Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include "asm/ptrace.h"
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/mm.h>
  15#include <linux/smp.h>
  16#include <linux/errno.h>
  17#include <linux/ptrace.h>
  18#include <linux/user.h>
  19#include <linux/security.h>
  20#include <linux/audit.h>
  21#include <linux/signal.h>
  22#include <linux/elf.h>
  23#include <linux/regset.h>
 
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
  27#include <asm/guarded_storage.h>
  28#include <asm/access-regs.h>
  29#include <asm/page.h>
 
 
  30#include <linux/uaccess.h>
  31#include <asm/unistd.h>
  32#include <asm/runtime_instr.h>
  33#include <asm/facility.h>
  34#include <asm/fpu.h>
  35
  36#include "entry.h"
  37
  38#ifdef CONFIG_COMPAT
  39#include "compat_ptrace.h"
  40#endif
  41
 
 
 
  42void update_cr_regs(struct task_struct *task)
  43{
  44	struct pt_regs *regs = task_pt_regs(task);
  45	struct thread_struct *thread = &task->thread;
  46	union ctlreg0 cr0_old, cr0_new;
  47	union ctlreg2 cr2_old, cr2_new;
  48	int cr0_changed, cr2_changed;
  49	union {
  50		struct ctlreg regs[3];
  51		struct {
  52			struct ctlreg control;
  53			struct ctlreg start;
  54			struct ctlreg end;
  55		};
  56	} old, new;
  57
  58	local_ctl_store(0, &cr0_old.reg);
  59	local_ctl_store(2, &cr2_old.reg);
  60	cr0_new = cr0_old;
  61	cr2_new = cr2_old;
  62	/* Take care of the enable/disable of transactional execution. */
  63	if (MACHINE_HAS_TE) {
 
 
 
  64		/* Set or clear transaction execution TXC bit 8. */
  65		cr0_new.tcx = 1;
  66		if (task->thread.per_flags & PER_FLAG_NO_TE)
  67			cr0_new.tcx = 0;
 
 
  68		/* Set or clear transaction execution TDC bits 62 and 63. */
  69		cr2_new.tdc = 0;
 
  70		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  71			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  72				cr2_new.tdc = 1;
  73			else
  74				cr2_new.tdc = 2;
  75		}
 
 
  76	}
  77	/* Take care of enable/disable of guarded storage. */
  78	if (MACHINE_HAS_GS) {
  79		cr2_new.gse = 0;
  80		if (task->thread.gs_cb)
  81			cr2_new.gse = 1;
  82	}
  83	/* Load control register 0/2 iff changed */
  84	cr0_changed = cr0_new.val != cr0_old.val;
  85	cr2_changed = cr2_new.val != cr2_old.val;
  86	if (cr0_changed)
  87		local_ctl_load(0, &cr0_new.reg);
  88	if (cr2_changed)
  89		local_ctl_load(2, &cr2_new.reg);
  90	/* Copy user specified PER registers */
  91	new.control.val = thread->per_user.control;
  92	new.start.val = thread->per_user.start;
  93	new.end.val = thread->per_user.end;
  94
  95	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  96	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  97	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  98		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  99			new.control.val |= PER_EVENT_BRANCH;
 100		else
 101			new.control.val |= PER_EVENT_IFETCH;
 102		new.control.val |= PER_CONTROL_SUSPENSION;
 103		new.control.val |= PER_EVENT_TRANSACTION_END;
 104		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 105			new.control.val |= PER_EVENT_IFETCH;
 106		new.start.val = 0;
 107		new.end.val = -1UL;
 108	}
 109
 110	/* Take care of the PER enablement bit in the PSW. */
 111	if (!(new.control.val & PER_EVENT_MASK)) {
 112		regs->psw.mask &= ~PSW_MASK_PER;
 113		return;
 114	}
 115	regs->psw.mask |= PSW_MASK_PER;
 116	__local_ctl_store(9, 11, old.regs);
 117	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 118		__local_ctl_load(9, 11, new.regs);
 119}
 120
 121void user_enable_single_step(struct task_struct *task)
 122{
 123	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 124	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 125}
 126
 127void user_disable_single_step(struct task_struct *task)
 128{
 129	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 130	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 131}
 132
 133void user_enable_block_step(struct task_struct *task)
 134{
 135	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 136	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 137}
 138
 139/*
 140 * Called by kernel/ptrace.c when detaching..
 141 *
 142 * Clear all debugging related fields.
 143 */
 144void ptrace_disable(struct task_struct *task)
 145{
 146	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 147	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 148	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 149	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 150	task->thread.per_flags = 0;
 151}
 152
 153#define __ADDR_MASK 7
 154
 155static inline unsigned long __peek_user_per(struct task_struct *child,
 156					    addr_t addr)
 157{
 158	if (addr == offsetof(struct per_struct_kernel, cr9))
 
 
 159		/* Control bits of the active per set. */
 160		return test_thread_flag(TIF_SINGLE_STEP) ?
 161			PER_EVENT_IFETCH : child->thread.per_user.control;
 162	else if (addr == offsetof(struct per_struct_kernel, cr10))
 163		/* Start address of the active per set. */
 164		return test_thread_flag(TIF_SINGLE_STEP) ?
 165			0 : child->thread.per_user.start;
 166	else if (addr == offsetof(struct per_struct_kernel, cr11))
 167		/* End address of the active per set. */
 168		return test_thread_flag(TIF_SINGLE_STEP) ?
 169			-1UL : child->thread.per_user.end;
 170	else if (addr == offsetof(struct per_struct_kernel, bits))
 171		/* Single-step bit. */
 172		return test_thread_flag(TIF_SINGLE_STEP) ?
 173			(1UL << (BITS_PER_LONG - 1)) : 0;
 174	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 175		/* Start address of the user specified per set. */
 176		return child->thread.per_user.start;
 177	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 178		/* End address of the user specified per set. */
 179		return child->thread.per_user.end;
 180	else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
 181		/* PER code, ATMID and AI of the last PER trap */
 182		return (unsigned long)
 183			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 184	else if (addr == offsetof(struct per_struct_kernel, address))
 185		/* Address of the last PER trap */
 186		return child->thread.per_event.address;
 187	else if (addr == offsetof(struct per_struct_kernel, access_id))
 188		/* Access id of the last PER trap */
 189		return (unsigned long)
 190			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 191	return 0;
 192}
 193
 194/*
 195 * Read the word at offset addr from the user area of a process. The
 196 * trouble here is that the information is littered over different
 197 * locations. The process registers are found on the kernel stack,
 198 * the floating point stuff and the trace settings are stored in
 199 * the task structure. In addition the different structures in
 200 * struct user contain pad bytes that should be read as zeroes.
 201 * Lovely...
 202 */
 203static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 204{
 
 205	addr_t offset, tmp;
 206
 207	if (addr < offsetof(struct user, regs.acrs)) {
 208		/*
 209		 * psw and gprs are stored on the stack
 210		 */
 211		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 212		if (addr == offsetof(struct user, regs.psw.mask)) {
 213			/* Return a clean psw mask. */
 214			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 215			tmp |= PSW_USER_BITS;
 216		}
 217
 218	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 219		/*
 220		 * access registers are stored in the thread structure
 221		 */
 222		offset = addr - offsetof(struct user, regs.acrs);
 223		/*
 224		 * Very special case: old & broken 64 bit gdb reading
 225		 * from acrs[15]. Result is a 64 bit value. Read the
 226		 * 32 bit acrs[15] value and shift it by 32. Sick...
 227		 */
 228		if (addr == offsetof(struct user, regs.acrs[15]))
 229			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 230		else
 231			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 232
 233	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 234		/*
 235		 * orig_gpr2 is stored on the kernel stack
 236		 */
 237		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 238
 239	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 240		/*
 241		 * prevent reads of padding hole between
 242		 * orig_gpr2 and fp_regs on s390.
 243		 */
 244		tmp = 0;
 245
 246	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 247		/*
 248		 * floating point control reg. is in the thread structure
 249		 */
 250		tmp = child->thread.ufpu.fpc;
 251		tmp <<= BITS_PER_LONG - 32;
 252
 253	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 254		/*
 255		 * floating point regs. are in the child->thread.ufpu.vxrs array
 
 256		 */
 257		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 258		tmp = *(addr_t *)((addr_t)child->thread.ufpu.vxrs + 2 * offset);
 259	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 
 
 
 
 
 
 260		/*
 261		 * Handle access to the per_info structure.
 262		 */
 263		addr -= offsetof(struct user, regs.per_info);
 264		tmp = __peek_user_per(child, addr);
 265
 266	} else
 267		tmp = 0;
 268
 269	return tmp;
 270}
 271
 272static int
 273peek_user(struct task_struct *child, addr_t addr, addr_t data)
 274{
 275	addr_t tmp, mask;
 276
 277	/*
 278	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 279	 * an alignment of 4. Programmers from hell...
 280	 */
 281	mask = __ADDR_MASK;
 282	if (addr >= offsetof(struct user, regs.acrs) &&
 283	    addr < offsetof(struct user, regs.orig_gpr2))
 284		mask = 3;
 285	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 286		return -EIO;
 287
 288	tmp = __peek_user(child, addr);
 289	return put_user(tmp, (addr_t __user *) data);
 290}
 291
 292static inline void __poke_user_per(struct task_struct *child,
 293				   addr_t addr, addr_t data)
 294{
 
 
 295	/*
 296	 * There are only three fields in the per_info struct that the
 297	 * debugger user can write to.
 298	 * 1) cr9: the debugger wants to set a new PER event mask
 299	 * 2) starting_addr: the debugger wants to set a new starting
 300	 *    address to use with the PER event mask.
 301	 * 3) ending_addr: the debugger wants to set a new ending
 302	 *    address to use with the PER event mask.
 303	 * The user specified PER event mask and the start and end
 304	 * addresses are used only if single stepping is not in effect.
 305	 * Writes to any other field in per_info are ignored.
 306	 */
 307	if (addr == offsetof(struct per_struct_kernel, cr9))
 308		/* PER event mask of the user specified per set. */
 309		child->thread.per_user.control =
 310			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 311	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 312		/* Starting address of the user specified per set. */
 313		child->thread.per_user.start = data;
 314	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 315		/* Ending address of the user specified per set. */
 316		child->thread.per_user.end = data;
 317}
 318
 319/*
 320 * Write a word to the user area of a process at location addr. This
 321 * operation does have an additional problem compared to peek_user.
 322 * Stores to the program status word and on the floating point
 323 * control register needs to get checked for validity.
 324 */
 325static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 326{
 
 327	addr_t offset;
 328
 329
 330	if (addr < offsetof(struct user, regs.acrs)) {
 331		struct pt_regs *regs = task_pt_regs(child);
 332		/*
 333		 * psw and gprs are stored on the stack
 334		 */
 335		if (addr == offsetof(struct user, regs.psw.mask)) {
 336			unsigned long mask = PSW_MASK_USER;
 337
 338			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 339			if ((data ^ PSW_USER_BITS) & ~mask)
 340				/* Invalid psw mask. */
 341				return -EINVAL;
 342			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 343				/* Invalid address-space-control bits */
 344				return -EINVAL;
 345			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 346				/* Invalid addressing mode bits */
 347				return -EINVAL;
 348		}
 
 349
 350		if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 351			addr == offsetof(struct user, regs.gprs[2])) {
 352			struct pt_regs *regs = task_pt_regs(child);
 353
 354			regs->int_code = 0x20000 | (data & 0xffff);
 355		}
 356		*(addr_t *)((addr_t) &regs->psw + addr) = data;
 357	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 358		/*
 359		 * access registers are stored in the thread structure
 360		 */
 361		offset = addr - offsetof(struct user, regs.acrs);
 362		/*
 363		 * Very special case: old & broken 64 bit gdb writing
 364		 * to acrs[15] with a 64 bit value. Ignore the lower
 365		 * half of the value and write the upper 32 bit to
 366		 * acrs[15]. Sick...
 367		 */
 368		if (addr == offsetof(struct user, regs.acrs[15]))
 369			child->thread.acrs[15] = (unsigned int) (data >> 32);
 370		else
 371			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 372
 373	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 374		/*
 375		 * orig_gpr2 is stored on the kernel stack
 376		 */
 377		task_pt_regs(child)->orig_gpr2 = data;
 378
 379	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 380		/*
 381		 * prevent writes of padding hole between
 382		 * orig_gpr2 and fp_regs on s390.
 383		 */
 384		return 0;
 385
 386	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 387		/*
 388		 * floating point control reg. is in the thread structure
 389		 */
 390		if ((unsigned int)data != 0)
 
