Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/locking/mutex.c
   4 *
   5 * Mutexes: blocking mutual exclusion locks
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *
  11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  12 * David Howells for suggestions and improvements.
  13 *
  14 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  15 *    from the -rt tree, where it was originally implemented for rtmutexes
  16 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  17 *    and Sven Dietrich.
  18 *
  19 * Also see Documentation/locking/mutex-design.rst.
  20 */
  21#include <linux/mutex.h>
  22#include <linux/ww_mutex.h>
  23#include <linux/sched/signal.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/wake_q.h>
  26#include <linux/sched/debug.h>
  27#include <linux/export.h>
  28#include <linux/spinlock.h>
  29#include <linux/interrupt.h>
  30#include <linux/debug_locks.h>
  31#include <linux/osq_lock.h>
  32
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/lock.h>
  35
  36#ifndef CONFIG_PREEMPT_RT
  37#include "mutex.h"
  38
  39#ifdef CONFIG_DEBUG_MUTEXES
  40# define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
  41#else
  42# define MUTEX_WARN_ON(cond)
  43#endif
  44
  45void
  46__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  47{
  48	atomic_long_set(&lock->owner, 0);
  49	raw_spin_lock_init(&lock->wait_lock);
  50	INIT_LIST_HEAD(&lock->wait_list);
  51#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  52	osq_lock_init(&lock->osq);
  53#endif
  54
  55	debug_mutex_init(lock, name, key);
  56}
  57EXPORT_SYMBOL(__mutex_init);
  58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59static inline struct task_struct *__owner_task(unsigned long owner)
  60{
  61	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
  62}
  63
  64bool mutex_is_locked(struct mutex *lock)
  65{
  66	return __mutex_owner(lock) != NULL;
  67}
  68EXPORT_SYMBOL(mutex_is_locked);
  69
  70static inline unsigned long __owner_flags(unsigned long owner)
  71{
  72	return owner & MUTEX_FLAGS;
  73}
  74
  75/*
  76 * Returns: __mutex_owner(lock) on failure or NULL on success.
 
 
 
 
 
  77 */
  78static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
  79{
  80	unsigned long owner, curr = (unsigned long)current;
  81
  82	owner = atomic_long_read(&lock->owner);
  83	for (;;) { /* must loop, can race against a flag */
  84		unsigned long flags = __owner_flags(owner);
  85		unsigned long task = owner & ~MUTEX_FLAGS;
  86
  87		if (task) {
  88			if (flags & MUTEX_FLAG_PICKUP) {
  89				if (task != curr)
  90					break;
  91				flags &= ~MUTEX_FLAG_PICKUP;
  92			} else if (handoff) {
  93				if (flags & MUTEX_FLAG_HANDOFF)
  94					break;
  95				flags |= MUTEX_FLAG_HANDOFF;
  96			} else {
  97				break;
 
 
 
  98			}
  99		} else {
 100			MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
 101			task = curr;
 102		}
 103
 104		if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
 105			if (task == curr)
 106				return NULL;
 107			break;
 108		}
 109	}
 110
 111	return __owner_task(owner);
 112}
 
 
 
 
 
 113
 114/*
 115 * Trylock or set HANDOFF
 116 */
 117static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
 118{
 119	return !__mutex_trylock_common(lock, handoff);
 120}
 121
 122/*
 123 * Actual trylock that will work on any unlocked state.
 124 */
 125static inline bool __mutex_trylock(struct mutex *lock)
 126{
 127	return !__mutex_trylock_common(lock, false);
 128}
 129
 130#ifndef CONFIG_DEBUG_LOCK_ALLOC
 131/*
 132 * Lockdep annotations are contained to the slow paths for simplicity.
 133 * There is nothing that would stop spreading the lockdep annotations outwards
 134 * except more code.
 135 */
 136
 137/*
 138 * Optimistic trylock that only works in the uncontended case. Make sure to
 139 * follow with a __mutex_trylock() before failing.
 140 */
 141static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
 142{
 143	unsigned long curr = (unsigned long)current;
 144	unsigned long zero = 0UL;
 145
 146	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
 147		return true;
 148
 149	return false;
 150}
 151
 152static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
 153{
 154	unsigned long curr = (unsigned long)current;
 155
 156	return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
 
 
 
 157}
 158#endif
 159
 160static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
 161{
 162	atomic_long_or(flag, &lock->owner);
 163}
 164
 165static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
 166{
 167	atomic_long_andnot(flag, &lock->owner);
 168}
 169
 170static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
 171{
 172	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
 173}
 174
 175/*
 176 * Add @waiter to a given location in the lock wait_list and set the
 177 * FLAG_WAITERS flag if it's the first waiter.
 178 */
 179static void
 180__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
 181		   struct list_head *list)
 182{
 183	debug_mutex_add_waiter(lock, waiter, current);
 184
 185	list_add_tail(&waiter->list, list);
 186	if (__mutex_waiter_is_first(lock, waiter))
 187		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
 188}
 189
 190static void
 191__mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
 192{
 193	list_del(&waiter->list);
 194	if (likely(list_empty(&lock->wait_list)))
 195		__mutex_clear_flag(lock, MUTEX_FLAGS);
 196
 197	debug_mutex_remove_waiter(lock, waiter, current);
 198}
 199
 200/*
 201 * Give up ownership to a specific task, when @task = NULL, this is equivalent
 202 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
 203 * WAITERS. Provides RELEASE semantics like a regular unlock, the
 204 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
 205 */
 206static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
 207{
 208	unsigned long owner = atomic_long_read(&lock->owner);
 209
 210	for (;;) {
 211		unsigned long new;
 212
 213		MUTEX_WARN_ON(__owner_task(owner) != current);
 214		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
 
 215
 216		new = (owner & MUTEX_FLAG_WAITERS);
 217		new |= (unsigned long)task;
 218		if (task)
 219			new |= MUTEX_FLAG_PICKUP;
 220
 221		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
 
 222			break;
 
 
 223	}
 224}
 225
 226#ifndef CONFIG_DEBUG_LOCK_ALLOC
 227/*
 228 * We split the mutex lock/unlock logic into separate fastpath and
 229 * slowpath functions, to reduce the register pressure on the fastpath.
 230 * We also put the fastpath first in the kernel image, to make sure the
 231 * branch is predicted by the CPU as default-untaken.
 232 */
 233static void __sched __mutex_lock_slowpath(struct mutex *lock);
 234
 235/**
 236 * mutex_lock - acquire the mutex
 237 * @lock: the mutex to be acquired
 238 *
 239 * Lock the mutex exclusively for this task. If the mutex is not
 240 * available right now, it will sleep until it can get it.
 241 *
 242 * The mutex must later on be released by the same task that
 243 * acquired it. Recursive locking is not allowed. The task
 244 * may not exit without first unlocking the mutex. Also, kernel
 245 * memory where the mutex resides must not be freed with
 246 * the mutex still locked. The mutex must first be initialized
 247 * (or statically defined) before it can be locked. memset()-ing
 248 * the mutex to 0 is not allowed.
 249 *
 250 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 251 * checks that will enforce the restrictions and will also do
 252 * deadlock debugging)
 253 *
 254 * This function is similar to (but not equivalent to) down().
 255 */
 256void __sched mutex_lock(struct mutex *lock)
 257{
 258	might_sleep();
 259
 260	if (!__mutex_trylock_fast(lock))
 261		__mutex_lock_slowpath(lock);
 262}
 263EXPORT_SYMBOL(mutex_lock);
 264#endif
 265
 266#include "ww_mutex.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267
 268#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269
 270/*
 271 * Trylock variant that returns the owning task on failure.
 
