Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/compat.h>
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/errno.h>
  25#include <linux/stat.h>
  26#include <linux/fcntl.h>
  27#include <linux/string.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/mm.h>
  31#include <linux/sunrpc/clnt.h>
  32#include <linux/nfs_fs.h>
  33#include <linux/nfs_mount.h>
  34#include <linux/pagemap.h>
  35#include <linux/pagevec.h>
  36#include <linux/namei.h>
  37#include <linux/mount.h>
  38#include <linux/swap.h>
  39#include <linux/sched.h>
  40#include <linux/kmemleak.h>
  41#include <linux/xattr.h>
  42#include <linux/hash.h>
  43
  44#include "delegation.h"
  45#include "iostat.h"
  46#include "internal.h"
  47#include "fscache.h"
  48
  49#include "nfstrace.h"
  50
  51/* #define NFS_DEBUG_VERBOSE 1 */
  52
  53static int nfs_opendir(struct inode *, struct file *);
  54static int nfs_closedir(struct inode *, struct file *);
  55static int nfs_readdir(struct file *, struct dir_context *);
  56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  58static void nfs_readdir_clear_array(struct folio *);
  59static int nfs_do_create(struct inode *dir, struct dentry *dentry,
  60			 umode_t mode, int open_flags);
  61
  62const struct file_operations nfs_dir_operations = {
  63	.llseek		= nfs_llseek_dir,
  64	.read		= generic_read_dir,
  65	.iterate_shared	= nfs_readdir,
  66	.open		= nfs_opendir,
  67	.release	= nfs_closedir,
  68	.fsync		= nfs_fsync_dir,
  69};
  70
  71const struct address_space_operations nfs_dir_aops = {
  72	.free_folio = nfs_readdir_clear_array,
  73};
  74
  75#define NFS_INIT_DTSIZE PAGE_SIZE
  76
  77static struct nfs_open_dir_context *
  78alloc_nfs_open_dir_context(struct inode *dir)
  79{
  80	struct nfs_inode *nfsi = NFS_I(dir);
  81	struct nfs_open_dir_context *ctx;
  82
  83	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
  84	if (ctx != NULL) {
 
  85		ctx->attr_gencount = nfsi->attr_gencount;
  86		ctx->dtsize = NFS_INIT_DTSIZE;
 
 
  87		spin_lock(&dir->i_lock);
  88		if (list_empty(&nfsi->open_files) &&
  89		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  90			nfs_set_cache_invalid(dir,
  91					      NFS_INO_INVALID_DATA |
  92						      NFS_INO_REVAL_FORCED);
  93		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
  94		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
  95		spin_unlock(&dir->i_lock);
  96		return ctx;
  97	}
  98	return  ERR_PTR(-ENOMEM);
  99}
 100
 101static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
 102{
 103	spin_lock(&dir->i_lock);
 104	list_del_rcu(&ctx->list);
 105	spin_unlock(&dir->i_lock);
 106	kfree_rcu(ctx, rcu_head);
 
 107}
 108
 109/*
 110 * Open file
 111 */
 112static int
 113nfs_opendir(struct inode *inode, struct file *filp)
 114{
 115	int res = 0;
 116	struct nfs_open_dir_context *ctx;
 
 117
 118	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 119
 120	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 121
 122	ctx = alloc_nfs_open_dir_context(inode);
 
 
 
 123	if (IS_ERR(ctx)) {
 124		res = PTR_ERR(ctx);
 125		goto out;
 126	}
 127	filp->private_data = ctx;
 
 
 
 
 
 
 
 128out:
 
 129	return res;
 130}
 131
 132static int
 133nfs_closedir(struct inode *inode, struct file *filp)
 134{
 135	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 136	return 0;
 137}
 138
 139struct nfs_cache_array_entry {
 140	u64 cookie;
 141	u64 ino;
 142	const char *name;
 143	unsigned int name_len;
 144	unsigned char d_type;
 145};
 146
 147struct nfs_cache_array {
 148	u64 change_attr;
 
 
 149	u64 last_cookie;
 150	unsigned int size;
 151	unsigned char folio_full : 1,
 152		      folio_is_eof : 1,
 153		      cookies_are_ordered : 1;
 154	struct nfs_cache_array_entry array[] __counted_by(size);
 155};
 156
 157struct nfs_readdir_descriptor {
 
 158	struct file	*file;
 159	struct folio	*folio;
 160	struct dir_context *ctx;
 161	pgoff_t		folio_index;
 162	pgoff_t		folio_index_max;
 163	u64		dir_cookie;
 164	u64		last_cookie;
 165	loff_t		current_index;
 
 166
 167	__be32		verf[NFS_DIR_VERIFIER_SIZE];
 168	unsigned long	dir_verifier;
 169	unsigned long	timestamp;
 170	unsigned long	gencount;
 171	unsigned long	attr_gencount;
 172	unsigned int	cache_entry_index;
 173	unsigned int	buffer_fills;
 174	unsigned int	dtsize;
 175	bool clear_cache;
 176	bool plus;
 177	bool eob;
 178	bool eof;
 179};
 180
 181static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
 182{
 183	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
 184	unsigned int maxsize = server->dtsize;
 185
 186	if (sz > maxsize)
 187		sz = maxsize;
 188	if (sz < NFS_MIN_FILE_IO_SIZE)
 189		sz = NFS_MIN_FILE_IO_SIZE;
 190	desc->dtsize = sz;
 191}
 192
 193static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
 194{
 195	nfs_set_dtsize(desc, desc->dtsize >> 1);
 196}
 197
 198static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
 
 
 
 
 199{
 200	nfs_set_dtsize(desc, desc->dtsize << 1);
 
 
 
 
 
 
 201}
 202
 203static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
 204					 u64 change_attr)
 205{
 206	struct nfs_cache_array *array;
 207
 208	array = kmap_local_folio(folio, 0);
 209	array->change_attr = change_attr;
 210	array->last_cookie = last_cookie;
 211	array->size = 0;
 212	array->folio_full = 0;
 213	array->folio_is_eof = 0;
 214	array->cookies_are_ordered = 1;
 215	kunmap_local(array);
 216}
 217
 218/*
 219 * we are freeing strings created by nfs_add_to_readdir_array()
 220 */
 221static void nfs_readdir_clear_array(struct folio *folio)
 
 222{
 223	struct nfs_cache_array *array;
 224	unsigned int i;
 225
 226	array = kmap_local_folio(folio, 0);
 227	for (i = 0; i < array->size; i++)
 228		kfree(array->array[i].name);
 229	array->size = 0;
 230	kunmap_local(array);
 231}
 232
 233static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
 234					   u64 change_attr)
 235{
 236	nfs_readdir_clear_array(folio);
 237	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
 238}
 239
 240static struct folio *
 241nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 242{
 243	struct folio *folio = folio_alloc(gfp_flags, 0);
 244	if (folio)
 245		nfs_readdir_folio_init_array(folio, last_cookie, 0);
 246	return folio;
 247}
 248
 249static void nfs_readdir_folio_array_free(struct folio *folio)
 250{
 251	if (folio) {
 252		nfs_readdir_clear_array(folio);
 253		folio_put(folio);
 254	}
 255}
 256
 257static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
 258{
 259	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
 260}
 261
 262static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 263{
 264	array->folio_is_eof = 1;
 265	array->folio_full = 1;
 266}
 267
 268static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 269{
 270	return array->folio_full;
 271}
 272
 273/*
 274 * the caller is responsible for freeing qstr.name
 275 * when called by nfs_readdir_add_to_array, the strings will be freed in
 276 * nfs_clear_readdir_array()
 277 */
 278static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 
 279{
 280	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 281
 
 
 282	/*
 283	 * Avoid a kmemleak false positive. The pointer to the name is stored
 284	 * in a page cache page which kmemleak does not scan.
 285	 */
 286	if (ret != NULL)
 287		kmemleak_not_leak(ret);
 288	return ret;
 289}
 290
 291static size_t nfs_readdir_array_maxentries(void)
 292{
 293	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
 294	       sizeof(struct nfs_cache_array_entry);
 295}
 296
 297/*
 298 * Check that the next array entry lies entirely within the page bounds
 299 */
 300static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 301{
 302	if (array->folio_full)
 303		return -ENOSPC;
 304	if (array->size == nfs_readdir_array_maxentries()) {
 305		array->folio_full = 1;
 306		return -ENOSPC;
 307	}
 308	return 0;
 309}
 310
 311static int nfs_readdir_folio_array_append(struct folio *folio,
 312					  const struct nfs_entry *entry,
 313					  u64 *cookie)
 314{
 315	struct nfs_cache_array *array;
 316	struct nfs_cache_array_entry *cache_entry;
 317	const char *name;
 318	int ret = -ENOMEM;
 319
 320	name = nfs_readdir_copy_name(entry->name, entry->len);
 
 321
 322	array = kmap_local_folio(folio, 0);
 323	if (!name)
 324		goto out;
 325	ret = nfs_readdir_array_can_expand(array);
 326	if (ret) {
 327		kfree(name);
 328		goto out;
 329	}
 330
 331	array->size++;
 332	cache_entry = &array->array[array->size - 1];
 333	cache_entry->cookie = array->last_cookie;
 334	cache_entry->ino = entry->ino;
 335	cache_entry->d_type = entry->d_type;
 336	cache_entry->name_len = entry->len;
 337	cache_entry->name = name;
 
 338	array->last_cookie = entry->cookie;
 339	if (array->last_cookie <= cache_entry->cookie)
 340		array->cookies_are_ordered = 0;
 341	if (entry->eof != 0)
 342		nfs_readdir_array_set_eof(array);
 343out:
 344	*cookie = array->last_cookie;
 345	kunmap_local(array);
 346	return ret;
 347}
 348
 349#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
 350/*
 351 * Hash algorithm allowing content addressible access to sequences
 352 * of directory cookies. Content is addressed by the value of the
 353 * cookie index of the first readdir entry in a page.
 354 *
 355 * We select only the first 18 bits to avoid issues with excessive
 356 * memory use for the page cache XArray. 18 bits should allow the caching
 357 * of 262144 pages of sequences of readdir entries. Since each page holds
 358 * 127 readdir entries for a typical 64-bit system, that works out to a
 359 * cache of ~ 33 million entries per directory.
 360 */
 361static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
 362{
 363	if (cookie == 0)
 364		return 0;
 365	return hash_64(cookie, 18);
 366}
 367
 368static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
 369				       u64 change_attr)
 370{
 371	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
 372	int ret = true;
 373
 374	if (array->change_attr != change_attr)
 375		ret = false;
 376	if (nfs_readdir_array_index_cookie(array) != last_cookie)
 377		ret = false;
 378	kunmap_local(array);
 379	return ret;
 380}
 381
 382static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
 383{
 384	folio_unlock(folio);
 385	folio_put(folio);
 386}
 387
 388static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
 389						u64 change_attr)
 390{
 391	if (folio_test_uptodate(folio)) {
 392		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
 393			return;
 394		nfs_readdir_clear_array(folio);
 395	}
 396	nfs_readdir_folio_init_array(folio, cookie, change_attr);
 397	folio_mark_uptodate(folio);
 398}
 399
 400static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
 401						  u64 cookie, u64 change_attr)
 402{
 403	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
 404	struct folio *folio;
 405
 406	folio = filemap_grab_folio(mapping, index);
 407	if (IS_ERR(folio))
 408		return NULL;
 409	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
 410	return folio;
 411}
 412
 413static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
 414{
 415	struct nfs_cache_array *array;
 416	u64 ret;
 417
 418	array = kmap_local_folio(folio, 0);
 419	ret = array->last_cookie;
 420	kunmap_local(array);
 421	return ret;
 422}
 423
 424static bool nfs_readdir_folio_needs_filling(struct folio *folio)
 425{
 426	struct nfs_cache_array *array;
 427	bool ret;
 428
 429	array = kmap_local_folio(folio, 0);
 430	ret = !nfs_readdir_array_is_full(array);
 431	kunmap_local(array);
 432	return ret;
 433}
 434
 435static void nfs_readdir_folio_set_eof(struct folio *folio)
 436{
 437	struct nfs_cache_array *array;
 438
 439	array = kmap_local_folio(folio, 0);
 440	nfs_readdir_array_set_eof(array);
 441	kunmap_local(array);
 442}
 443
 444static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
 445						u64 cookie, u64 change_attr)
 446{
 447	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
 448	struct folio *folio;
 449
 450	folio = __filemap_get_folio(mapping, index,
 451			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
 452			mapping_gfp_mask(mapping));
 453	if (IS_ERR(folio))
 454		return NULL;
 455	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
 456	if (nfs_readdir_folio_last_cookie(folio) != cookie)
 457		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
 458	return folio;
 459}
 460
 461static inline
 462int is_32bit_api(void)
 463{
 464#ifdef CONFIG_COMPAT
 465	return in_compat_syscall();
 466#else
 467	return (BITS_PER_LONG == 32);
 468#endif
 469}
 470
 471static
 472bool nfs_readdir_use_cookie(const struct file *filp)
 473{
 474	if ((filp->f_mode & FMODE_32BITHASH) ||
 475	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 476		return false;
 477	return true;
 478}
 479
 480static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
 481					struct nfs_readdir_descriptor *desc)
 482{
 483	if (array->folio_full) {
 484		desc->last_cookie = array->last_cookie;
 485		desc->current_index += array->size;
 486		desc->cache_entry_index = 0;
 487		desc->folio_index++;
 488	} else
 489		desc->last_cookie = nfs_readdir_array_index_cookie(array);
 490}
 491
 492static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
 493{
 494	desc->current_index = 0;
 495	desc->last_cookie = 0;
 496	desc->folio_index = 0;
 497}
 498
 499static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 500				      struct nfs_readdir_descriptor *desc)
 501{
 502	loff_t diff = desc->ctx->pos - desc->current_index;
 503	unsigned int index;
 504
 505	if (diff < 0)
 506		goto out_eof;
 507	if (diff >= array->size) {
 508		if (array->folio_is_eof)
 509			goto out_eof;
 510		nfs_readdir_seek_next_array(array, desc);
 511		return -EAGAIN;
 512	}
 513
 514	index = (unsigned int)diff;
 515	desc->dir_cookie = array->array[index].cookie;
 516	desc->cache_entry_index = index;
 517	return 0;
 518out_eof:
 519	desc->eof = true;
 520	return -EBADCOOKIE;
 521}
 522
 523static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 524					      u64 cookie)
 525{
 526	if (!array->cookies_are_ordered)
 527		return true;
 528	/* Optimisation for monotonically increasing cookies */
 529	if (cookie >= array->last_cookie)
 530		return false;
 531	if (array->size && cookie < array->array[0].cookie)
 532		return false;
 533	return true;
 
 534}
 535
 536static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 537					 struct nfs_readdir_descriptor *desc)
 538{
 539	unsigned int i;
 
 540	int status = -EAGAIN;
 541
 542	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 543		goto check_eof;
 544
 545	for (i = 0; i < array->size; i++) {
 546		if (array->array[i].cookie == desc->dir_cookie) {
 547			if (nfs_readdir_use_cookie(desc->file))
 548				desc->ctx->pos = desc->dir_cookie;
 549			else
 550				desc->ctx->pos = desc->current_index + i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551			desc->cache_entry_index = i;
 552			return 0;
 553		}
 554	}
 555check_eof:
 556	if (array->folio_is_eof) {
 557		status = -EBADCOOKIE;
 558		if (desc->dir_cookie == array->last_cookie)
 559			desc->eof = true;
 560	} else
 561		nfs_readdir_seek_next_array(array, desc);
 562	return status;
 563}
 564
 565static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 
 566{
 567	struct nfs_cache_array *array;
 568	int status;
 569
 570	array = kmap_local_folio(desc->folio, 0);
 
 
 
 
 571
 572	if (desc->dir_cookie == 0)
 573		status = nfs_readdir_search_for_pos(array, desc);
 574	else
 575		status = nfs_readdir_search_for_cookie(array, desc);
 576
 577	kunmap_local(array);
 
 
 
 
 
 
 578	return status;
 579}
 580
 581/* Fill a page with xdr information before transferring to the cache page */
 582static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 583				  __be32 *verf, u64 cookie,
 584				  struct page **pages, size_t bufsize,
 585				  __be32 *verf_res)
 586{
 587	struct inode *inode = file_inode(desc->file);
 588	struct nfs_readdir_arg arg = {
 589		.dentry = file_dentry(desc->file),
 590		.cred = desc->file->f_cred,
 591		.verf = verf,
 592		.cookie = cookie,
 593		.pages = pages,
 594		.page_len = bufsize,
 595		.plus = desc->plus,
 596	};
 597	struct nfs_readdir_res res = {
 598		.verf = verf_res,
 599	};
 600	unsigned long	timestamp, gencount;
 601	int		error;
 602
 603 again:
 604	timestamp = jiffies;
 605	gencount = nfs_inc_attr_generation_counter();
 606	desc->dir_verifier = nfs_save_change_attribute(inode);
 607	error = NFS_PROTO(inode)->readdir(&arg, &res);
 608	if (error < 0) {
 609		/* We requested READDIRPLUS, but the server doesn't grok it */
 610		if (error == -ENOTSUPP && desc->plus) {
 611			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 612			desc->plus = arg.plus = false;
 
 613			goto again;
 614		}
 615		goto error;
 616	}
 617	desc->timestamp = timestamp;
 618	desc->gencount = gencount;
 619error:
 620	return error;
 621}
 622
 623static int xdr_decode(struct nfs_readdir_descriptor *desc,
 624		      struct nfs_entry *entry, struct xdr_stream *xdr)
 625{
 626	struct inode *inode = file_inode(desc->file);
 627	int error;
 628
 629	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 630	if (error)
 631		return error;
 632	entry->fattr->time_start = desc->timestamp;
 633	entry->fattr->gencount = desc->gencount;
 634	return 0;
 635}
 636
 637/* Match file and dirent using either filehandle or fileid
 638 * Note: caller is responsible for checking the fsid
 639 */
 640static
 641int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 642{
 643	struct inode *inode;
 644	struct nfs_inode *nfsi;
 645
 646	if (d_really_is_negative(dentry))
 647		return 0;
 648
 649	inode = d_inode(dentry);
 650	if (is_bad_inode(inode) || NFS_STALE(inode))
 651		return 0;
 652
 653	nfsi = NFS_I(inode);
 654	if (entry->fattr->fileid != nfsi->fileid)
 655		return 0;
 656	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 657		return 0;
 658	return 1;
 659}
 660
 661#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
 662
 663static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
 664				unsigned int cache_hits,
 665				unsigned int cache_misses)
 666{
 667	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 668		return false;
 669	if (ctx->pos == 0 ||
 670	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
 
 671		return true;
 672	return false;
 673}
 674
 675/*
 676 * This function is called by the getattr code to request the
 677 * use of readdirplus to accelerate any future lookups in the same
 678 * directory.
 679 */
 680void nfs_readdir_record_entry_cache_hit(struct inode *dir)
 681{
 682	struct nfs_inode *nfsi = NFS_I(dir);
 683	struct nfs_open_dir_context *ctx;
 684
 685	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 686	    S_ISDIR(dir->i_mode)) {
 687		rcu_read_lock();
 688		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 689			atomic_inc(&ctx->cache_hits);
 690		rcu_read_unlock();
 691	}
 692}
 693
 694/*
 695 * This function is mainly for use by nfs_getattr().
 696 *
 697 * If this is an 'ls -l', we want to force use of readdirplus.
 
