Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sched/sch_netem.c	Network emulator
   4 *
 
 
 
 
 
   5 *  		Many of the algorithms and ideas for this came from
   6 *		NIST Net which is not copyrighted.
   7 *
   8 * Authors:	Stephen Hemminger <shemminger@osdl.org>
   9 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/errno.h>
  18#include <linux/skbuff.h>
  19#include <linux/vmalloc.h>
  20#include <linux/prandom.h>
  21#include <linux/rtnetlink.h>
  22#include <linux/reciprocal_div.h>
  23#include <linux/rbtree.h>
  24
  25#include <net/gso.h>
  26#include <net/netlink.h>
  27#include <net/pkt_sched.h>
  28#include <net/inet_ecn.h>
  29
  30#define VERSION "1.3"
  31
  32/*	Network Emulation Queuing algorithm.
  33	====================================
  34
  35	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  36		 Network Emulation Tool
  37		 [2] Luigi Rizzo, DummyNet for FreeBSD
  38
  39	 ----------------------------------------------------------------
  40
  41	 This started out as a simple way to delay outgoing packets to
  42	 test TCP but has grown to include most of the functionality
  43	 of a full blown network emulator like NISTnet. It can delay
  44	 packets and add random jitter (and correlation). The random
  45	 distribution can be loaded from a table as well to provide
  46	 normal, Pareto, or experimental curves. Packet loss,
  47	 duplication, and reordering can also be emulated.
  48
  49	 This qdisc does not do classification that can be handled in
  50	 layering other disciplines.  It does not need to do bandwidth
  51	 control either since that can be handled by using token
  52	 bucket or other rate control.
  53
  54     Correlated Loss Generator models
  55
  56	Added generation of correlated loss according to the
  57	"Gilbert-Elliot" model, a 4-state markov model.
  58
  59	References:
  60	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  61	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  62	and intuitive loss model for packet networks and its implementation
  63	in the Netem module in the Linux kernel", available in [1]
  64
  65	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  66		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  67*/
  68
  69struct disttable {
  70	u32  size;
  71	s16 table[] __counted_by(size);
  72};
  73
  74struct netem_sched_data {
  75	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  76	struct rb_root t_root;
  77
  78	/* a linear queue; reduces rbtree rebalancing when jitter is low */
  79	struct sk_buff	*t_head;
  80	struct sk_buff	*t_tail;
  81
  82	u32 t_len;
  83
  84	/* optional qdisc for classful handling (NULL at netem init) */
  85	struct Qdisc	*qdisc;
  86
  87	struct qdisc_watchdog watchdog;
  88
  89	s64 latency;
  90	s64 jitter;
  91
  92	u32 loss;
  93	u32 ecn;
  94	u32 limit;
  95	u32 counter;
  96	u32 gap;
  97	u32 duplicate;
  98	u32 reorder;
  99	u32 corrupt;
 100	u64 rate;
 101	s32 packet_overhead;
 102	u32 cell_size;
 103	struct reciprocal_value cell_size_reciprocal;
 104	s32 cell_overhead;
 105
 106	struct crndstate {
 107		u32 last;
 108		u32 rho;
 109	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 110
 111	struct prng  {
 112		u64 seed;
 113		struct rnd_state prng_state;
 114	} prng;
 115
 116	struct disttable *delay_dist;
 117
 118	enum  {
 119		CLG_RANDOM,
 120		CLG_4_STATES,
 121		CLG_GILB_ELL,
 122	} loss_model;
 123
 124	enum {
 125		TX_IN_GAP_PERIOD = 1,
 126		TX_IN_BURST_PERIOD,
 127		LOST_IN_GAP_PERIOD,
 128		LOST_IN_BURST_PERIOD,
 129	} _4_state_model;
 130
 131	enum {
 132		GOOD_STATE = 1,
 133		BAD_STATE,
 134	} GE_state_model;
 135
 136	/* Correlated Loss Generation models */
 137	struct clgstate {
 138		/* state of the Markov chain */
 139		u8 state;
 140
 141		/* 4-states and Gilbert-Elliot models */
 142		u32 a1;	/* p13 for 4-states or p for GE */
 143		u32 a2;	/* p31 for 4-states or r for GE */
 144		u32 a3;	/* p32 for 4-states or h for GE */
 145		u32 a4;	/* p14 for 4-states or 1-k for GE */
 146		u32 a5; /* p23 used only in 4-states */
 147	} clg;
 148
 149	struct tc_netem_slot slot_config;
 150	struct slotstate {
 151		u64 slot_next;
 152		s32 packets_left;
 153		s32 bytes_left;
 154	} slot;
 155
 156	struct disttable *slot_dist;
 157};
 158
 159/* Time stamp put into socket buffer control block
 160 * Only valid when skbs are in our internal t(ime)fifo queue.
 161 *
 162 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 163 * and skb->next & skb->prev are scratch space for a qdisc,
 164 * we save skb->tstamp value in skb->cb[] before destroying it.
 165 */
 166struct netem_skb_cb {
 167	u64	        time_to_send;
 
 168};
 169
 
 
 
 
 
 
 170static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 171{
 172	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 173	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 174	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 175}
 176
 177/* init_crandom - initialize correlated random number generator
 178 * Use entropy source for initial seed.
 179 */
 180static void init_crandom(struct crndstate *state, unsigned long rho)
 181{
 182	state->rho = rho;
 183	state->last = get_random_u32();
 184}
 185
 186/* get_crandom - correlated random number generator
 187 * Next number depends on last value.
 188 * rho is scaled to avoid floating point.
 189 */
 190static u32 get_crandom(struct crndstate *state, struct prng *p)
 191{
 192	u64 value, rho;
 193	unsigned long answer;
 194	struct rnd_state *s = &p->prng_state;
 195
 196	if (!state || state->rho == 0)	/* no correlation */
 197		return prandom_u32_state(s);
 198
 199	value = prandom_u32_state(s);
 200	rho = (u64)state->rho + 1;
 201	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 202	state->last = answer;
 203	return answer;
 204}
 205
 206/* loss_4state - 4-state model loss generator
 207 * Generates losses according to the 4-state Markov chain adopted in
 208 * the GI (General and Intuitive) loss model.
 209 */
 210static bool loss_4state(struct netem_sched_data *q)
 211{
 212	struct clgstate *clg = &q->clg;
 213	u32 rnd = prandom_u32_state(&q->prng.prng_state);
 214
 215	/*
 216	 * Makes a comparison between rnd and the transition
 217	 * probabilities outgoing from the current state, then decides the
 218	 * next state and if the next packet has to be transmitted or lost.
 219	 * The four states correspond to:
 220	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 221	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
 222	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
 223	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
 224	 */
 225	switch (clg->state) {
 226	case TX_IN_GAP_PERIOD:
 227		if (rnd < clg->a4) {
 228			clg->state = LOST_IN_GAP_PERIOD;
 229			return true;
 230		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 231			clg->state = LOST_IN_BURST_PERIOD;
 232			return true;
 233		} else if (clg->a1 + clg->a4 < rnd) {
 234			clg->state = TX_IN_GAP_PERIOD;
 235		}
 236
 237		break;
 238	case TX_IN_BURST_PERIOD:
 239		if (rnd < clg->a5) {
 240			clg->state = LOST_IN_BURST_PERIOD;
 241			return true;
 242		} else {
 243			clg->state = TX_IN_BURST_PERIOD;
 244		}
 245
 246		break;
 247	case LOST_IN_BURST_PERIOD:
 248		if (rnd < clg->a3)
 249			clg->state = TX_IN_BURST_PERIOD;
 250		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 251			clg->state = TX_IN_GAP_PERIOD;
 252		} else if (clg->a2 + clg->a3 < rnd) {
 253			clg->state = LOST_IN_BURST_PERIOD;
 254			return true;
 255		}
 256		break;
 257	case LOST_IN_GAP_PERIOD:
 258		clg->state = TX_IN_GAP_PERIOD;
 259		break;
 260	}
 261
 262	return false;
 263}
 264
 265/* loss_gilb_ell - Gilbert-Elliot model loss generator
 266 * Generates losses according to the Gilbert-Elliot loss model or
 267 * its special cases  (Gilbert or Simple Gilbert)
 268 *
 269 * Makes a comparison between random number and the transition
 270 * probabilities outgoing from the current state, then decides the
 271 * next state. A second random number is extracted and the comparison
 272 * with the loss probability of the current state decides if the next
 273 * packet will be transmitted or lost.
 274 */
 275static bool loss_gilb_ell(struct netem_sched_data *q)
 276{
 277	struct clgstate *clg = &q->clg;
 278	struct rnd_state *s = &q->prng.prng_state;
 279
 280	switch (clg->state) {
 281	case GOOD_STATE:
 282		if (prandom_u32_state(s) < clg->a1)
 283			clg->state = BAD_STATE;
 284		if (prandom_u32_state(s) < clg->a4)
 285			return true;
 286		break;
 287	case BAD_STATE:
 288		if (prandom_u32_state(s) < clg->a2)
 289			clg->state = GOOD_STATE;
 290		if (prandom_u32_state(s) > clg->a3)
 291			return true;
 292	}
 293
 294	return false;
 295}
 296
 297static bool loss_event(struct netem_sched_data *q)
 298{
 299	switch (q->loss_model) {
 300	case CLG_RANDOM:
 301		/* Random packet drop 0 => none, ~0 => all */
 302		return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng);
 303
 304	case CLG_4_STATES:
 305		/* 4state loss model algorithm (used also for GI model)
 306		* Extracts a value from the markov 4 state loss generator,
 307		* if it is 1 drops a packet and if needed writes the event in
 308		* the kernel logs
 309		*/
 310		return loss_4state(q);
 311
 312	case CLG_GILB_ELL:
 313		/* Gilbert-Elliot loss model algorithm
 314		* Extracts a value from the Gilbert-Elliot loss generator,
 315		* if it is 1 drops a packet and if needed writes the event in
 316		* the kernel logs
 317		*/
 318		return loss_gilb_ell(q);
 319	}
 320
 321	return false;	/* not reached */
 322}
 323
 324
 325/* tabledist - return a pseudo-randomly distributed value with mean mu and
 326 * std deviation sigma.  Uses table lookup to approximate the desired
 327 * distribution, and a uniformly-distributed pseudo-random source.
 328 */
 329static s64 tabledist(s64 mu, s32 sigma,
 330		     struct crndstate *state,
 331		     struct prng *prng,
 332		     const struct disttable *dist)
 333{
 334	s64 x;
 335	long t;
 336	u32 rnd;
 337
 338	if (sigma == 0)
 339		return mu;
 340
 341	rnd = get_crandom(state, prng);
 342
 343	/* default uniform distribution */
 344	if (dist == NULL)
 345		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
 346
 347	t = dist->table[rnd % dist->size];
 348	x = (sigma % NETEM_DIST_SCALE) * t;
 349	if (x >= 0)
 350		x += NETEM_DIST_SCALE/2;
 351	else
 352		x -= NETEM_DIST_SCALE/2;
 353
 354	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 355}
 356
 357static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 358{
 