 272 */
 273static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
 
 
 274{
 275	return __mutex_trylock_common(lock, false);
 276}
 277
 278static inline
 279bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 280			    struct mutex_waiter *waiter)
 281{
 282	struct ww_mutex *ww;
 283
 284	ww = container_of(lock, struct ww_mutex, base);
 285
 286	/*
 287	 * If ww->ctx is set the contents are undefined, only
 288	 * by acquiring wait_lock there is a guarantee that
 289	 * they are not invalid when reading.
 290	 *
 291	 * As such, when deadlock detection needs to be
 292	 * performed the optimistic spinning cannot be done.
 293	 *
 294	 * Check this in every inner iteration because we may
 295	 * be racing against another thread's ww_mutex_lock.
 296	 */
 297	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
 298		return false;
 299
 300	/*
 301	 * If we aren't on the wait list yet, cancel the spin
 302	 * if there are waiters. We want  to avoid stealing the
 303	 * lock from a waiter with an earlier stamp, since the
 304	 * other thread may already own a lock that we also
 305	 * need.
 306	 */
 307	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
 308		return false;
 309
 310	/*
 311	 * Similarly, stop spinning if we are no longer the
 312	 * first waiter.
 313	 */
 314	if (waiter && !__mutex_waiter_is_first(lock, waiter))
 315		return false;
 316
 317	return true;
 
 
 318}
 319
 320/*
 321 * Look out! "owner" is an entirely speculative pointer access and not
 322 * reliable.
 323 *
 324 * "noinline" so that this function shows up on perf profiles.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325 */
 326static noinline
 327bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
 328			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
 329{
 330	bool ret = true;
 331
 332	lockdep_assert_preemption_disabled();
 333
 334	while (__mutex_owner(lock) == owner) {
 335		/*
 336		 * Ensure we emit the owner->on_cpu, dereference _after_
 337		 * checking lock->owner still matches owner. And we already
 338		 * disabled preemption which is equal to the RCU read-side
 339		 * crital section in optimistic spinning code. Thus the
 340		 * task_strcut structure won't go away during the spinning
 341		 * period
 342		 */
 343		barrier();
 344
 345		/*
 346		 * Use vcpu_is_preempted to detect lock holder preemption issue.
 347		 */
 348		if (!owner_on_cpu(owner) || need_resched()) {
 349			ret = false;
 350			break;
 351		}
 352
 353		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
 354			ret = false;
 355			break;
 356		}
 357
 358		cpu_relax();
 359	}
 
 360
 361	return ret;
 362}
 363
 364/*
 365 * Initial check for entering the mutex spinning loop
 366 */
 367static inline int mutex_can_spin_on_owner(struct mutex *lock)
 368{
 369	struct task_struct *owner;
 370	int retval = 1;
 371
 372	lockdep_assert_preemption_disabled();
 373
 374	if (need_resched())
 375		return 0;
 376
 
 
 
 377	/*
 378	 * We already disabled preemption which is equal to the RCU read-side
 379	 * crital section in optimistic spinning code. Thus the task_strcut
 380	 * structure won't go away during the spinning period.
 381	 */
 382	owner = __mutex_owner(lock);
 383	if (owner)
 384		retval = owner_on_cpu(owner);
 
 385
 386	/*
 387	 * If lock->owner is not set, the mutex has been released. Return true
 388	 * such that we'll trylock in the spin path, which is a faster option
 389	 * than the blocking slow path.
 390	 */
 391	return retval;
 392}
 393
 394/*
 395 * Optimistic spinning.
 396 *
 397 * We try to spin for acquisition when we find that the lock owner
 398 * is currently running on a (different) CPU and while we don't
 399 * need to reschedule. The rationale is that if the lock owner is
 400 * running, it is likely to release the lock soon.
 401 *
 402 * The mutex spinners are queued up using MCS lock so that only one
 403 * spinner can compete for the mutex. However, if mutex spinning isn't
 404 * going to happen, there is no point in going through the lock/unlock
 405 * overhead.
 406 *
 407 * Returns true when the lock was taken, otherwise false, indicating
 408 * that we need to jump to the slowpath and sleep.
 409 *
 410 * The waiter flag is set to true if the spinner is a waiter in the wait
 411 * queue. The waiter-spinner will spin on the lock directly and concurrently
 412 * with the spinner at the head of the OSQ, if present, until the owner is
 413 * changed to itself.
 414 */
 415static __always_inline bool
 416mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 417		      struct mutex_waiter *waiter)
 418{
 
 
 419	if (!waiter) {
 420		/*
 421		 * The purpose of the mutex_can_spin_on_owner() function is
 422		 * to eliminate the overhead of osq_lock() and osq_unlock()
 423		 * in case spinning isn't possible. As a waiter-spinner
 424		 * is not going to take OSQ lock anyway, there is no need
 425		 * to call mutex_can_spin_on_owner().
 426		 */
 427		if (!mutex_can_spin_on_owner(lock))
 428			goto fail;
 429
 430		/*
 431		 * In order to avoid a stampede of mutex spinners trying to
 432		 * acquire the mutex all at once, the spinners need to take a
 433		 * MCS (queued) lock first before spinning on the owner field.
 434		 */
 435		if (!osq_lock(&lock->osq))
 436			goto fail;
 437	}
 438
 439	for (;;) {
 440		struct task_struct *owner;
 441
 442		/* Try to acquire the mutex... */
 443		owner = __mutex_trylock_or_owner(lock);
 444		if (!owner)
 445			break;
 
 
 
 
 
 
 
 
 
 
 
 446
 447		/*
 448		 * There's an owner, wait for it to either
 449		 * release the lock or go to sleep.
 450		 */
 451		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
 452			goto fail_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 453
 454		/*
 455		 * The cpu_relax() call is a compiler barrier which forces
 456		 * everything in this loop to be re-loaded. We don't need
 457		 * memory barriers as we'll eventually observe the right
 458		 * values at the cost of a few extra spins.
 459		 */
 460		cpu_relax();
 461	}
 462
 463	if (!waiter)
 464		osq_unlock(&lock->osq);
 465
 466	return true;
 467
 468
 469fail_unlock:
 470	if (!waiter)
 471		osq_unlock(&lock->osq);
 472
 473fail:
 474	/*
 475	 * If we fell out of the spin path because of need_resched(),
 476	 * reschedule now, before we try-lock the mutex. This avoids getting
 477	 * scheduled out right after we obtained the mutex.
 478	 */
 479	if (need_resched()) {
 480		/*
 481		 * We _should_ have TASK_RUNNING here, but just in case
 482		 * we do not, make it so, otherwise we might get stuck.
 483		 */
 484		__set_current_state(TASK_RUNNING);
 485		schedule_preempt_disabled();
 486	}
 487
 488	return false;
 489}
 490#else
 491static __always_inline bool
 492mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
 493		      struct mutex_waiter *waiter)
 494{
 495	return false;
 496}
 497#endif
 498
 499static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
 500
 501/**
 502 * mutex_unlock - release the mutex
 503 * @lock: the mutex to be released
 504 *
 505 * Unlock a mutex that has been locked by this task previously.
 506 *
 507 * This function must not be used in interrupt context. Unlocking
 508 * of a not locked mutex is not allowed.
 509 *
 510 * The caller must ensure that the mutex stays alive until this function has
 511 * returned - mutex_unlock() can NOT directly be used to release an object such
 512 * that another concurrent task can free it.
 513 * Mutexes are different from spinlocks & refcounts in this aspect.
 514 *
 515 * This function is similar to (but not equivalent to) up().
 516 */
 517void __sched mutex_unlock(struct mutex *lock)
 518{
 519#ifndef CONFIG_DEBUG_LOCK_ALLOC
 520	if (__mutex_unlock_fast(lock))
 521		return;
 522#endif
 523	__mutex_unlock_slowpath(lock, _RET_IP_);
 524}
 525EXPORT_SYMBOL(mutex_unlock);
 526
 527/**
 528 * ww_mutex_unlock - release the w/w mutex
 529 * @lock: the mutex to be released
 530 *
 531 * Unlock a mutex that has been locked by this task previously with any of the
 532 * ww_mutex_lock* functions (with or without an acquire context). It is
 533 * forbidden to release the locks after releasing the acquire context.
 534 *
 535 * This function must not be used in interrupt context. Unlocking
 536 * of a unlocked mutex is not allowed.
 537 */
 538void __sched ww_mutex_unlock(struct ww_mutex *lock)
 539{
 540	__ww_mutex_unlock(lock);
 
 
 
 
 
 
 
 
 
 
 
 
 541	mutex_unlock(&lock->base);
 542}
 543EXPORT_SYMBOL(ww_mutex_unlock);
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545/*
 546 * Lock a mutex (possibly interruptible), slowpath:
 547 */
 548static __always_inline int __sched
 549__mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
 550		    struct lockdep_map *nest_lock, unsigned long ip,
 551		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 552{
 553	DEFINE_WAKE_Q(wake_q);
 554	struct mutex_waiter waiter;
 555	struct ww_mutex *ww;
 556	unsigned long flags;
 
