Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
Note: File does not exist in v6.13.7.
  1Devres - Managed Device Resource
  2================================
  3
  4Tejun Heo	<teheo@suse.de>
  5
  6First draft	10 January 2007
  7
  8
  91. Intro			: Huh? Devres?
 102. Devres			: Devres in a nutshell
 113. Devres Group			: Group devres'es and release them together
 124. Details			: Life time rules, calling context, ...
 135. Overhead			: How much do we have to pay for this?
 146. List of managed interfaces	: Currently implemented managed interfaces
 15
 16
 17  1. Intro
 18  --------
 19
 20devres came up while trying to convert libata to use iomap.  Each
 21iomapped address should be kept and unmapped on driver detach.  For
 22example, a plain SFF ATA controller (that is, good old PCI IDE) in
 23native mode makes use of 5 PCI BARs and all of them should be
 24maintained.
 25
 26As with many other device drivers, libata low level drivers have
 27sufficient bugs in ->remove and ->probe failure path.  Well, yes,
 28that's probably because libata low level driver developers are lazy
 29bunch, but aren't all low level driver developers?  After spending a
 30day fiddling with braindamaged hardware with no document or
 31braindamaged document, if it's finally working, well, it's working.
 32
 33For one reason or another, low level drivers don't receive as much
 34attention or testing as core code, and bugs on driver detach or
 35initialization failure don't happen often enough to be noticeable.
 36Init failure path is worse because it's much less travelled while
 37needs to handle multiple entry points.
 38
 39So, many low level drivers end up leaking resources on driver detach
 40and having half broken failure path implementation in ->probe() which
 41would leak resources or even cause oops when failure occurs.  iomap
 42adds more to this mix.  So do msi and msix.
 43
 44
 45  2. Devres
 46  ---------
 47
 48devres is basically linked list of arbitrarily sized memory areas
 49associated with a struct device.  Each devres entry is associated with
 50a release function.  A devres can be released in several ways.  No
 51matter what, all devres entries are released on driver detach.  On
 52release, the associated release function is invoked and then the
 53devres entry is freed.
 54
 55Managed interface is created for resources commonly used by device
 56drivers using devres.  For example, coherent DMA memory is acquired
 57using dma_alloc_coherent().  The managed version is called
 58dmam_alloc_coherent().  It is identical to dma_alloc_coherent() except
 59for the DMA memory allocated using it is managed and will be
 60automatically released on driver detach.  Implementation looks like
 61the following.
 62
 63  struct dma_devres {
 64	size_t		size;
 65	void		*vaddr;
 66	dma_addr_t	dma_handle;
 67  };
 68
 69  static void dmam_coherent_release(struct device *dev, void *res)
 70  {
 71	struct dma_devres *this = res;
 72
 73	dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
 74  }
 75
 76  dmam_alloc_coherent(dev, size, dma_handle, gfp)
 77  {
 78	struct dma_devres *dr;
 79	void *vaddr;
 80
 81	dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
 82	...
 83
 84	/* alloc DMA memory as usual */
 85	vaddr = dma_alloc_coherent(...);
 86	...
 87
 88	/* record size, vaddr, dma_handle in dr */
 89	dr->vaddr = vaddr;
 90	...
 91
 92	devres_add(dev, dr);
 93
 94	return vaddr;
 95  }
 96
 97If a driver uses dmam_alloc_coherent(), the area is guaranteed to be
 98freed whether initialization fails half-way or the device gets
 99detached.  If most resources are acquired using managed interface, a
100driver can have much simpler init and exit code.  Init path basically
101looks like the following.
102
103  my_init_one()
104  {
105	struct mydev *d;
106
107	d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
108	if (!d)
109		return -ENOMEM;
110
111	d->ring = dmam_alloc_coherent(...);
112	if (!d->ring)
113		return -ENOMEM;
114
115	if (check something)
116		return -EINVAL;
117	...
118
119	return register_to_upper_layer(d);
120  }
121
122And exit path,
123
124  my_remove_one()
125  {
126	unregister_from_upper_layer(d);
127	shutdown_my_hardware();
128  }
129
130As shown above, low level drivers can be simplified a lot by using
131devres.  Complexity is shifted from less maintained low level drivers
132to better maintained higher layer.  Also, as init failure path is
133shared with exit path, both can get more testing.
134
135
136  3. Devres group
137  ---------------
138
139Devres entries can be grouped using devres group.  When a group is
140released, all contained normal devres entries and properly nested
141groups are released.  One usage is to rollback series of acquired
142resources on failure.  For example,
143
144  if (!devres_open_group(dev, NULL, GFP_KERNEL))
145	return -ENOMEM;
146
147  acquire A;
148  if (failed)
149	goto err;
150
151  acquire B;
152  if (failed)
153	goto err;
154  ...
155
156  devres_remove_group(dev, NULL);
157  return 0;
158
159 err:
160  devres_release_group(dev, NULL);
161  return err_code;
162
163As resource acquisition failure usually means probe failure, constructs
164like above are usually useful in midlayer driver (e.g. libata core
165layer) where interface function shouldn't have side effect on failure.
166For LLDs, just returning error code suffices in most cases.
167
168Each group is identified by void *id.  It can either be explicitly
169specified by @id argument to devres_open_group() or automatically
170created by passing NULL as @id as in the above example.  In both
171cases, devres_open_group() returns the group's id.  The returned id
172can be passed to other devres functions to select the target group.
173If NULL is given to those functions, the latest open group is
174selected.
175
176For example, you can do something like the following.
177
178  int my_midlayer_create_something()
179  {
180	if (!devres_open_group(dev, my_midlayer_create_something, GFP_KERNEL))
181		return -ENOMEM;
182
183	...
