Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
   3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are
   7 * met:
   8 *  * Redistributions of source code must retain the above copyright
   9 *   notice, this list of conditions and the following disclaimer.
  10 *  * Redistributions in binary form must reproduce the above copyright
  11 *    notice, this list of conditions and the following disclaimer in the
  12 *    documentation and/or other materials provided with the distribution.
  13 *
  14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25 */
  26
  27#include <crypto/ecc_curve.h>
  28#include <linux/module.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/swab.h>
  32#include <linux/fips.h>
  33#include <crypto/ecdh.h>
  34#include <crypto/rng.h>
  35#include <crypto/internal/ecc.h>
  36#include <linux/unaligned.h>
  37#include <linux/ratelimit.h>
  38
 
  39#include "ecc_curve_defs.h"
  40
  41typedef struct {
  42	u64 m_low;
  43	u64 m_high;
  44} uint128_t;
  45
  46/* Returns curv25519 curve param */
  47const struct ecc_curve *ecc_get_curve25519(void)
  48{
  49	return &ecc_25519;
  50}
  51EXPORT_SYMBOL(ecc_get_curve25519);
  52
  53const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
  54{
  55	switch (curve_id) {
  56	/* In FIPS mode only allow P256 and higher */
  57	case ECC_CURVE_NIST_P192:
  58		return fips_enabled ? NULL : &nist_p192;
  59	case ECC_CURVE_NIST_P256:
  60		return &nist_p256;
  61	case ECC_CURVE_NIST_P384:
  62		return &nist_p384;
  63	case ECC_CURVE_NIST_P521:
  64		return &nist_p521;
  65	default:
  66		return NULL;
  67	}
  68}
  69EXPORT_SYMBOL(ecc_get_curve);
  70
  71void ecc_digits_from_bytes(const u8 *in, unsigned int nbytes,
  72			   u64 *out, unsigned int ndigits)
  73{
  74	int diff = ndigits - DIV_ROUND_UP(nbytes, sizeof(u64));
  75	unsigned int o = nbytes & 7;
  76	__be64 msd = 0;
  77
  78	/* diff > 0: not enough input bytes: set most significant digits to 0 */
  79	if (diff > 0) {
  80		ndigits -= diff;
  81		memset(&out[ndigits], 0, diff * sizeof(u64));
  82	}
  83
  84	if (o) {
  85		memcpy((u8 *)&msd + sizeof(msd) - o, in, o);
  86		out[--ndigits] = be64_to_cpu(msd);
  87		in += o;
  88	}
  89	ecc_swap_digits(in, out, ndigits);
  90}
  91EXPORT_SYMBOL(ecc_digits_from_bytes);
  92
  93static u64 *ecc_alloc_digits_space(unsigned int ndigits)
  94{
  95	size_t len = ndigits * sizeof(u64);
  96
  97	if (!len)
  98		return NULL;
  99
 100	return kmalloc(len, GFP_KERNEL);
 101}
 102
 103static void ecc_free_digits_space(u64 *space)
 104{
 105	kfree_sensitive(space);
 106}
 107
 108struct ecc_point *ecc_alloc_point(unsigned int ndigits)
 109{
 110	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
 111
 112	if (!p)
 113		return NULL;
 114
 115	p->x = ecc_alloc_digits_space(ndigits);
 116	if (!p->x)
 117		goto err_alloc_x;
 118
 119	p->y = ecc_alloc_digits_space(ndigits);
 120	if (!p->y)
 121		goto err_alloc_y;
 122
 123	p->ndigits = ndigits;
 124
 125	return p;
 126
 127err_alloc_y:
 128	ecc_free_digits_space(p->x);
 129err_alloc_x:
 130	kfree(p);
 131	return NULL;
 132}
 133EXPORT_SYMBOL(ecc_alloc_point);
 134
 135void ecc_free_point(struct ecc_point *p)
 136{
 137	if (!p)
 138		return;
 139
 140	kfree_sensitive(p->x);
 141	kfree_sensitive(p->y);
 142	kfree_sensitive(p);
 143}
 144EXPORT_SYMBOL(ecc_free_point);
 145
 146static void vli_clear(u64 *vli, unsigned int ndigits)
 147{
 148	int i;
 149
 150	for (i = 0; i < ndigits; i++)
 151		vli[i] = 0;
 152}
 153
 154/* Returns true if vli == 0, false otherwise. */
 155bool vli_is_zero(const u64 *vli, unsigned int ndigits)
 156{
 157	int i;
 158
 159	for (i = 0; i < ndigits; i++) {
 160		if (vli[i])
 161			return false;
 162	}
 163
 164	return true;
 165}
 166EXPORT_SYMBOL(vli_is_zero);
 167
 168/* Returns nonzero if bit of vli is set. */
 169static u64 vli_test_bit(const u64 *vli, unsigned int bit)
 170{
 171	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
 172}
 173
 174static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
 175{
 176	return vli_test_bit(vli, ndigits * 64 - 1);
 177}
 178
 179/* Counts the number of 64-bit "digits" in vli. */
 180static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
 181{
 182	int i;
 183
 184	/* Search from the end until we find a non-zero digit.
 185	 * We do it in reverse because we expect that most digits will
 186	 * be nonzero.
 187	 */
 188	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
 189
 190	return (i + 1);
 191}
 192
 193/* Counts the number of bits required for vli. */
 194unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
 195{
 196	unsigned int i, num_digits;
 197	u64 digit;
 198
 199	num_digits = vli_num_digits(vli, ndigits);
 200	if (num_digits == 0)
 201		return 0;
 202
 203	digit = vli[num_digits - 1];
 204	for (i = 0; digit; i++)
 205		digit >>= 1;
 206
 207	return ((num_digits - 1) * 64 + i);
 208}
 209EXPORT_SYMBOL(vli_num_bits);
 210
 211/* Set dest from unaligned bit string src. */
 212void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
 213{
 214	int i;
 215	const u64 *from = src;
 216
 217	for (i = 0; i < ndigits; i++)
 218		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
 219}
 220EXPORT_SYMBOL(vli_from_be64);
 221
 222void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
 223{
 224	int i;
 225	const u64 *from = src;
 226
 227	for (i = 0; i < ndigits; i++)
 228		dest[i] = get_unaligned_le64(&from[i]);
 229}
 230EXPORT_SYMBOL(vli_from_le64);
 231
 232/* Sets dest = src. */
 233static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
 234{
 235	int i;
 236
 237	for (i = 0; i < ndigits; i++)
 238		dest[i] = src[i];
 239}
 240
 241/* Returns sign of left - right. */
 242int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
 243{
 244	int i;
 245
 246	for (i = ndigits - 1; i >= 0; i--) {
 247		if (left[i] > right[i])
 248			return 1;
 249		else if (left[i] < right[i])
 250			return -1;
 251	}
 252
 253	return 0;
 254}
 255EXPORT_SYMBOL(vli_cmp);
 256
 257/* Computes result = in << c, returning carry. Can modify in place
 258 * (if result == in). 0 < shift < 64.
 259 */
 260static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
 261		      unsigned int ndigits)
 262{
 263	u64 carry = 0;
 264	int i;
 265
 266	for (i = 0; i < ndigits; i++) {
 267		u64 temp = in[i];
 268
 269		result[i] = (temp << shift) | carry;
 270		carry = temp >> (64 - shift);
 271	}
 272
 273	return carry;
 274}
 275
 276/* Computes vli = vli >> 1. */
 277static void vli_rshift1(u64 *vli, unsigned int ndigits)
 278{
 279	u64 *end = vli;
 280	u64 carry = 0;
 281
 282	vli += ndigits;
 283
 284	while (vli-- > end) {
 285		u64 temp = *vli;
 286		*vli = (temp >> 1) | carry;
 287		carry = temp << 63;
 288	}
 289}
 290
 291/* Computes result = left + right, returning carry. Can modify in place. */
 292static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
 293		   unsigned int ndigits)
 294{
 295	u64 carry = 0;
 296	int i;
 297
 298	for (i = 0; i < ndigits; i++) {
 299		u64 sum;
 300
 301		sum = left[i] + right[i] + carry;
 302		if (sum != left[i])
 303			carry = (sum < left[i]);
 304
 305		result[i] = sum;
 306	}
 307
 308	return carry;
 309}
 310
 311/* Computes result = left + right, returning carry. Can modify in place. */
 312static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
 313		    unsigned int ndigits)
 314{
 315	u64 carry = right;
 316	int i;
 317
 318	for (i = 0; i < ndigits; i++) {
 319		u64 sum;
 320
 321		sum = left[i] + carry;
 322		if (sum != left[i])
 323			carry = (sum < left[i]);
 324		else
 325			carry = !!carry;
 326
 327		result[i] = sum;
 328	}
 329
 330	return carry;
 331}
 332
 333/* Computes result = left - right, returning borrow. Can modify in place. */
 334u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
 335		   unsigned int ndigits)
 336{
 337	u64 borrow = 0;
 338	int i;
 339
 340	for (i = 0; i < ndigits; i++) {
 341		u64 diff;
 342
 343		diff = left[i] - right[i] - borrow;
 344		if (diff != left[i])
 345			borrow = (diff > left[i]);
 346
 347		result[i] = diff;
 348	}
 349
 350	return borrow;
 351}
 352EXPORT_SYMBOL(vli_sub);
 353
 354/* Computes result = left - right, returning borrow. Can modify in place. */
 355static u64 vli_usub(u64 *result, const u64 *left, u64 right,
 356	     unsigned int ndigits)
 357{
 358	u64 borrow = right;
 359	int i;
 360
 361	for (i = 0; i < ndigits; i++) {
 362		u64 diff;
 363
 364		diff = left[i] - borrow;
 365		if (diff != left[i])
 366			borrow = (diff > left[i]);
 367
 368		result[i] = diff;
 369	}
 370
 371	return borrow;
 372}
 373
 374static uint128_t mul_64_64(u64 left, u64 right)
 375{
 376	uint128_t result;
 377#if defined(CONFIG_ARCH_SUPPORTS_INT128)
 378	unsigned __int128 m = (unsigned __int128)left * right;
 379
 380	result.m_low  = m;
 381	result.m_high = m >> 64;
 382#else
 383	u64 a0 = left & 0xffffffffull;
 384	u64 a1 = left >> 32;
 385	u64 b0 = right & 0xffffffffull;
 386	u64 b1 = right >> 32;
 387	u64 m0 = a0 * b0;
 388	u64 m1 = a0 * b1;
 389	u64 m2 = a1 * b0;
 390	u64 m3 = a1 * b1;
 
