status = STATUS_FREE;
1838
1839    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1840    
1841    if (ok == 0) {
1842	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1843	return -EIO;
1844    }
1845
1846    return 0;
1847}
1848#endif
1849
1850
1851static int
1852fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1853{
1854    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1855    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1856    struct oc3_opcode       opcode;
1857    int                     ok;
1858
1859    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1860
1861    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1862
1863    opcode.opcode = OPCODE_SET_OC3;
1864    opcode.reg    = reg;
1865    opcode.value  = value;
1866    opcode.mask   = mask;
1867
1868    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1869    
1870    *entry->status = STATUS_PENDING;
1871
1872    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1873
1874    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1875
1876    *entry->status = STATUS_FREE;
1877
1878    if (ok == 0) {
1879	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1880	return -EIO;
1881    }
1882
1883    return 0;
1884}
1885
1886
1887static int
1888fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1889{
1890    u32 mct_value, mct_mask;
1891    int error;
1892
1893    if (!capable(CAP_NET_ADMIN))
1894	return -EPERM;
1895    
1896    switch (loop_mode) {
1897
1898    case ATM_LM_NONE:
1899	mct_value = 0; 
1900	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1901	break;
1902	
1903    case ATM_LM_LOC_PHY:
1904	mct_value = mct_mask = SUNI_MCT_DLE;
1905	break;
1906
1907    case ATM_LM_RMT_PHY:
1908	mct_value = mct_mask = SUNI_MCT_LLE;
1909	break;
1910
1911    default:
1912	return -EINVAL;
1913    }
1914
1915    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1916    if (error == 0)
1917	fore200e->loop_mode = loop_mode;
1918
1919    return error;
1920}
1921
1922
1923static int
1924fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1925{
1926    struct sonet_stats tmp;
1927
1928    if (fore200e_getstats(fore200e) < 0)
1929	return -EIO;
1930
1931    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1932    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1933    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1934    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1935    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1936    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1937    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1938    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1939	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1940	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1941    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1942	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1943	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1944
1945    if (arg)
1946	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1947    
1948    return 0;
1949}
1950
1951
1952static int
1953fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1954{
1955    struct fore200e* fore200e = FORE200E_DEV(dev);
1956    
1957    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1958
1959    switch (cmd) {
1960
1961    case SONET_GETSTAT:
1962	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1963
1964    case SONET_GETDIAG:
1965	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1966
1967    case ATM_SETLOOP:
1968	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1969
1970    case ATM_GETLOOP:
1971	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1972
1973    case ATM_QUERYLOOP:
1974	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1975    }
1976
1977    return -ENOSYS; /* not implemented */
1978}
1979
1980
1981static int
1982fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1983{
1984    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1985    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1986
1987    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1988	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1989	return -EINVAL;
1990    }
1991
1992    DPRINTK(2, "change_qos %d.%d.%d, "
1993	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1994	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1995	    "available_cell_rate = %u",
1996	    vcc->itf, vcc->vpi, vcc->vci,
1997	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1998	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1999	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2000	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2001	    flags, fore200e->available_cell_rate);
2002
2003    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2004
2005	mutex_lock(&fore200e->rate_mtx);
2006	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2007	    mutex_unlock(&fore200e->rate_mtx);
2008	    return -EAGAIN;
2009	}
2010
2011	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2012	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2013
2014	mutex_unlock(&fore200e->rate_mtx);
2015	