 
 557	int ret;
 558
 559	if (!use_ww_ctx)
 560		ww_ctx = NULL;
 561
 562	might_sleep();
 563
 564	MUTEX_WARN_ON(lock->magic != lock);
 565
 566	ww = container_of(lock, struct ww_mutex, base);
 567	if (ww_ctx) {
 568		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
 569			return -EALREADY;
 570
 571		/*
 572		 * Reset the wounded flag after a kill. No other process can
 573		 * race and wound us here since they can't have a valid owner
 574		 * pointer if we don't have any locks held.
 575		 */
 576		if (ww_ctx->acquired == 0)
 577			ww_ctx->wounded = 0;
 578
 579#ifdef CONFIG_DEBUG_LOCK_ALLOC
 580		nest_lock = &ww_ctx->dep_map;
 581#endif
 582	}
 583
 584	preempt_disable();
 585	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 586
 587	trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
 588	if (__mutex_trylock(lock) ||
 589	    mutex_optimistic_spin(lock, ww_ctx, NULL)) {
 590		/* got the lock, yay! */
 591		lock_acquired(&lock->dep_map, ip);
 592		if (ww_ctx)
 593			ww_mutex_set_context_fastpath(ww, ww_ctx);
 594		trace_contention_end(lock, 0);
 595		preempt_enable();
 596		return 0;
 597	}
 598
 599	raw_spin_lock_irqsave(&lock->wait_lock, flags);
 600	/*
 601	 * After waiting to acquire the wait_lock, try again.
 602	 */
 603	if (__mutex_trylock(lock)) {
 604		if (ww_ctx)
 605			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
 606
 607		goto skip_wait;
 608	}
 609
 610	debug_mutex_lock_common(lock, &waiter);
 611	waiter.task = current;
 612	if (use_ww_ctx)
 613		waiter.ww_ctx = ww_ctx;
 614
 615	lock_contended(&lock->dep_map, ip);
 
 
 616
 617	if (!use_ww_ctx) {
 618		/* add waiting tasks to the end of the waitqueue (FIFO): */
 619		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
 620	} else {
 621		/*
 622		 * Add in stamp order, waking up waiters that must kill
 623		 * themselves.
 624		 */
 625		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
 626		if (ret)
 627			goto err_early_kill;
 628	}
 629
 630	set_current_state(state);
 631	trace_contention_begin(lock, LCB_F_MUTEX);
 632	for (;;) {
 633		bool first;
 634
 
 
 635		/*
 636		 * Once we hold wait_lock, we're serialized against
 637		 * mutex_unlock() handing the lock off to us, do a trylock
 638		 * before testing the error conditions to make sure we pick up
 639		 * the handoff.
 640		 */
 641		if (__mutex_trylock(lock))
 642			goto acquired;
 643
 644		/*
 645		 * Check for signals and kill conditions while holding
 646		 * wait_lock. This ensures the lock cancellation is ordered
 647		 * against mutex_unlock() and wake-ups do not go missing.
 648		 */
 649		if (signal_pending_state(state, current)) {
 650			ret = -EINTR;
 651			goto err;
 652		}
 653
 654		if (ww_ctx) {
 655			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
 656			if (ret)
 657				goto err;
 658		}
 659
 660		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 661		/* Make sure we do wakeups before calling schedule */
 662		wake_up_q(&wake_q);
 663		wake_q_init(&wake_q);
 664
 665		schedule_preempt_disabled();
 666
 667		first = __mutex_waiter_is_first(lock, &waiter);
 
 
 
 668
 669		set_current_state(state);
 670		/*
 671		 * Here we order against unlock; we must either see it change
 672		 * state back to RUNNING and fall through the next schedule(),
 673		 * or we must see its unlock and acquire.
 674		 */
 675		if (__mutex_trylock_or_handoff(lock, first))
 
 676			break;
 677
 678		if (first) {
 679			trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
 680			if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
 681				break;
 682			trace_contention_begin(lock, LCB_F_MUTEX);
 683		}
 684
 685		raw_spin_lock_irqsave(&lock->wait_lock, flags);
 686	}
 687	raw_spin_lock_irqsave(&lock->wait_lock, flags);
 688acquired:
 689	__set_current_state(TASK_RUNNING);
 690
 691	if (ww_ctx) {
 692		/*
 693		 * Wound-Wait; we stole the lock (!first_waiter), check the
 694		 * waiters as anyone might want to wound us.
 695		 */
 696		if (!ww_ctx->is_wait_die &&
 697		    !__mutex_waiter_is_first(lock, &waiter))
 698			__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
 699	}
 700
 701	__mutex_remove_waiter(lock, &waiter);
 
 
 702
 703	debug_mutex_free_waiter(&waiter);
 704
 705skip_wait:
 706	/* got the lock - cleanup and rejoice! */
 707	lock_acquired(&lock->dep_map, ip);
 708	trace_contention_end(lock, 0);
 709
 710	if (ww_ctx)
 711		ww_mutex_lock_acquired(ww, ww_ctx);
 712
 713	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 714	wake_up_q(&wake_q);
 715	preempt_enable();
 716	return 0;
 717
 718err:
 719	__set_current_state(TASK_RUNNING);
 720	__mutex_remove_waiter(lock, &waiter);
 721err_early_kill:
 722	trace_contention_end(lock, ret);
 723	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 724	debug_mutex_free_waiter(&waiter);
 725	mutex_release(&lock->dep_map, ip);
 726	wake_up_q(&wake_q);
 727	preempt_enable();
 728	return ret;
 729}
 730
 731static int __sched
 732__mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
 733	     struct lockdep_map *nest_lock, unsigned long ip)
 734{
 735	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
 736}
 737
 738static int __sched
 739__ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
 740		unsigned long ip, struct ww_acquire_ctx *ww_ctx)
 741{
 742	return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
 743}
 744
 745/**
 746 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
 747 * @ww: mutex to lock
 748 * @ww_ctx: optional w/w acquire context
 749 *
 750 * Trylocks a mutex with the optional acquire context; no deadlock detection is
 751 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
 752 *
 753 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
 754 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
 755 *
 756 * A mutex acquired with this function must be released with ww_mutex_unlock.
 757 */
 758int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
 759{
 760	if (!ww_ctx)
 761		return mutex_trylock(&ww->base);
 762
 763	MUTEX_WARN_ON(ww->base.magic != &ww->base);
 764
 765	/*
 766	 * Reset the wounded flag after a kill. No other process can
 767	 * race and wound us here, since they can't have a valid owner
 768	 * pointer if we don't have any locks held.
 769	 */
 770	if (ww_ctx->acquired == 0)
 771		ww_ctx->wounded = 0;
 772
 773	if (__mutex_trylock(&ww->base)) {
 774		ww_mutex_set_context_fastpath(ww, ww_ctx);
 775		mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
 776		return 1;
 777	}
 778
 779	return 0;
 780}
 781EXPORT_SYMBOL(ww_mutex_trylock);
 782
 783#ifdef CONFIG_DEBUG_LOCK_ALLOC
 784void __sched
 785mutex_lock_nested(struct mutex *lock, unsigned int subclass)
 786{
 787	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
 
 
 788}
 789
 790EXPORT_SYMBOL_GPL(mutex_lock_nested);
 791
 792void __sched
 793_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
 794{
 795	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
 
 
 796}
 797EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
 798
 799int __sched
 800mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
 801{
 802	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
 
 
 803}
 804EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
 805
 806int __sched
 807mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
 808{
 809	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
 810}
 811EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
 812
 813void __sched
 814mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
 815{
 816	int token;
 817
 818	might_sleep();
 819
 820	token = io_schedule_prepare();
 821	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
 822			    subclass, NULL, _RET_IP_, NULL, 0);
 823	io_schedule_finish(token);
 824}
 825EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
 826
 827static inline int
 828ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 829{
 830#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 831	unsigned tmp;
 832
 833	if (ctx->deadlock_inject_countdown-- == 0) {
 834		tmp = ctx->deadlock_inject_interval;
 835		if (tmp > UINT_MAX/4)
 836			tmp = UINT_MAX;
 837		else
 838			tmp = tmp*2 + tmp + tmp/2;
 839
 840		ctx->deadlock_inject_interval = tmp;
 841		ctx->deadlock_inject_countdown = tmp;
 842		ctx->contending_lock = lock;
 843
 844		ww_mutex_unlock(lock);
 845
 846		return -EDEADLK;
 847	}
 848#endif
 849
 850	return 0;
 851}
 852
 853int __sched
 854ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 855{
 856	int ret;
 857
 858	might_sleep();
 859	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
 860			       0, _RET_IP_, ctx);
 861	if (!ret && ctx && ctx->acquired > 1)
 862		return ww_mutex_deadlock_injection(lock, ctx);
 863
 864	return ret;
 865}
 866EXPORT_SYMBOL_GPL(ww_mutex_lock);
 867
 868int __sched
 869ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 870{
 871	int ret;
 872
 873	might_sleep();
 874	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
 875			      0, _RET_IP_, ctx);
 876
 877	if (!ret && ctx && ctx->acquired > 1)
 878		return ww_mutex_deadlock_injection(lock, ctx);
 879
 880	return ret;
 881}
 882EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
 883
 884#endif
 885
 886/*
 887 * Release the lock, slowpath:
 888 */
 889static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
 890{
 891	struct task_struct *next = NULL;
 