 391
 392	m2 += (m0 >> 32);
 393	m2 += m1;
 394
 395	/* Overflow */
 396	if (m2 < m1)
 397		m3 += 0x100000000ull;
 398
 399	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
 400	result.m_high = m3 + (m2 >> 32);
 401#endif
 402	return result;
 403}
 404
 405static uint128_t add_128_128(uint128_t a, uint128_t b)
 406{
 407	uint128_t result;
 408
 409	result.m_low = a.m_low + b.m_low;
 410	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
 411
 412	return result;
 413}
 414
 415static void vli_mult(u64 *result, const u64 *left, const u64 *right,
 416		     unsigned int ndigits)
 417{
 418	uint128_t r01 = { 0, 0 };
 419	u64 r2 = 0;
 420	unsigned int i, k;
 421
 422	/* Compute each digit of result in sequence, maintaining the
 423	 * carries.
 424	 */
 425	for (k = 0; k < ndigits * 2 - 1; k++) {
 426		unsigned int min;
 427
 428		if (k < ndigits)
 429			min = 0;
 430		else
 431			min = (k + 1) - ndigits;
 432
 433		for (i = min; i <= k && i < ndigits; i++) {
 434			uint128_t product;
 435
 436			product = mul_64_64(left[i], right[k - i]);
 437
 438			r01 = add_128_128(r01, product);
 439			r2 += (r01.m_high < product.m_high);
 440		}
 441
 442		result[k] = r01.m_low;
 443		r01.m_low = r01.m_high;
 444		r01.m_high = r2;
 445		r2 = 0;
 446	}
 447
 448	result[ndigits * 2 - 1] = r01.m_low;
 449}
 450
 451/* Compute product = left * right, for a small right value. */
 452static void vli_umult(u64 *result, const u64 *left, u32 right,
 453		      unsigned int ndigits)
 454{
 455	uint128_t r01 = { 0 };
 456	unsigned int k;
 457
 458	for (k = 0; k < ndigits; k++) {
 459		uint128_t product;
 460
 461		product = mul_64_64(left[k], right);
 462		r01 = add_128_128(r01, product);
 463		/* no carry */
 464		result[k] = r01.m_low;
 465		r01.m_low = r01.m_high;
 466		r01.m_high = 0;
 467	}
 468	result[k] = r01.m_low;
 469	for (++k; k < ndigits * 2; k++)
 470		result[k] = 0;
 471}
 472
 473static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
 474{
 475	uint128_t r01 = { 0, 0 };
 476	u64 r2 = 0;
 477	int i, k;
 478
 479	for (k = 0; k < ndigits * 2 - 1; k++) {
 480		unsigned int min;
 481
 482		if (k < ndigits)
 483			min = 0;
 484		else
 485			min = (k + 1) - ndigits;
 486
 487		for (i = min; i <= k && i <= k - i; i++) {
 488			uint128_t product;
 489
 490			product = mul_64_64(left[i], left[k - i]);
 491
 492			if (i < k - i) {
 493				r2 += product.m_high >> 63;
 494				product.m_high = (product.m_high << 1) |
 495						 (product.m_low >> 63);
 496				product.m_low <<= 1;
 497			}
 498
 499			r01 = add_128_128(r01, product);
 500			r2 += (r01.m_high < product.m_high);
 501		}
 502
 503		result[k] = r01.m_low;
 504		r01.m_low = r01.m_high;
 505		r01.m_high = r2;
 506		r2 = 0;
 507	}
 508
 509	result[ndigits * 2 - 1] = r01.m_low;
 510}
 511
 512/* Computes result = (left + right) % mod.
 513 * Assumes that left < mod and right < mod, result != mod.
 514 */
 515static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
 516			const u64 *mod, unsigned int ndigits)
 517{
 518	u64 carry;
 519
 520	carry = vli_add(result, left, right, ndigits);
 521
 522	/* result > mod (result = mod + remainder), so subtract mod to
 523	 * get remainder.
 524	 */
 525	if (carry || vli_cmp(result, mod, ndigits) >= 0)
 526		vli_sub(result, result, mod, ndigits);
 527}
 528
 529/* Computes result = (left - right) % mod.
 530 * Assumes that left < mod and right < mod, result != mod.
 531 */
 532static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
 533			const u64 *mod, unsigned int ndigits)
 534{
 535	u64 borrow = vli_sub(result, left, right, ndigits);
 536
 537	/* In this case, p_result == -diff == (max int) - diff.
 538	 * Since -x % d == d - x, we can get the correct result from
 539	 * result + mod (with overflow).
 540	 */
 541	if (borrow)
 542		vli_add(result, result, mod, ndigits);
 543}
 544
 545/*
 546 * Computes result = product % mod
 547 * for special form moduli: p = 2^k-c, for small c (note the minus sign)
 548 *
 549 * References:
 550 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
 551 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
 552 * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
 553 */
 554static void vli_mmod_special(u64 *result, const u64 *product,
 555			      const u64 *mod, unsigned int ndigits)
 556{
 557	u64 c = -mod[0];
 558	u64 t[ECC_MAX_DIGITS * 2];
 559	u64 r[ECC_MAX_DIGITS * 2];
 560
 561	vli_set(r, product, ndigits * 2);
 562	while (!vli_is_zero(r + ndigits, ndigits)) {
 563		vli_umult(t, r + ndigits, c, ndigits);
 564		vli_clear(r + ndigits, ndigits);
 565		vli_add(r, r, t, ndigits * 2);
 566	}
 567	vli_set(t, mod, ndigits);
 568	vli_clear(t + ndigits, ndigits);
 569	while (vli_cmp(r, t, ndigits * 2) >= 0)
 570		vli_sub(r, r, t, ndigits * 2);
 571	vli_set(result, r, ndigits);
 572}
 573
 574/*
 575 * Computes result = product % mod
 576 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
 577 * where k-1 does not fit into qword boundary by -1 bit (such as 255).
 578
 579 * References (loosely based on):
 580 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
 581 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
 582 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
 583 *
 584 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
 585 * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
 586 * Algorithm 10.25 Fast reduction for special form moduli
 587 */
 588static void vli_mmod_special2(u64 *result, const u64 *product,
 589			       const u64 *mod, unsigned int ndigits)
 590{
 591	u64 c2 = mod[0] * 2;
 592	u64 q[ECC_MAX_DIGITS];
 593	u64 r[ECC_MAX_DIGITS * 2];
 594	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
 595	int carry; /* last bit that doesn't fit into q */
 596	int i;
 597
 598	vli_set(m, mod, ndigits);
 599	vli_clear(m + ndigits, ndigits);
 600
 601	vli_set(r, product, ndigits);
 602	/* q and carry are top bits */
 603	vli_set(q, product + ndigits, ndigits);
 604	vli_clear(r + ndigits, ndigits);
 605	carry = vli_is_negative(r, ndigits);
 606	if (carry)
 607		r[ndigits - 1] &= (1ull << 63) - 1;
 608	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
 609		u64 qc[ECC_MAX_DIGITS * 2];
 610
 611		vli_umult(qc, q, c2, ndigits);
 612		if (carry)
 613			vli_uadd(qc, qc, mod[0], ndigits * 2);
 614		vli_set(q, qc + ndigits, ndigits);
 615		vli_clear(qc + ndigits, ndigits);
 616		carry = vli_is_negative(qc, ndigits);
 617		if (carry)
 618			qc[ndigits - 1] &= (1ull << 63) - 1;
 619		if (i & 1)
 620			vli_sub(r, r, qc, ndigits * 2);
 621		else
 622			vli_add(r, r, qc, ndigits * 2);
 623	}
 624	while (vli_is_negative(r, ndigits * 2))
 625		vli_add(r, r, m, ndigits * 2);
 626	while (vli_cmp(r, m, ndigits * 2) >= 0)
 627		vli_sub(r, r, m, ndigits * 2);
 628
 629	vli_set(result, r, ndigits);
 630}
 631
 632/*
 633 * Computes result = product % mod, where product is 2N words long.
 634 * Reference: Ken MacKay's micro-ecc.
 635 * Currently only designed to work for curve_p or curve_n.
 636 */
 637static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
 638			  unsigned int ndigits)
 639{
 640	u64 mod_m[2 * ECC_MAX_DIGITS];
 641	u64 tmp[2 * ECC_MAX_DIGITS];
 642	u64 *v[2] = { tmp, product };
 643	u64 carry = 0;
 644	unsigned int i;
 645	/* Shift mod so its highest set bit is at the maximum position. */
 646	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
 647	int word_shift = shift / 64;
 648	int bit_shift = shift % 64;
 649
 650	vli_clear(mod_m, word_shift);
 651	if (bit_shift > 0) {
 652		for (i = 0; i < ndigits; ++i) {
 653			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
 654			carry = mod[i] >> (64 - bit_shift);
 655		}
 656	} else
 657		vli_set(mod_m + word_shift, mod, ndigits);
 658
 659	for (i = 1; shift >= 0; --shift) {
 660		u64 borrow = 0;
 661		unsigned int j;
 662
 663		for (j = 0; j < ndigits * 2; ++j) {
 664			u64 diff = v[i][j] - mod_m[j] - borrow;
 665
 666			if (diff != v[i][j])
 667				borrow = (diff > v[i][j]);
 668			v[1 - i][j] = diff;
 669		}
 670		i = !(i ^ borrow); /* Swap the index if there was no borrow */
 671		vli_rshift1(mod_m, ndigits);
 672		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
 673		vli_rshift1(mod_m + ndigits, ndigits);
 674	}
 675	vli_set(result, v[i], ndigits);
 676}
 677
 678/* Computes result = product % mod using Barrett's reduction with precomputed
 679 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
 680 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
 681 * boundary.
 682 *
 683 * Reference:
 684 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
 685 * 2.4.1 Barrett's algorithm. Algorithm 2.5.
 686 */
 687static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
 688			     unsigned int ndigits)
 689{
 690	u64 q[ECC_MAX_DIGITS * 2];
 691	u64 r[ECC_MAX_DIGITS * 2];
 692	const u64 *mu = mod + ndigits;
 693
 694	vli_mult(q, product + ndigits, mu, ndigits);
 695	if (mu[ndigits])
 696		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
 697	vli_mult(r, mod, q + ndigits, ndigits);
 698	vli_sub(r, product, r, ndigits * 2);
 699	while (!vli_is_zero(r + ndigits, ndigits) ||
 700	       vli_cmp(r, mod, ndigits) != -1) {
 701		u64 carry;
 702
 703		carry = vli_sub(r, r, mod, ndigits);
 704		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
 705	}
 706	vli_set(result, r, ndigits);
 707}
 708
 709/* Computes p_result = p_product % curve_p.
 710 * See algorithm 5 and 6 from
 711 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
 712 */
 713static void vli_mmod_fast_192(u64 *result, const u64 *product,
 714			      const u64 *curve_prime, u64 *tmp)
 715{
 716	const unsigned int ndigits = ECC_CURVE_NIST_P192_DIGITS;
 717	int carry;
 718
 719	vli_set(result, product, ndigits);
 720
 721	vli_set(tmp, &product[3], ndigits);
 722	carry = vli_add(result, result, tmp, ndigits);
 723
 724	tmp[0] = 0;
 725	tmp[1] = product[3];
 726	tmp[2] = product[4];
 727	carry += vli_add(result, result, tmp, ndigits);
 728
 729	tmp[0] = tmp[1] = product[5];
 730	tmp[2] = 0;
 731	carry += vli_add(result, result, tmp, ndigits);
 732
 733	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 734		carry -= vli_sub(result, result, curve_prime, ndigits);
 735}
 736
 737/* Computes result = product % curve_prime
 738 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
 739 */
 740static void vli_mmod_fast_256(u64 *result, const u64 *product,
 741			      const u64 *curve_prime, u64 *tmp)
 742{
 743	int carry;
 744	const unsigned int ndigits = ECC_CURVE_NIST_P256_DIGITS;
 745
 746	/* t */
 747	vli_set(result, product, ndigits);
 748
 749	/* s1 */
 750	tmp[0] = 0;
 751	tmp[1] = product[5] & 0xffffffff00000000ull;
 752	tmp[2] = product[6];
 753	tmp[3] = product[7];
 754	carry = vli_lshift(tmp, tmp, 1, ndigits);
 755	carry += vli_add(result, result, tmp, ndigits);
 756
 757	/* s2 */
 758	tmp[1] = product[6] << 32;
 759	tmp[2] = (product[6] >> 32) | (product[7] << 32);
 760	tmp[3] = product[7] >> 32;
 761	carry += vli_lshift(tmp, tmp, 1, ndigits);
 762	carry += vli_add(result, result, tmp, ndigits);
 763
 764	/* s3 */
 765	tmp[0] = product[4];
 766	tmp[1] = product[5] & 0xffffffff;
 767	tmp[2] = 0;
 768	tmp[3] = product[7];
 769	carry += vli_add(result, result, tmp, ndigits);
 770
 771	/* s4 */
 772	tmp[0] = (product[4] >> 32) | (product[5] << 32);
 773	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
 774	tmp[2] = product[7];
 775	tmp[3] = (product[6] >> 32) | (product[4] << 32);
 776	carry += vli_add(result, result, tmp, ndigits);
 777
 778	/* d1 */
 779	tmp[0] = (product[5] >> 32) | (product[6] << 32);
 780	tmp[1] = (product[6] >> 32);
 781	tmp[2] = 0;
 782	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
 783	carry -= vli_sub(result, result, tmp, ndigits);
 784
 785	/* d2 */
 786	tmp[0] = product[6];
 787	tmp[1] = product[7];
 788	tmp[2] = 0;
 789	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
 790	carry -= vli_sub(result, result, tmp, ndigits);
 791
 792	/* d3 */
 793	tmp[0] = (product[6] >> 32) | (product[7] << 32);
 794	tmp[1] = (product[7] >> 32) | (product[4] << 32);
 795	tmp[2] = (product[4] >> 32) | (product[5] << 32);
 796	tmp[3] = (product[6] << 32);
 797	carry -= vli_sub(result, result, tmp, ndigits);
 798
 799	/* d4 */
 800	tmp[0] = product[7];
 801	tmp[1] = product[4] & 0xffffffff00000000ull;
 802	tmp[2] = product[5];
 803	tmp[3] = product[6] & 0xffffffff00000000ull;
