Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/locking/mutex.c
4 *
5 * Mutexes: blocking mutual exclusion locks
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
13 *
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
18 *
19 * Also see Documentation/locking/mutex-design.rst.
20 */
21#include <linux/mutex.h>
22#include <linux/ww_mutex.h>
23#include <linux/sched/signal.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/wake_q.h>
26#include <linux/sched/debug.h>
27#include <linux/export.h>
28#include <linux/spinlock.h>
29#include <linux/interrupt.h>
30#include <linux/debug_locks.h>
31#include <linux/osq_lock.h>
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/lock.h>
35
36#ifndef CONFIG_PREEMPT_RT
37#include "mutex.h"
38
39#ifdef CONFIG_DEBUG_MUTEXES
40# define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
41#else
42# define MUTEX_WARN_ON(cond)
43#endif
44
45void
46__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
47{
48 atomic_long_set(&lock->owner, 0);
49 raw_spin_lock_init(&lock->wait_lock);
50 INIT_LIST_HEAD(&lock->wait_list);
51#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
52 osq_lock_init(&lock->osq);
53#endif
54
55 debug_mutex_init(lock, name, key);
56}
57EXPORT_SYMBOL(__mutex_init);
58
59static inline struct task_struct *__owner_task(unsigned long owner)
60{
61 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
62}
63
64bool mutex_is_locked(struct mutex *lock)
65{
66 return __mutex_owner(lock) != NULL;
67}
68EXPORT_SYMBOL(mutex_is_locked);
69
70static inline unsigned long __owner_flags(unsigned long owner)
71{
72 return owner & MUTEX_FLAGS;
73}
74
75/*
76 * Returns: __mutex_owner(lock) on failure or NULL on success.
77 */
78static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
79{
80 unsigned long owner, curr = (unsigned long)current;
81
82 owner = atomic_long_read(&lock->owner);
83 for (;;) { /* must loop, can race against a flag */
84 unsigned long flags = __owner_flags(owner);
85 unsigned long task = owner & ~MUTEX_FLAGS;
86
87 if (task) {
88 if (flags & MUTEX_FLAG_PICKUP) {
89 if (task != curr)
90 break;
91 flags &= ~MUTEX_FLAG_PICKUP;
92 } else if (handoff) {
93 if (flags & MUTEX_FLAG_HANDOFF)
94 break;
95 flags |= MUTEX_FLAG_HANDOFF;
96 } else {
97 break;
98 }
99 } else {
100 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
101 task = curr;
102 }
103
104 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
105 if (task == curr)
106 return NULL;
107 break;
108 }
109 }
110
111 return __owner_task(owner);
112}
113
114/*
115 * Trylock or set HANDOFF
116 */
117static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
118{
119 return !__mutex_trylock_common(lock, handoff);
120}
121
122/*
123 * Actual trylock that will work on any unlocked state.
124 */
125static inline bool __mutex_trylock(struct mutex *lock)
126{
127 return !__mutex_trylock_common(lock, false);
128}
129
130#ifndef CONFIG_DEBUG_LOCK_ALLOC
131/*
132 * Lockdep annotations are contained to the slow paths for simplicity.
133 * There is nothing that would stop spreading the lockdep annotations outwards
134 * except more code.
135 */
136
137/*
138 * Optimistic trylock that only works in the uncontended case. Make sure to
139 * follow with a __mutex_trylock() before failing.
140 */
141static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
142{
143 unsigned long curr = (unsigned long)current;
144 unsigned long zero = 0UL;
145
146 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
147 return true;
148
149 return false;
150}
151
152static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
153{
154 unsigned long curr = (unsigned long)current;
155
156 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
157}
158#endif
159
160static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
161{
162 atomic_long_or(flag, &lock->owner);
163}
164
165static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
166{
167 atomic_long_andnot(flag, &lock->owner);
168}
169
170static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
171{
172 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
173}
174
175/*
176 * Add @waiter to a given location in the lock wait_list and set the
177 * FLAG_WAITERS flag if it's the first waiter.
178 */
179static void
180__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
181 struct list_head *list)
182{
183 debug_mutex_add_waiter(lock, waiter, current);
184
185 list_add_tail(&waiter->list, list);
186 if (__mutex_waiter_is_first(lock, waiter))
187 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
188}
189
190static void
191__mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
192{
193 list_del(&waiter->list);
194 if (likely(list_empty(&lock->wait_list)))
195 __mutex_clear_flag(lock, MUTEX_FLAGS);
196
197 debug_mutex_remove_waiter(lock, waiter, current);
198}
199
200/*
201 * Give up ownership to a specific task, when @task = NULL, this is equivalent
202 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
203 * WAITERS. Provides RELEASE semantics like a regular unlock, the
204 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
205 */
206static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
207{
208 unsigned long owner = atomic_long_read(&lock->owner);
209
210 for (;;) {
211 unsigned long new;
212
213 MUTEX_WARN_ON(__owner_task(owner) != current);
214 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
215
216 new = (owner & MUTEX_FLAG_WAITERS);
217 new |= (unsigned long)task;
218 if (task)
219 new |= MUTEX_FLAG_PICKUP;
220
221 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
222 break;
223 }
224}
225
226#ifndef CONFIG_DEBUG_LOCK_ALLOC
227/*
228 * We split the mutex lock/unlock logic into separate fastpath and
229 * slowpath functions, to reduce the register pressure on the fastpath.
230 * We also put the fastpath first in the kernel image, to make sure the
231 * branch is predicted by the CPU as default-untaken.
232 */
233static void __sched __mutex_lock_slowpath(struct mutex *lock);
234
235/**
236 * mutex_lock - acquire the mutex
237 * @lock: the mutex to be acquired
238 *
239 * Lock the mutex exclusively for this task. If the mutex is not
240 * available right now, it will sleep until it can get it.
241 *
242 * The mutex must later on be released by the same task that
243 * acquired it. Recursive locking is not allowed. The task
244 * may not exit without first unlocking the mutex. Also, kernel
245 * memory where the mutex resides must not be freed with
246 * the mutex still locked. The mutex must first be initialized
247 * (or statically defined) before it can be locked. memset()-ing
248 * the mutex to 0 is not allowed.
249 *
250 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
251 * checks that will enforce the restrictions and will also do
252 * deadlock debugging)
253 *
254 * This function is similar to (but not equivalent to) down().
255 */
256void __sched mutex_lock(struct mutex *lock)
257{
258 might_sleep();
259
260 if (!__mutex_trylock_fast(lock))
261 __mutex_lock_slowpath(lock);
262}
263EXPORT_SYMBOL(mutex_lock);
264#endif
265
266#include "ww_mutex.h"
267
268#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
269
270/*
271 * Trylock variant that returns the owning task on failure.
272 */
273static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
274{
275 return __mutex_trylock_common(lock, false);
276}
277
278static inline
279bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
280 struct mutex_waiter *waiter)
281{
282 struct ww_mutex *ww;
283
284 ww = container_of(lock, struct ww_mutex, base);
285
286 /*
287 * If ww->ctx is set the contents are undefined, only
288 * by acquiring wait_lock there is a guarantee that
289 * they are not invalid when reading.
290 *
291 * As such, when deadlock detection needs to be
292 * performed the optimistic spinning cannot be done.
293 *
294 * Check this in every inner iteration because we may
295 * be racing against another thread's ww_mutex_lock.
296 */
297 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
298 return false;
299
300 /*
301 * If we aren't on the wait list yet, cancel the spin
302 * if there are waiters. We want to avoid stealing the
303 * lock from a waiter with an earlier stamp, since the
304 * other thread may already own a lock that we also
305 * need.
