Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_rwsem	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_lock
  25 *     mapping->invalidate_lock (in filemap_fault)
  26 *       folio_lock
  27 *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
  28 *           vma_start_write
  29 *             mapping->i_mmap_rwsem
  30 *               anon_vma->rwsem
  31 *                 mm->page_table_lock or pte_lock
  32 *                   swap_lock (in swap_duplicate, swap_info_get)
  33 *                     mmlist_lock (in mmput, drain_mmlist and others)
  34 *                     mapping->private_lock (in block_dirty_folio)
  35 *                         i_pages lock (widely used)
  36 *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
  37 *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  39 *                       sb_lock (within inode_lock in fs/fs-writeback.c)
  40 *                       i_pages lock (widely used, in set_page_dirty,
  41 *                                 in arch-dependent flush_dcache_mmap_lock,
  42 *                                 within bdi.wb->list_lock in __sync_single_inode)
  43 *
  44 * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
  45 *   ->tasklist_lock
  46 *     pte map lock
  47 *
  48 * hugetlbfs PageHuge() take locks in this order:
  49 *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  50 *     vma_lock (hugetlb specific lock for pmd_sharing)
  51 *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
  52 *         folio_lock
  53 */
  54
  55#include <linux/mm.h>
  56#include <linux/sched/mm.h>
  57#include <linux/sched/task.h>
  58#include <linux/pagemap.h>
  59#include <linux/swap.h>
  60#include <linux/swapops.h>
  61#include <linux/slab.h>
  62#include <linux/init.h>
  63#include <linux/ksm.h>
  64#include <linux/rmap.h>
  65#include <linux/rcupdate.h>
  66#include <linux/export.h>
  67#include <linux/memcontrol.h>
  68#include <linux/mmu_notifier.h>
  69#include <linux/migrate.h>
  70#include <linux/hugetlb.h>
  71#include <linux/huge_mm.h>
  72#include <linux/backing-dev.h>
  73#include <linux/page_idle.h>
  74#include <linux/memremap.h>
  75#include <linux/userfaultfd_k.h>
  76#include <linux/mm_inline.h>
  77#include <linux/oom.h>
  78
  79#include <asm/tlbflush.h>
  80
  81#define CREATE_TRACE_POINTS
  82#include <trace/events/tlb.h>
  83#include <trace/events/migrate.h>
  84
  85#include "internal.h"
  86
  87static struct kmem_cache *anon_vma_cachep;
  88static struct kmem_cache *anon_vma_chain_cachep;
  89
  90static inline struct anon_vma *anon_vma_alloc(void)
  91{
  92	struct anon_vma *anon_vma;
  93
  94	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  95	if (anon_vma) {
  96		atomic_set(&anon_vma->refcount, 1);
  97		anon_vma->num_children = 0;
  98		anon_vma->num_active_vmas = 0;
  99		anon_vma->parent = anon_vma;
 100		/*
 101		 * Initialise the anon_vma root to point to itself. If called
 102		 * from fork, the root will be reset to the parents anon_vma.
 103		 */
 104		anon_vma->root = anon_vma;
 105	}
 106
 107	return anon_vma;
 108}
 109
 110static inline void anon_vma_free(struct anon_vma *anon_vma)
 111{
 112	VM_BUG_ON(atomic_read(&anon_vma->refcount));
 113
 114	/*
 115	 * Synchronize against folio_lock_anon_vma_read() such that
 116	 * we can safely hold the lock without the anon_vma getting
 117	 * freed.
 118	 *
 119	 * Relies on the full mb implied by the atomic_dec_and_test() from
 120	 * put_anon_vma() against the acquire barrier implied by
 121	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
 122	 *
 123	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
 124	 *   down_read_trylock()		  atomic_dec_and_test()
 125	 *   LOCK				  MB
 126	 *   atomic_read()			  rwsem_is_locked()
 127	 *
 128	 * LOCK should suffice since the actual taking of the lock must
 129	 * happen _before_ what follows.
 130	 */
 131	might_sleep();
 132	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 133		anon_vma_lock_write(anon_vma);
 134		anon_vma_unlock_write(anon_vma);
 135	}
 136
 137	kmem_cache_free(anon_vma_cachep, anon_vma);
 138}
 139
 140static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 141{
 142	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 143}
 144
 145static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 146{
 147	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 148}
 149
 150static void anon_vma_chain_link(struct vm_area_struct *vma,
 151				struct anon_vma_chain *avc,
 152				struct anon_vma *anon_vma)
 153{
 154	avc->vma = vma;
 155	avc->anon_vma = anon_vma;
 156	list_add(&avc->same_vma, &vma->anon_vma_chain);
 157	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 158}
 159
 160/**
 161 * __anon_vma_prepare - attach an anon_vma to a memory region
 162 * @vma: the memory region in question
 163 *
 164 * This makes sure the memory mapping described by 'vma' has
 165 * an 'anon_vma' attached to it, so that we can associate the
 166 * anonymous pages mapped into it with that anon_vma.
 167 *
 168 * The common case will be that we already have one, which
 169 * is handled inline by anon_vma_prepare(). But if
 170 * not we either need to find an adjacent mapping that we
 171 * can re-use the anon_vma from (very common when the only
 172 * reason for splitting a vma has been mprotect()), or we
 173 * allocate a new one.
 174 *
 175 * Anon-vma allocations are very subtle, because we may have
 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
 177 * and that may actually touch the rwsem even in the newly
 178 * allocated vma (it depends on RCU to make sure that the
 179 * anon_vma isn't actually destroyed).
 180 *
 181 * As a result, we need to do proper anon_vma locking even
 182 * for the new allocation. At the same time, we do not want
 183 * to do any locking for the common case of already having
 184 * an anon_vma.
 
 
 185 */
 186int __anon_vma_prepare(struct vm_area_struct *vma)
 187{
 188	struct mm_struct *mm = vma->vm_mm;
 189	struct anon_vma *anon_vma, *allocated;
 190	struct anon_vma_chain *avc;
 191
 192	mmap_assert_locked(mm);
 193	might_sleep();
 194
 195	avc = anon_vma_chain_alloc(GFP_KERNEL);
 196	if (!avc)
 197		goto out_enomem;
 198
 199	anon_vma = find_mergeable_anon_vma(vma);
 200	allocated = NULL;
 201	if (!anon_vma) {
 202		anon_vma = anon_vma_alloc();
 203		if (unlikely(!anon_vma))
 204			goto out_enomem_free_avc;
 205		anon_vma->num_children++; /* self-parent link for new root */
 206		allocated = anon_vma;
 207	}
 208
 209	anon_vma_lock_write(anon_vma);
 210	/* page_table_lock to protect against threads */
 211	spin_lock(&mm->page_table_lock);
 212	if (likely(!vma->anon_vma)) {
 213		vma->anon_vma = anon_vma;
 214		anon_vma_chain_link(vma, avc, anon_vma);
 215		anon_vma->num_active_vmas++;
 
 216		allocated = NULL;
 217		avc = NULL;
 218	}
 219	spin_unlock(&mm->page_table_lock);
 220	anon_vma_unlock_write(anon_vma);
 221
 222	if (unlikely(allocated))
 223		put_anon_vma(allocated);
 224	if (unlikely(avc))
 225		anon_vma_chain_free(avc);
 226
 227	return 0;
 228
 229 out_enomem_free_avc:
 230	anon_vma_chain_free(avc);
 231 out_enomem:
 232	return -ENOMEM;
 233}
 234
 235/*
 236 * This is a useful helper function for locking the anon_vma root as
 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 238 * have the same vma.
 239 *
 240 * Such anon_vma's should have the same root, so you'd expect to see
 241 * just a single mutex_lock for the whole traversal.
 242 */
 243static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 244{
 245	struct anon_vma *new_root = anon_vma->root;
 246	if (new_root != root) {
 247		if (WARN_ON_ONCE(root))
 248			up_write(&root->rwsem);
 249		root = new_root;
 250		down_write(&root->rwsem);
 251	}
 252	return root;
 253}
 254
 255static inline void unlock_anon_vma_root(struct anon_vma *root)
 256{
 257	if (root)
 258		up_write(&root->rwsem);
 259}
 260
 261/*
 262 * Attach the anon_vmas from src to dst.
 263 * Returns 0 on success, -ENOMEM on failure.
 264 *
 265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
 266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
 267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
 268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
 269 * call, we can identify this case by checking (!dst->anon_vma &&
 270 * src->anon_vma).
 271 *
 272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
 273 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
 274 * This prevents degradation of anon_vma hierarchy to endless linear chain in
 275 * case of constantly forking task. On the other hand, an anon_vma with more
 276 * than one child isn't reused even if there was no alive vma, thus rmap
 277 * walker has a good chance of avoiding scanning the whole hierarchy when it
 278 * searches where page is mapped.
 279 */
 280int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 281{
 282	struct anon_vma_chain *avc, *pavc;
 283	struct anon_vma *root = NULL;
 284
 285	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 286		struct anon_vma *anon_vma;
 287
 288		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 289		if (unlikely(!avc)) {
 290			unlock_anon_vma_root(root);
 291			root = NULL;
 292			avc = anon_vma_chain_alloc(GFP_KERNEL);
 293			if (!avc)
 294				goto enomem_failure;
 295		}
 296		anon_vma = pavc->anon_vma;
 297		root = lock_anon_vma_root(root, anon_vma);
 298		anon_vma_chain_link(dst, avc, anon_vma);
 299
 300		/*
 301		 * Reuse existing anon_vma if it has no vma and only one
 302		 * anon_vma child.
 303		 *
 304		 * Root anon_vma is never reused:
 
 305		 * it has self-parent reference and at least one child.
 306		 */
 307		if (!dst->anon_vma && src->anon_vma &&
 308		    anon_vma->num_children < 2 &&
 309		    anon_vma->num_active_vmas == 0)
 310			dst->anon_vma = anon_vma;
 311	}
 312	if (dst->anon_vma)
 313		dst->anon_vma->num_active_vmas++;
 314	unlock_anon_vma_root(root);
 315	return 0;
 316
 317 enomem_failure:
 318	/*
 319	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
 320	 * be incorrectly decremented in unlink_anon_vmas().
 321	 * We can safely do this because callers of anon_vma_clone() don't care
 322	 * about dst->anon_vma if anon_vma_clone() failed.
 323	 */
 324	dst->anon_vma = NULL;
 325	unlink_anon_vmas(dst);
 326	return -ENOMEM;
 327}
 328
 329/*
 330 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 331 * the corresponding VMA in the parent process is attached to.
 332 * Returns 0 on success, non-zero on failure.
 333 */
 334int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 335{
 336	struct anon_vma_chain *avc;
 337	struct anon_vma *anon_vma;
 338	int error;
 339
 340	/* Don't bother if the parent process has no anon_vma here. */
 341	if (!pvma->anon_vma)
 342		return 0;
 343
 344	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 345	vma->anon_vma = NULL;
 346
 347	/*
 348	 * First, attach the new VMA to the parent VMA's anon_vmas,
 349	 * so rmap can find non-COWed pages in child processes.
 350	 */
 351	error = anon_vma_clone(vma, pvma);
 352	if (error)
 353		return error;
 354
 355	/* An existing anon_vma has been reused, all done then. */
 356	if (vma->anon_vma)
 357		return 0;
 358
 359	/* Then add our own anon_vma. */
 360	anon_vma = anon_vma_alloc();
 361	if (!anon_vma)
 362		goto out_error;
 363	anon_vma->num_active_vmas++;
 364	avc = anon_vma_chain_alloc(GFP_KERNEL);
 365	if (!avc)
 366		goto out_error_free_anon_vma;
 367
 368	/*
 369	 * The root anon_vma's rwsem is the lock actually used when we
 370	 * lock any of the anon_vmas in this anon_vma tree.
 371	 */
 372	anon_vma->root = pvma->anon_vma->root;
 373	anon_vma->parent = pvma->anon_vma;
 374	/*
 375	 * With refcounts, an anon_vma can stay around longer than the
 376	 * process it belongs to. The root anon_vma needs to be pinned until
 377	 * this anon_vma is freed, because the lock lives in the root.
 378	 */
 379	get_anon_vma(anon_vma->root);
 380	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 381	vma->anon_vma = anon_vma;
 382	anon_vma_lock_write(anon_vma);
 383	anon_vma_chain_link(vma, avc, anon_vma);
 384	anon_vma->parent->num_children++;
 385	anon_vma_unlock_write(anon_vma);
 386
 387	return 0;
 388
 389 out_error_free_anon_vma:
 390	put_anon_vma(anon_vma);
 391 out_error:
 392	unlink_anon_vmas(vma);
 393	return -ENOMEM;
 394}
 395
 396void unlink_anon_vmas(struct vm_area_struct *vma)
 397{
 398	struct anon_vma_chain *avc, *next;
 399	struct anon_vma *root = NULL;
 400
 401	/*
 402	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 403	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 404	 */
 405	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 406		struct anon_vma *anon_vma = avc->anon_vma;
 407
 408		root = lock_anon_vma_root(root, anon_vma);
 409		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 410
 411		/*
 412		 * Leave empty anon_vmas on the list - we'll need
 413		 * to free them outside the lock.
 414		 */
 415		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 416			anon_vma->parent->num_children--;
 417			continue;
 418		}
 419
 420		list_del(&avc->same_vma);
 421		anon_vma_chain_free(avc);
 422	}
 423	if (vma->anon_vma) {
 424		vma->anon_vma->num_active_vmas--;
 425
 426		/*
 427		 * vma would still be needed after unlink, and anon_vma will be prepared
 428		 * when handle fault.
 429		 */
 430		vma->anon_vma = NULL;
 431	}
 432	unlock_anon_vma_root(root);
 433
 434	/*
 435	 * Iterate the list once more, it now only contains empty and unlinked
 436	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 437	 * needing to write-acquire the anon_vma->root->rwsem.
 438	 */
 439	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 440		struct anon_vma *anon_vma = avc->anon_vma;
 441
 442		VM_WARN_ON(anon_vma->num_children);
 443		VM_WARN_ON(anon_vma->num_active_vmas);
 444		put_anon_vma(anon_vma);
 445
 446		list_del(&avc->same_vma);
 447		anon_vma_chain_free(avc);
 448	}
 449}
 450
 451static void anon_vma_ctor(void *data)
 452{
 453	struct anon_vma *anon_vma = data;
 454
 455	init_rwsem(&anon_vma->rwsem);
 456	atomic_set(&anon_vma->refcount, 0);
 457	anon_vma->rb_root = RB_ROOT_CACHED;
 458}
 459
 460void __init anon_vma_init(void)
 461{
 462	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 463			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 464			anon_vma_ctor);
 465	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 466			SLAB_PANIC|SLAB_ACCOUNT);
 467}
 468
 469/*
 470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 471 *
 472 * Since there is no serialization what so ever against folio_remove_rmap_*()
 473 * the best this function can do is return a refcount increased anon_vma
 474 * that might have been relevant to this page.
 475 *
 476 * The page might have been remapped to a different anon_vma or the anon_vma
 477 * returned may already be freed (and even reused).
 478 *
 479 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 481 * ensure that any anon_vma obtained from the page will still be valid for as
 482 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 483 *
 484 * All users of this function must be very careful when walking the anon_vma
 485 * chain and verify that the page in question is indeed mapped in it
 486 * [ something equivalent to page_mapped_in_vma() ].
 487 *
 488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
 489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
 490 * if there is a mapcount, we can dereference the anon_vma after observing
 491 * those.
 492 *
 493 * NOTE: the caller should normally hold folio lock when calling this.  If
 494 * not, the caller needs to double check the anon_vma didn't change after
 495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
 496 * concurrently without folio lock protection). See folio_lock_anon_vma_read()
 497 * which has already covered that, and comment above remap_pages().
 498 */
 499struct anon_vma *folio_get_anon_vma(const struct folio *folio)
 500{
 501	struct anon_vma *anon_vma = NULL;
 502	unsigned long anon_mapping;
 503
 504	rcu_read_lock();
 505	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
 506	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 507		goto out;
 508	if (!folio_mapped(folio))
 509		goto out;
 510
 511	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 512	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 513		anon_vma = NULL;
 514		goto out;
 515	}
 516
 517	/*
 518	 * If this folio is still mapped, then its anon_vma cannot have been
 519	 * freed.  But if it has been unmapped, we have no security against the
 520	 * anon_vma structure being freed and reused (for another anon_vma:
 521	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 522	 * above cannot corrupt).
 523	 */
 524	if (!folio_mapped(folio)) {
 525		rcu_read_unlock();
 526		put_anon_vma(anon_vma);
 527		return NULL;
 528	}
 529out:
 530	rcu_read_unlock();
 531
 532	return anon_vma;
 533}
 534
 535/*
 536 * Similar to folio_get_anon_vma() except it locks the anon_vma.
 537 *
 538 * Its a little more complex as it tries to keep the fast path to a single
 539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 540 * reference like with folio_get_anon_vma() and then block on the mutex
 541 * on !rwc->try_lock case.
 542 */
 543struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
 544					  struct rmap_walk_control *rwc)
 545{
 546	struct anon_vma *anon_vma = NULL;
 547	struct anon_vma *root_anon_vma;
 548	unsigned long anon_mapping;
 549
 550retry:
 551	rcu_read_lock();
 552	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
 553	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 554		goto out;
 555	if (!folio_mapped(folio))
 556		goto out;
 557
 558	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 559	root_anon_vma = READ_ONCE(anon_vma->root);
 560	if (down_read_trylock(&root_anon_vma->rwsem)) {
 561		/*
 562		 * folio_move_anon_rmap() might have changed the anon_vma as we
 563		 * might not hold the folio lock here.
 564		 */
 565		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
 566			     anon_mapping)) {
 567			up_read(&root_anon_vma->rwsem);
 568			rcu_read_unlock();
 569			goto retry;
 570		}
 571
 572		/*
 573		 * If the folio is still mapped, then this anon_vma is still
 574		 * its anon_vma, and holding the mutex ensures that it will
 575		 * not go away, see anon_vma_free().
 576		 */
 577		if (!folio_mapped(folio)) {
 578			up_read(&root_anon_vma->rwsem);
 579			anon_vma = NULL;
 580		}
 581		goto out;
 582	}
 583
 584	if (rwc && rwc->try_lock) {
 585		anon_vma = NULL;
 586		rwc->contended = true;
 587		goto out;
 588	}
 589
 590	/* trylock failed, we got to sleep */
 591	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 592		anon_vma = NULL;
 593		goto out;
 594	}
 595
 596	if (!folio_mapped(folio)) {
 597		rcu_read_unlock();
 598		put_anon_vma(anon_vma);
 599		return NULL;
 600	}
 601
 602	/* we pinned the anon_vma, its safe to sleep */
 603	rcu_read_unlock();
 604	anon_vma_lock_read(anon_vma);
 605
 606	/*
 607	 * folio_move_anon_rmap() might have changed the anon_vma as we might
 608	 * not hold the folio lock here.
 609	 */
 610	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
 611		     anon_mapping)) {
 612		anon_vma_unlock_read(anon_vma);
 613		put_anon_vma(anon_vma);
 614		anon_vma = NULL;
 615		goto retry;
 616	}
 617
 618	if (atomic_dec_and_test(&anon_vma->refcount)) {
 619		/*
 620		 * Oops, we held the last refcount, release the lock
 621		 * and bail -- can't simply use put_anon_vma() because
 622		 * we'll deadlock on the anon_vma_lock_write() recursion.
 623		 */
 624		anon_vma_unlock_read(anon_vma);
 625		__put_anon_vma(anon_vma);
 626		anon_vma = NULL;
 627	}
 628
 629	return anon_vma;
 630
 631out:
 632	rcu_read_unlock();
 633	return anon_vma;
 634}
 635
 
