Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1<?xml version="1.0" encoding="UTF-8"?>
  2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
  3	"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
  4
  5<book id="iioid">
  6  <bookinfo>
  7    <title>Industrial I/O driver developer's guide </title>
  8
  9    <authorgroup>
 10      <author>
 11        <firstname>Daniel</firstname>
 12        <surname>Baluta</surname>
 13        <affiliation>
 14          <address>
 15            <email>daniel.baluta@intel.com</email>
 16          </address>
 17        </affiliation>
 18      </author>
 19    </authorgroup>
 20
 21    <copyright>
 22      <year>2015</year>
 23      <holder>Intel Corporation</holder>
 24    </copyright>
 25
 26    <legalnotice>
 27      <para>
 28        This documentation is free software; you can redistribute
 29        it and/or modify it under the terms of the GNU General Public
 30        License version 2.
 31      </para>
 32    </legalnotice>
 33  </bookinfo>
 34
 35  <toc></toc>
 36
 37  <chapter id="intro">
 38    <title>Introduction</title>
 39    <para>
 40      The main purpose of the Industrial I/O subsystem (IIO) is to provide
 41      support for devices that in some sense perform either analog-to-digital
 42      conversion (ADC) or digital-to-analog conversion (DAC) or both. The aim
 43      is to fill the gap between the somewhat similar hwmon and input
 44      subsystems.
 45      Hwmon is directed at low sample rate sensors used to monitor and
 46      control the system itself, like fan speed control or temperature
 47      measurement. Input is, as its name suggests, focused on human interaction
 48      input devices (keyboard, mouse, touchscreen). In some cases there is
 49      considerable overlap between these and IIO.
 50  </para>
 51  <para>
 52    Devices that fall into this category include:
 53    <itemizedlist>
 54      <listitem>
 55        analog to digital converters (ADCs)
 56      </listitem>
 57      <listitem>
 58        accelerometers
 59      </listitem>
 60      <listitem>
 61        capacitance to digital converters (CDCs)
 62      </listitem>
 63      <listitem>
 64        digital to analog converters (DACs)
 65      </listitem>
 66      <listitem>
 67        gyroscopes
 68      </listitem>
 69      <listitem>
 70        inertial measurement units (IMUs)
 71      </listitem>
 72      <listitem>
 73        color and light sensors
 74      </listitem>
 75      <listitem>
 76        magnetometers
 77      </listitem>
 78      <listitem>
 79        pressure sensors
 80      </listitem>
 81      <listitem>
 82        proximity sensors
 83      </listitem>
 84      <listitem>
 85        temperature sensors
 86      </listitem>
 87    </itemizedlist>
 88    Usually these sensors are connected via SPI or I2C. A common use case of the
 89    sensors devices is to have combined functionality (e.g. light plus proximity
 90    sensor).
 91  </para>
 92  </chapter>
 93  <chapter id='iiosubsys'>
 94    <title>Industrial I/O core</title>
 95    <para>
 96      The Industrial I/O core offers:
 97      <itemizedlist>
 98        <listitem>
 99         a unified framework for writing drivers for many different types of
100         embedded sensors.
101        </listitem>
102        <listitem>
103         a standard interface to user space applications manipulating sensors.
104        </listitem>
105      </itemizedlist>
106      The implementation can be found under <filename>
107      drivers/iio/industrialio-*</filename>
108  </para>
109  <sect1 id="iiodevice">
110    <title> Industrial I/O devices </title>
111
112!Finclude/linux/iio/iio.h iio_dev
113!Fdrivers/iio/industrialio-core.c iio_device_alloc
114!Fdrivers/iio/industrialio-core.c iio_device_free
115!Fdrivers/iio/industrialio-core.c iio_device_register
116!Fdrivers/iio/industrialio-core.c iio_device_unregister
117
118    <para>
119      An IIO device usually corresponds to a single hardware sensor and it
120      provides all the information needed by a driver handling a device.
121      Let's first have a look at the functionality embedded in an IIO
122      device then we will show how a device driver makes use of an IIO
123      device.
124    </para>
125    <para>
126        There are two ways for a user space application to interact
127        with an IIO driver.