 391			return -EINVAL;
 392		child->thread.ufpu.fpc = data >> (BITS_PER_LONG - 32);
 393
 394	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 395		/*
 396		 * floating point regs. are in the child->thread.ufpu.vxrs array
 
 397		 */
 398		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 399		*(addr_t *)((addr_t)child->thread.ufpu.vxrs + 2 * offset) = data;
 400	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 
 
 
 
 
 
 401		/*
 402		 * Handle access to the per_info structure.
 403		 */
 404		addr -= offsetof(struct user, regs.per_info);
 405		__poke_user_per(child, addr, data);
 406
 407	}
 408
 409	return 0;
 410}
 411
 412static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 413{
 414	addr_t mask;
 415
 416	/*
 417	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 418	 * an alignment of 4. Programmers from hell indeed...
 419	 */
 420	mask = __ADDR_MASK;
 421	if (addr >= offsetof(struct user, regs.acrs) &&
 422	    addr < offsetof(struct user, regs.orig_gpr2))
 423		mask = 3;
 424	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 425		return -EIO;
 426
 427	return __poke_user(child, addr, data);
 428}
 429
 430long arch_ptrace(struct task_struct *child, long request,
 431		 unsigned long addr, unsigned long data)
 432{
 433	ptrace_area parea; 
 434	int copied, ret;
 435
 436	switch (request) {
 437	case PTRACE_PEEKUSR:
 438		/* read the word at location addr in the USER area. */
 439		return peek_user(child, addr, data);
 440
 441	case PTRACE_POKEUSR:
 442		/* write the word at location addr in the USER area */
 443		return poke_user(child, addr, data);
 444
 445	case PTRACE_PEEKUSR_AREA:
 446	case PTRACE_POKEUSR_AREA:
 447		if (copy_from_user(&parea, (void __force __user *) addr,
 448							sizeof(parea)))
 449			return -EFAULT;
 450		addr = parea.kernel_addr;
 451		data = parea.process_addr;
 452		copied = 0;
 453		while (copied < parea.len) {
 454			if (request == PTRACE_PEEKUSR_AREA)
 455				ret = peek_user(child, addr, data);
 456			else {
 457				addr_t utmp;
 458				if (get_user(utmp,
 459					     (addr_t __force __user *) data))
 460					return -EFAULT;
 461				ret = poke_user(child, addr, utmp);
 462			}
 463			if (ret)
 464				return ret;
 465			addr += sizeof(unsigned long);
 466			data += sizeof(unsigned long);
 467			copied += sizeof(unsigned long);
 468		}
 469		return 0;
 470	case PTRACE_GET_LAST_BREAK:
 471		return put_user(child->thread.last_break, (unsigned long __user *)data);
 
 
 472	case PTRACE_ENABLE_TE:
 473		if (!MACHINE_HAS_TE)
 474			return -EIO;
 475		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 476		return 0;
 477	case PTRACE_DISABLE_TE:
 478		if (!MACHINE_HAS_TE)
 479			return -EIO;
 480		child->thread.per_flags |= PER_FLAG_NO_TE;
 481		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 482		return 0;
 483	case PTRACE_TE_ABORT_RAND:
 484		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 485			return -EIO;
 486		switch (data) {
 487		case 0UL:
 488			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 489			break;
 490		case 1UL:
 491			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 492			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 493			break;
 494		case 2UL:
 495			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 496			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 497			break;
 498		default:
 499			return -EINVAL;
 500		}
 501		return 0;
 502	default:
 503		return ptrace_request(child, request, addr, data);
 504	}
 505}
 506
 507#ifdef CONFIG_COMPAT
 508/*
 509 * Now the fun part starts... a 31 bit program running in the
 510 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 511 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 512 * to handle, the difference to the 64 bit versions of the requests
 513 * is that the access is done in multiples of 4 byte instead of
 514 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 515 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 516 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 517 * is a 31 bit program too, the content of struct user can be
 518 * emulated. A 31 bit program peeking into the struct user of
 519 * a 64 bit program is a no-no.
 520 */
 521
 522/*
 523 * Same as peek_user_per but for a 31 bit program.
 524 */
 525static inline __u32 __peek_user_per_compat(struct task_struct *child,
 526					   addr_t addr)
 527{
 528	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 529		/* Control bits of the active per set. */
 530		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 531			PER_EVENT_IFETCH : child->thread.per_user.control;
 532	else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
 533		/* Start address of the active per set. */
 534		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 535			0 : child->thread.per_user.start;
 536	else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
 537		/* End address of the active per set. */
 538		return test_thread_flag(TIF_SINGLE_STEP) ?
 539			PSW32_ADDR_INSN : child->thread.per_user.end;
 540	else if (addr == offsetof(struct compat_per_struct_kernel, bits))
 541		/* Single-step bit. */
 542		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 543			0x80000000 : 0;
 544	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 545		/* Start address of the user specified per set. */
 546		return (__u32) child->thread.per_user.start;
 547	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 548		/* End address of the user specified per set. */
 549		return (__u32) child->thread.per_user.end;
 550	else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
 551		/* PER code, ATMID and AI of the last PER trap */
 552		return (__u32) child->thread.per_event.cause << 16;
 553	else if (addr == offsetof(struct compat_per_struct_kernel, address))
 554		/* Address of the last PER trap */
 555		return (__u32) child->thread.per_event.address;
 556	else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
 557		/* Access id of the last PER trap */
 558		return (__u32) child->thread.per_event.paid << 24;
 559	return 0;
 560}
 561
 562/*
 563 * Same as peek_user but for a 31 bit program.
 564 */
 565static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 566{
 
 567	addr_t offset;
 568	__u32 tmp;
 569
 570	if (addr < offsetof(struct compat_user, regs.acrs)) {
 571		struct pt_regs *regs = task_pt_regs(child);
 572		/*
 573		 * psw and gprs are stored on the stack
 574		 */
 575		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 576			/* Fake a 31 bit psw mask. */
 577			tmp = (__u32)(regs->psw.mask >> 32);
 578			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 579			tmp |= PSW32_USER_BITS;
 580		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 581			/* Fake a 31 bit psw address. */
 582			tmp = (__u32) regs->psw.addr |
 583				(__u32)(regs->psw.mask & PSW_MASK_BA);
 584		} else {
 585			/* gpr 0-15 */
 586			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 587		}
 588	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 589		/*
 590		 * access registers are stored in the thread structure
 591		 */
 592		offset = addr - offsetof(struct compat_user, regs.acrs);
 593		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 594
 595	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 596		/*
 597		 * orig_gpr2 is stored on the kernel stack
 598		 */
 599		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 600
 601	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 602		/*
 603		 * prevent reads of padding hole between
 604		 * orig_gpr2 and fp_regs on s390.
 605		 */
 606		tmp = 0;
 607
 608	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 609		/*
 610		 * floating point control reg. is in the thread structure
 611		 */
 612		tmp = child->thread.ufpu.fpc;
 613
 614	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 615		/*
 616		 * floating point regs. are in the child->thread.ufpu.vxrs array
 
 617		 */
 618		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 619		tmp = *(__u32 *)((addr_t)child->thread.ufpu.vxrs + 2 * offset);
 620	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 
 
 
 
 
 
 621		/*
 622		 * Handle access to the per_info structure.
 623		 */
 624		addr -= offsetof(struct compat_user, regs.per_info);
 625		tmp = __peek_user_per_compat(child, addr);
 626
 627	} else
 628		tmp = 0;
 629
 630	return tmp;
 631}
 632
 633static int peek_user_compat(struct task_struct *child,
 634			    addr_t addr, addr_t data)
 635{
 636	__u32 tmp;
 637
 638	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 639		return -EIO;
 640
 641	tmp = __peek_user_compat(child, addr);
 642	return put_user(tmp, (__u32 __user *) data);
 643}
 644
 645/*
 646 * Same as poke_user_per but for a 31 bit program.
 647 */
 648static inline void __poke_user_per_compat(struct task_struct *child,
 649					  addr_t addr, __u32 data)
 650{
 651	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 652		/* PER event mask of the user specified per set. */
 653		child->thread.per_user.control =
 654			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 655	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 656		/* Starting address of the user specified per set. */
 657		child->thread.per_user.start = data;
 658	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 659		/* Ending address of the user specified per set. */
 660		child->thread.per_user.end = data;
 661}
 662
 663/*
 664 * Same as poke_user but for a 31 bit program.
 665 */
 666static int __poke_user_compat(struct task_struct *child,
 667			      addr_t addr, addr_t data)
 668{
 
 669	__u32 tmp = (__u32) data;
 670	addr_t offset;
 671
 672	if (addr < offsetof(struct compat_user, regs.acrs)) {
 673		struct pt_regs *regs = task_pt_regs(child);
 674		/*
 675		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 676		 */
 677		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 678			__u32 mask = PSW32_MASK_USER;
 679
 680			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 681			/* Build a 64 bit psw mask from 31 bit mask. */
 682			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 683				/* Invalid psw mask. */
 684				return -EINVAL;
 685			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 686				/* Invalid address-space-control bits */
 687				return -EINVAL;
 688			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 689				(regs->psw.mask & PSW_MASK_BA) |
 690				(__u64)(tmp & mask) << 32;
 691		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 692			/* Build a 64 bit psw address from 31 bit address. */
 693			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 694			/* Transfer 31 bit amode bit to psw mask. */
 695			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 696				(__u64)(tmp & PSW32_ADDR_AMODE);
 697		} else {
 698			if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 699				addr == offsetof(struct compat_user, regs.gprs[2])) {
 700				struct pt_regs *regs = task_pt_regs(child);
 701
 702				regs->int_code = 0x20000 | (data & 0xffff);
 703			}
 704			/* gpr 0-15 */
 705			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 706		}
 707	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 708		/*
 709		 * access registers are stored in the thread structure
 710		 */
 711		offset = addr - offsetof(struct compat_user, regs.acrs);
 712		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 713
 714	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 715		/*
 716		 * orig_gpr2 is stored on the kernel stack
 717		 */
 718		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 719
 720	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 721		/*
 722		 * prevent writess of padding hole between
 723		 * orig_gpr2 and fp_regs on s390.
 724		 */
 725		return 0;
 726
 727	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 728		/*
 729		 * floating point control reg. is in the thread structure
 730		 */
 731		child->thread.ufpu.fpc = data;
 
 
 732
 733	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 734		/*
 735		 * floating point regs. are in the child->thread.ufpu.vxrs array
 
 736		 */
 737		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 738		*(__u32 *)((addr_t)child->thread.ufpu.vxrs + 2 * offset) = tmp;
 739	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 
 
 
 
 
 