 
 
 
 
 636#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 637/*
 638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 639 * important if a PTE was dirty when it was unmapped that it's flushed
 640 * before any IO is initiated on the page to prevent lost writes. Similarly,
 641 * it must be flushed before freeing to prevent data leakage.
 642 */
 643void try_to_unmap_flush(void)
 644{
 645	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 
 646
 647	if (!tlb_ubc->flush_required)
 648		return;
 649
 650	arch_tlbbatch_flush(&tlb_ubc->arch);
 
 
 
 
 
 
 
 
 
 
 651	tlb_ubc->flush_required = false;
 652	tlb_ubc->writable = false;
 
 653}
 654
 655/* Flush iff there are potentially writable TLB entries that can race with IO */
 656void try_to_unmap_flush_dirty(void)
 657{
 658	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 659
 660	if (tlb_ubc->writable)
 661		try_to_unmap_flush();
 662}
 663
 664/*
 665 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
 666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
 667 */
 668#define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
 669#define TLB_FLUSH_BATCH_PENDING_MASK			\
 670	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
 671#define TLB_FLUSH_BATCH_PENDING_LARGE			\
 672	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
 673
 674static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
 675				      unsigned long uaddr)
 676{
 677	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 678	int batch;
 679	bool writable = pte_dirty(pteval);
 680
 681	if (!pte_accessible(mm, pteval))
 682		return;
 683
 684	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
 685	tlb_ubc->flush_required = true;
 686
 687	/*
 688	 * Ensure compiler does not re-order the setting of tlb_flush_batched
 689	 * before the PTE is cleared.
 690	 */
 691	barrier();
 692	batch = atomic_read(&mm->tlb_flush_batched);
 693retry:
 694	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
 695		/*
 696		 * Prevent `pending' from catching up with `flushed' because of
 697		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
 698		 * `pending' becomes large.
 699		 */
 700		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
 701			goto retry;
 702	} else {
 703		atomic_inc(&mm->tlb_flush_batched);
 704	}
 705
 706	/*
 707	 * If the PTE was dirty then it's best to assume it's writable. The
 708	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 709	 * before the page is queued for IO.
 710	 */
 711	if (writable)
 712		tlb_ubc->writable = true;
 713}
 714
 715/*
 716 * Returns true if the TLB flush should be deferred to the end of a batch of
 717 * unmap operations to reduce IPIs.
 718 */
 719static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 720{
 
 
 721	if (!(flags & TTU_BATCH_FLUSH))
 722		return false;
 723
 724	return arch_tlbbatch_should_defer(mm);
 725}
 726
 727/*
 728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 730 * operation such as mprotect or munmap to race between reclaim unmapping
 731 * the page and flushing the page. If this race occurs, it potentially allows
 732 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 733 * batching in flight would be expensive during reclaim so instead track
 734 * whether TLB batching occurred in the past and if so then do a flush here
 735 * if required. This will cost one additional flush per reclaim cycle paid
 736 * by the first operation at risk such as mprotect and mumap.
 737 *
 738 * This must be called under the PTL so that an access to tlb_flush_batched
 739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 740 * via the PTL.
 741 */
 742void flush_tlb_batched_pending(struct mm_struct *mm)
 743{
 744	int batch = atomic_read(&mm->tlb_flush_batched);
 745	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
 746	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
 747
 748	if (pending != flushed) {
 749		arch_flush_tlb_batched_pending(mm);
 750		/*
 751		 * If the new TLB flushing is pending during flushing, leave
 752		 * mm->tlb_flush_batched as is, to avoid losing flushing.
 753		 */
 754		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
 755			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
 756	}
 757}
 758#else
 759static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
 760				      unsigned long uaddr)
 761{
 762}
 763
 764static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 765{
 766	return false;
 767}
 768#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 769
 770/**
 771 * page_address_in_vma - The virtual address of a page in this VMA.
 772 * @folio: The folio containing the page.
 773 * @page: The page within the folio.
 774 * @vma: The VMA we need to know the address in.
 775 *
 776 * Calculates the user virtual address of this page in the specified VMA.
 777 * It is the caller's responsibililty to check the page is actually
 778 * within the VMA.  There may not currently be a PTE pointing at this
 779 * page, but if a page fault occurs at this address, this is the page
 780 * which will be accessed.
 781 *
 782 * Context: Caller should hold a reference to the folio.  Caller should
 783 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
 784 * VMA from being altered.
 785 *
 786 * Return: The virtual address corresponding to this page in the VMA.
 787 */
 788unsigned long page_address_in_vma(const struct folio *folio,
 789		const struct page *page, const struct vm_area_struct *vma)
 790{
 791	if (folio_test_anon(folio)) {
 792		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
 
 793		/*
 794		 * Note: swapoff's unuse_vma() is more efficient with this
 795		 * check, and needs it to match anon_vma when KSM is active.
 796		 */
 797		if (!vma->anon_vma || !page__anon_vma ||
 798		    vma->anon_vma->root != page__anon_vma->root)
 799			return -EFAULT;
 800	} else if (!vma->vm_file) {
 
 
 
 801		return -EFAULT;
 802	} else if (vma->vm_file->f_mapping != folio->mapping) {
 
 803		return -EFAULT;
 804	}
 805
 806	/* KSM folios don't reach here because of the !page__anon_vma check */
 807	return vma_address(vma, page_pgoff(folio, page), 1);
 808}
 809
 810/*
 811 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
 812 * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
 813 * represents.
 814 */
 815pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 816{
 817	pgd_t *pgd;
 818	p4d_t *p4d;
 819	pud_t *pud;
 820	pmd_t *pmd = NULL;
 
 821
 822	pgd = pgd_offset(mm, address);
 823	if (!pgd_present(*pgd))
 824		goto out;
 825
 826	p4d = p4d_offset(pgd, address);
 827	if (!p4d_present(*p4d))
 828		goto out;
 829
 830	pud = pud_offset(p4d, address);
 831	if (!pud_present(*pud))
 832		goto out;
 833
 834	pmd = pmd_offset(pud, address);
 
 
 
 
 
 
 
 
 
 835out:
 836	return pmd;
 837}
 838
 839struct folio_referenced_arg {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840	int mapcount;
 841	int referenced;
 842	unsigned long vm_flags;
 843	struct mem_cgroup *memcg;
 844};
 845
 846/*
 847 * arg: folio_referenced_arg will be passed
 848 */
 849static bool folio_referenced_one(struct folio *folio,
 850		struct vm_area_struct *vma, unsigned long address, void *arg)
 851{
 852	struct folio_referenced_arg *pra = arg;
 853	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
 
 
 
 854	int referenced = 0;
 855	unsigned long start = address, ptes = 0;
 856
 857	while (page_vma_mapped_walk(&pvmw)) {
 858		address = pvmw.address;
 859
 860		if (vma->vm_flags & VM_LOCKED) {
 861			if (!folio_test_large(folio) || !pvmw.pte) {
 862				/* Restore the mlock which got missed */
 863				mlock_vma_folio(folio, vma);
 864				page_vma_mapped_walk_done(&pvmw);
 865				pra->vm_flags |= VM_LOCKED;
 866				return false; /* To break the loop */
 867			}
 
 
 868			/*
 869			 * For large folio fully mapped to VMA, will
 870			 * be handled after the pvmw loop.
 871			 *
 872			 * For large folio cross VMA boundaries, it's
 873			 * expected to be picked  by page reclaim. But
 874			 * should skip reference of pages which are in
 875			 * the range of VM_LOCKED vma. As page reclaim
 876			 * should just count the reference of pages out
 877			 * the range of VM_LOCKED vma.
 878			 */
 879			ptes++;
 880			pra->mapcount--;
 881			continue;
 882		}
 883
 884		/*
 885		 * Skip the non-shared swapbacked folio mapped solely by
 886		 * the exiting or OOM-reaped process. This avoids redundant
 887		 * swap-out followed by an immediate unmap.
 888		 */
 889		if ((!atomic_read(&vma->vm_mm->mm_users) ||
 890		    check_stable_address_space(vma->vm_mm)) &&
 891		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
 892		    !folio_likely_mapped_shared(folio)) {
 893			pra->referenced = -1;
 894			page_vma_mapped_walk_done(&pvmw);
 895			return false;
 896		}
 897
 898		if (lru_gen_enabled() && pvmw.pte) {
 899			if (lru_gen_look_around(&pvmw))
 900				referenced++;
 901		} else if (pvmw.pte) {
 902			if (ptep_clear_flush_young_notify(vma, address,
 903						pvmw.pte))
 904				referenced++;
 905		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 906			if (pmdp_clear_flush_young_notify(vma, address,
 907						pvmw.pmd))
 908				referenced++;
 909		} else {
 910			/* unexpected pmd-mapped folio? */
 911			WARN_ON_ONCE(1);
 912		}
 913
 914		pra->mapcount--;
 915	}
 916
 917	if ((vma->vm_flags & VM_LOCKED) &&
 918			folio_test_large(folio) &&
 919			folio_within_vma(folio, vma)) {
 920		unsigned long s_align, e_align;
 921
 922		s_align = ALIGN_DOWN(start, PMD_SIZE);
 923		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
 924
 925		/* folio doesn't cross page table boundary and fully mapped */
 926		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
 927			/* Restore the mlock which got missed */
 928			mlock_vma_folio(folio, vma);
 929			pra->vm_flags |= VM_LOCKED;
 930			return false; /* To break the loop */
 931		}
 
 
 
 
 
 
 
 932	}
 
 933
 934	if (referenced)
 935		folio_clear_idle(folio);
 936	if (folio_test_clear_young(folio))
 937		referenced++;
 938
 939	if (referenced) {
 940		pra->referenced++;
 941		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
 942	}
 943
 
 944	if (!pra->mapcount)
 945		return false; /* To break the loop */
 946
 947	return true;
 948}
 949
 950static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
 951{
 952	struct folio_referenced_arg *pra = arg;
 953	struct mem_cgroup *memcg = pra->memcg;
 954
 955	/*
 956	 * Ignore references from this mapping if it has no recency. If the
 957	 * folio has been used in another mapping, we will catch it; if this
 958	 * other mapping is already gone, the unmap path will have set the
 959	 * referenced flag or activated the folio in zap_pte_range().
 960	 */
 961	if (!vma_has_recency(vma))
 962		return true;
 963
 964	/*
 965	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
 966	 * of references from different cgroups.
 967	 */
 968	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
 969		return true;
 970
 971	return false;
 972}
 973
 974/**
 975 * folio_referenced() - Test if the folio was referenced.
 976 * @folio: The folio to test.
 977 * @is_locked: Caller holds lock on the folio.
 978 * @memcg: target memory cgroup
 979 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
 980 *
 981 * Quick test_and_clear_referenced for all mappings of a folio,
 982 *
 983 * Return: The number of mappings which referenced the folio. Return -1 if
 984 * the function bailed out due to rmap lock contention.
 985 */
 986int folio_referenced(struct folio *folio, int is_locked,
 987		     struct mem_cgroup *memcg, unsigned long *vm_flags)
 988{
 989	bool we_locked = false;
 990	struct folio_referenced_arg pra = {
 991		.mapcount = folio_mapcount(folio),
 
 
 
 992		.memcg = memcg,
 993	};
 994	struct rmap_walk_control rwc = {
 995		.rmap_one = folio_referenced_one,
 996		.arg = (void *)&pra,
 997		.anon_lock = folio_lock_anon_vma_read,
 998		.try_lock = true,
 999		.invalid_vma = invalid_folio_referenced_vma,
1000	};
1001
1002	*vm_flags = 0;
1003	if (!pra.mapcount)
1004		return 0;
1005
1006	if (!folio_raw_mapping(folio))
1007		return 0;
1008
1009	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1010		we_locked = folio_trylock(folio);
1011		if (!we_locked)
1012			return 1;
1013	}
1014
1015	rmap_walk(folio, &rwc);
 
 
 
 
 
 
 
 
 
1016	*vm_flags = pra.vm_flags;
1017
1018	if (we_locked)
1019		folio_unlock(folio);
1020
1021	return rwc.contended ? -1 : pra.referenced;
1022}
1023
1024static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
 
1025{
1026	int cleaned = 0;
1027	struct vm_area_struct *vma = pvmw->vma;
1028	struct mmu_notifier_range range;
1029	unsigned long address = pvmw->address;
1030
1031	/*
1032	 * We have to assume the worse case ie pmd for invalidation. Note that
1033	 * the folio can not be freed from this function.
1034	 */
1035	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1036				vma->vm_mm, address, vma_address_end(pvmw));
1037	mmu_notifier_invalidate_range_start(&range);
1038
1039	while (page_vma_mapped_walk(pvmw)) {
1040		int ret = 0;
1041
1042		address = pvmw->address;
1043		if (pvmw->pte) {
1044			pte_t *pte = pvmw->pte;
1045			pte_t entry = ptep_get(pte);
1046
1047			if (!pte_dirty(entry) && !pte_write(entry))
1048				continue;
1049
1050			flush_cache_page(vma, address, pte_pfn(entry));
1051			entry = ptep_clear_flush(vma, address, pte);
1052			entry = pte_wrprotect(entry);
1053			entry = pte_mkclean(entry);
1054			set_pte_at(vma->vm_mm, address, pte, entry);
1055			ret = 1;
1056		} else {
1057#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1058			pmd_t *pmd = pvmw->pmd;
1059			pmd_t entry;
1060
1061			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1062				continue;
 
1063
1064			flush_cache_range(vma, address,
1065					  address + HPAGE_PMD_SIZE);
1066			entry = pmdp_invalidate(vma, address, pmd);
1067			entry = pmd_wrprotect(entry);
1068			entry = pmd_mkclean(entry);
1069			set_pmd_at(vma->vm_mm, address, pmd, entry);
1070			ret = 1;
1071#else
1072			/* unexpected pmd-mapped folio? */
1073			WARN_ON_ONCE(1);
1074#endif
1075		}
1076
1077		if (ret)
1078			cleaned++;
 
 
 
 
 
 
 
 
 
 
 
1079	}
1080
1081	mmu_notifier_invalidate_range_end(&range);
1082
1083	return cleaned;
1084}
1085
1086static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1087			     unsigned long address, void *arg)
1088{
1089	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1090	int *cleaned = arg;
1091
1092	*cleaned += page_vma_mkclean_one(&pvmw);
1093
1094	return true;
1095}
1096
1097static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1098{
1099	if (vma->vm_flags & VM_SHARED)
1100		return false;
1101
1102	return true;
1103}
1104
1105int folio_mkclean(struct folio *folio)
1106{
1107	int cleaned = 0;
1108	struct address_space *mapping;
1109	struct rmap_walk_control rwc = {
1110		.arg = (void *)&cleaned,
1111		.rmap_one = page_mkclean_one,
1112		.invalid_vma = invalid_mkclean_vma,
1113	};
1114
1115	BUG_ON(!folio_test_locked(folio));
1116
1117	if (!folio_mapped(folio))
1118		return 0;
1119
1120	mapping = folio_mapping(folio);
1121	if (!mapping)
1122		return 0;
1123
1124	rmap_walk(folio, &rwc);
1125
1126	return cleaned;
1127}
1128EXPORT_SYMBOL_GPL(folio_mkclean);
1129
1130/**
1131 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1132 *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1133 *                     within the @vma of shared mappings. And since clean PTEs
1134 *                     should also be readonly, write protects them too.
1135 * @pfn: start pfn.
1136 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1137 * @pgoff: page offset that the @pfn mapped with.
1138 * @vma: vma that @pfn mapped within.
1139 *
1140 * Returns the number of cleaned PTEs (including PMDs).
1141 */
1142int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1143		      struct vm_area_struct *vma)
1144{
1145	struct page_vma_mapped_walk pvmw = {
1146		.pfn		= pfn,
1147		.nr_pages	= nr_pages,
1148		.pgoff		= pgoff,
1149		.vma		= vma,
1150		.flags		= PVMW_SYNC,
1151	};
1152
1153	if (invalid_mkclean_vma(vma, NULL))
1154		return 0;
1155
1156	pvmw.address = vma_address(vma, pgoff, nr_pages);
1157	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1158
1159	return page_vma_mkclean_one(&pvmw);
1160}
1161
1162static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1163		struct page *page, int nr_pages, enum rmap_level level,
1164		int *nr_pmdmapped)
1165{
1166	atomic_t *mapped = &folio->_nr_pages_mapped;
1167	const int orig_nr_pages = nr_pages;
1168	int first = 0, nr = 0;
1169
1170	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1171
1172	switch (level) {
1173	case RMAP_LEVEL_PTE:
1174		if (!folio_test_large(folio)) {
1175			nr = atomic_inc_and_test(&folio->_mapcount);
1176			break;
1177		}
1178
1179		do {
1180			first += atomic_inc_and_test(&page->_mapcount);
1181		} while (page++, --nr_pages > 0);
1182
1183		if (first &&
1184		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1185			nr = first;
1186
1187		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1188		break;
1189	case RMAP_LEVEL_PMD:
1190		first = atomic_inc_and_test(&folio->_entire_mapcount);
1191		if (first) {
1192			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1193			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1194				*nr_pmdmapped = folio_nr_pages(folio);
1195				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1196				/* Raced ahead of a remove and another add? */
1197				if (unlikely(nr < 0))
1198					nr = 0;
1199			} else {
1200				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1201				nr = 0;
1202			}
1203		}
1204		atomic_inc(&folio->_large_mapcount);
1205		break;
1206	}
1207	return nr;
1208}
1209
1210/**
1211 * folio_move_anon_rmap - move a folio to our anon_vma
1212 * @folio:	The folio to move to our anon_vma
1213 * @vma:	The vma the folio belongs to
1214 *
1215 * When a folio belongs exclusively to one process after a COW event,
1216 * that folio can be moved into the anon_vma that belongs to just that
1217 * process, so the rmap code will not search the parent or sibling processes.
1218 */
1219void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1220{
1221	void *anon_vma = vma->anon_vma;
1222
1223	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 
 
1224	VM_BUG_ON_VMA(!anon_vma, vma);
1225
1226	anon_vma += PAGE_MAPPING_ANON;
1227	/*
1228	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1229	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1230	 * folio_test_anon()) will not see one without the other.
1231	 */
1232	WRITE_ONCE(folio->mapping, anon_vma);
1233}
1234
1235/**
1236 * __folio_set_anon - set up a new anonymous rmap for a folio
1237 * @folio:	The folio to set up the new anonymous rmap for.
1238 * @vma:	VM area to add the folio to.
1239 * @address:	User virtual address of the mapping
1240 * @exclusive:	Whether the folio is exclusive to the process.
1241 */
1242static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1243			     unsigned long address, bool exclusive)
1244{
1245	struct anon_vma *anon_vma = vma->anon_vma;
1246
1247	BUG_ON(!anon_vma);
1248
 
 
 
1249	/*
1250	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1251	 * possible anon_vma for the folio mapping!
 
