Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Virtual cpu timer based timer functions.
4 *
5 * Copyright IBM Corp. 2004, 2012
6 * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7 */
8
9#include <linux/kernel_stat.h>
10#include <linux/export.h>
11#include <linux/kernel.h>
12#include <linux/timex.h>
13#include <linux/types.h>
14#include <linux/time.h>
15#include <asm/alternative.h>
16#include <asm/cputime.h>
17#include <asm/vtimer.h>
18#include <asm/vtime.h>
19#include <asm/cpu_mf.h>
20#include <asm/smp.h>
21
22#include "entry.h"
23
24static void virt_timer_expire(void);
25
26static LIST_HEAD(virt_timer_list);
27static DEFINE_SPINLOCK(virt_timer_lock);
28static atomic64_t virt_timer_current;
29static atomic64_t virt_timer_elapsed;
30
31DEFINE_PER_CPU(u64, mt_cycles[8]);
32static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
36static inline void set_vtimer(u64 expires)
37{
38 struct lowcore *lc = get_lowcore();
39 u64 timer;
40
41 asm volatile(
42 " stpt %0\n" /* Store current cpu timer value */
43 " spt %1" /* Set new value imm. afterwards */
44 : "=Q" (timer) : "Q" (expires));
45 lc->system_timer += lc->last_update_timer - timer;
46 lc->last_update_timer = expires;
47}
48
49static inline int virt_timer_forward(u64 elapsed)
50{
51 BUG_ON(!irqs_disabled());
52
53 if (list_empty(&virt_timer_list))
54 return 0;
55 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
56 return elapsed >= atomic64_read(&virt_timer_current);
57}
58
59static void update_mt_scaling(void)
60{
61 u64 cycles_new[8], *cycles_old;
62 u64 delta, fac, mult, div;
63 int i;
64
65 stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
66 cycles_old = this_cpu_ptr(mt_cycles);
67 fac = 1;
68 mult = div = 0;
69 for (i = 0; i <= smp_cpu_mtid; i++) {
70 delta = cycles_new[i] - cycles_old[i];
71 div += delta;
72 mult *= i + 1;
73 mult += delta * fac;
74 fac *= i + 1;
75 }
76 div *= fac;
77 if (div > 0) {
78 /* Update scaling factor */
79 __this_cpu_write(mt_scaling_mult, mult);
80 __this_cpu_write(mt_scaling_div, div);
81 memcpy(cycles_old, cycles_new,
82 sizeof(u64) * (smp_cpu_mtid + 1));
83 }
84 __this_cpu_write(mt_scaling_jiffies, jiffies_64);
85}
86
87static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
88{
89 u64 delta;
90
91 delta = new - *tsk_vtime;
92 *tsk_vtime = new;
93 return delta;
94}
95
96
97static inline u64 scale_vtime(u64 vtime)
98{
99 u64 mult = __this_cpu_read(mt_scaling_mult);
100 u64 div = __this_cpu_read(mt_scaling_div);
101
102 if (smp_cpu_mtid)
103 return vtime * mult / div;
104 return vtime;
105}
106
107static void account_system_index_scaled(struct task_struct *p, u64 cputime,
108 enum cpu_usage_stat index)
109{
110 p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
111 account_system_index_time(p, cputime_to_nsecs(cputime), index);
112}
113
114/*
115 * Update process times based on virtual cpu times stored by entry.S
116 * to the lowcore fields user_timer, system_timer & steal_clock.