 804	carry -= vli_sub(result, result, tmp, ndigits);
 805
 806	if (carry < 0) {
 807		do {
 808			carry += vli_add(result, result, curve_prime, ndigits);
 809		} while (carry < 0);
 810	} else {
 811		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 812			carry -= vli_sub(result, result, curve_prime, ndigits);
 813	}
 814}
 815
 816#define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
 817#define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
 818#define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
 819
 820/* Computes result = product % curve_prime
 821 * from "Mathematical routines for the NIST prime elliptic curves"
 822 */
 823static void vli_mmod_fast_384(u64 *result, const u64 *product,
 824				const u64 *curve_prime, u64 *tmp)
 825{
 826	int carry;
 827	const unsigned int ndigits = ECC_CURVE_NIST_P384_DIGITS;
 828
 829	/* t */
 830	vli_set(result, product, ndigits);
 831
 832	/* s1 */
 833	tmp[0] = 0;		// 0 || 0
 834	tmp[1] = 0;		// 0 || 0
 835	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
 836	tmp[3] = product[11]>>32;	// 0 ||a23
 837	tmp[4] = 0;		// 0 || 0
 838	tmp[5] = 0;		// 0 || 0
 839	carry = vli_lshift(tmp, tmp, 1, ndigits);
 840	carry += vli_add(result, result, tmp, ndigits);
 841
 842	/* s2 */
 843	tmp[0] = product[6];	//a13||a12
 844	tmp[1] = product[7];	//a15||a14
 845	tmp[2] = product[8];	//a17||a16
 846	tmp[3] = product[9];	//a19||a18
 847	tmp[4] = product[10];	//a21||a20
 848	tmp[5] = product[11];	//a23||a22
 849	carry += vli_add(result, result, tmp, ndigits);
 850
 851	/* s3 */
 852	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
 853	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
 854	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
 855	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
 856	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
 857	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
 858	carry += vli_add(result, result, tmp, ndigits);
 859
 860	/* s4 */
 861	tmp[0] = AND64H(product[11]);	//a23|| 0
 862	tmp[1] = (product[10]<<32);	//a20|| 0
 863	tmp[2] = product[6];	//a13||a12
 864	tmp[3] = product[7];	//a15||a14
 865	tmp[4] = product[8];	//a17||a16
 866	tmp[5] = product[9];	//a19||a18
 867	carry += vli_add(result, result, tmp, ndigits);
 868
 869	/* s5 */
 870	tmp[0] = 0;		//  0|| 0
 871	tmp[1] = 0;		//  0|| 0
 872	tmp[2] = product[10];	//a21||a20
 873	tmp[3] = product[11];	//a23||a22
 874	tmp[4] = 0;		//  0|| 0
 875	tmp[5] = 0;		//  0|| 0
 876	carry += vli_add(result, result, tmp, ndigits);
 877
 878	/* s6 */
 879	tmp[0] = AND64L(product[10]);	// 0 ||a20
 880	tmp[1] = AND64H(product[10]);	//a21|| 0
 881	tmp[2] = product[11];	//a23||a22
 882	tmp[3] = 0;		// 0 || 0
 883	tmp[4] = 0;		// 0 || 0
 884	tmp[5] = 0;		// 0 || 0
 885	carry += vli_add(result, result, tmp, ndigits);
 886
 887	/* d1 */
 888	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
 889	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
 890	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
 891	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
 892	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
 893	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
 894	carry -= vli_sub(result, result, tmp, ndigits);
 895
 896	/* d2 */
 897	tmp[0] = (product[10]<<32);	//a20|| 0
 898	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
 899	tmp[2] = (product[11]>>32);	// 0 ||a23
 900	tmp[3] = 0;		// 0 || 0
 901	tmp[4] = 0;		// 0 || 0
 902	tmp[5] = 0;		// 0 || 0
 903	carry -= vli_sub(result, result, tmp, ndigits);
 904
 905	/* d3 */
 906	tmp[0] = 0;		// 0 || 0
 907	tmp[1] = AND64H(product[11]);	//a23|| 0
 908	tmp[2] = product[11]>>32;	// 0 ||a23
 909	tmp[3] = 0;		// 0 || 0
 910	tmp[4] = 0;		// 0 || 0
 911	tmp[5] = 0;		// 0 || 0
 912	carry -= vli_sub(result, result, tmp, ndigits);
 913
 914	if (carry < 0) {
 915		do {
 916			carry += vli_add(result, result, curve_prime, ndigits);
 917		} while (carry < 0);
 918	} else {
 919		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 920			carry -= vli_sub(result, result, curve_prime, ndigits);
 921	}
 922
 923}
 924
 925#undef SL32OR32
 926#undef AND64H
 927#undef AND64L
 928
 929/*
 930 * Computes result = product % curve_prime
 931 * from "Recommendations for Discrete Logarithm-Based Cryptography:
 932 *       Elliptic Curve Domain Parameters" section G.1.4
 933 */
 934static void vli_mmod_fast_521(u64 *result, const u64 *product,
 935			      const u64 *curve_prime, u64 *tmp)
 936{
 937	const unsigned int ndigits = ECC_CURVE_NIST_P521_DIGITS;
 938	size_t i;
 939
 940	/* Initialize result with lowest 521 bits from product */
 941	vli_set(result, product, ndigits);
 942	result[8] &= 0x1ff;
 943
 944	for (i = 0; i < ndigits; i++)
 945		tmp[i] = (product[8 + i] >> 9) | (product[9 + i] << 55);
 946	tmp[8] &= 0x1ff;
 947
 948	vli_mod_add(result, result, tmp, curve_prime, ndigits);
 949}
 950
 951/* Computes result = product % curve_prime for different curve_primes.
 952 *
 953 * Note that curve_primes are distinguished just by heuristic check and
 954 * not by complete conformance check.
 955 */
 956static bool vli_mmod_fast(u64 *result, u64 *product,
 957			  const struct ecc_curve *curve)
 958{
 959	u64 tmp[2 * ECC_MAX_DIGITS];
 960	const u64 *curve_prime = curve->p;
 961	const unsigned int ndigits = curve->g.ndigits;
 962
 963	/* All NIST curves have name prefix 'nist_' */
 964	if (strncmp(curve->name, "nist_", 5) != 0) {
 965		/* Try to handle Pseudo-Marsenne primes. */
 966		if (curve_prime[ndigits - 1] == -1ull) {
 967			vli_mmod_special(result, product, curve_prime,
 968					 ndigits);
 969			return true;
 970		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
 971			   curve_prime[ndigits - 2] == 0) {
 972			vli_mmod_special2(result, product, curve_prime,
 973					  ndigits);
 974			return true;
 975		}
 976		vli_mmod_barrett(result, product, curve_prime, ndigits);
 977		return true;
 978	}
 979
 980	switch (ndigits) {
 981	case ECC_CURVE_NIST_P192_DIGITS:
 982		vli_mmod_fast_192(result, product, curve_prime, tmp);
 983		break;
 984	case ECC_CURVE_NIST_P256_DIGITS:
 985		vli_mmod_fast_256(result, product, curve_prime, tmp);
 986		break;
 987	case ECC_CURVE_NIST_P384_DIGITS:
 988		vli_mmod_fast_384(result, product, curve_prime, tmp);
 989		break;
 990	case ECC_CURVE_NIST_P521_DIGITS:
 991		vli_mmod_fast_521(result, product, curve_prime, tmp);
 992		break;
 993	default:
 994		pr_err_ratelimited("ecc: unsupported digits size!\n");
 995		return false;
 996	}
 997
 998	return true;
 999}
1000
1001/* Computes result = (left * right) % mod.
1002 * Assumes that mod is big enough curve order.
1003 */
1004void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
1005		       const u64 *mod, unsigned int ndigits)
1006{
1007	u64 product[ECC_MAX_DIGITS * 2];
1008
1009	vli_mult(product, left, right, ndigits);
1010	vli_mmod_slow(result, product, mod, ndigits);
1011}
1012EXPORT_SYMBOL(vli_mod_mult_slow);
1013
1014/* Computes result = (left * right) % curve_prime. */
1015static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
1016			      const struct ecc_curve *curve)
1017{
1018	u64 product[2 * ECC_MAX_DIGITS];
1019
1020	vli_mult(product, left, right, curve->g.ndigits);
1021	vli_mmod_fast(result, product, curve);
1022}
1023
1024/* Computes result = left^2 % curve_prime. */
1025static void vli_mod_square_fast(u64 *result, const u64 *left,
1026				const struct ecc_curve *curve)
1027{
1028	u64 product[2 * ECC_MAX_DIGITS];
1029
1030	vli_square(product, left, curve->g.ndigits);
1031	vli_mmod_fast(result, product, curve);
1032}
1033
1034#define EVEN(vli) (!(vli[0] & 1))
1035/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
1036 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
1037 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
1038 */
1039void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
1040			unsigned int ndigits)
1041{
1042	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
1043	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
1044	u64 carry;
1045	int cmp_result;
1046
1047	if (vli_is_zero(input, ndigits)) {
1048		vli_clear(result, ndigits);
1049		return;
1050	}
1051
1052	vli_set(a, input, ndigits);
1053	vli_set(b, mod, ndigits);
1054	vli_clear(u, ndigits);
1055	u[0] = 1;
1056	vli_clear(v, ndigits);
1057
1058	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
1059		carry = 0;
1060
1061		if (EVEN(a)) {
1062			vli_rshift1(a, ndigits);
1063
1064			if (!EVEN(u))
1065				carry = vli_add(u, u, mod, ndigits);
1066
1067			vli_rshift1(u, ndigits);
1068			if (carry)
1069				u[ndigits - 1] |= 0x8000000000000000ull;
1070		} else if (EVEN(b)) {
1071			vli_rshift1(b, ndigits);
1072
1073			if (!EVEN(v))
1074				carry = vli_add(v, v, mod, ndigits);
1075
1076			vli_rshift1(v, ndigits);
1077			if (carry)
1078				v[ndigits - 1] |= 0x8000000000000000ull;
1079		} else if (cmp_result > 0) {
1080			vli_sub(a, a, b, ndigits);
1081			vli_rshift1(a, ndigits);
1082
1083			if (vli_cmp(u, v, ndigits) < 0)
1084				vli_add(u, u, mod, ndigits);
1085
1086			vli_sub(u, u, v, ndigits);
1087			if (!EVEN(u))
1088				carry = vli_add(u, u, mod, ndigits);
1089
1090			vli_rshift1(u, ndigits);
1091			if (carry)
1092				u[ndigits - 1] |= 0x8000000000000000ull;
1093		} else {
1094			vli_sub(b, b, a, ndigits);
1095			vli_rshift1(b, ndigits);
1096
1097			if (vli_cmp(v, u, ndigits) < 0)
1098				vli_add(v, v, mod, ndigits);
1099
1100			vli_sub(v, v, u, ndigits);
1101			if (!EVEN(v))
1102				carry = vli_add(v, v, mod, ndigits);
1103
1104			vli_rshift1(v, ndigits);
1105			if (carry)
1106				v[ndigits - 1] |= 0x8000000000000000ull;
1107		}
1108	}
1109
1110	vli_set(result, u, ndigits);
1111}
1112EXPORT_SYMBOL(vli_mod_inv);
1113
1114/* ------ Point operations ------ */
1115
1116/* Returns true if p_point is the point at infinity, false otherwise. */
1117bool ecc_point_is_zero(const struct ecc_point *point)
1118{
1119	return (vli_is_zero(point->x, point->ndigits) &&
1120		vli_is_zero(point->y, point->ndigits));
1121}
1122EXPORT_SYMBOL(ecc_point_is_zero);
1123
1124/* Point multiplication algorithm using Montgomery's ladder with co-Z
1125 * coordinates. From https://eprint.iacr.org/2011/338.pdf
1126 */
1127
1128/* Double in place */
1129static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
1130					const struct ecc_curve *curve)
1131{
1132	/* t1 = x, t2 = y, t3 = z */
1133	u64 t4[ECC_MAX_DIGITS];
1134	u64 t5[ECC_MAX_DIGITS];
1135	const u64 *curve_prime = curve->p;
1136	const unsigned int ndigits = curve->g.ndigits;
1137
1138	if (vli_is_zero(z1, ndigits))
1139		return;
1140
1141	/* t4 = y1^2 */
1142	vli_mod_square_fast(t4, y1, curve);
1143	/* t5 = x1*y1^2 = A */
1144	vli_mod_mult_fast(t5, x1, t4, curve);
1145	/* t4 = y1^4 */
1146	vli_mod_square_fast(t4, t4, curve);
1147	/* t2 = y1*z1 = z3 */
1148	vli_mod_mult_fast(y1, y1, z1, curve);
1149	/* t3 = z1^2 */
1150	vli_mod_square_fast(z1, z1, curve);
1151
1152	/* t1 = x1 + z1^2 */
1153	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1154	/* t3 = 2*z1^2 */
1155	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
1156	/* t3 = x1 - z1^2 */
1157	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
1158	/* t1 = x1^2 - z1^4 */
1159	vli_mod_mult_fast(x1, x1, z1, curve);
1160
1161	/* t3 = 2*(x1^2 - z1^4) */
1162	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
1163	/* t1 = 3*(x1^2 - z1^4) */
1164	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
1165	if (vli_test_bit(x1, 0)) {
1166		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
1167
1168		vli_rshift1(x1, ndigits);
1169		x1[ndigits - 1] |= carry << 63;
1170	} else {
1171		vli_rshift1(x1, ndigits);
1172	}
1173	/* t1 = 3/2*(x1^2 - z1^4) = B */
1174
1175	/* t3 = B^2 */
1176	vli_mod_square_fast(z1, x1, curve);
1177	/* t3 = B^2 - A */
1178	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1179	/* t3 = B^2 - 2A = x3 */
1180	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
1181	/* t5 = A - x3 */
1182	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
1183	/* t1 = B * (A - x3) */
1184	vli_mod_mult_fast(x1, x1, t5, curve);
1185	/* t4 = B * (A - x3) - y1^4 = y3 */
1186	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
1187
1188	vli_set(x1, z1, ndigits);
1189	vli_set(z1, y1, ndigits);
1190	vli_set(y1, t4, ndigits);
1191}
1192
1193/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
1194static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
 