 740		/*
 741		 * Handle access to the per_info structure.
 742		 */
 743		addr -= offsetof(struct compat_user, regs.per_info);
 744		__poke_user_per_compat(child, addr, data);
 745	}
 746
 747	return 0;
 748}
 749
 750static int poke_user_compat(struct task_struct *child,
 751			    addr_t addr, addr_t data)
 752{
 753	if (!is_compat_task() || (addr & 3) ||
 754	    addr > sizeof(struct compat_user) - 3)
 755		return -EIO;
 756
 757	return __poke_user_compat(child, addr, data);
 758}
 759
 760long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 761			compat_ulong_t caddr, compat_ulong_t cdata)
 762{
 763	unsigned long addr = caddr;
 764	unsigned long data = cdata;
 765	compat_ptrace_area parea;
 766	int copied, ret;
 767
 768	switch (request) {
 769	case PTRACE_PEEKUSR:
 770		/* read the word at location addr in the USER area. */
 771		return peek_user_compat(child, addr, data);
 772
 773	case PTRACE_POKEUSR:
 774		/* write the word at location addr in the USER area */
 775		return poke_user_compat(child, addr, data);
 776
 777	case PTRACE_PEEKUSR_AREA:
 778	case PTRACE_POKEUSR_AREA:
 779		if (copy_from_user(&parea, (void __force __user *) addr,
 780							sizeof(parea)))
 781			return -EFAULT;
 782		addr = parea.kernel_addr;
 783		data = parea.process_addr;
 784		copied = 0;
 785		while (copied < parea.len) {
 786			if (request == PTRACE_PEEKUSR_AREA)
 787				ret = peek_user_compat(child, addr, data);
 788			else {
 789				__u32 utmp;
 790				if (get_user(utmp,
 791					     (__u32 __force __user *) data))
 792					return -EFAULT;
 793				ret = poke_user_compat(child, addr, utmp);
 794			}
 795			if (ret)
 796				return ret;
 797			addr += sizeof(unsigned int);
 798			data += sizeof(unsigned int);
 799			copied += sizeof(unsigned int);
 800		}
 801		return 0;
 802	case PTRACE_GET_LAST_BREAK:
 803		return put_user(child->thread.last_break, (unsigned int __user *)data);
 
 
 804	}
 805	return compat_ptrace_request(child, request, addr, data);
 806}
 807#endif
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809/*
 810 * user_regset definitions.
 811 */
 812
 813static int s390_regs_get(struct task_struct *target,
 814			 const struct user_regset *regset,
 815			 struct membuf to)
 
 816{
 817	unsigned pos;
 818	if (target == current)
 819		save_access_regs(target->thread.acrs);
 820
 821	for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 822		membuf_store(&to, __peek_user(target, pos));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	return 0;
 824}
 825
 826static int s390_regs_set(struct task_struct *target,
 827			 const struct user_regset *regset,
 828			 unsigned int pos, unsigned int count,
 829			 const void *kbuf, const void __user *ubuf)
 830{
 831	int rc = 0;
 832
 833	if (target == current)
 834		save_access_regs(target->thread.acrs);
 835
 836	if (kbuf) {
 837		const unsigned long *k = kbuf;
 838		while (count > 0 && !rc) {
 839			rc = __poke_user(target, pos, *k++);
 840			count -= sizeof(*k);
 841			pos += sizeof(*k);
 842		}
 843	} else {
 844		const unsigned long  __user *u = ubuf;
 845		while (count > 0 && !rc) {
 846			unsigned long word;
 847			rc = __get_user(word, u++);
 848			if (rc)
 849				break;
 850			rc = __poke_user(target, pos, word);
 851			count -= sizeof(*u);
 852			pos += sizeof(*u);
 853		}
 854	}
 855
 856	if (rc == 0 && target == current)
 857		restore_access_regs(target->thread.acrs);
 858
 859	return rc;
 860}
 861
 862static int s390_fpregs_get(struct task_struct *target,
 863			   const struct user_regset *regset,
 864			   struct membuf to)
 865{
 866	_s390_fp_regs fp_regs;
 867
 868	if (target == current)
 869		save_user_fpu_regs();
 870
 871	fp_regs.fpc = target->thread.ufpu.fpc;
 872	fpregs_store(&fp_regs, &target->thread.ufpu);
 873
 874	return membuf_write(&to, &fp_regs, sizeof(fp_regs));
 
 875}
 876
 877static int s390_fpregs_set(struct task_struct *target,
 878			   const struct user_regset *regset, unsigned int pos,
 879			   unsigned int count, const void *kbuf,
 880			   const void __user *ubuf)
 881{
 882	int rc = 0;
 883	freg_t fprs[__NUM_FPRS];
 884
 885	if (target == current)
 886		save_user_fpu_regs();
 887	convert_vx_to_fp(fprs, target->thread.ufpu.vxrs);
 
 
 
 
 
 
 888	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 889		u32 ufpc[2] = { target->thread.ufpu.fpc, 0 };
 890		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 891					0, offsetof(s390_fp_regs, fprs));
 892		if (rc)
 893			return rc;
 894		if (ufpc[1] != 0)
 895			return -EINVAL;
 896		target->thread.ufpu.fpc = ufpc[0];
 897	}
 898
 899	if (rc == 0 && count > 0)
 900		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 901					fprs, offsetof(s390_fp_regs, fprs), -1);
 902	if (rc)
 903		return rc;
 904	convert_fp_to_vx(target->thread.ufpu.vxrs, fprs);
 
 
 
 
 
 905	return rc;
 906}
 907
 908static int s390_last_break_get(struct task_struct *target,
 909			       const struct user_regset *regset,
 910			       struct membuf to)
 
 911{
 912	return membuf_store(&to, target->thread.last_break);
 
 
 
 
 
 
 
 
 
 
 913}
 914
 915static int s390_last_break_set(struct task_struct *target,
 916			       const struct user_regset *regset,
 917			       unsigned int pos, unsigned int count,
 918			       const void *kbuf, const void __user *ubuf)
 919{
 920	return 0;
 921}
 922
 923static int s390_tdb_get(struct task_struct *target,
 924			const struct user_regset *regset,
 925			struct membuf to)
 
 926{
 927	struct pt_regs *regs = task_pt_regs(target);
 928	size_t size;
 929
 930	if (!(regs->int_code & 0x200))
 931		return -ENODATA;
 932	size = sizeof(target->thread.trap_tdb.data);
 933	return membuf_write(&to, target->thread.trap_tdb.data, size);
 934}
 935
 936static int s390_tdb_set(struct task_struct *target,
 937			const struct user_regset *regset,
 938			unsigned int pos, unsigned int count,
 939			const void *kbuf, const void __user *ubuf)
 940{
 941	return 0;
 942}
 943
 944static int s390_vxrs_low_get(struct task_struct *target,
 945			     const struct user_regset *regset,
 946			     struct membuf to)
 
 947{
 948	__u64 vxrs[__NUM_VXRS_LOW];
 949	int i;
 950
 951	if (!cpu_has_vx())
 952		return -ENODEV;
 953	if (target == current)
 954		save_user_fpu_regs();
 955	for (i = 0; i < __NUM_VXRS_LOW; i++)
 956		vxrs[i] = target->thread.ufpu.vxrs[i].low;
 957	return membuf_write(&to, vxrs, sizeof(vxrs));
 958}
 959
 960static int s390_vxrs_low_set(struct task_struct *target,
 961			     const struct user_regset *regset,
 962			     unsigned int pos, unsigned int count,
 963			     const void *kbuf, const void __user *ubuf)
 964{
 965	__u64 vxrs[__NUM_VXRS_LOW];
 966	int i, rc;
 967
 968	if (!cpu_has_vx())
 969		return -ENODEV;
 970	if (target == current)
 971		save_user_fpu_regs();
 972
 973	for (i = 0; i < __NUM_VXRS_LOW; i++)
 974		vxrs[i] = target->thread.ufpu.vxrs[i].low;
 975
 976	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
 977	if (rc == 0)
 978		for (i = 0; i < __NUM_VXRS_LOW; i++)
 979			target->thread.ufpu.vxrs[i].low = vxrs[i];
 980
 981	return rc;
 982}
 983
 984static int s390_vxrs_high_get(struct task_struct *target,
 985			      const struct user_regset *regset,
 986			      struct membuf to)
 
 987{
 988	if (!cpu_has_vx())
 
 
 989		return -ENODEV;
 990	if (target == current)
 991		save_user_fpu_regs();
 992	return membuf_write(&to, target->thread.ufpu.vxrs + __NUM_VXRS_LOW,
 993			    __NUM_VXRS_HIGH * sizeof(__vector128));
 
 994}
 995
 996static int s390_vxrs_high_set(struct task_struct *target,
 997			      const struct user_regset *regset,
 998			      unsigned int pos, unsigned int count,
 999			      const void *kbuf, const void __user *ubuf)
1000{
1001	int rc;
1002
1003	if (!cpu_has_vx())
1004		return -ENODEV;
1005	if (target == current)
1006		save_user_fpu_regs();
1007
1008	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1009				target->thread.ufpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1010	return rc;
1011}
1012
1013static int s390_system_call_get(struct task_struct *target,
1014				const struct user_regset *regset,
1015				struct membuf to)
 
1016{
1017	return membuf_store(&to, target->thread.system_call);
 
