Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1			Static Keys
  2			-----------
  3
  4DEPRECATED API:
  5
  6The use of 'struct static_key' directly, is now DEPRECATED. In addition
  7static_key_{true,false}() is also DEPRECATED. IE DO NOT use the following:
  8
  9struct static_key false = STATIC_KEY_INIT_FALSE;
 10struct static_key true = STATIC_KEY_INIT_TRUE;
 11static_key_true()
 12static_key_false()
 13
 14The updated API replacements are:
 15
 16DEFINE_STATIC_KEY_TRUE(key);
 17DEFINE_STATIC_KEY_FALSE(key);
 18DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
 19DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
 20static_branch_likely()
 21static_branch_unlikely()
 22
 230) Abstract
 24
 25Static keys allows the inclusion of seldom used features in
 26performance-sensitive fast-path kernel code, via a GCC feature and a code
 27patching technique. A quick example:
 28
 29	DEFINE_STATIC_KEY_FALSE(key);
 30
 31	...
 32
 33        if (static_branch_unlikely(&key))
 34                do unlikely code
 35        else
 36                do likely code
 37
 38	...
 39	static_branch_enable(&key);
 40	...
 41	static_branch_disable(&key);
 42	...
 43
 44The static_branch_unlikely() branch will be generated into the code with as little
 45impact to the likely code path as possible.
 46
 47
 481) Motivation
 49
 50
 51Currently, tracepoints are implemented using a conditional branch. The
 52conditional check requires checking a global variable for each tracepoint.
 53Although the overhead of this check is small, it increases when the memory
 54cache comes under pressure (memory cache lines for these global variables may
 55be shared with other memory accesses). As we increase the number of tracepoints
 56in the kernel this overhead may become more of an issue. In addition,
 57tracepoints are often dormant (disabled) and provide no direct kernel
 58functionality. Thus, it is highly desirable to reduce their impact as much as
 59possible. Although tracepoints are the original motivation for this work, other
 60kernel code paths should be able to make use of the static keys facility.
 61
 62
 632) Solution
 64
 65
 66gcc (v4.5) adds a new 'asm goto' statement that allows branching to a label:
 67
 68http://gcc.gnu.org/ml/gcc-patches/2009-07/msg01556.html
 69
 70Using the 'asm goto', we can create branches that are either taken or not taken
 71by default, without the need to check memory. Then, at run-time, we can patch
 72the branch site to change the branch direction.
 73
 74For example, if we have a simple branch that is disabled by default:
 75
 76	if (static_branch_unlikely(&key))
 77		printk("I am the true branch\n");
 78
 79Thus, by default the 'printk' will not be emitted. And the code generated will
 80consist of a single atomic 'no-op' instruction (5 bytes on x86), in the
 81straight-line code path. When the branch is 'flipped', we will patch the
 82'no-op' in the straight-line codepath with a 'jump' instruction to the
 83out-of-line true branch. Thus, changing branch direction is expensive but
 84branch selection is basically 'free'. That is the basic tradeoff of this
 85optimization.
 86
 87This lowlevel patching mechanism is called 'jump label patching', and it gives
 88the basis for the static keys facility.
 89
 903) Static key label API, usage and examples:
 91
 92
 93In order to make use of this optimization you must first define a key:
 94
 95	DEFINE_STATIC_KEY_TRUE(key);
 96
 97or:
 98
 99	DEFINE_STATIC_KEY_FALSE(key);
100
101
102The key must be global, that is, it can't be allocated on the stack or dynamically
103allocated at run-time.
104
105The key is then used in code as:
106
107        if (static_branch_unlikely(&key))
108                do unlikely code
109        else
110                do likely code
111
112Or:
113
114        if (static_branch_likely(&key))
115                do likely code
116        else
117                do unlikely code
118
119Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may
120be used in either static_branch_likely() or static_branch_unlikely()
121statemnts.
122
123Branch(es) can be set true via:
124
125static_branch_enable(&key);
126
127or false via:
128
129static_branch_disable(&key);
130
131The branch(es) can then be switched via reference counts:
132
133	static_branch_inc(&key);
134	...