306 */
307 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
308 return false;
309
310 /*
311 * Similarly, stop spinning if we are no longer the
312 * first waiter.
313 */
314 if (waiter && !__mutex_waiter_is_first(lock, waiter))
315 return false;
316
317 return true;
318}
319
320/*
321 * Look out! "owner" is an entirely speculative pointer access and not
322 * reliable.
323 *
324 * "noinline" so that this function shows up on perf profiles.
325 */
326static noinline
327bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
328 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
329{
330 bool ret = true;
331
332 lockdep_assert_preemption_disabled();
333
334 while (__mutex_owner(lock) == owner) {
335 /*
336 * Ensure we emit the owner->on_cpu, dereference _after_
337 * checking lock->owner still matches owner. And we already
338 * disabled preemption which is equal to the RCU read-side
339 * crital section in optimistic spinning code. Thus the
340 * task_strcut structure won't go away during the spinning
341 * period
342 */
343 barrier();
344
345 /*
346 * Use vcpu_is_preempted to detect lock holder preemption issue.
347 */
348 if (!owner_on_cpu(owner) || need_resched()) {
349 ret = false;
350 break;
351 }
352
353 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
354 ret = false;
355 break;
356 }
357
358 cpu_relax();
359 }
360
361 return ret;
362}
363
364/*
365 * Initial check for entering the mutex spinning loop
366 */
367static inline int mutex_can_spin_on_owner(struct mutex *lock)
368{
369 struct task_struct *owner;
370 int retval = 1;
371
372 lockdep_assert_preemption_disabled();
373
374 if (need_resched())
375 return 0;
376
377 /*
378 * We already disabled preemption which is equal to the RCU read-side
379 * crital section in optimistic spinning code. Thus the task_strcut
380 * structure won't go away during the spinning period.
381 */
382 owner = __mutex_owner(lock);
383 if (owner)
384 retval = owner_on_cpu(owner);
385
386 /*
387 * If lock->owner is not set, the mutex has been released. Return true
388 * such that we'll trylock in the spin path, which is a faster option
389 * than the blocking slow path.
390 */
391 return retval;
392}
393
394/*
395 * Optimistic spinning.
396 *
397 * We try to spin for acquisition when we find that the lock owner
398 * is currently running on a (different) CPU and while we don't
399 * need to reschedule. The rationale is that if the lock owner is
400 * running, it is likely to release the lock soon.
401 *
402 * The mutex spinners are queued up using MCS lock so that only one
403 * spinner can compete for the mutex. However, if mutex spinning isn't
404 * going to happen, there is no point in going through the lock/unlock
405 * overhead.
406 *
407 * Returns true when the lock was taken, otherwise false, indicating
408 * that we need to jump to the slowpath and sleep.
409 *
410 * The waiter flag is set to true if the spinner is a waiter in the wait
411 * queue. The waiter-spinner will spin on the lock directly and concurrently
412 * with the spinner at the head of the OSQ, if present, until the owner is
413 * changed to itself.
414 */
415static __always_inline bool
416mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
417 struct mutex_waiter *waiter)
418{
419 if (!waiter) {
420 /*
421 * The purpose of the mutex_can_spin_on_owner() function is
422 * to eliminate the overhead of osq_lock() and osq_unlock()
423 * in case spinning isn't possible. As a waiter-spinner
424 * is not going to take OSQ lock anyway, there is no need
425 * to call mutex_can_spin_on_owner().
426 */
427 if (!mutex_can_spin_on_owner(lock))
428 goto fail;
429
430 /*
431 * In order to avoid a stampede of mutex spinners trying to
432 * acquire the mutex all at once, the spinners need to take a
433 * MCS (queued) lock first before spinning on the owner field.
434 */
435 if (!osq_lock(&lock->osq))
436 goto fail;
437 }
438
439 for (;;) {
440 struct task_struct *owner;
441
442 /* Try to acquire the mutex... */
443 owner = __mutex_trylock_or_owner(lock);
444 if (!owner)
445 break;
446
447 /*
448 * There's an owner, wait for it to either
449 * release the lock or go to sleep.
450 */
451 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
452 goto fail_unlock;
453
454 /*
455 * The cpu_relax() call is a compiler barrier which forces
456 * everything in this loop to be re-loaded. We don't need
457 * memory barriers as we'll eventually observe the right
458 * values at the cost of a few extra spins.
459 */
460 cpu_relax();
461 }
462
463 if (!waiter)
464 osq_unlock(&lock->osq);
465
466 return true;
467
468
469fail_unlock:
470 if (!waiter)
471 osq_unlock(&lock->osq);
472
473fail:
474 /*
475 * If we fell out of the spin path because of need_resched(),
476 * reschedule now, before we try-lock the mutex. This avoids getting
477 * scheduled out right after we obtained the mutex.
478 */
479 if (need_resched()) {
480 /*
481 * We _should_ have TASK_RUNNING here, but just in case
482 * we do not, make it so, otherwise we might get stuck.
483 */
484 __set_current_state(TASK_RUNNING);
485 schedule_preempt_disabled();
486 }
487
488 return false;
489}
490#else
491static __always_inline bool
492mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
493 struct mutex_waiter *waiter)
494{
495 return false;
496}
497#endif
498
499static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
500
501/**
502 * mutex_unlock - release the mutex
503 * @lock: the mutex to be released
504 *
505 * Unlock a mutex that has been locked by this task previously.
506 *
507 * This function must not be used in interrupt context. Unlocking
508 * of a not locked mutex is not allowed.
509 *
510 * The caller must ensure that the mutex stays alive until this function has
511 * returned - mutex_unlock() can NOT directly be used to release an object such
512 * that another concurrent task can free it.
513 * Mutexes are different from spinlocks & refcounts in this aspect.
514 *
515 * This function is similar to (but not equivalent to) up().
516 */
517void __sched mutex_unlock(struct mutex *lock)
518{
519#ifndef CONFIG_DEBUG_LOCK_ALLOC
520 if (__mutex_unlock_fast(lock))
521 return;
522#endif
523 __mutex_unlock_slowpath(lock, _RET_IP_);
524}
525EXPORT_SYMBOL(mutex_unlock);
526
527/**
528 * ww_mutex_unlock - release the w/w mutex
529 * @lock: the mutex to be released
530 *
531 * Unlock a mutex that has been locked by this task previously with any of the
532 * ww_mutex_lock* functions (with or without an acquire context). It is
533 * forbidden to release the locks after releasing the acquire context.
534 *
535 * This function must not be used in interrupt context. Unlocking
536 * of a unlocked mutex is not allowed.
537 */
538void __sched ww_mutex_unlock(struct ww_mutex *lock)
539{
540 __ww_mutex_unlock(lock);
541 mutex_unlock(&lock->base);
542}
543EXPORT_SYMBOL(ww_mutex_unlock);
544
545/*
546 * Lock a mutex (possibly interruptible), slowpath:
547 */
548static __always_inline int __sched
549__mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
550 struct lockdep_map *nest_lock, unsigned long ip,
551 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
552{
553 DEFINE_WAKE_Q(wake_q);
554 struct mutex_waiter waiter;
555 struct ww_mutex *ww;
556 unsigned long flags;
557 int ret;
558
559 if (!use_ww_ctx)
560 ww_ctx = NULL;
561
562 might_sleep();
563
564 MUTEX_WARN_ON(lock->magic != lock);
565
566 ww = container_of(lock, struct ww_mutex, base);
567 if (ww_ctx) {
568 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
569 return -EALREADY;
570
571 /*
572 * Reset the wounded flag after a kill. No other process can
573 * race and wound us here since they can't have a valid owner
574 * pointer if we don't have any locks held.