2016	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2017	
2018	/* update rate control parameters */
2019	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2020
2021	set_bit(ATM_VF_HASQOS, &vcc->flags);
2022
2023	return 0;
2024    }
2025    
2026    return -EINVAL;
2027}
2028    
2029
2030static int fore200e_irq_request(struct fore200e *fore200e)
2031{
2032    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2033
2034	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2035	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2036	return -EBUSY;
2037    }
2038
2039    printk(FORE200E "IRQ %s reserved for device %s\n",
2040	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2041
2042#ifdef FORE200E_USE_TASKLET
2043    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2044    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2045#endif
2046
2047    fore200e->state = FORE200E_STATE_IRQ;
2048    return 0;
2049}
2050
2051
2052static int fore200e_get_esi(struct fore200e *fore200e)
2053{
2054    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2055    int ok, i;
2056
2057    if (!prom)
2058	return -ENOMEM;
2059
2060    ok = fore200e->bus->prom_read(fore200e, prom);
2061    if (ok < 0) {
2062	kfree(prom);
2063	return -EBUSY;
2064    }
2065	
2066    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2067	   fore200e->name, 
2068	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2069	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2070	
2071    for (i = 0; i < ESI_LEN; i++) {
2072	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2073    }
2074    
2075    kfree(prom);
2076
2077    return 0;
2078}
2079
2080
2081static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2082{
2083    int scheme, magn, nbr, size, i;
2084
2085    struct host_bsq* bsq;
2086    struct buffer*   buffer;
2087
2088    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2089	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2090
2091	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2092
2093	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2094	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2095
2096	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2097
2098	    /* allocate the array of receive buffers */
2099	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
 
2100
2101	    if (buffer == NULL)
2102		return -ENOMEM;
2103
2104	    bsq->freebuf = NULL;
2105
2106	    for (i = 0; i < nbr; i++) {
2107
2108		buffer[ i ].scheme = scheme;
2109		buffer[ i ].magn   = magn;
2110#ifdef FORE200E_BSQ_DEBUG
2111		buffer[ i ].index  = i;
2112		buffer[ i ].supplied = 0;
2113#endif
2114
2115		/* allocate the receive buffer body */
2116		if (fore200e_chunk_alloc(fore200e,
2117					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2118					 DMA_FROM_DEVICE) < 0) {
2119		    
2120		    while (i > 0)
2121			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2122		    kfree(buffer);
2123		    
2124		    return -ENOMEM;
2125		}
2126
2127		/* insert the buffer into the free buffer list */
2128		buffer[ i ].next = bsq->freebuf;
2129		bsq->freebuf = &buffer[ i ];
2130	    }
2131	    /* all the buffers are free, initially */
2132	    bsq->freebuf_count = nbr;
2133
2134#ifdef FORE200E_BSQ_DEBUG
2135	    bsq_audit(3, bsq, scheme, magn);
2136#endif
2137	}
2138    }
2139
2140    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2141    return 0;
2142}
2143
2144
2145static int fore200e_init_bs_queue(struct fore200e *fore200e)
2146{
2147    int scheme, magn, i;
2148
2149    struct host_bsq*     bsq;
2150    struct cp_bsq_entry __iomem * cp_entry;
2151
2152    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2153	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2154
2155	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2156
2157	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2158
2159	    /* allocate and align the array of status words */
2160	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2161					       &bsq->status,
2162					       sizeof(enum status), 
2163					       QUEUE_SIZE_BS,
2164					       fore200e->bus->status_alignment) < 0) {
2165		return -ENOMEM;
2166	    }
2167
2168	    /* allocate and align the array of receive buffer descriptors */
2169	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2170					       &bsq->rbd_block,
2171					       sizeof(struct rbd_block),
2172					       QUEUE_SIZE_BS,
2173					       fore200e->bus->descr_alignment) < 0) {
2174		
2175		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2176		return -ENOMEM;
2177	    }
2178	    
2179	    /* get the base address of the cp resident buffer supply queue entries */
2180	    cp_entry = fore200e->virt_base + 
2181		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2182	    
2183	    /* fill the host resident and cp resident buffer supply queue entries */
2184	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2185		
2186		bsq->host_entry[ i ].status = 
2187		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2188	        bsq->host_entry[ i ].rbd_block =
2189		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2190		bsq->host_entry[ i ].rbd_block_dma =