1195{
1196	u64 t1[ECC_MAX_DIGITS];
1197
1198	vli_mod_square_fast(t1, z, curve);		/* z^2 */
1199	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
1200	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
1201	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
1202}
1203
1204/* P = (x1, y1) => 2P, (x2, y2) => P' */
1205static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1206				u64 *p_initial_z, const struct ecc_curve *curve)
 
1207{
1208	u64 z[ECC_MAX_DIGITS];
1209	const unsigned int ndigits = curve->g.ndigits;
1210
1211	vli_set(x2, x1, ndigits);
1212	vli_set(y2, y1, ndigits);
1213
1214	vli_clear(z, ndigits);
1215	z[0] = 1;
1216
1217	if (p_initial_z)
1218		vli_set(z, p_initial_z, ndigits);
1219
1220	apply_z(x1, y1, z, curve);
1221
1222	ecc_point_double_jacobian(x1, y1, z, curve);
1223
1224	apply_z(x2, y2, z, curve);
1225}
1226
1227/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1228 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
1229 * or P => P', Q => P + Q
1230 */
1231static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1232			const struct ecc_curve *curve)
1233{
1234	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1235	u64 t5[ECC_MAX_DIGITS];
1236	const u64 *curve_prime = curve->p;
1237	const unsigned int ndigits = curve->g.ndigits;
1238
1239	/* t5 = x2 - x1 */
1240	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1241	/* t5 = (x2 - x1)^2 = A */
1242	vli_mod_square_fast(t5, t5, curve);
1243	/* t1 = x1*A = B */
1244	vli_mod_mult_fast(x1, x1, t5, curve);
1245	/* t3 = x2*A = C */
1246	vli_mod_mult_fast(x2, x2, t5, curve);
1247	/* t4 = y2 - y1 */
1248	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1249	/* t5 = (y2 - y1)^2 = D */
1250	vli_mod_square_fast(t5, y2, curve);
1251
1252	/* t5 = D - B */
1253	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
1254	/* t5 = D - B - C = x3 */
1255	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
1256	/* t3 = C - B */
1257	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
1258	/* t2 = y1*(C - B) */
1259	vli_mod_mult_fast(y1, y1, x2, curve);
1260	/* t3 = B - x3 */
1261	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
1262	/* t4 = (y2 - y1)*(B - x3) */
1263	vli_mod_mult_fast(y2, y2, x2, curve);
1264	/* t4 = y3 */
1265	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1266
1267	vli_set(x2, t5, ndigits);
1268}
1269
1270/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
1271 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
1272 * or P => P - Q, Q => P + Q
1273 */
1274static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
1275			const struct ecc_curve *curve)
1276{
1277	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
1278	u64 t5[ECC_MAX_DIGITS];
1279	u64 t6[ECC_MAX_DIGITS];
1280	u64 t7[ECC_MAX_DIGITS];
1281	const u64 *curve_prime = curve->p;
1282	const unsigned int ndigits = curve->g.ndigits;
1283
1284	/* t5 = x2 - x1 */
1285	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
1286	/* t5 = (x2 - x1)^2 = A */
1287	vli_mod_square_fast(t5, t5, curve);
1288	/* t1 = x1*A = B */
1289	vli_mod_mult_fast(x1, x1, t5, curve);
1290	/* t3 = x2*A = C */
1291	vli_mod_mult_fast(x2, x2, t5, curve);
1292	/* t4 = y2 + y1 */
1293	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
1294	/* t4 = y2 - y1 */
1295	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1296
1297	/* t6 = C - B */
1298	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
1299	/* t2 = y1 * (C - B) */
1300	vli_mod_mult_fast(y1, y1, t6, curve);
1301	/* t6 = B + C */
1302	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
1303	/* t3 = (y2 - y1)^2 */
1304	vli_mod_square_fast(x2, y2, curve);
1305	/* t3 = x3 */
1306	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
1307
1308	/* t7 = B - x3 */
1309	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
1310	/* t4 = (y2 - y1)*(B - x3) */
1311	vli_mod_mult_fast(y2, y2, t7, curve);
1312	/* t4 = y3 */
1313	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
1314
1315	/* t7 = (y2 + y1)^2 = F */
1316	vli_mod_square_fast(t7, t5, curve);
1317	/* t7 = x3' */
1318	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
1319	/* t6 = x3' - B */
1320	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
1321	/* t6 = (y2 + y1)*(x3' - B) */
1322	vli_mod_mult_fast(t6, t6, t5, curve);
1323	/* t2 = y3' */
1324	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
1325
1326	vli_set(x1, t7, ndigits);
1327}
1328
1329static void ecc_point_mult(struct ecc_point *result,
1330			   const struct ecc_point *point, const u64 *scalar,
1331			   u64 *initial_z, const struct ecc_curve *curve,
1332			   unsigned int ndigits)
1333{
1334	/* R0 and R1 */
1335	u64 rx[2][ECC_MAX_DIGITS];
1336	u64 ry[2][ECC_MAX_DIGITS];
1337	u64 z[ECC_MAX_DIGITS];
1338	u64 sk[2][ECC_MAX_DIGITS];
1339	u64 *curve_prime = curve->p;
1340	int i, nb;
1341	int num_bits;
1342	int carry;
1343
1344	carry = vli_add(sk[0], scalar, curve->n, ndigits);
1345	vli_add(sk[1], sk[0], curve->n, ndigits);
1346	scalar = sk[!carry];
1347	if (curve->nbits == 521)	/* NIST P521 */
1348		num_bits = curve->nbits + 2;
1349	else
1350		num_bits = sizeof(u64) * ndigits * 8 + 1;
1351
1352	vli_set(rx[1], point->x, ndigits);
1353	vli_set(ry[1], point->y, ndigits);
1354
1355	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
 