 892	DEFINE_WAKE_Q(wake_q);
 893	unsigned long owner;
 894	unsigned long flags;
 895
 896	mutex_release(&lock->dep_map, ip);
 897
 898	/*
 899	 * Release the lock before (potentially) taking the spinlock such that
 900	 * other contenders can get on with things ASAP.
 901	 *
 902	 * Except when HANDOFF, in that case we must not clear the owner field,
 903	 * but instead set it to the top waiter.
 904	 */
 905	owner = atomic_long_read(&lock->owner);
 906	for (;;) {
 907		MUTEX_WARN_ON(__owner_task(owner) != current);
 908		MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
 
 
 
 909
 910		if (owner & MUTEX_FLAG_HANDOFF)
 911			break;
 912
 913		if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
 
 
 914			if (owner & MUTEX_FLAG_WAITERS)
 915				break;
 916
 917			return;
 918		}
 
 
 919	}
 920
 921	raw_spin_lock_irqsave(&lock->wait_lock, flags);
 922	debug_mutex_unlock(lock);
 923	if (!list_empty(&lock->wait_list)) {
 924		/* get the first entry from the wait-list: */
 925		struct mutex_waiter *waiter =
 926			list_first_entry(&lock->wait_list,
 927					 struct mutex_waiter, list);
 928
 929		next = waiter->task;
 930
 931		debug_mutex_wake_waiter(lock, waiter);
 932		wake_q_add(&wake_q, next);
 933	}
 934
 935	if (owner & MUTEX_FLAG_HANDOFF)
 936		__mutex_handoff(lock, next);
 937
 938	preempt_disable();
 939	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 940	wake_up_q(&wake_q);
 941	preempt_enable();
 942}
 943
 944#ifndef CONFIG_DEBUG_LOCK_ALLOC
 945/*
 946 * Here come the less common (and hence less performance-critical) APIs:
 947 * mutex_lock_interruptible() and mutex_trylock().
 948 */
 949static noinline int __sched
 950__mutex_lock_killable_slowpath(struct mutex *lock);
 951
 952static noinline int __sched
 953__mutex_lock_interruptible_slowpath(struct mutex *lock);
 954
 955/**
 956 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
 957 * @lock: The mutex to be acquired.
 
 
 
 
 
 958 *
 959 * Lock the mutex like mutex_lock().  If a signal is delivered while the
 960 * process is sleeping, this function will return without acquiring the
 961 * mutex.
 962 *
 963 * Context: Process context.
 964 * Return: 0 if the lock was successfully acquired or %-EINTR if a
 965 * signal arrived.
 966 */
 967int __sched mutex_lock_interruptible(struct mutex *lock)
 968{
 969	might_sleep();
 970
 971	if (__mutex_trylock_fast(lock))
 972		return 0;
 973
 974	return __mutex_lock_interruptible_slowpath(lock);
 975}
 976
 977EXPORT_SYMBOL(mutex_lock_interruptible);
 978
 979/**
 980 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
 981 * @lock: The mutex to be acquired.
 982 *
 983 * Lock the mutex like mutex_lock().  If a signal which will be fatal to
 984 * the current process is delivered while the process is sleeping, this
 985 * function will return without acquiring the mutex.
 986 *
 987 * Context: Process context.
 988 * Return: 0 if the lock was successfully acquired or %-EINTR if a
 989 * fatal signal arrived.
 990 */
 991int __sched mutex_lock_killable(struct mutex *lock)
 992{
 993	might_sleep();
 994
 995	if (__mutex_trylock_fast(lock))
 996		return 0;
 997
 998	return __mutex_lock_killable_slowpath(lock);
 999}
1000EXPORT_SYMBOL(mutex_lock_killable);
1001
1002/**
1003 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1004 * @lock: The mutex to be acquired.
1005 *
1006 * Lock the mutex like mutex_lock().  While the task is waiting for this
1007 * mutex, it will be accounted as being in the IO wait state by the
1008 * scheduler.
1009 *
1010 * Context: Process context.
1011 */
1012void __sched mutex_lock_io(struct mutex *lock)
1013{
1014	int token;
1015
1016	token = io_schedule_prepare();
1017	mutex_lock(lock);
1018	io_schedule_finish(token);
1019}
1020EXPORT_SYMBOL_GPL(mutex_lock_io);
1021
1022static noinline void __sched
1023__mutex_lock_slowpath(struct mutex *lock)
1024{
1025	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
 
1026}
1027
1028static noinline int __sched
1029__mutex_lock_killable_slowpath(struct mutex *lock)
1030{
1031	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
 
1032}
1033
1034static noinline int __sched
1035__mutex_lock_interruptible_slowpath(struct mutex *lock)
1036{
1037	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
 
1038}
1039
1040static noinline int __sched
1041__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1042{
1043	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1044			       _RET_IP_, ctx);
1045}
1046
1047static noinline int __sched
1048__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1049					    struct ww_acquire_ctx *ctx)
1050{
1051	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1052			       _RET_IP_, ctx);
1053}
1054
1055#endif
1056
1057/**
1058 * mutex_trylock - try to acquire the mutex, without waiting
1059 * @lock: the mutex to be acquired
1060 *
1061 * Try to acquire the mutex atomically. Returns 1 if the mutex
1062 * has been acquired successfully, and 0 on contention.
1063 *
1064 * NOTE: this function follows the spin_trylock() convention, so
1065 * it is negated from the down_trylock() return values! Be careful
1066 * about this when converting semaphore users to mutexes.
1067 *
1068 * This function must not be used in interrupt context. The
1069 * mutex must be released by the same task that acquired it.
1070 */
1071int __sched mutex_trylock(struct mutex *lock)
1072{
1073	bool locked;
1074
1075	MUTEX_WARN_ON(lock->magic != lock);
1076
1077	locked = __mutex_trylock(lock);
1078	if (locked)
1079		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1080
1081	return locked;
1082}
1083EXPORT_SYMBOL(mutex_trylock);
1084
1085#ifndef CONFIG_DEBUG_LOCK_ALLOC
1086int __sched
1087ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1088{
1089	might_sleep();
1090
1091	if (__mutex_trylock_fast(&lock->base)) {
1092		if (ctx)
1093			ww_mutex_set_context_fastpath(lock, ctx);
1094		return 0;
1095	}
1096
1097	return __ww_mutex_lock_slowpath(lock, ctx);
1098}
1099EXPORT_SYMBOL(ww_mutex_lock);
1100
1101int __sched
1102ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1103{
1104	might_sleep();
1105
1106	if (__mutex_trylock_fast(&lock->base)) {
1107		if (ctx)
1108			ww_mutex_set_context_fastpath(lock, ctx);
1109		return 0;
1110	}
1111
1112	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1113}
1114EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1115
1116#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1117#endif /* !CONFIG_PREEMPT_RT */
1118
1119EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1120EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1121
1122/**
1123 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1124 * @cnt: the atomic which we are to dec
1125 * @lock: the mutex to return holding if we dec to 0
1126 *
1127 * return true and hold lock if we dec to 0, return false otherwise
1128 */
1129int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1130{
1131	/* dec if we can't possibly hit 0 */
1132	if (atomic_add_unless(cnt, -1, 1))
1133		return 0;
1134	/* we might hit 0, so take the lock */
1135	mutex_lock(lock);
1136	if (!atomic_dec_and_test(cnt)) {
1137		/* when we actually did the dec, we didn't hit 0 */
1138		mutex_unlock(lock);
1139		return 0;
1140	}
1141	/* we hit 0, and we hold the lock */
1142	return 1;
1143}
1144EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
v4.10.11
 
