Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * arch/arm/include/asm/pgtable-3level.h
  4 *
  5 * Copyright (C) 2011 ARM Ltd.
  6 * Author: Catalin Marinas <catalin.marinas@arm.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 */
  8#ifndef _ASM_PGTABLE_3LEVEL_H
  9#define _ASM_PGTABLE_3LEVEL_H
 10
 11/*
 12 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
 13 * 8 bytes each, occupying a 4K page. The first level table covers a range of
 14 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
 15 * address range, only 4 entries in the PGD are used.
 16 *
 17 * There are enough spare bits in a page table entry for the kernel specific
 18 * state.
 19 */
 20#define PTRS_PER_PTE		512
 21#define PTRS_PER_PMD		512
 22#define PTRS_PER_PGD		4
 23
 24#define PTE_HWTABLE_PTRS	(0)
 25#define PTE_HWTABLE_OFF		(0)
 26#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
 27
 28#define MAX_POSSIBLE_PHYSMEM_BITS 40
 29
 30/*
 31 * PGDIR_SHIFT determines the size a top-level page table entry can map.
 32 */
 33#define PGDIR_SHIFT		30
 34
 35/*
 36 * PMD_SHIFT determines the size a middle-level page table entry can map.
 37 */
 38#define PMD_SHIFT		21
 39
 40#define PMD_SIZE		(1UL << PMD_SHIFT)
 41#define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
 42#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
 43#define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
 44
 45/*
 46 * section address mask and size definitions.
 47 */
 48#define SECTION_SHIFT		21
 49#define SECTION_SIZE		(1UL << SECTION_SHIFT)
 50#define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
 51
 52#define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
 53
 54/*
 55 * Hugetlb definitions.
 56 */
 57#define HPAGE_SHIFT		PMD_SHIFT
 58#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
 59#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
 60#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
 61
 62/*
 63 * "Linux" PTE definitions for LPAE.
 64 *
 65 * These bits overlap with the hardware bits but the naming is preserved for
 66 * consistency with the classic page table format.
 67 */
 68#define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
 69#define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
 70#define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
 71#define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
 72#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
 73#define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
 74#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)
 75#define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
 76#define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
 77#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 58)	/* READ ONLY */
 78
 79/* We borrow bit 7 to store the exclusive marker in swap PTEs. */
 80#define L_PTE_SWP_EXCLUSIVE	(_AT(pteval_t, 1) << 7)
 81
 82#define L_PMD_SECT_VALID	(_AT(pmdval_t, 1) << 0)
 83#define L_PMD_SECT_DIRTY	(_AT(pmdval_t, 1) << 55)
 84#define L_PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
 85#define L_PMD_SECT_RDONLY	(_AT(pteval_t, 1) << 58)
 86
 87/*
 88 * To be used in assembly code with the upper page attributes.
 89 */
 90#define L_PTE_XN_HIGH		(1 << (54 - 32))
 91#define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
 92
 93/*
 94 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
 95 */
 96#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
 97#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
 98#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
 99#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
100#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
101#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
102#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
103#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
104#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
105#define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
106
107/*
108 * Software PGD flags.
109 */
110#define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112#ifndef __ASSEMBLY__
113
114#define pud_none(pud)		(!pud_val(pud))
115#define pud_bad(pud)		(!(pud_val(pud) & PUD_TABLE_BIT))
116#define pud_present(pud)	(pud_val(pud))
117#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
118						 PMD_TYPE_TABLE)
119#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
120						 PMD_TYPE_SECT)
121#define pmd_leaf(pmd)		pmd_sect(pmd)
122
123#define pud_clear(pudp)			\
124	do {				\
125		*pudp = __pud(0);	\
126		clean_pmd_entry(pudp);	\
127	} while (0)
128
129#define set_pud(pudp, pud)		\
130	do {				\
131		*pudp = pud;		\
132		flush_pmd_entry(pudp);	\
133	} while (0)
134
135static inline pmd_t *pud_pgtable(pud_t pud)
136{
137	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
138}
139
140#define pmd_bad(pmd)		(!(pmd_val(pmd) & PMD_TABLE_BIT))
 
 
 
 
 
 
 