1356
1357	for (i = num_bits - 2; i > 0; i--) {
1358		nb = !vli_test_bit(scalar, i);
1359		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
1360		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
 
 
1361	}
1362
1363	nb = !vli_test_bit(scalar, 0);
1364	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
 
1365
1366	/* Find final 1/Z value. */
1367	/* X1 - X0 */
1368	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
1369	/* Yb * (X1 - X0) */
1370	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
1371	/* xP * Yb * (X1 - X0) */
1372	vli_mod_mult_fast(z, z, point->x, curve);
1373
1374	/* 1 / (xP * Yb * (X1 - X0)) */
1375	vli_mod_inv(z, z, curve_prime, point->ndigits);
1376
1377	/* yP / (xP * Yb * (X1 - X0)) */
1378	vli_mod_mult_fast(z, z, point->y, curve);
1379	/* Xb * yP / (xP * Yb * (X1 - X0)) */
1380	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
1381	/* End 1/Z calculation */
1382
1383	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
1384
1385	apply_z(rx[0], ry[0], z, curve);
1386
1387	vli_set(result->x, rx[0], ndigits);
1388	vli_set(result->y, ry[0], ndigits);
1389}
1390
1391/* Computes R = P + Q mod p */
1392static void ecc_point_add(const struct ecc_point *result,
1393		   const struct ecc_point *p, const struct ecc_point *q,
1394		   const struct ecc_curve *curve)
1395{
1396	u64 z[ECC_MAX_DIGITS];
1397	u64 px[ECC_MAX_DIGITS];
1398	u64 py[ECC_MAX_DIGITS];
1399	unsigned int ndigits = curve->g.ndigits;
1400
1401	vli_set(result->x, q->x, ndigits);
1402	vli_set(result->y, q->y, ndigits);
1403	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
1404	vli_set(px, p->x, ndigits);
1405	vli_set(py, p->y, ndigits);
1406	xycz_add(px, py, result->x, result->y, curve);
1407	vli_mod_inv(z, z, curve->p, ndigits);
1408	apply_z(result->x, result->y, z, curve);
1409}
1410
1411/* Computes R = u1P + u2Q mod p using Shamir's trick.
1412 * Based on: Kenneth MacKay's micro-ecc (2014).
1413 */
1414void ecc_point_mult_shamir(const struct ecc_point *result,
1415			   const u64 *u1, const struct ecc_point *p,
1416			   const u64 *u2, const struct ecc_point *q,
1417			   const struct ecc_curve *curve)
1418{
1419	u64 z[ECC_MAX_DIGITS];
1420	u64 sump[2][ECC_MAX_DIGITS];
1421	u64 *rx = result->x;
1422	u64 *ry = result->y;
1423	unsigned int ndigits = curve->g.ndigits;
1424	unsigned int num_bits;
1425	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
1426	const struct ecc_point *points[4];
1427	const struct ecc_point *point;
1428	unsigned int idx;
1429	int i;
1430
1431	ecc_point_add(&sum, p, q, curve);
1432	points[0] = NULL;
1433	points[1] = p;
1434	points[2] = q;
1435	points[3] = &sum;
1436
1437	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
1438	i = num_bits - 1;
1439	idx = !!vli_test_bit(u1, i);
1440	idx |= (!!vli_test_bit(u2, i)) << 1;
1441	point = points[idx];
1442
1443	vli_set(rx, point->x, ndigits);
1444	vli_set(ry, point->y, ndigits);
1445	vli_clear(z + 1, ndigits - 1);
1446	z[0] = 1;
1447
1448	for (--i; i >= 0; i--) {
1449		ecc_point_double_jacobian(rx, ry, z, curve);
1450		idx = !!vli_test_bit(u1, i);
1451		idx |= (!!vli_test_bit(u2, i)) << 1;
1452		point = points[idx];
1453		if (point) {
1454			u64 tx[ECC_MAX_DIGITS];
1455			u64 ty[ECC_MAX_DIGITS];
1456			u64 tz[ECC_MAX_DIGITS];
1457
1458			vli_set(tx, point->x, ndigits);
1459			vli_set(ty, point->y, ndigits);
1460			apply_z(tx, ty, z, curve);
1461			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
1462			xycz_add(tx, ty, rx, ry, curve);
1463			vli_mod_mult_fast(z, z, tz, curve);
1464		}
1465	}
1466	vli_mod_inv(z, z, curve->p, ndigits);
1467	apply_z(rx, ry, z, curve);
1468}
1469EXPORT_SYMBOL(ecc_point_mult_shamir);
1470
1471/*
1472 * This function performs checks equivalent to Appendix A.4.2 of FIPS 186-5.
1473 * Whereas A.4.2 results in an integer in the interval [1, n-1], this function
1474 * ensures that the integer is in the range of [2, n-3]. We are slightly
1475 * stricter because of the currently used scalar multiplication algorithm.
1476 */
1477static int __ecc_is_key_valid(const struct ecc_curve *curve,
1478			      const u64 *private_key, unsigned int ndigits)
1479{
1480	u64 one[ECC_MAX_DIGITS] = { 1, };
1481	u64 res[ECC_MAX_DIGITS];
1482
1483	if (!private_key)
1484		return -EINVAL;
1485
1486	if (curve->g.ndigits != ndigits)
1487		return -EINVAL;
1488
1489	/* Make sure the private key is in the range [2, n-3]. */
1490	if (vli_cmp(one, private_key, ndigits) != -1)
1491		return -EINVAL;
1492	vli_sub(res, curve->n, one, ndigits);
1493	vli_sub(res, res, one, ndigits);
1494	if (vli_cmp(res, private_key, ndigits) != 1)
1495		return -EINVAL;
1496
1497	return 0;
 
1498}
1499
1500int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
1501		     const u64 *private_key, unsigned int private_key_len)
1502{
1503	int nbytes;
1504	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1505
 
 
 
1506	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1507
1508	if (private_key_len != nbytes)
1509		return -EINVAL;
1510
1511	return __ecc_is_key_valid(curve, private_key, ndigits);
1512}
1513EXPORT_SYMBOL(ecc_is_key_valid);
1514
1515/*
1516 * ECC private keys are generated using the method of rejection sampling,
1517 * equivalent to that described in FIPS 186-5, Appendix A.2.2.
1518 *
1519 * This method generates a private key uniformly distributed in the range
1520 * [2, n-3].
1521 */
1522int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits,
1523		    u64 *private_key)
1524{
1525	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1526	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1527	unsigned int nbits = vli_num_bits(curve->n, ndigits);
1528	int err;
1529
1530	/*
1531	 * Step 1 & 2: check that N is included in Table 1 of FIPS 186-5,
1532	 * section 6.1.1.
1533	 */
1534	if (nbits < 224)
1535		return -EINVAL;
1536
1537	/*
1538	 * FIPS 186-5 recommends that the private key should be obtained from a
1539	 * RBG with a security strength equal to or greater than the security
1540	 * strength associated with N.
1541	 *
1542	 * The maximum security strength identified by NIST SP800-57pt1r4 for
1543	 * ECC is 256 (N >= 512).
1544	 *
1545	 * This condition is met by the default RNG because it selects a favored
1546	 * DRBG with a security strength of 256.
1547	 */
1548	if (crypto_get_default_rng())
1549		return -EFAULT;
1550
1551	/* Step 3: obtain N returned_bits from the DRBG. */
1552	err = crypto_rng_get_bytes(crypto_default_rng,
1553				   (u8 *)private_key, nbytes);
1554	crypto_put_default_rng();
1555	if (err)
1556		return err;
1557
1558	/* Step 4: make sure the private key is in the valid range. */
1559	if (__ecc_is_key_valid(curve, private_key, ndigits))
1560		return -EINVAL;
1561
1562	return 0;
1563}
1564EXPORT_SYMBOL(ecc_gen_privkey);
1565
1566int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
1567		     const u64 *private_key, u64 *public_key)
 
1568{
1569	int ret = 0;
1570	struct ecc_point *pk;
 
 
1571	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1572
1573	if (!private_key) {
1574		ret = -EINVAL;
1575		goto out;
1576	}
1577
 
 
1578	pk = ecc_alloc_point(ndigits);
1579	if (!pk) {
1580		ret = -ENOMEM;
1581		goto out;
1582	}
1583
1584	ecc_point_mult(pk, &curve->g, private_key, NULL, curve, ndigits);
1585
1586	/* SP800-56A rev 3 5.6.2.1.3 key check */
1587	if (ecc_is_pubkey_valid_full(curve, pk)) {
1588		ret = -EAGAIN;
1589		goto err_free_point;
1590	}
1591
1592	ecc_swap_digits(pk->x, public_key, ndigits);
1593	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
 
1594
1595err_free_point:
1596	ecc_free_point(pk);
1597out:
1598	return ret;
1599}
1600EXPORT_SYMBOL(ecc_make_pub_key);
1601
1602/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
1603int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
1604				struct ecc_point *pk)
1605{
1606	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
1607
1608	if (WARN_ON(pk->ndigits != curve->g.ndigits))
1609		return -EINVAL;
1610
1611	/* Check 1: Verify key is not the zero point. */
1612	if (ecc_point_is_zero(pk))
1613		return -EINVAL;
1614
1615	/* Check 2: Verify key is in the range [1, p-1]. */
1616	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
1617		return -EINVAL;
1618	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
1619		return -EINVAL;
1620
1621	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
1622	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
1623	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
1624	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
1625	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
1626	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
1627	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
1628	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
1629		return -EINVAL;
1630
1631	return 0;
1632}
1633EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
1634
1635/* SP800-56A section 5.6.2.3.3 full verification */
1636int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
1637			     struct ecc_point *pk)
1638{
1639	struct ecc_point *nQ;
1640
1641	/* Checks 1 through 3 */
1642	int ret = ecc_is_pubkey_valid_partial(curve, pk);
1643
1644	if (ret)
1645		return ret;
1646
1647	/* Check 4: Verify that nQ is the zero point. */
1648	nQ = ecc_alloc_point(pk->ndigits);
1649	if (!nQ)
1650		return -ENOMEM;
1651
1652	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
1653	if (!ecc_point_is_zero(nQ))
1654		ret = -EINVAL;
1655
1656	ecc_free_point(nQ);
1657
1658	return ret;
1659}
1660EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
1661
1662int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
1663			      const u64 *private_key, const u64 *public_key,
1664			      u64 *secret)
 