1252	 */
1253	if (!exclusive)
1254		anon_vma = anon_vma->root;
1255
1256	/*
1257	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1258	 * Make sure the compiler doesn't split the stores of anon_vma and
1259	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1260	 * could mistake the mapping for a struct address_space and crash.
1261	 */
1262	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1263	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1264	folio->index = linear_page_index(vma, address);
1265}
1266
1267/**
1268 * __page_check_anon_rmap - sanity check anonymous rmap addition
1269 * @folio:	The folio containing @page.
1270 * @page:	the page to check the mapping of
1271 * @vma:	the vm area in which the mapping is added
1272 * @address:	the user virtual address mapped
1273 */
1274static void __page_check_anon_rmap(const struct folio *folio,
1275		const struct page *page, struct vm_area_struct *vma,
1276		unsigned long address)
1277{
 
1278	/*
1279	 * The page's anon-rmap details (mapping and index) are guaranteed to
1280	 * be set up correctly at this point.
1281	 *
1282	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1283	 * always holds the page locked.
 
1284	 *
1285	 * We have exclusion against folio_add_new_anon_rmap because those pages
1286	 * are initially only visible via the pagetables, and the pte is locked
1287	 * over the call to folio_add_new_anon_rmap.
1288	 */
1289	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1290			folio);
1291	VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1292		       page);
1293}
1294
1295static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
 
 
 
 
 
 
 
 
 
 
 
 
 
1296{
1297	int idx;
1298
1299	if (nr) {
1300		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1301		__lruvec_stat_mod_folio(folio, idx, nr);
1302	}
1303	if (nr_pmdmapped) {
1304		if (folio_test_anon(folio)) {
1305			idx = NR_ANON_THPS;
1306			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1307		} else {
1308			/* NR_*_PMDMAPPED are not maintained per-memcg */
1309			idx = folio_test_swapbacked(folio) ?
1310				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1311			__mod_node_page_state(folio_pgdat(folio), idx,
1312					      nr_pmdmapped);
1313		}
1314	}
1315}
1316
1317static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1318		struct page *page, int nr_pages, struct vm_area_struct *vma,
1319		unsigned long address, rmap_t flags, enum rmap_level level)
1320{
1321	int i, nr, nr_pmdmapped = 0;
1322
1323	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1324
1325	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1326
1327	if (likely(!folio_test_ksm(folio)))
1328		__page_check_anon_rmap(folio, page, vma, address);
1329
1330	__folio_mod_stat(folio, nr, nr_pmdmapped);
1331
1332	if (flags & RMAP_EXCLUSIVE) {
1333		switch (level) {
1334		case RMAP_LEVEL_PTE:
1335			for (i = 0; i < nr_pages; i++)
1336				SetPageAnonExclusive(page + i);
1337			break;
1338		case RMAP_LEVEL_PMD:
1339			SetPageAnonExclusive(page);
1340			break;
1341		}
1342	}
1343	for (i = 0; i < nr_pages; i++) {
1344		struct page *cur_page = page + i;
1345
1346		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1347		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1348				  (folio_test_large(folio) &&
1349				   folio_entire_mapcount(folio) > 1)) &&
1350				 PageAnonExclusive(cur_page), folio);
 
 
 
 
 
 
1351	}
 
 
1352
1353	/*
1354	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1355	 * not easy to check whether the large folio is fully mapped to VMA
1356	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1357	 * large folio.
1358	 */
1359	if (!folio_test_large(folio))
1360		mlock_vma_folio(folio, vma);
1361}
1362
1363/**
1364 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1365 * @folio:	The folio to add the mappings to
1366 * @page:	The first page to add
1367 * @nr_pages:	The number of pages which will be mapped
1368 * @vma:	The vm area in which the mappings are added
1369 * @address:	The user virtual address of the first page to map
1370 * @flags:	The rmap flags
1371 *
1372 * The page range of folio is defined by [first_page, first_page + nr_pages)
1373 *
1374 * The caller needs to hold the page table lock, and the page must be locked in
1375 * the anon_vma case: to serialize mapping,index checking after setting,
1376 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1377 * (but KSM folios are never downgraded).
1378 */
1379void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1380		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1381		rmap_t flags)
1382{
1383	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1384			      RMAP_LEVEL_PTE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385}
1386
1387/**
1388 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1389 * @folio:	The folio to add the mapping to
1390 * @page:	The first page to add
1391 * @vma:	The vm area in which the mapping is added
1392 * @address:	The user virtual address of the first page to map
1393 * @flags:	The rmap flags
1394 *
1395 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1396 *
1397 * The caller needs to hold the page table lock, and the page must be locked in
1398 * the anon_vma case: to serialize mapping,index checking after setting.
1399 */
1400void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1401		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1402{
1403#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1404	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1405			      RMAP_LEVEL_PMD);
1406#else
1407	WARN_ON_ONCE(true);
1408#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409}
1410
1411/**
1412 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1413 * @folio:	The folio to add the mapping to.
1414 * @vma:	the vm area in which the mapping is added
1415 * @address:	the user virtual address mapped
1416 * @flags:	The rmap flags
1417 *
1418 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1419 * This means the inc-and-test can be bypassed.
1420 * The folio doesn't necessarily need to be locked while it's exclusive
1421 * unless two threads map it concurrently. However, the folio must be
1422 * locked if it's shared.
1423 *
1424 * If the folio is pmd-mappable, it is accounted as a THP.
1425 */
1426void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1427		unsigned long address, rmap_t flags)
1428{
1429	const int nr = folio_nr_pages(folio);
1430	const bool exclusive = flags & RMAP_EXCLUSIVE;
1431	int nr_pmdmapped = 0;
1432
1433	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1434	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1435	VM_BUG_ON_VMA(address < vma->vm_start ||
1436			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1437
1438	/*
1439	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1440	 * under memory pressure.
1441	 */
1442	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1443		__folio_set_swapbacked(folio);
1444	__folio_set_anon(folio, vma, address, exclusive);
1445
1446	if (likely(!folio_test_large(folio))) {
1447		/* increment count (starts at -1) */
1448		atomic_set(&folio->_mapcount, 0);
1449		if (exclusive)
1450			SetPageAnonExclusive(&folio->page);
1451	} else if (!folio_test_pmd_mappable(folio)) {
1452		int i;
1453
1454		for (i = 0; i < nr; i++) {
1455			struct page *page = folio_page(folio, i);
1456
1457			/* increment count (starts at -1) */
1458			atomic_set(&page->_mapcount, 0);
1459			if (exclusive)
1460				SetPageAnonExclusive(page);
1461		}
1462
1463		/* increment count (starts at -1) */
1464		atomic_set(&folio->_large_mapcount, nr - 1);
1465		atomic_set(&folio->_nr_pages_mapped, nr);
 
 
 
 
 
 
 
1466	} else {
1467		/* increment count (starts at -1) */
1468		atomic_set(&folio->_entire_mapcount, 0);
1469		/* increment count (starts at -1) */
1470		atomic_set(&folio->_large_mapcount, 0);
1471		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1472		if (exclusive)
1473			SetPageAnonExclusive(&folio->page);
1474		nr_pmdmapped = nr;
1475	}
1476
1477	__folio_mod_stat(folio, nr, nr_pmdmapped);
1478	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
 
 
 
 
 
 
 
 
 
 
1479}
1480
1481static __always_inline void __folio_add_file_rmap(struct folio *folio,
1482		struct page *page, int nr_pages, struct vm_area_struct *vma,
1483		enum rmap_level level)
1484{
1485	int nr, nr_pmdmapped = 0;
1486
1487	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
 
1488
1489	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1490	__folio_mod_stat(folio, nr, nr_pmdmapped);
 
1491
1492	/* See comments in folio_add_anon_rmap_*() */
1493	if (!folio_test_large(folio))
1494		mlock_vma_folio(folio, vma);
1495}
1496
1497/**
1498 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1499 * @folio:	The folio to add the mappings to
1500 * @page:	The first page to add
1501 * @nr_pages:	The number of pages that will be mapped using PTEs
1502 * @vma:	The vm area in which the mappings are added
1503 *
1504 * The page range of the folio is defined by [page, page + nr_pages)
1505 *
1506 * The caller needs to hold the page table lock.
1507 */
1508void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1509		int nr_pages, struct vm_area_struct *vma)
1510{
1511	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
 
 
 
 
 
 
 
1512}
1513
1514/**
1515 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1516 * @folio:	The folio to add the mapping to
1517 * @page:	The first page to add
1518 * @vma:	The vm area in which the mapping is added
1519 *
1520 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1521 *
1522 * The caller needs to hold the page table lock.
1523 */
1524void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1525		struct vm_area_struct *vma)
1526{
1527#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1529#else
1530	WARN_ON_ONCE(true);
1531#endif
1532}
1533
1534static __always_inline void __folio_remove_rmap(struct folio *folio,
1535		struct page *page, int nr_pages, struct vm_area_struct *vma,
1536		enum rmap_level level)
1537{
1538	atomic_t *mapped = &folio->_nr_pages_mapped;
1539	int last = 0, nr = 0, nr_pmdmapped = 0;
1540	bool partially_mapped = false;
1541
1542	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1543
1544	switch (level) {
1545	case RMAP_LEVEL_PTE:
1546		if (!folio_test_large(folio)) {
1547			nr = atomic_add_negative(-1, &folio->_mapcount);
1548			break;
1549		}
1550
1551		atomic_sub(nr_pages, &folio->_large_mapcount);
1552		do {
1553			last += atomic_add_negative(-1, &page->_mapcount);
1554		} while (page++, --nr_pages > 0);
1555
1556		if (last &&
1557		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1558			nr = last;
1559
1560		partially_mapped = nr && atomic_read(mapped);
1561		break;
1562	case RMAP_LEVEL_PMD:
1563		atomic_dec(&folio->_large_mapcount);
1564		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1565		if (last) {
1566			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1567			if (likely(nr < ENTIRELY_MAPPED)) {
1568				nr_pmdmapped = folio_nr_pages(folio);
1569				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1570				/* Raced ahead of another remove and an add? */
1571				if (unlikely(nr < 0))
1572					nr = 0;
1573			} else {
1574				/* An add of ENTIRELY_MAPPED raced ahead */
1575				nr = 0;
1576			}
1577		}
1578
1579		partially_mapped = nr && nr < nr_pmdmapped;
1580		break;
1581	}
1582
1583	/*
1584	 * Queue anon large folio for deferred split if at least one page of
1585	 * the folio is unmapped and at least one page is still mapped.
1586	 *
1587	 * Check partially_mapped first to ensure it is a large folio.
1588	 */
1589	if (partially_mapped && folio_test_anon(folio) &&
1590	    !folio_test_partially_mapped(folio))
1591		deferred_split_folio(folio, true);
 
1592
1593	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
 
1594
1595	/*
1596	 * It would be tidy to reset folio_test_anon mapping when fully
1597	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1598	 * which increments mapcount after us but sets mapping before us:
1599	 * so leave the reset to free_pages_prepare, and remember that
1600	 * it's only reliable while mapped.
 
 
1601	 */
1602
1603	munlock_vma_folio(folio, vma);
1604}
1605
1606/**
1607 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1608 * @folio:	The folio to remove the mappings from
1609 * @page:	The first page to remove
1610 * @nr_pages:	The number of pages that will be removed from the mapping
1611 * @vma:	The vm area from which the mappings are removed
1612 *
1613 * The page range of the folio is defined by [page, page + nr_pages)
1614 *
1615 * The caller needs to hold the page table lock.
1616 */
1617void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1618		int nr_pages, struct vm_area_struct *vma)
1619{
1620	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1621}
1622
1623/**
1624 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1625 * @folio:	The folio to remove the mapping from
1626 * @page:	The first page to remove
1627 * @vma:	The vm area from which the mapping is removed
1628 *
1629 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1630 *
1631 * The caller needs to hold the page table lock.
1632 */
1633void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1634		struct vm_area_struct *vma)
1635{
1636#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1637	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1638#else
1639	WARN_ON_ONCE(true);
1640#endif
1641}
1642
1643/*
1644 * @arg: enum ttu_flags will be passed to this argument
1645 */
1646static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1647		     unsigned long address, void *arg)
1648{
1649	struct mm_struct *mm = vma->vm_mm;
1650	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1651	pte_t pteval;
1652	struct page *subpage;
1653	bool anon_exclusive, ret = true;
1654	struct mmu_notifier_range range;
1655	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1656	unsigned long pfn;
1657	unsigned long hsz = 0;
1658
1659	/*
1660	 * When racing against e.g. zap_pte_range() on another cpu,
1661	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1662	 * try_to_unmap() may return before page_mapped() has become false,
1663	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1664	 */
1665	if (flags & TTU_SYNC)
1666		pvmw.flags = PVMW_SYNC;
1667
1668	/*
1669	 * For THP, we have to assume the worse case ie pmd for invalidation.
1670	 * For hugetlb, it could be much worse if we need to do pud
1671	 * invalidation in the case of pmd sharing.
1672	 *
1673	 * Note that the folio can not be freed in this function as call of
1674	 * try_to_unmap() must hold a reference on the folio.
1675	 */
1676	range.end = vma_address_end(&pvmw);
1677	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1678				address, range.end);
1679	if (folio_test_hugetlb(folio)) {
1680		/*
1681		 * If sharing is possible, start and end will be adjusted
1682		 * accordingly.
1683		 */
1684		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1685						     &range.end);
1686
1687		/* We need the huge page size for set_huge_pte_at() */
1688		hsz = huge_page_size(hstate_vma(vma));
1689	}
1690	mmu_notifier_invalidate_range_start(&range);
1691
1692	while (page_vma_mapped_walk(&pvmw)) {
1693		/*
1694		 * If the folio is in an mlock()d vma, we must not swap it out.
1695		 */
1696		if (!(flags & TTU_IGNORE_MLOCK) &&
1697		    (vma->vm_flags & VM_LOCKED)) {
1698			/* Restore the mlock which got missed */
1699			if (!folio_test_large(folio))
1700				mlock_vma_folio(folio, vma);
1701			goto walk_abort;
1702		}
1703
1704		if (!pvmw.pte) {
1705			if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1706						  folio))
1707				goto walk_done;
1708
1709			if (flags & TTU_SPLIT_HUGE_PMD) {
 
 
 
 
 
 
 
 
1710				/*
1711				 * We temporarily have to drop the PTL and
1712				 * restart so we can process the PTE-mapped THP.
1713				 */
1714				split_huge_pmd_locked(vma, pvmw.address,
1715						      pvmw.pmd, false, folio);
1716				flags &= ~TTU_SPLIT_HUGE_PMD;
1717				page_vma_mapped_walk_restart(&pvmw);
1718				continue;
1719			}
 
 
1720		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722		/* Unexpected PMD-mapped THP? */
1723		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1724
1725		pfn = pte_pfn(ptep_get(pvmw.pte));
1726		subpage = folio_page(folio, pfn - folio_pfn(folio));
1727		address = pvmw.address;
1728		anon_exclusive = folio_test_anon(folio) &&
1729				 PageAnonExclusive(subpage);
1730
1731		if (folio_test_hugetlb(folio)) {
1732			bool anon = folio_test_anon(folio);
 
1733
1734			/*
1735			 * The try_to_unmap() is only passed a hugetlb page
1736			 * in the case where the hugetlb page is poisoned.
1737			 */
1738			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1739			/*
1740			 * huge_pmd_unshare may unmap an entire PMD page.
1741			 * There is no way of knowing exactly which PMDs may
1742			 * be cached for this mm, so we must flush them all.
1743			 * start/end were already adjusted above to cover this
1744			 * range.
1745			 */
1746			flush_cache_range(vma, range.start, range.end);
1747
1748			/*
1749			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1750			 * held in write mode.  Caller needs to explicitly
1751			 * do this outside rmap routines.
1752			 *
1753			 * We also must hold hugetlb vma_lock in write mode.
1754			 * Lock order dictates acquiring vma_lock BEFORE
1755			 * i_mmap_rwsem.  We can only try lock here and fail
1756			 * if unsuccessful.
1757			 */
1758			if (!anon) {
1759				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1760				if (!hugetlb_vma_trylock_write(vma))
1761					goto walk_abort;
1762				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1763					hugetlb_vma_unlock_write(vma);
1764					flush_tlb_range(vma,
1765						range.start, range.end);
1766					/*
1767					 * The ref count of the PMD page was
1768					 * dropped which is part of the way map
1769					 * counting is done for shared PMDs.
1770					 * Return 'true' here.  When there is
1771					 * no other sharing, huge_pmd_unshare
1772					 * returns false and we will unmap the
1773					 * actual page and drop map count
1774					 * to zero.
1775					 */
1776					goto walk_done;
1777				}
1778				hugetlb_vma_unlock_write(vma);
1779			}
1780			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1781		} else {
1782			flush_cache_page(vma, address, pfn);
1783			/* Nuke the page table entry. */
1784			if (should_defer_flush(mm, flags)) {
1785				/*
1786				 * We clear the PTE but do not flush so potentially
1787				 * a remote CPU could still be writing to the folio.
1788				 * If the entry was previously clean then the
1789				 * architecture must guarantee that a clear->dirty
1790				 * transition on a cached TLB entry is written through
1791				 * and traps if the PTE is unmapped.
1792				 */
1793				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1794
1795				set_tlb_ubc_flush_pending(mm, pteval, address);
1796			} else {
1797				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1798			}
1799		}
1800
 