117 */
118static int do_account_vtime(struct task_struct *tsk)
119{
120 u64 timer, clock, user, guest, system, hardirq, softirq;
121 struct lowcore *lc = get_lowcore();
122
123 timer = lc->last_update_timer;
124 clock = lc->last_update_clock;
125 asm volatile(
126 " stpt %0\n" /* Store current cpu timer value */
127 " stckf %1" /* Store current tod clock value */
128 : "=Q" (lc->last_update_timer),
129 "=Q" (lc->last_update_clock)
130 : : "cc");
131 clock = lc->last_update_clock - clock;
132 timer -= lc->last_update_timer;
133
134 if (hardirq_count())
135 lc->hardirq_timer += timer;
136 else
137 lc->system_timer += timer;
138
139 /* Update MT utilization calculation */
140 if (smp_cpu_mtid &&
141 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
142 update_mt_scaling();
143
144 /* Calculate cputime delta */
145 user = update_tsk_timer(&tsk->thread.user_timer,
146 READ_ONCE(lc->user_timer));
147 guest = update_tsk_timer(&tsk->thread.guest_timer,
148 READ_ONCE(lc->guest_timer));
149 system = update_tsk_timer(&tsk->thread.system_timer,
150 READ_ONCE(lc->system_timer));
151 hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
152 READ_ONCE(lc->hardirq_timer));
153 softirq = update_tsk_timer(&tsk->thread.softirq_timer,
154 READ_ONCE(lc->softirq_timer));
155 lc->steal_timer +=
156 clock - user - guest - system - hardirq - softirq;
157
158 /* Push account value */
159 if (user) {
160 account_user_time(tsk, cputime_to_nsecs(user));
161 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
162 }
163
164 if (guest) {
165 account_guest_time(tsk, cputime_to_nsecs(guest));
166 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
167 }
168
169 if (system)
170 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
171 if (hardirq)
172 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
173 if (softirq)
174 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
175
176 return virt_timer_forward(user + guest + system + hardirq + softirq);
177}
178
179void vtime_task_switch(struct task_struct *prev)
180{
181 struct lowcore *lc = get_lowcore();
182
183 do_account_vtime(prev);
184 prev->thread.user_timer = lc->user_timer;
185 prev->thread.guest_timer = lc->guest_timer;
186 prev->thread.system_timer = lc->system_timer;
187 prev->thread.hardirq_timer = lc->hardirq_timer;
188 prev->thread.softirq_timer = lc->softirq_timer;
189 lc->user_timer = current->thread.user_timer;
190 lc->guest_timer = current->thread.guest_timer;
191 lc->system_timer = current->thread.system_timer;
192 lc->hardirq_timer = current->thread.hardirq_timer;
193 lc->softirq_timer = current->thread.softirq_timer;
194}
195
196/*
197 * In s390, accounting pending user time also implies
198 * accounting system time in order to correctly compute
199 * the stolen time accounting.
200 */
201void vtime_flush(struct task_struct *tsk)
202{
203 struct lowcore *lc = get_lowcore();
204 u64 steal, avg_steal;
205
206 if (do_account_vtime(tsk))
207 virt_timer_expire();
208
209 steal = lc->steal_timer;
210 avg_steal = lc->avg_steal_timer;
211 if ((s64) steal > 0) {
212 lc->steal_timer = 0;
213 account_steal_time(cputime_to_nsecs(steal));
214 avg_steal += steal;
215 }
216 lc->avg_steal_timer = avg_steal / 2;
217}
218
219static u64 vtime_delta(void)
220{
221 struct lowcore *lc = get_lowcore();
222 u64 timer = lc->last_update_timer;
223
224 lc->last_update_timer = get_cpu_timer();
225 return timer - lc->last_update_timer;
226}
227
228/*
229 * Update process times based on virtual cpu times stored by entry.S
230 * to the lowcore fields user_timer, system_timer & steal_clock.
231 */
232void vtime_account_kernel(struct task_struct *tsk)
233{
234 struct lowcore *lc = get_lowcore();
235 u64 delta = vtime_delta();
236
237 if (tsk->flags & PF_VCPU)
238 lc->guest_timer += delta;
239 else
240 lc->system_timer += delta;
241
242 virt_timer_forward(delta);
243}
244EXPORT_SYMBOL_GPL(vtime_account_kernel);
245
246void vtime_account_softirq(struct task_struct *tsk)
247{
248 u64 delta = vtime_delta();
249
250 get_lowcore()->softirq_timer += delta;
251
252 virt_timer_forward(delta);
253}
254
255void vtime_account_hardirq(struct task_struct *tsk)
256{
257 u64 delta = vtime_delta();
258
259 get_lowcore()->hardirq_timer += delta;
260
261 virt_timer_forward(delta);
262}
263
264/*
265 * Sorted add to a list. List is linear searched until first bigger
266 * element is found.
