Loading...
Note: File does not exist in v4.10.11.
1.. SPDX-License-Identifier: GPL-2.0
2
3=====================================
4Using Propeller with the Linux kernel
5=====================================
6
7This enables Propeller build support for the kernel when using Clang
8compiler. Propeller is a profile-guided optimization (PGO) method used
9to optimize binary executables. Like AutoFDO, it utilizes hardware
10sampling to gather information about the frequency of execution of
11different code paths within a binary. Unlike AutoFDO, this information
12is then used right before linking phase to optimize (among others)
13block layout within and across functions.
14
15A few important notes about adopting Propeller optimization:
16
17#. Although it can be used as a standalone optimization step, it is
18 strongly recommended to apply Propeller on top of AutoFDO,
19 AutoFDO+ThinLTO or Instrument FDO. The rest of this document
20 assumes this paradigm.
21
22#. Propeller uses another round of profiling on top of
23 AutoFDO/AutoFDO+ThinLTO/iFDO. The whole build process involves
24 "build-afdo - train-afdo - build-propeller - train-propeller -
25 build-optimized".
26
27#. Propeller requires LLVM 19 release or later for Clang/Clang++
28 and the linker(ld.lld).
29
30#. In addition to LLVM toolchain, Propeller requires a profiling
31 conversion tool: https://github.com/google/autofdo with a release
32 after v0.30.1: https://github.com/google/autofdo/releases/tag/v0.30.1.
33
34The Propeller optimization process involves the following steps:
35
36#. Initial building: Build the AutoFDO or AutoFDO+ThinLTO binary as
37 you would normally do, but with a set of compile-time / link-time
38 flags, so that a special metadata section is created within the
39 kernel binary. The special section is only intend to be used by the
40 profiling tool, it is not part of the runtime image, nor does it
41 change kernel run time text sections.
42
43#. Profiling: The above kernel is then run with a representative
44 workload to gather execution frequency data. This data is collected
45 using hardware sampling, via perf. Propeller is most effective on
46 platforms supporting advanced PMU features like LBR on Intel
47 machines. This step is the same as profiling the kernel for AutoFDO
48 (the exact perf parameters can be different).
49
50#. Propeller profile generation: Perf output file is converted to a
51 pair of Propeller profiles via an offline tool.
52
53#. Optimized build: Build the AutoFDO or AutoFDO+ThinLTO optimized
54 binary as you would normally do, but with a compile-time /
55 link-time flag to pick up the Propeller compile time and link time
56 profiles. This build step uses 3 profiles - the AutoFDO profile,
57 the Propeller compile-time profile and the Propeller link-time
58 profile.
59
60#. Deployment: The optimized kernel binary is deployed and used
61 in production environments, providing improved performance
62 and reduced latency.
63
64Preparation
65===========
66
67Configure the kernel with::
68
69 CONFIG_AUTOFDO_CLANG=y
70 CONFIG_PROPELLER_CLANG=y
71
72Customization
73=============
74
75The default CONFIG_PROPELLER_CLANG setting covers kernel space objects
76for Propeller builds. One can, however, enable or disable Propeller build
77for individual files and directories by adding a line similar to the
78following to the respective kernel Makefile:
79
80- For enabling a single file (e.g. foo.o)::
81
82 PROPELLER_PROFILE_foo.o := y
83
84- For enabling all files in one directory::
85
86 PROPELLER_PROFILE := y
87
88- For disabling one file::
89
90 PROPELLER_PROFILE_foo.o := n
91
92- For disabling all files in one directory::
93
94 PROPELLER__PROFILE := n
95
96
97Workflow
98========
99
100Here is an example workflow for building an AutoFDO+Propeller kernel:
101
1021) Assuming an AutoFDO profile is already collected following
103 instructions in the AutoFDO document, build the kernel on the host
104 machine, with AutoFDO and Propeller build configs ::
105
106 CONFIG_AUTOFDO_CLANG=y
107 CONFIG_PROPELLER_CLANG=y
108
109 and ::
110
111 $ make LLVM=1 CLANG_AUTOFDO_PROFILE=<autofdo-profile-name>
112
1132) Install the kernel on the test machine.
114
1153) Run the load tests. The '-c' option in perf specifies the sample
116 event period. We suggest using a suitable prime number, like 500009,
117 for this purpose.
118
119 - For Intel platforms::
120
121 $ perf record -e BR_INST_RETIRED.NEAR_TAKEN:k -a -N -b -c <count> -o <perf_file> -- <loadtest>
122
123 - For AMD platforms::
124
125 $ perf record --pfm-event RETIRED_TAKEN_BRANCH_INSTRUCTIONS:k -a -N -b -c <count> -o <perf_file> -- <loadtest>
126
127 Note you can repeat the above steps to collect multiple <perf_file>s.
128
1294) (Optional) Download the raw perf file(s) to the host machine.
130
1315) Use the create_llvm_prof tool (https://github.com/google/autofdo) to
132 generate Propeller profile. ::
133
134 $ create_llvm_prof --binary=<vmlinux> --profile=<perf_file>
135 --format=propeller --propeller_output_module_name
136 --out=<propeller_profile_prefix>_cc_profile.txt
137 --propeller_symorder=<propeller_profile_prefix>_ld_profile.txt
138
139 "<propeller_profile_prefix>" can be something like "/home/user/dir/any_string".
140
141 This command generates a pair of Propeller profiles:
142 "<propeller_profile_prefix>_cc_profile.txt" and
143 "<propeller_profile_prefix>_ld_profile.txt".
144
145 If there are more than 1 perf_file collected in the previous step,
146 you can create a temp list file "<perf_file_list>" with each line
147 containing one perf file name and run::
148
149 $ create_llvm_prof --binary=<vmlinux> --profile=@<perf_file_list>
150 --format=propeller --propeller_output_module_name
151 --out=<propeller_profile_prefix>_cc_profile.txt
152 --propeller_symorder=<propeller_profile_prefix>_ld_profile.txt
153
1546) Rebuild the kernel using the AutoFDO and Propeller
155 profiles. ::
156
157 CONFIG_AUTOFDO_CLANG=y
158 CONFIG_PROPELLER_CLANG=y
159
160 and ::
161
162 $ make LLVM=1 CLANG_AUTOFDO_PROFILE=<profile_file> CLANG_PROPELLER_PROFILE_PREFIX=<propeller_profile_prefix>