 
1801		/*
1802		 * Now the pte is cleared. If this pte was uffd-wp armed,
1803		 * we may want to replace a none pte with a marker pte if
1804		 * it's file-backed, so we don't lose the tracking info.
1805		 */
1806		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1807
1808		/* Set the dirty flag on the folio now the pte is gone. */
1809		if (pte_dirty(pteval))
1810			folio_mark_dirty(folio);
1811
1812		/* Update high watermark before we lower rss */
1813		update_hiwater_rss(mm);
1814
1815		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1816			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1817			if (folio_test_hugetlb(folio)) {
1818				hugetlb_count_sub(folio_nr_pages(folio), mm);
1819				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1820						hsz);
1821			} else {
1822				dec_mm_counter(mm, mm_counter(folio));
1823				set_pte_at(mm, address, pvmw.pte, pteval);
1824			}
1825
1826		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1827			/*
1828			 * The guest indicated that the page content is of no
1829			 * interest anymore. Simply discard the pte, vmscan
1830			 * will take care of the rest.
1831			 * A future reference will then fault in a new zero
1832			 * page. When userfaultfd is active, we must not drop
1833			 * this page though, as its main user (postcopy
1834			 * migration) will not expect userfaults on already
1835			 * copied pages.
1836			 */
1837			dec_mm_counter(mm, mm_counter(folio));
1838		} else if (folio_test_anon(folio)) {
1839			swp_entry_t entry = page_swap_entry(subpage);
1840			pte_t swp_pte;
1841			/*
1842			 * Store the swap location in the pte.
1843			 * See handle_pte_fault() ...
1844			 */
1845			if (unlikely(folio_test_swapbacked(folio) !=
1846					folio_test_swapcache(folio))) {
1847				WARN_ON_ONCE(1);
1848				goto walk_abort;
1849			}
1850
1851			/* MADV_FREE page check */
1852			if (!folio_test_swapbacked(folio)) {
1853				int ref_count, map_count;
1854
1855				/*
1856				 * Synchronize with gup_pte_range():
1857				 * - clear PTE; barrier; read refcount
1858				 * - inc refcount; barrier; read PTE
1859				 */
1860				smp_mb();
1861
1862				ref_count = folio_ref_count(folio);
1863				map_count = folio_mapcount(folio);
 
 
 
 
1864
1865				/*
1866				 * Order reads for page refcount and dirty flag
1867				 * (see comments in __remove_mapping()).
1868				 */
1869				smp_rmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870
1871				/*
1872				 * The only page refs must be one from isolation
1873				 * plus the rmap(s) (dropped by discard:).
1874				 */
1875				if (ref_count == 1 + map_count &&
1876				    (!folio_test_dirty(folio) ||
1877				     /*
1878				      * Unlike MADV_FREE mappings, VM_DROPPABLE
1879				      * ones can be dropped even if they've
1880				      * been dirtied.
1881				      */
1882				     (vma->vm_flags & VM_DROPPABLE))) {
1883					dec_mm_counter(mm, MM_ANONPAGES);
1884					goto discard;
1885				}
1886
1887				/*
1888				 * If the folio was redirtied, it cannot be
1889				 * discarded. Remap the page to page table.
1890				 */
1891				set_pte_at(mm, address, pvmw.pte, pteval);
1892				/*
1893				 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1894				 * never get swap backed on failure to drop.
1895				 */
1896				if (!(vma->vm_flags & VM_DROPPABLE))
1897					folio_set_swapbacked(folio);
1898				goto walk_abort;
1899			}
1900
1901			if (swap_duplicate(entry) < 0) {
1902				set_pte_at(mm, address, pvmw.pte, pteval);
1903				goto walk_abort;
1904			}
1905			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1906				swap_free(entry);
1907				set_pte_at(mm, address, pvmw.pte, pteval);
1908				goto walk_abort;
1909			}
1910
1911			/* See folio_try_share_anon_rmap(): clear PTE first. */
1912			if (anon_exclusive &&
1913			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1914				swap_free(entry);
1915				set_pte_at(mm, address, pvmw.pte, pteval);
1916				goto walk_abort;
1917			}
1918			if (list_empty(&mm->mmlist)) {
1919				spin_lock(&mmlist_lock);
1920				if (list_empty(&mm->mmlist))
1921					list_add(&mm->mmlist, &init_mm.mmlist);
1922				spin_unlock(&mmlist_lock);
1923			}
1924			dec_mm_counter(mm, MM_ANONPAGES);
1925			inc_mm_counter(mm, MM_SWAPENTS);
1926			swp_pte = swp_entry_to_pte(entry);
1927			if (anon_exclusive)
1928				swp_pte = pte_swp_mkexclusive(swp_pte);
1929			if (pte_soft_dirty(pteval))
1930				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1931			if (pte_uffd_wp(pteval))
1932				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1933			set_pte_at(mm, address, pvmw.pte, swp_pte);
1934		} else {
1935			/*
1936			 * This is a locked file-backed folio,
1937			 * so it cannot be removed from the page
1938			 * cache and replaced by a new folio before
1939			 * mmu_notifier_invalidate_range_end, so no
1940			 * concurrent thread might update its page table
1941			 * to point at a new folio while a device is
1942			 * still using this folio.
1943			 *
1944			 * See Documentation/mm/mmu_notifier.rst
1945			 */
1946			dec_mm_counter(mm, mm_counter_file(folio));
1947		}
1948discard:
1949		if (unlikely(folio_test_hugetlb(folio)))
1950			hugetlb_remove_rmap(folio);
1951		else
1952			folio_remove_rmap_pte(folio, subpage, vma);
1953		if (vma->vm_flags & VM_LOCKED)
1954			mlock_drain_local();
1955		folio_put(folio);
1956		continue;
1957walk_abort:
1958		ret = false;
1959walk_done:
1960		page_vma_mapped_walk_done(&pvmw);
1961		break;
1962	}
1963
1964	mmu_notifier_invalidate_range_end(&range);
 
 
1965
1966	return ret;
1967}
1968
1969static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1970{
1971	return vma_is_temporary_stack(vma);
1972}
1973
1974static int folio_not_mapped(struct folio *folio)
1975{
1976	return !folio_mapped(folio);
1977}
1978
1979/**
1980 * try_to_unmap - Try to remove all page table mappings to a folio.
1981 * @folio: The folio to unmap.
1982 * @flags: action and flags
1983 *
1984 * Tries to remove all the page table entries which are mapping this
1985 * folio.  It is the caller's responsibility to check if the folio is
1986 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1987 *
1988 * Context: Caller must hold the folio lock.
1989 */
1990void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1991{
1992	struct rmap_walk_control rwc = {
1993		.rmap_one = try_to_unmap_one,
1994		.arg = (void *)flags,
1995		.done = folio_not_mapped,
1996		.anon_lock = folio_lock_anon_vma_read,
 
 
1997	};
1998
1999	if (flags & TTU_RMAP_LOCKED)
2000		rmap_walk_locked(folio, &rwc);
2001	else
2002		rmap_walk(folio, &rwc);
2003}
2004
2005/*
2006 * @arg: enum ttu_flags will be passed to this argument.
2007 *
2008 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2009 * containing migration entries.
2010 */
2011static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2012		     unsigned long address, void *arg)
2013{
2014	struct mm_struct *mm = vma->vm_mm;
2015	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2016	pte_t pteval;
2017	struct page *subpage;
2018	bool anon_exclusive, ret = true;
2019	struct mmu_notifier_range range;
2020	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2021	unsigned long pfn;
2022	unsigned long hsz = 0;
2023
2024	/*
2025	 * When racing against e.g. zap_pte_range() on another cpu,
2026	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2027	 * try_to_migrate() may return before page_mapped() has become false,
2028	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2029	 */
2030	if (flags & TTU_SYNC)
2031		pvmw.flags = PVMW_SYNC;
2032
2033	/*
2034	 * unmap_page() in mm/huge_memory.c is the only user of migration with
2035	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2036	 */
2037	if (flags & TTU_SPLIT_HUGE_PMD)
2038		split_huge_pmd_address(vma, address, true, folio);
2039
2040	/*
2041	 * For THP, we have to assume the worse case ie pmd for invalidation.
2042	 * For hugetlb, it could be much worse if we need to do pud
2043	 * invalidation in the case of pmd sharing.
2044	 *
2045	 * Note that the page can not be free in this function as call of
2046	 * try_to_unmap() must hold a reference on the page.
2047	 */
2048	range.end = vma_address_end(&pvmw);
2049	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2050				address, range.end);
2051	if (folio_test_hugetlb(folio)) {
2052		/*
2053		 * If sharing is possible, start and end will be adjusted
2054		 * accordingly.
2055		 */
2056		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2057						     &range.end);
2058
2059		/* We need the huge page size for set_huge_pte_at() */
2060		hsz = huge_page_size(hstate_vma(vma));
2061	}
2062	mmu_notifier_invalidate_range_start(&range);
2063
2064	while (page_vma_mapped_walk(&pvmw)) {
2065#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2066		/* PMD-mapped THP migration entry */
2067		if (!pvmw.pte) {
2068			subpage = folio_page(folio,
2069				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2070			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2071					!folio_test_pmd_mappable(folio), folio);
2072
2073			if (set_pmd_migration_entry(&pvmw, subpage)) {
2074				ret = false;
2075				page_vma_mapped_walk_done(&pvmw);
2076				break;
2077			}
2078			continue;
2079		}
2080#endif
2081
2082		/* Unexpected PMD-mapped THP? */
2083		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2084
2085		pfn = pte_pfn(ptep_get(pvmw.pte));
2086
2087		if (folio_is_zone_device(folio)) {
2088			/*
2089			 * Our PTE is a non-present device exclusive entry and
2090			 * calculating the subpage as for the common case would
2091			 * result in an invalid pointer.
2092			 *
2093			 * Since only PAGE_SIZE pages can currently be
2094			 * migrated, just set it to page. This will need to be
2095			 * changed when hugepage migrations to device private
2096			 * memory are supported.
2097			 */
2098			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2099			subpage = &folio->page;
2100		} else {
2101			subpage = folio_page(folio, pfn - folio_pfn(folio));
2102		}
2103		address = pvmw.address;
2104		anon_exclusive = folio_test_anon(folio) &&
2105				 PageAnonExclusive(subpage);
2106
2107		if (folio_test_hugetlb(folio)) {
2108			bool anon = folio_test_anon(folio);
2109
2110			/*
2111			 * huge_pmd_unshare may unmap an entire PMD page.
2112			 * There is no way of knowing exactly which PMDs may
2113			 * be cached for this mm, so we must flush them all.
2114			 * start/end were already adjusted above to cover this
2115			 * range.
2116			 */
2117			flush_cache_range(vma, range.start, range.end);
2118
2119			/*
2120			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2121			 * held in write mode.  Caller needs to explicitly
2122			 * do this outside rmap routines.
2123			 *
2124			 * We also must hold hugetlb vma_lock in write mode.
2125			 * Lock order dictates acquiring vma_lock BEFORE
2126			 * i_mmap_rwsem.  We can only try lock here and
2127			 * fail if unsuccessful.
2128			 */
2129			if (!anon) {
2130				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2131				if (!hugetlb_vma_trylock_write(vma)) {
2132					page_vma_mapped_walk_done(&pvmw);
2133					ret = false;
2134					break;
2135				}
2136				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2137					hugetlb_vma_unlock_write(vma);
2138					flush_tlb_range(vma,
2139						range.start, range.end);
2140
2141					/*
2142					 * The ref count of the PMD page was
2143					 * dropped which is part of the way map
2144					 * counting is done for shared PMDs.
2145					 * Return 'true' here.  When there is
2146					 * no other sharing, huge_pmd_unshare
2147					 * returns false and we will unmap the
2148					 * actual page and drop map count
2149					 * to zero.
2150					 */
2151					page_vma_mapped_walk_done(&pvmw);
2152					break;
2153				}
2154				hugetlb_vma_unlock_write(vma);
2155			}
2156			/* Nuke the hugetlb page table entry */
2157			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2158		} else {
2159			flush_cache_page(vma, address, pfn);
2160			/* Nuke the page table entry. */
2161			if (should_defer_flush(mm, flags)) {
2162				/*
2163				 * We clear the PTE but do not flush so potentially
2164				 * a remote CPU could still be writing to the folio.
2165				 * If the entry was previously clean then the
2166				 * architecture must guarantee that a clear->dirty
2167				 * transition on a cached TLB entry is written through
2168				 * and traps if the PTE is unmapped.
2169				 */
2170				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2171
2172				set_tlb_ubc_flush_pending(mm, pteval, address);
2173			} else {
2174				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2175			}
2176		}
2177
2178		/* Set the dirty flag on the folio now the pte is gone. */
2179		if (pte_dirty(pteval))
2180			folio_mark_dirty(folio);
2181
2182		/* Update high watermark before we lower rss */
2183		update_hiwater_rss(mm);
2184
2185		if (folio_is_device_private(folio)) {
2186			unsigned long pfn = folio_pfn(folio);
2187			swp_entry_t entry;
2188			pte_t swp_pte;
2189
2190			if (anon_exclusive)
2191				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2192									   subpage));
2193
2194			/*
2195			 * Store the pfn of the page in a special migration
2196			 * pte. do_swap_page() will wait until the migration
2197			 * pte is removed and then restart fault handling.
2198			 */
2199			entry = pte_to_swp_entry(pteval);
2200			if (is_writable_device_private_entry(entry))
2201				entry = make_writable_migration_entry(pfn);
2202			else if (anon_exclusive)
2203				entry = make_readable_exclusive_migration_entry(pfn);
2204			else
2205				entry = make_readable_migration_entry(pfn);
2206			swp_pte = swp_entry_to_pte(entry);
2207
2208			/*
2209			 * pteval maps a zone device page and is therefore
2210			 * a swap pte.
2211			 */
2212			if (pte_swp_soft_dirty(pteval))
2213				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2214			if (pte_swp_uffd_wp(pteval))
2215				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2216			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2217			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2218						folio_order(folio));
2219			/*
2220			 * No need to invalidate here it will synchronize on
2221			 * against the special swap migration pte.
2222			 */
2223		} else if (PageHWPoison(subpage)) {
2224			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2225			if (folio_test_hugetlb(folio)) {
2226				hugetlb_count_sub(folio_nr_pages(folio), mm);
2227				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2228						hsz);
2229			} else {
2230				dec_mm_counter(mm, mm_counter(folio));
2231				set_pte_at(mm, address, pvmw.pte, pteval);
2232			}
2233
2234		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2235			/*
2236			 * The guest indicated that the page content is of no
2237			 * interest anymore. Simply discard the pte, vmscan
2238			 * will take care of the rest.
2239			 * A future reference will then fault in a new zero
2240			 * page. When userfaultfd is active, we must not drop
2241			 * this page though, as its main user (postcopy
2242			 * migration) will not expect userfaults on already
2243			 * copied pages.
2244			 */
2245			dec_mm_counter(mm, mm_counter(folio));
2246		} else {
2247			swp_entry_t entry;
2248			pte_t swp_pte;
2249
2250			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2251				if (folio_test_hugetlb(folio))
2252					set_huge_pte_at(mm, address, pvmw.pte,
2253							pteval, hsz);
2254				else
2255					set_pte_at(mm, address, pvmw.pte, pteval);
2256				ret = false;
2257				page_vma_mapped_walk_done(&pvmw);
2258				break;
2259			}
2260			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2261				       !anon_exclusive, subpage);
2262
2263			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2264			if (folio_test_hugetlb(folio)) {
2265				if (anon_exclusive &&
2266				    hugetlb_try_share_anon_rmap(folio)) {
2267					set_huge_pte_at(mm, address, pvmw.pte,
2268							pteval, hsz);
2269					ret = false;
2270					page_vma_mapped_walk_done(&pvmw);
2271					break;
2272				}
2273			} else if (anon_exclusive &&
2274				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2275				set_pte_at(mm, address, pvmw.pte, pteval);
2276				ret = false;
2277				page_vma_mapped_walk_done(&pvmw);
2278				break;
2279			}
2280
2281			/*
2282			 * Store the pfn of the page in a special migration
2283			 * pte. do_swap_page() will wait until the migration
2284			 * pte is removed and then restart fault handling.
2285			 */
2286			if (pte_write(pteval))
2287				entry = make_writable_migration_entry(
2288							page_to_pfn(subpage));
2289			else if (anon_exclusive)
2290				entry = make_readable_exclusive_migration_entry(
2291							page_to_pfn(subpage));
2292			else
2293				entry = make_readable_migration_entry(
2294							page_to_pfn(subpage));
2295			if (pte_young(pteval))
2296				entry = make_migration_entry_young(entry);
2297			if (pte_dirty(pteval))
2298				entry = make_migration_entry_dirty(entry);
2299			swp_pte = swp_entry_to_pte(entry);
2300			if (pte_soft_dirty(pteval))
2301				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2302			if (pte_uffd_wp(pteval))
2303				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2304			if (folio_test_hugetlb(folio))
2305				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2306						hsz);
2307			else
2308				set_pte_at(mm, address, pvmw.pte, swp_pte);
2309			trace_set_migration_pte(address, pte_val(swp_pte),
2310						folio_order(folio));
2311			/*
2312			 * No need to invalidate here it will synchronize on
2313			 * against the special swap migration pte.
2314			 */
2315		}
2316
2317		if (unlikely(folio_test_hugetlb(folio)))
2318			hugetlb_remove_rmap(folio);
2319		else
2320			folio_remove_rmap_pte(folio, subpage, vma);
2321		if (vma->vm_flags & VM_LOCKED)
2322			mlock_drain_local();
2323		folio_put(folio);
2324	}
2325
2326	mmu_notifier_invalidate_range_end(&range);
2327
2328	return ret;
2329}
2330
2331/**
2332 * try_to_migrate - try to replace all page table mappings with swap entries
2333 * @folio: the folio to replace page table entries for
2334 * @flags: action and flags
2335 *
2336 * Tries to remove all the page table entries which are mapping this folio and
2337 * replace them with special swap entries. Caller must hold the folio lock.
2338 */
2339void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2340{
2341	struct rmap_walk_control rwc = {
2342		.rmap_one = try_to_migrate_one,
2343		.arg = (void *)flags,
2344		.done = folio_not_mapped,
2345		.anon_lock = folio_lock_anon_vma_read,
2346	};
2347
2348	/*
2349	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2350	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2351	 */
2352	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2353					TTU_SYNC | TTU_BATCH_FLUSH)))
2354		return;
2355
2356	if (folio_is_zone_device(folio) &&
2357	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2358		return;
2359
2360	/*
2361	 * During exec, a temporary VMA is setup and later moved.
2362	 * The VMA is moved under the anon_vma lock but not the
2363	 * page tables leading to a race where migration cannot
2364	 * find the migration ptes. Rather than increasing the
2365	 * locking requirements of exec(), migration skips
2366	 * temporary VMAs until after exec() completes.
2367	 */
2368	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2369		rwc.invalid_vma = invalid_migration_vma;
2370
2371	if (flags & TTU_RMAP_LOCKED)
2372		rmap_walk_locked(folio, &rwc);
2373	else
2374		rmap_walk(folio, &rwc);
2375}
2376
2377#ifdef CONFIG_DEVICE_PRIVATE
2378struct make_exclusive_args {
2379	struct mm_struct *mm;
2380	unsigned long address;
2381	void *owner;
2382	bool valid;
2383};
2384
2385static bool page_make_device_exclusive_one(struct folio *folio,
2386		struct vm_area_struct *vma, unsigned long address, void *priv)
2387{
2388	struct mm_struct *mm = vma->vm_mm;
2389	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2390	struct make_exclusive_args *args = priv;
2391	pte_t pteval;
2392	struct page *subpage;
2393	bool ret = true;
2394	struct mmu_notifier_range range;
2395	swp_entry_t entry;
2396	pte_t swp_pte;
2397	pte_t ptent;
2398
2399	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2400				      vma->vm_mm, address, min(vma->vm_end,
2401				      address + folio_size(folio)),
2402				      args->owner);
2403	mmu_notifier_invalidate_range_start(&range);
2404
2405	while (page_vma_mapped_walk(&pvmw)) {
2406		/* Unexpected PMD-mapped THP? */
2407		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2408
2409		ptent = ptep_get(pvmw.pte);
2410		if (!pte_present(ptent)) {
2411			ret = false;
2412			page_vma_mapped_walk_done(&pvmw);
2413			break;
2414		}
2415
2416		subpage = folio_page(folio,
2417				pte_pfn(ptent) - folio_pfn(folio));
2418		address = pvmw.address;
2419
2420		/* Nuke the page table entry. */
2421		flush_cache_page(vma, address, pte_pfn(ptent));
2422		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2423
2424		/* Set the dirty flag on the folio now the pte is gone. */
2425		if (pte_dirty(pteval))
2426			folio_mark_dirty(folio);
2427
2428		/*
2429		 * Check that our target page is still mapped at the expected
2430		 * address.
2431		 */
2432		if (args->mm == mm && args->address == address &&
2433		    pte_write(pteval))
2434			args->valid = true;
2435
2436		/*
2437		 * Store the pfn of the page in a special migration
2438		 * pte. do_swap_page() will wait until the migration
2439		 * pte is removed and then restart fault handling.
2440		 */
2441		if (pte_write(pteval))
2442			entry = make_writable_device_exclusive_entry(
2443							page_to_pfn(subpage));
2444		else
2445			entry = make_readable_device_exclusive_entry(
2446							page_to_pfn(subpage));
2447		swp_pte = swp_entry_to_pte(entry);
2448		if (pte_soft_dirty(pteval))
2449			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2450		if (pte_uffd_wp(pteval))
2451			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2452
2453		set_pte_at(mm, address, pvmw.pte, swp_pte);
2454
2455		/*
2456		 * There is a reference on the page for the swap entry which has
2457		 * been removed, so shouldn't take another.
2458		 */
2459		folio_remove_rmap_pte(folio, subpage, vma);
2460	}
2461
2462	mmu_notifier_invalidate_range_end(&range);
2463
2464	return ret;
2465}
2466
 