 
 359	len += q->packet_overhead;
 360
 361	if (q->cell_size) {
 362		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 363
 364		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 365			cells++;
 366		len = cells * (q->cell_size + q->cell_overhead);
 367	}
 368
 369	return div64_u64(len * NSEC_PER_SEC, q->rate);
 
 
 
 370}
 371
 372static void tfifo_reset(struct Qdisc *sch)
 373{
 374	struct netem_sched_data *q = qdisc_priv(sch);
 375	struct rb_node *p = rb_first(&q->t_root);
 376
 377	while (p) {
 378		struct sk_buff *skb = rb_to_skb(p);
 379
 380		p = rb_next(p);
 381		rb_erase(&skb->rbnode, &q->t_root);
 382		rtnl_kfree_skbs(skb, skb);
 383	}
 384
 385	rtnl_kfree_skbs(q->t_head, q->t_tail);
 386	q->t_head = NULL;
 387	q->t_tail = NULL;
 388	q->t_len = 0;
 389}
 390
 391static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 392{
 393	struct netem_sched_data *q = qdisc_priv(sch);
 394	u64 tnext = netem_skb_cb(nskb)->time_to_send;
 395
 396	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
 397		if (q->t_tail)
 398			q->t_tail->next = nskb;
 399		else
 400			q->t_head = nskb;
 401		q->t_tail = nskb;
 402	} else {
 403		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 404
 405		while (*p) {
 406			struct sk_buff *skb;
 407
 408			parent = *p;
 409			skb = rb_to_skb(parent);
 410			if (tnext >= netem_skb_cb(skb)->time_to_send)
 411				p = &parent->rb_right;
 412			else
 413				p = &parent->rb_left;
 414		}
 415		rb_link_node(&nskb->rbnode, parent, p);
 416		rb_insert_color(&nskb->rbnode, &q->t_root);
 417	}
 418	q->t_len++;
 
 419	sch->q.qlen++;
 420}
 421
 422/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 423 * when we statistically choose to corrupt one, we instead segment it, returning
 424 * the first packet to be corrupted, and re-enqueue the remaining frames
 425 */
 426static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 427				     struct sk_buff **to_free)
 428{
 429	struct sk_buff *segs;
 430	netdev_features_t features = netif_skb_features(skb);
 431
 432	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 433
 434	if (IS_ERR_OR_NULL(segs)) {
 435		qdisc_drop(skb, sch, to_free);
 436		return NULL;
 437	}
 438	consume_skb(skb);
 439	return segs;
 440}
 441
 
 
 
 
 
 
 
 
 
 
 442/*
 443 * Insert one skb into qdisc.
 444 * Note: parent depends on return value to account for queue length.
 445 * 	NET_XMIT_DROP: queue length didn't change.
 446 *      NET_XMIT_SUCCESS: one skb was queued.
 447 */
 448static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 449			 struct sk_buff **to_free)
 450{
 451	struct netem_sched_data *q = qdisc_priv(sch);
 452	/* We don't fill cb now as skb_unshare() may invalidate it */
 453	struct netem_skb_cb *cb;
 454	struct sk_buff *skb2 = NULL;
 455	struct sk_buff *segs = NULL;
 456	unsigned int prev_len = qdisc_pkt_len(skb);
 
 457	int count = 1;
 458
 459	/* Do not fool qdisc_drop_all() */
 460	skb->prev = NULL;
 461
 462	/* Random duplication */
 463	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng))
 464		++count;
 465
 466	/* Drop packet? */
 467	if (loss_event(q)) {
 468		if (q->ecn && INET_ECN_set_ce(skb))
 469			qdisc_qstats_drop(sch); /* mark packet */
 470		else
 471			--count;
 472	}
 473	if (count == 0) {
 474		qdisc_qstats_drop(sch);
 475		__qdisc_drop(skb, to_free);
 476		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 477	}
 478
 479	/* If a delay is expected, orphan the skb. (orphaning usually takes
 480	 * place at TX completion time, so _before_ the link transit delay)
 481	 */
 482	if (q->latency || q->jitter || q->rate)
 483		skb_orphan_partial(skb);
 484
 485	/*
 486	 * If we need to duplicate packet, then clone it before
 487	 * original is modified.
 
 488	 */
 489	if (count > 1)
 490		skb2 = skb_clone(skb, GFP_ATOMIC);
 
 
 
 
 
 
 491
 492	/*
 493	 * Randomized packet corruption.
 494	 * Make copy if needed since we are modifying
 495	 * If packet is going to be hardware checksummed, then
 496	 * do it now in software before we mangle it.
 497	 */
 498	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) {
 499		if (skb_is_gso(skb)) {
 500			skb = netem_segment(skb, sch, to_free);
 501			if (!skb)
 502				goto finish_segs;
 503
 504			segs = skb->next;
 505			skb_mark_not_on_list(skb);
 506			qdisc_skb_cb(skb)->pkt_len = skb->len;
 507		}
 508
 
 
 
 509		skb = skb_unshare(skb, GFP_ATOMIC);
 510		if (unlikely(!skb)) {
 511			qdisc_qstats_drop(sch);
 512			goto finish_segs;
 513		}
 514		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 515		    skb_checksum_help(skb)) {
 516			qdisc_drop(skb, sch, to_free);
 517			skb = NULL;
 518			goto finish_segs;
 519		}
 520
 521		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
 522			1<<get_random_u32_below(8);
 523	}
 524
 525	if (unlikely(q->t_len >= sch->limit)) {
 526		/* re-link segs, so that qdisc_drop_all() frees them all */
 527		skb->next = segs;
 528		qdisc_drop_all(skb, sch, to_free);
 529		if (skb2)
 530			__qdisc_drop(skb2, to_free);
 531		return NET_XMIT_DROP;
 532	}
 533
 534	/*
 535	 * If doing duplication then re-insert at top of the
 536	 * qdisc tree, since parent queuer expects that only one
 537	 * skb will be queued.
 538	 */
 539	if (skb2) {
 540		struct Qdisc *rootq = qdisc_root_bh(sch);
 541		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 542
 543		q->duplicate = 0;
 544		rootq->enqueue(skb2, rootq, to_free);
 545		q->duplicate = dupsave;
 546		skb2 = NULL;
 547	}
 548
 549	qdisc_qstats_backlog_inc(sch, skb);
 550
 551	cb = netem_skb_cb(skb);
 552	if (q->gap == 0 ||		/* not doing reordering */
 553	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 554	    q->reorder < get_crandom(&q->reorder_cor, &q->prng)) {
 555		u64 now;
 556		s64 delay;
 557
 558		delay = tabledist(q->latency, q->jitter,
 559				  &q->delay_cor, &q->prng, q->delay_dist);
 560
 561		now = ktime_get_ns();
 562
 563		if (q->rate) {
 564			struct netem_skb_cb *last = NULL;
 565
 566			if (sch->q.tail)
 567				last = netem_skb_cb(sch->q.tail);
 568			if (q->t_root.rb_node) {
 569				struct sk_buff *t_skb;
 570				struct netem_skb_cb *t_last;
 571
 572				t_skb = skb_rb_last(&q->t_root);
 573				t_last = netem_skb_cb(t_skb);
 574				if (!last ||
 575				    t_last->time_to_send > last->time_to_send)
 576					last = t_last;
 577			}
 578			if (q->t_tail) {
 579				struct netem_skb_cb *t_last =
 580					netem_skb_cb(q->t_tail);
 581
 582				if (!last ||
 583				    t_last->time_to_send > last->time_to_send)
 584					last = t_last;
 585			}
 586
 
 
 
 
 587			if (last) {
 588				/*
 589				 * Last packet in queue is reference point (now),
 590				 * calculate this time bonus and subtract
 591				 * from delay.
 592				 */
 593				delay -= last->time_to_send - now;
 594				delay = max_t(s64, 0, delay);
 595				now = last->time_to_send;
 596			}
 597
 598			delay += packet_time_ns(qdisc_pkt_len(skb), q);
 599		}
 600
 601		cb->time_to_send = now + delay;
 