267 */
268static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
269{
270 struct vtimer_list *tmp;
271
272 list_for_each_entry(tmp, head, entry) {
273 if (tmp->expires > timer->expires) {
274 list_add_tail(&timer->entry, &tmp->entry);
275 return;
276 }
277 }
278 list_add_tail(&timer->entry, head);
279}
280
281/*
282 * Handler for expired virtual CPU timer.
283 */
284static void virt_timer_expire(void)
285{
286 struct vtimer_list *timer, *tmp;
287 unsigned long elapsed;
288 LIST_HEAD(cb_list);
289
290 /* walk timer list, fire all expired timers */
291 spin_lock(&virt_timer_lock);
292 elapsed = atomic64_read(&virt_timer_elapsed);
293 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
294 if (timer->expires < elapsed)
295 /* move expired timer to the callback queue */
296 list_move_tail(&timer->entry, &cb_list);
297 else
298 timer->expires -= elapsed;
299 }
300 if (!list_empty(&virt_timer_list)) {
301 timer = list_first_entry(&virt_timer_list,
302 struct vtimer_list, entry);
303 atomic64_set(&virt_timer_current, timer->expires);
304 }
305 atomic64_sub(elapsed, &virt_timer_elapsed);
306 spin_unlock(&virt_timer_lock);
307
308 /* Do callbacks and recharge periodic timers */
309 list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
310 list_del_init(&timer->entry);
311 timer->function(timer->data);
312 if (timer->interval) {
313 /* Recharge interval timer */
314 timer->expires = timer->interval +
315 atomic64_read(&virt_timer_elapsed);
316 spin_lock(&virt_timer_lock);
317 list_add_sorted(timer, &virt_timer_list);
318 spin_unlock(&virt_timer_lock);
319 }
320 }
321}
322
323void init_virt_timer(struct vtimer_list *timer)
324{
325 timer->function = NULL;
326 INIT_LIST_HEAD(&timer->entry);
327}
328EXPORT_SYMBOL(init_virt_timer);
329
330static inline int vtimer_pending(struct vtimer_list *timer)
331{
332 return !list_empty(&timer->entry);
333}
334
335static void internal_add_vtimer(struct vtimer_list *timer)
336{
337 if (list_empty(&virt_timer_list)) {
338 /* First timer, just program it. */
339 atomic64_set(&virt_timer_current, timer->expires);
340 atomic64_set(&virt_timer_elapsed, 0);
341 list_add(&timer->entry, &virt_timer_list);
342 } else {
343 /* Update timer against current base. */
344 timer->expires += atomic64_read(&virt_timer_elapsed);
345 if (likely((s64) timer->expires <
346 (s64) atomic64_read(&virt_timer_current)))
347 /* The new timer expires before the current timer. */
348 atomic64_set(&virt_timer_current, timer->expires);
349 /* Insert new timer into the list. */
350 list_add_sorted(timer, &virt_timer_list);
351 }
352}
353
354static void __add_vtimer(struct vtimer_list *timer, int periodic)
355{
356 unsigned long flags;
357
358 timer->interval = periodic ? timer->expires : 0;
359 spin_lock_irqsave(&virt_timer_lock, flags);
360 internal_add_vtimer(timer);
361 spin_unlock_irqrestore(&virt_timer_lock, flags);
362}
363
364/*
365 * add_virt_timer - add a oneshot virtual CPU timer
366 */
367void add_virt_timer(struct vtimer_list *timer)
368{
369 __add_vtimer(timer, 0);
370}
371EXPORT_SYMBOL(add_virt_timer);
372
373/*
374 * add_virt_timer_int - add an interval virtual CPU timer
375 */
376void add_virt_timer_periodic(struct vtimer_list *timer)
377{
378 __add_vtimer(timer, 1);
379}
380EXPORT_SYMBOL(add_virt_timer_periodic);
381