 
 
 
 
2467/**
2468 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2469 * @folio: The folio to replace page table entries for.
2470 * @mm: The mm_struct where the folio is expected to be mapped.
2471 * @address: Address where the folio is expected to be mapped.
2472 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2473 *
2474 * Tries to remove all the page table entries which are mapping this
2475 * folio and replace them with special device exclusive swap entries to
2476 * grant a device exclusive access to the folio.
2477 *
2478 * Context: Caller must hold the folio lock.
2479 * Return: false if the page is still mapped, or if it could not be unmapped
2480 * from the expected address. Otherwise returns true (success).
2481 */
2482static bool folio_make_device_exclusive(struct folio *folio,
2483		struct mm_struct *mm, unsigned long address, void *owner)
2484{
2485	struct make_exclusive_args args = {
2486		.mm = mm,
2487		.address = address,
2488		.owner = owner,
2489		.valid = false,
2490	};
2491	struct rmap_walk_control rwc = {
2492		.rmap_one = page_make_device_exclusive_one,
2493		.done = folio_not_mapped,
2494		.anon_lock = folio_lock_anon_vma_read,
2495		.arg = &args,
2496	};
2497
2498	/*
2499	 * Restrict to anonymous folios for now to avoid potential writeback
2500	 * issues.
2501	 */
2502	if (!folio_test_anon(folio))
2503		return false;
2504
2505	rmap_walk(folio, &rwc);
2506
2507	return args.valid && !folio_mapcount(folio);
2508}
2509
2510/**
2511 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2512 * @mm: mm_struct of associated target process
2513 * @start: start of the region to mark for exclusive device access
2514 * @end: end address of region
2515 * @pages: returns the pages which were successfully marked for exclusive access
2516 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2517 *
2518 * Returns: number of pages found in the range by GUP. A page is marked for
2519 * exclusive access only if the page pointer is non-NULL.
2520 *
2521 * This function finds ptes mapping page(s) to the given address range, locks
2522 * them and replaces mappings with special swap entries preventing userspace CPU
2523 * access. On fault these entries are replaced with the original mapping after
2524 * calling MMU notifiers.
2525 *
2526 * A driver using this to program access from a device must use a mmu notifier
2527 * critical section to hold a device specific lock during programming. Once
2528 * programming is complete it should drop the page lock and reference after
2529 * which point CPU access to the page will revoke the exclusive access.
2530 */
2531int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2532				unsigned long end, struct page **pages,
2533				void *owner)
2534{
2535	long npages = (end - start) >> PAGE_SHIFT;
2536	long i;
2537
2538	npages = get_user_pages_remote(mm, start, npages,
2539				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2540				       pages, NULL);
2541	if (npages < 0)
2542		return npages;
2543
2544	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2545		struct folio *folio = page_folio(pages[i]);
2546		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2547			folio_put(folio);
2548			pages[i] = NULL;
2549			continue;
2550		}
2551
2552		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2553			folio_unlock(folio);
2554			folio_put(folio);
2555			pages[i] = NULL;
2556		}
2557	}
2558
2559	return npages;
 
2560}
2561EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2562#endif
2563
2564void __put_anon_vma(struct anon_vma *anon_vma)
2565{
2566	struct anon_vma *root = anon_vma->root;
2567
2568	anon_vma_free(anon_vma);
2569	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2570		anon_vma_free(root);
2571}
2572
2573static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2574					    struct rmap_walk_control *rwc)
2575{
2576	struct anon_vma *anon_vma;
2577
2578	if (rwc->anon_lock)
2579		return rwc->anon_lock(folio, rwc);
2580
2581	/*
2582	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2583	 * because that depends on page_mapped(); but not all its usages
2584	 * are holding mmap_lock. Users without mmap_lock are required to
2585	 * take a reference count to prevent the anon_vma disappearing
2586	 */
2587	anon_vma = folio_anon_vma(folio);
2588	if (!anon_vma)
2589		return NULL;
2590
2591	if (anon_vma_trylock_read(anon_vma))
2592		goto out;
2593
2594	if (rwc->try_lock) {
2595		anon_vma = NULL;
2596		rwc->contended = true;
2597		goto out;
2598	}
2599
2600	anon_vma_lock_read(anon_vma);
2601out:
2602	return anon_vma;
2603}
2604
2605/*
2606 * rmap_walk_anon - do something to anonymous page using the object-based
2607 * rmap method
2608 * @folio: the folio to be handled
2609 * @rwc: control variable according to each walk type
2610 * @locked: caller holds relevant rmap lock
2611 *
2612 * Find all the mappings of a folio using the mapping pointer and the vma
2613 * chains contained in the anon_vma struct it points to.
 
 
 
 
 
2614 */
2615static void rmap_walk_anon(struct folio *folio,
2616		struct rmap_walk_control *rwc, bool locked)
2617{
2618	struct anon_vma *anon_vma;
2619	pgoff_t pgoff_start, pgoff_end;
2620	struct anon_vma_chain *avc;
 
2621
2622	if (locked) {
2623		anon_vma = folio_anon_vma(folio);
2624		/* anon_vma disappear under us? */
2625		VM_BUG_ON_FOLIO(!anon_vma, folio);
2626	} else {
2627		anon_vma = rmap_walk_anon_lock(folio, rwc);
2628	}
2629	if (!anon_vma)
2630		return;
2631
2632	pgoff_start = folio_pgoff(folio);
2633	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2634	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2635			pgoff_start, pgoff_end) {
2636		struct vm_area_struct *vma = avc->vma;
2637		unsigned long address = vma_address(vma, pgoff_start,
2638				folio_nr_pages(folio));
2639
2640		VM_BUG_ON_VMA(address == -EFAULT, vma);
2641		cond_resched();
2642
2643		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2644			continue;
2645
2646		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
 
2647			break;
2648		if (rwc->done && rwc->done(folio))
2649			break;
2650	}
2651
2652	if (!locked)
2653		anon_vma_unlock_read(anon_vma);
 
2654}
2655
2656/*
2657 * rmap_walk_file - do something to file page using the object-based rmap method
2658 * @folio: the folio to be handled
2659 * @rwc: control variable according to each walk type
2660 * @locked: caller holds relevant rmap lock
2661 *
2662 * Find all the mappings of a folio using the mapping pointer and the vma chains
2663 * contained in the address_space struct it points to.
 
 
 
 
 
2664 */
2665static void rmap_walk_file(struct folio *folio,
2666		struct rmap_walk_control *rwc, bool locked)
2667{
2668	struct address_space *mapping = folio_mapping(folio);
2669	pgoff_t pgoff_start, pgoff_end;
2670	struct vm_area_struct *vma;
 
2671
2672	/*
2673	 * The page lock not only makes sure that page->mapping cannot
2674	 * suddenly be NULLified by truncation, it makes sure that the
2675	 * structure at mapping cannot be freed and reused yet,
2676	 * so we can safely take mapping->i_mmap_rwsem.
2677	 */
2678	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2679
2680	if (!mapping)
2681		return;
2682
2683	pgoff_start = folio_pgoff(folio);
2684	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2685	if (!locked) {
2686		if (i_mmap_trylock_read(mapping))
2687			goto lookup;
2688
2689		if (rwc->try_lock) {
2690			rwc->contended = true;
2691			return;
2692		}
2693
 
 
2694		i_mmap_lock_read(mapping);
2695	}
2696lookup:
2697	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2698			pgoff_start, pgoff_end) {
2699		unsigned long address = vma_address(vma, pgoff_start,
2700			       folio_nr_pages(folio));
2701
2702		VM_BUG_ON_VMA(address == -EFAULT, vma);
2703		cond_resched();
2704
2705		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2706			continue;
2707
2708		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
 
2709			goto done;
2710		if (rwc->done && rwc->done(folio))
2711			goto done;
2712	}
2713
2714done:
2715	if (!locked)
2716		i_mmap_unlock_read(mapping);
 
2717}
2718
2719void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2720{
2721	if (unlikely(folio_test_ksm(folio)))
2722		rmap_walk_ksm(folio, rwc);
2723	else if (folio_test_anon(folio))
2724		rmap_walk_anon(folio, rwc, false);
2725	else
2726		rmap_walk_file(folio, rwc, false);
2727}
2728
2729/* Like rmap_walk, but caller holds relevant rmap lock */
2730void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2731{
2732	/* no ksm support for now */
2733	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2734	if (folio_test_anon(folio))
2735		rmap_walk_anon(folio, rwc, true);
2736	else
2737		rmap_walk_file(folio, rwc, true);
2738}
2739
2740#ifdef CONFIG_HUGETLB_PAGE
2741/*
2742 * The following two functions are for anonymous (private mapped) hugepages.
2743 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2744 * and no lru code, because we handle hugepages differently from common pages.
2745 */
2746void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2747		unsigned long address, rmap_t flags)
2748{
2749	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2750	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
 
 
 
 
 
 
2751
2752	atomic_inc(&folio->_entire_mapcount);
2753	atomic_inc(&folio->_large_mapcount);
2754	if (flags & RMAP_EXCLUSIVE)
2755		SetPageAnonExclusive(&folio->page);
2756	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2757			 PageAnonExclusive(&folio->page), folio);
2758}
2759
2760void hugetlb_add_new_anon_rmap(struct folio *folio,
2761		struct vm_area_struct *vma, unsigned long address)
2762{
2763	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
 
2764
 
 
 
 
 
 
 
 
 
 
 
2765	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2766	/* increment count (starts at -1) */
2767	atomic_set(&folio->_entire_mapcount, 0);
2768	atomic_set(&folio->_large_mapcount, 0);
2769	folio_clear_hugetlb_restore_reserve(folio);
2770	__folio_set_anon(folio, vma, address, true);
2771	SetPageAnonExclusive(&folio->page);
2772}
2773#endif /* CONFIG_HUGETLB_PAGE */
v4.10.11
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     mapping->tree_lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   mapping->tree_lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
 
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
 
 
 
 
 
 
  46 */
  47
  48#include <linux/mm.h>
 
 
  49#include <linux/pagemap.h>
  50#include <linux/swap.h>
  51#include <linux/swapops.h>
  52#include <linux/slab.h>
  53#include <linux/init.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/rcupdate.h>
  57#include <linux/export.h>
  58#include <linux/memcontrol.h>
  59#include <linux/mmu_notifier.h>
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
 
  62#include <linux/backing-dev.h>
  63#include <linux/page_idle.h>
 
 
 
 
  64
  65#include <asm/tlbflush.h>
  66
 
  67#include <trace/events/tlb.h>
 
  68
  69#include "internal.h"
  70
  71static struct kmem_cache *anon_vma_cachep;
  72static struct kmem_cache *anon_vma_chain_cachep;
  73
  74static inline struct anon_vma *anon_vma_alloc(void)
  75{
  76	struct anon_vma *anon_vma;
  77
  78	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  79	if (anon_vma) {
  80		atomic_set(&anon_vma->refcount, 1);
  81		anon_vma->degree = 1;	/* Reference for first vma */
 
  82		anon_vma->parent = anon_vma;
  83		/*
  84		 * Initialise the anon_vma root to point to itself. If called
  85		 * from fork, the root will be reset to the parents anon_vma.
  86		 */
  87		anon_vma->root = anon_vma;
  88	}
  89
  90	return anon_vma;
  91}
  92
  93static inline void anon_vma_free(struct anon_vma *anon_vma)
  94{
  95	VM_BUG_ON(atomic_read(&anon_vma->refcount));
  96
  97	/*
  98	 * Synchronize against page_lock_anon_vma_read() such that
  99	 * we can safely hold the lock without the anon_vma getting
 100	 * freed.
 101	 *
 102	 * Relies on the full mb implied by the atomic_dec_and_test() from
 103	 * put_anon_vma() against the acquire barrier implied by
 104	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 105	 *
 106	 * page_lock_anon_vma_read()	VS	put_anon_vma()
 107	 *   down_read_trylock()		  atomic_dec_and_test()
 108	 *   LOCK				  MB
 109	 *   atomic_read()			  rwsem_is_locked()
 110	 *
 111	 * LOCK should suffice since the actual taking of the lock must
 112	 * happen _before_ what follows.
 113	 */
 114	might_sleep();
 115	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 116		anon_vma_lock_write(anon_vma);
 117		anon_vma_unlock_write(anon_vma);
 118	}
 119
 120	kmem_cache_free(anon_vma_cachep, anon_vma);
 121}
 122
 123static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 124{
 125	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 126}
 127
 128static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 129{
 130	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 131}
 132
 133static void anon_vma_chain_link(struct vm_area_struct *vma,
 134				struct anon_vma_chain *avc,
 135				struct anon_vma *anon_vma)
 136{
 137	avc->vma = vma;
 138	avc->anon_vma = anon_vma;
 139	list_add(&avc->same_vma, &vma->anon_vma_chain);
 140	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 141}
 142
 143/**
 144 * __anon_vma_prepare - attach an anon_vma to a memory region
 145 * @vma: the memory region in question
 146 *
 147 * This makes sure the memory mapping described by 'vma' has
 148 * an 'anon_vma' attached to it, so that we can associate the
 149 * anonymous pages mapped into it with that anon_vma.
 150 *
 151 * The common case will be that we already have one, which
 152 * is handled inline by anon_vma_prepare(). But if
 153 * not we either need to find an adjacent mapping that we
 154 * can re-use the anon_vma from (very common when the only
 155 * reason for splitting a vma has been mprotect()), or we
 156 * allocate a new one.
 157 *
 158 * Anon-vma allocations are very subtle, because we may have
 159 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 160 * and that may actually touch the spinlock even in the newly
 161 * allocated vma (it depends on RCU to make sure that the
 162 * anon_vma isn't actually destroyed).
 163 *
 164 * As a result, we need to do proper anon_vma locking even
 165 * for the new allocation. At the same time, we do not want
 166 * to do any locking for the common case of already having
 167 * an anon_vma.
 168 *
 169 * This must be called with the mmap_sem held for reading.
 170 */
 171int __anon_vma_prepare(struct vm_area_struct *vma)
 172{
 173	struct mm_struct *mm = vma->vm_mm;
 174	struct anon_vma *anon_vma, *allocated;
 175	struct anon_vma_chain *avc;
 176
 