575 */
576 if (ww_ctx->acquired == 0)
577 ww_ctx->wounded = 0;
578
579#ifdef CONFIG_DEBUG_LOCK_ALLOC
580 nest_lock = &ww_ctx->dep_map;
581#endif
582 }
583
584 preempt_disable();
585 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
586
587 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
588 if (__mutex_trylock(lock) ||
589 mutex_optimistic_spin(lock, ww_ctx, NULL)) {
590 /* got the lock, yay! */
591 lock_acquired(&lock->dep_map, ip);
592 if (ww_ctx)
593 ww_mutex_set_context_fastpath(ww, ww_ctx);
594 trace_contention_end(lock, 0);
595 preempt_enable();
596 return 0;
597 }
598
599 raw_spin_lock_irqsave(&lock->wait_lock, flags);
600 /*
601 * After waiting to acquire the wait_lock, try again.
602 */
603 if (__mutex_trylock(lock)) {
604 if (ww_ctx)
605 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
606
607 goto skip_wait;
608 }
609
610 debug_mutex_lock_common(lock, &waiter);
611 waiter.task = current;
612 if (use_ww_ctx)
613 waiter.ww_ctx = ww_ctx;
614
615 lock_contended(&lock->dep_map, ip);
616
617 if (!use_ww_ctx) {
618 /* add waiting tasks to the end of the waitqueue (FIFO): */
619 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
620 } else {
621 /*
622 * Add in stamp order, waking up waiters that must kill
623 * themselves.
624 */
625 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
626 if (ret)
627 goto err_early_kill;
628 }
629
630 set_current_state(state);
631 trace_contention_begin(lock, LCB_F_MUTEX);
632 for (;;) {
633 bool first;
634
635 /*
636 * Once we hold wait_lock, we're serialized against
637 * mutex_unlock() handing the lock off to us, do a trylock
638 * before testing the error conditions to make sure we pick up
639 * the handoff.
640 */
641 if (__mutex_trylock(lock))
642 goto acquired;
643
644 /*
645 * Check for signals and kill conditions while holding
646 * wait_lock. This ensures the lock cancellation is ordered
647 * against mutex_unlock() and wake-ups do not go missing.
648 */
649 if (signal_pending_state(state, current)) {
650 ret = -EINTR;
651 goto err;
652 }
653
654 if (ww_ctx) {
655 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
656 if (ret)
657 goto err;
658 }
659
660 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
661 /* Make sure we do wakeups before calling schedule */
662 wake_up_q(&wake_q);
663 wake_q_init(&wake_q);
664
665 schedule_preempt_disabled();
666
667 first = __mutex_waiter_is_first(lock, &waiter);
668
669 set_current_state(state);
670 /*
671 * Here we order against unlock; we must either see it change
672 * state back to RUNNING and fall through the next schedule(),
673 * or we must see its unlock and acquire.
674 */
675 if (__mutex_trylock_or_handoff(lock, first))
676 break;
677
678 if (first) {
679 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
680 if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
681 break;
682 trace_contention_begin(lock, LCB_F_MUTEX);
683 }
684
685 raw_spin_lock_irqsave(&lock->wait_lock, flags);
686 }
687 raw_spin_lock_irqsave(&lock->wait_lock, flags);
688acquired:
689 __set_current_state(TASK_RUNNING);
690
691 if (ww_ctx) {
692 /*
693 * Wound-Wait; we stole the lock (!first_waiter), check the
694 * waiters as anyone might want to wound us.
695 */
696 if (!ww_ctx->is_wait_die &&
697 !__mutex_waiter_is_first(lock, &waiter))
698 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
699 }
700
701 __mutex_remove_waiter(lock, &waiter);
702
703 debug_mutex_free_waiter(&waiter);
704
705skip_wait:
706 /* got the lock - cleanup and rejoice! */
707 lock_acquired(&lock->dep_map, ip);
708 trace_contention_end(lock, 0);
709
710 if (ww_ctx)
711 ww_mutex_lock_acquired(ww, ww_ctx);
712
713 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
714 wake_up_q(&wake_q);
715 preempt_enable();
716 return 0;
717
718err:
719 __set_current_state(TASK_RUNNING);
720 __mutex_remove_waiter(lock, &waiter);
721err_early_kill:
722 trace_contention_end(lock, ret);
723 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
724 debug_mutex_free_waiter(&waiter);
725 mutex_release(&lock->dep_map, ip);
726 wake_up_q(&wake_q);
727 preempt_enable();
728 return ret;
729}
730
731static int __sched
732__mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
733 struct lockdep_map *nest_lock, unsigned long ip)
734{
735 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
736}
737
738static int __sched
739__ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
740 unsigned long ip, struct ww_acquire_ctx *ww_ctx)
741{
742 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
743}
744
745/**
746 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
747 * @ww: mutex to lock
748 * @ww_ctx: optional w/w acquire context
749 *
750 * Trylocks a mutex with the optional acquire context; no deadlock detection is
751 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
752 *
753 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
754 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
755 *
756 * A mutex acquired with this function must be released with ww_mutex_unlock.
757 */
758int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
759{
760 if (!ww_ctx)
761 return mutex_trylock(&ww->base);
762
763 MUTEX_WARN_ON(ww->base.magic != &ww->base);
764
765 /*
766 * Reset the wounded flag after a kill. No other process can
767 * race and wound us here, since they can't have a valid owner
768 * pointer if we don't have any locks held.
769 */
770 if (ww_ctx->acquired == 0)
771 ww_ctx->wounded = 0;
772
773 if (__mutex_trylock(&ww->base)) {
774 ww_mutex_set_context_fastpath(ww, ww_ctx);
775 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
776 return 1;
777 }
778
779 return 0;
780}
781EXPORT_SYMBOL(ww_mutex_trylock);
782
783#ifdef CONFIG_DEBUG_LOCK_ALLOC
784void __sched
785mutex_lock_nested(struct mutex *lock, unsigned int subclass)
786{
787 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
788}
789
790EXPORT_SYMBOL_GPL(mutex_lock_nested);
791
792void __sched
793_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
794{
795 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
796}
797EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
798
799int __sched
800mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
801{
802 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
803}
804EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
805
806int __sched
807mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
808{
809 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
810}
811EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
812
813void __sched
814mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
815{
816 int token;
817
818 might_sleep();
819
820 token = io_schedule_prepare();
821 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
822 subclass, NULL, _RET_IP_, NULL, 0);
823 io_schedule_finish(token);
824}
825EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
826
827static inline int
828ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
829{
830#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
831 unsigned tmp;
832
833 if (ctx->deadlock_inject_countdown-- == 0) {
834 tmp = ctx->deadlock_inject_interval;
835 if (tmp > UINT_MAX/4)
836 tmp = UINT_MAX;
837 else
838 tmp = tmp*2 + tmp + tmp/2;
839
840 ctx->deadlock_inject_interval = tmp;
841 ctx->deadlock_inject_countdown = tmp;
842 ctx->contending_lock = lock;
843
844 ww_mutex_unlock(lock);
845
846 return -EDEADLK;
847 }
848#endif
849
850 return 0;
851}
852
853int __sched
854ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
855{
856 int ret;
857
858 might_sleep();
859 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
860 0, _RET_IP_, ctx);
861 if (!ret && ctx && ctx->acquired > 1)
862 return ww_mutex_deadlock_injection(lock, ctx);
863
864 return ret;
865}
866EXPORT_SYMBOL_GPL(ww_mutex_lock);
867
868int __sched
869ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
870{
871 int ret;
872
873 might_sleep();
874 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
875 0, _RET_IP_, ctx);
876
877 if (!ret && ctx && ctx->acquired > 1)
878 return ww_mutex_deadlock_injection(lock, ctx);
879
880 return ret;
881}
882EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
883
884#endif
885
886/*
887 * Release the lock, slowpath:
888 */
889static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
890{
891 struct task_struct *next = NULL;
892 DEFINE_WAKE_Q(wake_q);
893 unsigned long owner;
894 unsigned long flags;
895
896 mutex_release(&lock->dep_map, ip);
897
898 /*
899 * Release the lock before (potentially) taking the spinlock such that
900 * other contenders can get on with things ASAP.