 
 
 698 */
 699void nfs_readdir_record_entry_cache_miss(struct inode *dir)
 700{
 701	struct nfs_inode *nfsi = NFS_I(dir);
 702	struct nfs_open_dir_context *ctx;
 703
 704	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 705	    S_ISDIR(dir->i_mode)) {
 706		rcu_read_lock();
 707		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 708			atomic_inc(&ctx->cache_misses);
 709		rcu_read_unlock();
 710	}
 711}
 712
 713static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
 714						unsigned int flags)
 715{
 716	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
 717		return;
 718	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
 719		return;
 720	nfs_readdir_record_entry_cache_miss(dir);
 721}
 722
 723static
 724void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 725		unsigned long dir_verifier)
 726{
 727	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 728	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 729	struct dentry *dentry;
 730	struct dentry *alias;
 
 731	struct inode *inode;
 732	int status;
 733
 734	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 735		return;
 736	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 737		return;
 738	if (filename.len == 0)
 739		return;
 740	/* Validate that the name doesn't contain any illegal '\0' */
 741	if (strnlen(filename.name, filename.len) != filename.len)
 742		return;
 743	/* ...or '/' */
 744	if (strnchr(filename.name, filename.len, '/'))
 745		return;
 746	if (filename.name[0] == '.') {
 747		if (filename.len == 1)
 748			return;
 749		if (filename.len == 2 && filename.name[1] == '.')
 750			return;
 751	}
 752	filename.hash = full_name_hash(parent, filename.name, filename.len);
 753
 754	dentry = d_lookup(parent, &filename);
 755again:
 756	if (!dentry) {
 757		dentry = d_alloc_parallel(parent, &filename, &wq);
 758		if (IS_ERR(dentry))
 759			return;
 760	}
 761	if (!d_in_lookup(dentry)) {
 762		/* Is there a mountpoint here? If so, just exit */
 763		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 764					&entry->fattr->fsid))
 765			goto out;
 766		if (nfs_same_file(dentry, entry)) {
 767			if (!entry->fh->size)
 768				goto out;
 769			nfs_set_verifier(dentry, dir_verifier);
 770			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 771			if (!status)
 772				nfs_setsecurity(d_inode(dentry), entry->fattr);
 773			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
 774							    dentry, 0, status);
 775			goto out;
 776		} else {
 777			trace_nfs_readdir_lookup_revalidate_failed(
 778				d_inode(parent), dentry, 0);
 779			d_invalidate(dentry);
 780			dput(dentry);
 781			dentry = NULL;
 782			goto again;
 783		}
 784	}
 785	if (!entry->fh->size) {
 786		d_lookup_done(dentry);
 787		goto out;
 788	}
 789
 790	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
 791	alias = d_splice_alias(inode, dentry);
 792	d_lookup_done(dentry);
 793	if (alias) {
 794		if (IS_ERR(alias))
 795			goto out;
 796		dput(dentry);
 797		dentry = alias;
 798	}
 799	nfs_set_verifier(dentry, dir_verifier);
 800	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
 801out:
 802	dput(dentry);
 803}
 804
 805static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
 806				    struct nfs_entry *entry,
 807				    struct xdr_stream *stream)
 808{
 809	int ret;
 810
 811	if (entry->fattr->label)
 812		entry->fattr->label->len = NFS4_MAXLABELLEN;
 813	ret = xdr_decode(desc, entry, stream);
 814	if (ret || !desc->plus)
 815		return ret;
 816	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
 817	return 0;
 818}
 819
 820/* Perform conversion from xdr to cache array */
 821static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
 822				    struct nfs_entry *entry,
 823				    struct page **xdr_pages, unsigned int buflen,
 824				    struct folio **arrays, size_t narrays,
 825				    u64 change_attr)
 826{
 827	struct address_space *mapping = desc->file->f_mapping;
 828	struct folio *new, *folio = *arrays;
 829	struct xdr_stream stream;
 830	struct page *scratch;
 831	struct xdr_buf buf;
 832	u64 cookie;
 
 
 833	int status;
 834
 835	scratch = alloc_page(GFP_KERNEL);
 836	if (scratch == NULL)
 837		return -ENOMEM;
 838
 
 
 
 839	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 840	xdr_set_scratch_page(&stream, scratch);
 841
 842	do {
 843		status = nfs_readdir_entry_decode(desc, entry, &stream);
 844		if (status != 0)
 
 
 845			break;
 
 846
 847		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
 848		if (status != -ENOSPC)
 849			continue;
 850
 851		if (folio->mapping != mapping) {
 852			if (!--narrays)
 853				break;
 854			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
 855			if (!new)
 856				break;
 857			arrays++;
 858			*arrays = folio = new;
 859		} else {
 860			new = nfs_readdir_folio_get_next(mapping, cookie,
 861							 change_attr);
 862			if (!new)
 863				break;
 864			if (folio != *arrays)
 865				nfs_readdir_folio_unlock_and_put(folio);
 866			folio = new;
 867		}
 868		desc->folio_index_max++;
 869		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
 870	} while (!status && !entry->eof);
 871
 872	switch (status) {
 873	case -EBADCOOKIE:
 874		if (!entry->eof)
 875			break;
 876		nfs_readdir_folio_set_eof(folio);
 877		fallthrough;
 878	case -EAGAIN:
 879		status = 0;
 880		break;
 881	case -ENOSPC:
 882		status = 0;
 883		if (!desc->plus)
 884			break;
 885		while (!nfs_readdir_entry_decode(desc, entry, &stream))
 886			;
 887	}
 888
 889	if (folio != *arrays)
 890		nfs_readdir_folio_unlock_and_put(folio);
 
 
 
 
 
 
 
 
 891
 892	put_page(scratch);
 893	return status;
 894}
 895
 896static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 
 897{
 898	while (npages--)
 899		put_page(pages[npages]);
 900	kfree(pages);
 901}
 902
 903/*
 904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 905 * to nfs_readdir_free_pages()
 906 */
 907static struct page **nfs_readdir_alloc_pages(size_t npages)
 
 908{
 909	struct page **pages;
 910	size_t i;
 911
 912	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 913	if (!pages)
 914		return NULL;
 915	for (i = 0; i < npages; i++) {
 916		struct page *page = alloc_page(GFP_KERNEL);
 917		if (page == NULL)
 918			goto out_freepages;
 919		pages[i] = page;
 920	}
 921	return pages;
 922
 923out_freepages:
 924	nfs_readdir_free_pages(pages, i);
 925	return NULL;
 926}
 927
 928static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 929				    __be32 *verf_arg, __be32 *verf_res,
 930				    struct folio **arrays, size_t narrays)
 931{
 932	u64 change_attr;
 933	struct page **pages;
 934	struct folio *folio = *arrays;
 935	struct nfs_entry *entry;
 936	size_t array_size;
 937	struct inode *inode = file_inode(desc->file);
 938	unsigned int dtsize = desc->dtsize;
 939	unsigned int pglen;
 940	int status = -ENOMEM;
 
 941
 942	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 943	if (!entry)
 944		return -ENOMEM;
 945	entry->cookie = nfs_readdir_folio_last_cookie(folio);
 946	entry->fh = nfs_alloc_fhandle();
 947	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
 948	entry->server = NFS_SERVER(inode);
 949	if (entry->fh == NULL || entry->fattr == NULL)
 950		goto out;
 951
 952	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 953	pages = nfs_readdir_alloc_pages(array_size);
 954	if (!pages)
 955		goto out;
 
 
 
 
 
 
 
 
 
 
 956
 957	change_attr = inode_peek_iversion_raw(inode);
 958	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
 959					dtsize, verf_res);
 960	if (status < 0)
 961		goto free_pages;
 
 
 
 962
 963	pglen = status;
 964	if (pglen != 0)
 965		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
 966						  arrays, narrays, change_attr);
 967	else
 968		nfs_readdir_folio_set_eof(folio);
 969	desc->buffer_fills++;
 
 
 
 970
 971free_pages:
 972	nfs_readdir_free_pages(pages, array_size);
 
 
 
 
 973out:
 974	nfs_free_fattr(entry->fattr);
 975	nfs_free_fhandle(entry->fh);
 976	kfree(entry);
 977	return status;
 978}
 979
 980static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
 
 
 
 
 
 
 
 981{
 982	folio_put(desc->folio);
 983	desc->folio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984}
 985
 986static void
 987nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 988{
 989	folio_unlock(desc->folio);
 990	nfs_readdir_folio_put(desc);
 
 991}
 992
 993static struct folio *
 994nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
 995{
 996	struct address_space *mapping = desc->file->f_mapping;
 997	u64 change_attr = inode_peek_iversion_raw(mapping->host);
 998	u64 cookie = desc->last_cookie;
 999	struct folio *folio;
1000
1001	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1002	if (!folio)
1003		return NULL;
1004	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1005		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1006	return folio;
 
 
1007}
1008
1009/*
1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011 * and locks the page to prevent removal from the page cache.
1012 */
1013static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
 
1014{
1015	struct inode *inode = file_inode(desc->file);
1016	struct nfs_inode *nfsi = NFS_I(inode);
1017	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1018	int res;
1019
1020	desc->folio = nfs_readdir_folio_get_cached(desc);
1021	if (!desc->folio)
1022		return -ENOMEM;
1023	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1024		/* Grow the dtsize if we had to go back for more pages */
1025		if (desc->folio_index == desc->folio_index_max)
1026			nfs_grow_dtsize(desc);
1027		desc->folio_index_max = desc->folio_index;
1028		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029					     desc->last_cookie,
1030					     desc->folio->index, desc->dtsize);
1031		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032					       &desc->folio, 1);
1033		if (res < 0) {
1034			nfs_readdir_folio_unlock_and_put_cached(desc);
1035			trace_nfs_readdir_cache_fill_done(inode, res);
1036			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037				invalidate_inode_pages2(desc->file->f_mapping);
1038				nfs_readdir_rewind_search(desc);
1039				trace_nfs_readdir_invalidate_cache_range(
1040					inode, 0, MAX_LFS_FILESIZE);
1041				return -EAGAIN;
1042			}
1043			return res;
1044		}
1045		/*
1046		 * Set the cookie verifier if the page cache was empty
1047		 */
1048		if (desc->last_cookie == 0 &&
1049		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050			memcpy(nfsi->cookieverf, verf,
1051			       sizeof(nfsi->cookieverf));
1052			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053						      -1);
1054			trace_nfs_readdir_invalidate_cache_range(
1055				inode, 1, MAX_LFS_FILESIZE);
1056		}
1057		desc->clear_cache = false;
1058	}
1059	res = nfs_readdir_search_array(desc);
1060	if (res == 0)
1061		return 0;
1062	nfs_readdir_folio_unlock_and_put_cached(desc);
1063	return res;
1064}
1065
1066/* Search for desc->dir_cookie from the beginning of the page cache */
1067static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
 
1068{
1069	int res;
1070
 
 
 
 
1071	do {
1072		res = find_and_lock_cache_page(desc);
1073	} while (res == -EAGAIN);
1074	return res;
1075}
1076
1077#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1078
1079/*
1080 * Once we've found the start of the dirent within a page: fill 'er up...
1081 */
1082static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1083			   const __be32 *verf)
1084{
1085	struct file	*file = desc->file;
1086	struct nfs_cache_array *array;
1087	unsigned int i;
1088	bool first_emit = !desc->dir_cookie;
 
 
 
 
 
 
 
1089
1090	array = kmap_local_folio(desc->folio, 0);
1091	for (i = desc->cache_entry_index; i < array->size; i++) {
1092		struct nfs_cache_array_entry *ent;
1093
1094		/*
1095		 * nfs_readdir_handle_cache_misses return force clear at
1096		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1097		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1098		 * entries need be emitted here.
1099		 */
1100		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1101			desc->eob = true;
1102			break;
1103		}
1104
1105		ent = &array->array[i];
1106		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1107		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1108			desc->eob = true;
1109			break;
1110		}
1111		memcpy(desc->verf, verf, sizeof(desc->verf));
1112		if (i == array->size - 1) {
1113			desc->dir_cookie = array->last_cookie;
1114			nfs_readdir_seek_next_array(array, desc);
1115		} else {
1116			desc->dir_cookie = array->array[i + 1].cookie;
1117			desc->last_cookie = array->array[0].cookie;
1118		}
1119		if (nfs_readdir_use_cookie(file))
1120			desc->ctx->pos = desc->dir_cookie;
1121		else
1122			desc->ctx->pos++;
 
 
1123	}
1124	if (array->folio_is_eof)
1125		desc->eof = !desc->eob;
1126
1127	kunmap_local(array);
1128	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1129			(unsigned long long)desc->dir_cookie);
 
 
 
1130}
1131
1132/*
1133 * If we cannot find a cookie in our cache, we suspect that this is
1134 * because it points to a deleted file, so we ask the server to return
1135 * whatever it thinks is the next entry. We then feed this to filldir.
1136 * If all goes well, we should then be able to find our way round the
1137 * cache on the next call to readdir_search_pagecache();
1138 *
1139 * NOTE: we cannot add the anonymous page to the pagecache because
1140 *	 the data it contains might not be page aligned. Besides,
1141 *	 we should already have a complete representation of the
1142 *	 directory in the page cache by the time we get here.
1143 */
1144static int uncached_readdir(struct nfs_readdir_descriptor *desc)
 
1145{
1146	struct folio	**arrays;
1147	size_t		i, sz = 512;
1148	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1149	int		status = -ENOMEM;
1150
1151	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1152			(unsigned long long)desc->dir_cookie);
1153
1154	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1155	if (!arrays)
1156		goto out;
1157	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1158	if (!arrays[0])
1159		goto out;
 
1160
1161	desc->folio_index = 0;
1162	desc->cache_entry_index = 0;
1163	desc->last_cookie = desc->dir_cookie;
1164	desc->folio_index_max = 0;
1165
1166	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1167				   -1, desc->dtsize);
1168
1169	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1170	if (status < 0) {
1171		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1172		goto out_free;
1173	}
1174
1175	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1176		desc->folio = arrays[i];
1177		nfs_do_filldir(desc, verf);
1178	}
1179	desc->folio = NULL;
1180
1181	/*
1182	 * Grow the dtsize if we have to go back for more pages,
1183	 * or shrink it if we're reading too many.
1184	 */
1185	if (!desc->eof) {
1186		if (!desc->eob)
1187			nfs_grow_dtsize(desc);
1188		else if (desc->buffer_fills == 1 &&
1189			 i < (desc->folio_index_max >> 1))
1190			nfs_shrink_dtsize(desc);
1191	}
1192out_free:
1193	for (i = 0; i < sz && arrays[i]; i++)
1194		nfs_readdir_folio_array_free(arrays[i]);
1195out:
1196	if (!nfs_readdir_use_cookie(desc->file))
1197		nfs_readdir_rewind_search(desc);
1198	desc->folio_index_max = -1;
1199	kfree(arrays);
1200	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1201	return status;
1202}
1203
1204static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1205					    struct nfs_readdir_descriptor *desc,
1206					    unsigned int cache_misses,
1207					    bool force_clear)
1208{
1209	if (desc->ctx->pos == 0 || !desc->plus)
1210		return false;
1211	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1212		return false;
1213	trace_nfs_readdir_force_readdirplus(inode);
1214	return true;
1215}
1216
1217/* The file offset position represents the dirent entry number.  A
1218   last cookie cache takes care of the common case of reading the
1219   whole directory.
1220 */
1221static int nfs_readdir(struct file *file, struct dir_context *ctx)
1222{
1223	struct dentry	*dentry = file_dentry(file);
1224	struct inode	*inode = d_inode(dentry);
1225	struct nfs_inode *nfsi = NFS_I(inode);
 
1226	struct nfs_open_dir_context *dir_ctx = file->private_data;
1227	struct nfs_readdir_descriptor *desc;
1228	unsigned int cache_hits, cache_misses;
1229	bool force_clear;
1230	int res;
1231
1232	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1233			file, (long long)ctx->pos);
1234	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1235
1236	/*
1237	 * ctx->pos points to the dirent entry number.
1238	 * *desc->dir_cookie has the cookie for the next entry. We have
1239	 * to either find the entry with the appropriate number or
1240	 * revalidate the cookie.
1241	 */
1242	nfs_revalidate_mapping(inode, file->f_mapping);
1243
1244	res = -ENOMEM;
1245	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1246	if (!desc)
1247		goto out;
1248	desc->file = file;
1249	desc->ctx = ctx;
1250	desc->folio_index_max = -1;
1251
1252	spin_lock(&file->f_lock);
1253	desc->dir_cookie = dir_ctx->dir_cookie;
1254	desc->folio_index = dir_ctx->page_index;
1255	desc->last_cookie = dir_ctx->last_cookie;
1256	desc->attr_gencount = dir_ctx->attr_gencount;
1257	desc->eof = dir_ctx->eof;
1258	nfs_set_dtsize(desc, dir_ctx->dtsize);
1259	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1260	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1261	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1262	force_clear = dir_ctx->force_clear;
1263	spin_unlock(&file->f_lock);
1264
1265	if (desc->eof) {
1266		res = 0;
1267		goto out_free;
1268	}
1269
1270	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1271	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1272						      force_clear);
1273	desc->clear_cache = force_clear;
1274
1275	do {
1276		res = readdir_search_pagecache(desc);
1277
1278		if (res == -EBADCOOKIE) {
1279			res = 0;
1280			/* This means either end of directory */
1281			if (desc->dir_cookie && !desc->eof) {
1282				/* Or that the server has 'lost' a cookie */
1283				res = uncached_readdir(desc);
1284				if (res == 0)
1285					continue;
1286				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1287					res = 0;
1288			}
1289			break;
1290		}
1291		if (res == -ETOOSMALL && desc->plus) {
 
1292			nfs_zap_caches(inode);
1293			desc->plus = false;
1294			desc->eof = false;
 
1295			continue;
1296		}
1297		if (res < 0)
1298			break;
1299
1300		nfs_do_filldir(desc, nfsi->cookieverf);
1301		nfs_readdir_folio_unlock_and_put_cached(desc);
1302		if (desc->folio_index == desc->folio_index_max)
1303			desc->clear_cache = force_clear;
1304	} while (!desc->eob && !desc->eof);
1305
1306	spin_lock(&file->f_lock);
1307	dir_ctx->dir_cookie = desc->dir_cookie;
1308	dir_ctx->last_cookie = desc->last_cookie;
1309	dir_ctx->attr_gencount = desc->attr_gencount;
1310	dir_ctx->page_index = desc->folio_index;
1311	dir_ctx->force_clear = force_clear;
1312	dir_ctx->eof = desc->eof;
1313	dir_ctx->dtsize = desc->dtsize;
1314	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1315	spin_unlock(&file->f_lock);
1316out_free:
1317	kfree(desc);
1318
1319out:
 
 
1320	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1321	return res;
1322}
1323
1324static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1325{
1326	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1327
1328	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1329			filp, offset, whence);
1330
1331	switch (whence) {
1332	default:
1333		return -EINVAL;
1334	case SEEK_SET:
1335		if (offset < 0)
1336			return -EINVAL;
1337		spin_lock(&filp->f_lock);
1338		break;
1339	case SEEK_CUR:
1340		if (offset == 0)
1341			return filp->f_pos;
1342		spin_lock(&filp->f_lock);
1343		offset += filp->f_pos;
1344		if (offset < 0) {
1345			spin_unlock(&filp->f_lock);
1346			return -EINVAL;
1347		}
1348	}
1349	if (offset != filp->f_pos) {
1350		filp->f_pos = offset;
1351		dir_ctx->page_index = 0;
1352		if (!nfs_readdir_use_cookie(filp)) {
1353			dir_ctx->dir_cookie = 0;
1354			dir_ctx->last_cookie = 0;
1355		} else {
1356			dir_ctx->dir_cookie = offset;
1357			dir_ctx->last_cookie = offset;
1358		}
1359		dir_ctx->eof = false;
1360	}
1361	spin_unlock(&filp->f_lock);
1362	return offset;
1363}
1364
1365/*
1366 * All directory operations under NFS are synchronous, so fsync()
1367 * is a dummy operation.
1368 */
1369static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1370			 int datasync)
1371{
 
 
1372	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1373
1374	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
 