2191		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2192		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2193		
2194		*bsq->host_entry[ i ].status = STATUS_FREE;
2195		
2196		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2197				     &cp_entry[ i ].status_haddr);
2198	    }
2199	}
2200    }
2201
2202    fore200e->state = FORE200E_STATE_INIT_BSQ;
2203    return 0;
2204}
2205
2206
2207static int fore200e_init_rx_queue(struct fore200e *fore200e)
2208{
2209    struct host_rxq*     rxq =  &fore200e->host_rxq;
2210    struct cp_rxq_entry __iomem * cp_entry;
2211    int i;
2212
2213    DPRINTK(2, "receive queue is being initialized\n");
2214
2215    /* allocate and align the array of status words */
2216    if (fore200e->bus->dma_chunk_alloc(fore200e,
2217				       &rxq->status,
2218				       sizeof(enum status), 
2219				       QUEUE_SIZE_RX,
2220				       fore200e->bus->status_alignment) < 0) {
2221	return -ENOMEM;
2222    }
2223
2224    /* allocate and align the array of receive PDU descriptors */
2225    if (fore200e->bus->dma_chunk_alloc(fore200e,
2226				       &rxq->rpd,
2227				       sizeof(struct rpd), 
2228				       QUEUE_SIZE_RX,
2229				       fore200e->bus->descr_alignment) < 0) {
2230	
2231	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2232	return -ENOMEM;
2233    }
2234
2235    /* get the base address of the cp resident rx queue entries */
2236    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2237
2238    /* fill the host resident and cp resident rx entries */
2239    for (i=0; i < QUEUE_SIZE_RX; i++) {
2240	
2241	rxq->host_entry[ i ].status = 
2242	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2243	rxq->host_entry[ i ].rpd = 
2244	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2245	rxq->host_entry[ i ].rpd_dma = 
2246	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2247	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2248
2249	*rxq->host_entry[ i ].status = STATUS_FREE;
2250
2251	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2252			     &cp_entry[ i ].status_haddr);
2253
2254	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2255			     &cp_entry[ i ].rpd_haddr);
2256    }
2257
2258    /* set the head entry of the queue */
2259    rxq->head = 0;
2260
2261    fore200e->state = FORE200E_STATE_INIT_RXQ;
2262    return 0;
2263}
2264
2265
2266static int fore200e_init_tx_queue(struct fore200e *fore200e)
2267{
2268    struct host_txq*     txq =  &fore200e->host_txq;
2269    struct cp_txq_entry __iomem * cp_entry;
2270    int i;
2271
2272    DPRINTK(2, "transmit queue is being initialized\n");
2273
2274    /* allocate and align the array of status words */
2275    if (fore200e->bus->dma_chunk_alloc(fore200e,
2276				       &txq->status,
2277				       sizeof(enum status), 
2278				       QUEUE_SIZE_TX,
2279				       fore200e->bus->status_alignment) < 0) {
2280	return -ENOMEM;
2281    }
2282
2283    /* allocate and align the array of transmit PDU descriptors */
2284    if (fore200e->bus->dma_chunk_alloc(fore200e,
2285				       &txq->tpd,
2286				       sizeof(struct tpd), 
2287				       QUEUE_SIZE_TX,
2288				       fore200e->bus->descr_alignment) < 0) {
2289	
2290	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2291	return -ENOMEM;
2292    }
2293
2294    /* get the base address of the cp resident tx queue entries */
2295    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2296
2297    /* fill the host resident and cp resident tx entries */
2298    for (i=0; i < QUEUE_SIZE_TX; i++) {
2299	
2300	txq->host_entry[ i ].status = 
2301	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2302	txq->host_entry[ i ].tpd = 
2303	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2304	txq->host_entry[ i ].tpd_dma  = 
2305                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2306	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2307
2308	*txq->host_entry[ i ].status = STATUS_FREE;
2309	
2310	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2311			     &cp_entry[ i ].status_haddr);
2312	
2313        /* although there is a one-to-one mapping of tx queue entries and tpds,
2314	   we do not write here the DMA (physical) base address of each tpd into
2315	   the related cp resident entry, because the cp relies on this write
2316	   operation to detect that a new pdu has been submitted for tx */
2317    }
2318
2319    /* set the head and tail entries of the queue */
2320    txq->head = 0;
2321    txq->tail = 0;
2322
2323    fore200e->state = FORE200E_STATE_INIT_TXQ;
2324    return 0;
2325}
2326
2327
2328static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2329{
2330    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2331    struct cp_cmdq_entry __iomem * cp_entry;
2332    int i;
2333
2334    DPRINTK(2, "command queue is being initialized\n");
2335
2336    /* allocate and align the array of status words */
2337    if (fore200e->bus->dma_chunk_alloc(fore200e,
2338				       &cmdq->status,
2339				       sizeof(enum status), 
2340				       QUEUE_SIZE_CMD,
2341				       fore200e->bus->status_alignment) < 0) {
2342	return -ENOMEM;
2343    }
2344    
2345    /* get the base address of the cp resident cmd queue entries */