 
1018}
1019
1020static int s390_system_call_set(struct task_struct *target,
1021				const struct user_regset *regset,
1022				unsigned int pos, unsigned int count,
1023				const void *kbuf, const void __user *ubuf)
1024{
1025	unsigned int *data = &target->thread.system_call;
1026	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1027				  data, 0, sizeof(unsigned int));
1028}
1029
1030static int s390_gs_cb_get(struct task_struct *target,
1031			  const struct user_regset *regset,
1032			  struct membuf to)
1033{
1034	struct gs_cb *data = target->thread.gs_cb;
1035
1036	if (!MACHINE_HAS_GS)
1037		return -ENODEV;
1038	if (!data)
1039		return -ENODATA;
1040	if (target == current)
1041		save_gs_cb(data);
1042	return membuf_write(&to, data, sizeof(struct gs_cb));
1043}
1044
1045static int s390_gs_cb_set(struct task_struct *target,
1046			  const struct user_regset *regset,
1047			  unsigned int pos, unsigned int count,
1048			  const void *kbuf, const void __user *ubuf)
1049{
1050	struct gs_cb gs_cb = { }, *data = NULL;
1051	int rc;
1052
1053	if (!MACHINE_HAS_GS)
1054		return -ENODEV;
1055	if (!target->thread.gs_cb) {
1056		data = kzalloc(sizeof(*data), GFP_KERNEL);
1057		if (!data)
1058			return -ENOMEM;
1059	}
1060	if (!target->thread.gs_cb)
1061		gs_cb.gsd = 25;
1062	else if (target == current)
1063		save_gs_cb(&gs_cb);
1064	else
1065		gs_cb = *target->thread.gs_cb;
1066	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1067				&gs_cb, 0, sizeof(gs_cb));
1068	if (rc) {
1069		kfree(data);
1070		return -EFAULT;
1071	}
1072	preempt_disable();
1073	if (!target->thread.gs_cb)
1074		target->thread.gs_cb = data;
1075	*target->thread.gs_cb = gs_cb;
1076	if (target == current) {
1077		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
1078		restore_gs_cb(target->thread.gs_cb);
1079	}
1080	preempt_enable();
1081	return rc;
1082}
1083
1084static int s390_gs_bc_get(struct task_struct *target,
1085			  const struct user_regset *regset,
1086			  struct membuf to)
1087{
1088	struct gs_cb *data = target->thread.gs_bc_cb;
1089
1090	if (!MACHINE_HAS_GS)
1091		return -ENODEV;
1092	if (!data)
1093		return -ENODATA;
1094	return membuf_write(&to, data, sizeof(struct gs_cb));
1095}
1096
1097static int s390_gs_bc_set(struct task_struct *target,
1098			  const struct user_regset *regset,
1099			  unsigned int pos, unsigned int count,
1100			  const void *kbuf, const void __user *ubuf)
1101{
1102	struct gs_cb *data = target->thread.gs_bc_cb;
1103
1104	if (!MACHINE_HAS_GS)
1105		return -ENODEV;
1106	if (!data) {
1107		data = kzalloc(sizeof(*data), GFP_KERNEL);
1108		if (!data)
1109			return -ENOMEM;
1110		target->thread.gs_bc_cb = data;
1111	}
1112	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1113				  data, 0, sizeof(struct gs_cb));
1114}
1115
1116static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1117{
1118	return (cb->rca & 0x1f) == 0 &&
1119		(cb->roa & 0xfff) == 0 &&
1120		(cb->rla & 0xfff) == 0xfff &&
1121		cb->s == 1 &&
1122		cb->k == 1 &&
1123		cb->h == 0 &&
1124		cb->reserved1 == 0 &&
1125		cb->ps == 1 &&
1126		cb->qs == 0 &&
1127		cb->pc == 1 &&
1128		cb->qc == 0 &&
1129		cb->reserved2 == 0 &&
1130		cb->reserved3 == 0 &&
1131		cb->reserved4 == 0 &&
1132		cb->reserved5 == 0 &&
1133		cb->reserved6 == 0 &&
1134		cb->reserved7 == 0 &&
1135		cb->reserved8 == 0 &&
1136		cb->rla >= cb->roa &&
1137		cb->rca >= cb->roa &&
1138		cb->rca <= cb->rla+1 &&
1139		cb->m < 3;
1140}
1141
1142static int s390_runtime_instr_get(struct task_struct *target,
1143				const struct user_regset *regset,
1144				struct membuf to)
1145{
1146	struct runtime_instr_cb *data = target->thread.ri_cb;
1147
1148	if (!test_facility(64))
1149		return -ENODEV;
1150	if (!data)
1151		return -ENODATA;
1152
1153	return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1154}
1155
1156static int s390_runtime_instr_set(struct task_struct *target,
1157				  const struct user_regset *regset,
1158				  unsigned int pos, unsigned int count,
1159				  const void *kbuf, const void __user *ubuf)
1160{
1161	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1162	int rc;
1163
1164	if (!test_facility(64))
1165		return -ENODEV;
1166
1167	if (!target->thread.ri_cb) {
1168		data = kzalloc(sizeof(*data), GFP_KERNEL);
1169		if (!data)
1170			return -ENOMEM;
1171	}
1172
1173	if (target->thread.ri_cb) {
1174		if (target == current)
1175			store_runtime_instr_cb(&ri_cb);
1176		else
1177			ri_cb = *target->thread.ri_cb;
1178	}
1179
1180	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1181				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1182	if (rc) {
1183		kfree(data);
1184		return -EFAULT;
1185	}
1186
1187	if (!is_ri_cb_valid(&ri_cb)) {
1188		kfree(data);
1189		return -EINVAL;
1190	}
1191	/*
1192	 * Override access key in any case, since user space should
1193	 * not be able to set it, nor should it care about it.
1194	 */
1195	ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1196	preempt_disable();
1197	if (!target->thread.ri_cb)
1198		target->thread.ri_cb = data;
1199	*target->thread.ri_cb = ri_cb;
1200	if (target == current)
1201		load_runtime_instr_cb(target->thread.ri_cb);
1202	preempt_enable();
1203
1204	return 0;
1205}
1206
1207static const struct user_regset s390_regsets[] = {
1208	{
1209		.core_note_type = NT_PRSTATUS,
1210		.n = sizeof(s390_regs) / sizeof(long),
1211		.size = sizeof(long),
1212		.align = sizeof(long),
1213		.regset_get = s390_regs_get,
1214		.set = s390_regs_set,
1215	},
1216	{
1217		.core_note_type = NT_PRFPREG,
1218		.n = sizeof(s390_fp_regs) / sizeof(long),
1219		.size = sizeof(long),
1220		.align = sizeof(long),
1221		.regset_get = s390_fpregs_get,
1222		.set = s390_fpregs_set,
1223	},
1224	{
1225		.core_note_type = NT_S390_SYSTEM_CALL,
1226		.n = 1,
1227		.size = sizeof(unsigned int),
1228		.align = sizeof(unsigned int),
1229		.regset_get = s390_system_call_get,
1230		.set = s390_system_call_set,
1231	},
1232	{
1233		.core_note_type = NT_S390_LAST_BREAK,
1234		.n = 1,
1235		.size = sizeof(long),
1236		.align = sizeof(long),
1237		.regset_get = s390_last_break_get,
1238		.set = s390_last_break_set,
1239	},
1240	{
1241		.core_note_type = NT_S390_TDB,
1242		.n = 1,
1243		.size = 256,
1244		.align = 1,
1245		.regset_get = s390_tdb_get,
1246		.set = s390_tdb_set,
1247	},
1248	{
1249		.core_note_type = NT_S390_VXRS_LOW,
1250		.n = __NUM_VXRS_LOW,
1251		.size = sizeof(__u64),
1252		.align = sizeof(__u64),
1253		.regset_get = s390_vxrs_low_get,
1254		.set = s390_vxrs_low_set,
1255	},
1256	{
1257		.core_note_type = NT_S390_VXRS_HIGH,
1258		.n = __NUM_VXRS_HIGH,
1259		.size = sizeof(__vector128),
1260		.align = sizeof(__vector128),
1261		.regset_get = s390_vxrs_high_get,
1262		.set = s390_vxrs_high_set,
1263	},
1264	{
1265		.core_note_type = NT_S390_GS_CB,
1266		.n = sizeof(struct gs_cb) / sizeof(__u64),
1267		.size = sizeof(__u64),
1268		.align = sizeof(__u64),
1269		.regset_get = s390_gs_cb_get,
1270		.set = s390_gs_cb_set,
1271	},
1272	{
1273		.core_note_type = NT_S390_GS_BC,
1274		.n = sizeof(struct gs_cb) / sizeof(__u64),
1275		.size = sizeof(__u64),
1276		.align = sizeof(__u64),
1277		.regset_get = s390_gs_bc_get,
1278		.set = s390_gs_bc_set,
1279	},
1280	{
1281		.core_note_type = NT_S390_RI_CB,
1282		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1283		.size = sizeof(__u64),
1284		.align = sizeof(__u64),
1285		.regset_get = s390_runtime_instr_get,
1286		.set = s390_runtime_instr_set,
1287	},
1288};
1289
1290static const struct user_regset_view user_s390_view = {
1291	.name = "s390x",
1292	.e_machine = EM_S390,
1293	.regsets = s390_regsets,
1294	.n = ARRAY_SIZE(s390_regsets)
1295};
1296
1297#ifdef CONFIG_COMPAT
1298static int s390_compat_regs_get(struct task_struct *target,
1299				const struct user_regset *regset,
1300				struct membuf to)
 
1301{
1302	unsigned n;
1303
1304	if (target == current)
1305		save_access_regs(target->thread.acrs);
1306
1307	for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1308		membuf_store(&to, __peek_user_compat(target, n));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309	return 0;
1310}
1311
1312static int s390_compat_regs_set(struct task_struct *target,
1313				const struct user_regset *regset,
1314				unsigned int pos, unsigned int count,
1315				const void *kbuf, const void __user *ubuf)
1316{
1317	int rc = 0;
1318
1319	if (target == current)
1320		save_access_regs(target->thread.acrs);
1321
1322	if (kbuf) {
1323		const compat_ulong_t *k = kbuf;
1324		while (count > 0 && !rc) {
1325			rc = __poke_user_compat(target, pos, *k++);
1326			count -= sizeof(*k);
1327			pos += sizeof(*k);
1328		}
1329	} else {
1330		const compat_ulong_t  __user *u = ubuf;
1331		while (count > 0 && !rc) {
1332			compat_ulong_t word;
1333			rc = __get_user(word, u++);
1334			if (rc)
1335				break;
1336			rc = __poke_user_compat(target, pos, word);
1337			count -= sizeof(*u);
1338			pos += sizeof(*u);
1339		}
1340	}
1341
1342	if (rc == 0 && target == current)
1343		restore_access_regs(target->thread.acrs);
1344
1345	return rc;
1346}
1347
1348static int s390_compat_regs_high_get(struct task_struct *target,
1349				     const struct user_regset *regset,
1350				     struct membuf to)
 
1351{
1352	compat_ulong_t *gprs_high;
1353	int i;
1354
1355	gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1356	for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1357		membuf_store(&to, *gprs_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358	return 0;
1359}
1360
1361static int s390_compat_regs_high_set(struct task_struct *target,
1362				     const struct user_regset *regset,
1363				     unsigned int pos, unsigned int count,
1364				     const void *kbuf, const void __user *ubuf)
1365{
1366	compat_ulong_t *gprs_high;
1367	int rc = 0;
1368
1369	gprs_high = (compat_ulong_t *)
1370		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1371	if (kbuf) {
1372		const compat_ulong_t *k = kbuf;
1373		while (count > 0) {
1374			*gprs_high = *k++;
1375			*gprs_high += 2;
1376			count -= sizeof(*k);
1377		}
1378	} else {
1379		const compat_ulong_t  __user *u = ubuf;
1380		while (count > 0 && !rc) {
1381			unsigned long word;
1382			rc = __get_user(word, u++);
1383			if (rc)
1384				break;
1385			*gprs_high = word;
1386			*gprs_high += 2;
1387			count -= sizeof(*u);
1388		}
1389	}
1390
1391	return rc;
1392}
1393
1394static int s390_compat_last_break_get(struct task_struct *target,
1395				      const struct user_regset *regset,
1396				      struct membuf to)
 
1397{
1398	compat_ulong_t last_break = target->thread.last_break;
1399
1400	return membuf_store(&to, (unsigned long)last_break);
 
 
 
 
 
 
 
 
 
 
 
1401}
1402
1403static int s390_compat_last_break_set(struct task_struct *target,
1404				      const struct user_regset *regset,
1405				      unsigned int pos, unsigned int count,
1406				      const void *kbuf, const void __user *ubuf)
1407{
1408	return 0;
1409}
1410
1411static const struct user_regset s390_compat_regsets[] = {
1412	{
1413		.core_note_type = NT_PRSTATUS,
1414		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1415		.size = sizeof(compat_long_t),
1416		.align = sizeof(compat_long_t),
1417		.regset_get = s390_compat_regs_get,
1418		.set = s390_compat_regs_set,
1419	},
1420	{
1421		.core_note_type = NT_PRFPREG,
1422		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1423		.size = sizeof(compat_long_t),
1424		.align = sizeof(compat_long_t),
1425		.regset_get = s390_fpregs_get,
1426		.set = s390_fpregs_set,
1427	},
1428	{
1429		.core_note_type = NT_S390_SYSTEM_CALL,
1430		.n = 1,
1431		.size = sizeof(compat_uint_t),
1432		.align = sizeof(compat_uint_t),
1433		.regset_get = s390_system_call_get,
1434		.set = s390_system_call_set,
1435	},
1436	{
1437		.core_note_type = NT_S390_LAST_BREAK,
1438		.n = 1,
1439		.size = sizeof(long),
1440		.align = sizeof(long),
1441		.regset_get = s390_compat_last_break_get,
1442		.set = s390_compat_last_break_set,
1443	},
1444	{
1445		.core_note_type = NT_S390_TDB,
1446		.n = 1,
1447		.size = 256,
1448		.align = 1,
1449		.regset_get = s390_tdb_get,
1450		.set = s390_tdb_set,
1451	},
1452	{
1453		.core_note_type = NT_S390_VXRS_LOW,
1454		.n = __NUM_VXRS_LOW,
1455		.size = sizeof(__u64),
1456		.align = sizeof(__u64),
1457		.regset_get = s390_vxrs_low_get,
1458		.set = s390_vxrs_low_set,
1459	},
1460	{
1461		.core_note_type = NT_S390_VXRS_HIGH,
1462		.n = __NUM_VXRS_HIGH,
1463		.size = sizeof(__vector128),
1464		.align = sizeof(__vector128),
1465		.regset_get = s390_vxrs_high_get,
1466		.set = s390_vxrs_high_set,
1467	},
1468	{
1469		.core_note_type = NT_S390_HIGH_GPRS,
1470		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1471		.size = sizeof(compat_long_t),
1472		.align = sizeof(compat_long_t),
1473		.regset_get = s390_compat_regs_high_get,
1474		.set = s390_compat_regs_high_set,
1475	},
1476	{
1477		.core_note_type = NT_S390_GS_CB,
1478		.n = sizeof(struct gs_cb) / sizeof(__u64),
1479		.size = sizeof(__u64),
1480		.align = sizeof(__u64),
1481		.regset_get = s390_gs_cb_get,
1482		.set = s390_gs_cb_set,
1483	},
1484	{
1485		.core_note_type = NT_S390_GS_BC,
1486		.n = sizeof(struct gs_cb) / sizeof(__u64),
1487		.size = sizeof(__u64),
1488		.align = sizeof(__u64),
1489		.regset_get = s390_gs_bc_get,
1490		.set = s390_gs_bc_set,
1491	},
1492	{
1493		.core_note_type = NT_S390_RI_CB,
1494		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1495		.size = sizeof(__u64),
1496		.align = sizeof(__u64),
1497		.regset_get = s390_runtime_instr_get,
1498		.set = s390_runtime_instr_set,
1499	},
1500};
1501
1502static const struct user_regset_view user_s390_compat_view = {
1503	.name = "s390",
1504	.e_machine = EM_S390,
1505	.regsets = s390_compat_regsets,
1506	.n = ARRAY_SIZE(s390_compat_regsets)
1507};
1508#endif
1509
1510const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1511{
1512#ifdef CONFIG_COMPAT
1513	if (test_tsk_thread_flag(task, TIF_31BIT))
1514		return &user_s390_compat_view;
1515#endif
1516	return &user_s390_view;
1517}
1518
1519static const char *gpr_names[NUM_GPRS] = {
1520	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1521	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1522};
1523
1524unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1525{
1526	if (offset >= NUM_GPRS)
1527		return 0;
1528	return regs->gprs[offset];
1529}
1530
1531int regs_query_register_offset(const char *name)
1532{
1533	unsigned long offset;
1534
1535	if (!name || *name != 'r')
1536		return -EINVAL;
1537	if (kstrtoul(name + 1, 10, &offset))
1538		return -EINVAL;
1539	if (offset >= NUM_GPRS)
1540		return -EINVAL;
1541	return offset;
1542}
1543
1544const char *regs_query_register_name(unsigned int offset)
1545{
1546	if (offset >= NUM_GPRS)
1547		return NULL;
1548	return gpr_names[offset];
1549}
1550
1551static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1552{
1553	unsigned long ksp = kernel_stack_pointer(regs);
1554
1555	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1556}
1557
1558/**
1559 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1560 * @regs:pt_regs which contains kernel stack pointer.
1561 * @n:stack entry number.
1562 *
1563 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1564 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1565 * this returns 0.
1566 */
1567unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1568{
1569	unsigned long addr;
1570
1571	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1572	if (!regs_within_kernel_stack(regs, addr))
1573		return 0;
1574	return *(unsigned long *)addr;
1575}
v4.10.11
 