   1/*
   2 * kernel/locking/mutex.c
   3 *
   4 * Mutexes: blocking mutual exclusion locks
   5 *
   6 * Started by Ingo Molnar:
   7 *
   8 *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   9 *
  10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11 * David Howells for suggestions and improvements.
  12 *
  13 *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14 *    from the -rt tree, where it was originally implemented for rtmutexes
  15 *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16 *    and Sven Dietrich.
  17 *
  18 * Also see Documentation/locking/mutex-design.txt.
  19 */
  20#include <linux/mutex.h>
  21#include <linux/ww_mutex.h>
  22#include <linux/sched.h>
  23#include <linux/sched/rt.h>
 
 
  24#include <linux/export.h>
  25#include <linux/spinlock.h>
  26#include <linux/interrupt.h>
  27#include <linux/debug_locks.h>
  28#include <linux/osq_lock.h>
  29
 
 
 
 
 
 
  30#ifdef CONFIG_DEBUG_MUTEXES
  31# include "mutex-debug.h"
  32#else
  33# include "mutex.h"
  34#endif
  35
  36void
  37__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  38{
  39	atomic_long_set(&lock->owner, 0);
  40	spin_lock_init(&lock->wait_lock);
  41	INIT_LIST_HEAD(&lock->wait_list);
  42#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  43	osq_lock_init(&lock->osq);
  44#endif
  45
  46	debug_mutex_init(lock, name, key);
  47}
  48EXPORT_SYMBOL(__mutex_init);
  49
  50/*
  51 * @owner: contains: 'struct task_struct *' to the current lock owner,
  52 * NULL means not owned. Since task_struct pointers are aligned at
  53 * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
  54 * bits to store extra state.
  55 *
  56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
  57 * Bit1 indicates unlock needs to hand the lock to the top-waiter
  58 */
  59#define MUTEX_FLAG_WAITERS	0x01
  60#define MUTEX_FLAG_HANDOFF	0x02
  61
  62#define MUTEX_FLAGS		0x03
  63
  64static inline struct task_struct *__owner_task(unsigned long owner)
  65{
  66	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
  67}
  68
 
 
 
 
 
 
  69static inline unsigned long __owner_flags(unsigned long owner)
  70{
  71	return owner & MUTEX_FLAGS;
  72}
  73
  74/*
  75 * Actual trylock that will work on any unlocked state.
  76 *
  77 * When setting the owner field, we must preserve the low flag bits.
  78 *
  79 * Be careful with @handoff, only set that in a wait-loop (where you set
  80 * HANDOFF) to avoid recursive lock attempts.
  81 */
  82static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
  83{
  84	unsigned long owner, curr = (unsigned long)current;
  85
  86	owner = atomic_long_read(&lock->owner);
  87	for (;;) { /* must loop, can race against a flag */
  88		unsigned long old, flags = __owner_flags(owner);
 
  89
  90		if (__owner_task(owner)) {
  91			if (handoff && unlikely(__owner_task(owner) == current)) {
  92				/*
  93				 * Provide ACQUIRE semantics for the lock-handoff.
  94				 *
  95				 * We cannot easily use load-acquire here, since
  96				 * the actual load is a failed cmpxchg, which
  97				 * doesn't imply any barriers.
  98				 *
  99				 * Also, this is a fairly unlikely scenario, and
 100				 * this contains the cost.
 101				 */
 102				smp_mb(); /* ACQUIRE */
 103				return true;
 104			}
 
 
 
 
 105
 106			return false;
 
 
 
 107		}
 
 108
 109		/*
 110		 * We set the HANDOFF bit, we must make sure it doesn't live
 111		 * past the point where we acquire it. This would be possible
 112		 * if we (accidentally) set the bit on an unlocked mutex.
 113		 */
 114		if (handoff)
 115			flags &= ~MUTEX_FLAG_HANDOFF;
 116
 117		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
 118		if (old == owner)
 119			return true;
 
 
 
 
 120
 121		owner = old;
 122	}
 
 
 
 
 123}
 124
 125#ifndef CONFIG_DEBUG_LOCK_ALLOC
 126/*
 127 * Lockdep annotations are contained to the slow paths for simplicity.
 128 * There is nothing that would stop spreading the lockdep annotations outwards
 129 * except more code.
 130 */
 131
 132/*
 133 * Optimistic trylock that only works in the uncontended case. Make sure to
 134 * follow with a __mutex_trylock() before failing.
 135 */
 136static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
 137{
 138	unsigned long curr = (unsigned long)current;
 
 139
 140	if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
 141		return true;
 142
 143	return false;
 144}
 145
 146static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
 147{
 148	unsigned long curr = (unsigned long)current;
 149
 150	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
 151		return true;
 152
 153	return false;
 154}
 155#endif
 156
 157static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
 158{
 159	atomic_long_or(flag, &lock->owner);
 160}
 161
 162static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
 163{
 164	atomic_long_andnot(flag, &lock->owner);
 165}
 166
 167static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
 168{
 169	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
 170}
 171
 172/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173 * Give up ownership to a specific task, when @task = NULL, this is equivalent
 174 * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
 175 * semantics like a regular unlock, the __mutex_trylock() provides matching
 176 * ACQUIRE semantics for the handoff.
 177 */
 178static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
 179{
 180	unsigned long owner = atomic_long_read(&lock->owner);
 181
 182	for (;;) {
 183		unsigned long old, new;
 184
 185#ifdef CONFIG_DEBUG_MUTEXES
 186		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
 187#endif
 188
 189		new = (owner & MUTEX_FLAG_WAITERS);
 190		new |= (unsigned long)task;
 
 
 191
 192		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
 193		if (old == owner)
 194			break;
 195
 196		owner = old;
 197	}
 198}
 199
 200#ifndef CONFIG_DEBUG_LOCK_ALLOC
 201/*
 202 * We split the mutex lock/unlock logic into separate fastpath and
 203 * slowpath functions, to reduce the register pressure on the fastpath.
 204 * We also put the fastpath first in the kernel image, to make sure the
 205 * branch is predicted by the CPU as default-untaken.
 206 */
 207static void __sched __mutex_lock_slowpath(struct mutex *lock);
 208
 209/**
 210 * mutex_lock - acquire the mutex
 211 * @lock: the mutex to be acquired
 212 *
 213 * Lock the mutex exclusively for this task. If the mutex is not
 214 * available right now, it will sleep until it can get it.
 215 *
 216 * The mutex must later on be released by the same task that
 217 * acquired it. Recursive locking is not allowed. The task
 218 * may not exit without first unlocking the mutex. Also, kernel
 219 * memory where the mutex resides must not be freed with
 220 * the mutex still locked. The mutex must first be initialized
 221 * (or statically defined) before it can be locked. memset()-ing
 222 * the mutex to 0 is not allowed.
 223 *
 224 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
 225 *   checks that will enforce the restrictions and will also do
 226 *   deadlock debugging. )
 227 *
 228 * This function is similar to (but not equivalent to) down().
 229 */
 230void __sched mutex_lock(struct mutex *lock)
 231{
 232	might_sleep();
 233
 234	if (!__mutex_trylock_fast(lock))
 235		__mutex_lock_slowpath(lock);
 236}
 237EXPORT_SYMBOL(mutex_lock);
 238#endif
 239
 240static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
 241						   struct ww_acquire_ctx *ww_ctx)
 242{
 243#ifdef CONFIG_DEBUG_MUTEXES
 244	/*
 245	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
 246	 * but released with a normal mutex_unlock in this call.
 247	 *
 248	 * This should never happen, always use ww_mutex_unlock.
 249	 */
 250	DEBUG_LOCKS_WARN_ON(ww->ctx);
 251
 252	/*
 253	 * Not quite done after calling ww_acquire_done() ?
 254	 */
 255	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
 256
 257	if (ww_ctx->contending_lock) {
 258		/*
 259		 * After -EDEADLK you tried to
 260		 * acquire a different ww_mutex? Bad!
 261		 */
 262		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
 263
 264		/*
 265		 * You called ww_mutex_lock after receiving -EDEADLK,
 266		 * but 'forgot' to unlock everything else first?
 267		 */
 268		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
 269		ww_ctx->contending_lock = NULL;
 270	}
 271
 272	/*
 273	 * Naughty, using a different class will lead to undefined behavior!
 274	 */
 275	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
 276#endif
 277	ww_ctx->acquired++;
 278}
 279
 280/*
 281 * After acquiring lock with fastpath or when we lost out in contested
 282 * slowpath, set ctx and wake up any waiters so they can recheck.
 283 */
 284static __always_inline void
 285ww_mutex_set_context_fastpath(struct ww_mutex *lock,
 286			       struct ww_acquire_ctx *ctx)
 287{
 288	unsigned long flags;
 289	struct mutex_waiter *cur;
 290
 291	ww_mutex_lock_acquired(lock, ctx);
 
 
 
 
 292
 293	lock->ctx = ctx;
 294
 295	/*
 296	 * The lock->ctx update should be visible on all cores before
 297	 * the atomic read is done, otherwise contended waiters might be
 298	 * missed. The contended waiters will either see ww_ctx == NULL
 299	 * and keep spinning, or it will acquire wait_lock, add itself
 300	 * to waiter list and sleep.
 