901 *
902 * Except when HANDOFF, in that case we must not clear the owner field,
903 * but instead set it to the top waiter.
904 */
905 owner = atomic_long_read(&lock->owner);
906 for (;;) {
907 MUTEX_WARN_ON(__owner_task(owner) != current);
908 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
909
910 if (owner & MUTEX_FLAG_HANDOFF)
911 break;
912
913 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
914 if (owner & MUTEX_FLAG_WAITERS)
915 break;
916
917 return;
918 }
919 }
920
921 raw_spin_lock_irqsave(&lock->wait_lock, flags);
922 debug_mutex_unlock(lock);
923 if (!list_empty(&lock->wait_list)) {
924 /* get the first entry from the wait-list: */
925 struct mutex_waiter *waiter =
926 list_first_entry(&lock->wait_list,
927 struct mutex_waiter, list);
928
929 next = waiter->task;
930
931 debug_mutex_wake_waiter(lock, waiter);
932 wake_q_add(&wake_q, next);
933 }
934
935 if (owner & MUTEX_FLAG_HANDOFF)
936 __mutex_handoff(lock, next);
937
938 preempt_disable();
939 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
940 wake_up_q(&wake_q);
941 preempt_enable();
942}
943
944#ifndef CONFIG_DEBUG_LOCK_ALLOC
945/*
946 * Here come the less common (and hence less performance-critical) APIs:
947 * mutex_lock_interruptible() and mutex_trylock().
948 */
949static noinline int __sched
950__mutex_lock_killable_slowpath(struct mutex *lock);
951
952static noinline int __sched
953__mutex_lock_interruptible_slowpath(struct mutex *lock);
954
955/**
956 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
957 * @lock: The mutex to be acquired.
958 *
959 * Lock the mutex like mutex_lock(). If a signal is delivered while the
960 * process is sleeping, this function will return without acquiring the
961 * mutex.
962 *
963 * Context: Process context.
964 * Return: 0 if the lock was successfully acquired or %-EINTR if a
965 * signal arrived.
966 */
967int __sched mutex_lock_interruptible(struct mutex *lock)
968{
969 might_sleep();
970
971 if (__mutex_trylock_fast(lock))
972 return 0;
973
974 return __mutex_lock_interruptible_slowpath(lock);
975}
976
977EXPORT_SYMBOL(mutex_lock_interruptible);
978
979/**
980 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
981 * @lock: The mutex to be acquired.
982 *
983 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
984 * the current process is delivered while the process is sleeping, this
985 * function will return without acquiring the mutex.
986 *
987 * Context: Process context.
988 * Return: 0 if the lock was successfully acquired or %-EINTR if a
989 * fatal signal arrived.
990 */
991int __sched mutex_lock_killable(struct mutex *lock)
992{
993 might_sleep();
994
995 if (__mutex_trylock_fast(lock))
996 return 0;
997
998 return __mutex_lock_killable_slowpath(lock);
999}
1000EXPORT_SYMBOL(mutex_lock_killable);
1001
1002/**
1003 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1004 * @lock: The mutex to be acquired.
1005 *
1006 * Lock the mutex like mutex_lock(). While the task is waiting for this
1007 * mutex, it will be accounted as being in the IO wait state by the
1008 * scheduler.
1009 *
1010 * Context: Process context.
1011 */
1012void __sched mutex_lock_io(struct mutex *lock)
1013{
1014 int token;
1015
1016 token = io_schedule_prepare();
1017 mutex_lock(lock);
1018 io_schedule_finish(token);
1019}
1020EXPORT_SYMBOL_GPL(mutex_lock_io);
1021
1022static noinline void __sched
1023__mutex_lock_slowpath(struct mutex *lock)
1024{
1025 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1026}
1027
1028static noinline int __sched
1029__mutex_lock_killable_slowpath(struct mutex *lock)
1030{
1031 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1032}
1033
1034static noinline int __sched
1035__mutex_lock_interruptible_slowpath(struct mutex *lock)
1036{
1037 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1038}
1039
1040static noinline int __sched
1041__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1042{
1043 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1044 _RET_IP_, ctx);
1045}
1046
1047static noinline int __sched
1048__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1049 struct ww_acquire_ctx *ctx)
1050{
1051 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1052 _RET_IP_, ctx);
1053}
1054
1055#endif
1056
1057/**
1058 * mutex_trylock - try to acquire the mutex, without waiting
1059 * @lock: the mutex to be acquired
1060 *
1061 * Try to acquire the mutex atomically. Returns 1 if the mutex
1062 * has been acquired successfully, and 0 on contention.
1063 *
1064 * NOTE: this function follows the spin_trylock() convention, so
1065 * it is negated from the down_trylock() return values! Be careful
1066 * about this when converting semaphore users to mutexes.
1067 *
1068 * This function must not be used in interrupt context. The
1069 * mutex must be released by the same task that acquired it.
1070 */
1071int __sched mutex_trylock(struct mutex *lock)
1072{
1073 bool locked;
1074
1075 MUTEX_WARN_ON(lock->magic != lock);
1076
1077 locked = __mutex_trylock(lock);
1078 if (locked)
1079 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1080
1081 return locked;
1082}
1083EXPORT_SYMBOL(mutex_trylock);
1084
1085#ifndef CONFIG_DEBUG_LOCK_ALLOC
1086int __sched
1087ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1088{
1089 might_sleep();
1090
1091 if (__mutex_trylock_fast(&lock->base)) {
1092 if (ctx)
1093 ww_mutex_set_context_fastpath(lock, ctx);
1094 return 0;
1095 }
1096
1097 return __ww_mutex_lock_slowpath(lock, ctx);
1098}
1099EXPORT_SYMBOL(ww_mutex_lock);
1100
1101int __sched
1102ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1103{
1104 might_sleep();
1105
1106 if (__mutex_trylock_fast(&lock->base)) {
1107 if (ctx)
1108 ww_mutex_set_context_fastpath(lock, ctx);
1109 return 0;
1110 }
1111
1112 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1113}
1114EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1115
1116#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1117#endif /* !CONFIG_PREEMPT_RT */
1118
1119EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1120EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1121
1122/**
1123 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1124 * @cnt: the atomic which we are to dec
1125 * @lock: the mutex to return holding if we dec to 0
1126 *
1127 * return true and hold lock if we dec to 0, return false otherwise
1128 */
1129int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1130{
1131 /* dec if we can't possibly hit 0 */
1132 if (atomic_add_unless(cnt, -1, 1))
1133 return 0;
1134 /* we might hit 0, so take the lock */
1135 mutex_lock(lock);
1136 if (!atomic_dec_and_test(cnt)) {
1137 /* when we actually did the dec, we didn't hit 0 */
1138 mutex_unlock(lock);
1139 return 0;
1140 }
1141 /* we hit 0, and we hold the lock */
1142 return 1;
1143}
1144EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1/*
2 * kernel/locking/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/locking/mutex-design.txt.