 
1375	return 0;
1376}
1377
1378/**
1379 * nfs_force_lookup_revalidate - Mark the directory as having changed
1380 * @dir: pointer to directory inode
1381 *
1382 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1383 * full lookup on all child dentries of 'dir' whenever a change occurs
1384 * on the server that might have invalidated our dcache.
1385 *
1386 * Note that we reserve bit '0' as a tag to let us know when a dentry
1387 * was revalidated while holding a delegation on its inode.
1388 *
1389 * The caller should be holding dir->i_lock
1390 */
1391void nfs_force_lookup_revalidate(struct inode *dir)
1392{
1393	NFS_I(dir)->cache_change_attribute += 2;
1394}
1395EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1396
1397/**
1398 * nfs_verify_change_attribute - Detects NFS remote directory changes
1399 * @dir: pointer to parent directory inode
1400 * @verf: previously saved change attribute
1401 *
1402 * Return "false" if the verifiers doesn't match the change attribute.
1403 * This would usually indicate that the directory contents have changed on
1404 * the server, and that any dentries need revalidating.
1405 */
1406static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1407{
1408	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1409}
1410
1411static void nfs_set_verifier_delegated(unsigned long *verf)
1412{
1413	*verf |= 1UL;
1414}
1415
1416#if IS_ENABLED(CONFIG_NFS_V4)
1417static void nfs_unset_verifier_delegated(unsigned long *verf)
1418{
1419	*verf &= ~1UL;
1420}
1421#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1422
1423static bool nfs_test_verifier_delegated(unsigned long verf)
1424{
1425	return verf & 1;
1426}
1427
1428static bool nfs_verifier_is_delegated(struct dentry *dentry)
1429{
1430	return nfs_test_verifier_delegated(dentry->d_time);
1431}
1432
1433static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1434{
1435	struct inode *inode = d_inode(dentry);
1436	struct inode *dir = d_inode_rcu(dentry->d_parent);
1437
1438	if (!dir || !nfs_verify_change_attribute(dir, verf))
1439		return;
1440	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ, 0))
1441		nfs_set_verifier_delegated(&verf);
1442	dentry->d_time = verf;
1443}
1444
1445/**
1446 * nfs_set_verifier - save a parent directory verifier in the dentry
1447 * @dentry: pointer to dentry
1448 * @verf: verifier to save
1449 *
1450 * Saves the parent directory verifier in @dentry. If the inode has
1451 * a delegation, we also tag the dentry as having been revalidated
1452 * while holding a delegation so that we know we don't have to
1453 * look it up again after a directory change.
1454 */
1455void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1456{
1457
1458	spin_lock(&dentry->d_lock);
1459	nfs_set_verifier_locked(dentry, verf);
1460	spin_unlock(&dentry->d_lock);
1461}
1462EXPORT_SYMBOL_GPL(nfs_set_verifier);
1463
1464#if IS_ENABLED(CONFIG_NFS_V4)
1465/**
1466 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1467 * @inode: pointer to inode
1468 *
1469 * Iterates through the dentries in the inode alias list and clears
1470 * the tag used to indicate that the dentry has been revalidated
1471 * while holding a delegation.
1472 * This function is intended for use when the delegation is being
1473 * returned or revoked.
1474 */
1475void nfs_clear_verifier_delegated(struct inode *inode)
1476{
1477	struct dentry *alias;
1478
1479	if (!inode)
1480		return;
1481	spin_lock(&inode->i_lock);
1482	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1483		spin_lock(&alias->d_lock);
1484		nfs_unset_verifier_delegated(&alias->d_time);
1485		spin_unlock(&alias->d_lock);
1486	}
1487	spin_unlock(&inode->i_lock);
1488}
1489EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1490#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1491
1492static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1493{
1494	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1495	    d_really_is_negative(dentry))
1496		return dentry->d_time == inode_peek_iversion_raw(dir);
1497	return nfs_verify_change_attribute(dir, dentry->d_time);
1498}
1499
1500/*
1501 * A check for whether or not the parent directory has changed.
1502 * In the case it has, we assume that the dentries are untrustworthy
1503 * and may need to be looked up again.
1504 * If rcu_walk prevents us from performing a full check, return 0.
1505 */
1506static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1507			      int rcu_walk)
1508{
1509	if (IS_ROOT(dentry))
1510		return 1;
1511	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1512		return 0;
1513	if (!nfs_dentry_verify_change(dir, dentry))
1514		return 0;
1515	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1516	if (nfs_mapping_need_revalidate_inode(dir)) {
1517		if (rcu_walk)
1518			return 0;
1519		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1520			return 0;
1521	}
1522	if (!nfs_dentry_verify_change(dir, dentry))
1523		return 0;
1524	return 1;
1525}
1526
1527/*
1528 * Use intent information to check whether or not we're going to do
1529 * an O_EXCL create using this path component.
1530 */
1531static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1532{
1533	if (NFS_PROTO(dir)->version == 2)
1534		return 0;
1535	return flags & LOOKUP_EXCL;
1536}
1537
1538/*
1539 * Inode and filehandle revalidation for lookups.
1540 *
1541 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1542 * or if the intent information indicates that we're about to open this
1543 * particular file and the "nocto" mount flag is not set.
1544 *
1545 */
1546static
1547int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1548{
1549	struct nfs_server *server = NFS_SERVER(inode);
1550	int ret;
1551
1552	if (IS_AUTOMOUNT(inode))
1553		return 0;
1554
1555	if (flags & LOOKUP_OPEN) {
1556		switch (inode->i_mode & S_IFMT) {
1557		case S_IFREG:
1558			/* A NFSv4 OPEN will revalidate later */
1559			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1560				goto out;
1561			fallthrough;
1562		case S_IFDIR:
1563			if (server->flags & NFS_MOUNT_NOCTO)
1564				break;
1565			/* NFS close-to-open cache consistency validation */
1566			goto out_force;
1567		}
1568	}
1569
1570	/* VFS wants an on-the-wire revalidation */
1571	if (flags & LOOKUP_REVAL)
1572		goto out_force;
 
 
 
 
1573out:
1574	if (inode->i_nlink > 0 ||
1575	    (inode->i_nlink == 0 &&
1576	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1577		return 0;
1578	else
1579		return -ESTALE;
1580out_force:
1581	if (flags & LOOKUP_RCU)
1582		return -ECHILD;
1583	ret = __nfs_revalidate_inode(server, inode);
1584	if (ret != 0)
1585		return ret;
1586	goto out;
1587}
1588
1589static void nfs_mark_dir_for_revalidate(struct inode *inode)
1590{
1591	spin_lock(&inode->i_lock);
1592	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1593	spin_unlock(&inode->i_lock);
1594}
1595
1596/*
1597 * We judge how long we want to trust negative
1598 * dentries by looking at the parent inode mtime.
1599 *
1600 * If parent mtime has changed, we revalidate, else we wait for a
1601 * period corresponding to the parent's attribute cache timeout value.
1602 *
1603 * If LOOKUP_RCU prevents us from performing a full check, return 1
1604 * suggesting a reval is needed.
1605 *
1606 * Note that when creating a new file, or looking up a rename target,
1607 * then it shouldn't be necessary to revalidate a negative dentry.
1608 */
1609static inline
1610int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1611		       unsigned int flags)
1612{
1613	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
 
1614		return 0;
1615	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1616		return 1;
1617	/* Case insensitive server? Revalidate negative dentries */
1618	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1619		return 1;
1620	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1621}
1622
1623static int
1624nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1625			   struct inode *inode, int error)
1626{
1627	switch (error) {
1628	case 1:
1629		break;
1630	case -ETIMEDOUT:
1631		if (inode && (IS_ROOT(dentry) ||
1632			      NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1633			error = 1;
1634		break;
1635	case -ESTALE:
1636	case -ENOENT:
1637		error = 0;
1638		fallthrough;
1639	default:
1640		/*
1641		 * We can't d_drop the root of a disconnected tree:
1642		 * its d_hash is on the s_anon list and d_drop() would hide
1643		 * it from shrink_dcache_for_unmount(), leading to busy
1644		 * inodes on unmount and further oopses.
1645		 */
1646		if (inode && IS_ROOT(dentry))
1647			error = 1;
1648		break;
1649	}
1650	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1651	return error;
1652}
1653
1654static int
1655nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1656			       unsigned int flags)
1657{
1658	int ret = 1;
1659	if (nfs_neg_need_reval(dir, dentry, flags)) {
1660		if (flags & LOOKUP_RCU)
1661			return -ECHILD;
1662		ret = 0;
1663	}
1664	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1665}
1666
1667static int
1668nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1669				struct inode *inode)
1670{
1671	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1672	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1673}
1674
1675static int nfs_lookup_revalidate_dentry(struct inode *dir,
1676					struct dentry *dentry,
1677					struct inode *inode, unsigned int flags)
1678{
1679	struct nfs_fh *fhandle;
1680	struct nfs_fattr *fattr;
1681	unsigned long dir_verifier;
1682	int ret;
1683
1684	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1685
1686	ret = -ENOMEM;
1687	fhandle = nfs_alloc_fhandle();
1688	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1689	if (fhandle == NULL || fattr == NULL)
1690		goto out;
1691
1692	dir_verifier = nfs_save_change_attribute(dir);
1693	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1694	if (ret < 0)
1695		goto out;
1696
1697	/* Request help from readdirplus */
1698	nfs_lookup_advise_force_readdirplus(dir, flags);
1699
1700	ret = 0;
1701	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1702		goto out;
1703	if (nfs_refresh_inode(inode, fattr) < 0)
1704		goto out;
1705
1706	nfs_setsecurity(inode, fattr);
1707	nfs_set_verifier(dentry, dir_verifier);
1708
1709	ret = 1;
1710out:
1711	nfs_free_fattr(fattr);
1712	nfs_free_fhandle(fhandle);
1713
1714	/*
1715	 * If the lookup failed despite the dentry change attribute being
1716	 * a match, then we should revalidate the directory cache.
1717	 */
1718	if (!ret && nfs_dentry_verify_change(dir, dentry))
1719		nfs_mark_dir_for_revalidate(dir);
1720	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1721}
1722
1723/*
1724 * This is called every time the dcache has a lookup hit,
1725 * and we should check whether we can really trust that
1726 * lookup.
1727 *
1728 * NOTE! The hit can be a negative hit too, don't assume
1729 * we have an inode!
1730 *
1731 * If the parent directory is seen to have changed, we throw out the
1732 * cached dentry and do a new lookup.
1733 */
1734static int
1735nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1736			 unsigned int flags)
1737{
 
1738	struct inode *inode;
1739	int error = 0;
 
 
 
 
1740
 
 
 
 
 
 
 
 
 
1741	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1742	inode = d_inode(dentry);
1743
1744	if (!inode)
1745		return nfs_lookup_revalidate_negative(dir, dentry, flags);
 
 
 
 
 
 
1746
1747	if (is_bad_inode(inode)) {
 
 
1748		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1749				__func__, dentry);
1750		goto out_bad;
1751	}
1752
1753	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1754	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1755		goto out_bad;
1756
1757	if (nfs_verifier_is_delegated(dentry))
1758		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1759
1760	/* Force a full look up iff the parent directory has changed */
1761	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1762	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1763		error = nfs_lookup_verify_inode(inode, flags);
1764		if (error) {
1765			if (error == -ESTALE)
1766				nfs_mark_dir_for_revalidate(dir);
1767			goto out_bad;
1768		}
 
1769		goto out_valid;
1770	}
1771
1772	if (flags & LOOKUP_RCU)
1773		return -ECHILD;
1774
1775	if (NFS_STALE(inode))
1776		goto out_bad;
1777
1778	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1779out_valid:
1780	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1781out_bad:
1782	if (flags & LOOKUP_RCU)
1783		return -ECHILD;
1784	return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1785}
1786
1787static int
1788__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1789			int (*reval)(struct inode *, struct dentry *, unsigned int))
1790{
1791	struct dentry *parent;
1792	struct inode *dir;
1793	int ret;
1794
1795	if (flags & LOOKUP_RCU) {
1796		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1797			return -ECHILD;
1798		parent = READ_ONCE(dentry->d_parent);
1799		dir = d_inode_rcu(parent);
1800		if (!dir)
1801			return -ECHILD;
1802		ret = reval(dir, dentry, flags);
1803		if (parent != READ_ONCE(dentry->d_parent))
1804			return -ECHILD;
1805	} else {
1806		/* Wait for unlink to complete - see unblock_revalidate() */
1807		wait_var_event(&dentry->d_fsdata,
1808			       smp_load_acquire(&dentry->d_fsdata)
1809			       != NFS_FSDATA_BLOCKED);
1810		parent = dget_parent(dentry);
1811		ret = reval(d_inode(parent), dentry, flags);
1812		dput(parent);
1813	}
1814	return ret;
1815}
1816
1817static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1818{
1819	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1820}
 
 
 
 
 
1821
1822static void block_revalidate(struct dentry *dentry)
1823{
1824	/* old devname - just in case */
1825	kfree(dentry->d_fsdata);
1826
1827	/* Any new reference that could lead to an open
1828	 * will take ->d_lock in lookup_open() -> d_lookup().
1829	 * Holding this lock ensures we cannot race with
1830	 * __nfs_lookup_revalidate() and removes and need
1831	 * for further barriers.
1832	 */
1833	lockdep_assert_held(&dentry->d_lock);
1834
1835	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1836}
1837
1838static void unblock_revalidate(struct dentry *dentry)
1839{
1840	/* store_release ensures wait_var_event() sees the update */
1841	smp_store_release(&dentry->d_fsdata, NULL);
1842	wake_up_var(&dentry->d_fsdata);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843}
1844
1845/*
1846 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1847 * when we don't really care about the dentry name. This is called when a
1848 * pathwalk ends on a dentry that was not found via a normal lookup in the
1849 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1850 *
1851 * In this situation, we just want to verify that the inode itself is OK
1852 * since the dentry might have changed on the server.
1853 */
1854static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1855{
1856	struct inode *inode = d_inode(dentry);
1857	int error = 0;
1858
1859	/*
1860	 * I believe we can only get a negative dentry here in the case of a
1861	 * procfs-style symlink. Just assume it's correct for now, but we may
1862	 * eventually need to do something more here.
1863	 */
1864	if (!inode) {
1865		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1866				__func__, dentry);
1867		return 1;
1868	}
1869
1870	if (is_bad_inode(inode)) {
1871		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1872				__func__, dentry);
1873		return 0;
1874	}
1875
1876	error = nfs_lookup_verify_inode(inode, flags);
 
1877	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1878			__func__, inode->i_ino, error ? "invalid" : "valid");
1879	return !error;
1880}
1881
1882/*
1883 * This is called from dput() when d_count is going to 0.
1884 */
1885static int nfs_dentry_delete(const struct dentry *dentry)
1886{
1887	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1888		dentry, dentry->d_flags);
1889
1890	/* Unhash any dentry with a stale inode */
1891	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1892		return 1;
1893
1894	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1895		/* Unhash it, so that ->d_iput() would be called */
1896		return 1;
1897	}
1898	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1899		/* Unhash it, so that ancestors of killed async unlink
1900		 * files will be cleaned up during umount */
1901		return 1;
1902	}
1903	return 0;
1904
1905}
1906
1907/* Ensure that we revalidate inode->i_nlink */
1908static void nfs_drop_nlink(struct inode *inode)
1909{
1910	spin_lock(&inode->i_lock);
1911	/* drop the inode if we're reasonably sure this is the last link */
1912	if (inode->i_nlink > 0)
1913		drop_nlink(inode);
1914	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1915	nfs_set_cache_invalid(
1916		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1917			       NFS_INO_INVALID_NLINK);
1918	spin_unlock(&inode->i_lock);
1919}
1920
1921/*
1922 * Called when the dentry loses inode.
1923 * We use it to clean up silly-renamed files.
1924 */
1925static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1926{
 
 
 
 
1927	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1928		nfs_complete_unlink(dentry, inode);
1929		nfs_drop_nlink(inode);
1930	}
1931	iput(inode);
1932}
1933
1934static void nfs_d_release(struct dentry *dentry)
1935{
1936	/* free cached devname value, if it survived that far */
1937	if (unlikely(dentry->d_fsdata)) {
1938		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1939			WARN_ON(1);
1940		else
1941			kfree(dentry->d_fsdata);
1942	}
1943}
1944
1945const struct dentry_operations nfs_dentry_operations = {
1946	.d_revalidate	= nfs_lookup_revalidate,
1947	.d_weak_revalidate	= nfs_weak_revalidate,
1948	.d_delete	= nfs_dentry_delete,
1949	.d_iput		= nfs_dentry_iput,
1950	.d_automount	= nfs_d_automount,
1951	.d_release	= nfs_d_release,
1952};
1953EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1954
1955struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1956{
1957	struct dentry *res;
1958	struct inode *inode = NULL;
1959	struct nfs_fh *fhandle = NULL;
1960	struct nfs_fattr *fattr = NULL;
1961	unsigned long dir_verifier;
1962	int error;
1963
1964	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1965	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1966
1967	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1968		return ERR_PTR(-ENAMETOOLONG);
1969
1970	/*
1971	 * If we're doing an exclusive create, optimize away the lookup
1972	 * but don't hash the dentry.
1973	 */
1974	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1975		return NULL;
1976
1977	res = ERR_PTR(-ENOMEM);
1978	fhandle = nfs_alloc_fhandle();
1979	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1980	if (fhandle == NULL || fattr == NULL)
1981		goto out;
1982
1983	dir_verifier = nfs_save_change_attribute(dir);
 
 
 
1984	trace_nfs_lookup_enter(dir, dentry, flags);
1985	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1986	if (error == -ENOENT) {
1987		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1988			dir_verifier = inode_peek_iversion_raw(dir);
1989		goto no_entry;
1990	}
1991	if (error < 0) {
1992		res = ERR_PTR(error);
1993		goto out;
1994	}
1995	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1996	res = ERR_CAST(inode);
1997	if (IS_ERR(res))
1998		goto out;
1999
2000	/* Notify readdir to use READDIRPLUS */
2001	nfs_lookup_advise_force_readdirplus(dir, flags);
2002
2003no_entry:
2004	res = d_splice_alias(inode, dentry);
2005	if (res != NULL) {
2006		if (IS_ERR(res))
2007			goto out;
2008		dentry = res;
2009	}
2010	nfs_set_verifier(dentry, dir_verifier);
 
 
 
2011out:
2012	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2013	nfs_free_fattr(fattr);
2014	nfs_free_fhandle(fhandle);
2015	return res;
2016}
2017EXPORT_SYMBOL_GPL(nfs_lookup);
2018
2019void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2020{
2021	/* Case insensitive server? Revalidate dentries */
2022	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2023		d_prune_aliases(inode);
2024}
2025EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2026
2027#if IS_ENABLED(CONFIG_NFS_V4)
2028static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2029
2030const struct dentry_operations nfs4_dentry_operations = {
2031	.d_revalidate	= nfs4_lookup_revalidate,
2032	.d_weak_revalidate	= nfs_weak_revalidate,
2033	.d_delete	= nfs_dentry_delete,
2034	.d_iput		= nfs_dentry_iput,
2035	.d_automount	= nfs_d_automount,
2036	.d_release	= nfs_d_release,
2037};
2038EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2039
 
 
 
 
 
 
 
 
 
 
2040static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2041{
2042	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2043}
2044
2045static int do_open(struct inode *inode, struct file *filp)
2046{
2047	nfs_fscache_open_file(inode, filp);
2048	return 0;
2049}
2050
2051static int nfs_finish_open(struct nfs_open_context *ctx,
2052			   struct dentry *dentry,
2053			   struct file *file, unsigned open_flags)
 
2054{
2055	int err;
2056
2057	err = finish_open(file, dentry, do_open);
2058	if (err)
2059		goto out;
2060	if (S_ISREG(file_inode(file)->i_mode))
2061		nfs_file_set_open_context(file, ctx);
2062	else
2063		err = -EOPENSTALE;
2064out:
2065	return err;
2066}
2067
2068int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2069		    struct file *file, unsigned open_flags,
2070		    umode_t mode)
2071{
2072	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2073	struct nfs_open_context *ctx;
2074	struct dentry *res;
2075	struct iattr attr = { .ia_valid = ATTR_OPEN };
2076	struct inode *inode;
2077	unsigned int lookup_flags = 0;
2078	unsigned long dir_verifier;
2079	bool switched = false;
2080	int created = 0;
2081	int err;
2082
2083	/* Expect a negative dentry */
2084	BUG_ON(d_inode(dentry));
2085
2086	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2087			dir->i_sb->s_id, dir->i_ino, dentry);
2088
2089	err = nfs_check_flags(open_flags);
2090	if (err)
2091		return err;
2092
2093	/* NFS only supports OPEN on regular files */
2094	if ((open_flags & O_DIRECTORY)) {
2095		if (!d_in_lookup(dentry)) {
2096			/*
2097			 * Hashed negative dentry with O_DIRECTORY: dentry was
2098			 * revalidated and is fine, no need to perform lookup
2099			 * again
2100			 */
2101			return -ENOENT;
2102		}
2103		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2104		goto no_open;
2105	}
2106
2107	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2108		return -ENAMETOOLONG;
2109
2110	if (open_flags & O_CREAT) {
2111		struct nfs_server *server = NFS_SERVER(dir);
2112
2113		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2114			mode &= ~current_umask();
2115
2116		attr.ia_valid |= ATTR_MODE;
2117		attr.ia_mode = mode;
2118	}
2119	if (open_flags & O_TRUNC) {
2120		attr.ia_valid |= ATTR_SIZE;
2121		attr.ia_size = 0;
2122	}
2123
2124	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2125		d_drop(dentry);
2126		switched = true;
2127		dentry = d_alloc_parallel(dentry->d_parent,
2128					  &dentry->d_name, &wq);
2129		if (IS_ERR(dentry))
2130			return PTR_ERR(dentry);
2131		if (unlikely(!d_in_lookup(dentry)))
2132			return finish_no_open(file, dentry);
2133	}
2134
2135	ctx = create_nfs_open_context(dentry, open_flags, file);
2136	err = PTR_ERR(ctx);
2137	if (IS_ERR(ctx))
2138		goto out;
2139
2140	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2141	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2142	if (created)
2143		file->f_mode |= FMODE_CREATED;
2144	if (IS_ERR(inode)) {
2145		err = PTR_ERR(inode);
2146		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2147		put_nfs_open_context(ctx);
2148		d_drop(dentry);
2149		switch (err) {
2150		case -ENOENT:
2151			d_splice_alias(NULL, dentry);
2152			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2153				dir_verifier = inode_peek_iversion_raw(dir);
2154			else
2155				dir_verifier = nfs_save_change_attribute(dir);
2156			nfs_set_verifier(dentry, dir_verifier);
2157			break;
2158		case -EISDIR:
2159		case -ENOTDIR:
2160			goto no_open;
2161		case -ELOOP:
2162			if (!(open_flags & O_NOFOLLOW))
2163				goto no_open;
2164			break;
2165			/* case -EINVAL: */
2166		default:
2167			break;
2168		}
2169		goto out;
2170	}
2171	file->f_mode |= FMODE_CAN_ODIRECT;
2172
2173	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2174	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2175	put_nfs_open_context(ctx);
2176out:
2177	if (unlikely(switched)) {
2178		d_lookup_done(dentry);
2179		dput(dentry);
2180	}
2181	return err;
2182
2183no_open:
2184	res = nfs_lookup(dir, dentry, lookup_flags);
2185	if (!res) {
2186		inode = d_inode(dentry);
2187		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2188		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2189			res = ERR_PTR(-ENOTDIR);
2190		else if (inode && S_ISREG(inode->i_mode))
2191			res = ERR_PTR(-EOPENSTALE);
2192	} else if (!IS_ERR(res)) {
2193		inode = d_inode(res);
2194		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2195		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2196			dput(res);
2197			res = ERR_PTR(-ENOTDIR);
2198		} else if (inode && S_ISREG(inode->i_mode)) {
2199			dput(res);
2200			res = ERR_PTR(-EOPENSTALE);
2201		}
2202	}
2203	if (switched) {
2204		d_lookup_done(dentry);
2205		if (!res)
2206			res = dentry;
2207		else
2208			dput(dentry);
2209	}
2210	if (IS_ERR(res))
2211		return PTR_ERR(res);
2212	return finish_no_open(file, res);
2213}
2214EXPORT_SYMBOL_GPL(nfs_atomic_open);
2215
2216static int
2217nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2218			  unsigned int flags)
2219{
2220	struct inode *inode;
2221
2222	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2223
2224	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2225		goto full_reval;
2226	if (d_mountpoint(dentry))
2227		goto full_reval;
 