128      <itemizedlist>
129        <listitem>
130          <filename>/sys/bus/iio/iio:deviceX/</filename>, this
131          represents a hardware sensor and groups together the data
132          channels of the same chip.
133        </listitem>
134        <listitem>
135          <filename>/dev/iio:deviceX</filename>, character device node
136          interface used for buffered data transfer and for events information
137          retrieval.
138        </listitem>
139      </itemizedlist>
140    </para>
141    A typical IIO driver will register itself as an I2C or SPI driver and will
142    create two routines, <function> probe </function> and <function> remove
143    </function>. At <function>probe</function>:
144    <itemizedlist>
145    <listitem>call <function>iio_device_alloc</function>, which allocates memory
146      for an IIO device.
147    </listitem>
148    <listitem> initialize IIO device fields with driver specific information
149              (e.g. device name, device channels).
150    </listitem>
151    <listitem>call <function> iio_device_register</function>, this registers the
152      device with the IIO core. After this call the device is ready to accept
153      requests from user space applications.
154    </listitem>
155    </itemizedlist>
156      At <function>remove</function>, we free the resources allocated in
157      <function>probe</function> in reverse order:
158    <itemizedlist>
159    <listitem><function>iio_device_unregister</function>, unregister the device
160      from the IIO core.
161    </listitem>
162    <listitem><function>iio_device_free</function>, free the memory allocated
163      for the IIO device.
164    </listitem>
165    </itemizedlist>
166
167    <sect2 id="iioattr"> <title> IIO device sysfs interface </title>
168      <para>
169        Attributes are sysfs files used to expose chip info and also allowing
170        applications to set various configuration parameters. For device
171        with index X, attributes can be found under
172        <filename>/sys/bus/iio/iio:deviceX/ </filename> directory.
173        Common attributes are:
174        <itemizedlist>
175          <listitem><filename>name</filename>, description of the physical
176            chip.
177          </listitem>
178          <listitem><filename>dev</filename>, shows the major:minor pair
179            associated with <filename>/dev/iio:deviceX</filename> node.
180          </listitem>
181          <listitem><filename>sampling_frequency_available</filename>,
182            available discrete set of sampling frequency values for
183            device.
184          </listitem>
185      </itemizedlist>
186      Available standard attributes for IIO devices are described in the
187      <filename>Documentation/ABI/testing/sysfs-bus-iio </filename> file
188      in the Linux kernel sources.
189      </para>
190    </sect2>
191    <sect2 id="iiochannel"> <title> IIO device channels </title>
192!Finclude/linux/iio/iio.h iio_chan_spec structure.
193      <para>
194        An IIO device channel is a representation of a data channel. An
195        IIO device can have one or multiple channels. For example:
196        <itemizedlist>
197          <listitem>
198          a thermometer sensor has one channel representing the
199          temperature measurement.
200          </listitem>
201          <listitem>
202          a light sensor with two channels indicating the measurements in
203          the visible and infrared spectrum.
204          </listitem>
205          <listitem>
206          an accelerometer can have up to 3 channels representing
207          acceleration on X, Y and Z axes.
208          </listitem>
209        </itemizedlist>
210      An IIO channel is described by the <type> struct iio_chan_spec
211      </type>. A thermometer driver for the temperature sensor in the
212      example above would have to describe its channel as follows:
213      <programlisting>
214      static const struct iio_chan_spec temp_channel[] = {
215          {
216              .type = IIO_TEMP,
217              .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
218          },
219      };
220
221      </programlisting>
222      Channel sysfs attributes exposed to userspace are specified in
223      the form of <emphasis>bitmasks</emphasis>. Depending on their
224      shared info, attributes can be set in one of the following masks:
225      <itemizedlist>
226      <listitem><emphasis>info_mask_separate</emphasis>, attributes will
227        be specific to this channel</listitem>
228      <listitem><emphasis>info_mask_shared_by_type</emphasis>,
229        attributes are shared by all channels of the same type</listitem>
230      <listitem><emphasis>info_mask_shared_by_dir</emphasis>, attributes
231        are shared by all channels of the same direction </listitem>
232      <listitem><emphasis>info_mask_shared_by_all</emphasis>,
233        attributes are shared by all channels</listitem>
234      </itemizedlist>
235      When there are multiple data channels per channel type we have two
236      ways to distinguish between them:
237      <itemizedlist>
238      <listitem> set <emphasis> .modified</emphasis> field of <type>
239        iio_chan_spec</type> to 1. Modifiers are specified using
240        <emphasis>.channel2</emphasis> field of the same
241        <type>iio_chan_spec</type> structure and are used to indicate a
242        physically unique characteristic of the channel such as its direction
243        or spectral response. For example, a light sensor can have two channels,
244        one for infrared light and one for both infrared and visible light.