141
142#define copy_pmd(pmdpd,pmdps)		\
143	do {				\
144		*pmdpd = *pmdps;	\
145		flush_pmd_entry(pmdpd);	\
146	} while (0)
147
148#define pmd_clear(pmdp)			\
149	do {				\
150		*pmdp = __pmd(0);	\
151		clean_pmd_entry(pmdp);	\
152	} while (0)
153
154/*
155 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
156 * that are written to a page table but not for ptes created with mk_pte.
157 *
158 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
159 * hugetlb_cow, where it is compared with an entry in a page table.
160 * This comparison test fails erroneously leading ultimately to a memory leak.
161 *
162 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
163 * present before running the comparison.
164 */
165#define __HAVE_ARCH_PTE_SAME
166#define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
167					: pte_val(pte_a))				\
168				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
169					: pte_val(pte_b)))
170
171#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
172
173#define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
174#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
175
176#define pmd_isset(pmd, val)	((u32)(val) == (val) ? pmd_val(pmd) & (val) \
177						: !!(pmd_val(pmd) & (val)))
178#define pmd_isclear(pmd, val)	(!(pmd_val(pmd) & (val)))
179
180#define pmd_present(pmd)	(pmd_isset((pmd), L_PMD_SECT_VALID))
181#define pmd_young(pmd)		(pmd_isset((pmd), PMD_SECT_AF))
182#define pte_special(pte)	(pte_isset((pte), L_PTE_SPECIAL))
183static inline pte_t pte_mkspecial(pte_t pte)
184{
185	pte_val(pte) |= L_PTE_SPECIAL;
186	return pte;
187}
 
188
 
189#define pmd_write(pmd)		(pmd_isclear((pmd), L_PMD_SECT_RDONLY))
190#define pmd_dirty(pmd)		(pmd_isset((pmd), L_PMD_SECT_DIRTY))
 
 
191
192#define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
 
193
194#ifdef CONFIG_TRANSPARENT_HUGEPAGE
195#define pmd_trans_huge(pmd)	(pmd_val(pmd) && !pmd_table(pmd))
196#endif
197
198#define PMD_BIT_FUNC(fn,op) \
199static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
200
201PMD_BIT_FUNC(wrprotect,	|= L_PMD_SECT_RDONLY);
202PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
203PMD_BIT_FUNC(mkwrite_novma,   &= ~L_PMD_SECT_RDONLY);
204PMD_BIT_FUNC(mkdirty,   |= L_PMD_SECT_DIRTY);
205PMD_BIT_FUNC(mkclean,   &= ~L_PMD_SECT_DIRTY);
206PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
207
208#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
209
210#define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
211#define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
212#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
213
214/* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
215#define pmdp_establish generic_pmdp_establish
216
217/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
218static inline pmd_t pmd_mkinvalid(pmd_t pmd)
219{
220	return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
221}
222
223static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
224{
225	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
226				L_PMD_SECT_VALID | L_PMD_SECT_NONE;
227	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
228	return pmd;
229}
230
231static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
232			      pmd_t *pmdp, pmd_t pmd)
233{
234	BUG_ON(addr >= TASK_SIZE);
235
236	/* create a faulting entry if PROT_NONE protected */
237	if (pmd_val(pmd) & L_PMD_SECT_NONE)
238		pmd_val(pmd) &= ~L_PMD_SECT_VALID;
239
240	if (pmd_write(pmd) && pmd_dirty(pmd))
241		pmd_val(pmd) &= ~PMD_SECT_AP2;
242	else
243		pmd_val(pmd) |= PMD_SECT_AP2;
244
245	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
246	flush_pmd_entry(pmdp);
247}
248
249#endif /* __ASSEMBLY__ */
250
251#endif /* _ASM_PGTABLE_3LEVEL_H */
v4.10.11
 
  1/*
  2 * arch/arm/include/asm/pgtable-3level.h
  3 *
  4 * Copyright (C) 2011 ARM Ltd.
  5 * Author: Catalin Marinas <catalin.marinas@arm.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program; if not, write to the Free Software
 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 19 */
 20#ifndef _ASM_PGTABLE_3LEVEL_H
 21#define _ASM_PGTABLE_3LEVEL_H
 22
 23/*
 24 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
 25 * 8 bytes each, occupying a 4K page. The first level table covers a range of
 26 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
 27 * address range, only 4 entries in the PGD are used.
 28 *
 29 * There are enough spare bits in a page table entry for the kernel specific
 30 * state.
 31 */
 32#define PTRS_PER_PTE		512
 33#define PTRS_PER_PMD		512
 34#define PTRS_PER_PGD		4
 35
 36#define PTE_HWTABLE_PTRS	(0)
 37#define PTE_HWTABLE_OFF		(0)
 38#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
 39
 