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999, 2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
 
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
 
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
  23#include <linux/compat.h>
  24#include <trace/syscall.h>
  25#include <asm/segment.h>
 
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <linux/uaccess.h>
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
 
 
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41void update_cr_regs(struct task_struct *task)
  42{
  43	struct pt_regs *regs = task_pt_regs(task);
  44	struct thread_struct *thread = &task->thread;
  45	struct per_regs old, new;
  46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47	/* Take care of the enable/disable of transactional execution. */
  48	if (MACHINE_HAS_TE) {
  49		unsigned long cr, cr_new;
  50
  51		__ctl_store(cr, 0, 0);
  52		/* Set or clear transaction execution TXC bit 8. */
  53		cr_new = cr | (1UL << 55);
  54		if (task->thread.per_flags & PER_FLAG_NO_TE)
  55			cr_new &= ~(1UL << 55);
  56		if (cr_new != cr)
  57			__ctl_load(cr_new, 0, 0);
  58		/* Set or clear transaction execution TDC bits 62 and 63. */
  59		__ctl_store(cr, 2, 2);
  60		cr_new = cr & ~3UL;
  61		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  62			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  63				cr_new |= 1UL;
  64			else
  65				cr_new |= 2UL;
  66		}
  67		if (cr_new != cr)
  68			__ctl_load(cr_new, 2, 2);
  69	}
 
 
 
 
 
 
 
 
 
 
 
 
 
  70	/* Copy user specified PER registers */
  71	new.control = thread->per_user.control;
  72	new.start = thread->per_user.start;
  73	new.end = thread->per_user.end;
  74
  75	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  76	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  77	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  78		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  79			new.control |= PER_EVENT_BRANCH;
  80		else
  81			new.control |= PER_EVENT_IFETCH;
  82		new.control |= PER_CONTROL_SUSPENSION;
  83		new.control |= PER_EVENT_TRANSACTION_END;
  84		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
  85			new.control |= PER_EVENT_IFETCH;
  86		new.start = 0;
  87		new.end = -1UL;
  88	}
  89
  90	/* Take care of the PER enablement bit in the PSW. */
  91	if (!(new.control & PER_EVENT_MASK)) {
  92		regs->psw.mask &= ~PSW_MASK_PER;
  93		return;
  94	}
  95	regs->psw.mask |= PSW_MASK_PER;
  96	__ctl_store(old, 9, 11);
  97	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
  98		__ctl_load(new, 9, 11);
  99}
 100
 101void user_enable_single_step(struct task_struct *task)
 102{
 103	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 104	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 105}
 106
 107void user_disable_single_step(struct task_struct *task)
 108{
 109	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 110	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 111}
 112
 113void user_enable_block_step(struct task_struct *task)
 114{
 115	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 116	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 117}
 118
 119/*
 120 * Called by kernel/ptrace.c when detaching..
 121 *
 122 * Clear all debugging related fields.
 123 */
 124void ptrace_disable(struct task_struct *task)
 125{
 126	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 127	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 128	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 129	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 130	task->thread.per_flags = 0;
 131}
 132
 133#define __ADDR_MASK 7
 134
 135static inline unsigned long __peek_user_per(struct task_struct *child,
 136					    addr_t addr)
 137{
 138	struct per_struct_kernel *dummy = NULL;
 139
 140	if (addr == (addr_t) &dummy->cr9)
 141		/* Control bits of the active per set. */
 142		return test_thread_flag(TIF_SINGLE_STEP) ?
 143			PER_EVENT_IFETCH : child->thread.per_user.control;
 144	else if (addr == (addr_t) &dummy->cr10)
 145		/* Start address of the active per set. */
 146		return test_thread_flag(TIF_SINGLE_STEP) ?
 147			0 : child->thread.per_user.start;
 148	else if (addr == (addr_t) &dummy->cr11)
 149		/* End address of the active per set. */
 150		return test_thread_flag(TIF_SINGLE_STEP) ?
 151			-1UL : child->thread.per_user.end;
 152	else if (addr == (addr_t) &dummy->bits)
 153		/* Single-step bit. */
 154		return test_thread_flag(TIF_SINGLE_STEP) ?
 155			(1UL << (BITS_PER_LONG - 1)) : 0;
 156	else if (addr == (addr_t) &dummy->starting_addr)
 157		/* Start address of the user specified per set. */
 158		return child->thread.per_user.start;
 159	else if (addr == (addr_t) &dummy->ending_addr)
 160		/* End address of the user specified per set. */
 161		return child->thread.per_user.end;
 162	else if (addr == (addr_t) &dummy->perc_atmid)
 163		/* PER code, ATMID and AI of the last PER trap */
 164		return (unsigned long)
 165			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 166	else if (addr == (addr_t) &dummy->address)
 167		/* Address of the last PER trap */
 168		return child->thread.per_event.address;
 169	else if (addr == (addr_t) &dummy->access_id)
 170		/* Access id of the last PER trap */
 171		return (unsigned long)
 172			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 173	return 0;
 174}
 175
 176/*
 177 * Read the word at offset addr from the user area of a process. The
 178 * trouble here is that the information is littered over different
 179 * locations. The process registers are found on the kernel stack,
 180 * the floating point stuff and the trace settings are stored in
 181 * the task structure. In addition the different structures in
 182 * struct user contain pad bytes that should be read as zeroes.
 183 * Lovely...
 184 */
 185static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 186{
 187	struct user *dummy = NULL;
 188	addr_t offset, tmp;
 189
 190	if (addr < (addr_t) &dummy->regs.acrs) {
 191		/*
 192		 * psw and gprs are stored on the stack
 193		 */
 194		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 195		if (addr == (addr_t) &dummy->regs.psw.mask) {
 196			/* Return a clean psw mask. */
 197			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 198			tmp |= PSW_USER_BITS;
 199		}
 200
 201	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 202		/*
 203		 * access registers are stored in the thread structure
 204		 */
 205		offset = addr - (addr_t) &dummy->regs.acrs;
 206		/*
 207		 * Very special case: old & broken 64 bit gdb reading
 208		 * from acrs[15]. Result is a 64 bit value. Read the
 209		 * 32 bit acrs[15] value and shift it by 32. Sick...
 210		 */
 211		if (addr == (addr_t) &dummy->regs.acrs[15])
 212			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 213		else
 214			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 215
 216	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 217		/*
 218		 * orig_gpr2 is stored on the kernel stack
 219		 */
 220		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 221
 222	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 223		/*
 224		 * prevent reads of padding hole between
 225		 * orig_gpr2 and fp_regs on s390.
 226		 */
 227		tmp = 0;
 228
 229	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 230		/*
 231		 * floating point control reg. is in the thread structure
 232		 */
 233		tmp = child->thread.fpu.fpc;
 234		tmp <<= BITS_PER_LONG - 32;
 235
 236	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 237		/*
 238		 * floating point regs. are either in child->thread.fpu
 239		 * or the child->thread.fpu.vxrs array
 240		 */
 241		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 242		if (MACHINE_HAS_VX)
 243			tmp = *(addr_t *)
 244			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 245		else
 246			tmp = *(addr_t *)
 247			       ((addr_t) child->thread.fpu.fprs + offset);
 248
 249	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 250		/*
 251		 * Handle access to the per_info structure.
 252		 */
 253		addr -= (addr_t) &dummy->regs.per_info;
 254		tmp = __peek_user_per(child, addr);
 255
 256	} else
 257		tmp = 0;
 258
 259	return tmp;
 260}
 261
 262static int
 263peek_user(struct task_struct *child, addr_t addr, addr_t data)
 264{
 265	addr_t tmp, mask;
 266
 267	/*
 268	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 269	 * an alignment of 4. Programmers from hell...
 270	 */
 271	mask = __ADDR_MASK;
 272	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 273	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 274		mask = 3;
 275	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 276		return -EIO;
 277
 278	tmp = __peek_user(child, addr);
 279	return put_user(tmp, (addr_t __user *) data);
 280}
 281
 282static inline void __poke_user_per(struct task_struct *child,
 283				   addr_t addr, addr_t data)
 284{
 285	struct per_struct_kernel *dummy = NULL;
 286
 287	/*
 288	 * There are only three fields in the per_info struct that the
 289	 * debugger user can write to.
 290	 * 1) cr9: the debugger wants to set a new PER event mask
 291	 * 2) starting_addr: the debugger wants to set a new starting
 292	 *    address to use with the PER event mask.
 293	 * 3) ending_addr: the debugger wants to set a new ending
 294	 *    address to use with the PER event mask.
 295	 * The user specified PER event mask and the start and end
 296	 * addresses are used only if single stepping is not in effect.
 297	 * Writes to any other field in per_info are ignored.
 298	 */
 299	if (addr == (addr_t) &dummy->cr9)
 300		/* PER event mask of the user specified per set. */
 301		child->thread.per_user.control =
 302			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 303	else if (addr == (addr_t) &dummy->starting_addr)
 304		/* Starting address of the user specified per set. */
 305		child->thread.per_user.start = data;
 306	else if (addr == (addr_t) &dummy->ending_addr)
 307		/* Ending address of the user specified per set. */
 308		child->thread.per_user.end = data;
 309}
 310
 311/*
 312 * Write a word to the user area of a process at location addr. This
 313 * operation does have an additional problem compared to peek_user.
 314 * Stores to the program status word and on the floating point
 315 * control register needs to get checked for validity.
 316 */
 317static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 318{
 319	struct user *dummy = NULL;
 320	addr_t offset;
 321
 322	if (addr < (addr_t) &dummy->regs.acrs) {
 