 
 
 
 301	 */
 302	smp_mb(); /* ^^^ */
 
 303
 304	/*
 305	 * Check if lock is contended, if not there is nobody to wake up
 
 
 
 
 306	 */
 307	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
 308		return;
 309
 310	/*
 311	 * Uh oh, we raced in fastpath, wake up everyone in this case,
 312	 * so they can see the new lock->ctx.
 313	 */
 314	spin_lock_mutex(&lock->base.wait_lock, flags);
 315	list_for_each_entry(cur, &lock->base.wait_list, list) {
 316		debug_mutex_wake_waiter(&lock->base, cur);
 317		wake_up_process(cur->task);
 318	}
 319	spin_unlock_mutex(&lock->base.wait_lock, flags);
 320}
 321
 322/*
 323 * After acquiring lock in the slowpath set ctx and wake up any
 324 * waiters so they can recheck.
 325 *
 326 * Callers must hold the mutex wait_lock.
 327 */
 328static __always_inline void
 329ww_mutex_set_context_slowpath(struct ww_mutex *lock,
 330			      struct ww_acquire_ctx *ctx)
 331{
 332	struct mutex_waiter *cur;
 333
 334	ww_mutex_lock_acquired(lock, ctx);
 335	lock->ctx = ctx;
 336
 337	/*
 338	 * Give any possible sleeping processes the chance to wake up,
 339	 * so they can recheck if they have to back off.
 340	 */
 341	list_for_each_entry(cur, &lock->base.wait_list, list) {
 342		debug_mutex_wake_waiter(&lock->base, cur);
 343		wake_up_process(cur->task);
 344	}
 345}
 346
 347#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 348/*
 349 * Look out! "owner" is an entirely speculative pointer
 350 * access and not reliable.
 351 */
 352static noinline
 353bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
 
 354{
 355	bool ret = true;
 356
 357	rcu_read_lock();
 
 358	while (__mutex_owner(lock) == owner) {
 359		/*
 360		 * Ensure we emit the owner->on_cpu, dereference _after_
 361		 * checking lock->owner still matches owner. If that fails,
 362		 * owner might point to freed memory. If it still matches,
 363		 * the rcu_read_lock() ensures the memory stays valid.
 
 
 364		 */
 365		barrier();
 366
 367		/*
 368		 * Use vcpu_is_preempted to detect lock holder preemption issue.
 369		 */
 370		if (!owner->on_cpu || need_resched() ||
 371				vcpu_is_preempted(task_cpu(owner))) {
 
 
 
 
 372			ret = false;
 373			break;
 374		}
 375
 376		cpu_relax();
 377	}
 378	rcu_read_unlock();
 379
 380	return ret;
 381}
 382
 383/*
 384 * Initial check for entering the mutex spinning loop
 385 */
 386static inline int mutex_can_spin_on_owner(struct mutex *lock)
 387{
 388	struct task_struct *owner;
 389	int retval = 1;
 390
 
 
 391	if (need_resched())
 392		return 0;
 393
 394	rcu_read_lock();
 395	owner = __mutex_owner(lock);
 396
 397	/*
 398	 * As lock holder preemption issue, we both skip spinning if task is not
 399	 * on cpu or its cpu is preempted
 
 400	 */
 
 401	if (owner)
 402		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
 403	rcu_read_unlock();
 404
 405	/*
 406	 * If lock->owner is not set, the mutex has been released. Return true
 407	 * such that we'll trylock in the spin path, which is a faster option
 408	 * than the blocking slow path.
 409	 */
 410	return retval;
 411}
 412
 413/*
 414 * Optimistic spinning.
 415 *
 416 * We try to spin for acquisition when we find that the lock owner
 417 * is currently running on a (different) CPU and while we don't
 418 * need to reschedule. The rationale is that if the lock owner is
 419 * running, it is likely to release the lock soon.
 420 *
 421 * The mutex spinners are queued up using MCS lock so that only one
 422 * spinner can compete for the mutex. However, if mutex spinning isn't
 423 * going to happen, there is no point in going through the lock/unlock
 424 * overhead.
 425 *
 426 * Returns true when the lock was taken, otherwise false, indicating
 427 * that we need to jump to the slowpath and sleep.
 428 *
 429 * The waiter flag is set to true if the spinner is a waiter in the wait
 430 * queue. The waiter-spinner will spin on the lock directly and concurrently
 431 * with the spinner at the head of the OSQ, if present, until the owner is
 432 * changed to itself.
 433 */
 434static bool mutex_optimistic_spin(struct mutex *lock,
 435				  struct ww_acquire_ctx *ww_ctx,
 436				  const bool use_ww_ctx, const bool waiter)
 437{
 438	struct task_struct *task = current;
 439
 440	if (!waiter) {
 441		/*
 442		 * The purpose of the mutex_can_spin_on_owner() function is
 443		 * to eliminate the overhead of osq_lock() and osq_unlock()
 444		 * in case spinning isn't possible. As a waiter-spinner
 445		 * is not going to take OSQ lock anyway, there is no need
 446		 * to call mutex_can_spin_on_owner().
 447		 */
 448		if (!mutex_can_spin_on_owner(lock))
 449			goto fail;
 450
 451		/*
 452		 * In order to avoid a stampede of mutex spinners trying to
 453		 * acquire the mutex all at once, the spinners need to take a
 454		 * MCS (queued) lock first before spinning on the owner field.
 455		 */
 456		if (!osq_lock(&lock->osq))
 457			goto fail;
 458	}
 459
 460	for (;;) {
 461		struct task_struct *owner;
 462
 463		if (use_ww_ctx && ww_ctx->acquired > 0) {
 464			struct ww_mutex *ww;
 465
 466			ww = container_of(lock, struct ww_mutex, base);
 467			/*
 468			 * If ww->ctx is set the contents are undefined, only
 469			 * by acquiring wait_lock there is a guarantee that
 470			 * they are not invalid when reading.
 471			 *
 472			 * As such, when deadlock detection needs to be
 473			 * performed the optimistic spinning cannot be done.
 474			 */
 475			if (READ_ONCE(ww->ctx))
 476				goto fail_unlock;
 477		}
 478
 479		/*
 480		 * If there's an owner, wait for it to either
 481		 * release the lock or go to sleep.
 482		 */
 483		owner = __mutex_owner(lock);
 484		if (owner) {
 485			if (waiter && owner == task) {
 486				smp_mb(); /* ACQUIRE */
 487				break;
 488			}
 489
 490			if (!mutex_spin_on_owner(lock, owner))
 491				goto fail_unlock;
 492		}
 493
 494		/* Try to acquire the mutex if it is unlocked. */
 495		if (__mutex_trylock(lock, waiter))
 496			break;
 497
 498		/*
 499		 * The cpu_relax() call is a compiler barrier which forces
 500		 * everything in this loop to be re-loaded. We don't need
 501		 * memory barriers as we'll eventually observe the right
 502		 * values at the cost of a few extra spins.
 503		 */
 504		cpu_relax();
 505	}
 506
 507	if (!waiter)
 508		osq_unlock(&lock->osq);
 509
 510	return true;
 511
 512
 513fail_unlock:
 514	if (!waiter)
 515		osq_unlock(&lock->osq);
 516
 517fail:
 518	/*
 519	 * If we fell out of the spin path because of need_resched(),
 520	 * reschedule now, before we try-lock the mutex. This avoids getting
 521	 * scheduled out right after we obtained the mutex.
 522	 */
 523	if (need_resched()) {
 524		/*
 525		 * We _should_ have TASK_RUNNING here, but just in case
 526		 * we do not, make it so, otherwise we might get stuck.
 527		 */
 528		__set_current_state(TASK_RUNNING);
 529		schedule_preempt_disabled();
 530	}
 531
 532	return false;
 533}
 534#else
 535static bool mutex_optimistic_spin(struct mutex *lock,
 536				  struct ww_acquire_ctx *ww_ctx,
 537				  const bool use_ww_ctx, const bool waiter)
 538{
 539	return false;
 540}
 541#endif
 542
 543static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
 544
 545/**
 546 * mutex_unlock - release the mutex
 547 * @lock: the mutex to be released
 548 *
 549 * Unlock a mutex that has been locked by this task previously.
 550 *
 551 * This function must not be used in interrupt context. Unlocking
 552 * of a not locked mutex is not allowed.
 553 *
 