382static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
383{
384 unsigned long flags;
385 int rc;
386
387 BUG_ON(!timer->function);
388
389 if (timer->expires == expires && vtimer_pending(timer))
390 return 1;
391 spin_lock_irqsave(&virt_timer_lock, flags);
392 rc = vtimer_pending(timer);
393 if (rc)
394 list_del_init(&timer->entry);
395 timer->interval = periodic ? expires : 0;
396 timer->expires = expires;
397 internal_add_vtimer(timer);
398 spin_unlock_irqrestore(&virt_timer_lock, flags);
399 return rc;
400}
401
402/*
403 * returns whether it has modified a pending timer (1) or not (0)
404 */
405int mod_virt_timer(struct vtimer_list *timer, u64 expires)
406{
407 return __mod_vtimer(timer, expires, 0);
408}
409EXPORT_SYMBOL(mod_virt_timer);
410
411/*
412 * returns whether it has modified a pending timer (1) or not (0)
413 */
414int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
415{
416 return __mod_vtimer(timer, expires, 1);
417}
418EXPORT_SYMBOL(mod_virt_timer_periodic);
419
420/*
421 * Delete a virtual timer.
422 *
423 * returns whether the deleted timer was pending (1) or not (0)
424 */
425int del_virt_timer(struct vtimer_list *timer)
426{
427 unsigned long flags;
428
429 if (!vtimer_pending(timer))
430 return 0;
431 spin_lock_irqsave(&virt_timer_lock, flags);
432 list_del_init(&timer->entry);
433 spin_unlock_irqrestore(&virt_timer_lock, flags);
434 return 1;
435}
436EXPORT_SYMBOL(del_virt_timer);
437
438/*
439 * Start the virtual CPU timer on the current CPU.
440 */
441void vtime_init(void)
442{
443 /* set initial cpu timer */
444 set_vtimer(VTIMER_MAX_SLICE);
445 /* Setup initial MT scaling values */
446 if (smp_cpu_mtid) {
447 __this_cpu_write(mt_scaling_jiffies, jiffies);
448 __this_cpu_write(mt_scaling_mult, 1);
449 __this_cpu_write(mt_scaling_div, 1);
450 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
451 }
452}
1/*
2 * Virtual cpu timer based timer functions.
3 *
4 * Copyright IBM Corp. 2004, 2012
5 * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6 */
7
8#include <linux/kernel_stat.h>
9#include <linux/export.h>
10#include <linux/kernel.h>
11#include <linux/timex.h>
12#include <linux/types.h>
13#include <linux/time.h>
14
15#include <asm/cputime.h>
16#include <asm/vtimer.h>
17#include <asm/vtime.h>
18#include <asm/cpu_mf.h>
19#include <asm/smp.h>
20
21#include "entry.h"
22
23static void virt_timer_expire(void);
24
25static LIST_HEAD(virt_timer_list);
26static DEFINE_SPINLOCK(virt_timer_lock);
27static atomic64_t virt_timer_current;
28static atomic64_t virt_timer_elapsed;
29
30DEFINE_PER_CPU(u64, mt_cycles[8]);
31static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
32static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
33static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
34
35static inline u64 get_vtimer(void)
36{
37 u64 timer;
38
39 asm volatile("stpt %0" : "=m" (timer));
40 return timer;
41}
42
43static inline void set_vtimer(u64 expires)
44{
45 u64 timer;
46
47 asm volatile(
48 " stpt %0\n" /* Store current cpu timer value */
49 " spt %1" /* Set new value imm. afterwards */
50 : "=m" (timer) : "m" (expires));
51 S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
52 S390_lowcore.last_update_timer = expires;
53}
54
55static inline int virt_timer_forward(u64 elapsed)
56{
57 BUG_ON(!irqs_disabled());
58