245      </listitem>
246      <listitem> set <emphasis>.indexed </emphasis> field of
247        <type>iio_chan_spec</type> to 1. In this case the channel is
248        simply another instance with an index specified by the
249        <emphasis>.channel</emphasis> field.
250      </listitem>
251      </itemizedlist>
252      Here is how we can make use of the channel's modifiers:
253      <programlisting>
254      static const struct iio_chan_spec light_channels[] = {
255          {
256              .type = IIO_INTENSITY,
257              .modified = 1,
258              .channel2 = IIO_MOD_LIGHT_IR,
259              .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
260              .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
261          },
262          {
263              .type = IIO_INTENSITY,
264              .modified = 1,
265              .channel2 = IIO_MOD_LIGHT_BOTH,
266              .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
267              .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
268          },
269          {
270              .type = IIO_LIGHT,
271              .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
272              .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
273          },
274
275      }
276      </programlisting>
277      This channel's definition will generate two separate sysfs files
278      for raw data retrieval:
279      <itemizedlist>
280      <listitem>
281      <filename>/sys/bus/iio/iio:deviceX/in_intensity_ir_raw</filename>
282      </listitem>
283      <listitem>
284      <filename>/sys/bus/iio/iio:deviceX/in_intensity_both_raw</filename>
285      </listitem>
286      </itemizedlist>
287      one file for processed data:
288      <itemizedlist>
289      <listitem>
290      <filename>/sys/bus/iio/iio:deviceX/in_illuminance_input
291      </filename>
292      </listitem>
293      </itemizedlist>
294      and one shared sysfs file for sampling frequency:
295      <itemizedlist>
296      <listitem>
297      <filename>/sys/bus/iio/iio:deviceX/sampling_frequency.
298      </filename>
299      </listitem>
300      </itemizedlist>
301      </para>
302      <para>
303      Here is how we can make use of the channel's indexing:
304      <programlisting>
305      static const struct iio_chan_spec light_channels[] = {
306          {
307              .type = IIO_VOLTAGE,
308              .indexed = 1,
309              .channel = 0,
310              .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
311          },
312          {
313              .type = IIO_VOLTAGE,
314              .indexed = 1,
315              .channel = 1,
316              .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
317          },
318      }
319      </programlisting>
320      This will generate two separate attributes files for raw data
321      retrieval:
322      <itemizedlist>
323      <listitem>
324        <filename>/sys/bus/iio/devices/iio:deviceX/in_voltage0_raw</filename>,
325          representing voltage measurement for channel 0.
326      </listitem>
327      <listitem>
328        <filename>/sys/bus/iio/devices/iio:deviceX/in_voltage1_raw</filename>,
329          representing voltage measurement for channel 1.
330      </listitem>
331      </itemizedlist>
332      </para>
333    </sect2>
334  </sect1>
335
336  <sect1 id="iiobuffer"> <title> Industrial I/O buffers </title>
337!Finclude/linux/iio/buffer.h iio_buffer
338!Edrivers/iio/industrialio-buffer.c
339
340    <para>
341    The Industrial I/O core offers a way for continuous data capture
342    based on a trigger source. Multiple data channels can be read at once
343    from <filename>/dev/iio:deviceX</filename> character device node,
344    thus reducing the CPU load.
345    </para>
346
347    <sect2 id="iiobuffersysfs">
348    <title>IIO buffer sysfs interface </title>
349    <para>
350      An IIO buffer has an associated attributes directory under <filename>
351      /sys/bus/iio/iio:deviceX/buffer/</filename>. Here are the existing
352      attributes:
353      <itemizedlist>
354      <listitem>
355      <emphasis>length</emphasis>, the total number of data samples
356      (capacity) that can be stored by the buffer.