2346    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2347
2348    /* fill the host resident and cp resident cmd entries */
2349    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2350	
2351	cmdq->host_entry[ i ].status   = 
2352                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2353	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2354
2355	*cmdq->host_entry[ i ].status = STATUS_FREE;
2356
2357	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2358                             &cp_entry[ i ].status_haddr);
2359    }
2360
2361    /* set the head entry of the queue */
2362    cmdq->head = 0;
2363
2364    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2365    return 0;
2366}
2367
2368
2369static void fore200e_param_bs_queue(struct fore200e *fore200e,
2370				    enum buffer_scheme scheme,
2371				    enum buffer_magn magn, int queue_length,
2372				    int pool_size, int supply_blksize)
2373{
2374    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2375
2376    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2377    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2378    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2379    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2380}
2381
2382
2383static int fore200e_initialize(struct fore200e *fore200e)
2384{
2385    struct cp_queues __iomem * cpq;
2386    int               ok, scheme, magn;
2387
2388    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2389
2390    mutex_init(&fore200e->rate_mtx);
2391    spin_lock_init(&fore200e->q_lock);
2392
2393    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2394
2395    /* enable cp to host interrupts */
2396    fore200e->bus->write(1, &cpq->imask);
2397
2398    if (fore200e->bus->irq_enable)
2399	fore200e->bus->irq_enable(fore200e);
2400    
2401    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2402
2403    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2404    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2405    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2406
2407    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2408    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2409
2410    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2411	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2412	    fore200e_param_bs_queue(fore200e, scheme, magn,
2413				    QUEUE_SIZE_BS, 
2414				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2415				    RBD_BLK_SIZE);
2416
2417    /* issue the initialize command */
2418    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2419    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2420
2421    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2422    if (ok == 0) {
2423	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2424	return -ENODEV;
2425    }
2426
2427    printk(FORE200E "device %s initialized\n", fore200e->name);
2428
2429    fore200e->state = FORE200E_STATE_INITIALIZE;
2430    return 0;
2431}
2432
2433
2434static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2435{
2436    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2437
2438#if 0
2439    printk("%c", c);
2440#endif
2441    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2442}
2443
2444
2445static int fore200e_monitor_getc(struct fore200e *fore200e)
2446{
2447    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2448    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2449    int                c;
2450
2451    while (time_before(jiffies, timeout)) {
2452
2453	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2454
2455	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2456
2457	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2458#if 0
2459	    printk("%c", c & 0xFF);
2460#endif
2461	    return c & 0xFF;
2462	}
2463    }
2464
2465    return -1;
2466}
2467
2468
2469static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2470{
2471    while (*str) {
2472
2473	/* the i960 monitor doesn't accept any new character if it has something to say */
2474	while (fore200e_monitor_getc(fore200e) >= 0);
2475	
2476	fore200e_monitor_putc(fore200e, *str++);
2477    }
2478
2479    while (fore200e_monitor_getc(fore200e) >= 0);
2480}
2481
2482#ifdef __LITTLE_ENDIAN
2483#define FW_EXT ".bin"
2484#else
2485#define FW_EXT "_ecd.bin2"
2486#endif
2487
2488static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2489{
2490    const struct firmware *firmware;
2491    struct device *device;
2492    const struct fw_header *fw_header;
2493    const __le32 *fw_data;
2494    u32 fw_size;
2495    u32 __iomem *load_addr;
2496    char buf[48];
2497    int err = -ENODEV;
2498
2499    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2500	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2501#ifdef CONFIG_SBUS
2502    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2503	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2504#endif
2505    else
2506	return err;
2507
2508    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2509    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2510	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2511	return err;