 
 323		/*
 324		 * psw and gprs are stored on the stack
 325		 */
 326		if (addr == (addr_t) &dummy->regs.psw.mask) {
 327			unsigned long mask = PSW_MASK_USER;
 328
 329			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 330			if ((data ^ PSW_USER_BITS) & ~mask)
 331				/* Invalid psw mask. */
 332				return -EINVAL;
 333			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 334				/* Invalid address-space-control bits */
 335				return -EINVAL;
 336			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 337				/* Invalid addressing mode bits */
 338				return -EINVAL;
 339		}
 340		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 341
 342	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 
 
 
 
 
 
 
 343		/*
 344		 * access registers are stored in the thread structure
 345		 */
 346		offset = addr - (addr_t) &dummy->regs.acrs;
 347		/*
 348		 * Very special case: old & broken 64 bit gdb writing
 349		 * to acrs[15] with a 64 bit value. Ignore the lower
 350		 * half of the value and write the upper 32 bit to
 351		 * acrs[15]. Sick...
 352		 */
 353		if (addr == (addr_t) &dummy->regs.acrs[15])
 354			child->thread.acrs[15] = (unsigned int) (data >> 32);
 355		else
 356			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 357
 358	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 359		/*
 360		 * orig_gpr2 is stored on the kernel stack
 361		 */
 362		task_pt_regs(child)->orig_gpr2 = data;
 363
 364	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 365		/*
 366		 * prevent writes of padding hole between
 367		 * orig_gpr2 and fp_regs on s390.
 368		 */
 369		return 0;
 370
 371	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 372		/*
 373		 * floating point control reg. is in the thread structure
 374		 */
 375		if ((unsigned int) data != 0 ||
 376		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 377			return -EINVAL;
 378		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 379
 380	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 381		/*
 382		 * floating point regs. are either in child->thread.fpu
 383		 * or the child->thread.fpu.vxrs array
 384		 */
 385		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 386		if (MACHINE_HAS_VX)
 387			*(addr_t *)((addr_t)
 388				child->thread.fpu.vxrs + 2*offset) = data;
 389		else
 390			*(addr_t *)((addr_t)
 391				child->thread.fpu.fprs + offset) = data;
 392
 393	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 394		/*
 395		 * Handle access to the per_info structure.
 396		 */
 397		addr -= (addr_t) &dummy->regs.per_info;
 398		__poke_user_per(child, addr, data);
 399
 400	}
 401
 402	return 0;
 403}
 404
 405static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 406{
 407	addr_t mask;
 408
 409	/*
 410	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 411	 * an alignment of 4. Programmers from hell indeed...
 412	 */
 413	mask = __ADDR_MASK;
 414	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 415	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 416		mask = 3;
 417	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 418		return -EIO;
 419
 420	return __poke_user(child, addr, data);
 421}
 422
 423long arch_ptrace(struct task_struct *child, long request,
 424		 unsigned long addr, unsigned long data)
 425{
 426	ptrace_area parea; 
 427	int copied, ret;
 428
 429	switch (request) {
 430	case PTRACE_PEEKUSR:
 431		/* read the word at location addr in the USER area. */
 432		return peek_user(child, addr, data);
 433
 434	case PTRACE_POKEUSR:
 435		/* write the word at location addr in the USER area */
 436		return poke_user(child, addr, data);
 437
 438	case PTRACE_PEEKUSR_AREA:
 439	case PTRACE_POKEUSR_AREA:
 440		if (copy_from_user(&parea, (void __force __user *) addr,
 441							sizeof(parea)))
 442			return -EFAULT;
 443		addr = parea.kernel_addr;
 444		data = parea.process_addr;
 445		copied = 0;
 446		while (copied < parea.len) {
 447			if (request == PTRACE_PEEKUSR_AREA)
 448				ret = peek_user(child, addr, data);
 449			else {
 450				addr_t utmp;
 451				if (get_user(utmp,
 452					     (addr_t __force __user *) data))
 453					return -EFAULT;
 454				ret = poke_user(child, addr, utmp);
 455			}
 456			if (ret)
 457				return ret;
 458			addr += sizeof(unsigned long);
 459			data += sizeof(unsigned long);
 460			copied += sizeof(unsigned long);
 461		}
 462		return 0;
 463	case PTRACE_GET_LAST_BREAK:
 464		put_user(child->thread.last_break,
 465			 (unsigned long __user *) data);
 466		return 0;
 467	case PTRACE_ENABLE_TE:
 468		if (!MACHINE_HAS_TE)
 469			return -EIO;
 470		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 471		return 0;
 472	case PTRACE_DISABLE_TE:
 473		if (!MACHINE_HAS_TE)
 474			return -EIO;
 475		child->thread.per_flags |= PER_FLAG_NO_TE;
 476		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 477		return 0;
 478	case PTRACE_TE_ABORT_RAND:
 479		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 480			return -EIO;
 481		switch (data) {
 482		case 0UL:
 483			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 484			break;
 485		case 1UL:
 486			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 487			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 488			break;
 489		case 2UL:
 490			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 491			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 492			break;
 493		default:
 494			return -EINVAL;
 495		}
 496		return 0;
 497	default:
 498		return ptrace_request(child, request, addr, data);
 499	}
 500}
 501
 502#ifdef CONFIG_COMPAT
 503/*
 504 * Now the fun part starts... a 31 bit program running in the
 505 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 506 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 507 * to handle, the difference to the 64 bit versions of the requests
 508 * is that the access is done in multiples of 4 byte instead of
 509 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 510 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 511 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 512 * is a 31 bit program too, the content of struct user can be
 513 * emulated. A 31 bit program peeking into the struct user of
 514 * a 64 bit program is a no-no.
 515 */
 516
 517/*
 518 * Same as peek_user_per but for a 31 bit program.
 519 */
 520static inline __u32 __peek_user_per_compat(struct task_struct *child,
 521					   addr_t addr)
 522{
 523	struct compat_per_struct_kernel *dummy32 = NULL;
 524
 525	if (addr == (addr_t) &dummy32->cr9)
 526		/* Control bits of the active per set. */
 527		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 528			PER_EVENT_IFETCH : child->thread.per_user.control;
 529	else if (addr == (addr_t) &dummy32->cr10)
 530		/* Start address of the active per set. */
 531		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 532			0 : child->thread.per_user.start;
 533	else if (addr == (addr_t) &dummy32->cr11)
 534		/* End address of the active per set. */
 535		return test_thread_flag(TIF_SINGLE_STEP) ?
 536			PSW32_ADDR_INSN : child->thread.per_user.end;
 537	else if (addr == (addr_t) &dummy32->bits)
 538		/* Single-step bit. */
 539		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 540			0x80000000 : 0;
 541	else if (addr == (addr_t) &dummy32->starting_addr)
 542		/* Start address of the user specified per set. */
 543		return (__u32) child->thread.per_user.start;
 544	else if (addr == (addr_t) &dummy32->ending_addr)
 545		/* End address of the user specified per set. */
 546		return (__u32) child->thread.per_user.end;
 547	else if (addr == (addr_t) &dummy32->perc_atmid)
 548		/* PER code, ATMID and AI of the last PER trap */
 549		return (__u32) child->thread.per_event.cause << 16;
 550	else if (addr == (addr_t) &dummy32->address)
 551		/* Address of the last PER trap */
 552		return (__u32) child->thread.per_event.address;
 553	else if (addr == (addr_t) &dummy32->access_id)
 554		/* Access id of the last PER trap */
 555		return (__u32) child->thread.per_event.paid << 24;
 556	return 0;
 557}
 558
 559/*
 560 * Same as peek_user but for a 31 bit program.
 561 */
 562static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 563{
 564	struct compat_user *dummy32 = NULL;
 565	addr_t offset;
 566	__u32 tmp;
 567
 568	if (addr < (addr_t) &dummy32->regs.acrs) {
 569		struct pt_regs *regs = task_pt_regs(child);
 570		/*
 571		 * psw and gprs are stored on the stack
 572		 */
 573		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 574			/* Fake a 31 bit psw mask. */
 575			tmp = (__u32)(regs->psw.mask >> 32);
 576			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 577			tmp |= PSW32_USER_BITS;
 578		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 579			/* Fake a 31 bit psw address. */
 580			tmp = (__u32) regs->psw.addr |
 581				(__u32)(regs->psw.mask & PSW_MASK_BA);
 582		} else {
 583			/* gpr 0-15 */
 584			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 585		}
 586	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 587		/*
 588		 * access registers are stored in the thread structure
 589		 */
 590		offset = addr - (addr_t) &dummy32->regs.acrs;
 591		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 592
 593	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 594		/*
 595		 * orig_gpr2 is stored on the kernel stack
 596		 */
 597		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 598
 599	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 600		/*
 601		 * prevent reads of padding hole between
 602		 * orig_gpr2 and fp_regs on s390.
 603		 */
 604		tmp = 0;
 605
 606	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 607		/*
 608		 * floating point control reg. is in the thread structure
 609		 */
 610		tmp = child->thread.fpu.fpc;
 611
 612	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 613		/*
 614		 * floating point regs. are either in child->thread.fpu
 615		 * or the child->thread.fpu.vxrs array
 616		 */
 617		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 618		if (MACHINE_HAS_VX)
 619			tmp = *(__u32 *)
 620			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 621		else
 622			tmp = *(__u32 *)
 623			       ((addr_t) child->thread.fpu.fprs + offset);
 624
 625	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 626		/*
 627		 * Handle access to the per_info structure.
 628		 */
 629		addr -= (addr_t) &dummy32->regs.per_info;
 630		tmp = __peek_user_per_compat(child, addr);
 631
 632	} else
 633		tmp = 0;
 634
 635	return tmp;
 636}
 637
 638static int peek_user_compat(struct task_struct *child,
 639			    addr_t addr, addr_t data)
 640{
 641	__u32 tmp;
 642
 643	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 644		return -EIO;
 645
 646	tmp = __peek_user_compat(child, addr);
 647	return put_user(tmp, (__u32 __user *) data);
 648}
 649
 650/*
 651 * Same as poke_user_per but for a 31 bit program.
 652 */
 653static inline void __poke_user_per_compat(struct task_struct *child,
 654					  addr_t addr, __u32 data)
 655{
 656	struct compat_per_struct_kernel *dummy32 = NULL;
 657
 658	if (addr == (addr_t) &dummy32->cr9)
 659		/* PER event mask of the user specified per set. */
 660		child->thread.per_user.control =
 661			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 662	else if (addr == (addr_t) &dummy32->starting_addr)
 663		/* Starting address of the user specified per set. */
 664		child->thread.per_user.start = data;
 665	else if (addr == (addr_t) &dummy32->ending_addr)
 666		/* Ending address of the user specified per set. */
 667		child->thread.per_user.end = data;
 668}
 669
 670/*
 671 * Same as poke_user but for a 31 bit program.
 672 */
 673static int __poke_user_compat(struct task_struct *child,
 674			      addr_t addr, addr_t data)
 675{
 676	struct compat_user *dummy32 = NULL;
 677	__u32 tmp = (__u32) data;
 678	addr_t offset;
 679
 680	if (addr < (addr_t) &dummy32->regs.acrs) {
 681		struct pt_regs *regs = task_pt_regs(child);
 682		/*
 683		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 684		 */
 685		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 686			__u32 mask = PSW32_MASK_USER;
 687
 688			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 689			/* Build a 64 bit psw mask from 31 bit mask. */
 690			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 691				/* Invalid psw mask. */
 692				return -EINVAL;
 693			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 694				/* Invalid address-space-control bits */
 695				return -EINVAL;
 696			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 697				(regs->psw.mask & PSW_MASK_BA) |
 698				(__u64)(tmp & mask) << 32;
 699		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 700			/* Build a 64 bit psw address from 31 bit address. */
 701			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 702			/* Transfer 31 bit amode bit to psw mask. */
 703			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 704				(__u64)(tmp & PSW32_ADDR_AMODE);
 705		} else {
 
 
 
 
 