 177	might_sleep();
 178
 179	avc = anon_vma_chain_alloc(GFP_KERNEL);
 180	if (!avc)
 181		goto out_enomem;
 182
 183	anon_vma = find_mergeable_anon_vma(vma);
 184	allocated = NULL;
 185	if (!anon_vma) {
 186		anon_vma = anon_vma_alloc();
 187		if (unlikely(!anon_vma))
 188			goto out_enomem_free_avc;
 
 189		allocated = anon_vma;
 190	}
 191
 192	anon_vma_lock_write(anon_vma);
 193	/* page_table_lock to protect against threads */
 194	spin_lock(&mm->page_table_lock);
 195	if (likely(!vma->anon_vma)) {
 196		vma->anon_vma = anon_vma;
 197		anon_vma_chain_link(vma, avc, anon_vma);
 198		/* vma reference or self-parent link for new root */
 199		anon_vma->degree++;
 200		allocated = NULL;
 201		avc = NULL;
 202	}
 203	spin_unlock(&mm->page_table_lock);
 204	anon_vma_unlock_write(anon_vma);
 205
 206	if (unlikely(allocated))
 207		put_anon_vma(allocated);
 208	if (unlikely(avc))
 209		anon_vma_chain_free(avc);
 210
 211	return 0;
 212
 213 out_enomem_free_avc:
 214	anon_vma_chain_free(avc);
 215 out_enomem:
 216	return -ENOMEM;
 217}
 218
 219/*
 220 * This is a useful helper function for locking the anon_vma root as
 221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 222 * have the same vma.
 223 *
 224 * Such anon_vma's should have the same root, so you'd expect to see
 225 * just a single mutex_lock for the whole traversal.
 226 */
 227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 228{
 229	struct anon_vma *new_root = anon_vma->root;
 230	if (new_root != root) {
 231		if (WARN_ON_ONCE(root))
 232			up_write(&root->rwsem);
 233		root = new_root;
 234		down_write(&root->rwsem);
 235	}
 236	return root;
 237}
 238
 239static inline void unlock_anon_vma_root(struct anon_vma *root)
 240{
 241	if (root)
 242		up_write(&root->rwsem);
 243}
 244
 245/*
 246 * Attach the anon_vmas from src to dst.
 247 * Returns 0 on success, -ENOMEM on failure.
 248 *
 249 * If dst->anon_vma is NULL this function tries to find and reuse existing
 250 * anon_vma which has no vmas and only one child anon_vma. This prevents
 251 * degradation of anon_vma hierarchy to endless linear chain in case of
 252 * constantly forking task. On the other hand, an anon_vma with more than one
 253 * child isn't reused even if there was no alive vma, thus rmap walker has a
 254 * good chance of avoiding scanning the whole hierarchy when it searches where
 255 * page is mapped.
 
 
 
 
 
 
 
 256 */
 257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 258{
 259	struct anon_vma_chain *avc, *pavc;
 260	struct anon_vma *root = NULL;
 261
 262	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 263		struct anon_vma *anon_vma;
 264
 265		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 266		if (unlikely(!avc)) {
 267			unlock_anon_vma_root(root);
 268			root = NULL;
 269			avc = anon_vma_chain_alloc(GFP_KERNEL);
 270			if (!avc)
 271				goto enomem_failure;
 272		}
 273		anon_vma = pavc->anon_vma;
 274		root = lock_anon_vma_root(root, anon_vma);
 275		anon_vma_chain_link(dst, avc, anon_vma);
 276
 277		/*
 278		 * Reuse existing anon_vma if its degree lower than two,
 279		 * that means it has no vma and only one anon_vma child.
 280		 *
 281		 * Do not chose parent anon_vma, otherwise first child
 282		 * will always reuse it. Root anon_vma is never reused:
 283		 * it has self-parent reference and at least one child.
 284		 */
 285		if (!dst->anon_vma && anon_vma != src->anon_vma &&
 286				anon_vma->degree < 2)
 
 287			dst->anon_vma = anon_vma;
 288	}
 289	if (dst->anon_vma)
 290		dst->anon_vma->degree++;
 291	unlock_anon_vma_root(root);
 292	return 0;
 293
 294 enomem_failure:
 295	/*
 296	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 297	 * decremented in unlink_anon_vmas().
 298	 * We can safely do this because callers of anon_vma_clone() don't care
 299	 * about dst->anon_vma if anon_vma_clone() failed.
 300	 */
 301	dst->anon_vma = NULL;
 302	unlink_anon_vmas(dst);
 303	return -ENOMEM;
 304}
 305
 306/*
 307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 308 * the corresponding VMA in the parent process is attached to.
 309 * Returns 0 on success, non-zero on failure.
 310 */
 311int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 312{
 313	struct anon_vma_chain *avc;
 314	struct anon_vma *anon_vma;
 315	int error;
 316
 317	/* Don't bother if the parent process has no anon_vma here. */
 318	if (!pvma->anon_vma)
 319		return 0;
 320
 321	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 322	vma->anon_vma = NULL;
 323
 324	/*
 325	 * First, attach the new VMA to the parent VMA's anon_vmas,
 326	 * so rmap can find non-COWed pages in child processes.
 327	 */
 328	error = anon_vma_clone(vma, pvma);
 329	if (error)
 330		return error;
 331
 332	/* An existing anon_vma has been reused, all done then. */
 333	if (vma->anon_vma)
 334		return 0;
 335
 336	/* Then add our own anon_vma. */
 337	anon_vma = anon_vma_alloc();
 338	if (!anon_vma)
 339		goto out_error;
 
 340	avc = anon_vma_chain_alloc(GFP_KERNEL);
 341	if (!avc)
 342		goto out_error_free_anon_vma;
 343
 344	/*
 345	 * The root anon_vma's spinlock is the lock actually used when we
 346	 * lock any of the anon_vmas in this anon_vma tree.
 347	 */
 348	anon_vma->root = pvma->anon_vma->root;
 349	anon_vma->parent = pvma->anon_vma;
 350	/*
 351	 * With refcounts, an anon_vma can stay around longer than the
 352	 * process it belongs to. The root anon_vma needs to be pinned until
 353	 * this anon_vma is freed, because the lock lives in the root.
 354	 */
 355	get_anon_vma(anon_vma->root);
 356	/* Mark this anon_vma as the one where our new (COWed) pages go. */
 357	vma->anon_vma = anon_vma;
 358	anon_vma_lock_write(anon_vma);
 359	anon_vma_chain_link(vma, avc, anon_vma);
 360	anon_vma->parent->degree++;
 361	anon_vma_unlock_write(anon_vma);
 362
 363	return 0;
 364
 365 out_error_free_anon_vma:
 366	put_anon_vma(anon_vma);
 367 out_error:
 368	unlink_anon_vmas(vma);
 369	return -ENOMEM;
 370}
 371
 372void unlink_anon_vmas(struct vm_area_struct *vma)
 373{
 374	struct anon_vma_chain *avc, *next;
 375	struct anon_vma *root = NULL;
 376
 377	/*
 378	 * Unlink each anon_vma chained to the VMA.  This list is ordered
 379	 * from newest to oldest, ensuring the root anon_vma gets freed last.
 380	 */
 381	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 382		struct anon_vma *anon_vma = avc->anon_vma;
 383
 384		root = lock_anon_vma_root(root, anon_vma);
 385		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 386
 387		/*
 388		 * Leave empty anon_vmas on the list - we'll need
 389		 * to free them outside the lock.
 390		 */
 391		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
 392			anon_vma->parent->degree--;
 393			continue;
 394		}
 395
 396		list_del(&avc->same_vma);
 397		anon_vma_chain_free(avc);
 398	}
 399	if (vma->anon_vma)
 400		vma->anon_vma->degree--;
 
 
 
 
 
 
 
 401	unlock_anon_vma_root(root);
 402
 403	/*
 404	 * Iterate the list once more, it now only contains empty and unlinked
 405	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 406	 * needing to write-acquire the anon_vma->root->rwsem.
 407	 */
 408	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 409		struct anon_vma *anon_vma = avc->anon_vma;
 410
 411		VM_WARN_ON(anon_vma->degree);
 
 412		put_anon_vma(anon_vma);
 413
 414		list_del(&avc->same_vma);
 415		anon_vma_chain_free(avc);
 416	}
 417}
 418
 419static void anon_vma_ctor(void *data)
 420{
 421	struct anon_vma *anon_vma = data;
 422
 423	init_rwsem(&anon_vma->rwsem);
 424	atomic_set(&anon_vma->refcount, 0);
 425	anon_vma->rb_root = RB_ROOT;
 426}
 427
 428void __init anon_vma_init(void)
 429{
 430	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 431			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 432			anon_vma_ctor);
 433	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 434			SLAB_PANIC|SLAB_ACCOUNT);
 435}
 436
 437/*
 438 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 439 *
 440 * Since there is no serialization what so ever against page_remove_rmap()
 441 * the best this function can do is return a locked anon_vma that might
 442 * have been relevant to this page.
 443 *
 444 * The page might have been remapped to a different anon_vma or the anon_vma
 445 * returned may already be freed (and even reused).
 446 *
 447 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 448 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 449 * ensure that any anon_vma obtained from the page will still be valid for as
 450 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 451 *
 452 * All users of this function must be very careful when walking the anon_vma
 453 * chain and verify that the page in question is indeed mapped in it
 454 * [ something equivalent to page_mapped_in_vma() ].
 455 *
 456 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 457 * that the anon_vma pointer from page->mapping is valid if there is a
 458 * mapcount, we can dereference the anon_vma after observing those.
 
 
 
 
 
 
 
 459 */
 460struct anon_vma *page_get_anon_vma(struct page *page)
 461{
 462	struct anon_vma *anon_vma = NULL;
 463	unsigned long anon_mapping;
 464
 465	rcu_read_lock();
 466	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 467	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 468		goto out;
 469	if (!page_mapped(page))
 470		goto out;
 471
 472	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 473	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 474		anon_vma = NULL;
 475		goto out;
 476	}
 477
 478	/*
 479	 * If this page is still mapped, then its anon_vma cannot have been
 480	 * freed.  But if it has been unmapped, we have no security against the
 481	 * anon_vma structure being freed and reused (for another anon_vma:
 482	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 483	 * above cannot corrupt).
 484	 */
 485	if (!page_mapped(page)) {
 486		rcu_read_unlock();
 487		put_anon_vma(anon_vma);
 488		return NULL;
 489	}
 490out:
 491	rcu_read_unlock();
 492
 493	return anon_vma;
 494}
 495
 496/*
 497 * Similar to page_get_anon_vma() except it locks the anon_vma.
 498 *
 499 * Its a little more complex as it tries to keep the fast path to a single
 500 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 501 * reference like with page_get_anon_vma() and then block on the mutex.
 
 502 */
 503struct anon_vma *page_lock_anon_vma_read(struct page *page)
 
 504{
 505	struct anon_vma *anon_vma = NULL;
 506	struct anon_vma *root_anon_vma;
 507	unsigned long anon_mapping;
 508
 
 509	rcu_read_lock();
 510	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 511	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 512		goto out;
 513	if (!page_mapped(page))
 514		goto out;
 515
 516	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 517	root_anon_vma = READ_ONCE(anon_vma->root);
 518	if (down_read_trylock(&root_anon_vma->rwsem)) {
 519		/*
 520		 * If the page is still mapped, then this anon_vma is still
 
 
 
 
 
 
 
 
 
 
 
 521		 * its anon_vma, and holding the mutex ensures that it will
 522		 * not go away, see anon_vma_free().
 523		 */
 524		if (!page_mapped(page)) {
 525			up_read(&root_anon_vma->rwsem);
 526			anon_vma = NULL;
 527		}
 528		goto out;
 529	}
 530
 
 
 
 
 
 
 531	/* trylock failed, we got to sleep */
 532	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 533		anon_vma = NULL;
 534		goto out;
 535	}
 536
 537	if (!page_mapped(page)) {
 538		rcu_read_unlock();
 539		put_anon_vma(anon_vma);
 540		return NULL;
 541	}
 542
 543	/* we pinned the anon_vma, its safe to sleep */
 544	rcu_read_unlock();
 545	anon_vma_lock_read(anon_vma);
 546
 
 
 
 
 
 
 
 
 
 
 
 
 547	if (atomic_dec_and_test(&anon_vma->refcount)) {
 548		/*
 549		 * Oops, we held the last refcount, release the lock
 550		 * and bail -- can't simply use put_anon_vma() because
 551		 * we'll deadlock on the anon_vma_lock_write() recursion.
 552		 */
 553		anon_vma_unlock_read(anon_vma);
 554		__put_anon_vma(anon_vma);
 555		anon_vma = NULL;
 556	}
 557
 558	return anon_vma;
 559
 560out:
 561	rcu_read_unlock();
 562	return anon_vma;
 563}
 564
 565void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 566{
 567	anon_vma_unlock_read(anon_vma);
 568}
 569
 570#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 571/*
 572 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 573 * important if a PTE was dirty when it was unmapped that it's flushed
 574 * before any IO is initiated on the page to prevent lost writes. Similarly,
 575 * it must be flushed before freeing to prevent data leakage.
 576 */
 577void try_to_unmap_flush(void)
 578{
 579	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 580	int cpu;
 581
 582	if (!tlb_ubc->flush_required)
 583		return;
 584
 585	cpu = get_cpu();
 586
 587	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
 588		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 589		local_flush_tlb();
 590		trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
 591	}
 592
 593	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
 594		flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
 595	cpumask_clear(&tlb_ubc->cpumask);
 596	tlb_ubc->flush_required = false;
 597	tlb_ubc->writable = false;
 598	put_cpu();
 599}
 600
 601/* Flush iff there are potentially writable TLB entries that can race with IO */
 602void try_to_unmap_flush_dirty(void)
 603{
 604	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 605
 606	if (tlb_ubc->writable)
 607		try_to_unmap_flush();
 608}
 609
 610static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
 611		struct page *page, bool writable)
 
 
 
 
 
 
 
 
 
 
 612{
 613	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 
 
 
 
 
 614
 615	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
 616	tlb_ubc->flush_required = true;
 617
 618	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619	 * If the PTE was dirty then it's best to assume it's writable. The
 620	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 621	 * before the page is queued for IO.
 622	 */
 623	if (writable)
 624		tlb_ubc->writable = true;
 625}
 626
 627/*
 628 * Returns true if the TLB flush should be deferred to the end of a batch of
 629 * unmap operations to reduce IPIs.
 630 */
 631static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 632{
 633	bool should_defer = false;
 634
 635	if (!(flags & TTU_BATCH_FLUSH))
 636		return false;
 637
 638	/* If remote CPUs need to be flushed then defer batch the flush */
 639	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 640		should_defer = true;
 641	put_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643	return should_defer;
 
 
 
 
 
 
 
 
 644}
 645#else
 646static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
 647		struct page *page, bool writable)
 648{
 649}
 650
 651static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 652{
 653	return false;
 654}
 655#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 656
 657/*
 658 * At what user virtual address is page expected in vma?
 659 * Caller should check the page is actually part of the vma.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660 */
 661unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 
 662{
 663	unsigned long address;
 664	if (PageAnon(page)) {
 665		struct anon_vma *page__anon_vma = page_anon_vma(page);
 666		/*
 667		 * Note: swapoff's unuse_vma() is more efficient with this
 668		 * check, and needs it to match anon_vma when KSM is active.
 669		 */
 670		if (!vma->anon_vma || !page__anon_vma ||
 671		    vma->anon_vma->root != page__anon_vma->root)
 672			return -EFAULT;
 673	} else if (page->mapping) {
 674		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 675			return -EFAULT;
 676	} else
 677		return -EFAULT;
 678	address = __vma_address(page, vma);
 679	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 680		return -EFAULT;
 681	return address;
 
 
 
 682}
 683
 
 
 
 
 
 684pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 685{
 686	pgd_t *pgd;
 
 687	pud_t *pud;
 688	pmd_t *pmd = NULL;
 689	pmd_t pmde;
 690
 691	pgd = pgd_offset(mm, address);
 692	if (!pgd_present(*pgd))
 693		goto out;
 694
 695	pud = pud_offset(pgd, address);
 
 
 