2512    }
2513
2514    fw_data = (const __le32 *)firmware->data;
2515    fw_size = firmware->size / sizeof(u32);
2516    fw_header = (const struct fw_header *)firmware->data;
2517    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2518
2519    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2520	    fore200e->name, load_addr, fw_size);
2521
2522    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2523	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2524	goto release;
2525    }
2526
2527    for (; fw_size--; fw_data++, load_addr++)
2528	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2529
2530    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2531
2532#if defined(__sparc_v9__)
2533    /* reported to be required by SBA cards on some sparc64 hosts */
2534    fore200e_spin(100);
2535#endif
2536
2537    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2538    fore200e_monitor_puts(fore200e, buf);
2539
2540    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2541	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2542	goto release;
2543    }
2544
2545    printk(FORE200E "device %s firmware started\n", fore200e->name);
2546
2547    fore200e->state = FORE200E_STATE_START_FW;
2548    err = 0;
2549
2550release:
2551    release_firmware(firmware);
2552    return err;
2553}
2554
2555
2556static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2557{
2558    struct atm_dev* atm_dev;
2559
2560    DPRINTK(2, "device %s being registered\n", fore200e->name);
2561
2562    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2563                               -1, NULL);
2564    if (atm_dev == NULL) {
2565	printk(FORE200E "unable to register device %s\n", fore200e->name);
2566	return -ENODEV;
2567    }
2568
2569    atm_dev->dev_data = fore200e;
2570    fore200e->atm_dev = atm_dev;
2571
2572    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2573    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2574
2575    fore200e->available_cell_rate = ATM_OC3_PCR;
2576
2577    fore200e->state = FORE200E_STATE_REGISTER;
2578    return 0;
2579}
2580
2581
2582static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2583{
2584    if (fore200e_register(fore200e, parent) < 0)
2585	return -ENODEV;
2586    
2587    if (fore200e->bus->configure(fore200e) < 0)
2588	return -ENODEV;
2589
2590    if (fore200e->bus->map(fore200e) < 0)
2591	return -ENODEV;
2592
2593    if (fore200e_reset(fore200e, 1) < 0)
2594	return -ENODEV;
2595
2596    if (fore200e_load_and_start_fw(fore200e) < 0)
2597	return -ENODEV;
2598
2599    if (fore200e_initialize(fore200e) < 0)
2600	return -ENODEV;
2601
2602    if (fore200e_init_cmd_queue(fore200e) < 0)
2603	return -ENOMEM;
2604
2605    if (fore200e_init_tx_queue(fore200e) < 0)
2606	return -ENOMEM;
2607
2608    if (fore200e_init_rx_queue(fore200e) < 0)
2609	return -ENOMEM;
2610
2611    if (fore200e_init_bs_queue(fore200e) < 0)
2612	return -ENOMEM;
2613
2614    if (fore200e_alloc_rx_buf(fore200e) < 0)
2615	return -ENOMEM;
2616
2617    if (fore200e_get_esi(fore200e) < 0)
2618	return -EIO;
2619
2620    if (fore200e_irq_request(fore200e) < 0)
2621	return -EBUSY;
2622
2623    fore200e_supply(fore200e);
2624
2625    /* all done, board initialization is now complete */
2626    fore200e->state = FORE200E_STATE_COMPLETE;
2627    return 0;
2628}
2629
2630#ifdef CONFIG_SBUS
2631static const struct of_device_id fore200e_sba_match[];
2632static int fore200e_sba_probe(struct platform_device *op)
2633{
2634	const struct of_device_id *match;
2635	const struct fore200e_bus *bus;
2636	struct fore200e *fore200e;
2637	static int index = 0;
2638	int err;
2639
2640	match = of_match_device(fore200e_sba_match, &op->dev);
2641	if (!match)
2642		return -EINVAL;
2643	bus = match->data;
2644
2645	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2646	if (!fore200e)
2647		return -ENOMEM;
2648
2649	fore200e->bus = bus;
2650	fore200e->bus_dev = op;
2651	fore200e->irq = op->archdata.irqs[0];
2652	fore200e->phys_base = op->resource[0].start;
2653
2654	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2655
2656	err = fore200e_init(fore200e, &op->dev);
2657	if (err < 0) {
2658		fore200e_shutdown(fore200e);
2659		kfree(fore200e);
2660		return err;
2661	}
2662
2663	index++;
2664	dev_set_drvdata(&op->dev, fore200e);
2665
2666	return 0;
2667}
2668
2669static int fore200e_sba_remove(struct platform_device *op)
2670{
2671	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2672
2673	fore200e_shutdown(fore200e);
2674	kfree(fore200e);
2675
2676	return 0;
2677}
2678
2679static const struct of_device_id fore200e_sba_match[] = {
2680	{
2681		.name = SBA200E_PROM_NAME,
2682		.data = (void *) &fore200e_bus[1],
2683	},
2684	{},
2685};
2686MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2687
2688static struct platform_driver fore200e_sba_driver = {
2689	.driver = {
2690		.name = "fore_200e",
2691		.of_match_table = fore200e_sba_match,
2692	},
2693	.probe		= fore200e_sba_probe,
2694	.remove		= fore200e_sba_remove,
2695};
2696#endif
2697
2698#ifdef CONFIG_PCI
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700			       const struct pci_device_id *pci_ent)