 
 
 
 
 554 * This function is similar to (but not equivalent to) up().
 555 */
 556void __sched mutex_unlock(struct mutex *lock)
 557{
 558#ifndef CONFIG_DEBUG_LOCK_ALLOC
 559	if (__mutex_unlock_fast(lock))
 560		return;
 561#endif
 562	__mutex_unlock_slowpath(lock, _RET_IP_);
 563}
 564EXPORT_SYMBOL(mutex_unlock);
 565
 566/**
 567 * ww_mutex_unlock - release the w/w mutex
 568 * @lock: the mutex to be released
 569 *
 570 * Unlock a mutex that has been locked by this task previously with any of the
 571 * ww_mutex_lock* functions (with or without an acquire context). It is
 572 * forbidden to release the locks after releasing the acquire context.
 573 *
 574 * This function must not be used in interrupt context. Unlocking
 575 * of a unlocked mutex is not allowed.
 576 */
 577void __sched ww_mutex_unlock(struct ww_mutex *lock)
 578{
 579	/*
 580	 * The unlocking fastpath is the 0->1 transition from 'locked'
 581	 * into 'unlocked' state:
 582	 */
 583	if (lock->ctx) {
 584#ifdef CONFIG_DEBUG_MUTEXES
 585		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
 586#endif
 587		if (lock->ctx->acquired > 0)
 588			lock->ctx->acquired--;
 589		lock->ctx = NULL;
 590	}
 591
 592	mutex_unlock(&lock->base);
 593}
 594EXPORT_SYMBOL(ww_mutex_unlock);
 595
 596static inline int __sched
 597__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
 598{
 599	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
 600	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
 601
 602	if (!hold_ctx)
 603		return 0;
 604
 605	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
 606	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
 607#ifdef CONFIG_DEBUG_MUTEXES
 608		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
 609		ctx->contending_lock = ww;
 610#endif
 611		return -EDEADLK;
 612	}
 613
 614	return 0;
 615}
 616
 617/*
 618 * Lock a mutex (possibly interruptible), slowpath:
 619 */
 620static __always_inline int __sched
 621__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
 622		    struct lockdep_map *nest_lock, unsigned long ip,
 623		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
 624{
 625	struct task_struct *task = current;
 626	struct mutex_waiter waiter;
 
 627	unsigned long flags;
 628	bool first = false;
 629	struct ww_mutex *ww;
 630	int ret;
 631
 632	if (use_ww_ctx) {
 633		ww = container_of(lock, struct ww_mutex, base);
 
 
 
 
 
 
 
 634		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
 635			return -EALREADY;
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637
 638	preempt_disable();
 639	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
 640
 641	if (__mutex_trylock(lock, false) ||
 642	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
 
 643		/* got the lock, yay! */
 644		lock_acquired(&lock->dep_map, ip);
 645		if (use_ww_ctx)
 646			ww_mutex_set_context_fastpath(ww, ww_ctx);
 
 647		preempt_enable();
 648		return 0;
 649	}
 650
 651	spin_lock_mutex(&lock->wait_lock, flags);
 652	/*
 653	 * After waiting to acquire the wait_lock, try again.
 654	 */
 655	if (__mutex_trylock(lock, false))
 
 
 
 656		goto skip_wait;
 
 657
 658	debug_mutex_lock_common(lock, &waiter);
 659	debug_mutex_add_waiter(lock, &waiter, task);
 
 
 660
 661	/* add waiting tasks to the end of the waitqueue (FIFO): */
 662	list_add_tail(&waiter.list, &lock->wait_list);
 663	waiter.task = task;
 664
 665	if (__mutex_waiter_is_first(lock, &waiter))
 666		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
 
 
 
 
 
 
 
 
 
 
 667
 668	lock_contended(&lock->dep_map, ip);
 
 
 
 669
 670	set_task_state(task, state);
 671	for (;;) {
 672		/*
 673		 * Once we hold wait_lock, we're serialized against
 674		 * mutex_unlock() handing the lock off to us, do a trylock
 675		 * before testing the error conditions to make sure we pick up
 676		 * the handoff.
 677		 */
 678		if (__mutex_trylock(lock, first))
 679			goto acquired;
 680
 681		/*
 682		 * Check for signals and wound conditions while holding
 683		 * wait_lock. This ensures the lock cancellation is ordered
 684		 * against mutex_unlock() and wake-ups do not go missing.
 685		 */
 686		if (unlikely(signal_pending_state(state, task))) {
 687			ret = -EINTR;
 688			goto err;
 689		}
 690
 691		if (use_ww_ctx && ww_ctx->acquired > 0) {
 692			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
 693			if (ret)
 694				goto err;
 695		}
 696
 697		spin_unlock_mutex(&lock->wait_lock, flags);
 
 
 
 
 698		schedule_preempt_disabled();
 699
 700		if (!first && __mutex_waiter_is_first(lock, &waiter)) {
 701			first = true;
 702			__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
 703		}
 704
 705		set_task_state(task, state);
 706		/*
 707		 * Here we order against unlock; we must either see it change
 708		 * state back to RUNNING and fall through the next schedule(),
 709		 * or we must see its unlock and acquire.
 710		 */
 711		if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) ||
 712		     __mutex_trylock(lock, first))
 713			break;
 714
 715		spin_lock_mutex(&lock->wait_lock, flags);
 
 
 
 
 
 
 
 716	}
 717	spin_lock_mutex(&lock->wait_lock, flags);
 718acquired:
 719	__set_task_state(task, TASK_RUNNING);
 
 
 
 
 
 
 
 
 
 
 720
 721	mutex_remove_waiter(lock, &waiter, task);
 722	if (likely(list_empty(&lock->wait_list)))
 723		__mutex_clear_flag(lock, MUTEX_FLAGS);
 724
 725	debug_mutex_free_waiter(&waiter);
 726
 727skip_wait:
 728	/* got the lock - cleanup and rejoice! */
 729	lock_acquired(&lock->dep_map, ip);
 
 730
 731	if (use_ww_ctx)
 732		ww_mutex_set_context_slowpath(ww, ww_ctx);
 733
 734	spin_unlock_mutex(&lock->wait_lock, flags);
 
 735	preempt_enable();
 736	return 0;
 737
 738err:
 739	__set_task_state(task, TASK_RUNNING);
 740	mutex_remove_waiter(lock, &waiter, task);
 741	spin_unlock_mutex(&lock->wait_lock, flags);
 
 
 742	debug_mutex_free_waiter(&waiter);
 743	mutex_release(&lock->dep_map, 1, ip);
 
 744	preempt_enable();
 745	return ret;
 746}
 747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748#ifdef CONFIG_DEBUG_LOCK_ALLOC
 749void __sched
 750mutex_lock_nested(struct mutex *lock, unsigned int subclass)
 751{
 752	might_sleep();
 753	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
 754			    subclass, NULL, _RET_IP_, NULL, 0);
 755}
 756
 757EXPORT_SYMBOL_GPL(mutex_lock_nested);
 758
 759void __sched
 760_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
 761{
 762	might_sleep();
 763	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
 764			    0, nest, _RET_IP_, NULL, 0);
 765}
 766EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
 767
 768int __sched
 769mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
 770{
 771	might_sleep();
 772	return __mutex_lock_common(lock, TASK_KILLABLE,
 773				   subclass, NULL, _RET_IP_, NULL, 0);
 774}
 775EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
 776
 777int __sched
 778mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
 779{
 
 
 
 
 
 
 
 
 
 780	might_sleep();
 781	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
 782				   subclass, NULL, _RET_IP_, NULL, 0);
 
 
 