 602		++q->counter;
 603		tfifo_enqueue(skb, sch);
 604	} else {
 605		/*
 606		 * Do re-ordering by putting one out of N packets at the front
 607		 * of the queue.
 608		 */
 609		cb->time_to_send = ktime_get_ns();
 610		q->counter = 0;
 611
 612		__qdisc_enqueue_head(skb, &sch->q);
 613		sch->qstats.requeues++;
 614	}
 615
 616finish_segs:
 617	if (skb2)
 618		__qdisc_drop(skb2, to_free);
 619
 620	if (segs) {
 621		unsigned int len, last_len;
 622		int rc, nb;
 623
 624		len = skb ? skb->len : 0;
 625		nb = skb ? 1 : 0;
 626
 627		while (segs) {
 628			skb2 = segs->next;
 629			skb_mark_not_on_list(segs);
 630			qdisc_skb_cb(segs)->pkt_len = segs->len;
 631			last_len = segs->len;
 632			rc = qdisc_enqueue(segs, sch, to_free);
 633			if (rc != NET_XMIT_SUCCESS) {
 634				if (net_xmit_drop_count(rc))
 635					qdisc_qstats_drop(sch);
 636			} else {
 637				nb++;
 638				len += last_len;
 639			}
 640			segs = skb2;
 641		}
 642		/* Parent qdiscs accounted for 1 skb of size @prev_len */
 643		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
 644	} else if (!skb) {
 645		return NET_XMIT_DROP;
 646	}
 647	return NET_XMIT_SUCCESS;
 648}
 649
 650/* Delay the next round with a new future slot with a
 651 * correct number of bytes and packets.
 652 */
 653
 654static void get_slot_next(struct netem_sched_data *q, u64 now)
 655{
 656	s64 next_delay;
 657
 658	if (!q->slot_dist)
 659		next_delay = q->slot_config.min_delay +
 660				(get_random_u32() *
 661				 (q->slot_config.max_delay -
 662				  q->slot_config.min_delay) >> 32);
 663	else
 664		next_delay = tabledist(q->slot_config.dist_delay,
 665				       (s32)(q->slot_config.dist_jitter),
 666				       NULL, &q->prng, q->slot_dist);
 667
 668	q->slot.slot_next = now + next_delay;
 669	q->slot.packets_left = q->slot_config.max_packets;
 670	q->slot.bytes_left = q->slot_config.max_bytes;
 671}
 672
 673static struct sk_buff *netem_peek(struct netem_sched_data *q)
 674{
 675	struct sk_buff *skb = skb_rb_first(&q->t_root);
 676	u64 t1, t2;
 677
 678	if (!skb)
 679		return q->t_head;
 680	if (!q->t_head)
 681		return skb;
 682
 683	t1 = netem_skb_cb(skb)->time_to_send;
 684	t2 = netem_skb_cb(q->t_head)->time_to_send;
 685	if (t1 < t2)
 686		return skb;
 687	return q->t_head;
 688}
 689
 690static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
 691{
 692	if (skb == q->t_head) {
 693		q->t_head = skb->next;
 694		if (!q->t_head)
 695			q->t_tail = NULL;
 696	} else {
 697		rb_erase(&skb->rbnode, &q->t_root);
 698	}
 699}
 700
 701static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 702{
 703	struct netem_sched_data *q = qdisc_priv(sch);
 704	struct sk_buff *skb;
 
 705
 706tfifo_dequeue:
 707	skb = __qdisc_dequeue_head(&sch->q);
 708	if (skb) {
 709deliver:
 710		qdisc_qstats_backlog_dec(sch, skb);
 
 711		qdisc_bstats_update(sch, skb);
 712		return skb;
 713	}
 714	skb = netem_peek(q);
 715	if (skb) {
 716		u64 time_to_send;
 717		u64 now = ktime_get_ns();
 
 718
 719		/* if more time remaining? */
 720		time_to_send = netem_skb_cb(skb)->time_to_send;
 721		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 722			get_slot_next(q, now);
 723
 724		if (time_to_send <= now && q->slot.slot_next <= now) {
 725			netem_erase_head(q, skb);
 726			q->t_len--;
 727			skb->next = NULL;
 728			skb->prev = NULL;
 729			/* skb->dev shares skb->rbnode area,
 730			 * we need to restore its value.
 731			 */
 732			skb->dev = qdisc_dev(sch);
 733
 734			if (q->slot.slot_next) {
 735				q->slot.packets_left--;
 736				q->slot.bytes_left -= qdisc_pkt_len(skb);
 737				if (q->slot.packets_left <= 0 ||
 738				    q->slot.bytes_left <= 0)
 739					get_slot_next(q, now);
 740			}
 
 741
 742			if (q->qdisc) {
 743				unsigned int pkt_len = qdisc_pkt_len(skb);
 744				struct sk_buff *to_free = NULL;
 745				int err;
 746
 747				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 748				kfree_skb_list(to_free);
 749				if (err != NET_XMIT_SUCCESS) {
 750					if (net_xmit_drop_count(err))
 751						qdisc_qstats_drop(sch);
 752					sch->qstats.backlog -= pkt_len;
 753					sch->q.qlen--;
 754					qdisc_tree_reduce_backlog(sch, 1, pkt_len);
 755				}
 756				goto tfifo_dequeue;
 757			}
 758			sch->q.qlen--;
 759			goto deliver;
 760		}
 761
 762		if (q->qdisc) {
 763			skb = q->qdisc->ops->dequeue(q->qdisc);
 764			if (skb) {
 765				sch->q.qlen--;
 766				goto deliver;
 767			}
 768		}
 769
 770		qdisc_watchdog_schedule_ns(&q->watchdog,
 771					   max(time_to_send,
 772					       q->slot.slot_next));
 773	}
 774
 775	if (q->qdisc) {
 776		skb = q->qdisc->ops->dequeue(q->qdisc);
 777		if (skb) {
 778			sch->q.qlen--;
 779			goto deliver;
 780		}
 781	}
 782	return NULL;
 783}
 784
 785static void netem_reset(struct Qdisc *sch)
 786{
 787	struct netem_sched_data *q = qdisc_priv(sch);
 788
 789	qdisc_reset_queue(sch);
 790	tfifo_reset(sch);
 791	if (q->qdisc)
 792		qdisc_reset(q->qdisc);
 793	qdisc_watchdog_cancel(&q->watchdog);
 794}
 795
 796static void dist_free(struct disttable *d)
 797{
 798	kvfree(d);
 799}
 800
 801/*
 802 * Distribution data is a variable size payload containing
 803 * signed 16 bit values.
 804 */
 805
 806static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
 807{
 
 808	size_t n = nla_len(attr)/sizeof(__s16);
 809	const __s16 *data = nla_data(attr);
 
 810	struct disttable *d;
 811	int i;
 
 812
 813	if (!n || n > NETEM_DIST_MAX)
 814		return -EINVAL;
 815
 816	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
 
 
 