 
 706			/* gpr 0-15 */
 707			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 708		}
 709	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 710		/*
 711		 * access registers are stored in the thread structure
 712		 */
 713		offset = addr - (addr_t) &dummy32->regs.acrs;
 714		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 715
 716	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 717		/*
 718		 * orig_gpr2 is stored on the kernel stack
 719		 */
 720		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 721
 722	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 723		/*
 724		 * prevent writess of padding hole between
 725		 * orig_gpr2 and fp_regs on s390.
 726		 */
 727		return 0;
 728
 729	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 730		/*
 731		 * floating point control reg. is in the thread structure
 732		 */
 733		if (test_fp_ctl(tmp))
 734			return -EINVAL;
 735		child->thread.fpu.fpc = data;
 736
 737	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 738		/*
 739		 * floating point regs. are either in child->thread.fpu
 740		 * or the child->thread.fpu.vxrs array
 741		 */
 742		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 743		if (MACHINE_HAS_VX)
 744			*(__u32 *)((addr_t)
 745				child->thread.fpu.vxrs + 2*offset) = tmp;
 746		else
 747			*(__u32 *)((addr_t)
 748				child->thread.fpu.fprs + offset) = tmp;
 749
 750	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 751		/*
 752		 * Handle access to the per_info structure.
 753		 */
 754		addr -= (addr_t) &dummy32->regs.per_info;
 755		__poke_user_per_compat(child, addr, data);
 756	}
 757
 758	return 0;
 759}
 760
 761static int poke_user_compat(struct task_struct *child,
 762			    addr_t addr, addr_t data)
 763{
 764	if (!is_compat_task() || (addr & 3) ||
 765	    addr > sizeof(struct compat_user) - 3)
 766		return -EIO;
 767
 768	return __poke_user_compat(child, addr, data);
 769}
 770
 771long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 772			compat_ulong_t caddr, compat_ulong_t cdata)
 773{
 774	unsigned long addr = caddr;
 775	unsigned long data = cdata;
 776	compat_ptrace_area parea;
 777	int copied, ret;
 778
 779	switch (request) {
 780	case PTRACE_PEEKUSR:
 781		/* read the word at location addr in the USER area. */
 782		return peek_user_compat(child, addr, data);
 783
 784	case PTRACE_POKEUSR:
 785		/* write the word at location addr in the USER area */
 786		return poke_user_compat(child, addr, data);
 787
 788	case PTRACE_PEEKUSR_AREA:
 789	case PTRACE_POKEUSR_AREA:
 790		if (copy_from_user(&parea, (void __force __user *) addr,
 791							sizeof(parea)))
 792			return -EFAULT;
 793		addr = parea.kernel_addr;
 794		data = parea.process_addr;
 795		copied = 0;
 796		while (copied < parea.len) {
 797			if (request == PTRACE_PEEKUSR_AREA)
 798				ret = peek_user_compat(child, addr, data);
 799			else {
 800				__u32 utmp;
 801				if (get_user(utmp,
 802					     (__u32 __force __user *) data))
 803					return -EFAULT;
 804				ret = poke_user_compat(child, addr, utmp);
 805			}
 806			if (ret)
 807				return ret;
 808			addr += sizeof(unsigned int);
 809			data += sizeof(unsigned int);
 810			copied += sizeof(unsigned int);
 811		}
 812		return 0;
 813	case PTRACE_GET_LAST_BREAK:
 814		put_user(child->thread.last_break,
 815			 (unsigned int __user *) data);
 816		return 0;
 817	}
 818	return compat_ptrace_request(child, request, addr, data);
 819}
 820#endif
 821
 822asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 823{
 824	unsigned long mask = -1UL;
 825
 826	/*
 827	 * The sysc_tracesys code in entry.S stored the system
 828	 * call number to gprs[2].
 829	 */
 830	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 831	    (tracehook_report_syscall_entry(regs) ||
 832	     regs->gprs[2] >= NR_syscalls)) {
 833		/*
 834		 * Tracing decided this syscall should not happen or the
 835		 * debugger stored an invalid system call number. Skip
 836		 * the system call and the system call restart handling.
 837		 */
 838		clear_pt_regs_flag(regs, PIF_SYSCALL);
 839		return -1;
 840	}
 841
 842	/* Do the secure computing check after ptrace. */
 843	if (secure_computing(NULL)) {
 844		/* seccomp failures shouldn't expose any additional code. */
 845		return -1;
 846	}
 847
 848	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 849		trace_sys_enter(regs, regs->gprs[2]);
 850
 851	if (is_compat_task())
 852		mask = 0xffffffff;
 853
 854	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
 855			    regs->gprs[3] &mask, regs->gprs[4] &mask,
 856			    regs->gprs[5] &mask);
 857
 858	return regs->gprs[2];
 859}
 860
 861asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 862{
 863	audit_syscall_exit(regs);
 864
 865	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 866		trace_sys_exit(regs, regs->gprs[2]);
 867
 868	if (test_thread_flag(TIF_SYSCALL_TRACE))
 869		tracehook_report_syscall_exit(regs, 0);
 870}
 871
 872/*
 873 * user_regset definitions.
 874 */
 875
 876static int s390_regs_get(struct task_struct *target,
 877			 const struct user_regset *regset,
 878			 unsigned int pos, unsigned int count,
 879			 void *kbuf, void __user *ubuf)
 880{
 
 881	if (target == current)
 882		save_access_regs(target->thread.acrs);
 883
 884	if (kbuf) {
 885		unsigned long *k = kbuf;
 886		while (count > 0) {
 887			*k++ = __peek_user(target, pos);
 888			count -= sizeof(*k);
 889			pos += sizeof(*k);
 890		}
 891	} else {
 892		unsigned long __user *u = ubuf;
 893		while (count > 0) {
 894			if (__put_user(__peek_user(target, pos), u++))
 895				return -EFAULT;
 896			count -= sizeof(*u);
 897			pos += sizeof(*u);
 898		}
 899	}
 900	return 0;
 901}
 902
 903static int s390_regs_set(struct task_struct *target,
 904			 const struct user_regset *regset,
 905			 unsigned int pos, unsigned int count,
 906			 const void *kbuf, const void __user *ubuf)
 907{
 908	int rc = 0;
 909
 910	if (target == current)
 911		save_access_regs(target->thread.acrs);
 912
 913	if (kbuf) {
 914		const unsigned long *k = kbuf;
 915		while (count > 0 && !rc) {
 916			rc = __poke_user(target, pos, *k++);
 917			count -= sizeof(*k);
 918			pos += sizeof(*k);
 919		}
 920	} else {
 921		const unsigned long  __user *u = ubuf;
 922		while (count > 0 && !rc) {
 923			unsigned long word;
 924			rc = __get_user(word, u++);
 925			if (rc)
 926				break;
 927			rc = __poke_user(target, pos, word);
 928			count -= sizeof(*u);
 929			pos += sizeof(*u);
 930		}
 931	}
 932
 933	if (rc == 0 && target == current)
 934		restore_access_regs(target->thread.acrs);
 935
 936	return rc;
 937}
 938
 939static int s390_fpregs_get(struct task_struct *target,
 940			   const struct user_regset *regset, unsigned int pos,
 941			   unsigned int count, void *kbuf, void __user *ubuf)
 942{
 943	_s390_fp_regs fp_regs;
 944
 945	if (target == current)
 946		save_fpu_regs();
 947
 948	fp_regs.fpc = target->thread.fpu.fpc;
 949	fpregs_store(&fp_regs, &target->thread.fpu);
 950
 951	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 952				   &fp_regs, 0, -1);
 953}
 954
 955static int s390_fpregs_set(struct task_struct *target,
 956			   const struct user_regset *regset, unsigned int pos,
 957			   unsigned int count, const void *kbuf,
 958			   const void __user *ubuf)
 959{
 960	int rc = 0;
 961	freg_t fprs[__NUM_FPRS];
 962
 963	if (target == current)
 964		save_fpu_regs();
 965
 966	if (MACHINE_HAS_VX)
 967		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 968	else
 969		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 970
 971	/* If setting FPC, must validate it first. */
 972	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 973		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 974		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 975					0, offsetof(s390_fp_regs, fprs));
 976		if (rc)
 977			return rc;
 978		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 979			return -EINVAL;
 980		target->thread.fpu.fpc = ufpc[0];
 981	}
 982
 983	if (rc == 0 && count > 0)
 984		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 985					fprs, offsetof(s390_fp_regs, fprs), -1);
 986	if (rc)
 987		return rc;
 988
 989	if (MACHINE_HAS_VX)
 990		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 991	else
 992		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 993
 994	return rc;
 995}
 996
 997static int s390_last_break_get(struct task_struct *target,
 998			       const struct user_regset *regset,
 999			       unsigned int pos, unsigned int count,
1000			       void *kbuf, void __user *ubuf)
1001{
1002	if (count > 0) {
1003		if (kbuf) {
1004			unsigned long *k = kbuf;
1005			*k = target->thread.last_break;
1006		} else {
1007			unsigned long  __user *u = ubuf;
1008			if (__put_user(target->thread.last_break, u))
1009				return -EFAULT;
1010		}
1011	}
1012	return 0;
1013}
1014
1015static int s390_last_break_set(struct task_struct *target,
1016			       const struct user_regset *regset,
1017			       unsigned int pos, unsigned int count,
1018			       const void *kbuf, const void __user *ubuf)
1019{
1020	return 0;
1021}
1022
1023static int s390_tdb_get(struct task_struct *target,
1024			const struct user_regset *regset,
1025			unsigned int pos, unsigned int count,
1026			void *kbuf, void __user *ubuf)
1027{
1028	struct pt_regs *regs = task_pt_regs(target);
1029	unsigned char *data;
1030
1031	if (!(regs->int_code & 0x200))
1032		return -ENODATA;
1033	data = target->thread.trap_tdb;
1034	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1035}
1036
1037static int s390_tdb_set(struct task_struct *target,
1038			const struct user_regset *regset,
1039			unsigned int pos, unsigned int count,
1040			const void *kbuf, const void __user *ubuf)
1041{
1042	return 0;
1043}
1044
1045static int s390_vxrs_low_get(struct task_struct *target,
1046			     const struct user_regset *regset,
1047			     unsigned int pos, unsigned int count,
1048			     void *kbuf, void __user *ubuf)
1049{
1050	__u64 vxrs[__NUM_VXRS_LOW];
1051	int i;
1052
1053	if (!MACHINE_HAS_VX)
1054		return -ENODEV;
1055	if (target == current)
1056		save_fpu_regs();
1057	for (i = 0; i < __NUM_VXRS_LOW; i++)
1058		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1059	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1060}
1061
1062static int s390_vxrs_low_set(struct task_struct *target,
1063			     const struct user_regset *regset,
1064			     unsigned int pos, unsigned int count,
1065			     const void *kbuf, const void __user *ubuf)
1066{
1067	__u64 vxrs[__NUM_VXRS_LOW];
1068	int i, rc;
1069
1070	if (!MACHINE_HAS_VX)
1071		return -ENODEV;
1072	if (target == current)
1073		save_fpu_regs();
1074
1075	for (i = 0; i < __NUM_VXRS_LOW; i++)
1076		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1077
1078	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1079	if (rc == 0)
1080		for (i = 0; i < __NUM_VXRS_LOW; i++)
1081			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1082
1083	return rc;
1084}
1085
1086static int s390_vxrs_high_get(struct task_struct *target,
1087			      const struct user_regset *regset,
1088			      unsigned int pos, unsigned int count,
1089			      void *kbuf, void __user *ubuf)
1090{
1091	__vector128 vxrs[__NUM_VXRS_HIGH];
1092
1093	if (!MACHINE_HAS_VX)
1094		return -ENODEV;
1095	if (target == current)
1096		save_fpu_regs();
1097	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1098
1099	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1100}
1101
1102static int s390_vxrs_high_set(struct task_struct *target,
1103			      const struct user_regset *regset,
1104			      unsigned int pos, unsigned int count,
1105			      const void *kbuf, const void __user *ubuf)
1106{
1107	int rc;
1108
1109	if (!MACHINE_HAS_VX)
1110		return -ENODEV;
1111	if (target == current)
1112		save_fpu_regs();
1113
1114	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1115				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1116	return rc;
1117}
1118
1119static int s390_system_call_get(struct task_struct *target,
1120				const struct user_regset *regset,
1121				unsigned int pos, unsigned int count,
1122				void *kbuf, void __user *ubuf)
1123{
1124	unsigned int *data = &target->thread.system_call;
1125	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1126				   data, 0, sizeof(unsigned int));
1127}
1128
1129static int s390_system_call_set(struct task_struct *target,
1130				const struct user_regset *regset,
1131				unsigned int pos, unsigned int count,
1132				const void *kbuf, const void __user *ubuf)
1133{
1134	unsigned int *data = &target->thread.system_call;
1135	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1136				  data, 0, sizeof(unsigned int));
1137}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139static const struct user_regset s390_regsets[] = {
1140	{
1141		.core_note_type = NT_PRSTATUS,
1142		.n = sizeof(s390_regs) / sizeof(long),
1143		.size = sizeof(long),
1144		.align = sizeof(long),
1145		.get = s390_regs_get,
1146		.set = s390_regs_set,
1147	},
1148	{
1149		.core_note_type = NT_PRFPREG,
1150		.n = sizeof(s390_fp_regs) / sizeof(long),
1151		.size = sizeof(long),
1152		.align = sizeof(long),
1153		.get = s390_fpregs_get,
1154		.set = s390_fpregs_set,
1155	},
1156	{
1157		.core_note_type = NT_S390_SYSTEM_CALL,
1158		.n = 1,
1159		.size = sizeof(unsigned int),
1160		.align = sizeof(unsigned int),
1161		.get = s390_system_call_get,
1162		.set = s390_system_call_set,
1163	},
1164	{
1165		.core_note_type = NT_S390_LAST_BREAK,
1166		.n = 1,
1167		.size = sizeof(long),
1168		.align = sizeof(long),
1169		.get = s390_last_break_get,
1170		.set = s390_last_break_set,
1171	},
1172	{
1173		.core_note_type = NT_S390_TDB,
1174		.n = 1,
1175		.size = 256,
1176		.align = 1,
1177		.get = s390_tdb_get,
1178		.set = s390_tdb_set,
1179	},
1180	{
1181		.core_note_type = NT_S390_VXRS_LOW,
1182		.n = __NUM_VXRS_LOW,
1183		.size = sizeof(__u64),
1184		.align = sizeof(__u64),
1185		.get = s390_vxrs_low_get,
1186		.set = s390_vxrs_low_set,
1187	},
1188	{
1189		.core_note_type = NT_S390_VXRS_HIGH,
1190		.n = __NUM_VXRS_HIGH,
1191		.size = sizeof(__vector128),
1192		.align = sizeof(__vector128),
1193		.get = s390_vxrs_high_get,
1194		.set = s390_vxrs_high_set,
1195	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196};
1197
1198static const struct user_regset_view user_s390_view = {
1199	.name = UTS_MACHINE,
1200	.e_machine = EM_S390,
1201	.regsets = s390_regsets,
1202	.n = ARRAY_SIZE(s390_regsets)
1203};
1204
1205#ifdef CONFIG_COMPAT
1206static int s390_compat_regs_get(struct task_struct *target,
1207				const struct user_regset *regset,
1208				unsigned int pos, unsigned int count,
1209				void *kbuf, void __user *ubuf)
1210{
 