2701{
2702    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703    struct fore200e* fore200e;
2704    int err = 0;
2705    static int index = 0;
2706
2707    if (pci_enable_device(pci_dev)) {
2708	err = -EINVAL;
2709	goto out;
2710    }
2711
2712    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2713	err = -EINVAL;
2714	goto out;
2715    }
2716    
2717    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2718    if (fore200e == NULL) {
2719	err = -ENOMEM;
2720	goto out_disable;
2721    }
2722
2723    fore200e->bus       = bus;
2724    fore200e->bus_dev   = pci_dev;    
2725    fore200e->irq       = pci_dev->irq;
2726    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2727
2728    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2729
2730    pci_set_master(pci_dev);
2731
2732    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2733	   fore200e->bus->model_name, 
2734	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2735
2736    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2737
2738    err = fore200e_init(fore200e, &pci_dev->dev);
2739    if (err < 0) {
2740	fore200e_shutdown(fore200e);
2741	goto out_free;
2742    }
2743
2744    ++index;
2745    pci_set_drvdata(pci_dev, fore200e);
2746
2747out:
2748    return err;
2749
2750out_free:
2751    kfree(fore200e);
2752out_disable:
2753    pci_disable_device(pci_dev);
2754    goto out;
2755}
2756
2757
2758static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2759{
2760    struct fore200e *fore200e;
2761
2762    fore200e = pci_get_drvdata(pci_dev);
2763
2764    fore200e_shutdown(fore200e);
2765    kfree(fore200e);
2766    pci_disable_device(pci_dev);
2767}
2768
2769
2770static struct pci_device_id fore200e_pca_tbl[] = {
2771    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2772      0, 0, (unsigned long) &fore200e_bus[0] },
2773    { 0, }
2774};
2775
2776MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2777
2778static struct pci_driver fore200e_pca_driver = {
2779    .name =     "fore_200e",
2780    .probe =    fore200e_pca_detect,
2781    .remove =   fore200e_pca_remove_one,
2782    .id_table = fore200e_pca_tbl,
2783};
2784#endif
2785
2786static int __init fore200e_module_init(void)
2787{
2788	int err = 0;
2789
2790	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2791
2792#ifdef CONFIG_SBUS
2793	err = platform_driver_register(&fore200e_sba_driver);
2794	if (err)
2795		return err;
2796#endif
2797
2798#ifdef CONFIG_PCI
2799	err = pci_register_driver(&fore200e_pca_driver);
2800#endif
2801
2802#ifdef CONFIG_SBUS
2803	if (err)
2804		platform_driver_unregister(&fore200e_sba_driver);
2805#endif
2806
2807	return err;
2808}
2809
2810static void __exit fore200e_module_cleanup(void)
2811{
2812#ifdef CONFIG_PCI
2813	pci_unregister_driver(&fore200e_pca_driver);
2814#endif
2815#ifdef CONFIG_SBUS
2816	platform_driver_unregister(&fore200e_sba_driver);
2817#endif
2818}
2819
2820static int
2821fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2822{
2823    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2824    struct fore200e_vcc* fore200e_vcc;
2825    struct atm_vcc*      vcc;
2826    int                  i, len, left = *pos;
2827    unsigned long        flags;
2828
2829    if (!left--) {
2830
2831	if (fore200e_getstats(fore200e) < 0)
2832	    return -EIO;
2833
2834	len = sprintf(page,"\n"
2835		       " device:\n"
2836		       "   internal name:\t\t%s\n", fore200e->name);
2837
2838	/* print bus-specific information */
2839	if (fore200e->bus->proc_read)
2840	    len += fore200e->bus->proc_read(fore200e, page + len);
2841	
2842	len += sprintf(page + len,
2843		"   interrupt line:\t\t%s\n"
2844		"   physical base address:\t0x%p\n"
2845		"   virtual base address:\t0x%p\n"
2846		"   factory address (ESI):\t%pM\n"
2847		"   board serial number:\t\t%d\n\n",
2848		fore200e_irq_itoa(fore200e->irq),
2849		(void*)fore200e->phys_base,
2850		fore200e->virt_base,
2851		fore200e->esi,
2852		fore200e->esi[4] * 256 + fore200e->esi[5]);
2853
2854	return len;
2855    }
2856
2857    if (!left--)
2858	return sprintf(page,
2859		       "   free small bufs, scheme 1:\t%d\n"
2860		       "   free large bufs, scheme 1:\t%d\n"
2861		       "   free small bufs, scheme 2:\t%d\n"
2862		       "   free large bufs, scheme 2:\t%d\n",
2863		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2865		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2866		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2867
2868    if (!left--) {
2869	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2870
2871	len = sprintf(page,"\n\n"
2872		      " cell processor:\n"
2873		      "   heartbeat state:\t\t");
2874	
2875	if (hb >> 16 != 0xDEAD)
2876	    len += sprintf(page + len, "0x%08x\n", hb);
2877	else
2878	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2879
2880	return len;
2881    }
2882
2883    if (!left--) {
2884	static const char* media_name[] = {
2885	    "unshielded twisted pair",
2886	    "multimode optical fiber ST",
2887	    "multimode optical fiber SC",
2888	    "single-mode optical fiber ST",
2889	    "single-mode optical fiber SC",
2890	    "unknown"
2891	};
2892