 817	if (!d)
 818		return -ENOMEM;
 819
 820	d->size = n;
 821	for (i = 0; i < n; i++)
 822		d->table[i] = data[i];
 823
 824	*tbl = d;
 825	return 0;
 826}
 827
 828static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 829{
 830	const struct tc_netem_slot *c = nla_data(attr);
 831
 832	q->slot_config = *c;
 833	if (q->slot_config.max_packets == 0)
 834		q->slot_config.max_packets = INT_MAX;
 835	if (q->slot_config.max_bytes == 0)
 836		q->slot_config.max_bytes = INT_MAX;
 837
 838	/* capping dist_jitter to the range acceptable by tabledist() */
 839	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
 840
 841	q->slot.packets_left = q->slot_config.max_packets;
 842	q->slot.bytes_left = q->slot_config.max_bytes;
 843	if (q->slot_config.min_delay | q->slot_config.max_delay |
 844	    q->slot_config.dist_jitter)
 845		q->slot.slot_next = ktime_get_ns();
 846	else
 847		q->slot.slot_next = 0;
 848}
 849
 850static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 851{
 852	const struct tc_netem_corr *c = nla_data(attr);
 853
 854	init_crandom(&q->delay_cor, c->delay_corr);
 855	init_crandom(&q->loss_cor, c->loss_corr);
 856	init_crandom(&q->dup_cor, c->dup_corr);
 857}
 858
 859static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 860{
 861	const struct tc_netem_reorder *r = nla_data(attr);
 862
 863	q->reorder = r->probability;
 864	init_crandom(&q->reorder_cor, r->correlation);
 865}
 866
 867static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 868{
 869	const struct tc_netem_corrupt *r = nla_data(attr);
 870
 871	q->corrupt = r->probability;
 872	init_crandom(&q->corrupt_cor, r->correlation);
 873}
 874
 875static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 876{
 877	const struct tc_netem_rate *r = nla_data(attr);
 878
 879	q->rate = r->rate;
 880	q->packet_overhead = r->packet_overhead;
 881	q->cell_size = r->cell_size;
 882	q->cell_overhead = r->cell_overhead;
 883	if (q->cell_size)
 884		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 885	else
 886		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 887}
 888
 889static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 890{
 891	const struct nlattr *la;
 892	int rem;
 893
 894	nla_for_each_nested(la, attr, rem) {
 895		u16 type = nla_type(la);
 896
 897		switch (type) {
 898		case NETEM_LOSS_GI: {
 899			const struct tc_netem_gimodel *gi = nla_data(la);
 900
 901			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 902				pr_info("netem: incorrect gi model size\n");
 903				return -EINVAL;
 904			}
 905
 906			q->loss_model = CLG_4_STATES;
 907
 908			q->clg.state = TX_IN_GAP_PERIOD;
 909			q->clg.a1 = gi->p13;
 910			q->clg.a2 = gi->p31;
 911			q->clg.a3 = gi->p32;
 912			q->clg.a4 = gi->p14;
 913			q->clg.a5 = gi->p23;
 914			break;
 915		}
 916
 917		case NETEM_LOSS_GE: {
 918			const struct tc_netem_gemodel *ge = nla_data(la);
 919
 920			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 921				pr_info("netem: incorrect ge model size\n");
 922				return -EINVAL;
 923			}
 924
 925			q->loss_model = CLG_GILB_ELL;
 926			q->clg.state = GOOD_STATE;
 927			q->clg.a1 = ge->p;
 928			q->clg.a2 = ge->r;
 929			q->clg.a3 = ge->h;
 930			q->clg.a4 = ge->k1;
 931			break;
 932		}
 933
 934		default:
 935			pr_info("netem: unknown loss type %u\n", type);
 936			return -EINVAL;
 937		}
 938	}
 939
 940	return 0;
 941}
 942
 943static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 944	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 945	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 946	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 947	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 948	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 949	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 950	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 951	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
 952	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
 953	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
 954	[TCA_NETEM_PRNG_SEED]	= { .type = NLA_U64 },
 955};
 956
 957static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 958		      const struct nla_policy *policy, int len)
 959{
 960	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 961
 962	if (nested_len < 0) {
 963		pr_info("netem: invalid attributes len %d\n", nested_len);
 964		return -EINVAL;
 965	}
 966
 967	if (nested_len >= nla_attr_size(0))
 968		return nla_parse_deprecated(tb, maxtype,
 969					    nla_data(nla) + NLA_ALIGN(len),
 970					    nested_len, policy, NULL);
 971
 972	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 973	return 0;
 974}
 975
 976/* Parse netlink message to set options */
 977static int netem_change(struct Qdisc *sch, struct nlattr *opt,
 978			struct netlink_ext_ack *extack)
 979{
 980	struct netem_sched_data *q = qdisc_priv(sch);
 981	struct nlattr *tb[TCA_NETEM_MAX + 1];
 982	struct disttable *delay_dist = NULL;
 983	struct disttable *slot_dist = NULL;
 984	struct tc_netem_qopt *qopt;
 985	struct clgstate old_clg;
 986	int old_loss_model = CLG_RANDOM;
 987	int ret;
 988
 
 
 
 989	qopt = nla_data(opt);
 990	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 991	if (ret < 0)
 992		return ret;
 993
 994	if (tb[TCA_NETEM_DELAY_DIST]) {
 995		ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
 996		if (ret)
 997			goto table_free;
 998	}
 999
1000	if (tb[TCA_NETEM_SLOT_DIST]) {
1001		ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
1002		if (ret)
1003			goto table_free;
1004	}
1005
1006	sch_tree_lock(sch);
1007	/* backup q->clg and q->loss_model */
1008	old_clg = q->clg;
1009	old_loss_model = q->loss_model;
1010
1011	if (tb[TCA_NETEM_LOSS]) {
1012		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
1013		if (ret) {
1014			q->loss_model = old_loss_model;
1015			q->clg = old_clg;
1016			goto unlock;
1017		}
1018	} else {
1019		q->loss_model = CLG_RANDOM;
1020	}
1021
1022	if (delay_dist)
1023		swap(q->delay_dist, delay_dist);
1024	if (slot_dist)
1025		swap(q->slot_dist, slot_dist);
 
 
 
 
 
 
 
 
 
1026	sch->limit = qopt->limit;
1027
1028	q->latency = PSCHED_TICKS2NS(qopt->latency);
1029	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1030	q->limit = qopt->limit;
1031	q->gap = qopt->gap;
1032	q->counter = 0;
1033	q->loss = qopt->loss;
1034	q->duplicate = qopt->duplicate;
1035
1036	/* for compatibility with earlier versions.
1037	 * if gap is set, need to assume 100% probability
1038	 */
1039	if (q->gap)
1040		q->reorder = ~0;
1041
1042	if (tb[TCA_NETEM_CORR])
1043		get_correlation(q, tb[TCA_NETEM_CORR]);
1044
1045	if (tb[TCA_NETEM_REORDER])
1046		get_reorder(q, tb[TCA_NETEM_REORDER]);
1047
1048	if (tb[TCA_NETEM_CORRUPT])
1049		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1050
1051	if (tb[TCA_NETEM_RATE])
1052		get_rate(q, tb[TCA_NETEM_RATE]);
1053
1054	if (tb[TCA_NETEM_RATE64])
1055		q->rate = max_t(u64, q->rate,
1056				nla_get_u64(tb[TCA_NETEM_RATE64]));
1057
1058	if (tb[TCA_NETEM_LATENCY64])
1059		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1060
1061	if (tb[TCA_NETEM_JITTER64])
1062		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1063
1064	if (tb[TCA_NETEM_ECN])
1065		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1066
1067	if (tb[TCA_NETEM_SLOT])
1068		get_slot(q, tb[TCA_NETEM_SLOT]);
1069
1070	/* capping jitter to the range acceptable by tabledist() */
1071	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1072
1073	if (tb[TCA_NETEM_PRNG_SEED])
1074		q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]);
1075	else
1076		q->prng.seed = get_random_u64();
1077	prandom_seed_state(&q->prng.prng_state, q->prng.seed);
1078
1079unlock:
1080	sch_tree_unlock(sch);
1081
1082table_free:
1083	dist_free(delay_dist);
1084	dist_free(slot_dist);
1085	return ret;
1086}
1087
1088static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1089		      struct netlink_ext_ack *extack)
1090{
1091	struct netem_sched_data *q = qdisc_priv(sch);
1092	int ret;
1093
1094	qdisc_watchdog_init(&q->watchdog, sch);
1095
1096	if (!opt)
1097		return -EINVAL;
1098
 
 
1099	q->loss_model = CLG_RANDOM;
1100	ret = netem_change(sch, opt, extack);
1101	if (ret)
1102		pr_info("netem: change failed\n");
1103	return ret;
1104}
1105
1106static void netem_destroy(struct Qdisc *sch)
1107{
1108	struct netem_sched_data *q = qdisc_priv(sch);
1109
1110	qdisc_watchdog_cancel(&q->watchdog);
1111	if (q->qdisc)
1112		qdisc_put(q->qdisc);
1113	dist_free(q->delay_dist);
1114	dist_free(q->slot_dist);
1115}
1116
1117static int dump_loss_model(const struct netem_sched_data *q,
1118			   struct sk_buff *skb)
1119{
1120	struct nlattr *nest;
1121
1122	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1123	if (nest == NULL)
1124		goto nla_put_failure;
1125
1126	switch (q->loss_model) {
1127	case CLG_RANDOM:
1128		/* legacy loss model */
1129		nla_nest_cancel(skb, nest);
1130		return 0;	/* no data */
1131
1132	case CLG_4_STATES: {
1133		struct tc_netem_gimodel gi = {
1134			.p13 = q->clg.a1,
1135			.p31 = q->clg.a2,
1136			.p32 = q->clg.a3,
1137			.p14 = q->clg.a4,
1138			.p23 = q->clg.a5,
1139		};
1140
1141		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1142			goto nla_put_failure;
1143		break;
1144	}
1145	case CLG_GILB_ELL: {
1146		struct tc_netem_gemodel ge = {
1147			.p = q->clg.a1,
1148			.r = q->clg.a2,
1149			.h = q->clg.a3,
1150			.k1 = q->clg.a4,
1151		};
1152
1153		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1154			goto nla_put_failure;
1155		break;
1156	}
1157	}
1158
1159	nla_nest_end(skb, nest);
1160	return 0;
1161
1162nla_put_failure:
1163	nla_nest_cancel(skb, nest);
1164	return -1;
1165}
1166
1167static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1168{
1169	const struct netem_sched_data *q = qdisc_priv(sch);
1170	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1171	struct tc_netem_qopt qopt;
1172	struct tc_netem_corr cor;
1173	struct tc_netem_reorder reorder;
1174	struct tc_netem_corrupt corrupt;
1175	struct tc_netem_rate rate;
1176	struct tc_netem_slot slot;
1177
1178	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1179			     UINT_MAX);
1180	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1181			    UINT_MAX);
1182	qopt.limit = q->limit;
1183	qopt.loss = q->loss;
1184	qopt.gap = q->gap;
1185	qopt.duplicate = q->duplicate;
1186	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1187		goto nla_put_failure;
1188
1189	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1190		goto nla_put_failure;
1191
1192	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1193		goto nla_put_failure;
1194
1195	cor.delay_corr = q->delay_cor.rho;
1196	cor.loss_corr = q->loss_cor.rho;
1197	cor.dup_corr = q->dup_cor.rho;
1198	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1199		goto nla_put_failure;
1200
1201	reorder.probability = q->reorder;
1202	reorder.correlation = q->reorder_cor.rho;
1203	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1204		goto nla_put_failure;
1205
1206	corrupt.probability = q->corrupt;
1207	corrupt.correlation = q->corrupt_cor.rho;
1208	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1209		goto nla_put_failure;
1210
1211	if (q->rate >= (1ULL << 32)) {
1212		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1213				      TCA_NETEM_PAD))
1214			goto nla_put_failure;
1215		rate.rate = ~0U;
1216	} else {
1217		rate.rate = q->rate;
1218	}
1219	rate.packet_overhead = q->packet_overhead;
1220	rate.cell_size = q->cell_size;
1221	rate.cell_overhead = q->cell_overhead;
1222	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1223		goto nla_put_failure;
1224
1225	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1226		goto nla_put_failure;
1227
1228	if (dump_loss_model(q, skb) != 0)
1229		goto nla_put_failure;
1230
1231	if (q->slot_config.min_delay | q->slot_config.max_delay |
1232	    q->slot_config.dist_jitter) {
1233		slot = q->slot_config;
1234		if (slot.max_packets == INT_MAX)
1235			slot.max_packets = 0;
1236		if (slot.max_bytes == INT_MAX)
1237			slot.max_bytes = 0;
1238		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1239			goto nla_put_failure;
1240	}
1241
1242	if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed,
1243			      TCA_NETEM_PAD))
1244		goto nla_put_failure;
1245
1246	return nla_nest_end(skb, nla);
1247
1248nla_put_failure:
1249	nlmsg_trim(skb, nla);
1250	return -1;
1251}
1252
1253static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1254			  struct sk_buff *skb, struct tcmsg *tcm)
1255{
1256	struct netem_sched_data *q = qdisc_priv(sch);
1257
1258	if (cl != 1 || !q->qdisc) 	/* only one class */
1259		return -ENOENT;
1260
1261	tcm->tcm_handle |= TC_H_MIN(1);
1262	tcm->tcm_info = q->qdisc->handle;
1263
1264	return 0;
1265}
1266
1267static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1268		     struct Qdisc **old, struct netlink_ext_ack *extack)
1269{
1270	struct netem_sched_data *q = qdisc_priv(sch);
1271
1272	*old = qdisc_replace(sch, new, &q->qdisc);
1273	return 0;
1274}
1275
1276static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1277{
1278	struct netem_sched_data *q = qdisc_priv(sch);
1279	return q->qdisc;
1280}
1281
1282static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1283{
1284	return 1;
1285}
1286
 