 
1211	if (target == current)
1212		save_access_regs(target->thread.acrs);
1213
1214	if (kbuf) {
1215		compat_ulong_t *k = kbuf;
1216		while (count > 0) {
1217			*k++ = __peek_user_compat(target, pos);
1218			count -= sizeof(*k);
1219			pos += sizeof(*k);
1220		}
1221	} else {
1222		compat_ulong_t __user *u = ubuf;
1223		while (count > 0) {
1224			if (__put_user(__peek_user_compat(target, pos), u++))
1225				return -EFAULT;
1226			count -= sizeof(*u);
1227			pos += sizeof(*u);
1228		}
1229	}
1230	return 0;
1231}
1232
1233static int s390_compat_regs_set(struct task_struct *target,
1234				const struct user_regset *regset,
1235				unsigned int pos, unsigned int count,
1236				const void *kbuf, const void __user *ubuf)
1237{
1238	int rc = 0;
1239
1240	if (target == current)
1241		save_access_regs(target->thread.acrs);
1242
1243	if (kbuf) {
1244		const compat_ulong_t *k = kbuf;
1245		while (count > 0 && !rc) {
1246			rc = __poke_user_compat(target, pos, *k++);
1247			count -= sizeof(*k);
1248			pos += sizeof(*k);
1249		}
1250	} else {
1251		const compat_ulong_t  __user *u = ubuf;
1252		while (count > 0 && !rc) {
1253			compat_ulong_t word;
1254			rc = __get_user(word, u++);
1255			if (rc)
1256				break;
1257			rc = __poke_user_compat(target, pos, word);
1258			count -= sizeof(*u);
1259			pos += sizeof(*u);
1260		}
1261	}
1262
1263	if (rc == 0 && target == current)
1264		restore_access_regs(target->thread.acrs);
1265
1266	return rc;
1267}
1268
1269static int s390_compat_regs_high_get(struct task_struct *target,
1270				     const struct user_regset *regset,
1271				     unsigned int pos, unsigned int count,
1272				     void *kbuf, void __user *ubuf)
1273{
1274	compat_ulong_t *gprs_high;
 
1275
1276	gprs_high = (compat_ulong_t *)
1277		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1278	if (kbuf) {
1279		compat_ulong_t *k = kbuf;
1280		while (count > 0) {
1281			*k++ = *gprs_high;
1282			gprs_high += 2;
1283			count -= sizeof(*k);
1284		}
1285	} else {
1286		compat_ulong_t __user *u = ubuf;
1287		while (count > 0) {
1288			if (__put_user(*gprs_high, u++))
1289				return -EFAULT;
1290			gprs_high += 2;
1291			count -= sizeof(*u);
1292		}
1293	}
1294	return 0;
1295}
1296
1297static int s390_compat_regs_high_set(struct task_struct *target,
1298				     const struct user_regset *regset,
1299				     unsigned int pos, unsigned int count,
1300				     const void *kbuf, const void __user *ubuf)
1301{
1302	compat_ulong_t *gprs_high;
1303	int rc = 0;
1304
1305	gprs_high = (compat_ulong_t *)
1306		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1307	if (kbuf) {
1308		const compat_ulong_t *k = kbuf;
1309		while (count > 0) {
1310			*gprs_high = *k++;
1311			*gprs_high += 2;
1312			count -= sizeof(*k);
1313		}
1314	} else {
1315		const compat_ulong_t  __user *u = ubuf;
1316		while (count > 0 && !rc) {
1317			unsigned long word;
1318			rc = __get_user(word, u++);
1319			if (rc)
1320				break;
1321			*gprs_high = word;
1322			*gprs_high += 2;
1323			count -= sizeof(*u);
1324		}
1325	}
1326
1327	return rc;
1328}
1329
1330static int s390_compat_last_break_get(struct task_struct *target,
1331				      const struct user_regset *regset,
1332				      unsigned int pos, unsigned int count,
1333				      void *kbuf, void __user *ubuf)
1334{
1335	compat_ulong_t last_break;
1336
1337	if (count > 0) {
1338		last_break = target->thread.last_break;
1339		if (kbuf) {
1340			unsigned long *k = kbuf;
1341			*k = last_break;
1342		} else {
1343			unsigned long  __user *u = ubuf;
1344			if (__put_user(last_break, u))
1345				return -EFAULT;
1346		}
1347	}
1348	return 0;
1349}
1350
1351static int s390_compat_last_break_set(struct task_struct *target,
1352				      const struct user_regset *regset,
1353				      unsigned int pos, unsigned int count,
1354				      const void *kbuf, const void __user *ubuf)
1355{
1356	return 0;
1357}
1358
1359static const struct user_regset s390_compat_regsets[] = {
1360	{
1361		.core_note_type = NT_PRSTATUS,
1362		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1363		.size = sizeof(compat_long_t),
1364		.align = sizeof(compat_long_t),
1365		.get = s390_compat_regs_get,
1366		.set = s390_compat_regs_set,
1367	},
1368	{
1369		.core_note_type = NT_PRFPREG,
1370		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1371		.size = sizeof(compat_long_t),
1372		.align = sizeof(compat_long_t),
1373		.get = s390_fpregs_get,
1374		.set = s390_fpregs_set,
1375	},
1376	{
1377		.core_note_type = NT_S390_SYSTEM_CALL,
1378		.n = 1,
1379		.size = sizeof(compat_uint_t),
1380		.align = sizeof(compat_uint_t),
1381		.get = s390_system_call_get,
1382		.set = s390_system_call_set,
1383	},
1384	{
1385		.core_note_type = NT_S390_LAST_BREAK,
1386		.n = 1,
1387		.size = sizeof(long),
1388		.align = sizeof(long),
1389		.get = s390_compat_last_break_get,
1390		.set = s390_compat_last_break_set,
1391	},
1392	{
1393		.core_note_type = NT_S390_TDB,
1394		.n = 1,
1395		.size = 256,
1396		.align = 1,
1397		.get = s390_tdb_get,
1398		.set = s390_tdb_set,
1399	},
1400	{
1401		.core_note_type = NT_S390_VXRS_LOW,
1402		.n = __NUM_VXRS_LOW,
1403		.size = sizeof(__u64),
1404		.align = sizeof(__u64),
1405		.get = s390_vxrs_low_get,
1406		.set = s390_vxrs_low_set,
1407	},
1408	{
1409		.core_note_type = NT_S390_VXRS_HIGH,
1410		.n = __NUM_VXRS_HIGH,
1411		.size = sizeof(__vector128),
1412		.align = sizeof(__vector128),
1413		.get = s390_vxrs_high_get,
1414		.set = s390_vxrs_high_set,
1415	},
1416	{
1417		.core_note_type = NT_S390_HIGH_GPRS,
1418		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1419		.size = sizeof(compat_long_t),
1420		.align = sizeof(compat_long_t),
1421		.get = s390_compat_regs_high_get,
1422		.set = s390_compat_regs_high_set,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423	},
1424};
1425
1426static const struct user_regset_view user_s390_compat_view = {
1427	.name = "s390",
1428	.e_machine = EM_S390,
1429	.regsets = s390_compat_regsets,
1430	.n = ARRAY_SIZE(s390_compat_regsets)
1431};
1432#endif
1433
1434const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1435{
1436#ifdef CONFIG_COMPAT
1437	if (test_tsk_thread_flag(task, TIF_31BIT))
1438		return &user_s390_compat_view;
1439#endif
1440	return &user_s390_view;
1441}
1442
1443static const char *gpr_names[NUM_GPRS] = {
1444	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1445	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1446};
1447
1448unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1449{
1450	if (offset >= NUM_GPRS)
1451		return 0;
1452	return regs->gprs[offset];
1453}
1454
1455int regs_query_register_offset(const char *name)
1456{
1457	unsigned long offset;
1458
1459	if (!name || *name != 'r')
1460		return -EINVAL;
1461	if (kstrtoul(name + 1, 10, &offset))
1462		return -EINVAL;
1463	if (offset >= NUM_GPRS)
1464		return -EINVAL;
1465	return offset;
1466}
1467
1468const char *regs_query_register_name(unsigned int offset)
1469{
1470	if (offset >= NUM_GPRS)
1471		return NULL;
1472	return gpr_names[offset];
1473}
1474
1475static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1476{
1477	unsigned long ksp = kernel_stack_pointer(regs);
1478
1479	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1480}
1481
1482/**
1483 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1484 * @regs:pt_regs which contains kernel stack pointer.
1485 * @n:stack entry number.
1486 *
1487 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1488 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1489 * this returns 0.
1490 */
1491unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1492{
1493	unsigned long addr;
1494
1495	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1496	if (!regs_within_kernel_stack(regs, addr))
1497		return 0;
1498	return *(unsigned long *)addr;
1499}