2893	static const char* oc3_mode[] = {
2894	    "normal operation",
2895	    "diagnostic loopback",
2896	    "line loopback",
2897	    "unknown"
2898	};
2899
2900	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2901	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2902	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2903	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2904	u32 oc3_index;
2905
2906	if (media_index > 4)
2907		media_index = 5;
2908	
2909	switch (fore200e->loop_mode) {
2910	    case ATM_LM_NONE:    oc3_index = 0;
2911		                 break;
2912	    case ATM_LM_LOC_PHY: oc3_index = 1;
2913		                 break;
2914	    case ATM_LM_RMT_PHY: oc3_index = 2;
2915		                 break;
2916	    default:             oc3_index = 3;
2917	}
2918
2919	return sprintf(page,
2920		       "   firmware release:\t\t%d.%d.%d\n"
2921		       "   monitor release:\t\t%d.%d\n"
2922		       "   media type:\t\t\t%s\n"
2923		       "   OC-3 revision:\t\t0x%x\n"
2924                       "   OC-3 mode:\t\t\t%s",
2925		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2926		       mon960_release >> 16, mon960_release << 16 >> 16,
2927		       media_name[ media_index ],
2928		       oc3_revision,
2929		       oc3_mode[ oc3_index ]);
2930    }
2931
2932    if (!left--) {
2933	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2934
2935	return sprintf(page,
2936		       "\n\n"
2937		       " monitor:\n"
2938		       "   version number:\t\t%d\n"
2939		       "   boot status word:\t\t0x%08x\n",
2940		       fore200e->bus->read(&cp_monitor->mon_version),
2941		       fore200e->bus->read(&cp_monitor->bstat));
2942    }
2943
2944    if (!left--)
2945	return sprintf(page,
2946		       "\n"
2947		       " device statistics:\n"
2948		       "  4b5b:\n"
2949		       "     crc_header_errors:\t\t%10u\n"
2950		       "     framing_errors:\t\t%10u\n",
2951		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2952		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2953    
2954    if (!left--)
2955	return sprintf(page, "\n"
2956		       "  OC-3:\n"
2957		       "     section_bip8_errors:\t%10u\n"
2958		       "     path_bip8_errors:\t\t%10u\n"
2959		       "     line_bip24_errors:\t\t%10u\n"
2960		       "     line_febe_errors:\t\t%10u\n"
2961		       "     path_febe_errors:\t\t%10u\n"
2962		       "     corr_hcs_errors:\t\t%10u\n"
2963		       "     ucorr_hcs_errors:\t\t%10u\n",
2964		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2965		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2966		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2967		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2968		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2969		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2970		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2971
2972    if (!left--)
2973	return sprintf(page,"\n"
2974		       "   ATM:\t\t\t\t     cells\n"
2975		       "     TX:\t\t\t%10u\n"
2976		       "     RX:\t\t\t%10u\n"
2977		       "     vpi out of range:\t\t%10u\n"
2978		       "     vpi no conn:\t\t%10u\n"
2979		       "     vci out of range:\t\t%10u\n"
2980		       "     vci no conn:\t\t%10u\n",
2981		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2982		       be32_to_cpu(fore200e->stats->atm.cells_received),
2983		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2984		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2985		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2986		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2987    
2988    if (!left--)
2989	return sprintf(page,"\n"
2990		       "   AAL0:\t\t\t     cells\n"
2991		       "     TX:\t\t\t%10u\n"
2992		       "     RX:\t\t\t%10u\n"
2993		       "     dropped:\t\t\t%10u\n",
2994		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2995		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2996		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2997    
2998    if (!left--)
2999	return sprintf(page,"\n"
3000		       "   AAL3/4:\n"
3001		       "     SAR sublayer:\t\t     cells\n"
3002		       "       TX:\t\t\t%10u\n"
3003		       "       RX:\t\t\t%10u\n"
3004		       "       dropped:\t\t\t%10u\n"
3005		       "       CRC errors:\t\t%10u\n"
3006		       "       protocol errors:\t\t%10u\n\n"
3007		       "     CS  sublayer:\t\t      PDUs\n"
3008		       "       TX:\t\t\t%10u\n"
3009		       "       RX:\t\t\t%10u\n"
3010		       "       dropped:\t\t\t%10u\n"
3011		       "       protocol errors:\t\t%10u\n",
3012		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3013		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3014		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3015		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3016		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3017		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3018		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3019		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3020		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3021    
3022    if (!left--)
3023	return sprintf(page,"\n"
3024		       "   AAL5:\n"
3025		       "     SAR sublayer:\t\t     cells\n"