 
2228
2229	inode = d_inode(dentry);
2230
2231	/* We can't create new files in nfs_open_revalidate(), so we
2232	 * optimize away revalidation of negative dentries.
2233	 */
2234	if (inode == NULL)
2235		goto full_reval;
2236
2237	if (nfs_verifier_is_delegated(dentry))
2238		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239
2240	/* NFS only supports OPEN on regular files */
2241	if (!S_ISREG(inode->i_mode))
2242		goto full_reval;
2243
2244	/* We cannot do exclusive creation on a positive dentry */
2245	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2246		goto reval_dentry;
2247
2248	/* Check if the directory changed */
2249	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2250		goto reval_dentry;
2251
2252	/* Let f_op->open() actually open (and revalidate) the file */
2253	return 1;
2254reval_dentry:
2255	if (flags & LOOKUP_RCU)
2256		return -ECHILD;
2257	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2258
2259full_reval:
2260	return nfs_do_lookup_revalidate(dir, dentry, flags);
2261}
2262
2263static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2264{
2265	return __nfs_lookup_revalidate(dentry, flags,
2266			nfs4_do_lookup_revalidate);
2267}
2268
2269#endif /* CONFIG_NFSV4 */
2270
2271int nfs_atomic_open_v23(struct inode *dir, struct dentry *dentry,
2272			struct file *file, unsigned int open_flags,
2273			umode_t mode)
2274{
2275
2276	/* Same as look+open from lookup_open(), but with different O_TRUNC
2277	 * handling.
2278	 */
2279	int error = 0;
2280
2281	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2282		return -ENAMETOOLONG;
2283
2284	if (open_flags & O_CREAT) {
2285		file->f_mode |= FMODE_CREATED;
2286		error = nfs_do_create(dir, dentry, mode, open_flags);
2287		if (error)
2288			return error;
2289		return finish_open(file, dentry, NULL);
2290	} else if (d_in_lookup(dentry)) {
2291		/* The only flags nfs_lookup considers are
2292		 * LOOKUP_EXCL and LOOKUP_RENAME_TARGET, and
2293		 * we want those to be zero so the lookup isn't skipped.
2294		 */
2295		struct dentry *res = nfs_lookup(dir, dentry, 0);
2296
2297		d_lookup_done(dentry);
2298		if (unlikely(res)) {
2299			if (IS_ERR(res))
2300				return PTR_ERR(res);
2301			return finish_no_open(file, res);
2302		}
2303	}
2304	return finish_no_open(file, NULL);
2305
2306}
2307EXPORT_SYMBOL_GPL(nfs_atomic_open_v23);
2308
2309struct dentry *
2310nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2311				struct nfs_fattr *fattr)
2312{
2313	struct dentry *parent = dget_parent(dentry);
2314	struct inode *dir = d_inode(parent);
2315	struct inode *inode;
2316	struct dentry *d;
2317	int error;
2318
2319	d_drop(dentry);
2320
 
 
 
2321	if (fhandle->size == 0) {
2322		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2323		if (error)
2324			goto out_error;
2325	}
2326	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2327	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2328		struct nfs_server *server = NFS_SB(dentry->d_sb);
2329		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2330				fattr, NULL);
2331		if (error < 0)
2332			goto out_error;
2333	}
2334	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2335	d = d_splice_alias(inode, dentry);
 
 
 
2336out:
2337	dput(parent);
2338	return d;
2339out_error:
2340	d = ERR_PTR(error);
2341	goto out;
2342}
2343EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2344
2345/*
2346 * Code common to create, mkdir, and mknod.
2347 */
2348int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2349				struct nfs_fattr *fattr)
2350{
2351	struct dentry *d;
2352
2353	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2354	if (IS_ERR(d))
2355		return PTR_ERR(d);
2356
2357	/* Callers don't care */
2358	dput(d);
2359	return 0;
 
 
 
 
2360}
2361EXPORT_SYMBOL_GPL(nfs_instantiate);
2362
2363/*
2364 * Following a failed create operation, we drop the dentry rather
2365 * than retain a negative dentry. This avoids a problem in the event
2366 * that the operation succeeded on the server, but an error in the
2367 * reply path made it appear to have failed.
2368 */
2369static int nfs_do_create(struct inode *dir, struct dentry *dentry,
2370			 umode_t mode, int open_flags)
2371{
2372	struct iattr attr;
 
2373	int error;
2374
2375	open_flags |= O_CREAT;
2376
2377	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2378			dir->i_sb->s_id, dir->i_ino, dentry);
2379
2380	attr.ia_mode = mode;
2381	attr.ia_valid = ATTR_MODE;
2382	if (open_flags & O_TRUNC) {
2383		attr.ia_size = 0;
2384		attr.ia_valid |= ATTR_SIZE;
2385	}
2386
2387	trace_nfs_create_enter(dir, dentry, open_flags);
2388	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2389	trace_nfs_create_exit(dir, dentry, open_flags, error);
2390	if (error != 0)
2391		goto out_err;
2392	return 0;
2393out_err:
2394	d_drop(dentry);
2395	return error;
2396}
2397
2398int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2399	       struct dentry *dentry, umode_t mode, bool excl)
2400{
2401	return nfs_do_create(dir, dentry, mode, excl ? O_EXCL : 0);
2402}
2403EXPORT_SYMBOL_GPL(nfs_create);
2404
2405/*
2406 * See comments for nfs_proc_create regarding failed operations.
2407 */
2408int
2409nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2410	  struct dentry *dentry, umode_t mode, dev_t rdev)
2411{
2412	struct iattr attr;
2413	int status;
2414
2415	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2416			dir->i_sb->s_id, dir->i_ino, dentry);
2417
2418	attr.ia_mode = mode;
2419	attr.ia_valid = ATTR_MODE;
2420
2421	trace_nfs_mknod_enter(dir, dentry);
2422	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2423	trace_nfs_mknod_exit(dir, dentry, status);
2424	if (status != 0)
2425		goto out_err;
2426	return 0;
2427out_err:
2428	d_drop(dentry);
2429	return status;
2430}
2431EXPORT_SYMBOL_GPL(nfs_mknod);
2432
2433/*
2434 * See comments for nfs_proc_create regarding failed operations.
2435 */
2436int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2437	      struct dentry *dentry, umode_t mode)
2438{
2439	struct iattr attr;
2440	int error;
2441
2442	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2443			dir->i_sb->s_id, dir->i_ino, dentry);
2444
2445	attr.ia_valid = ATTR_MODE;
2446	attr.ia_mode = mode | S_IFDIR;
2447
2448	trace_nfs_mkdir_enter(dir, dentry);
2449	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2450	trace_nfs_mkdir_exit(dir, dentry, error);
2451	if (error != 0)
2452		goto out_err;
2453	return 0;
2454out_err:
2455	d_drop(dentry);
2456	return error;
2457}
2458EXPORT_SYMBOL_GPL(nfs_mkdir);
2459
2460static void nfs_dentry_handle_enoent(struct dentry *dentry)
2461{
2462	if (simple_positive(dentry))
2463		d_delete(dentry);
2464}
2465
2466static void nfs_dentry_remove_handle_error(struct inode *dir,
2467					   struct dentry *dentry, int error)
2468{
2469	switch (error) {
2470	case -ENOENT:
2471		if (d_really_is_positive(dentry))
2472			d_delete(dentry);
2473		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2474		break;
2475	case 0:
2476		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2477		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2478	}
2479}
2480
2481int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2482{
2483	int error;
2484
2485	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2486			dir->i_sb->s_id, dir->i_ino, dentry);
2487
2488	trace_nfs_rmdir_enter(dir, dentry);
2489	if (d_really_is_positive(dentry)) {
2490		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2491		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2492		/* Ensure the VFS deletes this inode */
2493		switch (error) {
2494		case 0:
2495			clear_nlink(d_inode(dentry));
2496			break;
2497		case -ENOENT:
2498			nfs_dentry_handle_enoent(dentry);
2499		}
2500		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2501	} else
2502		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2503	nfs_dentry_remove_handle_error(dir, dentry, error);
2504	trace_nfs_rmdir_exit(dir, dentry, error);
2505
2506	return error;
2507}
2508EXPORT_SYMBOL_GPL(nfs_rmdir);
2509
2510/*
2511 * Remove a file after making sure there are no pending writes,
2512 * and after checking that the file has only one user. 
2513 *
2514 * We invalidate the attribute cache and free the inode prior to the operation
2515 * to avoid possible races if the server reuses the inode.
2516 */
2517static int nfs_safe_remove(struct dentry *dentry)
2518{
2519	struct inode *dir = d_inode(dentry->d_parent);
2520	struct inode *inode = d_inode(dentry);
2521	int error = -EBUSY;
2522		
2523	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2524
2525	/* If the dentry was sillyrenamed, we simply call d_delete() */
2526	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2527		error = 0;
2528		goto out;
2529	}
2530
2531	trace_nfs_remove_enter(dir, dentry);
2532	if (inode != NULL) {
2533		error = NFS_PROTO(dir)->remove(dir, dentry);
 
2534		if (error == 0)
2535			nfs_drop_nlink(inode);
2536	} else
2537		error = NFS_PROTO(dir)->remove(dir, dentry);
2538	if (error == -ENOENT)
2539		nfs_dentry_handle_enoent(dentry);
2540	trace_nfs_remove_exit(dir, dentry, error);
2541out:
2542	return error;
2543}
2544
2545/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2546 *  belongs to an active ".nfs..." file and we return -EBUSY.
2547 *
2548 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2549 */
2550int nfs_unlink(struct inode *dir, struct dentry *dentry)
2551{
2552	int error;
 
2553
2554	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2555		dir->i_ino, dentry);
2556
2557	trace_nfs_unlink_enter(dir, dentry);
2558	spin_lock(&dentry->d_lock);
2559	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2560					     &NFS_I(d_inode(dentry))->flags)) {
2561		spin_unlock(&dentry->d_lock);
2562		/* Start asynchronous writeout of the inode */
2563		write_inode_now(d_inode(dentry), 0);
2564		error = nfs_sillyrename(dir, dentry);
2565		goto out;
2566	}
2567	/* We must prevent any concurrent open until the unlink
2568	 * completes.  ->d_revalidate will wait for ->d_fsdata
2569	 * to clear.  We set it here to ensure no lookup succeeds until
2570	 * the unlink is complete on the server.
2571	 */
2572	error = -ETXTBSY;
2573	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2574	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2575		spin_unlock(&dentry->d_lock);
2576		goto out;
2577	}
2578	block_revalidate(dentry);
2579
2580	spin_unlock(&dentry->d_lock);
2581	error = nfs_safe_remove(dentry);
2582	nfs_dentry_remove_handle_error(dir, dentry, error);
2583	unblock_revalidate(dentry);
 
 
2584out:
2585	trace_nfs_unlink_exit(dir, dentry, error);
2586	return error;
2587}
2588EXPORT_SYMBOL_GPL(nfs_unlink);
2589
2590/*
2591 * To create a symbolic link, most file systems instantiate a new inode,
2592 * add a page to it containing the path, then write it out to the disk
2593 * using prepare_write/commit_write.
2594 *
2595 * Unfortunately the NFS client can't create the in-core inode first
2596 * because it needs a file handle to create an in-core inode (see
2597 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2598 * symlink request has completed on the server.
2599 *
2600 * So instead we allocate a raw page, copy the symname into it, then do
2601 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2602 * now have a new file handle and can instantiate an in-core NFS inode
2603 * and move the raw page into its mapping.
2604 */
2605int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2606		struct dentry *dentry, const char *symname)
2607{
2608	struct folio *folio;
2609	char *kaddr;
2610	struct iattr attr;
2611	unsigned int pathlen = strlen(symname);
2612	int error;
2613
2614	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2615		dir->i_ino, dentry, symname);
2616
2617	if (pathlen > PAGE_SIZE)
2618		return -ENAMETOOLONG;
2619
2620	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2621	attr.ia_valid = ATTR_MODE;
2622
2623	folio = folio_alloc(GFP_USER, 0);
2624	if (!folio)
2625		return -ENOMEM;
2626
2627	kaddr = folio_address(folio);
2628	memcpy(kaddr, symname, pathlen);
2629	if (pathlen < PAGE_SIZE)
2630		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2631
2632	trace_nfs_symlink_enter(dir, dentry);
2633	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2634	trace_nfs_symlink_exit(dir, dentry, error);
2635	if (error != 0) {
2636		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2637			dir->i_sb->s_id, dir->i_ino,
2638			dentry, symname, error);
2639		d_drop(dentry);
2640		folio_put(folio);
2641		return error;
2642	}
2643
2644	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2645
2646	/*
2647	 * No big deal if we can't add this page to the page cache here.
2648	 * READLINK will get the missing page from the server if needed.
2649	 */
2650	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2651							GFP_KERNEL) == 0) {
2652		folio_mark_uptodate(folio);
2653		folio_unlock(folio);
2654	}
 
 
 
 
 
 
2655
2656	folio_put(folio);
2657	return 0;
2658}
2659EXPORT_SYMBOL_GPL(nfs_symlink);
2660
2661int
2662nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2663{
2664	struct inode *inode = d_inode(old_dentry);
2665	int error;
2666
2667	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2668		old_dentry, dentry);
2669
2670	trace_nfs_link_enter(inode, dir, dentry);
 
 
2671	d_drop(dentry);
2672	if (S_ISREG(inode->i_mode))
2673		nfs_sync_inode(inode);
2674	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2675	if (error == 0) {
2676		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2677		ihold(inode);
2678		d_add(dentry, inode);
2679	}
2680	trace_nfs_link_exit(inode, dir, dentry, error);
2681	return error;
2682}
2683EXPORT_SYMBOL_GPL(nfs_link);
2684
2685static void
2686nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2687{
2688	struct dentry *new_dentry = data->new_dentry;
2689
2690	unblock_revalidate(new_dentry);
2691}
2692
2693/*
2694 * RENAME
2695 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2696 * different file handle for the same inode after a rename (e.g. when
2697 * moving to a different directory). A fail-safe method to do so would
2698 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2699 * rename the old file using the sillyrename stuff. This way, the original
2700 * file in old_dir will go away when the last process iput()s the inode.
2701 *
2702 * FIXED.
2703 * 
2704 * It actually works quite well. One needs to have the possibility for
2705 * at least one ".nfs..." file in each directory the file ever gets
2706 * moved or linked to which happens automagically with the new
2707 * implementation that only depends on the dcache stuff instead of
2708 * using the inode layer
2709 *
2710 * Unfortunately, things are a little more complicated than indicated
2711 * above. For a cross-directory move, we want to make sure we can get
2712 * rid of the old inode after the operation.  This means there must be
2713 * no pending writes (if it's a file), and the use count must be 1.
2714 * If these conditions are met, we can drop the dentries before doing
2715 * the rename.
2716 */
2717int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2718	       struct dentry *old_dentry, struct inode *new_dir,
2719	       struct dentry *new_dentry, unsigned int flags)
2720{
2721	struct inode *old_inode = d_inode(old_dentry);
2722	struct inode *new_inode = d_inode(new_dentry);
2723	struct dentry *dentry = NULL;
2724	struct rpc_task *task;
2725	bool must_unblock = false;
2726	int error = -EBUSY;
2727
2728	if (flags)
2729		return -EINVAL;
2730
2731	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2732		 old_dentry, new_dentry,
2733		 d_count(new_dentry));
2734
2735	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2736	/*
2737	 * For non-directories, check whether the target is busy and if so,
2738	 * make a copy of the dentry and then do a silly-rename. If the
2739	 * silly-rename succeeds, the copied dentry is hashed and becomes
2740	 * the new target.
2741	 */
2742	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2743		/* We must prevent any concurrent open until the unlink
2744		 * completes.  ->d_revalidate will wait for ->d_fsdata
2745		 * to clear.  We set it here to ensure no lookup succeeds until
2746		 * the unlink is complete on the server.
2747		 */
2748		error = -ETXTBSY;
2749		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2750		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2751			goto out;
2752
2753		spin_lock(&new_dentry->d_lock);
2754		if (d_count(new_dentry) > 2) {
2755			int err;
2756
2757			spin_unlock(&new_dentry->d_lock);
2758
2759			/* copy the target dentry's name */
2760			dentry = d_alloc(new_dentry->d_parent,
2761					 &new_dentry->d_name);
2762			if (!dentry)
2763				goto out;
2764
2765			/* silly-rename the existing target ... */
2766			err = nfs_sillyrename(new_dir, new_dentry);
2767			if (err)
2768				goto out;
2769
2770			new_dentry = dentry;
 
2771			new_inode = NULL;
2772		} else {
2773			block_revalidate(new_dentry);
2774			must_unblock = true;
2775			spin_unlock(&new_dentry->d_lock);
2776		}
2777
2778	}
2779
2780	if (S_ISREG(old_inode->i_mode))
2781		nfs_sync_inode(old_inode);
2782	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2783				must_unblock ? nfs_unblock_rename : NULL);
 
2784	if (IS_ERR(task)) {
2785		if (must_unblock)
2786			unblock_revalidate(new_dentry);
2787		error = PTR_ERR(task);
2788		goto out;
2789	}
2790
2791	error = rpc_wait_for_completion_task(task);
2792	if (error != 0) {
2793		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2794		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2795		smp_wmb();
2796	} else
2797		error = task->tk_status;
2798	rpc_put_task(task);
2799	/* Ensure the inode attributes are revalidated */
2800	if (error == 0) {
2801		spin_lock(&old_inode->i_lock);
2802		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2803		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2804							 NFS_INO_INVALID_CTIME |
2805							 NFS_INO_REVAL_FORCED);
2806		spin_unlock(&old_inode->i_lock);
2807	}
2808out:
 