19 */
20#include <linux/mutex.h>
21#include <linux/ww_mutex.h>
22#include <linux/sched.h>
23#include <linux/sched/rt.h>
24#include <linux/export.h>
25#include <linux/spinlock.h>
26#include <linux/interrupt.h>
27#include <linux/debug_locks.h>
28#include <linux/osq_lock.h>
29
30#ifdef CONFIG_DEBUG_MUTEXES
31# include "mutex-debug.h"
32#else
33# include "mutex.h"
34#endif
35
36void
37__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
38{
39 atomic_long_set(&lock->owner, 0);
40 spin_lock_init(&lock->wait_lock);
41 INIT_LIST_HEAD(&lock->wait_list);
42#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
43 osq_lock_init(&lock->osq);
44#endif
45
46 debug_mutex_init(lock, name, key);
47}
48EXPORT_SYMBOL(__mutex_init);
49
50/*
51 * @owner: contains: 'struct task_struct *' to the current lock owner,
52 * NULL means not owned. Since task_struct pointers are aligned at
53 * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
54 * bits to store extra state.
55 *
56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
57 * Bit1 indicates unlock needs to hand the lock to the top-waiter
58 */
59#define MUTEX_FLAG_WAITERS 0x01
60#define MUTEX_FLAG_HANDOFF 0x02
61
62#define MUTEX_FLAGS 0x03
63
64static inline struct task_struct *__owner_task(unsigned long owner)
65{
66 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
67}
68
69static inline unsigned long __owner_flags(unsigned long owner)
70{
71 return owner & MUTEX_FLAGS;
72}
73
74/*
75 * Actual trylock that will work on any unlocked state.
76 *
77 * When setting the owner field, we must preserve the low flag bits.
78 *
79 * Be careful with @handoff, only set that in a wait-loop (where you set
80 * HANDOFF) to avoid recursive lock attempts.
81 */
82static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
83{
84 unsigned long owner, curr = (unsigned long)current;
85
86 owner = atomic_long_read(&lock->owner);
87 for (;;) { /* must loop, can race against a flag */
88 unsigned long old, flags = __owner_flags(owner);
89
90 if (__owner_task(owner)) {
91 if (handoff && unlikely(__owner_task(owner) == current)) {
92 /*
93 * Provide ACQUIRE semantics for the lock-handoff.
94 *
95 * We cannot easily use load-acquire here, since
96 * the actual load is a failed cmpxchg, which
97 * doesn't imply any barriers.
98 *
99 * Also, this is a fairly unlikely scenario, and
100 * this contains the cost.
101 */
102 smp_mb(); /* ACQUIRE */
103 return true;
104 }
105
106 return false;
107 }
108
109 /*
110 * We set the HANDOFF bit, we must make sure it doesn't live
111 * past the point where we acquire it. This would be possible
112 * if we (accidentally) set the bit on an unlocked mutex.
113 */
114 if (handoff)
115 flags &= ~MUTEX_FLAG_HANDOFF;
116
117 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
118 if (old == owner)
119 return true;
120
121 owner = old;
122 }
123}
124
125#ifndef CONFIG_DEBUG_LOCK_ALLOC
126/*
127 * Lockdep annotations are contained to the slow paths for simplicity.
128 * There is nothing that would stop spreading the lockdep annotations outwards
129 * except more code.
130 */
131
132/*
133 * Optimistic trylock that only works in the uncontended case. Make sure to
134 * follow with a __mutex_trylock() before failing.
135 */
136static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
137{
138 unsigned long curr = (unsigned long)current;
139
140 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
141 return true;
142
143 return false;
144}
145
146static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
147{
148 unsigned long curr = (unsigned long)current;
149
150 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
151 return true;
152
153 return false;
154}
155#endif
156
157static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
158{
159 atomic_long_or(flag, &lock->owner);
160}
161
162static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
163{
164 atomic_long_andnot(flag, &lock->owner);
165}
166
167static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
168{
169 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
170}
171
172/*
173 * Give up ownership to a specific task, when @task = NULL, this is equivalent
174 * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
175 * semantics like a regular unlock, the __mutex_trylock() provides matching
176 * ACQUIRE semantics for the handoff.
177 */
178static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
179{
180 unsigned long owner = atomic_long_read(&lock->owner);
181
182 for (;;) {
183 unsigned long old, new;
184
185#ifdef CONFIG_DEBUG_MUTEXES
186 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
187#endif
188
189 new = (owner & MUTEX_FLAG_WAITERS);
190 new |= (unsigned long)task;
191
192 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
193 if (old == owner)
194 break;
195
196 owner = old;
197 }
198}
199
200#ifndef CONFIG_DEBUG_LOCK_ALLOC
201/*
202 * We split the mutex lock/unlock logic into separate fastpath and
203 * slowpath functions, to reduce the register pressure on the fastpath.
204 * We also put the fastpath first in the kernel image, to make sure the
205 * branch is predicted by the CPU as default-untaken.
206 */
207static void __sched __mutex_lock_slowpath(struct mutex *lock);
208
209/**
210 * mutex_lock - acquire the mutex
211 * @lock: the mutex to be acquired
212 *
213 * Lock the mutex exclusively for this task. If the mutex is not
214 * available right now, it will sleep until it can get it.
215 *
216 * The mutex must later on be released by the same task that
217 * acquired it. Recursive locking is not allowed. The task
218 * may not exit without first unlocking the mutex. Also, kernel
219 * memory where the mutex resides must not be freed with
220 * the mutex still locked. The mutex must first be initialized
221 * (or statically defined) before it can be locked. memset()-ing
222 * the mutex to 0 is not allowed.
223 *
224 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
225 * checks that will enforce the restrictions and will also do
226 * deadlock debugging. )
227 *
228 * This function is similar to (but not equivalent to) down().
229 */
230void __sched mutex_lock(struct mutex *lock)
231{
232 might_sleep();
233
234 if (!__mutex_trylock_fast(lock))
235 __mutex_lock_slowpath(lock);
236}
237EXPORT_SYMBOL(mutex_lock);
238#endif
239
240static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
241 struct ww_acquire_ctx *ww_ctx)
242{
243#ifdef CONFIG_DEBUG_MUTEXES
244 /*
245 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
246 * but released with a normal mutex_unlock in this call.
247 *
248 * This should never happen, always use ww_mutex_unlock.
249 */
250 DEBUG_LOCKS_WARN_ON(ww->ctx);
251
252 /*
253 * Not quite done after calling ww_acquire_done() ?
254 */
255 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
256
257 if (ww_ctx->contending_lock) {
258 /*
259 * After -EDEADLK you tried to
260 * acquire a different ww_mutex? Bad!
261 */
262 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
263
264 /*
265 * You called ww_mutex_lock after receiving -EDEADLK,
266 * but 'forgot' to unlock everything else first?
267 */
268 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
269 ww_ctx->contending_lock = NULL;
270 }
271
272 /*
273 * Naughty, using a different class will lead to undefined behavior!
274 */
275 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
276#endif
277 ww_ctx->acquired++;
278}
279
280/*
281 * After acquiring lock with fastpath or when we lost out in contested
282 * slowpath, set ctx and wake up any waiters so they can recheck.