 783}
 784EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
 785
 786static inline int
 787ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 788{
 789#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 790	unsigned tmp;
 791
 792	if (ctx->deadlock_inject_countdown-- == 0) {
 793		tmp = ctx->deadlock_inject_interval;
 794		if (tmp > UINT_MAX/4)
 795			tmp = UINT_MAX;
 796		else
 797			tmp = tmp*2 + tmp + tmp/2;
 798
 799		ctx->deadlock_inject_interval = tmp;
 800		ctx->deadlock_inject_countdown = tmp;
 801		ctx->contending_lock = lock;
 802
 803		ww_mutex_unlock(lock);
 804
 805		return -EDEADLK;
 806	}
 807#endif
 808
 809	return 0;
 810}
 811
 812int __sched
 813__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 814{
 815	int ret;
 816
 817	might_sleep();
 818	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
 819				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
 820	if (!ret && ctx->acquired > 1)
 821		return ww_mutex_deadlock_injection(lock, ctx);
 822
 823	return ret;
 824}
 825EXPORT_SYMBOL_GPL(__ww_mutex_lock);
 826
 827int __sched
 828__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 829{
 830	int ret;
 831
 832	might_sleep();
 833	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
 834				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
 835
 836	if (!ret && ctx->acquired > 1)
 837		return ww_mutex_deadlock_injection(lock, ctx);
 838
 839	return ret;
 840}
 841EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
 842
 843#endif
 844
 845/*
 846 * Release the lock, slowpath:
 847 */
 848static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
 849{
 850	struct task_struct *next = NULL;
 851	unsigned long owner, flags;
 852	DEFINE_WAKE_Q(wake_q);
 
 
 853
 854	mutex_release(&lock->dep_map, 1, ip);
 855
 856	/*
 857	 * Release the lock before (potentially) taking the spinlock such that
 858	 * other contenders can get on with things ASAP.
 859	 *
 860	 * Except when HANDOFF, in that case we must not clear the owner field,
 861	 * but instead set it to the top waiter.
 862	 */
 863	owner = atomic_long_read(&lock->owner);
 864	for (;;) {
 865		unsigned long old;
 866
 867#ifdef CONFIG_DEBUG_MUTEXES
 868		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
 869#endif
 870
 871		if (owner & MUTEX_FLAG_HANDOFF)
 872			break;
 873
 874		old = atomic_long_cmpxchg_release(&lock->owner, owner,
 875						  __owner_flags(owner));
 876		if (old == owner) {
 877			if (owner & MUTEX_FLAG_WAITERS)
 878				break;
 879
 880			return;
 881		}
 882
 883		owner = old;
 884	}
 885
 886	spin_lock_mutex(&lock->wait_lock, flags);
 887	debug_mutex_unlock(lock);
 888	if (!list_empty(&lock->wait_list)) {
 889		/* get the first entry from the wait-list: */
 890		struct mutex_waiter *waiter =
 891			list_first_entry(&lock->wait_list,
 892					 struct mutex_waiter, list);
 893
 894		next = waiter->task;
 895
 896		debug_mutex_wake_waiter(lock, waiter);
 897		wake_q_add(&wake_q, next);
 898	}
 899
 900	if (owner & MUTEX_FLAG_HANDOFF)
 901		__mutex_handoff(lock, next);
 902
 903	spin_unlock_mutex(&lock->wait_lock, flags);
 904
 905	wake_up_q(&wake_q);
 
 906}
 907
 908#ifndef CONFIG_DEBUG_LOCK_ALLOC
 909/*
 910 * Here come the less common (and hence less performance-critical) APIs:
 911 * mutex_lock_interruptible() and mutex_trylock().
 912 */
 913static noinline int __sched
 914__mutex_lock_killable_slowpath(struct mutex *lock);
 915
 916static noinline int __sched
 917__mutex_lock_interruptible_slowpath(struct mutex *lock);
 918
 919/**
 920 * mutex_lock_interruptible - acquire the mutex, interruptible
 921 * @lock: the mutex to be acquired
 922 *
 923 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
 924 * been acquired or sleep until the mutex becomes available. If a
 925 * signal arrives while waiting for the lock then this function
 926 * returns -EINTR.
 927 *
 928 * This function is similar to (but not equivalent to) down_interruptible().
 
 
 
 
 
 
 929 */
 930int __sched mutex_lock_interruptible(struct mutex *lock)
 931{
 932	might_sleep();
 933
 934	if (__mutex_trylock_fast(lock))
 935		return 0;
 936
 937	return __mutex_lock_interruptible_slowpath(lock);
 938}
 939
 940EXPORT_SYMBOL(mutex_lock_interruptible);
 941
 
 
 
 
 
 
 
 
 
 
 
 
 942int __sched mutex_lock_killable(struct mutex *lock)
 943{
 944	might_sleep();
 945
 946	if (__mutex_trylock_fast(lock))
 947		return 0;
 948
 949	return __mutex_lock_killable_slowpath(lock);
 950}
 951EXPORT_SYMBOL(mutex_lock_killable);
 952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953static noinline void __sched
 954__mutex_lock_slowpath(struct mutex *lock)
 955{
 956	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
 957			    NULL, _RET_IP_, NULL, 0);
 958}
 959
 960static noinline int __sched
 961__mutex_lock_killable_slowpath(struct mutex *lock)
 962{
 963	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
 964				   NULL, _RET_IP_, NULL, 0);
 965}
 966
 967static noinline int __sched
 968__mutex_lock_interruptible_slowpath(struct mutex *lock)
 969{
 970	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
 971				   NULL, _RET_IP_, NULL, 0);
 972}
 973
 974static noinline int __sched
 975__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
 976{
 977	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
 978				   NULL, _RET_IP_, ctx, 1);
 979}
 980
 981static noinline int __sched
 982__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
 983					    struct ww_acquire_ctx *ctx)
 984{
 985	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
 986				   NULL, _RET_IP_, ctx, 1);
 987}
 988
 989#endif
 990
 991/**
 992 * mutex_trylock - try to acquire the mutex, without waiting
 993 * @lock: the mutex to be acquired
 994 *
 995 * Try to acquire the mutex atomically. Returns 1 if the mutex
 996 * has been acquired successfully, and 0 on contention.
 997 *
 998 * NOTE: this function follows the spin_trylock() convention, so
 999 * it is negated from the down_trylock() return values! Be careful
1000 * about this when converting semaphore users to mutexes.
1001 *
1002 * This function must not be used in interrupt context. The
1003 * mutex must be released by the same task that acquired it.
1004 */
1005int __sched mutex_trylock(struct mutex *lock)
1006{
1007	bool locked = __mutex_trylock(lock, false);
1008
 
 
 
1009	if (locked)
1010		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1011
1012	return locked;
1013}
1014EXPORT_SYMBOL(mutex_trylock);
1015
1016#ifndef CONFIG_DEBUG_LOCK_ALLOC
1017int __sched
1018__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1019{
1020	might_sleep();
1021
1022	if (__mutex_trylock_fast(&lock->base)) {
1023		ww_mutex_set_context_fastpath(lock, ctx);
 
1024		return 0;
1025	}
1026
1027	return __ww_mutex_lock_slowpath(lock, ctx);
1028}
1029EXPORT_SYMBOL(__ww_mutex_lock);
1030
1031int __sched
1032__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1033{
1034	might_sleep();
1035
1036	if (__mutex_trylock_fast(&lock->base)) {
1037		ww_mutex_set_context_fastpath(lock, ctx);
 
1038		return 0;
1039	}
1040
1041	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1042}
1043EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
 
 
 
1044
1045#endif
 
1046
1047/**
1048 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1049 * @cnt: the atomic which we are to dec
1050 * @lock: the mutex to return holding if we dec to 0
1051 *
1052 * return true and hold lock if we dec to 0, return false otherwise
1053 */
1054int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1055{
1056	/* dec if we can't possibly hit 0 */
1057	if (atomic_add_unless(cnt, -1, 1))
1058		return 0;
1059	/* we might hit 0, so take the lock */
1060	mutex_lock(lock);
1061	if (!atomic_dec_and_test(cnt)) {
1062		/* when we actually did the dec, we didn't hit 0 */
1063		mutex_unlock(lock);
1064		return 0;
1065	}
1066	/* we hit 0, and we hold the lock */
1067	return 1;
1068}
1069EXPORT_SYMBOL(atomic_dec_and_mutex_lock);