1665{
1666	int ret = 0;
1667	struct ecc_point *product, *pk;
1668	u64 rand_z[ECC_MAX_DIGITS];
 
1669	unsigned int nbytes;
1670	const struct ecc_curve *curve = ecc_get_curve(curve_id);
1671
1672	if (!private_key || !public_key || ndigits > ARRAY_SIZE(rand_z)) {
1673		ret = -EINVAL;
1674		goto out;
1675	}
1676
1677	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
1678
1679	get_random_bytes(rand_z, nbytes);
1680
1681	pk = ecc_alloc_point(ndigits);
1682	if (!pk) {
1683		ret = -ENOMEM;
1684		goto out;
1685	}
1686
1687	ecc_swap_digits(public_key, pk->x, ndigits);
1688	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
1689	ret = ecc_is_pubkey_valid_partial(curve, pk);
1690	if (ret)
1691		goto err_alloc_product;
1692
1693	product = ecc_alloc_point(ndigits);
1694	if (!product) {
1695		ret = -ENOMEM;
1696		goto err_alloc_product;
1697	}
1698
1699	ecc_point_mult(product, pk, private_key, rand_z, curve, ndigits);
 
 
1700
1701	if (ecc_point_is_zero(product)) {
1702		ret = -EFAULT;
1703		goto err_validity;
1704	}
1705
1706	ecc_swap_digits(product->x, secret, ndigits);
 
 
 
1707
1708err_validity:
1709	memzero_explicit(rand_z, sizeof(rand_z));
1710	ecc_free_point(product);
1711err_alloc_product:
1712	ecc_free_point(pk);
1713out:
1714	return ret;
1715}
1716EXPORT_SYMBOL(crypto_ecdh_shared_secret);
1717
1718MODULE_DESCRIPTION("core elliptic curve module");
1719MODULE_LICENSE("Dual BSD/GPL");
v4.10.11
   1/*
   2 * Copyright (c) 2013, Kenneth MacKay
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are
   7 * met:
   8 *  * Redistributions of source code must retain the above copyright
   9 *   notice, this list of conditions and the following disclaimer.
  10 *  * Redistributions in binary form must reproduce the above copyright
  11 *    notice, this list of conditions and the following disclaimer in the
  12 *    documentation and/or other materials provided with the distribution.
  13 *
  14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25 */
  26
 
 
  27#include <linux/random.h>
  28#include <linux/slab.h>
  29#include <linux/swab.h>
  30#include <linux/fips.h>
  31#include <crypto/ecdh.h>
 
 
 
 
  32
  33#include "ecc.h"
  34#include "ecc_curve_defs.h"
  35
  36typedef struct {
  37	u64 m_low;
  38	u64 m_high;
  39} uint128_t;
  40
  41static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
 
 
 
 
 
 
 
  42{
  43	switch (curve_id) {
  44	/* In FIPS mode only allow P256 and higher */
  45	case ECC_CURVE_NIST_P192:
  46		return fips_enabled ? NULL : &nist_p192;
  47	case ECC_CURVE_NIST_P256:
  48		return &nist_p256;
 
 
 
 
  49	default:
  50		return NULL;
  51	}
  52}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54static u64 *ecc_alloc_digits_space(unsigned int ndigits)
  55{
  56	size_t len = ndigits * sizeof(u64);
  57
  58	if (!len)
  59		return NULL;
  60
  61	return kmalloc(len, GFP_KERNEL);
  62}
  63
  64static void ecc_free_digits_space(u64 *space)
  65{
  66	kzfree(space);
  67}
  68
  69static struct ecc_point *ecc_alloc_point(unsigned int ndigits)
  70{
  71	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
  72
  73	if (!p)
  74		return NULL;
  75
  76	p->x = ecc_alloc_digits_space(ndigits);
  77	if (!p->x)
  78		goto err_alloc_x;
  79
  80	p->y = ecc_alloc_digits_space(ndigits);
  81	if (!p->y)
  82		goto err_alloc_y;
  83
  84	p->ndigits = ndigits;
  85
  86	return p;
  87
  88err_alloc_y:
  89	ecc_free_digits_space(p->x);
  90err_alloc_x:
  91	kfree(p);
  92	return NULL;
  93}
 
  94
  95static void ecc_free_point(struct ecc_point *p)
  96{
  97	if (!p)
  98		return;
  99
 100	kzfree(p->x);
 101	kzfree(p->y);
 102	kzfree(p);
 103}
 
 104
 105static void vli_clear(u64 *vli, unsigned int ndigits)
 106{
 107	int i;
 108
 109	for (i = 0; i < ndigits; i++)
 110		vli[i] = 0;
 111}
 112
 113/* Returns true if vli == 0, false otherwise. */
 114static bool vli_is_zero(const u64 *vli, unsigned int ndigits)
 115{
 116	int i;
 117
 118	for (i = 0; i < ndigits; i++) {
 119		if (vli[i])
 120			return false;
 121	}
 122
 123	return true;
 124}
 
 125
 126/* Returns nonzero if bit bit of vli is set. */
 127static u64 vli_test_bit(const u64 *vli, unsigned int bit)
 128{
 129	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
 130}
 131
 
 
 
 
 
 132/* Counts the number of 64-bit "digits" in vli. */
 133static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
 134{
 135	int i;
 136
 137	/* Search from the end until we find a non-zero digit.
 138	 * We do it in reverse because we expect that most digits will
 139	 * be nonzero.
 140	 */
 141	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
 142
 143	return (i + 1);
 144}
 145
 146/* Counts the number of bits required for vli. */
 147static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
 148{
 149	unsigned int i, num_digits;
 150	u64 digit;
 151
 152	num_digits = vli_num_digits(vli, ndigits);
 153	if (num_digits == 0)
 154		return 0;
 155
 156	digit = vli[num_digits - 1];
 157	for (i = 0; digit; i++)
 158		digit >>= 1;
 159
 160	return ((num_digits - 1) * 64 + i);
 161}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162
 163/* Sets dest = src. */
 164static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
 165{
 166	int i;
 167
 168	for (i = 0; i < ndigits; i++)
 169		dest[i] = src[i];
 170}
 171
 172/* Returns sign of left - right. */
 173static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
 174{
 175	int i;
 176
 177	for (i = ndigits - 1; i >= 0; i--) {
 178		if (left[i] > right[i])
 179			return 1;
 180		else if (left[i] < right[i])
 181			return -1;
 182	}
 183
 184	return 0;
 185}
 
 186
 187/* Computes result = in << c, returning carry. Can modify in place
 188 * (if result == in). 0 < shift < 64.
 189 */
 190static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
 191		      unsigned int ndigits)
 192{
 193	u64 carry = 0;
 194	int i;
 195
 196	for (i = 0; i < ndigits; i++) {
 197		u64 temp = in[i];
 198
 199		result[i] = (temp << shift) | carry;
 200		carry = temp >> (64 - shift);
 201	}
 202
 203	return carry;
 204}
 205
 206/* Computes vli = vli >> 1. */
 207static void vli_rshift1(u64 *vli, unsigned int ndigits)
 208{
 209	u64 *end = vli;
 210	u64 carry = 0;
 211
 212	vli += ndigits;
 213
 214	while (vli-- > end) {
 215		u64 temp = *vli;
 216		*vli = (temp >> 1) | carry;
 217		carry = temp << 63;
 218	}
 219}
 220
 221/* Computes result = left + right, returning carry. Can modify in place. */
 222static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
 223		   unsigned int ndigits)
 224{
 225	u64 carry = 0;
 226	int i;
 227
 228	for (i = 0; i < ndigits; i++) {
 229		u64 sum;
 230
 231		sum = left[i] + right[i] + carry;
 232		if (sum != left[i])
 233			carry = (sum < left[i]);
 234
 235		result[i] = sum;
 236	}
 237
 238	return carry;
 239}
 240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241/* Computes result = left - right, returning borrow. Can modify in place. */
 242static u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
 243		   unsigned int ndigits)
 244{
 245	u64 borrow = 0;
 246	int i;
 247
 248	for (i = 0; i < ndigits; i++) {
 249		u64 diff;
 250
 251		diff = left[i] - right[i] - borrow;
 252		if (diff != left[i])
 253			borrow = (diff > left[i]);
 254
 255		result[i] = diff;
 256	}
 257
 258	return borrow;
 259}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260
 261static uint128_t mul_64_64(u64 left, u64 right)
 262{
 
 
 
 
 
 
 