 
 40/*
 41 * PGDIR_SHIFT determines the size a top-level page table entry can map.
 42 */
 43#define PGDIR_SHIFT		30
 44
 45/*
 46 * PMD_SHIFT determines the size a middle-level page table entry can map.
 47 */
 48#define PMD_SHIFT		21
 49
 50#define PMD_SIZE		(1UL << PMD_SHIFT)
 51#define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
 52#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
 53#define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
 54
 55/*
 56 * section address mask and size definitions.
 57 */
 58#define SECTION_SHIFT		21
 59#define SECTION_SIZE		(1UL << SECTION_SHIFT)
 60#define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
 61
 62#define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
 63
 64/*
 65 * Hugetlb definitions.
 66 */
 67#define HPAGE_SHIFT		PMD_SHIFT
 68#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
 69#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
 70#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
 71
 72/*
 73 * "Linux" PTE definitions for LPAE.
 74 *
 75 * These bits overlap with the hardware bits but the naming is preserved for
 76 * consistency with the classic page table format.
 77 */
 78#define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
 79#define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
 80#define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
 81#define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
 82#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
 83#define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
 84#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)
 85#define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
 86#define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
 87#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 58)	/* READ ONLY */
 88
 
 
 
 89#define L_PMD_SECT_VALID	(_AT(pmdval_t, 1) << 0)
 90#define L_PMD_SECT_DIRTY	(_AT(pmdval_t, 1) << 55)
 91#define L_PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
 92#define L_PMD_SECT_RDONLY	(_AT(pteval_t, 1) << 58)
 93
 94/*
 95 * To be used in assembly code with the upper page attributes.
 96 */
 97#define L_PTE_XN_HIGH		(1 << (54 - 32))
 98#define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
 99
100/*
101 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
102 */
103#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
104#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
105#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
106#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
107#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
108#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
109#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
110#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
111#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
112#define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
113
114/*
115 * Software PGD flags.
116 */
117#define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
118
119/*
120 * 2nd stage PTE definitions for LPAE.
121 */
122#define L_PTE_S2_MT_UNCACHED		(_AT(pteval_t, 0x0) << 2) /* strongly ordered */
123#define L_PTE_S2_MT_WRITETHROUGH	(_AT(pteval_t, 0xa) << 2) /* normal inner write-through */
124#define L_PTE_S2_MT_WRITEBACK		(_AT(pteval_t, 0xf) << 2) /* normal inner write-back */
125#define L_PTE_S2_MT_DEV_SHARED		(_AT(pteval_t, 0x1) << 2) /* device */
126#define L_PTE_S2_MT_MASK		(_AT(pteval_t, 0xf) << 2)
127
128#define L_PTE_S2_RDONLY			(_AT(pteval_t, 1) << 6)   /* HAP[1]   */
129#define L_PTE_S2_RDWR			(_AT(pteval_t, 3) << 6)   /* HAP[2:1] */
130
131#define L_PMD_S2_RDONLY			(_AT(pmdval_t, 1) << 6)   /* HAP[1]   */
132#define L_PMD_S2_RDWR			(_AT(pmdval_t, 3) << 6)   /* HAP[2:1] */
133
134/*
135 * Hyp-mode PL2 PTE definitions for LPAE.
136 */
137#define L_PTE_HYP		L_PTE_USER
138
139#ifndef __ASSEMBLY__
140
141#define pud_none(pud)		(!pud_val(pud))
142#define pud_bad(pud)		(!(pud_val(pud) & 2))
143#define pud_present(pud)	(pud_val(pud))
144#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
145						 PMD_TYPE_TABLE)
146#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
147						 PMD_TYPE_SECT)
148#define pmd_large(pmd)		pmd_sect(pmd)
149
150#define pud_clear(pudp)			\
151	do {				\
152		*pudp = __pud(0);	\
153		clean_pmd_entry(pudp);	\
154	} while (0)
155
156#define set_pud(pudp, pud)		\