 
2809	trace_nfs_rename_exit(old_dir, old_dentry,
2810			new_dir, new_dentry, error);
2811	if (!error) {
2812		if (new_inode != NULL)
2813			nfs_drop_nlink(new_inode);
2814		/*
2815		 * The d_move() should be here instead of in an async RPC completion
2816		 * handler because we need the proper locks to move the dentry.  If
2817		 * we're interrupted by a signal, the async RPC completion handler
2818		 * should mark the directories for revalidation.
2819		 */
2820		d_move(old_dentry, new_dentry);
2821		nfs_set_verifier(old_dentry,
2822					nfs_save_change_attribute(new_dir));
2823	} else if (error == -ENOENT)
2824		nfs_dentry_handle_enoent(old_dentry);
2825
2826	/* new dentry created? */
2827	if (dentry)
2828		dput(dentry);
2829	return error;
2830}
2831EXPORT_SYMBOL_GPL(nfs_rename);
2832
2833static DEFINE_SPINLOCK(nfs_access_lru_lock);
2834static LIST_HEAD(nfs_access_lru_list);
2835static atomic_long_t nfs_access_nr_entries;
2836
2837static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2838module_param(nfs_access_max_cachesize, ulong, 0644);
2839MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2840
2841static void nfs_access_free_entry(struct nfs_access_entry *entry)
2842{
2843	put_group_info(entry->group_info);
2844	kfree_rcu(entry, rcu_head);
2845	smp_mb__before_atomic();
2846	atomic_long_dec(&nfs_access_nr_entries);
2847	smp_mb__after_atomic();
2848}
2849
2850static void nfs_access_free_list(struct list_head *head)
2851{
2852	struct nfs_access_entry *cache;
2853
2854	while (!list_empty(head)) {
2855		cache = list_entry(head->next, struct nfs_access_entry, lru);
2856		list_del(&cache->lru);
2857		nfs_access_free_entry(cache);
2858	}
2859}
2860
2861static unsigned long
2862nfs_do_access_cache_scan(unsigned int nr_to_scan)
2863{
2864	LIST_HEAD(head);
2865	struct nfs_inode *nfsi, *next;
2866	struct nfs_access_entry *cache;
2867	long freed = 0;
2868
2869	spin_lock(&nfs_access_lru_lock);
2870	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2871		struct inode *inode;
2872
2873		if (nr_to_scan-- == 0)
2874			break;
2875		inode = &nfsi->vfs_inode;
2876		spin_lock(&inode->i_lock);
2877		if (list_empty(&nfsi->access_cache_entry_lru))
2878			goto remove_lru_entry;
2879		cache = list_entry(nfsi->access_cache_entry_lru.next,
2880				struct nfs_access_entry, lru);
2881		list_move(&cache->lru, &head);
2882		rb_erase(&cache->rb_node, &nfsi->access_cache);
2883		freed++;
2884		if (!list_empty(&nfsi->access_cache_entry_lru))
2885			list_move_tail(&nfsi->access_cache_inode_lru,
2886					&nfs_access_lru_list);
2887		else {
2888remove_lru_entry:
2889			list_del_init(&nfsi->access_cache_inode_lru);
2890			smp_mb__before_atomic();
2891			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2892			smp_mb__after_atomic();
2893		}
2894		spin_unlock(&inode->i_lock);
2895	}
2896	spin_unlock(&nfs_access_lru_lock);
2897	nfs_access_free_list(&head);
2898	return freed;
2899}
2900
2901unsigned long
2902nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2903{
2904	int nr_to_scan = sc->nr_to_scan;
2905	gfp_t gfp_mask = sc->gfp_mask;
2906
2907	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2908		return SHRINK_STOP;
2909	return nfs_do_access_cache_scan(nr_to_scan);
2910}
2911
2912
2913unsigned long
2914nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2915{
2916	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2917}
2918
2919static void
2920nfs_access_cache_enforce_limit(void)
2921{
2922	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2923	unsigned long diff;
2924	unsigned int nr_to_scan;
2925
2926	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2927		return;
2928	nr_to_scan = 100;
2929	diff = nr_entries - nfs_access_max_cachesize;
2930	if (diff < nr_to_scan)
2931		nr_to_scan = diff;
2932	nfs_do_access_cache_scan(nr_to_scan);
2933}
2934
2935static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2936{
2937	struct rb_root *root_node = &nfsi->access_cache;
2938	struct rb_node *n;
2939	struct nfs_access_entry *entry;
2940
2941	/* Unhook entries from the cache */
2942	while ((n = rb_first(root_node)) != NULL) {
2943		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2944		rb_erase(n, root_node);
2945		list_move(&entry->lru, head);
2946	}
2947	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2948}
2949
2950void nfs_access_zap_cache(struct inode *inode)
2951{
2952	LIST_HEAD(head);
2953
2954	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2955		return;
2956	/* Remove from global LRU init */
2957	spin_lock(&nfs_access_lru_lock);
2958	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2959		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2960
2961	spin_lock(&inode->i_lock);
2962	__nfs_access_zap_cache(NFS_I(inode), &head);
2963	spin_unlock(&inode->i_lock);
2964	spin_unlock(&nfs_access_lru_lock);
2965	nfs_access_free_list(&head);
2966}
2967EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2968
2969static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2970{
2971	struct group_info *ga, *gb;
2972	int g;
2973
2974	if (uid_lt(a->fsuid, b->fsuid))
2975		return -1;
2976	if (uid_gt(a->fsuid, b->fsuid))
2977		return 1;
2978
2979	if (gid_lt(a->fsgid, b->fsgid))
2980		return -1;
2981	if (gid_gt(a->fsgid, b->fsgid))
2982		return 1;
2983
2984	ga = a->group_info;
2985	gb = b->group_info;
2986	if (ga == gb)
2987		return 0;
2988	if (ga == NULL)
2989		return -1;
2990	if (gb == NULL)
2991		return 1;
2992	if (ga->ngroups < gb->ngroups)
2993		return -1;
2994	if (ga->ngroups > gb->ngroups)
2995		return 1;
2996
2997	for (g = 0; g < ga->ngroups; g++) {
2998		if (gid_lt(ga->gid[g], gb->gid[g]))
2999			return -1;
3000		if (gid_gt(ga->gid[g], gb->gid[g]))
3001			return 1;
3002	}
3003	return 0;
3004}
3005
3006static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
3007{
3008	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
 
3009
3010	while (n != NULL) {
3011		struct nfs_access_entry *entry =
3012			rb_entry(n, struct nfs_access_entry, rb_node);
3013		int cmp = access_cmp(cred, entry);
3014
3015		if (cmp < 0)
3016			n = n->rb_left;
3017		else if (cmp > 0)
3018			n = n->rb_right;
3019		else
3020			return entry;
3021	}
3022	return NULL;
3023}
3024
3025static u64 nfs_access_login_time(const struct task_struct *task,
3026				 const struct cred *cred)
3027{
3028	const struct task_struct *parent;
3029	const struct cred *pcred;
3030	u64 ret;
3031
3032	rcu_read_lock();
3033	for (;;) {
3034		parent = rcu_dereference(task->real_parent);
3035		pcred = __task_cred(parent);
3036		if (parent == task || cred_fscmp(pcred, cred) != 0)
3037			break;
3038		task = parent;
3039	}
3040	ret = task->start_time;
3041	rcu_read_unlock();
3042	return ret;
3043}
3044
3045static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
3046{
3047	struct nfs_inode *nfsi = NFS_I(inode);
3048	u64 login_time = nfs_access_login_time(current, cred);
3049	struct nfs_access_entry *cache;
3050	bool retry = true;
3051	int err;
3052
3053	spin_lock(&inode->i_lock);
3054	for(;;) {
3055		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3056			goto out_zap;
3057		cache = nfs_access_search_rbtree(inode, cred);
3058		err = -ENOENT;
3059		if (cache == NULL)
3060			goto out;
3061		/* Found an entry, is our attribute cache valid? */
3062		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3063			break;
3064		if (!retry)
3065			break;
3066		err = -ECHILD;
3067		if (!may_block)
3068			goto out;
 
 
3069		spin_unlock(&inode->i_lock);
3070		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3071		if (err)
3072			return err;
3073		spin_lock(&inode->i_lock);
3074		retry = false;
3075	}
3076	err = -ENOENT;
3077	if ((s64)(login_time - cache->timestamp) > 0)
3078		goto out;
3079	*mask = cache->mask;
3080	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3081	err = 0;
3082out:
3083	spin_unlock(&inode->i_lock);
3084	return err;
3085out_zap:
3086	spin_unlock(&inode->i_lock);
3087	nfs_access_zap_cache(inode);
3088	return -ENOENT;
3089}
3090
3091static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3092{
3093	/* Only check the most recently returned cache entry,
3094	 * but do it without locking.
3095	 */
3096	struct nfs_inode *nfsi = NFS_I(inode);
3097	u64 login_time = nfs_access_login_time(current, cred);
3098	struct nfs_access_entry *cache;
3099	int err = -ECHILD;
3100	struct list_head *lh;
3101
3102	rcu_read_lock();
3103	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3104		goto out;
3105	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3106	cache = list_entry(lh, struct nfs_access_entry, lru);
3107	if (lh == &nfsi->access_cache_entry_lru ||
3108	    access_cmp(cred, cache) != 0)
3109		cache = NULL;
3110	if (cache == NULL)
3111		goto out;
3112	if ((s64)(login_time - cache->timestamp) > 0)
3113		goto out;
3114	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3115		goto out;
3116	*mask = cache->mask;
 
 
3117	err = 0;
3118out:
3119	rcu_read_unlock();
3120	return err;
3121}
3122
3123int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3124			  u32 *mask, bool may_block)
3125{
3126	int status;
3127
3128	status = nfs_access_get_cached_rcu(inode, cred, mask);
3129	if (status != 0)
3130		status = nfs_access_get_cached_locked(inode, cred, mask,
3131		    may_block);
3132
3133	return status;
3134}
3135EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3136
3137static void nfs_access_add_rbtree(struct inode *inode,
3138				  struct nfs_access_entry *set,
3139				  const struct cred *cred)
3140{
3141	struct nfs_inode *nfsi = NFS_I(inode);
3142	struct rb_root *root_node = &nfsi->access_cache;
3143	struct rb_node **p = &root_node->rb_node;
3144	struct rb_node *parent = NULL;
3145	struct nfs_access_entry *entry;
3146	int cmp;
3147
3148	spin_lock(&inode->i_lock);
3149	while (*p != NULL) {
3150		parent = *p;
3151		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3152		cmp = access_cmp(cred, entry);
3153
3154		if (cmp < 0)
3155			p = &parent->rb_left;
3156		else if (cmp > 0)
3157			p = &parent->rb_right;
3158		else
3159			goto found;
3160	}
3161	rb_link_node(&set->rb_node, parent, p);
3162	rb_insert_color(&set->rb_node, root_node);
3163	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3164	spin_unlock(&inode->i_lock);
3165	return;
3166found:
3167	rb_replace_node(parent, &set->rb_node, root_node);
3168	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3169	list_del(&entry->lru);
3170	spin_unlock(&inode->i_lock);
3171	nfs_access_free_entry(entry);
3172}
3173
3174void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3175			  const struct cred *cred)
3176{
3177	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3178	if (cache == NULL)
3179		return;
3180	RB_CLEAR_NODE(&cache->rb_node);
3181	cache->fsuid = cred->fsuid;
3182	cache->fsgid = cred->fsgid;
3183	cache->group_info = get_group_info(cred->group_info);
3184	cache->mask = set->mask;
3185	cache->timestamp = ktime_get_ns();
3186
3187	/* The above field assignments must be visible
3188	 * before this item appears on the lru.  We cannot easily
3189	 * use rcu_assign_pointer, so just force the memory barrier.
3190	 */
3191	smp_wmb();
3192	nfs_access_add_rbtree(inode, cache, cred);
3193
3194	/* Update accounting */
3195	smp_mb__before_atomic();
3196	atomic_long_inc(&nfs_access_nr_entries);
3197	smp_mb__after_atomic();
3198
3199	/* Add inode to global LRU list */
3200	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3201		spin_lock(&nfs_access_lru_lock);
3202		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3203			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3204					&nfs_access_lru_list);
3205		spin_unlock(&nfs_access_lru_lock);
3206	}
3207	nfs_access_cache_enforce_limit();
3208}
3209EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3210
3211#define NFS_MAY_READ (NFS_ACCESS_READ)
3212#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3213		NFS_ACCESS_EXTEND | \
3214		NFS_ACCESS_DELETE)
3215#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3216		NFS_ACCESS_EXTEND)
3217#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3218#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3219#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3220static int
3221nfs_access_calc_mask(u32 access_result, umode_t umode)
3222{
3223	int mask = 0;
3224
3225	if (access_result & NFS_MAY_READ)
3226		mask |= MAY_READ;
3227	if (S_ISDIR(umode)) {
3228		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3229			mask |= MAY_WRITE;
3230		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3231			mask |= MAY_EXEC;
3232	} else if (S_ISREG(umode)) {
3233		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3234			mask |= MAY_WRITE;
3235		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3236			mask |= MAY_EXEC;
3237	} else if (access_result & NFS_MAY_WRITE)
3238			mask |= MAY_WRITE;
3239	return mask;
3240}
3241
3242void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3243{
3244	entry->mask = access_result;
 
 
 
 
 
 
 
3245}
3246EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3247
3248static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3249{
3250	struct nfs_access_entry cache;
3251	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3252	int cache_mask = -1;
3253	int status;
3254
3255	trace_nfs_access_enter(inode);
3256
3257	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
 
 
3258	if (status == 0)
3259		goto out_cached;
3260
3261	status = -ECHILD;
3262	if (!may_block)
3263		goto out;
3264
3265	/*
3266	 * Determine which access bits we want to ask for...
3267	 */
3268	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3269		     nfs_access_xattr_mask(NFS_SERVER(inode));
3270	if (S_ISDIR(inode->i_mode))
3271		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3272	else
3273		cache.mask |= NFS_ACCESS_EXECUTE;
3274	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3275	if (status != 0) {
3276		if (status == -ESTALE) {
 
3277			if (!S_ISDIR(inode->i_mode))
3278				nfs_set_inode_stale(inode);
3279			else
3280				nfs_zap_caches(inode);
3281		}
3282		goto out;
3283	}
3284	nfs_access_add_cache(inode, &cache, cred);
3285out_cached:
3286	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3287	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3288		status = -EACCES;
3289out:
3290	trace_nfs_access_exit(inode, mask, cache_mask, status);
3291	return status;
3292}
3293
3294static int nfs_open_permission_mask(int openflags)
3295{
3296	int mask = 0;
3297
3298	if (openflags & __FMODE_EXEC) {
3299		/* ONLY check exec rights */
3300		mask = MAY_EXEC;
3301	} else {
3302		if ((openflags & O_ACCMODE) != O_WRONLY)
3303			mask |= MAY_READ;
3304		if ((openflags & O_ACCMODE) != O_RDONLY)
3305			mask |= MAY_WRITE;
3306	}
3307
3308	return mask;
3309}
3310
3311int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3312{
3313	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3314}
3315EXPORT_SYMBOL_GPL(nfs_may_open);
3316
3317static int nfs_execute_ok(struct inode *inode, int mask)
3318{
3319	struct nfs_server *server = NFS_SERVER(inode);
3320	int ret = 0;
3321
3322	if (S_ISDIR(inode->i_mode))
3323		return 0;
3324	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3325		if (mask & MAY_NOT_BLOCK)
3326			return -ECHILD;
3327		ret = __nfs_revalidate_inode(server, inode);
3328	}
3329	if (ret == 0 && !execute_ok(inode))
3330		ret = -EACCES;
3331	return ret;
3332}
3333
3334int nfs_permission(struct mnt_idmap *idmap,
3335		   struct inode *inode,
3336		   int mask)
3337{
3338	const struct cred *cred = current_cred();
3339	int res = 0;
3340
3341	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3342
3343	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3344		goto out;
3345	/* Is this sys_access() ? */
3346	if (mask & (MAY_ACCESS | MAY_CHDIR))
3347		goto force_lookup;
3348
3349	switch (inode->i_mode & S_IFMT) {
3350		case S_IFLNK:
3351			goto out;
3352		case S_IFREG:
3353			if ((mask & MAY_OPEN) &&
3354			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3355				return 0;
3356			break;
3357		case S_IFDIR:
3358			/*
3359			 * Optimize away all write operations, since the server
3360			 * will check permissions when we perform the op.
3361			 */
3362			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3363				goto out;
3364	}
3365
3366force_lookup:
3367	if (!NFS_PROTO(inode)->access)
3368		goto out_notsup;
3369
3370	res = nfs_do_access(inode, cred, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3371out:
3372	if (!res && (mask & MAY_EXEC))
3373		res = nfs_execute_ok(inode, mask);
3374
3375	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3376		inode->i_sb->s_id, inode->i_ino, mask, res);
3377	return res;
3378out_notsup:
3379	if (mask & MAY_NOT_BLOCK)
3380		return -ECHILD;
3381
3382	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3383						  NFS_INO_INVALID_OTHER);
3384	if (res == 0)
3385		res = generic_permission(&nop_mnt_idmap, inode, mask);
3386	goto out;
3387}
3388EXPORT_SYMBOL_GPL(nfs_permission);
v4.10.11
 
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996	Added silly rename for unlink	--okir
   9 * 28 Sep 1996	Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  18 */
  19
 
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
 
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46#include "nfstrace.h"
  47
  48/* #define NFS_DEBUG_VERBOSE 1 */
  49
  50static int nfs_opendir(struct inode *, struct file *);
  51static int nfs_closedir(struct inode *, struct file *);
  52static int nfs_readdir(struct file *, struct dir_context *);
  53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  55static void nfs_readdir_clear_array(struct page*);
 
 
  56
  57const struct file_operations nfs_dir_operations = {
  58	.llseek		= nfs_llseek_dir,
  59	.read		= generic_read_dir,
  60	.iterate_shared	= nfs_readdir,
  61	.open		= nfs_opendir,
  62	.release	= nfs_closedir,
  63	.fsync		= nfs_fsync_dir,
  64};
  65
  66const struct address_space_operations nfs_dir_aops = {
  67	.freepage = nfs_readdir_clear_array,
  68};
  69
  70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
 
 
 
  71{
  72	struct nfs_inode *nfsi = NFS_I(dir);
  73	struct nfs_open_dir_context *ctx;
  74	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 
  75	if (ctx != NULL) {
  76		ctx->duped = 0;
  77		ctx->attr_gencount = nfsi->attr_gencount;
  78		ctx->dir_cookie = 0;
  79		ctx->dup_cookie = 0;
  80		ctx->cred = get_rpccred(cred);
  81		spin_lock(&dir->i_lock);
  82		list_add(&ctx->list, &nfsi->open_files);
 
 
 
 
 
 
  83		spin_unlock(&dir->i_lock);
  84		return ctx;
  85	}
  86	return  ERR_PTR(-ENOMEM);
  87}
  88
  89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  90{
  91	spin_lock(&dir->i_lock);
  92	list_del(&ctx->list);
  93	spin_unlock(&dir->i_lock);
  94	put_rpccred(ctx->cred);
  95	kfree(ctx);
  96}
  97
  98/*
  99 * Open file
 100 */
 101static int
 102nfs_opendir(struct inode *inode, struct file *filp)
 103{
 104	int res = 0;
 105	struct nfs_open_dir_context *ctx;
 106	struct rpc_cred *cred;
 107
 108	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 109
 110	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 111
 112	cred = rpc_lookup_cred();
 113	if (IS_ERR(cred))
 114		return PTR_ERR(cred);
 115	ctx = alloc_nfs_open_dir_context(inode, cred);
 116	if (IS_ERR(ctx)) {
 117		res = PTR_ERR(ctx);
 118		goto out;
 119	}
 120	filp->private_data = ctx;
 121	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 122		/* This is a mountpoint, so d_revalidate will never
 123		 * have been called, so we need to refresh the
 124		 * inode (for close-open consistency) ourselves.
 125		 */
 126		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
 127	}
 128out:
 129	put_rpccred(cred);
 130	return res;
 131}
 132
 133static int
 134nfs_closedir(struct inode *inode, struct file *filp)
 135{
 136	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 137	return 0;
 138}
 139
 140struct nfs_cache_array_entry {
 141	u64 cookie;
 142	u64 ino;
 143	struct qstr string;
 
 144	unsigned char d_type;
 145};
 146
 147struct nfs_cache_array {
 148	atomic_t refcount;
 149	int size;
 150	int eof_index;
 151	u64 last_cookie;
 152	struct nfs_cache_array_entry array[0];
 
 
 
 
 153};
 154
 155typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 156typedef struct {
 157	struct file	*file;
 158	struct page	*page;
 159	struct dir_context *ctx;
 160	unsigned long	page_index;
 161	u64		*dir_cookie;
 
 162	u64		last_cookie;
 163	loff_t		current_index;
 164	decode_dirent_t	decode;
 165
 
 
 166	unsigned long	timestamp;
 167	unsigned long	gencount;
 