 
 
 
1287static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1288{
1289	if (!walker->stop) {
1290		if (!tc_qdisc_stats_dump(sch, 1, walker))
1291			return;
 
 
 
 
1292	}
1293}
1294
1295static const struct Qdisc_class_ops netem_class_ops = {
1296	.graft		=	netem_graft,
1297	.leaf		=	netem_leaf,
1298	.find		=	netem_find,
 
1299	.walk		=	netem_walk,
1300	.dump		=	netem_dump_class,
1301};
1302
1303static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1304	.id		=	"netem",
1305	.cl_ops		=	&netem_class_ops,
1306	.priv_size	=	sizeof(struct netem_sched_data),
1307	.enqueue	=	netem_enqueue,
1308	.dequeue	=	netem_dequeue,
1309	.peek		=	qdisc_peek_dequeued,
1310	.init		=	netem_init,
1311	.reset		=	netem_reset,
1312	.destroy	=	netem_destroy,
1313	.change		=	netem_change,
1314	.dump		=	netem_dump,
1315	.owner		=	THIS_MODULE,
1316};
1317MODULE_ALIAS_NET_SCH("netem");
1318
1319
1320static int __init netem_module_init(void)
1321{
1322	pr_info("netem: version " VERSION "\n");
1323	return register_qdisc(&netem_qdisc_ops);
1324}
1325static void __exit netem_module_exit(void)
1326{
1327	unregister_qdisc(&netem_qdisc_ops);
1328}
1329module_init(netem_module_init)
1330module_exit(netem_module_exit)
1331MODULE_LICENSE("GPL");
1332MODULE_DESCRIPTION("Network characteristics emulator qdisc");
v4.10.11
 
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
 
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
  26#include <linux/rbtree.h>
  27
 
  28#include <net/netlink.h>
  29#include <net/pkt_sched.h>
  30#include <net/inet_ecn.h>
  31
  32#define VERSION "1.3"
  33
  34/*	Network Emulation Queuing algorithm.
  35	====================================
  36
  37	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  38		 Network Emulation Tool
  39		 [2] Luigi Rizzo, DummyNet for FreeBSD
  40
  41	 ----------------------------------------------------------------
  42
  43	 This started out as a simple way to delay outgoing packets to
  44	 test TCP but has grown to include most of the functionality
  45	 of a full blown network emulator like NISTnet. It can delay
  46	 packets and add random jitter (and correlation). The random
  47	 distribution can be loaded from a table as well to provide
  48	 normal, Pareto, or experimental curves. Packet loss,
  49	 duplication, and reordering can also be emulated.
  50
  51	 This qdisc does not do classification that can be handled in
  52	 layering other disciplines.  It does not need to do bandwidth
  53	 control either since that can be handled by using token
  54	 bucket or other rate control.
  55
  56     Correlated Loss Generator models
  57
  58	Added generation of correlated loss according to the
  59	"Gilbert-Elliot" model, a 4-state markov model.
  60
  61	References:
  62	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  63	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  64	and intuitive loss model for packet networks and its implementation
  65	in the Netem module in the Linux kernel", available in [1]
  66
  67	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  68		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  69*/
  70
 
 
 
 
 
  71struct netem_sched_data {
  72	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  73	struct rb_root t_root;
  74
 
 
 
 
 
 
  75	/* optional qdisc for classful handling (NULL at netem init) */
  76	struct Qdisc	*qdisc;
  77
  78	struct qdisc_watchdog watchdog;
  79
  80	psched_tdiff_t latency;
  81	psched_tdiff_t jitter;
  82
  83	u32 loss;
  84	u32 ecn;
  85	u32 limit;
  86	u32 counter;
  87	u32 gap;
  88	u32 duplicate;
  89	u32 reorder;
  90	u32 corrupt;
  91	u64 rate;
  92	s32 packet_overhead;
  93	u32 cell_size;
  94	struct reciprocal_value cell_size_reciprocal;
  95	s32 cell_overhead;
  96
  97	struct crndstate {
  98		u32 last;
  99		u32 rho;
 100	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 101
 102	struct disttable {
 103		u32  size;
 104		s16 table[0];
 105	} *delay_dist;
 
 
 106
 107	enum  {
 108		CLG_RANDOM,
 109		CLG_4_STATES,
 110		CLG_GILB_ELL,
 111	} loss_model;
 112
 113	enum {
 114		TX_IN_GAP_PERIOD = 1,
 115		TX_IN_BURST_PERIOD,
 116		LOST_IN_GAP_PERIOD,
 117		LOST_IN_BURST_PERIOD,
 118	} _4_state_model;
 119
 120	enum {
 121		GOOD_STATE = 1,
 122		BAD_STATE,
 123	} GE_state_model;
 124
 125	/* Correlated Loss Generation models */
 126	struct clgstate {
 127		/* state of the Markov chain */
 128		u8 state;
 129
 130		/* 4-states and Gilbert-Elliot models */
 131		u32 a1;	/* p13 for 4-states or p for GE */
 132		u32 a2;	/* p31 for 4-states or r for GE */
 133		u32 a3;	/* p32 for 4-states or h for GE */
 134		u32 a4;	/* p14 for 4-states or 1-k for GE */
 135		u32 a5; /* p23 used only in 4-states */
 136	} clg;
 137
 
 
 
 
 
 
 
 
 138};
 139
 140/* Time stamp put into socket buffer control block
 141 * Only valid when skbs are in our internal t(ime)fifo queue.
 142 *
 143 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 144 * and skb->next & skb->prev are scratch space for a qdisc,
 145 * we save skb->tstamp value in skb->cb[] before destroying it.
 146 */
 147struct netem_skb_cb {
 148	psched_time_t	time_to_send;
 149	ktime_t		tstamp_save;
 150};
 151
 152
 153static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
 154{
 155	return rb_entry(rb, struct sk_buff, rbnode);
 156}
 157
 158static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 159{
 160	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 161	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 162	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 163}
 164
 165/* init_crandom - initialize correlated random number generator
 166 * Use entropy source for initial seed.
 167 */
 168static void init_crandom(struct crndstate *state, unsigned long rho)
 169{
 170	state->rho = rho;
 171	state->last = prandom_u32();
 172}
 173
 174/* get_crandom - correlated random number generator
 175 * Next number depends on last value.
 176 * rho is scaled to avoid floating point.
 177 */
 178static u32 get_crandom(struct crndstate *state)
 179{
 180	u64 value, rho;
 181	unsigned long answer;
 