59 if (list_empty(&virt_timer_list))
60 return 0;
61 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
62 return elapsed >= atomic64_read(&virt_timer_current);
63}
64
65static void update_mt_scaling(void)
66{
67 u64 cycles_new[8], *cycles_old;
68 u64 delta, fac, mult, div;
69 int i;
70
71 stcctm5(smp_cpu_mtid + 1, cycles_new);
72 cycles_old = this_cpu_ptr(mt_cycles);
73 fac = 1;
74 mult = div = 0;
75 for (i = 0; i <= smp_cpu_mtid; i++) {
76 delta = cycles_new[i] - cycles_old[i];
77 div += delta;
78 mult *= i + 1;
79 mult += delta * fac;
80 fac *= i + 1;
81 }
82 div *= fac;
83 if (div > 0) {
84 /* Update scaling factor */
85 __this_cpu_write(mt_scaling_mult, mult);
86 __this_cpu_write(mt_scaling_div, div);
87 memcpy(cycles_old, cycles_new,
88 sizeof(u64) * (smp_cpu_mtid + 1));
89 }
90 __this_cpu_write(mt_scaling_jiffies, jiffies_64);
91}
92
93/*
94 * Update process times based on virtual cpu times stored by entry.S
95 * to the lowcore fields user_timer, system_timer & steal_clock.
96 */
97static int do_account_vtime(struct task_struct *tsk)
98{
99 u64 timer, clock, user, system, steal;
100 u64 user_scaled, system_scaled;
101
102 timer = S390_lowcore.last_update_timer;
103 clock = S390_lowcore.last_update_clock;
104 asm volatile(
105 " stpt %0\n" /* Store current cpu timer value */
106#ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
107 " stckf %1" /* Store current tod clock value */
108#else
109 " stck %1" /* Store current tod clock value */
110#endif
111 : "=m" (S390_lowcore.last_update_timer),
112 "=m" (S390_lowcore.last_update_clock));
113 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
114 S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
115
116 /* Update MT utilization calculation */
117 if (smp_cpu_mtid &&
118 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
119 update_mt_scaling();
120
121 user = S390_lowcore.user_timer - tsk->thread.user_timer;
122 S390_lowcore.steal_timer -= user;
123 tsk->thread.user_timer = S390_lowcore.user_timer;
124
125 system = S390_lowcore.system_timer - tsk->thread.system_timer;
126 S390_lowcore.steal_timer -= system;
127 tsk->thread.system_timer = S390_lowcore.system_timer;
128
129 user_scaled = user;
130 system_scaled = system;
131 /* Do MT utilization scaling */
132 if (smp_cpu_mtid) {
133 u64 mult = __this_cpu_read(mt_scaling_mult);
134 u64 div = __this_cpu_read(mt_scaling_div);
135
136 user_scaled = (user_scaled * mult) / div;
137 system_scaled = (system_scaled * mult) / div;
138 }
139 account_user_time(tsk, user);
140 tsk->utimescaled += user_scaled;
141 account_system_time(tsk, 0, system);
142 tsk->stimescaled += system_scaled;
143
144 steal = S390_lowcore.steal_timer;
145 if ((s64) steal > 0) {
146 S390_lowcore.steal_timer = 0;
147 account_steal_time(steal);
148 }
149
150 return virt_timer_forward(user + system);
151}
152
153void vtime_task_switch(struct task_struct *prev)
154{
155 do_account_vtime(prev);
156 prev->thread.user_timer = S390_lowcore.user_timer;
157 prev->thread.system_timer = S390_lowcore.system_timer;
158 S390_lowcore.user_timer = current->thread.user_timer;
159 S390_lowcore.system_timer = current->thread.system_timer;
160}
161
162/*
163 * In s390, accounting pending user time also implies
164 * accounting system time in order to correctly compute
165 * the stolen time accounting.