357      </listitem>
358      <listitem>
359        <emphasis>enable</emphasis>, activate buffer capture.
360      </listitem>
361      </itemizedlist>
362
363    </para>
364    </sect2>
365    <sect2 id="iiobuffersetup"> <title> IIO buffer setup </title>
366      <para>The meta information associated with a channel reading
367        placed in a buffer is called a <emphasis> scan element </emphasis>.
368        The important bits configuring scan elements are exposed to
369        userspace applications via the <filename>
370        /sys/bus/iio/iio:deviceX/scan_elements/</filename> directory. This
371        file contains attributes of the following form:
372      <itemizedlist>
373      <listitem><emphasis>enable</emphasis>, used for enabling a channel.
374        If and only if its attribute is non zero, then a triggered capture
375        will contain data samples for this channel.
376      </listitem>
377      <listitem><emphasis>type</emphasis>, description of the scan element
378        data storage within the buffer and hence the form in which it is
379        read from user space. Format is <emphasis>
380        [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] </emphasis>.
381        <itemizedlist>
382        <listitem> <emphasis>be</emphasis> or <emphasis>le</emphasis>, specifies
383          big or little endian.
384        </listitem>
385        <listitem>
386        <emphasis>s </emphasis>or <emphasis>u</emphasis>, specifies if
387          signed (2's complement) or unsigned.
388        </listitem>
389        <listitem><emphasis>bits</emphasis>, is the number of valid data
390          bits.
391        </listitem>
392        <listitem><emphasis>storagebits</emphasis>, is the number of bits
393          (after padding) that it occupies in the buffer.
394        </listitem>
395        <listitem>
396        <emphasis>shift</emphasis>, if specified, is the shift that needs
397          to be applied prior to masking out unused bits.
398        </listitem>
399        <listitem>
400        <emphasis>repeat</emphasis>, specifies the number of bits/storagebits
401        repetitions. When the repeat element is 0 or 1, then the repeat
402        value is omitted.
403        </listitem>
404        </itemizedlist>
405      </listitem>
406      </itemizedlist>
407      For example, a driver for a 3-axis accelerometer with 12 bit
408      resolution where data is stored in two 8-bits registers as
409      follows:
410      <programlisting>
411        7   6   5   4   3   2   1   0
412      +---+---+---+---+---+---+---+---+
413      |D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
414      +---+---+---+---+---+---+---+---+
415
416        7   6   5   4   3   2   1   0
417      +---+---+---+---+---+---+---+---+
418      |D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
419      +---+---+---+---+---+---+---+---+
420      </programlisting>
421
422      will have the following scan element type for each axis:
423      <programlisting>
424      $ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
425      le:s12/16>>4
426      </programlisting>
427      A user space application will interpret data samples read from the
428      buffer as two byte little endian signed data, that needs a 4 bits
429      right shift before masking out the 12 valid bits of data.
430    </para>
431    <para>
432      For implementing buffer support a driver should initialize the following
433      fields in <type>iio_chan_spec</type> definition:
434      <programlisting>
435          struct iio_chan_spec {
436              /* other members */
437              int scan_index
438              struct {
439                  char sign;
440                  u8 realbits;
441                  u8 storagebits;
442                  u8 shift;
443                  u8 repeat;
444                  enum iio_endian endianness;
445              } scan_type;
446          };
447      </programlisting>
448      The driver implementing the accelerometer described above will
449      have the following channel definition:
450      <programlisting>
451      struct struct iio_chan_spec accel_channels[] = {
452          {
453            .type = IIO_ACCEL,
454            .modified = 1,
455            .channel2 = IIO_MOD_X,
456            /* other stuff here */
457            .scan_index = 0,
458            .scan_type = {
459              .sign = 's',
460              .realbits = 12,
461              .storagebits = 16,
462              .shift = 4,
463              .endianness = IIO_LE,
464            },
465        }
466        /* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
467         * and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
468         */
469    }
470    </programlisting>
471    </para>
472    <para>
473    Here <emphasis> scan_index </emphasis> defines the order in which
474    the enabled channels are placed inside the buffer. Channels with a lower
475    scan_index will be placed before channels with a higher index. Each
476    channel needs to have a unique scan_index.