 168	unsigned int	cache_entry_index;
 169	unsigned int	plus:1;
 170	unsigned int	eof:1;
 171} nfs_readdir_descriptor_t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173/*
 174 * The caller is responsible for calling nfs_readdir_release_array(page)
 175 */
 176static
 177struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 178{
 179	void *ptr;
 180	if (page == NULL)
 181		return ERR_PTR(-EIO);
 182	ptr = kmap(page);
 183	if (ptr == NULL)
 184		return ERR_PTR(-ENOMEM);
 185	return ptr;
 186}
 187
 188static
 189void nfs_readdir_release_array(struct page *page)
 190{
 191	kunmap(page);
 
 
 
 
 
 
 
 
 
 192}
 193
 194/*
 195 * we are freeing strings created by nfs_add_to_readdir_array()
 196 */
 197static
 198void nfs_readdir_clear_array(struct page *page)
 199{
 200	struct nfs_cache_array *array;
 201	int i;
 
 
 
 
 
 
 
 202
 203	array = kmap_atomic(page);
 204	if (atomic_dec_and_test(&array->refcount))
 205		for (i = 0; i < array->size; i++)
 206			kfree(array->array[i].string.name);
 207	kunmap_atomic(array);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208}
 209
 210static bool grab_page(struct page *page)
 211{
 212	struct nfs_cache_array *array = kmap_atomic(page);
 213	bool res = atomic_inc_not_zero(&array->refcount);
 214	kunmap_atomic(array);
 215	return res;
 
 
 
 216}
 217
 218/*
 219 * the caller is responsible for freeing qstr.name
 220 * when called by nfs_readdir_add_to_array, the strings will be freed in
 221 * nfs_clear_readdir_array()
 222 */
 223static
 224int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 225{
 226	string->len = len;
 227	string->name = kmemdup(name, len, GFP_KERNEL);
 228	if (string->name == NULL)
 229		return -ENOMEM;
 230	/*
 231	 * Avoid a kmemleak false positive. The pointer to the name is stored
 232	 * in a page cache page which kmemleak does not scan.
 233	 */
 234	kmemleak_not_leak(string->name);
 235	string->hash = full_name_hash(NULL, name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236	return 0;
 237}
 238
 239static
 240int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 
 241{
 242	struct nfs_cache_array *array = nfs_readdir_get_array(page);
 243	struct nfs_cache_array_entry *cache_entry;
 244	int ret;
 
 245
 246	if (IS_ERR(array))
 247		return PTR_ERR(array);
 248
 249	cache_entry = &array->array[array->size];
 250
 251	/* Check that this entry lies within the page bounds */
 252	ret = -ENOSPC;
 253	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 
 254		goto out;
 
 255
 256	cache_entry->cookie = entry->prev_cookie;
 
 
 257	cache_entry->ino = entry->ino;
 258	cache_entry->d_type = entry->d_type;
 259	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 260	if (ret)
 261		goto out;
 262	array->last_cookie = entry->cookie;
 263	array->size++;
 
 264	if (entry->eof != 0)
 265		array->eof_index = array->size;
 266out:
 267	nfs_readdir_release_array(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268	return ret;
 269}
 270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271static
 272int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273{
 274	loff_t diff = desc->ctx->pos - desc->current_index;
 275	unsigned int index;
 276
 277	if (diff < 0)
 278		goto out_eof;
 279	if (diff >= array->size) {
 280		if (array->eof_index >= 0)
 281			goto out_eof;
 
 282		return -EAGAIN;
 283	}
 284
 285	index = (unsigned int)diff;
 286	*desc->dir_cookie = array->array[index].cookie;
 287	desc->cache_entry_index = index;
 288	return 0;
 289out_eof:
 290	desc->eof = 1;
 291	return -EBADCOOKIE;
 292}
 293
 294static bool
 295nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 296{
 297	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 
 
 
 
 
 298		return false;
 299	smp_rmb();
 300	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 301}
 302
 303static
 304int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 305{
 306	int i;
 307	loff_t new_pos;
 308	int status = -EAGAIN;
 309
 
 
 
 310	for (i = 0; i < array->size; i++) {
 311		if (array->array[i].cookie == *desc->dir_cookie) {
 312			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 313			struct nfs_open_dir_context *ctx = desc->file->private_data;
 314
 315			new_pos = desc->current_index + i;
 316			if (ctx->attr_gencount != nfsi->attr_gencount ||
 317			    !nfs_readdir_inode_mapping_valid(nfsi)) {
 318				ctx->duped = 0;
 319				ctx->attr_gencount = nfsi->attr_gencount;
 320			} else if (new_pos < desc->ctx->pos) {
 321				if (ctx->duped > 0
 322				    && ctx->dup_cookie == *desc->dir_cookie) {
 323					if (printk_ratelimit()) {
 324						pr_notice("NFS: directory %pD2 contains a readdir loop."
 325								"Please contact your server vendor.  "
 326								"The file: %.*s has duplicate cookie %llu\n",
 327								desc->file, array->array[i].string.len,
 328								array->array[i].string.name, *desc->dir_cookie);
 329					}
 330					status = -ELOOP;
 331					goto out;
 332				}
 333				ctx->dup_cookie = *desc->dir_cookie;
 334				ctx->duped = -1;
 335			}
 336			desc->ctx->pos = new_pos;
 337			desc->cache_entry_index = i;
 338			return 0;
 339		}
 340	}
 341	if (array->eof_index >= 0) {
 
 342		status = -EBADCOOKIE;
 343		if (*desc->dir_cookie == array->last_cookie)
 344			desc->eof = 1;
 345	}
 346out:
 347	return status;
 348}
 349
 350static
 351int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 352{
 353	struct nfs_cache_array *array;
 354	int status;
 355
 356	array = nfs_readdir_get_array(desc->page);
 357	if (IS_ERR(array)) {
 358		status = PTR_ERR(array);
 359		goto out;
 360	}
 361
 362	if (*desc->dir_cookie == 0)
 363		status = nfs_readdir_search_for_pos(array, desc);
 364	else
 365		status = nfs_readdir_search_for_cookie(array, desc);
 366
 367	if (status == -EAGAIN) {
 368		desc->last_cookie = array->last_cookie;
 369		desc->current_index += array->size;
 370		desc->page_index++;
 371	}
 372	nfs_readdir_release_array(desc->page);
 373out:
 374	return status;
 375}
 376
 377/* Fill a page with xdr information before transferring to the cache page */
 378static
 379int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 380			struct nfs_entry *entry, struct file *file, struct inode *inode)
 
 381{
 382	struct nfs_open_dir_context *ctx = file->private_data;
 383	struct rpc_cred	*cred = ctx->cred;
 
 
 
 
 
 
 
 
 
 
 
 384	unsigned long	timestamp, gencount;
 385	int		error;
 386
 387 again:
 388	timestamp = jiffies;
 389	gencount = nfs_inc_attr_generation_counter();
 390	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
 391					  NFS_SERVER(inode)->dtsize, desc->plus);
 392	if (error < 0) {
 393		/* We requested READDIRPLUS, but the server doesn't grok it */
 394		if (error == -ENOTSUPP && desc->plus) {
 395			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 396			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 397			desc->plus = 0;
 398			goto again;
 399		}
 400		goto error;
 401	}
 402	desc->timestamp = timestamp;
 403	desc->gencount = gencount;
 404error:
 405	return error;
 406}
 407
 408static int xdr_decode(nfs_readdir_descriptor_t *desc,
 409		      struct nfs_entry *entry, struct xdr_stream *xdr)
 410{
 
 411	int error;
 412
 413	error = desc->decode(xdr, entry, desc->plus);
 414	if (error)
 415		return error;
 416	entry->fattr->time_start = desc->timestamp;
 417	entry->fattr->gencount = desc->gencount;
 418	return 0;
 419}
 420
 421/* Match file and dirent using either filehandle or fileid
 422 * Note: caller is responsible for checking the fsid
 423 */
 424static
 425int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 426{
 427	struct inode *inode;
 428	struct nfs_inode *nfsi;
 429
 430	if (d_really_is_negative(dentry))
 431		return 0;
 432
 433	inode = d_inode(dentry);
 434	if (is_bad_inode(inode) || NFS_STALE(inode))
 435		return 0;
 436
 437	nfsi = NFS_I(inode);
 438	if (entry->fattr->fileid != nfsi->fileid)
 439		return 0;
 440	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 441		return 0;
 442	return 1;
 443}
 444
 445static
 446bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 
 
 
 447{
 448	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 449		return false;
 450	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 451		return true;
 452	if (ctx->pos == 0)
 453		return true;
 454	return false;
 455}
 456
 457/*
 458 * This function is called by the lookup and getattr code to request the
 459 * use of readdirplus to accelerate any future lookups in the same
 460 * directory.
 461 */
 462void nfs_advise_use_readdirplus(struct inode *dir)
 463{
 464	struct nfs_inode *nfsi = NFS_I(dir);
 
 465
 466	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 467	    !list_empty(&nfsi->open_files))
 468		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 
 
 
 
 469}
 470
 471/*
 472 * This function is mainly for use by nfs_getattr().
 473 *
 474 * If this is an 'ls -l', we want to force use of readdirplus.
 475 * Do this by checking if there is an active file descriptor
 476 * and calling nfs_advise_use_readdirplus, then forcing a
 477 * cache flush.
 478 */
 479void nfs_force_use_readdirplus(struct inode *dir)
 480{
 481	struct nfs_inode *nfsi = NFS_I(dir);
 
 482
 483	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 484	    !list_empty(&nfsi->open_files)) {
 485		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 486		invalidate_mapping_pages(dir->i_mapping, 0, -1);
 
 
 487	}
 488}
 489
 
 
 
 
 
 
 
 
 
 
 490static
 491void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 
 492{
 493	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 494	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 495	struct dentry *dentry;
 496	struct dentry *alias;
 497	struct inode *dir = d_inode(parent);
 498	struct inode *inode;
 499	int status;
 500
 501	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 502		return;
 503	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 504		return;
 505	if (filename.len == 0)
 506		return;
 507	/* Validate that the name doesn't contain any illegal '\0' */
 508	if (strnlen(filename.name, filename.len) != filename.len)
 509		return;
 510	/* ...or '/' */
 511	if (strnchr(filename.name, filename.len, '/'))
 512		return;
 513	if (filename.name[0] == '.') {
 514		if (filename.len == 1)
 515			return;
 516		if (filename.len == 2 && filename.name[1] == '.')
 517			return;
 518	}
 519	filename.hash = full_name_hash(parent, filename.name, filename.len);
 520
 521	dentry = d_lookup(parent, &filename);
 522again:
 523	if (!dentry) {
 524		dentry = d_alloc_parallel(parent, &filename, &wq);
 525		if (IS_ERR(dentry))
 526			return;
 527	}
 528	if (!d_in_lookup(dentry)) {
 529		/* Is there a mountpoint here? If so, just exit */
 530		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 531					&entry->fattr->fsid))
 532			goto out;
 533		if (nfs_same_file(dentry, entry)) {
 534			if (!entry->fh->size)
 535				goto out;
 536			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 537			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 538			if (!status)
 539				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 
 
 540			goto out;
 541		} else {
 
 
 542			d_invalidate(dentry);
 543			dput(dentry);
 544			dentry = NULL;
 545			goto again;
 546		}
 547	}
 548	if (!entry->fh->size) {
 549		d_lookup_done(dentry);
 550		goto out;
 551	}
 552
 553	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 554	alias = d_splice_alias(inode, dentry);
 555	d_lookup_done(dentry);
 556	if (alias) {
 557		if (IS_ERR(alias))
 558			goto out;
 559		dput(dentry);
 560		dentry = alias;
 561	}
 562	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 
 563out:
 564	dput(dentry);
 565}
 566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567/* Perform conversion from xdr to cache array */
 568static
 569int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 570				struct page **xdr_pages, struct page *page, unsigned int buflen)
 
 
 571{
 
 
 572	struct xdr_stream stream;
 
 573	struct xdr_buf buf;
 574	struct page *scratch;
 575	struct nfs_cache_array *array;
 576	unsigned int count = 0;
 577	int status;
 578
 579	scratch = alloc_page(GFP_KERNEL);
 580	if (scratch == NULL)
 581		return -ENOMEM;
 582
 583	if (buflen == 0)
 584		goto out_nopages;
 585
 586	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 587	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 588
 589	do {
 590		status = xdr_decode(desc, entry, &stream);
 591		if (status != 0) {
 592			if (status == -EAGAIN)
 593				status = 0;
 594			break;
 595		}
 596
 597		count++;
 
 
 598
 599		if (desc->plus != 0)
 600			nfs_prime_dcache(file_dentry(desc->file), entry);
 601
 602		status = nfs_readdir_add_to_array(entry, page);
 603		if (status != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604			break;
 605	} while (!entry->eof);
 
 
 606
 607out_nopages:
 608	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 609		array = nfs_readdir_get_array(page);
 610		if (!IS_ERR(array)) {
 611			array->eof_index = array->size;
 612			status = 0;
 613			nfs_readdir_release_array(page);
 614		} else
 615			status = PTR_ERR(array);
 616	}
 617
 618	put_page(scratch);
 619	return status;
 620}
 621
 622static
 623void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 624{
 625	unsigned int i;
 626	for (i = 0; i < npages; i++)
 627		put_page(pages[i]);
 628}
 629
 630/*
 631 * nfs_readdir_large_page will allocate pages that must be freed with a call
 632 * to nfs_readdir_free_pagearray
 633 */
 634static
 635int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 636{
 637	unsigned int i;
 
 638
 
 
 
 639	for (i = 0; i < npages; i++) {
 640		struct page *page = alloc_page(GFP_KERNEL);
 641		if (page == NULL)
 642			goto out_freepages;
 643		pages[i] = page;
 644	}
 645	return 0;
 646
 647out_freepages:
 648	nfs_readdir_free_pages(pages, i);
 649	return -ENOMEM;
 650}
 651
 652static
 653int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 654{
 655	struct page *pages[NFS_MAX_READDIR_PAGES];
 656	struct nfs_entry entry;
 657	struct file	*file = desc->file;
 658	struct nfs_cache_array *array;
 
 
 
 
 
 659	int status = -ENOMEM;
 660	unsigned int array_size = ARRAY_SIZE(pages);
 661
 662	entry.prev_cookie = 0;
 663	entry.cookie = desc->last_cookie;
 664	entry.eof = 0;
 665	entry.fh = nfs_alloc_fhandle();
 666	entry.fattr = nfs_alloc_fattr();
 667	entry.server = NFS_SERVER(inode);
 668	if (entry.fh == NULL || entry.fattr == NULL)
 
 669		goto out;
 670
 671	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 672	if (IS_ERR(entry.label)) {
 673		status = PTR_ERR(entry.label);
 674		goto out;
 675	}
 676
 677	array = nfs_readdir_get_array(page);
 678	if (IS_ERR(array)) {
 679		status = PTR_ERR(array);
 680		goto out_label_free;
 681	}
 682	memset(array, 0, sizeof(struct nfs_cache_array));
 683	atomic_set(&array->refcount, 1);
 684	array->eof_index = -1;
 685
 686	status = nfs_readdir_alloc_pages(pages, array_size);
 
 
 687	if (status < 0)
 688		goto out_release_array;
 689	do {
 690		unsigned int pglen;
 691		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 692
 693		if (status < 0)
 694			break;
 695		pglen = status;
 696		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 697		if (status < 0) {
 698			if (status == -ENOSPC)
 699				status = 0;
 700			break;
 701		}
 702	} while (array->eof_index < 0);
 703
 
 704	nfs_readdir_free_pages(pages, array_size);
 705out_release_array:
 706	nfs_readdir_release_array(page);
 707out_label_free:
 708	nfs4_label_free(entry.label);
 709out:
 710	nfs_free_fattr(entry.fattr);
 711	nfs_free_fhandle(entry.fh);
 
 712	return status;
 713}
 714
 715/*
 716 * Now we cache directories properly, by converting xdr information
 717 * to an array that can be used for lookups later.  This results in
 718 * fewer cache pages, since we can store more information on each page.
 719 * We only need to convert from xdr once so future lookups are much simpler
 720 */
 721static
 722int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 723{
 724	struct inode	*inode = file_inode(desc->file);
 725	int ret;
 726
 727	ret = nfs_readdir_xdr_to_array(desc, page, inode);
 728	if (ret < 0)
 729		goto error;
 730	SetPageUptodate(page);
 731
 732	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 733		/* Should never happen */
 734		nfs_zap_mapping(inode, inode->i_mapping);
 735	}
 736	unlock_page(page);
 737	return 0;
 738 error:
 739	unlock_page(page);
 740	return ret;
 741}
 742
 743static
 744void cache_page_release(nfs_readdir_descriptor_t *desc)
 745{
 746	nfs_readdir_clear_array(desc->page);
 747	put_page(desc->page);
 748	desc->page = NULL;
 749}
 750
 751static
 752struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 753{
 754	struct page *page;
 
 
 
 755
 756	for (;;) {
 757		page = read_cache_page(desc->file->f_mapping,
 758			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 759		if (IS_ERR(page) || grab_page(page))
 760			break;
 761		put_page(page);
 762	}
 763	return page;
 764}
 765
 766/*
 767 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 
 768 */
 769static
 770int find_cache_page(nfs_readdir_descriptor_t *desc)
 771{
 
 
 
 772	int res;
 773
 774	desc->page = get_cache_page(desc);
 775	if (IS_ERR(desc->page))
 776		return PTR_ERR(desc->page);
 777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778	res = nfs_readdir_search_array(desc);
 779	if (res != 0)
 780		cache_page_release(desc);
 
 781	return res;
 782}
 783
 784/* Search for desc->dir_cookie from the beginning of the page cache */
 785static inline
 786int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 787{
 788	int res;
 789
 790	if (desc->page_index == 0) {
 791		desc->current_index = 0;
 792		desc->last_cookie = 0;
 793	}
 794	do {
 795		res = find_cache_page(desc);
 796	} while (res == -EAGAIN);
 797	return res;
 798}
 799
 
 
 800/*
 801 * Once we've found the start of the dirent within a page: fill 'er up...
 802 */
 803static 
 804int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 805{
 806	struct file	*file = desc->file;
 807	int i = 0;
 808	int res = 0;
 809	struct nfs_cache_array *array = NULL;
 810	struct nfs_open_dir_context *ctx = file->private_data;
 811
 812	array = nfs_readdir_get_array(desc->page);
 813	if (IS_ERR(array)) {
 814		res = PTR_ERR(array);
 815		goto out;
 816	}
 817
 
 818	for (i = desc->cache_entry_index; i < array->size; i++) {
 819		struct nfs_cache_array_entry *ent;
 820
 
 
 
 
 
 
 
 
 
 
 
 821		ent = &array->array[i];
 822		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 823		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 824			desc->eof = 1;
 825			break;
 826		}
 827		desc->ctx->pos++;
 828		if (i < (array->size-1))
 829			*desc->dir_cookie = array->array[i+1].cookie;
 
 
 
 
 
 
 
 830		else
 831			*desc->dir_cookie = array->last_cookie;
 832		if (ctx->duped != 0)
 833			ctx->duped = 1;
 834	}
 835	if (array->eof_index >= 0)
 836		desc->eof = 1;
 837
 838	nfs_readdir_release_array(desc->page);
 839out:
 840	cache_page_release(desc);
 841	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 842			(unsigned long long)*desc->dir_cookie, res);
 843	return res;
 844}
 845
 846/*
 847 * If we cannot find a cookie in our cache, we suspect that this is
 848 * because it points to a deleted file, so we ask the server to return
 849 * whatever it thinks is the next entry. We then feed this to filldir.
 850 * If all goes well, we should then be able to find our way round the
 851 * cache on the next call to readdir_search_pagecache();
 852 *
 853 * NOTE: we cannot add the anonymous page to the pagecache because
 854 *	 the data it contains might not be page aligned. Besides,
 855 *	 we should already have a complete representation of the
 856 *	 directory in the page cache by the time we get here.
 857 */
 858static inline
 859int uncached_readdir(nfs_readdir_descriptor_t *desc)
 860{
 861	struct page	*page = NULL;
 862	int		status;
 863	struct inode *inode = file_inode(desc->file);
 864	struct nfs_open_dir_context *ctx = desc->file->private_data;
 865
 866	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 867			(unsigned long long)*desc->dir_cookie);
 868
 869	page = alloc_page(GFP_HIGHUSER);
 870	if (!page) {
 871		status = -ENOMEM;
 
 
 872		goto out;
 873	}
 874
 875	desc->page_index = 0;
 876	desc->last_cookie = *desc->dir_cookie;
 877	desc->page = page;
 878	ctx->duped = 0;
 
 
 
 879
 880	status = nfs_readdir_xdr_to_array(desc, page, inode);
 881	if (status < 0)
 882		goto out_release;
 
 
 883
 884	status = nfs_do_filldir(desc);
 