 182
 183	if (state->rho == 0)	/* no correlation */
 184		return prandom_u32();
 185
 186	value = prandom_u32();
 187	rho = (u64)state->rho + 1;
 188	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 189	state->last = answer;
 190	return answer;
 191}
 192
 193/* loss_4state - 4-state model loss generator
 194 * Generates losses according to the 4-state Markov chain adopted in
 195 * the GI (General and Intuitive) loss model.
 196 */
 197static bool loss_4state(struct netem_sched_data *q)
 198{
 199	struct clgstate *clg = &q->clg;
 200	u32 rnd = prandom_u32();
 201
 202	/*
 203	 * Makes a comparison between rnd and the transition
 204	 * probabilities outgoing from the current state, then decides the
 205	 * next state and if the next packet has to be transmitted or lost.
 206	 * The four states correspond to:
 207	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 208	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 209	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 210	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 211	 */
 212	switch (clg->state) {
 213	case TX_IN_GAP_PERIOD:
 214		if (rnd < clg->a4) {
 215			clg->state = LOST_IN_BURST_PERIOD;
 216			return true;
 217		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 218			clg->state = LOST_IN_GAP_PERIOD;
 219			return true;
 220		} else if (clg->a1 + clg->a4 < rnd) {
 221			clg->state = TX_IN_GAP_PERIOD;
 222		}
 223
 224		break;
 225	case TX_IN_BURST_PERIOD:
 226		if (rnd < clg->a5) {
 227			clg->state = LOST_IN_GAP_PERIOD;
 228			return true;
 229		} else {
 230			clg->state = TX_IN_BURST_PERIOD;
 231		}
 232
 233		break;
 234	case LOST_IN_GAP_PERIOD:
 235		if (rnd < clg->a3)
 236			clg->state = TX_IN_BURST_PERIOD;
 237		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 238			clg->state = TX_IN_GAP_PERIOD;
 239		} else if (clg->a2 + clg->a3 < rnd) {
 240			clg->state = LOST_IN_GAP_PERIOD;
 241			return true;
 242		}
 243		break;
 244	case LOST_IN_BURST_PERIOD:
 245		clg->state = TX_IN_GAP_PERIOD;
 246		break;
 247	}
 248
 249	return false;
 250}
 251
 252/* loss_gilb_ell - Gilbert-Elliot model loss generator
 253 * Generates losses according to the Gilbert-Elliot loss model or
 254 * its special cases  (Gilbert or Simple Gilbert)
 255 *
 256 * Makes a comparison between random number and the transition
 257 * probabilities outgoing from the current state, then decides the
 258 * next state. A second random number is extracted and the comparison
 259 * with the loss probability of the current state decides if the next
 260 * packet will be transmitted or lost.
 261 */
 262static bool loss_gilb_ell(struct netem_sched_data *q)
 263{
 264	struct clgstate *clg = &q->clg;
 
 265
 266	switch (clg->state) {
 267	case GOOD_STATE:
 268		if (prandom_u32() < clg->a1)
 269			clg->state = BAD_STATE;
 270		if (prandom_u32() < clg->a4)
 271			return true;
 272		break;
 273	case BAD_STATE:
 274		if (prandom_u32() < clg->a2)
 275			clg->state = GOOD_STATE;
 276		if (prandom_u32() > clg->a3)
 277			return true;
 278	}
 279
 280	return false;
 281}
 282
 283static bool loss_event(struct netem_sched_data *q)
 284{
 285	switch (q->loss_model) {
 286	case CLG_RANDOM:
 287		/* Random packet drop 0 => none, ~0 => all */
 288		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 289
 290	case CLG_4_STATES:
 291		/* 4state loss model algorithm (used also for GI model)
 292		* Extracts a value from the markov 4 state loss generator,
 293		* if it is 1 drops a packet and if needed writes the event in
 294		* the kernel logs
 295		*/
 296		return loss_4state(q);
 297
 298	case CLG_GILB_ELL:
 299		/* Gilbert-Elliot loss model algorithm
 300		* Extracts a value from the Gilbert-Elliot loss generator,
 301		* if it is 1 drops a packet and if needed writes the event in
 302		* the kernel logs
 303		*/
 304		return loss_gilb_ell(q);
 305	}
 306
 307	return false;	/* not reached */
 308}
 309
 310
 311/* tabledist - return a pseudo-randomly distributed value with mean mu and
 312 * std deviation sigma.  Uses table lookup to approximate the desired
 313 * distribution, and a uniformly-distributed pseudo-random source.
 314 */
 315static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 316				struct crndstate *state,
 317				const struct disttable *dist)
 
 318{
 319	psched_tdiff_t x;
 320	long t;
 321	u32 rnd;
 322
 323	if (sigma == 0)
 324		return mu;
 325
 326	rnd = get_crandom(state);
 327
 328	/* default uniform distribution */
 329	if (dist == NULL)
 330		return (rnd % (2*sigma)) - sigma + mu;
 331
 332	t = dist->table[rnd % dist->size];
 333	x = (sigma % NETEM_DIST_SCALE) * t;
 334	if (x >= 0)
 335		x += NETEM_DIST_SCALE/2;
 336	else
 337		x -= NETEM_DIST_SCALE/2;
 338
 339	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 340}
 341
 342static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 343{
 344	u64 ticks;
 345
 346	len += q->packet_overhead;
 347
 348	if (q->cell_size) {
 349		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 350
 351		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 352			cells++;
 353		len = cells * (q->cell_size + q->cell_overhead);
 354	}
 355
 356	ticks = (u64)len * NSEC_PER_SEC;
 357
 358	do_div(ticks, q->rate);
 359	return PSCHED_NS2TICKS(ticks);
 360}
 361
 362static void tfifo_reset(struct Qdisc *sch)
 363{
 364	struct netem_sched_data *q = qdisc_priv(sch);
 365	struct rb_node *p;
 366
 367	while ((p = rb_first(&q->t_root))) {
 368		struct sk_buff *skb = netem_rb_to_skb(p);
 369
 370		rb_erase(p, &q->t_root);
 
 371		rtnl_kfree_skbs(skb, skb);
 372	}
 
 
 
 
 
 373}
 374
 375static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 376{
 377	struct netem_sched_data *q = qdisc_priv(sch);
 378	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 379	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 
 
 
 
 
 
 
 
 380
 381	while (*p) {
 382		struct sk_buff *skb;
 383
 384		parent = *p;
 385		skb = netem_rb_to_skb(parent);
 386		if (tnext >= netem_skb_cb(skb)->time_to_send)
 387			p = &parent->rb_right;
 388		else
 389			p = &parent->rb_left;
 
 
 
 390	}
 391	rb_link_node(&nskb->rbnode, parent, p);
 392	rb_insert_color(&nskb->rbnode, &q->t_root);
 393	sch->q.qlen++;
 394}
 395
 396/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 397 * when we statistically choose to corrupt one, we instead segment it, returning
 398 * the first packet to be corrupted, and re-enqueue the remaining frames
 399 */
 400static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 401				     struct sk_buff **to_free)
 402{
 403	struct sk_buff *segs;
 404	netdev_features_t features = netif_skb_features(skb);
 405
 406	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 407
 408	if (IS_ERR_OR_NULL(segs)) {
 409		qdisc_drop(skb, sch, to_free);
 410		return NULL;
 411	}
 412	consume_skb(skb);
 413	return segs;
 414}
 415
 416static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
 417{
 418	skb->next = qh->head;
 419
 420	if (!qh->head)
 421		qh->tail = skb;
 422	qh->head = skb;
 423	qh->qlen++;
 424}
 425
 426/*
 427 * Insert one skb into qdisc.
 428 * Note: parent depends on return value to account for queue length.
 429 * 	NET_XMIT_DROP: queue length didn't change.
 430 *      NET_XMIT_SUCCESS: one skb was queued.
 431 */
 432static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 433			 struct sk_buff **to_free)
 434{
 435	struct netem_sched_data *q = qdisc_priv(sch);
 436	/* We don't fill cb now as skb_unshare() may invalidate it */
 437	struct netem_skb_cb *cb;
 438	struct sk_buff *skb2;
 439	struct sk_buff *segs = NULL;
 440	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
 441	int nb = 0;
 442	int count = 1;
 443	int rc = NET_XMIT_SUCCESS;
 
 
 444
 445	/* Random duplication */
 446	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 447		++count;
 448
 449	/* Drop packet? */
 450	if (loss_event(q)) {
 451		if (q->ecn && INET_ECN_set_ce(skb))
 452			qdisc_qstats_drop(sch); /* mark packet */
 453		else
 454			--count;
 455	}
 456	if (count == 0) {
 457		qdisc_qstats_drop(sch);
 458		__qdisc_drop(skb, to_free);
 459		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 460	}
 461
 462	/* If a delay is expected, orphan the skb. (orphaning usually takes
 463	 * place at TX completion time, so _before_ the link transit delay)
 464	 */
 465	if (q->latency || q->jitter)
 466		skb_orphan_partial(skb);
 467
 468	/*
 469	 * If we need to duplicate packet, then re-insert at top of the
 470	 * qdisc tree, since parent queuer expects that only one
 471	 * skb will be queued.
 472	 */
 473	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 474		struct Qdisc *rootq = qdisc_root(sch);
 475		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 476
 477		q->duplicate = 0;
 478		rootq->enqueue(skb2, rootq, to_free);
 479		q->duplicate = dupsave;
 480	}
 481
 482	/*
 483	 * Randomized packet corruption.
 484	 * Make copy if needed since we are modifying
 485	 * If packet is going to be hardware checksummed, then
 486	 * do it now in software before we mangle it.
 487	 */
 488	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 489		if (skb_is_gso(skb)) {
 490			segs = netem_segment(skb, sch, to_free);
 491			if (!segs)
 492				return NET_XMIT_DROP;
 493		} else {
 494			segs = skb;
 
 
 495		}
 496
 497		skb = segs;
 498		segs = segs->next;
 499
 500		skb = skb_unshare(skb, GFP_ATOMIC);
 501		if (unlikely(!skb)) {
 502			qdisc_qstats_drop(sch);
 503			goto finish_segs;
 504		}
 505		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 506		    skb_checksum_help(skb)) {
 507			qdisc_drop(skb, sch, to_free);
 