477    </para>
478    <para>
479    Setting scan_index to -1 can be used to indicate that the specific
480    channel does not support buffered capture. In this case no entries will
481    be created for the channel in the scan_elements directory.
482    </para>
483    </sect2>
484  </sect1>
485
486  <sect1 id="iiotrigger"> <title> Industrial I/O triggers  </title>
487!Finclude/linux/iio/trigger.h iio_trigger
488!Edrivers/iio/industrialio-trigger.c
489    <para>
490      In many situations it is useful for a driver to be able to
491      capture data based on some external event (trigger) as opposed
492      to periodically polling for data. An IIO trigger can be provided
493      by a device driver that also has an IIO device based on hardware
494      generated events (e.g. data ready or threshold exceeded) or
495      provided by a separate driver from an independent interrupt
496      source (e.g. GPIO line connected to some external system, timer
497      interrupt or user space writing a specific file in sysfs). A
498      trigger may initiate data capture for a number of sensors and
499      also it may be completely unrelated to the sensor itself.
500    </para>
501
502    <sect2 id="iiotrigsysfs"> <title> IIO trigger sysfs interface </title>
503      There are two locations in sysfs related to triggers:
504      <itemizedlist>
505        <listitem><filename>/sys/bus/iio/devices/triggerY</filename>,
506          this file is created once an IIO trigger is registered with
507          the IIO core and corresponds to trigger with index Y. Because
508          triggers can be very different depending on type there are few
509          standard attributes that we can describe here:
510          <itemizedlist>
511            <listitem>
512              <emphasis>name</emphasis>, trigger name that can be later
513                used for association with a device.
514            </listitem>
515            <listitem>
516            <emphasis>sampling_frequency</emphasis>, some timer based
517              triggers use this attribute to specify the frequency for
518              trigger calls.
519            </listitem>
520          </itemizedlist>
521        </listitem>
522        <listitem>
523          <filename>/sys/bus/iio/devices/iio:deviceX/trigger/</filename>, this
524          directory is created once the device supports a triggered
525          buffer. We can associate a trigger with our device by writing
526          the trigger's name in the <filename>current_trigger</filename> file.
527        </listitem>
528      </itemizedlist>
529    </sect2>
530
531    <sect2 id="iiotrigattr"> <title> IIO trigger setup</title>
532
533    <para>
534      Let's see a simple example of how to setup a trigger to be used
535      by a driver.
536
537      <programlisting>
538      struct iio_trigger_ops trigger_ops = {
539          .set_trigger_state = sample_trigger_state,
540          .validate_device = sample_validate_device,
541      }
542
543      struct iio_trigger *trig;
544
545      /* first, allocate memory for our trigger */
546      trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);
547
548      /* setup trigger operations field */
549      trig->ops = &amp;trigger_ops;
550
551      /* now register the trigger with the IIO core */
552      iio_trigger_register(trig);
553      </programlisting>
554    </para>
555    </sect2>
556
557    <sect2 id="iiotrigsetup"> <title> IIO trigger ops</title>
558!Finclude/linux/iio/trigger.h iio_trigger_ops
559     <para>
560        Notice that a trigger has a set of operations attached:
561        <itemizedlist>
562        <listitem>
563          <function>set_trigger_state</function>, switch the trigger on/off
564          on demand.
565        </listitem>
566        <listitem>
567          <function>validate_device</function>, function to validate the
568          device when the current trigger gets changed.
569        </listitem>
570        </itemizedlist>
571      </para>
572    </sect2>
573  </sect1>
574  <sect1 id="iiotriggered_buffer">
575    <title> Industrial I/O triggered buffers </title>
576    <para>
577    Now that we know what buffers and triggers are let's see how they
578    work together.