135	static_branch_dec(&key);
136
137Thus, 'static_branch_inc()' means 'make the branch true', and
138'static_branch_dec()' means 'make the branch false' with appropriate
139reference counting. For example, if the key is initialized true, a
140static_branch_dec(), will switch the branch to false. And a subsequent
141static_branch_inc(), will change the branch back to true. Likewise, if the
142key is initialized false, a 'static_branch_inc()', will change the branch to
143true. And then a 'static_branch_dec()', will again make the branch false.
144
145Where an array of keys is required, it can be defined as:
146
147	DEFINE_STATIC_KEY_ARRAY_TRUE(keys, count);
148
149or:
150
151	DEFINE_STATIC_KEY_ARRAY_FALSE(keys, count);
152
1534) Architecture level code patching interface, 'jump labels'
154
155
156There are a few functions and macros that architectures must implement in order
157to take advantage of this optimization. If there is no architecture support, we
158simply fall back to a traditional, load, test, and jump sequence.
159
160* select HAVE_ARCH_JUMP_LABEL, see: arch/x86/Kconfig
161
162* #define JUMP_LABEL_NOP_SIZE, see: arch/x86/include/asm/jump_label.h
163
164* __always_inline bool arch_static_branch(struct static_key *key, bool branch), see:
165					arch/x86/include/asm/jump_label.h
166
167* __always_inline bool arch_static_branch_jump(struct static_key *key, bool branch),
168					see: arch/x86/include/asm/jump_label.h
169
170* void arch_jump_label_transform(struct jump_entry *entry, enum jump_label_type type),
171					see: arch/x86/kernel/jump_label.c
172
173* __init_or_module void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type),
174					see: arch/x86/kernel/jump_label.c
175
176
177* struct jump_entry, see: arch/x86/include/asm/jump_label.h
178
179
1805) Static keys / jump label analysis, results (x86_64):
181
182
183As an example, let's add the following branch to 'getppid()', such that the
184system call now looks like:
185
186SYSCALL_DEFINE0(getppid)
187{
188        int pid;
189
190+       if (static_branch_unlikely(&key))
191+               printk("I am the true branch\n");
192
193        rcu_read_lock();
194        pid = task_tgid_vnr(rcu_dereference(current->real_parent));
195        rcu_read_unlock();
196
197        return pid;
198}
199
200The resulting instructions with jump labels generated by GCC is:
201
202ffffffff81044290 <sys_getppid>:
203ffffffff81044290:       55                      push   %rbp
204ffffffff81044291:       48 89 e5                mov    %rsp,%rbp
205ffffffff81044294:       e9 00 00 00 00          jmpq   ffffffff81044299 <sys_getppid+0x9>
206ffffffff81044299:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
207ffffffff810442a0:       00 00
208ffffffff810442a2:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
209ffffffff810442a9:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
210ffffffff810442b0:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
211ffffffff810442b7:       e8 f4 d9 00 00          callq  ffffffff81051cb0 <pid_vnr>
212ffffffff810442bc:       5d                      pop    %rbp
213ffffffff810442bd:       48 98                   cltq
214ffffffff810442bf:       c3                      retq
215ffffffff810442c0:       48 c7 c7 e3 54 98 81    mov    $0xffffffff819854e3,%rdi
216ffffffff810442c7:       31 c0                   xor    %eax,%eax
217ffffffff810442c9:       e8 71 13 6d 00          callq  ffffffff8171563f <printk>
218ffffffff810442ce:       eb c9                   jmp    ffffffff81044299 <sys_getppid+0x9>
219
220Without the jump label optimization it looks like:
221
222ffffffff810441f0 <sys_getppid>:
223ffffffff810441f0:       8b 05 8a 52 d8 00       mov    0xd8528a(%rip),%eax        # ffffffff81dc9480 <key>
224ffffffff810441f6:       55                      push   %rbp
225ffffffff810441f7:       48 89 e5                mov    %rsp,%rbp
226ffffffff810441fa:       85 c0                   test   %eax,%eax
227ffffffff810441fc:       75 27                   jne    ffffffff81044225 <sys_getppid+0x35>
228ffffffff810441fe:       65 48 8b 04 25 c0 b6    mov    %gs:0xb6c0,%rax
229ffffffff81044205:       00 00
230ffffffff81044207:       48 8b 80 80 02 00 00    mov    0x280(%rax),%rax
231ffffffff8104420e:       48 8b 80 b0 02 00 00    mov    0x2b0(%rax),%rax