 508			goto finish_segs;
 509		}
 510
 511		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 512			1<<(prandom_u32() % 8);
 513	}
 514
 515	if (unlikely(sch->q.qlen >= sch->limit))
 516		return qdisc_drop(skb, sch, to_free);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517
 518	qdisc_qstats_backlog_inc(sch, skb);
 519
 520	cb = netem_skb_cb(skb);
 521	if (q->gap == 0 ||		/* not doing reordering */
 522	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 523	    q->reorder < get_crandom(&q->reorder_cor)) {
 524		psched_time_t now;
 525		psched_tdiff_t delay;
 526
 527		delay = tabledist(q->latency, q->jitter,
 528				  &q->delay_cor, q->delay_dist);
 529
 530		now = psched_get_time();
 531
 532		if (q->rate) {
 533			struct sk_buff *last;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534
 535			if (sch->q.qlen)
 536				last = sch->q.tail;
 537			else
 538				last = netem_rb_to_skb(rb_last(&q->t_root));
 539			if (last) {
 540				/*
 541				 * Last packet in queue is reference point (now),
 542				 * calculate this time bonus and subtract
 543				 * from delay.
 544				 */
 545				delay -= netem_skb_cb(last)->time_to_send - now;
 546				delay = max_t(psched_tdiff_t, 0, delay);
 547				now = netem_skb_cb(last)->time_to_send;
 548			}
 549
 550			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
 551		}
 552
 553		cb->time_to_send = now + delay;
 554		cb->tstamp_save = skb->tstamp;
 555		++q->counter;
 556		tfifo_enqueue(skb, sch);
 557	} else {
 558		/*
 559		 * Do re-ordering by putting one out of N packets at the front
 560		 * of the queue.
 561		 */
 562		cb->time_to_send = psched_get_time();
 563		q->counter = 0;
 564
 565		netem_enqueue_skb_head(&sch->q, skb);
 566		sch->qstats.requeues++;
 567	}
 568
 569finish_segs:
 
 
 
 570	if (segs) {
 
 
 
 
 
 
 571		while (segs) {
 572			skb2 = segs->next;
 573			segs->next = NULL;
 574			qdisc_skb_cb(segs)->pkt_len = segs->len;
 575			last_len = segs->len;
 576			rc = qdisc_enqueue(segs, sch, to_free);
 577			if (rc != NET_XMIT_SUCCESS) {
 578				if (net_xmit_drop_count(rc))
 579					qdisc_qstats_drop(sch);
 580			} else {
 581				nb++;
 582				len += last_len;
 583			}
 584			segs = skb2;
 585		}
 586		sch->q.qlen += nb;
 587		if (nb > 1)
 588			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
 
 589	}
 590	return NET_XMIT_SUCCESS;
 591}
 592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 594{
 595	struct netem_sched_data *q = qdisc_priv(sch);
 596	struct sk_buff *skb;
 597	struct rb_node *p;
 598
 599tfifo_dequeue:
 600	skb = __qdisc_dequeue_head(&sch->q);
 601	if (skb) {
 
 602		qdisc_qstats_backlog_dec(sch, skb);
 603deliver:
 604		qdisc_bstats_update(sch, skb);
 605		return skb;
 606	}
 607	p = rb_first(&q->t_root);
 608	if (p) {
 609		psched_time_t time_to_send;
 610
 611		skb = netem_rb_to_skb(p);
 612
 613		/* if more time remaining? */
 614		time_to_send = netem_skb_cb(skb)->time_to_send;
 615		if (time_to_send <= psched_get_time()) {
 616			rb_erase(p, &q->t_root);
 617
 618			sch->q.qlen--;
 619			qdisc_qstats_backlog_dec(sch, skb);
 
 620			skb->next = NULL;
 621			skb->prev = NULL;
 622			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
 
 
 
 623
 624#ifdef CONFIG_NET_CLS_ACT
 625			/*
 626			 * If it's at ingress let's pretend the delay is
 627			 * from the network (tstamp will be updated).
 628			 */
 629			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 630				skb->tstamp = 0;
 631#endif
 632
 633			if (q->qdisc) {
 634				unsigned int pkt_len = qdisc_pkt_len(skb);
 635				struct sk_buff *to_free = NULL;
 636				int err;
 637
 638				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 639				kfree_skb_list(to_free);
 640				if (err != NET_XMIT_SUCCESS &&
 641				    net_xmit_drop_count(err)) {
 642					qdisc_qstats_drop(sch);
 643					qdisc_tree_reduce_backlog(sch, 1,
 644								  pkt_len);
 
 645				}
 646				goto tfifo_dequeue;
 647			}
 
 648			goto deliver;
 649		}
 650
 651		if (q->qdisc) {
 652			skb = q->qdisc->ops->dequeue(q->qdisc);
 653			if (skb)
 
 654				goto deliver;
 
 655		}
 656		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
 
 
 
 657	}
 658
 659	if (q->qdisc) {
 660		skb = q->qdisc->ops->dequeue(q->qdisc);
 661		if (skb)
 
 662			goto deliver;
 
 663	}
 664	return NULL;
 665}
 666
 667static void netem_reset(struct Qdisc *sch)
 668{
 669	struct netem_sched_data *q = qdisc_priv(sch);
 670
 671	qdisc_reset_queue(sch);
 672	tfifo_reset(sch);
 673	if (q->qdisc)
 674		qdisc_reset(q->qdisc);
 675	qdisc_watchdog_cancel(&q->watchdog);
 676}
 677
 678static void dist_free(struct disttable *d)
 679{
 680	kvfree(d);
 681}
 682
 683/*
 684 * Distribution data is a variable size payload containing
 685 * signed 16 bit values.
 686 */
 687static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 
 688{
 689	struct netem_sched_data *q = qdisc_priv(sch);
 690	size_t n = nla_len(attr)/sizeof(__s16);
 691	const __s16 *data = nla_data(attr);
 692	spinlock_t *root_lock;
 693	struct disttable *d;
 694	int i;
 695	size_t s;
 696
 697	if (n > NETEM_DIST_MAX)
 698		return -EINVAL;
 699
 700	s = sizeof(struct disttable) + n * sizeof(s16);
 701	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 702	if (!d)
 703		d = vmalloc(s);
 704	if (!d)
 705		return -ENOMEM;
 706
 707	d->size = n;
 708	for (i = 0; i < n; i++)
 709		d->table[i] = data[i];
 710
 711	root_lock = qdisc_root_sleeping_lock(sch);
 
 
 712
 713	spin_lock_bh(root_lock);
 714	swap(q->delay_dist, d);
 715	spin_unlock_bh(root_lock);
 716
 717	dist_free(d);
 718	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719}
 720
 721static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 722{
 723	const struct tc_netem_corr *c = nla_data(attr);
 724
 725	init_crandom(&q->delay_cor, c->delay_corr);
 726	init_crandom(&q->loss_cor, c->loss_corr);
 727	init_crandom(&q->dup_cor, c->dup_corr);
 728}
 729
 730static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 731{
 732	const struct tc_netem_reorder *r = nla_data(attr);
 733
 734	q->reorder = r->probability;
 735	init_crandom(&q->reorder_cor, r->correlation);
 736}
 737
 738static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 739{
 740	const struct tc_netem_corrupt *r = nla_data(attr);
 741
 742	q->corrupt = r->probability;
 743	init_crandom(&q->corrupt_cor, r->correlation);
 744}
 745
 746static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 747{
 748	const struct tc_netem_rate *r = nla_data(attr);
 749
 750	q->rate = r->rate;
 751	q->packet_overhead = r->packet_overhead;
 752	q->cell_size = r->cell_size;
 753	q->cell_overhead = r->cell_overhead;
 754	if (q->cell_size)
 755		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 756	else
 757		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 758}
 759
 760static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 761{
 762	const struct nlattr *la;
 763	int rem;
 764
 765	nla_for_each_nested(la, attr, rem) {
 766		u16 type = nla_type(la);
 767
 768		switch (type) {
 769		case NETEM_LOSS_GI: {
 770			const struct tc_netem_gimodel *gi = nla_data(la);
 771
 772			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 773				pr_info("netem: incorrect gi model size\n");
 774				return -EINVAL;
 775			}
 776
 777			q->loss_model = CLG_4_STATES;
 778
 779			q->clg.state = TX_IN_GAP_PERIOD;
 780			q->clg.a1 = gi->p13;
 781			q->clg.a2 = gi->p31;
 782			q->clg.a3 = gi->p32;
 783			q->clg.a4 = gi->p14;
 784			q->clg.a5 = gi->p23;
 785			break;
 786		}
 787
 788		case NETEM_LOSS_GE: {
 789			const struct tc_netem_gemodel *ge = nla_data(la);
 790
 791			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 792				pr_info("netem: incorrect ge model size\n");
 793				return -EINVAL;
 794			}
 795
 796			q->loss_model = CLG_GILB_ELL;
 797			q->clg.state = GOOD_STATE;
 798			q->clg.a1 = ge->p;
 799			q->clg.a2 = ge->r;
 800			q->clg.a3 = ge->h;
 801			q->clg.a4 = ge->k1;
 802			break;
 803		}
 804
 805		default:
 806			pr_info("netem: unknown loss type %u\n", type);
 807			return -EINVAL;
 808		}
 809	}
 810
 811	return 0;
 812}
 813
 814static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 815	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 816	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 817	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 818	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 819	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 820	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 821	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 
 
 
 
 822};
 823
 824static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 825		      const struct nla_policy *policy, int len)
 826{
 827	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 828
 829	if (nested_len < 0) {
 830		pr_info("netem: invalid attributes len %d\n", nested_len);
 831		return -EINVAL;
 832	}
 833
 834	if (nested_len >= nla_attr_size(0))
 835		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 836				 nested_len, policy);
 