283 */
284static __always_inline void
285ww_mutex_set_context_fastpath(struct ww_mutex *lock,
286 struct ww_acquire_ctx *ctx)
287{
288 unsigned long flags;
289 struct mutex_waiter *cur;
290
291 ww_mutex_lock_acquired(lock, ctx);
292
293 lock->ctx = ctx;
294
295 /*
296 * The lock->ctx update should be visible on all cores before
297 * the atomic read is done, otherwise contended waiters might be
298 * missed. The contended waiters will either see ww_ctx == NULL
299 * and keep spinning, or it will acquire wait_lock, add itself
300 * to waiter list and sleep.
301 */
302 smp_mb(); /* ^^^ */
303
304 /*
305 * Check if lock is contended, if not there is nobody to wake up
306 */
307 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
308 return;
309
310 /*
311 * Uh oh, we raced in fastpath, wake up everyone in this case,
312 * so they can see the new lock->ctx.
313 */
314 spin_lock_mutex(&lock->base.wait_lock, flags);
315 list_for_each_entry(cur, &lock->base.wait_list, list) {
316 debug_mutex_wake_waiter(&lock->base, cur);
317 wake_up_process(cur->task);
318 }
319 spin_unlock_mutex(&lock->base.wait_lock, flags);
320}
321
322/*
323 * After acquiring lock in the slowpath set ctx and wake up any
324 * waiters so they can recheck.
325 *
326 * Callers must hold the mutex wait_lock.
327 */
328static __always_inline void
329ww_mutex_set_context_slowpath(struct ww_mutex *lock,
330 struct ww_acquire_ctx *ctx)
331{
332 struct mutex_waiter *cur;
333
334 ww_mutex_lock_acquired(lock, ctx);
335 lock->ctx = ctx;
336
337 /*
338 * Give any possible sleeping processes the chance to wake up,
339 * so they can recheck if they have to back off.
340 */
341 list_for_each_entry(cur, &lock->base.wait_list, list) {
342 debug_mutex_wake_waiter(&lock->base, cur);
343 wake_up_process(cur->task);
344 }
345}
346
347#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
348/*
349 * Look out! "owner" is an entirely speculative pointer
350 * access and not reliable.
351 */
352static noinline
353bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
354{
355 bool ret = true;
356
357 rcu_read_lock();
358 while (__mutex_owner(lock) == owner) {
359 /*
360 * Ensure we emit the owner->on_cpu, dereference _after_
361 * checking lock->owner still matches owner. If that fails,
362 * owner might point to freed memory. If it still matches,
363 * the rcu_read_lock() ensures the memory stays valid.
364 */
365 barrier();
366
367 /*
368 * Use vcpu_is_preempted to detect lock holder preemption issue.
369 */
370 if (!owner->on_cpu || need_resched() ||
371 vcpu_is_preempted(task_cpu(owner))) {
372 ret = false;
373 break;
374 }
375
376 cpu_relax();
377 }
378 rcu_read_unlock();
379
380 return ret;
381}
382
383/*
384 * Initial check for entering the mutex spinning loop
385 */
386static inline int mutex_can_spin_on_owner(struct mutex *lock)
387{
388 struct task_struct *owner;
389 int retval = 1;
390
391 if (need_resched())
392 return 0;
393
394 rcu_read_lock();
395 owner = __mutex_owner(lock);
396
397 /*
398 * As lock holder preemption issue, we both skip spinning if task is not
399 * on cpu or its cpu is preempted
400 */
401 if (owner)
402 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
403 rcu_read_unlock();
404
405 /*
406 * If lock->owner is not set, the mutex has been released. Return true
407 * such that we'll trylock in the spin path, which is a faster option
408 * than the blocking slow path.
409 */
410 return retval;
411}
412
413/*
414 * Optimistic spinning.
415 *
416 * We try to spin for acquisition when we find that the lock owner
417 * is currently running on a (different) CPU and while we don't
418 * need to reschedule. The rationale is that if the lock owner is
419 * running, it is likely to release the lock soon.
420 *
421 * The mutex spinners are queued up using MCS lock so that only one
422 * spinner can compete for the mutex. However, if mutex spinning isn't
423 * going to happen, there is no point in going through the lock/unlock
424 * overhead.
425 *
426 * Returns true when the lock was taken, otherwise false, indicating
427 * that we need to jump to the slowpath and sleep.
428 *
429 * The waiter flag is set to true if the spinner is a waiter in the wait
430 * queue. The waiter-spinner will spin on the lock directly and concurrently
431 * with the spinner at the head of the OSQ, if present, until the owner is
432 * changed to itself.
433 */
434static bool mutex_optimistic_spin(struct mutex *lock,
435 struct ww_acquire_ctx *ww_ctx,
436 const bool use_ww_ctx, const bool waiter)
437{
438 struct task_struct *task = current;
439
440 if (!waiter) {
441 /*
442 * The purpose of the mutex_can_spin_on_owner() function is
443 * to eliminate the overhead of osq_lock() and osq_unlock()
444 * in case spinning isn't possible. As a waiter-spinner
445 * is not going to take OSQ lock anyway, there is no need
446 * to call mutex_can_spin_on_owner().
447 */
448 if (!mutex_can_spin_on_owner(lock))
449 goto fail;
450
451 /*
452 * In order to avoid a stampede of mutex spinners trying to
453 * acquire the mutex all at once, the spinners need to take a
454 * MCS (queued) lock first before spinning on the owner field.
455 */
456 if (!osq_lock(&lock->osq))
457 goto fail;
458 }
459
460 for (;;) {
461 struct task_struct *owner;
462
463 if (use_ww_ctx && ww_ctx->acquired > 0) {
464 struct ww_mutex *ww;
465
466 ww = container_of(lock, struct ww_mutex, base);
467 /*
468 * If ww->ctx is set the contents are undefined, only
469 * by acquiring wait_lock there is a guarantee that
470 * they are not invalid when reading.
471 *
472 * As such, when deadlock detection needs to be
473 * performed the optimistic spinning cannot be done.
474 */
475 if (READ_ONCE(ww->ctx))
476 goto fail_unlock;
477 }
478
479 /*
480 * If there's an owner, wait for it to either
481 * release the lock or go to sleep.
482 */
483 owner = __mutex_owner(lock);
484 if (owner) {
485 if (waiter && owner == task) {
486 smp_mb(); /* ACQUIRE */
487 break;
488 }
489
490 if (!mutex_spin_on_owner(lock, owner))
491 goto fail_unlock;
492 }
493
494 /* Try to acquire the mutex if it is unlocked. */
495 if (__mutex_trylock(lock, waiter))
496 break;
497
498 /*
499 * The cpu_relax() call is a compiler barrier which forces
500 * everything in this loop to be re-loaded. We don't need
501 * memory barriers as we'll eventually observe the right
502 * values at the cost of a few extra spins.
503 */
504 cpu_relax();
505 }
506
507 if (!waiter)
508 osq_unlock(&lock->osq);
509
510 return true;
511
512
513fail_unlock:
514 if (!waiter)
515 osq_unlock(&lock->osq);
516
517fail:
518 /*
519 * If we fell out of the spin path because of need_resched(),
520 * reschedule now, before we try-lock the mutex. This avoids getting
521 * scheduled out right after we obtained the mutex.
522 */
523 if (need_resched()) {
524 /*
525 * We _should_ have TASK_RUNNING here, but just in case
526 * we do not, make it so, otherwise we might get stuck.