232ffffffff81044215:       48 8b b8 e8 02 00 00    mov    0x2e8(%rax),%rdi
233ffffffff8104421c:       e8 2f da 00 00          callq  ffffffff81051c50 <pid_vnr>
234ffffffff81044221:       5d                      pop    %rbp
235ffffffff81044222:       48 98                   cltq
236ffffffff81044224:       c3                      retq
237ffffffff81044225:       48 c7 c7 13 53 98 81    mov    $0xffffffff81985313,%rdi
238ffffffff8104422c:       31 c0                   xor    %eax,%eax
239ffffffff8104422e:       e8 60 0f 6d 00          callq  ffffffff81715193 <printk>
240ffffffff81044233:       eb c9                   jmp    ffffffff810441fe <sys_getppid+0xe>
241ffffffff81044235:       66 66 2e 0f 1f 84 00    data32 nopw %cs:0x0(%rax,%rax,1)
242ffffffff8104423c:       00 00 00 00
243
244Thus, the disable jump label case adds a 'mov', 'test' and 'jne' instruction
245vs. the jump label case just has a 'no-op' or 'jmp 0'. (The jmp 0, is patched
246to a 5 byte atomic no-op instruction at boot-time.) Thus, the disabled jump
247label case adds:
248
2496 (mov) + 2 (test) + 2 (jne) = 10 - 5 (5 byte jump 0) = 5 addition bytes.
250
251If we then include the padding bytes, the jump label code saves, 16 total bytes
252of instruction memory for this small function. In this case the non-jump label
253function is 80 bytes long. Thus, we have saved 20% of the instruction
254footprint. We can in fact improve this even further, since the 5-byte no-op
255really can be a 2-byte no-op since we can reach the branch with a 2-byte jmp.
256However, we have not yet implemented optimal no-op sizes (they are currently
257hard-coded).
258
259Since there are a number of static key API uses in the scheduler paths,
260'pipe-test' (also known as 'perf bench sched pipe') can be used to show the
261performance improvement. Testing done on 3.3.0-rc2:
262
263jump label disabled:
264
265 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
266
267        855.700314 task-clock                #    0.534 CPUs utilized            ( +-  0.11% )
268           200,003 context-switches          #    0.234 M/sec                    ( +-  0.00% )
269                 0 CPU-migrations            #    0.000 M/sec                    ( +- 39.58% )
270               487 page-faults               #    0.001 M/sec                    ( +-  0.02% )
271     1,474,374,262 cycles                    #    1.723 GHz                      ( +-  0.17% )
272   <not supported> stalled-cycles-frontend
273   <not supported> stalled-cycles-backend
274     1,178,049,567 instructions              #    0.80  insns per cycle          ( +-  0.06% )
275       208,368,926 branches                  #  243.507 M/sec                    ( +-  0.06% )
276         5,569,188 branch-misses             #    2.67% of all branches          ( +-  0.54% )
277
278       1.601607384 seconds time elapsed                                          ( +-  0.07% )
279
280jump label enabled:
281
282 Performance counter stats for 'bash -c /tmp/pipe-test' (50 runs):
283
284        841.043185 task-clock                #    0.533 CPUs utilized            ( +-  0.12% )
285           200,004 context-switches          #    0.238 M/sec                    ( +-  0.00% )
286                 0 CPU-migrations            #    0.000 M/sec                    ( +- 40.87% )
287               487 page-faults               #    0.001 M/sec                    ( +-  0.05% )
288     1,432,559,428 cycles                    #    1.703 GHz                      ( +-  0.18% )
289   <not supported> stalled-cycles-frontend
290   <not supported> stalled-cycles-backend
291     1,175,363,994 instructions              #    0.82  insns per cycle          ( +-  0.04% )
292       206,859,359 branches                  #  245.956 M/sec                    ( +-  0.04% )
293         4,884,119 branch-misses             #    2.36% of all branches          ( +-  0.85% )
294
295       1.579384366 seconds time elapsed
296
297The percentage of saved branches is .7%, and we've saved 12% on
298'branch-misses'. This is where we would expect to get the most savings, since
299this optimization is about reducing the number of branches. In addition, we've
300saved .2% on instructions, and 2.8% on cycles and 1.4% on elapsed time.