166 */
167void vtime_account_user(struct task_struct *tsk)
168{
169 if (do_account_vtime(tsk))
170 virt_timer_expire();
171}
172
173/*
174 * Update process times based on virtual cpu times stored by entry.S
175 * to the lowcore fields user_timer, system_timer & steal_clock.
176 */
177void vtime_account_irq_enter(struct task_struct *tsk)
178{
179 u64 timer, system, system_scaled;
180
181 timer = S390_lowcore.last_update_timer;
182 S390_lowcore.last_update_timer = get_vtimer();
183 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
184
185 /* Update MT utilization calculation */
186 if (smp_cpu_mtid &&
187 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
188 update_mt_scaling();
189
190 system = S390_lowcore.system_timer - tsk->thread.system_timer;
191 S390_lowcore.steal_timer -= system;
192 tsk->thread.system_timer = S390_lowcore.system_timer;
193 system_scaled = system;
194 /* Do MT utilization scaling */
195 if (smp_cpu_mtid) {
196 u64 mult = __this_cpu_read(mt_scaling_mult);
197 u64 div = __this_cpu_read(mt_scaling_div);
198
199 system_scaled = (system_scaled * mult) / div;
200 }
201 account_system_time(tsk, 0, system);
202 tsk->stimescaled += system_scaled;
203
204 virt_timer_forward(system);
205}
206EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
207
208void vtime_account_system(struct task_struct *tsk)
209__attribute__((alias("vtime_account_irq_enter")));
210EXPORT_SYMBOL_GPL(vtime_account_system);
211
212/*
213 * Sorted add to a list. List is linear searched until first bigger
214 * element is found.
215 */
216static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
217{
218 struct vtimer_list *tmp;
219
220 list_for_each_entry(tmp, head, entry) {
221 if (tmp->expires > timer->expires) {
222 list_add_tail(&timer->entry, &tmp->entry);
223 return;
224 }
225 }
226 list_add_tail(&timer->entry, head);
227}
228
229/*
230 * Handler for expired virtual CPU timer.
231 */
232static void virt_timer_expire(void)
233{
234 struct vtimer_list *timer, *tmp;
235 unsigned long elapsed;
236 LIST_HEAD(cb_list);
237
238 /* walk timer list, fire all expired timers */
239 spin_lock(&virt_timer_lock);
240 elapsed = atomic64_read(&virt_timer_elapsed);
241 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
242 if (timer->expires < elapsed)
243 /* move expired timer to the callback queue */
244 list_move_tail(&timer->entry, &cb_list);
245 else
246 timer->expires -= elapsed;
247 }
248 if (!list_empty(&virt_timer_list)) {
249 timer = list_first_entry(&virt_timer_list,
250 struct vtimer_list, entry);
251 atomic64_set(&virt_timer_current, timer->expires);
252 }
253 atomic64_sub(elapsed, &virt_timer_elapsed);
254 spin_unlock(&virt_timer_lock);
255
256 /* Do callbacks and recharge periodic timers */
257 list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
258 list_del_init(&timer->entry);
259 timer->function(timer->data);
260 if (timer->interval) {
261 /* Recharge interval timer */
262 timer->expires = timer->interval +
263 atomic64_read(&virt_timer_elapsed);
264 spin_lock(&virt_timer_lock);
265 list_add_sorted(timer, &virt_timer_list);
266 spin_unlock(&virt_timer_lock);
267 }
268 }
269}
270
271void init_virt_timer(struct vtimer_list *timer)
272{
273 timer->function = NULL;
274 INIT_LIST_HEAD(&timer->entry);
275}
276EXPORT_SYMBOL(init_virt_timer);
277
278static inline int vtimer_pending(struct vtimer_list *timer)