 
 696	if (!pud_present(*pud))
 697		goto out;
 698
 699	pmd = pmd_offset(pud, address);
 700	/*
 701	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 702	 * without holding anon_vma lock for write.  So when looking for a
 703	 * genuine pmde (in which to find pte), test present and !THP together.
 704	 */
 705	pmde = *pmd;
 706	barrier();
 707	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 708		pmd = NULL;
 709out:
 710	return pmd;
 711}
 712
 713/*
 714 * Check that @page is mapped at @address into @mm.
 715 *
 716 * If @sync is false, page_check_address may perform a racy check to avoid
 717 * the page table lock when the pte is not present (helpful when reclaiming
 718 * highly shared pages).
 719 *
 720 * On success returns with pte mapped and locked.
 721 */
 722pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 723			  unsigned long address, spinlock_t **ptlp, int sync)
 724{
 725	pmd_t *pmd;
 726	pte_t *pte;
 727	spinlock_t *ptl;
 728
 729	if (unlikely(PageHuge(page))) {
 730		/* when pud is not present, pte will be NULL */
 731		pte = huge_pte_offset(mm, address);
 732		if (!pte)
 733			return NULL;
 734
 735		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 736		goto check;
 737	}
 738
 739	pmd = mm_find_pmd(mm, address);
 740	if (!pmd)
 741		return NULL;
 742
 743	pte = pte_offset_map(pmd, address);
 744	/* Make a quick check before getting the lock */
 745	if (!sync && !pte_present(*pte)) {
 746		pte_unmap(pte);
 747		return NULL;
 748	}
 749
 750	ptl = pte_lockptr(mm, pmd);
 751check:
 752	spin_lock(ptl);
 753	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 754		*ptlp = ptl;
 755		return pte;
 756	}
 757	pte_unmap_unlock(pte, ptl);
 758	return NULL;
 759}
 760
 761/**
 762 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 763 * @page: the page to test
 764 * @vma: the VMA to test
 765 *
 766 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 767 * if the page is not mapped into the page tables of this VMA.  Only
 768 * valid for normal file or anonymous VMAs.
 769 */
 770int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 771{
 772	unsigned long address;
 773	pte_t *pte;
 774	spinlock_t *ptl;
 775
 776	address = __vma_address(page, vma);
 777	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 778		return 0;
 779	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 780	if (!pte)			/* the page is not in this mm */
 781		return 0;
 782	pte_unmap_unlock(pte, ptl);
 783
 784	return 1;
 785}
 786
 787#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 788/*
 789 * Check that @page is mapped at @address into @mm. In contrast to
 790 * page_check_address(), this function can handle transparent huge pages.
 791 *
 792 * On success returns true with pte mapped and locked. For PMD-mapped
 793 * transparent huge pages *@ptep is set to NULL.
 794 */
 795bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
 796				  unsigned long address, pmd_t **pmdp,
 797				  pte_t **ptep, spinlock_t **ptlp)
 798{
 799	pgd_t *pgd;
 800	pud_t *pud;
 801	pmd_t *pmd;
 802	pte_t *pte;
 803	spinlock_t *ptl;
 804
 805	if (unlikely(PageHuge(page))) {
 806		/* when pud is not present, pte will be NULL */
 807		pte = huge_pte_offset(mm, address);
 808		if (!pte)
 809			return false;
 810
 811		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 812		pmd = NULL;
 813		goto check_pte;
 814	}
 815
 816	pgd = pgd_offset(mm, address);
 817	if (!pgd_present(*pgd))
 818		return false;
 819	pud = pud_offset(pgd, address);
 820	if (!pud_present(*pud))
 821		return false;
 822	pmd = pmd_offset(pud, address);
 823
 824	if (pmd_trans_huge(*pmd)) {
 825		ptl = pmd_lock(mm, pmd);
 826		if (!pmd_present(*pmd))
 827			goto unlock_pmd;
 828		if (unlikely(!pmd_trans_huge(*pmd))) {
 829			spin_unlock(ptl);
 830			goto map_pte;
 831		}
 832
 833		if (pmd_page(*pmd) != page)
 834			goto unlock_pmd;
 835
 836		pte = NULL;
 837		goto found;
 838unlock_pmd:
 839		spin_unlock(ptl);
 840		return false;
 841	} else {
 842		pmd_t pmde = *pmd;
 843
 844		barrier();
 845		if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 846			return false;
 847	}
 848map_pte:
 849	pte = pte_offset_map(pmd, address);
 850	if (!pte_present(*pte)) {
 851		pte_unmap(pte);
 852		return false;
 853	}
 854
 855	ptl = pte_lockptr(mm, pmd);
 856check_pte:
 857	spin_lock(ptl);
 858
 859	if (!pte_present(*pte)) {
 860		pte_unmap_unlock(pte, ptl);
 861		return false;
 862	}
 863
 864	/* THP can be referenced by any subpage */
 865	if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
 866		pte_unmap_unlock(pte, ptl);
 867		return false;
 868	}
 869found:
 870	*ptep = pte;
 871	*pmdp = pmd;
 872	*ptlp = ptl;
 873	return true;
 874}
 875#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 876
 877struct page_referenced_arg {
 878	int mapcount;
 879	int referenced;
 880	unsigned long vm_flags;
 881	struct mem_cgroup *memcg;
 882};
 
 883/*
 884 * arg: page_referenced_arg will be passed
 885 */
 886static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 887			unsigned long address, void *arg)
 888{
 889	struct mm_struct *mm = vma->vm_mm;
 890	struct page_referenced_arg *pra = arg;
 891	pmd_t *pmd;
 892	pte_t *pte;
 893	spinlock_t *ptl;
 894	int referenced = 0;
 
 895
 896	if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
 897		return SWAP_AGAIN;
 898
 899	if (vma->vm_flags & VM_LOCKED) {
 900		if (pte)
 901			pte_unmap(pte);
 902		spin_unlock(ptl);
 903		pra->vm_flags |= VM_LOCKED;
 904		return SWAP_FAIL; /* To break the loop */
 905	}
 906
 907	if (pte) {
 908		if (ptep_clear_flush_young_notify(vma, address, pte)) {
 909			/*
 910			 * Don't treat a reference through a sequentially read
 911			 * mapping as such.  If the page has been used in
 912			 * another mapping, we will catch it; if this other
 913			 * mapping is already gone, the unmap path will have
 914			 * set PG_referenced or activated the page.
 
 
 
 
 915			 */
 916			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917				referenced++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918		}
 919		pte_unmap(pte);
 920	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 921		if (pmdp_clear_flush_young_notify(vma, address, pmd))
 922			referenced++;
 923	} else {
 924		/* unexpected pmd-mapped page? */
 925		WARN_ON_ONCE(1);
 926	}
 927	spin_unlock(ptl);
 928
 929	if (referenced)
 930		clear_page_idle(page);
 931	if (test_and_clear_page_young(page))
 932		referenced++;
 933
 934	if (referenced) {
 935		pra->referenced++;
 936		pra->vm_flags |= vma->vm_flags;
 937	}
 938
 939	pra->mapcount--;
 940	if (!pra->mapcount)
 941		return SWAP_SUCCESS; /* To break the loop */
 942
 943	return SWAP_AGAIN;
 944}
 945
 946static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 947{
 948	struct page_referenced_arg *pra = arg;
 949	struct mem_cgroup *memcg = pra->memcg;
 950
 951	if (!mm_match_cgroup(vma->vm_mm, memcg))
 
 
 
 
 
 
 
 
 
 
 
 
 
 952		return true;
 953
 954	return false;
 955}
 956
 957/**
 958 * page_referenced - test if the page was referenced
 959 * @page: the page to test
 960 * @is_locked: caller holds lock on the page
 961 * @memcg: target memory cgroup
 962 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 
 
 963 *
 964 * Quick test_and_clear_referenced for all mappings to a page,
 965 * returns the number of ptes which referenced the page.
 966 */
 967int page_referenced(struct page *page,
 968		    int is_locked,
 969		    struct mem_cgroup *memcg,
 970		    unsigned long *vm_flags)
 971{
 972	int ret;
 973	int we_locked = 0;
 974	struct page_referenced_arg pra = {
 975		.mapcount = total_mapcount(page),
 976		.memcg = memcg,
 977	};
 978	struct rmap_walk_control rwc = {
 979		.rmap_one = page_referenced_one,
 980		.arg = (void *)&pra,
 981		.anon_lock = page_lock_anon_vma_read,
 
 
 982	};
 983
 984	*vm_flags = 0;
 985	if (!page_mapped(page))
 986		return 0;
 987
 988	if (!page_rmapping(page))
 989		return 0;
 990
 991	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 992		we_locked = trylock_page(page);
 993		if (!we_locked)
 994			return 1;
 995	}
 996
 997	/*
 998	 * If we are reclaiming on behalf of a cgroup, skip
 999	 * counting on behalf of references from different
1000	 * cgroups
1001	 */
1002	if (memcg) {
1003		rwc.invalid_vma = invalid_page_referenced_vma;
1004	}
1005
1006	ret = rmap_walk(page, &rwc);
1007	*vm_flags = pra.vm_flags;
1008
1009	if (we_locked)
1010		unlock_page(page);
1011
1012	return pra.referenced;
1013}
1014
1015static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1016			    unsigned long address, void *arg)
1017{
1018	struct mm_struct *mm = vma->vm_mm;
1019	pte_t *pte;
1020	spinlock_t *ptl;
1021	int ret = 0;
1022	int *cleaned = arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023
1024	pte = page_check_address(page, mm, address, &ptl, 1);
1025	if (!pte)
1026		goto out;
1027
1028	if (pte_dirty(*pte) || pte_write(*pte)) {
1029		pte_t entry;
 
 
 
 
 
 
 
 
 
 
1030
1031		flush_cache_page(vma, address, pte_pfn(*pte));
1032		entry = ptep_clear_flush(vma, address, pte);
1033		entry = pte_wrprotect(entry);
1034		entry = pte_mkclean(entry);
1035		set_pte_at(mm, address, pte, entry);
1036		ret = 1;
1037	}
1038
1039	pte_unmap_unlock(pte, ptl);
1040
1041	if (ret) {
1042		mmu_notifier_invalidate_page(mm, address);
1043		(*cleaned)++;
1044	}
1045out:
1046	return SWAP_AGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
1047}
1048
1049static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1050{
1051	if (vma->vm_flags & VM_SHARED)
1052		return false;
1053
1054	return true;
1055}
1056
1057int page_mkclean(struct page *page)
1058{
1059	int cleaned = 0;
1060	struct address_space *mapping;
1061	struct rmap_walk_control rwc = {
1062		.arg = (void *)&cleaned,
1063		.rmap_one = page_mkclean_one,
1064		.invalid_vma = invalid_mkclean_vma,
1065	};
1066
1067	BUG_ON(!PageLocked(page));
1068
1069	if (!page_mapped(page))
1070		return 0;
1071
1072	mapping = page_mapping(page);
1073	if (!mapping)
1074		return 0;
1075
1076	rmap_walk(page, &rwc);
1077
1078	return cleaned;
1079}
1080EXPORT_SYMBOL_GPL(page_mkclean);
1081
1082/**
1083 * page_move_anon_rmap - move a page to our anon_vma
1084 * @page:	the page to move to our anon_vma
1085 * @vma:	the vma the page belongs to
1086 *
1087 * When a page belongs exclusively to one process after a COW event,
1088 * that page can be moved into the anon_vma that belongs to just that
1089 * process, so the rmap code will not search the parent or sibling
1090 * processes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091 */
1092void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1093{
1094	struct anon_vma *anon_vma = vma->anon_vma;
1095
1096	page = compound_head(page);
1097
1098	VM_BUG_ON_PAGE(!PageLocked(page), page);
1099	VM_BUG_ON_VMA(!anon_vma, vma);
1100
1101	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1102	/*
1103	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1104	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1105	 * PageAnon()) will not see one without the other.
1106	 */
1107	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1108}
1109
1110/**
1111 * __page_set_anon_rmap - set up new anonymous rmap
1112 * @page:	Page to add to rmap	
1113 * @vma:	VM area to add page to.
1114 * @address:	User virtual address of the mapping	
1115 * @exclusive:	the page is exclusively owned by the current process
1116 */
1117static void __page_set_anon_rmap(struct page *page,
1118	struct vm_area_struct *vma, unsigned long address, int exclusive)
1119{
1120	struct anon_vma *anon_vma = vma->anon_vma;
1121
1122	BUG_ON(!anon_vma);
1123
1124	if (PageAnon(page))
1125		return;
1126
1127	/*
1128	 * If the page isn't exclusively mapped into this vma,
1129	 * we must use the _oldest_ possible anon_vma for the
1130	 * page mapping!
1131	 */
1132	if (!exclusive)
1133		anon_vma = anon_vma->root;
1134
 
 
 
 
 
 
1135	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1136	page->mapping = (struct address_space *) anon_vma;
1137	page->index = linear_page_index(vma, address);
1138}
1139
1140/**
1141 * __page_check_anon_rmap - sanity check anonymous rmap addition
1142 * @page:	the page to add the mapping to
 
1143 * @vma:	the vm area in which the mapping is added
1144 * @address:	the user virtual address mapped
1145 */
1146static void __page_check_anon_rmap(struct page *page,
1147	struct vm_area_struct *vma, unsigned long address)
 
1148{
1149#ifdef CONFIG_DEBUG_VM
1150	/*
1151	 * The page's anon-rmap details (mapping and index) are guaranteed to
1152	 * be set up correctly at this point.
1153	 *
1154	 * We have exclusion against page_add_anon_rmap because the caller
1155	 * always holds the page locked, except if called from page_dup_rmap,
1156	 * in which case the page is already known to be setup.
1157	 *
1158	 * We have exclusion against page_add_new_anon_rmap because those pages
1159	 * are initially only visible via the pagetables, and the pte is locked
1160	 * over the call to page_add_new_anon_rmap.
1161	 */
1162	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1163	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1164#endif
 
1165}
1166
1167/**
1168 * page_add_anon_rmap - add pte mapping to an anonymous page
1169 * @page:	the page to add the mapping to
1170 * @vma:	the vm area in which the mapping is added
1171 * @address:	the user virtual address mapped
1172 * @compound:	charge the page as compound or small page
1173 *
1174 * The caller needs to hold the pte lock, and the page must be locked in
1175 * the anon_vma case: to serialize mapping,index checking after setting,
1176 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1177 * (but PageKsm is never downgraded to PageAnon).
1178 */
1179void page_add_anon_rmap(struct page *page,
1180	struct vm_area_struct *vma, unsigned long address, bool compound)
1181{
1182	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183}
1184
1185/*
1186 * Special version of the above for do_swap_page, which often runs
1187 * into pages that are exclusively owned by the current process.
1188 * Everybody else should continue to use page_add_anon_rmap above.
1189 */
1190void do_page_add_anon_rmap(struct page *page,
1191	struct vm_area_struct *vma, unsigned long address, int flags)
1192{
1193	bool compound = flags & RMAP_COMPOUND;
1194	bool first;
1195
1196	if (compound) {
1197		atomic_t *mapcount;
1198		VM_BUG_ON_PAGE(!PageLocked(page), page);
1199		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1200		mapcount = compound_mapcount_ptr(page);
1201		first = atomic_inc_and_test(mapcount);
1202	} else {
1203		first = atomic_inc_and_test(&page->_mapcount);
 
 
 
 
 
 
1204	}
 
 
1205
1206	if (first) {
1207		int nr = compound ? hpage_nr_pages(page) : 1;
1208		/*
1209		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1210		 * these counters are not modified in interrupt context, and
1211		 * pte lock(a spinlock) is held, which implies preemption
1212		 * disabled.
1213		 */
1214		if (compound)
1215			__inc_node_page_state(page, NR_ANON_THPS);
1216		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1217	}
1218	if (unlikely(PageKsm(page)))
1219		return;
1220
1221	VM_BUG_ON_PAGE(!PageLocked(page), page);
1222
1223	/* address might be in next vma when migration races vma_adjust */
1224	if (first)
1225		__page_set_anon_rmap(page, vma, address,
1226				flags & RMAP_EXCLUSIVE);
1227	else
1228		__page_check_anon_rmap(page, vma, address);
1229}
1230
1231/**
1232 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1233 * @page:	the page to add the mapping to
1234 * @vma:	the vm area in which the mapping is added
1235 * @address:	the user virtual address mapped
1236 * @compound:	charge the page as compound or small page
 
 
 
 
1237 *
1238 * Same as page_add_anon_rmap but must only be called on *new* pages.
1239 * This means the inc-and-test can be bypassed.
1240 * Page does not have to be locked.
 
1241 */
1242void page_add_new_anon_rmap(struct page *page,
1243	struct vm_area_struct *vma, unsigned long address, bool compound)
 
1244{
1245	int nr = compound ? hpage_nr_pages(page) : 1;
1246
1247	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1248	__SetPageSwapBacked(page);
1249	if (compound) {
1250		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1251		/* increment count (starts at -1) */
1252		atomic_set(compound_mapcount_ptr(page), 0);
1253		__inc_node_page_state(page, NR_ANON_THPS);
1254	} else {
1255		/* Anon THP always mapped first with PMD */
1256		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1257		/* increment count (starts at -1) */
1258		atomic_set(&page->_mapcount, 0);
1259	}
1260	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1261	__page_set_anon_rmap(page, vma, address, 1);
1262}
1263
1264/**
1265 * page_add_file_rmap - add pte mapping to a file page
1266 * @page: the page to add the mapping to
 
 
 
 
 
 
1267 *
1268 * The caller needs to hold the pte lock.
 
1269 */
1270void page_add_file_rmap(struct page *page, bool compound)
 
1271{
1272	int i, nr = 1;
1273
1274	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1275	lock_page_memcg(page);
1276	if (compound && PageTransHuge(page)) {
1277		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1278			if (atomic_inc_and_test(&page[i]._mapcount))
1279				nr++;
1280		}
1281		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1282			goto out;
1283		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1284		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1285	} else {
1286		if (PageTransCompound(page) && page_mapping(page)) {
1287			VM_WARN_ON_ONCE(!PageLocked(page));
1288
1289			SetPageDoubleMap(compound_head(page));
1290			if (PageMlocked(page))
1291				clear_page_mlock(compound_head(page));
1292		}
1293		if (!atomic_inc_and_test(&page->_mapcount))
1294			goto out;
1295	}
1296	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1297	mem_cgroup_update_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, nr);
1298out:
1299	unlock_page_memcg(page);
1300}
1301
1302static void page_remove_file_rmap(struct page *page, bool compound)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303{
1304	int i, nr = 1;
 
 
1305
1306	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1307	lock_page_memcg(page);
 
 
 
 
 
 
 
 
 
 
1308
1309	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1310	if (unlikely(PageHuge(page))) {
1311		/* hugetlb pages are always mapped with pmds */
1312		atomic_dec(compound_mapcount_ptr(page));
1313		goto out;
1314	}
 
 
 
 
 
 
 
 
 
 
1315
1316	/* page still mapped by someone else? */
1317	if (compound && PageTransHuge(page)) {
1318		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1319			if (atomic_add_negative(-1, &page[i]._mapcount))
1320				nr++;
1321		}
1322		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1323			goto out;
1324		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1325		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1326	} else {
1327		if (!atomic_add_negative(-1, &page->_mapcount))
1328			goto out;
 
 
 
 
 
 
1329	}
1330
1331	/*
1332	 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1333	 * these counters are not modified in interrupt context, and
1334	 * pte lock(a spinlock) is held, which implies preemption disabled.
1335	 */
1336	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1337	mem_cgroup_update_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, -nr);
1338
1339	if (unlikely(PageMlocked(page)))
1340		clear_page_mlock(page);
1341out:
1342	unlock_page_memcg(page);
1343}
1344
1345static void page_remove_anon_compound_rmap(struct page *page)
 
 
1346{
1347	int i, nr;
1348
1349	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1350		return;
1351
1352	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1353	if (unlikely(PageHuge(page)))
1354		return;
1355
1356	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1357		return;
 
 
1358
1359	__dec_node_page_state(page, NR_ANON_THPS);
1360
1361	if (TestClearPageDoubleMap(page)) {
1362		/*
1363		 * Subpages can be mapped with PTEs too. Check how many of
1364		 * themi are still mapped.
1365		 */
1366		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1367			if (atomic_add_negative(-1, &page[i]._mapcount))
1368				nr++;
1369		}
1370	} else {
1371		nr = HPAGE_PMD_NR;
1372	}
1373
1374	if (unlikely(PageMlocked(page)))
1375		clear_page_mlock(page);
1376
1377	if (nr) {
1378		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1379		deferred_split_huge_page(page);
1380	}
1381}
1382
1383/**
1384 * page_remove_rmap - take down pte mapping from a page
1385 * @page:	page to remove mapping from
1386 * @compound:	uncharge the page as compound or small page
 
 
 
1387 *
1388 * The caller needs to hold the pte lock.
1389 */
1390void page_remove_rmap(struct page *page, bool compound)
 
1391{
1392	if (!PageAnon(page))
1393		return page_remove_file_rmap(page, compound);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394
1395	if (compound)
1396		return page_remove_anon_compound_rmap(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397
1398	/* page still mapped by someone else? */
1399	if (!atomic_add_negative(-1, &page->_mapcount))
1400		return;
1401
1402	/*
1403	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1404	 * these counters are not modified in interrupt context, and
1405	 * pte lock(a spinlock) is held, which implies preemption disabled.
 