3026		       "       TX:\t\t\t%10u\n"
3027		       "       RX:\t\t\t%10u\n"
3028		       "       dropped:\t\t\t%10u\n"
3029		       "       congestions:\t\t%10u\n\n"
3030		       "     CS  sublayer:\t\t      PDUs\n"
3031		       "       TX:\t\t\t%10u\n"
3032		       "       RX:\t\t\t%10u\n"
3033		       "       dropped:\t\t\t%10u\n"
3034		       "       CRC errors:\t\t%10u\n"
3035		       "       protocol errors:\t\t%10u\n",
3036		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3037		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3038		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3039		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3040		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3041		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3042		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3043		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3044		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3045    
3046    if (!left--)
3047	return sprintf(page,"\n"
3048		       "   AUX:\t\t       allocation failures\n"
3049		       "     small b1:\t\t\t%10u\n"
3050		       "     large b1:\t\t\t%10u\n"
3051		       "     small b2:\t\t\t%10u\n"
3052		       "     large b2:\t\t\t%10u\n"
3053		       "     RX PDUs:\t\t\t%10u\n"
3054		       "     TX PDUs:\t\t\t%10lu\n",
3055		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3056		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3057		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3058		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3059		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3060		       fore200e->tx_sat);
3061    
3062    if (!left--)
3063	return sprintf(page,"\n"
3064		       " receive carrier:\t\t\t%s\n",
3065		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3066    
3067    if (!left--) {
3068        return sprintf(page,"\n"
3069		       " VCCs:\n  address   VPI VCI   AAL "
3070		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3071    }
3072
3073    for (i = 0; i < NBR_CONNECT; i++) {
3074
3075	vcc = fore200e->vc_map[i].vcc;
3076
3077	if (vcc == NULL)
3078	    continue;
3079
3080	spin_lock_irqsave(&fore200e->q_lock, flags);
3081
3082	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3083
3084	    fore200e_vcc = FORE200E_VCC(vcc);
3085	    ASSERT(fore200e_vcc);
3086
3087	    len = sprintf(page,
3088			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3089			  (u32)(unsigned long)vcc,
3090			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3091			  fore200e_vcc->tx_pdu,
3092			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3093			  fore200e_vcc->tx_max_pdu,
3094			  fore200e_vcc->rx_pdu,
3095			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3096			  fore200e_vcc->rx_max_pdu);
3097
3098	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3099	    return len;
3100	}
3101
3102	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3103    }
3104    
3105    return 0;
3106}
3107
3108module_init(fore200e_module_init);
3109module_exit(fore200e_module_cleanup);
3110
3111
3112static const struct atmdev_ops fore200e_ops =
3113{
3114	.open       = fore200e_open,
3115	.close      = fore200e_close,
3116	.ioctl      = fore200e_ioctl,
3117	.getsockopt = fore200e_getsockopt,
3118	.setsockopt = fore200e_setsockopt,
3119	.send       = fore200e_send,
3120	.change_qos = fore200e_change_qos,
3121	.proc_read  = fore200e_proc_read,
3122	.owner      = THIS_MODULE
3123};
3124
3125
3126static const struct fore200e_bus fore200e_bus[] = {
3127#ifdef CONFIG_PCI
3128    { "PCA-200E", "pca200e", 32, 4, 32, 
3129      fore200e_pca_read,
3130      fore200e_pca_write,
3131      fore200e_pca_dma_map,
3132      fore200e_pca_dma_unmap,
3133      fore200e_pca_dma_sync_for_cpu,
3134      fore200e_pca_dma_sync_for_device,
3135      fore200e_pca_dma_chunk_alloc,
3136      fore200e_pca_dma_chunk_free,
3137      fore200e_pca_configure,
3138      fore200e_pca_map,
3139      fore200e_pca_reset,
3140      fore200e_pca_prom_read,
3141      fore200e_pca_unmap,
3142      NULL,
3143      fore200e_pca_irq_check,
3144      fore200e_pca_irq_ack,
3145      fore200e_pca_proc_read,
3146    },
3147#endif
3148#ifdef CONFIG_SBUS
3149    { "SBA-200E", "sba200e", 32, 64, 32,
3150      fore200e_sba_read,
3151      fore200e_sba_write,
3152      fore200e_sba_dma_map,
3153      fore200e_sba_dma_unmap,
3154      fore200e_sba_dma_sync_for_cpu,
3155      fore200e_sba_dma_sync_for_device,
3156      fore200e_sba_dma_chunk_alloc,
3157      fore200e_sba_dma_chunk_free,
3158      fore200e_sba_configure,
3159      fore200e_sba_map,
3160      fore200e_sba_reset,
3161      fore200e_sba_prom_read,
3162      fore200e_sba_unmap,
3163      fore200e_sba_irq_enable,
3164      fore200e_sba_irq_check,
3165      fore200e_sba_irq_ack,
3166      fore200e_sba_proc_read,
3167    },
3168#endif
3169    {}
3170};
3171
3172MODULE_LICENSE("GPL");
3173#ifdef CONFIG_PCI
3174#ifdef __LITTLE_ENDIAN__
3175MODULE_FIRMWARE("pca200e.bin");
3176#else
3177MODULE_FIRMWARE("pca200e_ecd.bin2");
3178#endif
3179#endif /* CONFIG_PCI */
3180#ifdef CONFIG_SBUS
3181MODULE_FIRMWARE("sba200e_ecd.bin2");
3182#endif