 
 
 
 885
 886 out:
 887	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 888			__func__, status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889	return status;
 890 out_release:
 891	cache_page_release(desc);
 892	goto out;
 
 
 
 
 
 
 
 
 
 
 893}
 894
 895/* The file offset position represents the dirent entry number.  A
 896   last cookie cache takes care of the common case of reading the
 897   whole directory.
 898 */
 899static int nfs_readdir(struct file *file, struct dir_context *ctx)
 900{
 901	struct dentry	*dentry = file_dentry(file);
 902	struct inode	*inode = d_inode(dentry);
 903	nfs_readdir_descriptor_t my_desc,
 904			*desc = &my_desc;
 905	struct nfs_open_dir_context *dir_ctx = file->private_data;
 906	int res = 0;
 
 
 
 907
 908	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 909			file, (long long)ctx->pos);
 910	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 911
 912	/*
 913	 * ctx->pos points to the dirent entry number.
 914	 * *desc->dir_cookie has the cookie for the next entry. We have
 915	 * to either find the entry with the appropriate number or
 916	 * revalidate the cookie.
 917	 */
 918	memset(desc, 0, sizeof(*desc));
 919
 
 
 
 
 920	desc->file = file;
 921	desc->ctx = ctx;
 922	desc->dir_cookie = &dir_ctx->dir_cookie;
 923	desc->decode = NFS_PROTO(inode)->decode_dirent;
 924	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
 925
 926	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
 927		res = nfs_revalidate_mapping(inode, file->f_mapping);
 928	if (res < 0)
 929		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930
 931	do {
 932		res = readdir_search_pagecache(desc);
 933
 934		if (res == -EBADCOOKIE) {
 935			res = 0;
 936			/* This means either end of directory */
 937			if (*desc->dir_cookie && desc->eof == 0) {
 938				/* Or that the server has 'lost' a cookie */
 939				res = uncached_readdir(desc);
 940				if (res == 0)
 941					continue;
 
 
 942			}
 943			break;
 944		}
 945		if (res == -ETOOSMALL && desc->plus) {
 946			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 947			nfs_zap_caches(inode);
 948			desc->page_index = 0;
 949			desc->plus = 0;
 950			desc->eof = 0;
 951			continue;
 952		}
 953		if (res < 0)
 954			break;
 955
 956		res = nfs_do_filldir(desc);
 957		if (res < 0)
 958			break;
 959	} while (!desc->eof);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960out:
 961	if (res > 0)
 962		res = 0;
 963	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 964	return res;
 965}
 966
 967static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 968{
 969	struct nfs_open_dir_context *dir_ctx = filp->private_data;
 970
 971	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 972			filp, offset, whence);
 973
 974	switch (whence) {
 975		case 1:
 976			offset += filp->f_pos;
 977		case 0:
 978			if (offset >= 0)
 979				break;
 980		default:
 
 
 
 
 
 
 
 
 981			return -EINVAL;
 
 982	}
 983	if (offset != filp->f_pos) {
 984		filp->f_pos = offset;
 985		dir_ctx->dir_cookie = 0;
 986		dir_ctx->duped = 0;
 
 
 
 
 
 
 
 987	}
 
 988	return offset;
 989}
 990
 991/*
 992 * All directory operations under NFS are synchronous, so fsync()
 993 * is a dummy operation.
 994 */
 995static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 996			 int datasync)
 997{
 998	struct inode *inode = file_inode(filp);
 999
1000	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002	inode_lock(inode);
1003	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1004	inode_unlock(inode);
1005	return 0;
1006}
1007
1008/**
1009 * nfs_force_lookup_revalidate - Mark the directory as having changed
1010 * @dir - pointer to directory inode
1011 *
1012 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1013 * full lookup on all child dentries of 'dir' whenever a change occurs
1014 * on the server that might have invalidated our dcache.
1015 *
 
 
 
1016 * The caller should be holding dir->i_lock
1017 */
1018void nfs_force_lookup_revalidate(struct inode *dir)
1019{
1020	NFS_I(dir)->cache_change_attribute++;
1021}
1022EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024/*
1025 * A check for whether or not the parent directory has changed.
1026 * In the case it has, we assume that the dentries are untrustworthy
1027 * and may need to be looked up again.
1028 * If rcu_walk prevents us from performing a full check, return 0.
1029 */
1030static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1031			      int rcu_walk)
1032{
1033	if (IS_ROOT(dentry))
1034		return 1;
1035	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1036		return 0;
1037	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1038		return 0;
1039	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1040	if (nfs_mapping_need_revalidate_inode(dir)) {
1041		if (rcu_walk)
1042			return 0;
1043		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1044			return 0;
1045	}
1046	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1047		return 0;
1048	return 1;
1049}
1050
1051/*
1052 * Use intent information to check whether or not we're going to do
1053 * an O_EXCL create using this path component.
1054 */
1055static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1056{
1057	if (NFS_PROTO(dir)->version == 2)
1058		return 0;
1059	return flags & LOOKUP_EXCL;
1060}
1061
1062/*
1063 * Inode and filehandle revalidation for lookups.
1064 *
1065 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1066 * or if the intent information indicates that we're about to open this
1067 * particular file and the "nocto" mount flag is not set.
1068 *
1069 */
1070static
1071int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1072{
1073	struct nfs_server *server = NFS_SERVER(inode);
1074	int ret;
1075
1076	if (IS_AUTOMOUNT(inode))
1077		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078	/* VFS wants an on-the-wire revalidation */
1079	if (flags & LOOKUP_REVAL)
1080		goto out_force;
1081	/* This is an open(2) */
1082	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1083	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1084		goto out_force;
1085out:
1086	return (inode->i_nlink == 0) ? -ENOENT : 0;
 
 
 
 
 
1087out_force:
1088	if (flags & LOOKUP_RCU)
1089		return -ECHILD;
1090	ret = __nfs_revalidate_inode(server, inode);
1091	if (ret != 0)
1092		return ret;
1093	goto out;
1094}
1095
 
 
 
 
 
 
 
1096/*
1097 * We judge how long we want to trust negative
1098 * dentries by looking at the parent inode mtime.
1099 *
1100 * If parent mtime has changed, we revalidate, else we wait for a
1101 * period corresponding to the parent's attribute cache timeout value.
1102 *
1103 * If LOOKUP_RCU prevents us from performing a full check, return 1
1104 * suggesting a reval is needed.
 
 
 
1105 */
1106static inline
1107int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1108		       unsigned int flags)
1109{
1110	/* Don't revalidate a negative dentry if we're creating a new file */
1111	if (flags & LOOKUP_CREATE)
1112		return 0;
1113	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1114		return 1;
 
 
 
1115	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1116}
1117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118/*
1119 * This is called every time the dcache has a lookup hit,
1120 * and we should check whether we can really trust that
1121 * lookup.
1122 *
1123 * NOTE! The hit can be a negative hit too, don't assume
1124 * we have an inode!
1125 *
1126 * If the parent directory is seen to have changed, we throw out the
1127 * cached dentry and do a new lookup.
1128 */
1129static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
 
 
1130{
1131	struct inode *dir;
1132	struct inode *inode;
1133	struct dentry *parent;
1134	struct nfs_fh *fhandle = NULL;
1135	struct nfs_fattr *fattr = NULL;
1136	struct nfs4_label *label = NULL;
1137	int error;
1138
1139	if (flags & LOOKUP_RCU) {
1140		parent = ACCESS_ONCE(dentry->d_parent);
1141		dir = d_inode_rcu(parent);
1142		if (!dir)
1143			return -ECHILD;
1144	} else {
1145		parent = dget_parent(dentry);
1146		dir = d_inode(parent);
1147	}
1148	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1149	inode = d_inode(dentry);
1150
1151	if (!inode) {
1152		if (nfs_neg_need_reval(dir, dentry, flags)) {
1153			if (flags & LOOKUP_RCU)
1154				return -ECHILD;
1155			goto out_bad;
1156		}
1157		goto out_valid;
1158	}
1159
1160	if (is_bad_inode(inode)) {
1161		if (flags & LOOKUP_RCU)
1162			return -ECHILD;
1163		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1164				__func__, dentry);
1165		goto out_bad;
1166	}
1167
1168	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1169		goto out_set_verifier;
 
 
 
 
1170
1171	/* Force a full look up iff the parent directory has changed */
1172	if (!nfs_is_exclusive_create(dir, flags) &&
1173	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1174
1175		if (nfs_lookup_verify_inode(inode, flags)) {
1176			if (flags & LOOKUP_RCU)
1177				return -ECHILD;
1178			goto out_zap_parent;
1179		}
1180		nfs_advise_use_readdirplus(dir);
1181		goto out_valid;
1182	}
1183
1184	if (flags & LOOKUP_RCU)
1185		return -ECHILD;
1186
1187	if (NFS_STALE(inode))
1188		goto out_bad;
1189
1190	error = -ENOMEM;
1191	fhandle = nfs_alloc_fhandle();
1192	fattr = nfs_alloc_fattr();
1193	if (fhandle == NULL || fattr == NULL)
1194		goto out_error;
 
 
 
 
 
 
 
 
 
 
 
1195
1196	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1197	if (IS_ERR(label))
1198		goto out_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199
1200	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1201	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1202	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1203	if (error)
1204		goto out_bad;
1205	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1206		goto out_bad;
1207	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1208		goto out_bad;
1209
1210	nfs_setsecurity(inode, fattr, label);
 
 
 
1211
1212	nfs_free_fattr(fattr);
1213	nfs_free_fhandle(fhandle);
1214	nfs4_label_free(label);
 
 
 
 
1215
1216	/* set a readdirplus hint that we had a cache miss */
1217	nfs_force_use_readdirplus(dir);
1218
1219out_set_verifier:
1220	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1221 out_valid:
1222	if (flags & LOOKUP_RCU) {
1223		if (parent != ACCESS_ONCE(dentry->d_parent))
1224			return -ECHILD;
1225	} else
1226		dput(parent);
1227	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1228			__func__, dentry);
1229	return 1;
1230out_zap_parent:
1231	nfs_zap_caches(dir);
1232 out_bad:
1233	WARN_ON(flags & LOOKUP_RCU);
1234	nfs_free_fattr(fattr);
1235	nfs_free_fhandle(fhandle);
1236	nfs4_label_free(label);
1237	nfs_mark_for_revalidate(dir);
1238	if (inode && S_ISDIR(inode->i_mode)) {
1239		/* Purge readdir caches. */
1240		nfs_zap_caches(inode);
1241		/*
1242		 * We can't d_drop the root of a disconnected tree:
1243		 * its d_hash is on the s_anon list and d_drop() would hide
1244		 * it from shrink_dcache_for_unmount(), leading to busy
1245		 * inodes on unmount and further oopses.
1246		 */
1247		if (IS_ROOT(dentry))
1248			goto out_valid;
1249	}
1250	dput(parent);
1251	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1252			__func__, dentry);
1253	return 0;
1254out_error:
1255	WARN_ON(flags & LOOKUP_RCU);
1256	nfs_free_fattr(fattr);
1257	nfs_free_fhandle(fhandle);
1258	nfs4_label_free(label);
1259	dput(parent);
1260	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1261			__func__, dentry, error);
1262	return error;
1263}
1264
1265/*
1266 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1267 * when we don't really care about the dentry name. This is called when a
1268 * pathwalk ends on a dentry that was not found via a normal lookup in the
1269 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1270 *
1271 * In this situation, we just want to verify that the inode itself is OK
1272 * since the dentry might have changed on the server.
1273 */
1274static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1275{
1276	struct inode *inode = d_inode(dentry);
1277	int error = 0;
1278
1279	/*
1280	 * I believe we can only get a negative dentry here in the case of a
1281	 * procfs-style symlink. Just assume it's correct for now, but we may
1282	 * eventually need to do something more here.
1283	 */
1284	if (!inode) {
1285		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1286				__func__, dentry);
1287		return 1;
1288	}
1289
1290	if (is_bad_inode(inode)) {
1291		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1292				__func__, dentry);
1293		return 0;
1294	}
1295
1296	if (nfs_mapping_need_revalidate_inode(inode))
1297		error = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
1298	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1299			__func__, inode->i_ino, error ? "invalid" : "valid");
1300	return !error;
1301}
1302
1303/*
1304 * This is called from dput() when d_count is going to 0.
1305 */
1306static int nfs_dentry_delete(const struct dentry *dentry)
1307{
1308	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1309		dentry, dentry->d_flags);
1310
1311	/* Unhash any dentry with a stale inode */
1312	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1313		return 1;
1314
1315	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1316		/* Unhash it, so that ->d_iput() would be called */
1317		return 1;
1318	}
1319	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1320		/* Unhash it, so that ancestors of killed async unlink
1321		 * files will be cleaned up during umount */
1322		return 1;
1323	}
1324	return 0;
1325
1326}
1327
1328/* Ensure that we revalidate inode->i_nlink */
1329static void nfs_drop_nlink(struct inode *inode)
1330{
1331	spin_lock(&inode->i_lock);
1332	/* drop the inode if we're reasonably sure this is the last link */
1333	if (inode->i_nlink == 1)
1334		clear_nlink(inode);
1335	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
 
 
 
1336	spin_unlock(&inode->i_lock);
1337}
1338
1339/*
1340 * Called when the dentry loses inode.
1341 * We use it to clean up silly-renamed files.
1342 */
1343static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1344{
1345	if (S_ISDIR(inode->i_mode))
1346		/* drop any readdir cache as it could easily be old */
1347		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1348
1349	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1350		nfs_complete_unlink(dentry, inode);
1351		nfs_drop_nlink(inode);
1352	}
1353	iput(inode);
1354}
1355
1356static void nfs_d_release(struct dentry *dentry)
1357{
1358	/* free cached devname value, if it survived that far */
1359	if (unlikely(dentry->d_fsdata)) {
1360		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1361			WARN_ON(1);
1362		else
1363			kfree(dentry->d_fsdata);
1364	}
1365}
1366
1367const struct dentry_operations nfs_dentry_operations = {
1368	.d_revalidate	= nfs_lookup_revalidate,
1369	.d_weak_revalidate	= nfs_weak_revalidate,
1370	.d_delete	= nfs_dentry_delete,
1371	.d_iput		= nfs_dentry_iput,
1372	.d_automount	= nfs_d_automount,
1373	.d_release	= nfs_d_release,
1374};
1375EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1376
1377struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1378{
1379	struct dentry *res;
1380	struct inode *inode = NULL;
1381	struct nfs_fh *fhandle = NULL;
1382	struct nfs_fattr *fattr = NULL;
1383	struct nfs4_label *label = NULL;
1384	int error;
1385
1386	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1387	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1388
1389	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1390		return ERR_PTR(-ENAMETOOLONG);
1391
1392	/*
1393	 * If we're doing an exclusive create, optimize away the lookup
1394	 * but don't hash the dentry.
1395	 */
1396	if (nfs_is_exclusive_create(dir, flags))
1397		return NULL;
1398
1399	res = ERR_PTR(-ENOMEM);
1400	fhandle = nfs_alloc_fhandle();
1401	fattr = nfs_alloc_fattr();
1402	if (fhandle == NULL || fattr == NULL)
1403		goto out;
1404
1405	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1406	if (IS_ERR(label))
1407		goto out;
1408
1409	trace_nfs_lookup_enter(dir, dentry, flags);
1410	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1411	if (error == -ENOENT)
 
 
1412		goto no_entry;
 
1413	if (error < 0) {
1414		res = ERR_PTR(error);
1415		goto out_label;
1416	}
1417	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1418	res = ERR_CAST(inode);
1419	if (IS_ERR(res))
1420		goto out_label;
1421
1422	/* Notify readdir to use READDIRPLUS */
1423	nfs_force_use_readdirplus(dir);
1424
1425no_entry:
1426	res = d_splice_alias(inode, dentry);
1427	if (res != NULL) {
1428		if (IS_ERR(res))
1429			goto out_label;
1430		dentry = res;
1431	}
1432	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1433out_label:
1434	trace_nfs_lookup_exit(dir, dentry, flags, error);
1435	nfs4_label_free(label);
1436out:
 
1437	nfs_free_fattr(fattr);
1438	nfs_free_fhandle(fhandle);
1439	return res;
1440}
1441EXPORT_SYMBOL_GPL(nfs_lookup);
1442
 
 
 
 
 
 
 
 
1443#if IS_ENABLED(CONFIG_NFS_V4)
1444static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1445
1446const struct dentry_operations nfs4_dentry_operations = {
1447	.d_revalidate	= nfs4_lookup_revalidate,
 
1448	.d_delete	= nfs_dentry_delete,
1449	.d_iput		= nfs_dentry_iput,
1450	.d_automount	= nfs_d_automount,
1451	.d_release	= nfs_d_release,
1452};
1453EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1454
1455static fmode_t flags_to_mode(int flags)
1456{
1457	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1458	if ((flags & O_ACCMODE) != O_WRONLY)
1459		res |= FMODE_READ;
1460	if ((flags & O_ACCMODE) != O_RDONLY)
1461		res |= FMODE_WRITE;
1462	return res;
1463}
1464
1465static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1466{
1467	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1468}
1469
1470static int do_open(struct inode *inode, struct file *filp)
1471{
1472	nfs_fscache_open_file(inode, filp);
1473	return 0;
1474}
1475
1476static int nfs_finish_open(struct nfs_open_context *ctx,
1477			   struct dentry *dentry,
1478			   struct file *file, unsigned open_flags,
1479			   int *opened)
1480{
1481	int err;
1482
1483	err = finish_open(file, dentry, do_open, opened);
1484	if (err)
1485		goto out;
1486	nfs_file_set_open_context(file, ctx);
1487
 
 
1488out:
1489	return err;
1490}
1491
1492int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1493		    struct file *file, unsigned open_flags,
1494		    umode_t mode, int *opened)
1495{
1496	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1497	struct nfs_open_context *ctx;
1498	struct dentry *res;
1499	struct iattr attr = { .ia_valid = ATTR_OPEN };
1500	struct inode *inode;
1501	unsigned int lookup_flags = 0;
 
1502	bool switched = false;
 
1503	int err;
1504
1505	/* Expect a negative dentry */
1506	BUG_ON(d_inode(dentry));
1507
1508	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1509			dir->i_sb->s_id, dir->i_ino, dentry);
1510
1511	err = nfs_check_flags(open_flags);
1512	if (err)
1513		return err;
1514
1515	/* NFS only supports OPEN on regular files */
1516	if ((open_flags & O_DIRECTORY)) {
1517		if (!d_in_lookup(dentry)) {
1518			/*
1519			 * Hashed negative dentry with O_DIRECTORY: dentry was
1520			 * revalidated and is fine, no need to perform lookup
1521			 * again
1522			 */
1523			return -ENOENT;
1524		}
1525		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1526		goto no_open;
1527	}
1528
1529	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1530		return -ENAMETOOLONG;
1531
1532	if (open_flags & O_CREAT) {
1533		struct nfs_server *server = NFS_SERVER(dir);
1534
1535		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1536			mode &= ~current_umask();
1537
1538		attr.ia_valid |= ATTR_MODE;
1539		attr.ia_mode = mode;
1540	}
1541	if (open_flags & O_TRUNC) {
1542		attr.ia_valid |= ATTR_SIZE;
1543		attr.ia_size = 0;
1544	}
1545
1546	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1547		d_drop(dentry);
1548		switched = true;
1549		dentry = d_alloc_parallel(dentry->d_parent,
1550					  &dentry->d_name, &wq);
1551		if (IS_ERR(dentry))
1552			return PTR_ERR(dentry);
1553		if (unlikely(!d_in_lookup(dentry)))
1554			return finish_no_open(file, dentry);
1555	}
1556
1557	ctx = create_nfs_open_context(dentry, open_flags, file);
1558	err = PTR_ERR(ctx);
1559	if (IS_ERR(ctx))
1560		goto out;
1561
1562	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1563	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
 
 
1564	if (IS_ERR(inode)) {
1565		err = PTR_ERR(inode);
1566		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567		put_nfs_open_context(ctx);
1568		d_drop(dentry);
1569		switch (err) {
1570		case -ENOENT:
1571			d_add(dentry, NULL);
1572			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 
 
 
 
1573			break;
1574		case -EISDIR:
1575		case -ENOTDIR:
1576			goto no_open;
1577		case -ELOOP:
1578			if (!(open_flags & O_NOFOLLOW))
1579				goto no_open;
1580			break;
1581			/* case -EINVAL: */
1582		default:
1583			break;
1584		}
1585		goto out;
1586	}
 