157	do {				\
158		*pudp = pud;		\
159		flush_pmd_entry(pudp);	\
160	} while (0)
161
162static inline pmd_t *pud_page_vaddr(pud_t pud)
163{
164	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
165}
166
167/* Find an entry in the second-level page table.. */
168#define pmd_index(addr)		(((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
169static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
170{
171	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
172}
173
174#define pmd_bad(pmd)		(!(pmd_val(pmd) & 2))
175
176#define copy_pmd(pmdpd,pmdps)		\
177	do {				\
178		*pmdpd = *pmdps;	\
179		flush_pmd_entry(pmdpd);	\
180	} while (0)
181
182#define pmd_clear(pmdp)			\
183	do {				\
184		*pmdp = __pmd(0);	\
185		clean_pmd_entry(pmdp);	\
186	} while (0)
187
188/*
189 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
190 * that are written to a page table but not for ptes created with mk_pte.
191 *
192 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
193 * hugetlb_cow, where it is compared with an entry in a page table.
194 * This comparison test fails erroneously leading ultimately to a memory leak.
195 *
196 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
197 * present before running the comparison.
198 */
199#define __HAVE_ARCH_PTE_SAME
200#define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
201					: pte_val(pte_a))				\
202				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
203					: pte_val(pte_b)))
204
205#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
206
207#define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
208#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
209
210#define pmd_isset(pmd, val)	((u32)(val) == (val) ? pmd_val(pmd) & (val) \
211						: !!(pmd_val(pmd) & (val)))
212#define pmd_isclear(pmd, val)	(!(pmd_val(pmd) & (val)))
213
214#define pmd_present(pmd)	(pmd_isset((pmd), L_PMD_SECT_VALID))
215#define pmd_young(pmd)		(pmd_isset((pmd), PMD_SECT_AF))
216#define pte_special(pte)	(pte_isset((pte), L_PTE_SPECIAL))
217static inline pte_t pte_mkspecial(pte_t pte)
218{
219	pte_val(pte) |= L_PTE_SPECIAL;
220	return pte;
221}
222#define	__HAVE_ARCH_PTE_SPECIAL
223
224#define __HAVE_ARCH_PMD_WRITE
225#define pmd_write(pmd)		(pmd_isclear((pmd), L_PMD_SECT_RDONLY))
226#define pmd_dirty(pmd)		(pmd_isset((pmd), L_PMD_SECT_DIRTY))
227#define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
228#define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
229
230#define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
231#define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
232
233#ifdef CONFIG_TRANSPARENT_HUGEPAGE
234#define pmd_trans_huge(pmd)	(pmd_val(pmd) && !pmd_table(pmd))
235#endif
236
237#define PMD_BIT_FUNC(fn,op) \
238static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
239
240PMD_BIT_FUNC(wrprotect,	|= L_PMD_SECT_RDONLY);
241PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
242PMD_BIT_FUNC(mkwrite,   &= ~L_PMD_SECT_RDONLY);
243PMD_BIT_FUNC(mkdirty,   |= L_PMD_SECT_DIRTY);
244PMD_BIT_FUNC(mkclean,   &= ~L_PMD_SECT_DIRTY);
245PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
246
247#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
248
249#define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
250#define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
251#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
252
 
 
 
253/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
254static inline pmd_t pmd_mknotpresent(pmd_t pmd)
255{
256	return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
257}
258
259static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
260{
261	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
262				L_PMD_SECT_VALID | L_PMD_SECT_NONE;
263	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
264	return pmd;
265}
266
267static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
268			      pmd_t *pmdp, pmd_t pmd)
269{
270	BUG_ON(addr >= TASK_SIZE);
271
272	/* create a faulting entry if PROT_NONE protected */
273	if (pmd_val(pmd) & L_PMD_SECT_NONE)
274		pmd_val(pmd) &= ~L_PMD_SECT_VALID;
275
276	if (pmd_write(pmd) && pmd_dirty(pmd))
277		pmd_val(pmd) &= ~PMD_SECT_AP2;
278	else
279		pmd_val(pmd) |= PMD_SECT_AP2;
280
281	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
282	flush_pmd_entry(pmdp);
283}
284
285#endif /* __ASSEMBLY__ */
286
287#endif /* _ASM_PGTABLE_3LEVEL_H */