 837
 838	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 839	return 0;
 840}
 841
 842/* Parse netlink message to set options */
 843static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 
 844{
 845	struct netem_sched_data *q = qdisc_priv(sch);
 846	struct nlattr *tb[TCA_NETEM_MAX + 1];
 
 
 847	struct tc_netem_qopt *qopt;
 848	struct clgstate old_clg;
 849	int old_loss_model = CLG_RANDOM;
 850	int ret;
 851
 852	if (opt == NULL)
 853		return -EINVAL;
 854
 855	qopt = nla_data(opt);
 856	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 857	if (ret < 0)
 858		return ret;
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 860	/* backup q->clg and q->loss_model */
 861	old_clg = q->clg;
 862	old_loss_model = q->loss_model;
 863
 864	if (tb[TCA_NETEM_LOSS]) {
 865		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 866		if (ret) {
 867			q->loss_model = old_loss_model;
 868			return ret;
 
 869		}
 870	} else {
 871		q->loss_model = CLG_RANDOM;
 872	}
 873
 874	if (tb[TCA_NETEM_DELAY_DIST]) {
 875		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 876		if (ret) {
 877			/* recover clg and loss_model, in case of
 878			 * q->clg and q->loss_model were modified
 879			 * in get_loss_clg()
 880			 */
 881			q->clg = old_clg;
 882			q->loss_model = old_loss_model;
 883			return ret;
 884		}
 885	}
 886
 887	sch->limit = qopt->limit;
 888
 889	q->latency = qopt->latency;
 890	q->jitter = qopt->jitter;
 891	q->limit = qopt->limit;
 892	q->gap = qopt->gap;
 893	q->counter = 0;
 894	q->loss = qopt->loss;
 895	q->duplicate = qopt->duplicate;
 896
 897	/* for compatibility with earlier versions.
 898	 * if gap is set, need to assume 100% probability
 899	 */
 900	if (q->gap)
 901		q->reorder = ~0;
 902
 903	if (tb[TCA_NETEM_CORR])
 904		get_correlation(q, tb[TCA_NETEM_CORR]);
 905
 906	if (tb[TCA_NETEM_REORDER])
 907		get_reorder(q, tb[TCA_NETEM_REORDER]);
 908
 909	if (tb[TCA_NETEM_CORRUPT])
 910		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
 911
 912	if (tb[TCA_NETEM_RATE])
 913		get_rate(q, tb[TCA_NETEM_RATE]);
 914
 915	if (tb[TCA_NETEM_RATE64])
 916		q->rate = max_t(u64, q->rate,
 917				nla_get_u64(tb[TCA_NETEM_RATE64]));
 918
 
 
 
 
 
 
 919	if (tb[TCA_NETEM_ECN])
 920		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922	return ret;
 923}
 924
 925static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 
 926{
 927	struct netem_sched_data *q = qdisc_priv(sch);
 928	int ret;
 929
 
 
 930	if (!opt)
 931		return -EINVAL;
 932
 933	qdisc_watchdog_init(&q->watchdog, sch);
 934
 935	q->loss_model = CLG_RANDOM;
 936	ret = netem_change(sch, opt);
 937	if (ret)
 938		pr_info("netem: change failed\n");
 939	return ret;
 940}
 941
 942static void netem_destroy(struct Qdisc *sch)
 943{
 944	struct netem_sched_data *q = qdisc_priv(sch);
 945
 946	qdisc_watchdog_cancel(&q->watchdog);
 947	if (q->qdisc)
 948		qdisc_destroy(q->qdisc);
 949	dist_free(q->delay_dist);
 
 950}
 951
 952static int dump_loss_model(const struct netem_sched_data *q,
 953			   struct sk_buff *skb)
 954{
 955	struct nlattr *nest;
 956
 957	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 958	if (nest == NULL)
 959		goto nla_put_failure;
 960
 961	switch (q->loss_model) {
 962	case CLG_RANDOM:
 963		/* legacy loss model */
 964		nla_nest_cancel(skb, nest);
 965		return 0;	/* no data */
 966
 967	case CLG_4_STATES: {
 968		struct tc_netem_gimodel gi = {
 969			.p13 = q->clg.a1,
 970			.p31 = q->clg.a2,
 971			.p32 = q->clg.a3,
 972			.p14 = q->clg.a4,
 973			.p23 = q->clg.a5,
 974		};
 975
 976		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 977			goto nla_put_failure;
 978		break;
 979	}
 980	case CLG_GILB_ELL: {
 981		struct tc_netem_gemodel ge = {
 982			.p = q->clg.a1,
 983			.r = q->clg.a2,
 984			.h = q->clg.a3,
 985			.k1 = q->clg.a4,
 986		};
 987
 988		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 989			goto nla_put_failure;
 990		break;
 991	}
 992	}
 993
 994	nla_nest_end(skb, nest);
 995	return 0;
 996
 997nla_put_failure:
 998	nla_nest_cancel(skb, nest);
 999	return -1;
1000}
1001
1002static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1003{
1004	const struct netem_sched_data *q = qdisc_priv(sch);
1005	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1006	struct tc_netem_qopt qopt;
1007	struct tc_netem_corr cor;
1008	struct tc_netem_reorder reorder;
1009	struct tc_netem_corrupt corrupt;
1010	struct tc_netem_rate rate;
 
1011
1012	qopt.latency = q->latency;
1013	qopt.jitter = q->jitter;
 
 
1014	qopt.limit = q->limit;
1015	qopt.loss = q->loss;
1016	qopt.gap = q->gap;
1017	qopt.duplicate = q->duplicate;
1018	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1019		goto nla_put_failure;
1020
 
 
 
 
 
 
1021	cor.delay_corr = q->delay_cor.rho;
1022	cor.loss_corr = q->loss_cor.rho;
1023	cor.dup_corr = q->dup_cor.rho;
1024	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1025		goto nla_put_failure;
1026
1027	reorder.probability = q->reorder;
1028	reorder.correlation = q->reorder_cor.rho;
1029	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1030		goto nla_put_failure;
1031
1032	corrupt.probability = q->corrupt;
1033	corrupt.correlation = q->corrupt_cor.rho;
1034	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1035		goto nla_put_failure;
1036
1037	if (q->rate >= (1ULL << 32)) {
1038		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1039				      TCA_NETEM_PAD))
1040			goto nla_put_failure;
1041		rate.rate = ~0U;
1042	} else {
1043		rate.rate = q->rate;
1044	}
1045	rate.packet_overhead = q->packet_overhead;
1046	rate.cell_size = q->cell_size;
1047	rate.cell_overhead = q->cell_overhead;
1048	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1049		goto nla_put_failure;
1050
1051	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1052		goto nla_put_failure;
1053
1054	if (dump_loss_model(q, skb) != 0)
1055		goto nla_put_failure;
1056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	return nla_nest_end(skb, nla);
1058
1059nla_put_failure:
1060	nlmsg_trim(skb, nla);
1061	return -1;
1062}
1063
1064static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1065			  struct sk_buff *skb, struct tcmsg *tcm)
1066{
1067	struct netem_sched_data *q = qdisc_priv(sch);
1068
1069	if (cl != 1 || !q->qdisc) 	/* only one class */
1070		return -ENOENT;
1071
1072	tcm->tcm_handle |= TC_H_MIN(1);
1073	tcm->tcm_info = q->qdisc->handle;
1074
1075	return 0;
1076}
1077
1078static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1079		     struct Qdisc **old)
1080{
1081	struct netem_sched_data *q = qdisc_priv(sch);
1082
1083	*old = qdisc_replace(sch, new, &q->qdisc);
1084	return 0;
1085}
1086
1087static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1088{
1089	struct netem_sched_data *q = qdisc_priv(sch);
1090	return q->qdisc;
1091}
1092
1093static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1094{
1095	return 1;
1096}
1097
1098static void netem_put(struct Qdisc *sch, unsigned long arg)
1099{
1100}
1101
1102static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1103{
1104	if (!walker->stop) {
1105		if (walker->count >= walker->skip)
1106			if (walker->fn(sch, 1, walker) < 0) {
1107				walker->stop = 1;
1108				return;
1109			}
1110		walker->count++;
1111	}
1112}
1113
1114static const struct Qdisc_class_ops netem_class_ops = {
1115	.graft		=	netem_graft,
1116	.leaf		=	netem_leaf,
1117	.get		=	netem_get,
1118	.put		=	netem_put,
1119	.walk		=	netem_walk,
1120	.dump		=	netem_dump_class,
1121};
1122
1123static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1124	.id		=	"netem",
1125	.cl_ops		=	&netem_class_ops,
1126	.priv_size	=	sizeof(struct netem_sched_data),
1127	.enqueue	=	netem_enqueue,
1128	.dequeue	=	netem_dequeue,
1129	.peek		=	qdisc_peek_dequeued,
1130	.init		=	netem_init,
1131	.reset		=	netem_reset,
1132	.destroy	=	netem_destroy,
1133	.change		=	netem_change,
1134	.dump		=	netem_dump,
1135	.owner		=	THIS_MODULE,
1136};
 
1137
1138
1139static int __init netem_module_init(void)
1140{
1141	pr_info("netem: version " VERSION "\n");
1142	return register_qdisc(&netem_qdisc_ops);
1143}
1144static void __exit netem_module_exit(void)
1145{
1146	unregister_qdisc(&netem_qdisc_ops);
1147}
1148module_init(netem_module_init)
1149module_exit(netem_module_exit)
1150MODULE_LICENSE("GPL");