184
185	devres_close_group(dev, my_midlayer_create_something);
186	return 0;
187  }
188
189  void my_midlayer_destroy_something()
190  {
191	devres_release_group(dev, my_midlayer_create_something);
192  }
193
194
195  4. Details
196  ----------
197
198Lifetime of a devres entry begins on devres allocation and finishes
199when it is released or destroyed (removed and freed) - no reference
200counting.
201
202devres core guarantees atomicity to all basic devres operations and
203has support for single-instance devres types (atomic
204lookup-and-add-if-not-found).  Other than that, synchronizing
205concurrent accesses to allocated devres data is caller's
206responsibility.  This is usually non-issue because bus ops and
207resource allocations already do the job.
208
209For an example of single-instance devres type, read pcim_iomap_table()
210in lib/devres.c.
211
212All devres interface functions can be called without context if the
213right gfp mask is given.
214
215
216  5. Overhead
217  -----------
218
219Each devres bookkeeping info is allocated together with requested data
220area.  With debug option turned off, bookkeeping info occupies 16
221bytes on 32bit machines and 24 bytes on 64bit (three pointers rounded
222up to ull alignment).  If singly linked list is used, it can be
223reduced to two pointers (8 bytes on 32bit, 16 bytes on 64bit).
224
225Each devres group occupies 8 pointers.  It can be reduced to 6 if
226singly linked list is used.
227
228Memory space overhead on ahci controller with two ports is between 300
229and 400 bytes on 32bit machine after naive conversion (we can
230certainly invest a bit more effort into libata core layer).
231
232
233  6. List of managed interfaces
234  -----------------------------
235
236CLOCK
237  devm_clk_get()
238  devm_clk_put()
239  devm_clk_hw_register()
240
241DMA
242  dmam_alloc_coherent()
243  dmam_alloc_noncoherent()
244  dmam_declare_coherent_memory()
245  dmam_free_coherent()
246  dmam_free_noncoherent()
247  dmam_pool_create()
248  dmam_pool_destroy()
249
250GPIO
251  devm_gpiod_get()
252  devm_gpiod_get_index()
253  devm_gpiod_get_index_optional()
254  devm_gpiod_get_optional()
255  devm_gpiod_put()
256  devm_gpiochip_add_data()
257  devm_gpiochip_remove()
258  devm_gpio_request()
259  devm_gpio_request_one()
260  devm_gpio_free()
261
262IIO
263  devm_iio_device_alloc()
264  devm_iio_device_free()
265  devm_iio_device_register()
266  devm_iio_device_unregister()
267  devm_iio_kfifo_allocate()
268  devm_iio_kfifo_free()
269  devm_iio_triggered_buffer_setup()
270  devm_iio_triggered_buffer_cleanup()
271  devm_iio_trigger_alloc()
272  devm_iio_trigger_free()
273  devm_iio_trigger_register()
274  devm_iio_trigger_unregister()
275  devm_iio_channel_get()
276  devm_iio_channel_release()
277  devm_iio_channel_get_all()
278  devm_iio_channel_release_all()
279
280INPUT
281  devm_input_allocate_device()
282
283IO region
284  devm_release_mem_region()
285  devm_release_region()
286  devm_release_resource()
287  devm_request_mem_region()
288  devm_request_region()
289  devm_request_resource()
290
291IOMAP
292  devm_ioport_map()
293  devm_ioport_unmap()
294  devm_ioremap()
295  devm_ioremap_nocache()
296  devm_ioremap_wc()
297  devm_ioremap_resource() : checks resource, requests memory region, ioremaps
298  devm_iounmap()
299  pcim_iomap()
300  pcim_iomap_regions()	: do request_region() and iomap() on multiple BARs
301  pcim_iomap_table()	: array of mapped addresses indexed by BAR
302  pcim_iounmap()
303
304IRQ
305  devm_free_irq()
306  devm_request_any_context_irq()
307  devm_request_irq()
308  devm_request_threaded_irq()
309
310LED
311  devm_led_classdev_register()
312  devm_led_classdev_unregister()
313
314MDIO
315  devm_mdiobus_alloc()
316  devm_mdiobus_alloc_size()
317  devm_mdiobus_free()
318
319MEM
320  devm_free_pages()
321  devm_get_free_pages()
322  devm_kasprintf()
323  devm_kcalloc()
324  devm_kfree()
325  devm_kmalloc()
326  devm_kmalloc_array()
327  devm_kmemdup()
328  devm_kstrdup()
329  devm_kvasprintf()
330  devm_kzalloc()
331
332MFD
333 devm_mfd_add_devices()
334
335PER-CPU MEM
336  devm_alloc_percpu()
337  devm_free_percpu()
338
339PCI
340  pcim_enable_device()	: after success, all PCI ops become managed
341  pcim_pin_device()	: keep PCI device enabled after release
342
343PHY
344  devm_usb_get_phy()
345  devm_usb_put_phy()
346
347PINCTRL
348  devm_pinctrl_get()
349  devm_pinctrl_put()
350  devm_pinctrl_register()
351  devm_pinctrl_unregister()
352
353POWER
354  devm_reboot_mode_register()
355  devm_reboot_mode_unregister()
356
357PWM
358  devm_pwm_get()
359  devm_pwm_put()
360
361REGULATOR
362  devm_regulator_bulk_get()
363  devm_regulator_get()
364  devm_regulator_put()
365  devm_regulator_register()
366
367RESET
368  devm_reset_control_get()
369  devm_reset_controller_register()
370
371SLAVE DMA ENGINE
372  devm_acpi_dma_controller_register()
373
374SPI
375  devm_spi_register_master()
376
377WATCHDOG
378  devm_watchdog_register_device()