579    </para>
580    <sect2 id="iiotrigbufsetup"> <title> IIO triggered buffer setup</title>
581!Edrivers/iio/buffer/industrialio-triggered-buffer.c
582!Finclude/linux/iio/iio.h iio_buffer_setup_ops
583
584
585    <para>
586    A typical triggered buffer setup looks like this:
587    <programlisting>
588    const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
589      .preenable    = sensor_buffer_preenable,
590      .postenable   = sensor_buffer_postenable,
591      .postdisable  = sensor_buffer_postdisable,
592      .predisable   = sensor_buffer_predisable,
593    };
594
595    irqreturn_t sensor_iio_pollfunc(int irq, void *p)
596    {
597        pf->timestamp = iio_get_time_ns((struct indio_dev *)p);
598        return IRQ_WAKE_THREAD;
599    }
600
601    irqreturn_t sensor_trigger_handler(int irq, void *p)
602    {
603        u16 buf[8];
604        int i = 0;
605
606        /* read data for each active channel */
607        for_each_set_bit(bit, active_scan_mask, masklength)
608            buf[i++] = sensor_get_data(bit)
609
610        iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);
611
612        iio_trigger_notify_done(trigger);
613        return IRQ_HANDLED;
614    }
615
616    /* setup triggered buffer, usually in probe function */
617    iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,
618                               sensor_trigger_handler,
619                               sensor_buffer_setup_ops);
620    </programlisting>
621    </para>
622    The important things to notice here are:
623    <itemizedlist>
624    <listitem><function> iio_buffer_setup_ops</function>, the buffer setup
625    functions to be called at predefined points in the buffer configuration
626    sequence (e.g. before enable, after disable). If not specified, the
627    IIO core uses the default <type>iio_triggered_buffer_setup_ops</type>.
628    </listitem>
629    <listitem><function>sensor_iio_pollfunc</function>, the function that
630    will be used as top half of poll function. It should do as little
631    processing as possible, because it runs in interrupt context. The most
632    common operation is recording of the current timestamp and for this reason
633    one can use the IIO core defined <function>iio_pollfunc_store_time
634    </function> function.
635    </listitem>
636    <listitem><function>sensor_trigger_handler</function>, the function that
637    will be used as bottom half of the poll function. This runs in the
638    context of a kernel thread and all the processing takes place here.
639    It usually reads data from the device and stores it in the internal
640    buffer together with the timestamp recorded in the top half.
641    </listitem>
642    </itemizedlist>
643    </sect2>
644  </sect1>
645  </chapter>
646  <chapter id='iioresources'>
647    <title> Resources </title>
648      IIO core may change during time so the best documentation to read is the
649      source code. There are several locations where you should look:
650      <itemizedlist>
651        <listitem>
652          <filename>drivers/iio/</filename>, contains the IIO core plus
653          and directories for each sensor type (e.g. accel, magnetometer,
654          etc.)
655        </listitem>
656        <listitem>
657          <filename>include/linux/iio/</filename>, contains the header
658          files, nice to read for the internal kernel interfaces.
659        </listitem>
660        <listitem>
661        <filename>include/uapi/linux/iio/</filename>, contains files to be
662          used by user space applications.
663        </listitem>
664        <listitem>
665         <filename>tools/iio/</filename>, contains tools for rapidly
666          testing buffers, events and device creation.
667        </listitem>
668        <listitem>
669          <filename>drivers/staging/iio/</filename>, contains code for some
670          drivers or experimental features that are not yet mature enough
671          to be moved out.
672        </listitem>
673      </itemizedlist>
674    <para>
675    Besides the code, there are some good online documentation sources:
676    <itemizedlist>
677    <listitem>
678      <ulink url="http://marc.info/?l=linux-iio"> Industrial I/O mailing
679      list </ulink>
680    </listitem>
681    <listitem>
682      <ulink url="http://wiki.analog.com/software/linux/docs/iio/iio">
683      Analog Device IIO wiki page </ulink>
684    </listitem>
685    <listitem>
686      <ulink url="https://fosdem.org/2015/schedule/event/iiosdr/">
687      Using the Linux IIO framework for SDR, Lars-Peter Clausen's
688      presentation at FOSDEM </ulink>
689    </listitem>
690    </itemizedlist>
691    </para>
692  </chapter>
693</book>
694
695<!--
696vim: softtabstop=2:shiftwidth=2:expandtab:textwidth=72
697-->