527 */
528 __set_current_state(TASK_RUNNING);
529 schedule_preempt_disabled();
530 }
531
532 return false;
533}
534#else
535static bool mutex_optimistic_spin(struct mutex *lock,
536 struct ww_acquire_ctx *ww_ctx,
537 const bool use_ww_ctx, const bool waiter)
538{
539 return false;
540}
541#endif
542
543static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
544
545/**
546 * mutex_unlock - release the mutex
547 * @lock: the mutex to be released
548 *
549 * Unlock a mutex that has been locked by this task previously.
550 *
551 * This function must not be used in interrupt context. Unlocking
552 * of a not locked mutex is not allowed.
553 *
554 * This function is similar to (but not equivalent to) up().
555 */
556void __sched mutex_unlock(struct mutex *lock)
557{
558#ifndef CONFIG_DEBUG_LOCK_ALLOC
559 if (__mutex_unlock_fast(lock))
560 return;
561#endif
562 __mutex_unlock_slowpath(lock, _RET_IP_);
563}
564EXPORT_SYMBOL(mutex_unlock);
565
566/**
567 * ww_mutex_unlock - release the w/w mutex
568 * @lock: the mutex to be released
569 *
570 * Unlock a mutex that has been locked by this task previously with any of the
571 * ww_mutex_lock* functions (with or without an acquire context). It is
572 * forbidden to release the locks after releasing the acquire context.
573 *
574 * This function must not be used in interrupt context. Unlocking
575 * of a unlocked mutex is not allowed.
576 */
577void __sched ww_mutex_unlock(struct ww_mutex *lock)
578{
579 /*
580 * The unlocking fastpath is the 0->1 transition from 'locked'
581 * into 'unlocked' state:
582 */
583 if (lock->ctx) {
584#ifdef CONFIG_DEBUG_MUTEXES
585 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
586#endif
587 if (lock->ctx->acquired > 0)
588 lock->ctx->acquired--;
589 lock->ctx = NULL;
590 }
591
592 mutex_unlock(&lock->base);
593}
594EXPORT_SYMBOL(ww_mutex_unlock);
595
596static inline int __sched
597__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
598{
599 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
600 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
601
602 if (!hold_ctx)
603 return 0;
604
605 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
606 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
607#ifdef CONFIG_DEBUG_MUTEXES
608 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
609 ctx->contending_lock = ww;
610#endif
611 return -EDEADLK;
612 }
613
614 return 0;
615}
616
617/*
618 * Lock a mutex (possibly interruptible), slowpath:
619 */
620static __always_inline int __sched
621__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
622 struct lockdep_map *nest_lock, unsigned long ip,
623 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
624{
625 struct task_struct *task = current;
626 struct mutex_waiter waiter;
627 unsigned long flags;
628 bool first = false;
629 struct ww_mutex *ww;
630 int ret;
631
632 if (use_ww_ctx) {
633 ww = container_of(lock, struct ww_mutex, base);
634 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
635 return -EALREADY;
636 }
637
638 preempt_disable();
639 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
640
641 if (__mutex_trylock(lock, false) ||
642 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
643 /* got the lock, yay! */
644 lock_acquired(&lock->dep_map, ip);
645 if (use_ww_ctx)
646 ww_mutex_set_context_fastpath(ww, ww_ctx);
647 preempt_enable();
648 return 0;
649 }
650
651 spin_lock_mutex(&lock->wait_lock, flags);
652 /*
653 * After waiting to acquire the wait_lock, try again.
654 */
655 if (__mutex_trylock(lock, false))
656 goto skip_wait;
657
658 debug_mutex_lock_common(lock, &waiter);
659 debug_mutex_add_waiter(lock, &waiter, task);
660
661 /* add waiting tasks to the end of the waitqueue (FIFO): */
662 list_add_tail(&waiter.list, &lock->wait_list);
663 waiter.task = task;
664
665 if (__mutex_waiter_is_first(lock, &waiter))
666 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
667
668 lock_contended(&lock->dep_map, ip);
669
670 set_task_state(task, state);
671 for (;;) {
672 /*
673 * Once we hold wait_lock, we're serialized against
674 * mutex_unlock() handing the lock off to us, do a trylock
675 * before testing the error conditions to make sure we pick up
676 * the handoff.
677 */
678 if (__mutex_trylock(lock, first))
679 goto acquired;
680
681 /*
682 * Check for signals and wound conditions while holding
683 * wait_lock. This ensures the lock cancellation is ordered
684 * against mutex_unlock() and wake-ups do not go missing.
685 */
686 if (unlikely(signal_pending_state(state, task))) {
687 ret = -EINTR;
688 goto err;
689 }
690
691 if (use_ww_ctx && ww_ctx->acquired > 0) {
692 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
693 if (ret)
694 goto err;
695 }
696
697 spin_unlock_mutex(&lock->wait_lock, flags);
698 schedule_preempt_disabled();
699
700 if (!first && __mutex_waiter_is_first(lock, &waiter)) {
701 first = true;
702 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
703 }
704
705 set_task_state(task, state);
706 /*
707 * Here we order against unlock; we must either see it change
708 * state back to RUNNING and fall through the next schedule(),
709 * or we must see its unlock and acquire.
710 */
711 if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) ||
712 __mutex_trylock(lock, first))
713 break;
714
715 spin_lock_mutex(&lock->wait_lock, flags);
716 }
717 spin_lock_mutex(&lock->wait_lock, flags);
718acquired:
719 __set_task_state(task, TASK_RUNNING);
720
721 mutex_remove_waiter(lock, &waiter, task);
722 if (likely(list_empty(&lock->wait_list)))
723 __mutex_clear_flag(lock, MUTEX_FLAGS);
724
725 debug_mutex_free_waiter(&waiter);
726
727skip_wait:
728 /* got the lock - cleanup and rejoice! */
729 lock_acquired(&lock->dep_map, ip);
730
731 if (use_ww_ctx)
732 ww_mutex_set_context_slowpath(ww, ww_ctx);
733
734 spin_unlock_mutex(&lock->wait_lock, flags);
735 preempt_enable();
736 return 0;
737
738err:
739 __set_task_state(task, TASK_RUNNING);
740 mutex_remove_waiter(lock, &waiter, task);
741 spin_unlock_mutex(&lock->wait_lock, flags);
742 debug_mutex_free_waiter(&waiter);
743 mutex_release(&lock->dep_map, 1, ip);
744 preempt_enable();
745 return ret;
746}
747
748#ifdef CONFIG_DEBUG_LOCK_ALLOC
749void __sched
750mutex_lock_nested(struct mutex *lock, unsigned int subclass)
751{
752 might_sleep();
753 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
754 subclass, NULL, _RET_IP_, NULL, 0);
755}
756
757EXPORT_SYMBOL_GPL(mutex_lock_nested);
758
759void __sched
760_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
761{
762 might_sleep();
763 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
764 0, nest, _RET_IP_, NULL, 0);
765}
766EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
767
768int __sched
769mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
770{
771 might_sleep();
772 return __mutex_lock_common(lock, TASK_KILLABLE,
773 subclass, NULL, _RET_IP_, NULL, 0);
774}
775EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
776
777int __sched
778mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
779{
780 might_sleep();
781 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
782 subclass, NULL, _RET_IP_, NULL, 0);
783}
784EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
785
786static inline int
787ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
788{
789#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
790 unsigned tmp;
791
792 if (ctx->deadlock_inject_countdown-- == 0) {
793 tmp = ctx->deadlock_inject_interval;
794 if (tmp > UINT_MAX/4)
795 tmp = UINT_MAX;
796 else
797 tmp = tmp*2 + tmp + tmp/2;
798
799 ctx->deadlock_inject_interval = tmp;
800 ctx->deadlock_inject_countdown = tmp;
801 ctx->contending_lock = lock;
802
803 ww_mutex_unlock(lock);
804
805 return -EDEADLK;
806 }
807#endif
808
809 return 0;
810}
811
812int __sched
813__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
814{
815 int ret;
816
817 might_sleep();
818 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
819 0, &ctx->dep_map, _RET_IP_, ctx, 1);
820 if (!ret && ctx->acquired > 1)
821 return ww_mutex_deadlock_injection(lock, ctx);
822
823 return ret;
824}
825EXPORT_SYMBOL_GPL(__ww_mutex_lock);
826
827int __sched
828__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
829{
830 int ret;
831
832 might_sleep();
833 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
834 0, &ctx->dep_map, _RET_IP_, ctx, 1);
835
836 if (!ret && ctx->acquired > 1)
837 return ww_mutex_deadlock_injection(lock, ctx);
838
839 return ret;
840}
841EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
842
843#endif
844
845/*
846 * Release the lock, slowpath:
847 */
848static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
849{
850 struct task_struct *next = NULL;
851 unsigned long owner, flags;
852 DEFINE_WAKE_Q(wake_q);
853
854 mutex_release(&lock->dep_map, 1, ip);
855
856 /*
857 * Release the lock before (potentially) taking the spinlock such that
858 * other contenders can get on with things ASAP.