1406	 */
1407	__dec_node_page_state(page, NR_ANON_MAPPED);
1408
1409	if (unlikely(PageMlocked(page)))
1410		clear_page_mlock(page);
1411
1412	if (PageTransCompound(page))
1413		deferred_split_huge_page(compound_head(page));
1414
1415	/*
1416	 * It would be tidy to reset the PageAnon mapping here,
1417	 * but that might overwrite a racing page_add_anon_rmap
1418	 * which increments mapcount after us but sets mapping
1419	 * before us: so leave the reset to free_hot_cold_page,
1420	 * and remember that it's only reliable while mapped.
1421	 * Leaving it set also helps swapoff to reinstate ptes
1422	 * faster for those pages still in swapcache.
1423	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424}
1425
1426struct rmap_private {
1427	enum ttu_flags flags;
1428	int lazyfreed;
1429};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430
1431/*
1432 * @arg: enum ttu_flags will be passed to this argument
1433 */
1434static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1435		     unsigned long address, void *arg)
1436{
1437	struct mm_struct *mm = vma->vm_mm;
1438	pte_t *pte;
1439	pte_t pteval;
1440	spinlock_t *ptl;
1441	int ret = SWAP_AGAIN;
1442	struct rmap_private *rp = arg;
1443	enum ttu_flags flags = rp->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	/* munlock has nothing to gain from examining un-locked vmas */
1446	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1447		goto out;
 
1448
1449	if (flags & TTU_SPLIT_HUGE_PMD) {
1450		split_huge_pmd_address(vma, address,
1451				flags & TTU_MIGRATION, page);
1452		/* check if we have anything to do after split */
1453		if (page_mapcount(page) == 0)
1454			goto out;
1455	}
 
 
 
 
1456
1457	pte = page_check_address(page, mm, address, &ptl,
1458				 PageTransCompound(page));
1459	if (!pte)
1460		goto out;
1461
1462	/*
1463	 * If the page is mlock()d, we cannot swap it out.
1464	 * If it's recently referenced (perhaps page_referenced
1465	 * skipped over this mm) then we should reactivate it.
1466	 */
1467	if (!(flags & TTU_IGNORE_MLOCK)) {
1468		if (vma->vm_flags & VM_LOCKED) {
1469			/* PTE-mapped THP are never mlocked */
1470			if (!PageTransCompound(page)) {
1471				/*
1472				 * Holding pte lock, we do *not* need
1473				 * mmap_sem here
1474				 */
1475				mlock_vma_page(page);
 
 
 
 
1476			}
1477			ret = SWAP_MLOCK;
1478			goto out_unmap;
1479		}
1480		if (flags & TTU_MUNLOCK)
1481			goto out_unmap;
1482	}
1483	if (!(flags & TTU_IGNORE_ACCESS)) {
1484		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1485			ret = SWAP_FAIL;
1486			goto out_unmap;
1487		}
1488  	}
1489
1490	/* Nuke the page table entry. */
1491	flush_cache_page(vma, address, page_to_pfn(page));
1492	if (should_defer_flush(mm, flags)) {
1493		/*
1494		 * We clear the PTE but do not flush so potentially a remote
1495		 * CPU could still be writing to the page. If the entry was
1496		 * previously clean then the architecture must guarantee that
1497		 * a clear->dirty transition on a cached TLB entry is written
1498		 * through and traps if the PTE is unmapped.
1499		 */
1500		pteval = ptep_get_and_clear(mm, address, pte);
1501
1502		set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1503	} else {
1504		pteval = ptep_clear_flush(vma, address, pte);
1505	}
 
 
 
 
1506
1507	/* Move the dirty bit to the physical page now the pte is gone. */
1508	if (pte_dirty(pteval))
1509		set_page_dirty(page);
1510
1511	/* Update high watermark before we lower rss */
1512	update_hiwater_rss(mm);
 
 
 
 
 
 
 
 
 
 
 
1513
1514	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1515		if (PageHuge(page)) {
1516			hugetlb_count_sub(1 << compound_order(page), mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517		} else {
1518			dec_mm_counter(mm, mm_counter(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519		}
1520		set_pte_at(mm, address, pte,
1521			   swp_entry_to_pte(make_hwpoison_entry(page)));
1522	} else if (pte_unused(pteval)) {
1523		/*
1524		 * The guest indicated that the page content is of no
1525		 * interest anymore. Simply discard the pte, vmscan
1526		 * will take care of the rest.
1527		 */
1528		dec_mm_counter(mm, mm_counter(page));
1529	} else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1530		swp_entry_t entry;
1531		pte_t swp_pte;
1532		/*
1533		 * Store the pfn of the page in a special migration
1534		 * pte. do_swap_page() will wait until the migration
1535		 * pte is removed and then restart fault handling.
1536		 */
1537		entry = make_migration_entry(page, pte_write(pteval));
1538		swp_pte = swp_entry_to_pte(entry);
1539		if (pte_soft_dirty(pteval))
1540			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1541		set_pte_at(mm, address, pte, swp_pte);
1542	} else if (PageAnon(page)) {
1543		swp_entry_t entry = { .val = page_private(page) };
1544		pte_t swp_pte;
1545		/*
1546		 * Store the swap location in the pte.
1547		 * See handle_pte_fault() ...
1548		 */
1549		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550
1551		if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1552			/* It's a freeable page by MADV_FREE */
1553			dec_mm_counter(mm, MM_ANONPAGES);
1554			rp->lazyfreed++;
1555			goto discard;
1556		}
1557
1558		if (swap_duplicate(entry) < 0) {
1559			set_pte_at(mm, address, pte, pteval);
1560			ret = SWAP_FAIL;
1561			goto out_unmap;
1562		}
1563		if (list_empty(&mm->mmlist)) {
1564			spin_lock(&mmlist_lock);
1565			if (list_empty(&mm->mmlist))
1566				list_add(&mm->mmlist, &init_mm.mmlist);
1567			spin_unlock(&mmlist_lock);
1568		}
1569		dec_mm_counter(mm, MM_ANONPAGES);
1570		inc_mm_counter(mm, MM_SWAPENTS);
1571		swp_pte = swp_entry_to_pte(entry);
1572		if (pte_soft_dirty(pteval))
1573			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1574		set_pte_at(mm, address, pte, swp_pte);
1575	} else
1576		dec_mm_counter(mm, mm_counter_file(page));
1577
1578discard:
1579	page_remove_rmap(page, PageHuge(page));
1580	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
1581
1582out_unmap:
1583	pte_unmap_unlock(pte, ptl);
1584	if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1585		mmu_notifier_invalidate_page(mm, address);
1586out:
1587	return ret;
1588}
 
 
 
 
 
 
1589
1590bool is_vma_temporary_stack(struct vm_area_struct *vma)
1591{
1592	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
 
 
 
 
 
 
1593
1594	if (!maybe_stack)
1595		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1596
1597	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1598						VM_STACK_INCOMPLETE_SETUP)
1599		return true;
1600
1601	return false;
1602}
1603
1604static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1605{
1606	return is_vma_temporary_stack(vma);
1607}
1608
1609static int page_mapcount_is_zero(struct page *page)
1610{
1611	return !page_mapcount(page);
1612}
1613
1614/**
1615 * try_to_unmap - try to remove all page table mappings to a page
1616 * @page: the page to get unmapped
1617 * @flags: action and flags
1618 *
1619 * Tries to remove all the page table entries which are mapping this
1620 * page, used in the pageout path.  Caller must hold the page lock.
1621 * Return values are:
1622 *
1623 * SWAP_SUCCESS	- we succeeded in removing all mappings
1624 * SWAP_AGAIN	- we missed a mapping, try again later
1625 * SWAP_FAIL	- the page is unswappable
1626 * SWAP_MLOCK	- page is mlocked.
1627 */
1628int try_to_unmap(struct page *page, enum ttu_flags flags)
1629{
1630	int ret;
1631	struct rmap_private rp = {
1632		.flags = flags,
1633		.lazyfreed = 0,
1634	};
1635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636	struct rmap_walk_control rwc = {
1637		.rmap_one = try_to_unmap_one,
1638		.arg = &rp,
1639		.done = page_mapcount_is_zero,
1640		.anon_lock = page_lock_anon_vma_read,
1641	};
1642
1643	/*
 
 
 
 
 
 
 
 
 
 
 
 
1644	 * During exec, a temporary VMA is setup and later moved.
1645	 * The VMA is moved under the anon_vma lock but not the
1646	 * page tables leading to a race where migration cannot
1647	 * find the migration ptes. Rather than increasing the
1648	 * locking requirements of exec(), migration skips
1649	 * temporary VMAs until after exec() completes.
1650	 */
1651	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1652		rwc.invalid_vma = invalid_migration_vma;
1653
1654	if (flags & TTU_RMAP_LOCKED)
1655		ret = rmap_walk_locked(page, &rwc);
1656	else
1657		ret = rmap_walk(page, &rwc);
 
1658
1659	if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1660		ret = SWAP_SUCCESS;
1661		if (rp.lazyfreed && !PageDirty(page))
1662			ret = SWAP_LZFREE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663	}
 
 
 
1664	return ret;
1665}
1666
1667static int page_not_mapped(struct page *page)
1668{
1669	return !page_mapped(page);
1670};
1671
1672/**
1673 * try_to_munlock - try to munlock a page
1674 * @page: the page to be munlocked
 
 
 
1675 *
1676 * Called from munlock code.  Checks all of the VMAs mapping the page
1677 * to make sure nobody else has this page mlocked. The page will be
1678 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1679 *
1680 * Return values are:
1681 *
1682 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1683 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1684 * SWAP_FAIL	- page cannot be located at present
1685 * SWAP_MLOCK	- page is now mlocked.
1686 */
1687int try_to_munlock(struct page *page)
1688{
1689	int ret;
1690	struct rmap_private rp = {
1691		.flags = TTU_MUNLOCK,
1692		.lazyfreed = 0,
 
 
 
 
 
1693	};
1694
1695	struct rmap_walk_control rwc = {
1696		.rmap_one = try_to_unmap_one,
1697		.arg = &rp,
1698		.done = page_not_mapped,
1699		.anon_lock = page_lock_anon_vma_read,
 
 
 
 
 
 
1700
1701	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702
1703	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
 
 
 
 
 
1704
1705	ret = rmap_walk(page, &rwc);
1706	return ret;
1707}
 
 
1708
1709void __put_anon_vma(struct anon_vma *anon_vma)
1710{
1711	struct anon_vma *root = anon_vma->root;
1712
1713	anon_vma_free(anon_vma);
1714	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1715		anon_vma_free(root);
1716}
1717
1718static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1719					struct rmap_walk_control *rwc)
1720{
1721	struct anon_vma *anon_vma;
1722
1723	if (rwc->anon_lock)
1724		return rwc->anon_lock(page);
1725
1726	/*
1727	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1728	 * because that depends on page_mapped(); but not all its usages
1729	 * are holding mmap_sem. Users without mmap_sem are required to
1730	 * take a reference count to prevent the anon_vma disappearing
1731	 */
1732	anon_vma = page_anon_vma(page);
1733	if (!anon_vma)
1734		return NULL;
1735
 
 
 
 
 
 
 
 
 
1736	anon_vma_lock_read(anon_vma);
 
1737	return anon_vma;
1738}
1739
1740/*
1741 * rmap_walk_anon - do something to anonymous page using the object-based
1742 * rmap method
1743 * @page: the page to be handled
1744 * @rwc: control variable according to each walk type
 
1745 *
1746 * Find all the mappings of a page using the mapping pointer and the vma chains
1747 * contained in the anon_vma struct it points to.
1748 *
1749 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1750 * where the page was found will be held for write.  So, we won't recheck
1751 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1752 * LOCKED.
1753 */
1754static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1755		bool locked)
1756{
1757	struct anon_vma *anon_vma;
1758	pgoff_t pgoff;
1759	struct anon_vma_chain *avc;
1760	int ret = SWAP_AGAIN;
1761
1762	if (locked) {
1763		anon_vma = page_anon_vma(page);
1764		/* anon_vma disappear under us? */
1765		VM_BUG_ON_PAGE(!anon_vma, page);
1766	} else {
1767		anon_vma = rmap_walk_anon_lock(page, rwc);
1768	}
1769	if (!anon_vma)
1770		return ret;
1771
1772	pgoff = page_to_pgoff(page);
1773	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
 
 
1774		struct vm_area_struct *vma = avc->vma;
1775		unsigned long address = vma_address(page, vma);
 
1776
 
1777		cond_resched();
1778
1779		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1780			continue;
1781
1782		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1783		if (ret != SWAP_AGAIN)
1784			break;
1785		if (rwc->done && rwc->done(page))
1786			break;
1787	}
1788
1789	if (!locked)
1790		anon_vma_unlock_read(anon_vma);
1791	return ret;
1792}
1793
1794/*
1795 * rmap_walk_file - do something to file page using the object-based rmap method
1796 * @page: the page to be handled
1797 * @rwc: control variable according to each walk type
 
1798 *
1799 * Find all the mappings of a page using the mapping pointer and the vma chains
1800 * contained in the address_space struct it points to.
1801 *
1802 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1803 * where the page was found will be held for write.  So, we won't recheck
1804 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1805 * LOCKED.
1806 */
1807static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1808		bool locked)
1809{
1810	struct address_space *mapping = page_mapping(page);
1811	pgoff_t pgoff;
1812	struct vm_area_struct *vma;
1813	int ret = SWAP_AGAIN;
1814
1815	/*
1816	 * The page lock not only makes sure that page->mapping cannot
1817	 * suddenly be NULLified by truncation, it makes sure that the
1818	 * structure at mapping cannot be freed and reused yet,
1819	 * so we can safely take mapping->i_mmap_rwsem.
1820	 */
1821	VM_BUG_ON_PAGE(!PageLocked(page), page);
1822
1823	if (!mapping)
1824		return ret;
 
 
 
 
 
 
 
 
 
 
 
1825
1826	pgoff = page_to_pgoff(page);
1827	if (!locked)
1828		i_mmap_lock_read(mapping);
1829	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1830		unsigned long address = vma_address(page, vma);
 
 
 
 
1831
 
1832		cond_resched();
1833
1834		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1835			continue;
1836
1837		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1838		if (ret != SWAP_AGAIN)
1839			goto done;
1840		if (rwc->done && rwc->done(page))
1841			goto done;
1842	}
1843
1844done:
1845	if (!locked)
1846		i_mmap_unlock_read(mapping);
1847	return ret;
1848}
1849
1850int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1851{
1852	if (unlikely(PageKsm(page)))
1853		return rmap_walk_ksm(page, rwc);
1854	else if (PageAnon(page))
1855		return rmap_walk_anon(page, rwc, false);
1856	else
1857		return rmap_walk_file(page, rwc, false);
1858}
1859
1860/* Like rmap_walk, but caller holds relevant rmap lock */
1861int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1862{
1863	/* no ksm support for now */
1864	VM_BUG_ON_PAGE(PageKsm(page), page);
1865	if (PageAnon(page))
1866		return rmap_walk_anon(page, rwc, true);
1867	else
1868		return rmap_walk_file(page, rwc, true);
1869}
1870
1871#ifdef CONFIG_HUGETLB_PAGE
1872/*
1873 * The following three functions are for anonymous (private mapped) hugepages.
1874 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1875 * and no lru code, because we handle hugepages differently from common pages.
1876 */
1877static void __hugepage_set_anon_rmap(struct page *page,
1878	struct vm_area_struct *vma, unsigned long address, int exclusive)
1879{
1880	struct anon_vma *anon_vma = vma->anon_vma;
1881
1882	BUG_ON(!anon_vma);
1883
1884	if (PageAnon(page))
1885		return;
1886	if (!exclusive)
1887		anon_vma = anon_vma->root;
1888
1889	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1890	page->mapping = (struct address_space *) anon_vma;
1891	page->index = linear_page_index(vma, address);
 
 
 
1892}
1893
1894void hugepage_add_anon_rmap(struct page *page,
1895			    struct vm_area_struct *vma, unsigned long address)
1896{
1897	struct anon_vma *anon_vma = vma->anon_vma;
1898	int first;
1899
1900	BUG_ON(!PageLocked(page));
1901	BUG_ON(!anon_vma);
1902	/* address might be in next vma when migration races vma_adjust */
1903	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1904	if (first)
1905		__hugepage_set_anon_rmap(page, vma, address, 0);
1906}
1907
1908void hugepage_add_new_anon_rmap(struct page *page,
1909			struct vm_area_struct *vma, unsigned long address)
1910{
1911	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1912	atomic_set(compound_mapcount_ptr(page), 0);
1913	__hugepage_set_anon_rmap(page, vma, address, 1);
 
 
 
 
1914}
1915#endif /* CONFIG_HUGETLB_PAGE */