 263	u64 a0 = left & 0xffffffffull;
 264	u64 a1 = left >> 32;
 265	u64 b0 = right & 0xffffffffull;
 266	u64 b1 = right >> 32;
 267	u64 m0 = a0 * b0;
 268	u64 m1 = a0 * b1;
 269	u64 m2 = a1 * b0;
 270	u64 m3 = a1 * b1;
 271	uint128_t result;
 272
 273	m2 += (m0 >> 32);
 274	m2 += m1;
 275
 276	/* Overflow */
 277	if (m2 < m1)
 278		m3 += 0x100000000ull;
 279
 280	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
 281	result.m_high = m3 + (m2 >> 32);
 282
 283	return result;
 284}
 285
 286static uint128_t add_128_128(uint128_t a, uint128_t b)
 287{
 288	uint128_t result;
 289
 290	result.m_low = a.m_low + b.m_low;
 291	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
 292
 293	return result;
 294}
 295
 296static void vli_mult(u64 *result, const u64 *left, const u64 *right,
 297		     unsigned int ndigits)
 298{
 299	uint128_t r01 = { 0, 0 };
 300	u64 r2 = 0;
 301	unsigned int i, k;
 302
 303	/* Compute each digit of result in sequence, maintaining the
 304	 * carries.
 305	 */
 306	for (k = 0; k < ndigits * 2 - 1; k++) {
 307		unsigned int min;
 308
 309		if (k < ndigits)
 310			min = 0;
 311		else
 312			min = (k + 1) - ndigits;
 313
 314		for (i = min; i <= k && i < ndigits; i++) {
 315			uint128_t product;
 316
 317			product = mul_64_64(left[i], right[k - i]);
 318
 319			r01 = add_128_128(r01, product);
 320			r2 += (r01.m_high < product.m_high);
 321		}
 322
 323		result[k] = r01.m_low;
 324		r01.m_low = r01.m_high;
 325		r01.m_high = r2;
 326		r2 = 0;
 327	}
 328
 329	result[ndigits * 2 - 1] = r01.m_low;
 330}
 331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
 333{
 334	uint128_t r01 = { 0, 0 };
 335	u64 r2 = 0;
 336	int i, k;
 337
 338	for (k = 0; k < ndigits * 2 - 1; k++) {
 339		unsigned int min;
 340
 341		if (k < ndigits)
 342			min = 0;
 343		else
 344			min = (k + 1) - ndigits;
 345
 346		for (i = min; i <= k && i <= k - i; i++) {
 347			uint128_t product;
 348
 349			product = mul_64_64(left[i], left[k - i]);
 350
 351			if (i < k - i) {
 352				r2 += product.m_high >> 63;
 353				product.m_high = (product.m_high << 1) |
 354						 (product.m_low >> 63);
 355				product.m_low <<= 1;
 356			}
 357
 358			r01 = add_128_128(r01, product);
 359			r2 += (r01.m_high < product.m_high);
 360		}
 361
 362		result[k] = r01.m_low;
 363		r01.m_low = r01.m_high;
 364		r01.m_high = r2;
 365		r2 = 0;
 366	}
 367
 368	result[ndigits * 2 - 1] = r01.m_low;
 369}
 370
 371/* Computes result = (left + right) % mod.
 372 * Assumes that left < mod and right < mod, result != mod.
 373 */
 374static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
 375			const u64 *mod, unsigned int ndigits)
 376{
 377	u64 carry;
 378
 379	carry = vli_add(result, left, right, ndigits);
 380
 381	/* result > mod (result = mod + remainder), so subtract mod to
 382	 * get remainder.
 383	 */
 384	if (carry || vli_cmp(result, mod, ndigits) >= 0)
 385		vli_sub(result, result, mod, ndigits);
 386}
 387
 388/* Computes result = (left - right) % mod.
 389 * Assumes that left < mod and right < mod, result != mod.
 390 */
 391static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
 392			const u64 *mod, unsigned int ndigits)
 393{
 394	u64 borrow = vli_sub(result, left, right, ndigits);
 395
 396	/* In this case, p_result == -diff == (max int) - diff.
 397	 * Since -x % d == d - x, we can get the correct result from
 398	 * result + mod (with overflow).
 399	 */
 400	if (borrow)
 401		vli_add(result, result, mod, ndigits);
 402}
 403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404/* Computes p_result = p_product % curve_p.
 405 * See algorithm 5 and 6 from
 406 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
 407 */
 408static void vli_mmod_fast_192(u64 *result, const u64 *product,
 409			      const u64 *curve_prime, u64 *tmp)
 410{
 411	const unsigned int ndigits = 3;
 412	int carry;
 413
 414	vli_set(result, product, ndigits);
 415
 416	vli_set(tmp, &product[3], ndigits);
 417	carry = vli_add(result, result, tmp, ndigits);
 418
 419	tmp[0] = 0;
 420	tmp[1] = product[3];
 421	tmp[2] = product[4];
 422	carry += vli_add(result, result, tmp, ndigits);
 423
 424	tmp[0] = tmp[1] = product[5];
 425	tmp[2] = 0;
 426	carry += vli_add(result, result, tmp, ndigits);
 427
 428	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 429		carry -= vli_sub(result, result, curve_prime, ndigits);
 430}
 431
 432/* Computes result = product % curve_prime
 433 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
 434 */
 435static void vli_mmod_fast_256(u64 *result, const u64 *product,
 436			      const u64 *curve_prime, u64 *tmp)
 437{
 438	int carry;
 439	const unsigned int ndigits = 4;
 440
 441	/* t */
 442	vli_set(result, product, ndigits);
 443
 444	/* s1 */
 445	tmp[0] = 0;
 446	tmp[1] = product[5] & 0xffffffff00000000ull;
 447	tmp[2] = product[6];
 448	tmp[3] = product[7];
 449	carry = vli_lshift(tmp, tmp, 1, ndigits);
 450	carry += vli_add(result, result, tmp, ndigits);
 451
 452	/* s2 */
 453	tmp[1] = product[6] << 32;
 454	tmp[2] = (product[6] >> 32) | (product[7] << 32);
 455	tmp[3] = product[7] >> 32;
 456	carry += vli_lshift(tmp, tmp, 1, ndigits);
 457	carry += vli_add(result, result, tmp, ndigits);
 458
 459	/* s3 */
 460	tmp[0] = product[4];
 461	tmp[1] = product[5] & 0xffffffff;
 462	tmp[2] = 0;
 463	tmp[3] = product[7];
 464	carry += vli_add(result, result, tmp, ndigits);
 465
 466	/* s4 */
 467	tmp[0] = (product[4] >> 32) | (product[5] << 32);
 468	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
 469	tmp[2] = product[7];
 470	tmp[3] = (product[6] >> 32) | (product[4] << 32);
 471	carry += vli_add(result, result, tmp, ndigits);
 472
 473	/* d1 */
 474	tmp[0] = (product[5] >> 32) | (product[6] << 32);
 475	tmp[1] = (product[6] >> 32);
 476	tmp[2] = 0;
 477	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
 478	carry -= vli_sub(result, result, tmp, ndigits);
 479
 480	/* d2 */
 481	tmp[0] = product[6];
 482	tmp[1] = product[7];
 483	tmp[2] = 0;
 484	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
 485	carry -= vli_sub(result, result, tmp, ndigits);
 486
 487	/* d3 */
 488	tmp[0] = (product[6] >> 32) | (product[7] << 32);
 489	tmp[1] = (product[7] >> 32) | (product[4] << 32);
 490	tmp[2] = (product[4] >> 32) | (product[5] << 32);
 491	tmp[3] = (product[6] << 32);
 492	carry -= vli_sub(result, result, tmp, ndigits);
 493
 494	/* d4 */
 495	tmp[0] = product[7];
 496	tmp[1] = product[4] & 0xffffffff00000000ull;
 497	tmp[2] = product[5];
 498	tmp[3] = product[6] & 0xffffffff00000000ull;
 499	carry -= vli_sub(result, result, tmp, ndigits);
 500
 501	if (carry < 0) {
 502		do {
 503			carry += vli_add(result, result, curve_prime, ndigits);
 504		} while (carry < 0);
 505	} else {
 506		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
 507			carry -= vli_sub(result, result, curve_prime, ndigits);
 508	}
 509}
 510
 
 
 
 
 511/* Computes result = product % curve_prime
 512 *  from http://www.nsa.gov/ia/_files/nist-routines.pdf
 513*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514static bool vli_mmod_fast(u64 *result, u64 *product,
 515			  const u64 *curve_prime, unsigned int ndigits)
 516{
 517	u64 tmp[2 * ndigits];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519	switch (ndigits) {
 520	case 3:
 521		vli_mmod_fast_192(result, product, curve_prime, tmp);
 522		break;
 523	case 4:
 524		vli_mmod_fast_256(result, product, curve_prime, tmp);
 525		break;
 
 
 
 
 
 
 526	default:
 527		pr_err("unsupports digits size!\n");
 528		return false;
 529	}
 530
 531	return true;
 532}
 533
 
 
 
 
 
 
 
 
 
 
 
 
 
 534/* Computes result = (left * right) % curve_prime. */
 535static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
 536			      const u64 *curve_prime, unsigned int ndigits)
 537{
 538	u64 product[2 * ndigits];
 539
 540	vli_mult(product, left, right, ndigits);
 541	vli_mmod_fast(result, product, curve_prime, ndigits);
 542}
 543
 544/* Computes result = left^2 % curve_prime. */
 545static void vli_mod_square_fast(u64 *result, const u64 *left,
 546				const u64 *curve_prime, unsigned int ndigits)
 547{
 548	u64 product[2 * ndigits];
 549
 550	vli_square(product, left, ndigits);
 551	vli_mmod_fast(result, product, curve_prime, ndigits);
 552}
 553
 554#define EVEN(vli) (!(vli[0] & 1))
 555/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
 556 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
 557 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
 558 */
 559static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
 560			unsigned int ndigits)
 561{
 562	u64 a[ndigits], b[ndigits];
 563	u64 u[ndigits], v[ndigits];
 564	u64 carry;
 565	int cmp_result;
 566
 567	if (vli_is_zero(input, ndigits)) {
 568		vli_clear(result, ndigits);
 569		return;
 570	}
 571
 572	vli_set(a, input, ndigits);
 573	vli_set(b, mod, ndigits);
 574	vli_clear(u, ndigits);
 575	u[0] = 1;
 576	vli_clear(v, ndigits);
 577
 578	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
 579		carry = 0;
 580
 581		if (EVEN(a)) {
 582			vli_rshift1(a, ndigits);
 583
 584			if (!EVEN(u))
 585				carry = vli_add(u, u, mod, ndigits);
 586
 587			vli_rshift1(u, ndigits);
 588			if (carry)
 589				u[ndigits - 1] |= 0x8000000000000000ull;
 590		} else if (EVEN(b)) {
 591			vli_rshift1(b, ndigits);
 592
 593			if (!EVEN(v))
 594				carry = vli_add(v, v, mod, ndigits);
 595
 596			vli_rshift1(v, ndigits);
 597			if (carry)
 598				v[ndigits - 1] |= 0x8000000000000000ull;
 599		} else if (cmp_result > 0) {
 600			vli_sub(a, a, b, ndigits);
 601			vli_rshift1(a, ndigits);
 602
 603			if (vli_cmp(u, v, ndigits) < 0)
 604				vli_add(u, u, mod, ndigits);
 605
 606			vli_sub(u, u, v, ndigits);
 607			if (!EVEN(u))
 608				carry = vli_add(u, u, mod, ndigits);
 609
 610			vli_rshift1(u, ndigits);
 611			if (carry)
 612				u[ndigits - 1] |= 0x8000000000000000ull;
 613		} else {
 614			vli_sub(b, b, a, ndigits);
 615			vli_rshift1(b, ndigits);
 616
 617			if (vli_cmp(v, u, ndigits) < 0)
 618				vli_add(v, v, mod, ndigits);
 619
 620			vli_sub(v, v, u, ndigits);
 621			if (!EVEN(v))
 622				carry = vli_add(v, v, mod, ndigits);
 623
 624			vli_rshift1(v, ndigits);
 625			if (carry)
 626				v[ndigits - 1] |= 0x8000000000000000ull;
 627		}
 628	}
 629
 630	vli_set(result, u, ndigits);
 631}
 
 632
 633/* ------ Point operations ------ */
 634
 635/* Returns true if p_point is the point at infinity, false otherwise. */
 636static bool ecc_point_is_zero(const struct ecc_point *point)
 637{
 638	return (vli_is_zero(point->x, point->ndigits) &&
 639		vli_is_zero(point->y, point->ndigits));
 640}
 
 641
 642/* Point multiplication algorithm using Montgomery's ladder with co-Z
 643 * coordinates. From http://eprint.iacr.org/2011/338.pdf
 644 */
 645
 646/* Double in place */
 647static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
 648				      u64 *curve_prime, unsigned int ndigits)
 649{
 650	/* t1 = x, t2 = y, t3 = z */
 651	u64 t4[ndigits];
 652	u64 t5[ndigits];
 