279{
280 return !list_empty(&timer->entry);
281}
282
283static void internal_add_vtimer(struct vtimer_list *timer)
284{
285 if (list_empty(&virt_timer_list)) {
286 /* First timer, just program it. */
287 atomic64_set(&virt_timer_current, timer->expires);
288 atomic64_set(&virt_timer_elapsed, 0);
289 list_add(&timer->entry, &virt_timer_list);
290 } else {
291 /* Update timer against current base. */
292 timer->expires += atomic64_read(&virt_timer_elapsed);
293 if (likely((s64) timer->expires <
294 (s64) atomic64_read(&virt_timer_current)))
295 /* The new timer expires before the current timer. */
296 atomic64_set(&virt_timer_current, timer->expires);
297 /* Insert new timer into the list. */
298 list_add_sorted(timer, &virt_timer_list);
299 }
300}
301
302static void __add_vtimer(struct vtimer_list *timer, int periodic)
303{
304 unsigned long flags;
305
306 timer->interval = periodic ? timer->expires : 0;
307 spin_lock_irqsave(&virt_timer_lock, flags);
308 internal_add_vtimer(timer);
309 spin_unlock_irqrestore(&virt_timer_lock, flags);
310}
311
312/*
313 * add_virt_timer - add an oneshot virtual CPU timer
314 */
315void add_virt_timer(struct vtimer_list *timer)
316{
317 __add_vtimer(timer, 0);
318}
319EXPORT_SYMBOL(add_virt_timer);
320
321/*
322 * add_virt_timer_int - add an interval virtual CPU timer
323 */
324void add_virt_timer_periodic(struct vtimer_list *timer)
325{
326 __add_vtimer(timer, 1);
327}
328EXPORT_SYMBOL(add_virt_timer_periodic);
329
330static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
331{
332 unsigned long flags;
333 int rc;
334
335 BUG_ON(!timer->function);
336
337 if (timer->expires == expires && vtimer_pending(timer))
338 return 1;
339 spin_lock_irqsave(&virt_timer_lock, flags);
340 rc = vtimer_pending(timer);
341 if (rc)
342 list_del_init(&timer->entry);
343 timer->interval = periodic ? expires : 0;
344 timer->expires = expires;
345 internal_add_vtimer(timer);
346 spin_unlock_irqrestore(&virt_timer_lock, flags);
347 return rc;
348}
349
350/*
351 * returns whether it has modified a pending timer (1) or not (0)
352 */
353int mod_virt_timer(struct vtimer_list *timer, u64 expires)
354{
355 return __mod_vtimer(timer, expires, 0);
356}
357EXPORT_SYMBOL(mod_virt_timer);
358
359/*
360 * returns whether it has modified a pending timer (1) or not (0)
361 */
362int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
363{
364 return __mod_vtimer(timer, expires, 1);
365}
366EXPORT_SYMBOL(mod_virt_timer_periodic);
367
368/*
369 * Delete a virtual timer.
370 *
371 * returns whether the deleted timer was pending (1) or not (0)
372 */
373int del_virt_timer(struct vtimer_list *timer)
374{
375 unsigned long flags;
376
377 if (!vtimer_pending(timer))
378 return 0;
379 spin_lock_irqsave(&virt_timer_lock, flags);
380 list_del_init(&timer->entry);
381 spin_unlock_irqrestore(&virt_timer_lock, flags);
382 return 1;
383}
384EXPORT_SYMBOL(del_virt_timer);
385
386/*
387 * Start the virtual CPU timer on the current CPU.
388 */
389void vtime_init(void)
390{
391 /* set initial cpu timer */
392 set_vtimer(VTIMER_MAX_SLICE);
393 /* Setup initial MT scaling values */
394 if (smp_cpu_mtid) {
395 __this_cpu_write(mt_scaling_jiffies, jiffies);
396 __this_cpu_write(mt_scaling_mult, 1);
397 __this_cpu_write(mt_scaling_div, 1);
398 stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
399 }
400}