859 *
860 * Except when HANDOFF, in that case we must not clear the owner field,
861 * but instead set it to the top waiter.
862 */
863 owner = atomic_long_read(&lock->owner);
864 for (;;) {
865 unsigned long old;
866
867#ifdef CONFIG_DEBUG_MUTEXES
868 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
869#endif
870
871 if (owner & MUTEX_FLAG_HANDOFF)
872 break;
873
874 old = atomic_long_cmpxchg_release(&lock->owner, owner,
875 __owner_flags(owner));
876 if (old == owner) {
877 if (owner & MUTEX_FLAG_WAITERS)
878 break;
879
880 return;
881 }
882
883 owner = old;
884 }
885
886 spin_lock_mutex(&lock->wait_lock, flags);
887 debug_mutex_unlock(lock);
888 if (!list_empty(&lock->wait_list)) {
889 /* get the first entry from the wait-list: */
890 struct mutex_waiter *waiter =
891 list_first_entry(&lock->wait_list,
892 struct mutex_waiter, list);
893
894 next = waiter->task;
895
896 debug_mutex_wake_waiter(lock, waiter);
897 wake_q_add(&wake_q, next);
898 }
899
900 if (owner & MUTEX_FLAG_HANDOFF)
901 __mutex_handoff(lock, next);
902
903 spin_unlock_mutex(&lock->wait_lock, flags);
904
905 wake_up_q(&wake_q);
906}
907
908#ifndef CONFIG_DEBUG_LOCK_ALLOC
909/*
910 * Here come the less common (and hence less performance-critical) APIs:
911 * mutex_lock_interruptible() and mutex_trylock().
912 */
913static noinline int __sched
914__mutex_lock_killable_slowpath(struct mutex *lock);
915
916static noinline int __sched
917__mutex_lock_interruptible_slowpath(struct mutex *lock);
918
919/**
920 * mutex_lock_interruptible - acquire the mutex, interruptible
921 * @lock: the mutex to be acquired
922 *
923 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
924 * been acquired or sleep until the mutex becomes available. If a
925 * signal arrives while waiting for the lock then this function
926 * returns -EINTR.
927 *
928 * This function is similar to (but not equivalent to) down_interruptible().
929 */
930int __sched mutex_lock_interruptible(struct mutex *lock)
931{
932 might_sleep();
933
934 if (__mutex_trylock_fast(lock))
935 return 0;
936
937 return __mutex_lock_interruptible_slowpath(lock);
938}
939
940EXPORT_SYMBOL(mutex_lock_interruptible);
941
942int __sched mutex_lock_killable(struct mutex *lock)
943{
944 might_sleep();
945
946 if (__mutex_trylock_fast(lock))
947 return 0;
948
949 return __mutex_lock_killable_slowpath(lock);
950}
951EXPORT_SYMBOL(mutex_lock_killable);
952
953static noinline void __sched
954__mutex_lock_slowpath(struct mutex *lock)
955{
956 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
957 NULL, _RET_IP_, NULL, 0);
958}
959
960static noinline int __sched
961__mutex_lock_killable_slowpath(struct mutex *lock)
962{
963 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
964 NULL, _RET_IP_, NULL, 0);
965}
966
967static noinline int __sched
968__mutex_lock_interruptible_slowpath(struct mutex *lock)
969{
970 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
971 NULL, _RET_IP_, NULL, 0);
972}
973
974static noinline int __sched
975__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
976{
977 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
978 NULL, _RET_IP_, ctx, 1);
979}
980
981static noinline int __sched
982__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
983 struct ww_acquire_ctx *ctx)
984{
985 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
986 NULL, _RET_IP_, ctx, 1);
987}
988
989#endif
990
991/**
992 * mutex_trylock - try to acquire the mutex, without waiting
993 * @lock: the mutex to be acquired
994 *
995 * Try to acquire the mutex atomically. Returns 1 if the mutex
996 * has been acquired successfully, and 0 on contention.
997 *
998 * NOTE: this function follows the spin_trylock() convention, so
999 * it is negated from the down_trylock() return values! Be careful
1000 * about this when converting semaphore users to mutexes.
1001 *
1002 * This function must not be used in interrupt context. The
1003 * mutex must be released by the same task that acquired it.
1004 */
1005int __sched mutex_trylock(struct mutex *lock)
1006{
1007 bool locked = __mutex_trylock(lock, false);
1008
1009 if (locked)
1010 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1011
1012 return locked;
1013}
1014EXPORT_SYMBOL(mutex_trylock);
1015
1016#ifndef CONFIG_DEBUG_LOCK_ALLOC
1017int __sched
1018__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1019{
1020 might_sleep();
1021
1022 if (__mutex_trylock_fast(&lock->base)) {
1023 ww_mutex_set_context_fastpath(lock, ctx);
1024 return 0;
1025 }
1026
1027 return __ww_mutex_lock_slowpath(lock, ctx);
1028}
1029EXPORT_SYMBOL(__ww_mutex_lock);
1030
1031int __sched
1032__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1033{
1034 might_sleep();
1035
1036 if (__mutex_trylock_fast(&lock->base)) {
1037 ww_mutex_set_context_fastpath(lock, ctx);
1038 return 0;
1039 }
1040
1041 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1042}
1043EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
1044
1045#endif
1046
1047/**
1048 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1049 * @cnt: the atomic which we are to dec
1050 * @lock: the mutex to return holding if we dec to 0
1051 *
1052 * return true and hold lock if we dec to 0, return false otherwise
1053 */
1054int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1055{
1056 /* dec if we can't possibly hit 0 */
1057 if (atomic_add_unless(cnt, -1, 1))
1058 return 0;
1059 /* we might hit 0, so take the lock */
1060 mutex_lock(lock);
1061 if (!atomic_dec_and_test(cnt)) {
1062 /* when we actually did the dec, we didn't hit 0 */
1063 mutex_unlock(lock);
1064 return 0;
1065 }
1066 /* we hit 0, and we hold the lock */
1067 return 1;
1068}
1069EXPORT_SYMBOL(atomic_dec_and_mutex_lock);