 
 653
 654	if (vli_is_zero(z1, ndigits))
 655		return;
 656
 657	/* t4 = y1^2 */
 658	vli_mod_square_fast(t4, y1, curve_prime, ndigits);
 659	/* t5 = x1*y1^2 = A */
 660	vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits);
 661	/* t4 = y1^4 */
 662	vli_mod_square_fast(t4, t4, curve_prime, ndigits);
 663	/* t2 = y1*z1 = z3 */
 664	vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits);
 665	/* t3 = z1^2 */
 666	vli_mod_square_fast(z1, z1, curve_prime, ndigits);
 667
 668	/* t1 = x1 + z1^2 */
 669	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
 670	/* t3 = 2*z1^2 */
 671	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
 672	/* t3 = x1 - z1^2 */
 673	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
 674	/* t1 = x1^2 - z1^4 */
 675	vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits);
 676
 677	/* t3 = 2*(x1^2 - z1^4) */
 678	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
 679	/* t1 = 3*(x1^2 - z1^4) */
 680	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
 681	if (vli_test_bit(x1, 0)) {
 682		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
 683
 684		vli_rshift1(x1, ndigits);
 685		x1[ndigits - 1] |= carry << 63;
 686	} else {
 687		vli_rshift1(x1, ndigits);
 688	}
 689	/* t1 = 3/2*(x1^2 - z1^4) = B */
 690
 691	/* t3 = B^2 */
 692	vli_mod_square_fast(z1, x1, curve_prime, ndigits);
 693	/* t3 = B^2 - A */
 694	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
 695	/* t3 = B^2 - 2A = x3 */
 696	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
 697	/* t5 = A - x3 */
 698	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
 699	/* t1 = B * (A - x3) */
 700	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 701	/* t4 = B * (A - x3) - y1^4 = y3 */
 702	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
 703
 704	vli_set(x1, z1, ndigits);
 705	vli_set(z1, y1, ndigits);
 706	vli_set(y1, t4, ndigits);
 707}
 708
 709/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
 710static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime,
 711		    unsigned int ndigits)
 712{
 713	u64 t1[ndigits];
 714
 715	vli_mod_square_fast(t1, z, curve_prime, ndigits);    /* z^2 */
 716	vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */
 717	vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits);  /* z^3 */
 718	vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */
 719}
 720
 721/* P = (x1, y1) => 2P, (x2, y2) => P' */
 722static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
 723				u64 *p_initial_z, u64 *curve_prime,
 724				unsigned int ndigits)
 725{
 726	u64 z[ndigits];
 
 727
 728	vli_set(x2, x1, ndigits);
 729	vli_set(y2, y1, ndigits);
 730
 731	vli_clear(z, ndigits);
 732	z[0] = 1;
 733
 734	if (p_initial_z)
 735		vli_set(z, p_initial_z, ndigits);
 736
 737	apply_z(x1, y1, z, curve_prime, ndigits);
 738
 739	ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits);
 740
 741	apply_z(x2, y2, z, curve_prime, ndigits);
 742}
 743
 744/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
 745 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
 746 * or P => P', Q => P + Q
 747 */
 748static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
 749		     unsigned int ndigits)
 750{
 751	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
 752	u64 t5[ndigits];
 
 
 753
 754	/* t5 = x2 - x1 */
 755	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
 756	/* t5 = (x2 - x1)^2 = A */
 757	vli_mod_square_fast(t5, t5, curve_prime, ndigits);
 758	/* t1 = x1*A = B */
 759	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 760	/* t3 = x2*A = C */
 761	vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
 762	/* t4 = y2 - y1 */
 763	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 764	/* t5 = (y2 - y1)^2 = D */
 765	vli_mod_square_fast(t5, y2, curve_prime, ndigits);
 766
 767	/* t5 = D - B */
 768	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
 769	/* t5 = D - B - C = x3 */
 770	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
 771	/* t3 = C - B */
 772	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
 773	/* t2 = y1*(C - B) */
 774	vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits);
 775	/* t3 = B - x3 */
 776	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
 777	/* t4 = (y2 - y1)*(B - x3) */
 778	vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits);
 779	/* t4 = y3 */
 780	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 781
 782	vli_set(x2, t5, ndigits);
 783}
 784
 785/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
 786 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
 787 * or P => P - Q, Q => P + Q
 788 */
 789static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime,
 790		       unsigned int ndigits)
 791{
 792	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
 793	u64 t5[ndigits];
 794	u64 t6[ndigits];
 795	u64 t7[ndigits];
 
 
 796
 797	/* t5 = x2 - x1 */
 798	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
 799	/* t5 = (x2 - x1)^2 = A */
 800	vli_mod_square_fast(t5, t5, curve_prime, ndigits);
 801	/* t1 = x1*A = B */
 802	vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits);
 803	/* t3 = x2*A = C */
 804	vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits);
 805	/* t4 = y2 + y1 */
 806	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
 807	/* t4 = y2 - y1 */
 808	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 809
 810	/* t6 = C - B */
 811	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
 812	/* t2 = y1 * (C - B) */
 813	vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits);
 814	/* t6 = B + C */
 815	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
 816	/* t3 = (y2 - y1)^2 */
 817	vli_mod_square_fast(x2, y2, curve_prime, ndigits);
 818	/* t3 = x3 */
 819	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
 820
 821	/* t7 = B - x3 */
 822	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
 823	/* t4 = (y2 - y1)*(B - x3) */
 824	vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits);
 825	/* t4 = y3 */
 826	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
 827
 828	/* t7 = (y2 + y1)^2 = F */
 829	vli_mod_square_fast(t7, t5, curve_prime, ndigits);
 830	/* t7 = x3' */
 831	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
 832	/* t6 = x3' - B */
 833	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
 834	/* t6 = (y2 + y1)*(x3' - B) */
 835	vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits);
 836	/* t2 = y3' */
 837	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
 838
 839	vli_set(x1, t7, ndigits);
 840}
 841
 842static void ecc_point_mult(struct ecc_point *result,
 843			   const struct ecc_point *point, const u64 *scalar,
 844			   u64 *initial_z, u64 *curve_prime,
 845			   unsigned int ndigits)
 846{
 847	/* R0 and R1 */
 848	u64 rx[2][ndigits];
 849	u64 ry[2][ndigits];
 850	u64 z[ndigits];
 
 
 851	int i, nb;
 852	int num_bits = vli_num_bits(scalar, ndigits);
 
 
 
 
 
 
 
 
 
 853
 854	vli_set(rx[1], point->x, ndigits);
 855	vli_set(ry[1], point->y, ndigits);
 856
 857	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime,
 858			    ndigits);
 859
 860	for (i = num_bits - 2; i > 0; i--) {
 861		nb = !vli_test_bit(scalar, i);
 862		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
 863			   ndigits);
 864		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime,
 865			 ndigits);
 866	}
 867
 868	nb = !vli_test_bit(scalar, 0);
 869	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime,
 870		   ndigits);
 871
 872	/* Find final 1/Z value. */
 873	/* X1 - X0 */
 874	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
 875	/* Yb * (X1 - X0) */
 876	vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits);
 877	/* xP * Yb * (X1 - X0) */
 878	vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits);
 879
 880	/* 1 / (xP * Yb * (X1 - X0)) */
 881	vli_mod_inv(z, z, curve_prime, point->ndigits);
 882
 883	/* yP / (xP * Yb * (X1 - X0)) */
 884	vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits);
 885	/* Xb * yP / (xP * Yb * (X1 - X0)) */
 886	vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits);
 887	/* End 1/Z calculation */
 888
 889	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits);
 890
 891	apply_z(rx[0], ry[0], z, curve_prime, ndigits);
 892
 893	vli_set(result->x, rx[0], ndigits);
 894	vli_set(result->y, ry[0], ndigits);
 895}
 896
 897static inline void ecc_swap_digits(const u64 *in, u64 *out,
 898				   unsigned int ndigits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899{
 900	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901
 902	for (i = 0; i < ndigits; i++)
 903		out[i] = __swab64(in[ndigits - 1 - i]);
 904}
 905
 906int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
 907		     const u8 *private_key, unsigned int private_key_len)
 908{
 909	int nbytes;
 910	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 911
 912	if (!private_key)
 913		return -EINVAL;
 914
 915	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
 916
 917	if (private_key_len != nbytes)
 918		return -EINVAL;
 919
 920	if (vli_is_zero((const u64 *)&private_key[0], ndigits))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921		return -EINVAL;
 922
 923	/* Make sure the private key is in the range [1, n-1]. */
 924	if (vli_cmp(curve->n, (const u64 *)&private_key[0], ndigits) != 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925		return -EINVAL;
 926
 927	return 0;
 928}
 
 929
 930int ecdh_make_pub_key(unsigned int curve_id, unsigned int ndigits,
 931		      const u8 *private_key, unsigned int private_key_len,
 932		      u8 *public_key, unsigned int public_key_len)
 933{
 934	int ret = 0;
 935	struct ecc_point *pk;
 936	u64 priv[ndigits];
 937	unsigned int nbytes;
 938	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 939
 940	if (!private_key || !curve) {
 941		ret = -EINVAL;
 942		goto out;
 943	}
 944
 945	ecc_swap_digits((const u64 *)private_key, priv, ndigits);
 946
 947	pk = ecc_alloc_point(ndigits);
 948	if (!pk) {
 949		ret = -ENOMEM;
 950		goto out;
 951	}
 952
 953	ecc_point_mult(pk, &curve->g, priv, NULL, curve->p, ndigits);
 954	if (ecc_point_is_zero(pk)) {
 
 
 955		ret = -EAGAIN;
 956		goto err_free_point;
 957	}
 958
 959	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
 960	ecc_swap_digits(pk->x, (u64 *)public_key, ndigits);
 961	ecc_swap_digits(pk->y, (u64 *)&public_key[nbytes], ndigits);
 962
 963err_free_point:
 964	ecc_free_point(pk);
 965out:
 966	return ret;
 967}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968
 969int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
 970		       const u8 *private_key, unsigned int private_key_len,
 971		       const u8 *public_key, unsigned int public_key_len,
 972		       u8 *secret, unsigned int secret_len)
 973{
 974	int ret = 0;
 975	struct ecc_point *product, *pk;
 976	u64 priv[ndigits];
 977	u64 rand_z[ndigits];
 978	unsigned int nbytes;
 979	const struct ecc_curve *curve = ecc_get_curve(curve_id);
 980
 981	if (!private_key || !public_key || !curve) {
 982		ret = -EINVAL;
 983		goto out;
 984	}
 985
 986	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
 987
 988	get_random_bytes(rand_z, nbytes);
 989
 990	pk = ecc_alloc_point(ndigits);
 991	if (!pk) {
 992		ret = -ENOMEM;
 993		goto out;
 994	}
 995
 
 
 
 
 
 
 996	product = ecc_alloc_point(ndigits);
 997	if (!product) {
 998		ret = -ENOMEM;
 999		goto err_alloc_product;
1000	}
1001
1002	ecc_swap_digits((const u64 *)public_key, pk->x, ndigits);
1003	ecc_swap_digits((const u64 *)&public_key[nbytes], pk->y, ndigits);
1004	ecc_swap_digits((const u64 *)private_key, priv, ndigits);
1005
1006	ecc_point_mult(product, pk, priv, rand_z, curve->p, ndigits);
 
 
 
1007
1008	ecc_swap_digits(product->x, (u64 *)secret, ndigits);
1009
1010	if (ecc_point_is_zero(product))
1011		ret = -EFAULT;
1012
 
 
1013	ecc_free_point(product);
1014err_alloc_product:
1015	ecc_free_point(pk);
1016out:
1017	return ret;
1018}