1587
1588	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1589	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1590	put_nfs_open_context(ctx);
1591out:
1592	if (unlikely(switched)) {
1593		d_lookup_done(dentry);
1594		dput(dentry);
1595	}
1596	return err;
1597
1598no_open:
1599	res = nfs_lookup(dir, dentry, lookup_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600	if (switched) {
1601		d_lookup_done(dentry);
1602		if (!res)
1603			res = dentry;
1604		else
1605			dput(dentry);
1606	}
1607	if (IS_ERR(res))
1608		return PTR_ERR(res);
1609	return finish_no_open(file, res);
1610}
1611EXPORT_SYMBOL_GPL(nfs_atomic_open);
1612
1613static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
 
 
1614{
1615	struct inode *inode;
1616	int ret = 0;
 
1617
1618	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1619		goto no_open;
1620	if (d_mountpoint(dentry))
1621		goto no_open;
1622	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1623		goto no_open;
1624
1625	inode = d_inode(dentry);
1626
1627	/* We can't create new files in nfs_open_revalidate(), so we
1628	 * optimize away revalidation of negative dentries.
1629	 */
1630	if (inode == NULL) {
1631		struct dentry *parent;
1632		struct inode *dir;
1633
1634		if (flags & LOOKUP_RCU) {
1635			parent = ACCESS_ONCE(dentry->d_parent);
1636			dir = d_inode_rcu(parent);
1637			if (!dir)
1638				return -ECHILD;
1639		} else {
1640			parent = dget_parent(dentry);
1641			dir = d_inode(parent);
1642		}
1643		if (!nfs_neg_need_reval(dir, dentry, flags))
1644			ret = 1;
1645		else if (flags & LOOKUP_RCU)
1646			ret = -ECHILD;
1647		if (!(flags & LOOKUP_RCU))
1648			dput(parent);
1649		else if (parent != ACCESS_ONCE(dentry->d_parent))
1650			return -ECHILD;
1651		goto out;
1652	}
1653
1654	/* NFS only supports OPEN on regular files */
1655	if (!S_ISREG(inode->i_mode))
1656		goto no_open;
 
1657	/* We cannot do exclusive creation on a positive dentry */
1658	if (flags & LOOKUP_EXCL)
1659		goto no_open;
 
 
 
 
1660
1661	/* Let f_op->open() actually open (and revalidate) the file */
1662	ret = 1;
 
 
 
 
1663
1664out:
1665	return ret;
 
1666
1667no_open:
1668	return nfs_lookup_revalidate(dentry, flags);
 
 
1669}
1670
1671#endif /* CONFIG_NFSV4 */
1672
1673/*
1674 * Code common to create, mkdir, and mknod.
1675 */
1676int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1677				struct nfs_fattr *fattr,
1678				struct nfs4_label *label)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1679{
1680	struct dentry *parent = dget_parent(dentry);
1681	struct inode *dir = d_inode(parent);
1682	struct inode *inode;
1683	int error = -EACCES;
 
1684
1685	d_drop(dentry);
1686
1687	/* We may have been initialized further down */
1688	if (d_really_is_positive(dentry))
1689		goto out;
1690	if (fhandle->size == 0) {
1691		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1692		if (error)
1693			goto out_error;
1694	}
1695	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1696	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1697		struct nfs_server *server = NFS_SB(dentry->d_sb);
1698		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
 
1699		if (error < 0)
1700			goto out_error;
1701	}
1702	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1703	error = PTR_ERR(inode);
1704	if (IS_ERR(inode))
1705		goto out_error;
1706	d_add(dentry, inode);
1707out:
1708	dput(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1709	return 0;
1710out_error:
1711	nfs_mark_for_revalidate(dir);
1712	dput(parent);
1713	return error;
1714}
1715EXPORT_SYMBOL_GPL(nfs_instantiate);
1716
1717/*
1718 * Following a failed create operation, we drop the dentry rather
1719 * than retain a negative dentry. This avoids a problem in the event
1720 * that the operation succeeded on the server, but an error in the
1721 * reply path made it appear to have failed.
1722 */
1723int nfs_create(struct inode *dir, struct dentry *dentry,
1724		umode_t mode, bool excl)
1725{
1726	struct iattr attr;
1727	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1728	int error;
1729
 
 
1730	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1731			dir->i_sb->s_id, dir->i_ino, dentry);
1732
1733	attr.ia_mode = mode;
1734	attr.ia_valid = ATTR_MODE;
 
 
 
 
1735
1736	trace_nfs_create_enter(dir, dentry, open_flags);
1737	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1738	trace_nfs_create_exit(dir, dentry, open_flags, error);
1739	if (error != 0)
1740		goto out_err;
1741	return 0;
1742out_err:
1743	d_drop(dentry);
1744	return error;
1745}
 
 
 
 
 
 
1746EXPORT_SYMBOL_GPL(nfs_create);
1747
1748/*
1749 * See comments for nfs_proc_create regarding failed operations.
1750 */
1751int
1752nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
 
1753{
1754	struct iattr attr;
1755	int status;
1756
1757	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1758			dir->i_sb->s_id, dir->i_ino, dentry);
1759
1760	attr.ia_mode = mode;
1761	attr.ia_valid = ATTR_MODE;
1762
1763	trace_nfs_mknod_enter(dir, dentry);
1764	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1765	trace_nfs_mknod_exit(dir, dentry, status);
1766	if (status != 0)
1767		goto out_err;
1768	return 0;
1769out_err:
1770	d_drop(dentry);
1771	return status;
1772}
1773EXPORT_SYMBOL_GPL(nfs_mknod);
1774
1775/*
1776 * See comments for nfs_proc_create regarding failed operations.
1777 */
1778int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
1779{
1780	struct iattr attr;
1781	int error;
1782
1783	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1784			dir->i_sb->s_id, dir->i_ino, dentry);
1785
1786	attr.ia_valid = ATTR_MODE;
1787	attr.ia_mode = mode | S_IFDIR;
1788
1789	trace_nfs_mkdir_enter(dir, dentry);
1790	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1791	trace_nfs_mkdir_exit(dir, dentry, error);
1792	if (error != 0)
1793		goto out_err;
1794	return 0;
1795out_err:
1796	d_drop(dentry);
1797	return error;
1798}
1799EXPORT_SYMBOL_GPL(nfs_mkdir);
1800
1801static void nfs_dentry_handle_enoent(struct dentry *dentry)
1802{
1803	if (simple_positive(dentry))
1804		d_delete(dentry);
1805}
1806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1808{
1809	int error;
1810
1811	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1812			dir->i_sb->s_id, dir->i_ino, dentry);
1813
1814	trace_nfs_rmdir_enter(dir, dentry);
1815	if (d_really_is_positive(dentry)) {
1816		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1817		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1818		/* Ensure the VFS deletes this inode */
1819		switch (error) {
1820		case 0:
1821			clear_nlink(d_inode(dentry));
1822			break;
1823		case -ENOENT:
1824			nfs_dentry_handle_enoent(dentry);
1825		}
1826		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1827	} else
1828		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
 
1829	trace_nfs_rmdir_exit(dir, dentry, error);
1830
1831	return error;
1832}
1833EXPORT_SYMBOL_GPL(nfs_rmdir);
1834
1835/*
1836 * Remove a file after making sure there are no pending writes,
1837 * and after checking that the file has only one user. 
1838 *
1839 * We invalidate the attribute cache and free the inode prior to the operation
1840 * to avoid possible races if the server reuses the inode.
1841 */
1842static int nfs_safe_remove(struct dentry *dentry)
1843{
1844	struct inode *dir = d_inode(dentry->d_parent);
1845	struct inode *inode = d_inode(dentry);
1846	int error = -EBUSY;
1847		
1848	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1849
1850	/* If the dentry was sillyrenamed, we simply call d_delete() */
1851	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1852		error = 0;
1853		goto out;
1854	}
1855
1856	trace_nfs_remove_enter(dir, dentry);
1857	if (inode != NULL) {
1858		NFS_PROTO(inode)->return_delegation(inode);
1859		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1860		if (error == 0)
1861			nfs_drop_nlink(inode);
1862	} else
1863		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1864	if (error == -ENOENT)
1865		nfs_dentry_handle_enoent(dentry);
1866	trace_nfs_remove_exit(dir, dentry, error);
1867out:
1868	return error;
1869}
1870
1871/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1872 *  belongs to an active ".nfs..." file and we return -EBUSY.
1873 *
1874 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1875 */
1876int nfs_unlink(struct inode *dir, struct dentry *dentry)
1877{
1878	int error;
1879	int need_rehash = 0;
1880
1881	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1882		dir->i_ino, dentry);
1883
1884	trace_nfs_unlink_enter(dir, dentry);
1885	spin_lock(&dentry->d_lock);
1886	if (d_count(dentry) > 1) {
 
1887		spin_unlock(&dentry->d_lock);
1888		/* Start asynchronous writeout of the inode */
1889		write_inode_now(d_inode(dentry), 0);
1890		error = nfs_sillyrename(dir, dentry);
1891		goto out;
1892	}
1893	if (!d_unhashed(dentry)) {
1894		__d_drop(dentry);
1895		need_rehash = 1;
 
 
 
 
 
 
 
1896	}
 
 
1897	spin_unlock(&dentry->d_lock);
1898	error = nfs_safe_remove(dentry);
1899	if (!error || error == -ENOENT) {
1900		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1901	} else if (need_rehash)
1902		d_rehash(dentry);
1903out:
1904	trace_nfs_unlink_exit(dir, dentry, error);
1905	return error;
1906}
1907EXPORT_SYMBOL_GPL(nfs_unlink);
1908
1909/*
1910 * To create a symbolic link, most file systems instantiate a new inode,
1911 * add a page to it containing the path, then write it out to the disk
1912 * using prepare_write/commit_write.
1913 *
1914 * Unfortunately the NFS client can't create the in-core inode first
1915 * because it needs a file handle to create an in-core inode (see
1916 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1917 * symlink request has completed on the server.
1918 *
1919 * So instead we allocate a raw page, copy the symname into it, then do
1920 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1921 * now have a new file handle and can instantiate an in-core NFS inode
1922 * and move the raw page into its mapping.
1923 */
1924int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
 
1925{
1926	struct page *page;
1927	char *kaddr;
1928	struct iattr attr;
1929	unsigned int pathlen = strlen(symname);
1930	int error;
1931
1932	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1933		dir->i_ino, dentry, symname);
1934
1935	if (pathlen > PAGE_SIZE)
1936		return -ENAMETOOLONG;
1937
1938	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1939	attr.ia_valid = ATTR_MODE;
1940
1941	page = alloc_page(GFP_USER);
1942	if (!page)
1943		return -ENOMEM;
1944
1945	kaddr = page_address(page);
1946	memcpy(kaddr, symname, pathlen);
1947	if (pathlen < PAGE_SIZE)
1948		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1949
1950	trace_nfs_symlink_enter(dir, dentry);
1951	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1952	trace_nfs_symlink_exit(dir, dentry, error);
1953	if (error != 0) {
1954		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1955			dir->i_sb->s_id, dir->i_ino,
1956			dentry, symname, error);
1957		d_drop(dentry);
1958		__free_page(page);
1959		return error;
1960	}
1961
 
 
1962	/*
1963	 * No big deal if we can't add this page to the page cache here.
1964	 * READLINK will get the missing page from the server if needed.
1965	 */
1966	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1967							GFP_KERNEL)) {
1968		SetPageUptodate(page);
1969		unlock_page(page);
1970		/*
1971		 * add_to_page_cache_lru() grabs an extra page refcount.
1972		 * Drop it here to avoid leaking this page later.
1973		 */
1974		put_page(page);
1975	} else
1976		__free_page(page);
1977
 
1978	return 0;
1979}
1980EXPORT_SYMBOL_GPL(nfs_symlink);
1981
1982int
1983nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1984{
1985	struct inode *inode = d_inode(old_dentry);
1986	int error;
1987
1988	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1989		old_dentry, dentry);
1990
1991	trace_nfs_link_enter(inode, dir, dentry);
1992	NFS_PROTO(inode)->return_delegation(inode);
1993
1994	d_drop(dentry);
 
 
1995	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1996	if (error == 0) {
 
1997		ihold(inode);
1998		d_add(dentry, inode);
1999	}
2000	trace_nfs_link_exit(inode, dir, dentry, error);
2001	return error;
2002}
2003EXPORT_SYMBOL_GPL(nfs_link);
2004
 
 
 
 
 
 
 
 
2005/*
2006 * RENAME
2007 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2008 * different file handle for the same inode after a rename (e.g. when
2009 * moving to a different directory). A fail-safe method to do so would
2010 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2011 * rename the old file using the sillyrename stuff. This way, the original
2012 * file in old_dir will go away when the last process iput()s the inode.
2013 *
2014 * FIXED.
2015 * 
2016 * It actually works quite well. One needs to have the possibility for
2017 * at least one ".nfs..." file in each directory the file ever gets
2018 * moved or linked to which happens automagically with the new
2019 * implementation that only depends on the dcache stuff instead of
2020 * using the inode layer
2021 *
2022 * Unfortunately, things are a little more complicated than indicated
2023 * above. For a cross-directory move, we want to make sure we can get
2024 * rid of the old inode after the operation.  This means there must be
2025 * no pending writes (if it's a file), and the use count must be 1.
2026 * If these conditions are met, we can drop the dentries before doing
2027 * the rename.
2028 */
2029int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2030	       struct inode *new_dir, struct dentry *new_dentry,
2031	       unsigned int flags)
2032{
2033	struct inode *old_inode = d_inode(old_dentry);
2034	struct inode *new_inode = d_inode(new_dentry);
2035	struct dentry *dentry = NULL, *rehash = NULL;
2036	struct rpc_task *task;
 
2037	int error = -EBUSY;
2038
2039	if (flags)
2040		return -EINVAL;
2041
2042	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2043		 old_dentry, new_dentry,
2044		 d_count(new_dentry));
2045
2046	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2047	/*
2048	 * For non-directories, check whether the target is busy and if so,
2049	 * make a copy of the dentry and then do a silly-rename. If the
2050	 * silly-rename succeeds, the copied dentry is hashed and becomes
2051	 * the new target.
2052	 */
2053	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2054		/*
2055		 * To prevent any new references to the target during the
2056		 * rename, we unhash the dentry in advance.
 
2057		 */
2058		if (!d_unhashed(new_dentry)) {
2059			d_drop(new_dentry);
2060			rehash = new_dentry;
2061		}
2062
 
2063		if (d_count(new_dentry) > 2) {
2064			int err;
2065
 
 
2066			/* copy the target dentry's name */
2067			dentry = d_alloc(new_dentry->d_parent,
2068					 &new_dentry->d_name);
2069			if (!dentry)
2070				goto out;
2071
2072			/* silly-rename the existing target ... */
2073			err = nfs_sillyrename(new_dir, new_dentry);
2074			if (err)
2075				goto out;
2076
2077			new_dentry = dentry;
2078			rehash = NULL;
2079			new_inode = NULL;
 
 
 
 
2080		}
 
2081	}
2082
2083	NFS_PROTO(old_inode)->return_delegation(old_inode);
2084	if (new_inode != NULL)
2085		NFS_PROTO(new_inode)->return_delegation(new_inode);
2086
2087	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2088	if (IS_ERR(task)) {
 
 
2089		error = PTR_ERR(task);
2090		goto out;
2091	}
2092
2093	error = rpc_wait_for_completion_task(task);
2094	if (error == 0)
 
 
 
 
2095		error = task->tk_status;
2096	rpc_put_task(task);
2097	nfs_mark_for_revalidate(old_inode);
 
 
 
 
 
 
 
 
2098out:
2099	if (rehash)
2100		d_rehash(rehash);
2101	trace_nfs_rename_exit(old_dir, old_dentry,
2102			new_dir, new_dentry, error);
2103	if (!error) {
2104		if (new_inode != NULL)
2105			nfs_drop_nlink(new_inode);
 
 
 
 
 
 
2106		d_move(old_dentry, new_dentry);
2107		nfs_set_verifier(new_dentry,
2108					nfs_save_change_attribute(new_dir));
2109	} else if (error == -ENOENT)
2110		nfs_dentry_handle_enoent(old_dentry);
2111
2112	/* new dentry created? */
2113	if (dentry)
2114		dput(dentry);
2115	return error;
2116}
2117EXPORT_SYMBOL_GPL(nfs_rename);
2118
2119static DEFINE_SPINLOCK(nfs_access_lru_lock);
2120static LIST_HEAD(nfs_access_lru_list);
2121static atomic_long_t nfs_access_nr_entries;
2122
2123static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2124module_param(nfs_access_max_cachesize, ulong, 0644);
2125MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2126
2127static void nfs_access_free_entry(struct nfs_access_entry *entry)
2128{
2129	put_rpccred(entry->cred);
2130	kfree_rcu(entry, rcu_head);
2131	smp_mb__before_atomic();
2132	atomic_long_dec(&nfs_access_nr_entries);
2133	smp_mb__after_atomic();
2134}
2135
2136static void nfs_access_free_list(struct list_head *head)
2137{
2138	struct nfs_access_entry *cache;
2139
2140	while (!list_empty(head)) {
2141		cache = list_entry(head->next, struct nfs_access_entry, lru);
2142		list_del(&cache->lru);
2143		nfs_access_free_entry(cache);
2144	}
2145}
2146
2147static unsigned long
2148nfs_do_access_cache_scan(unsigned int nr_to_scan)
2149{
2150	LIST_HEAD(head);
2151	struct nfs_inode *nfsi, *next;
2152	struct nfs_access_entry *cache;
2153	long freed = 0;
2154
2155	spin_lock(&nfs_access_lru_lock);
2156	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2157		struct inode *inode;
2158
2159		if (nr_to_scan-- == 0)
2160			break;
2161		inode = &nfsi->vfs_inode;
2162		spin_lock(&inode->i_lock);
2163		if (list_empty(&nfsi->access_cache_entry_lru))
2164			goto remove_lru_entry;
2165		cache = list_entry(nfsi->access_cache_entry_lru.next,
2166				struct nfs_access_entry, lru);
2167		list_move(&cache->lru, &head);
2168		rb_erase(&cache->rb_node, &nfsi->access_cache);
2169		freed++;
2170		if (!list_empty(&nfsi->access_cache_entry_lru))
2171			list_move_tail(&nfsi->access_cache_inode_lru,
2172					&nfs_access_lru_list);
2173		else {
2174remove_lru_entry:
2175			list_del_init(&nfsi->access_cache_inode_lru);
2176			smp_mb__before_atomic();
2177			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2178			smp_mb__after_atomic();
2179		}
2180		spin_unlock(&inode->i_lock);
2181	}
2182	spin_unlock(&nfs_access_lru_lock);
2183	nfs_access_free_list(&head);
2184	return freed;
2185}
2186
2187unsigned long
2188nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2189{
2190	int nr_to_scan = sc->nr_to_scan;
2191	gfp_t gfp_mask = sc->gfp_mask;
2192
2193	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2194		return SHRINK_STOP;
2195	return nfs_do_access_cache_scan(nr_to_scan);
2196}
2197
2198
2199unsigned long
2200nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2201{
2202	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2203}
2204
2205static void
2206nfs_access_cache_enforce_limit(void)
2207{
2208	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2209	unsigned long diff;
2210	unsigned int nr_to_scan;
2211
2212	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2213		return;
2214	nr_to_scan = 100;
2215	diff = nr_entries - nfs_access_max_cachesize;
2216	if (diff < nr_to_scan)
2217		nr_to_scan = diff;
2218	nfs_do_access_cache_scan(nr_to_scan);
2219}
2220
2221static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2222{
2223	struct rb_root *root_node = &nfsi->access_cache;
2224	struct rb_node *n;
2225	struct nfs_access_entry *entry;
2226
2227	/* Unhook entries from the cache */
2228	while ((n = rb_first(root_node)) != NULL) {
2229		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2230		rb_erase(n, root_node);
2231		list_move(&entry->lru, head);
2232	}
2233	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2234}
2235
2236void nfs_access_zap_cache(struct inode *inode)
2237{
2238	LIST_HEAD(head);
2239
2240	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2241		return;
2242	/* Remove from global LRU init */
2243	spin_lock(&nfs_access_lru_lock);
2244	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2245		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2246
2247	spin_lock(&inode->i_lock);
2248	__nfs_access_zap_cache(NFS_I(inode), &head);
2249	spin_unlock(&inode->i_lock);
2250	spin_unlock(&nfs_access_lru_lock);
2251	nfs_access_free_list(&head);
2252}
2253EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2254
2255static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256{
2257	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2258	struct nfs_access_entry *entry;
2259
2260	while (n != NULL) {
2261		entry = rb_entry(n, struct nfs_access_entry, rb_node);
 
 
2262
2263		if (cred < entry->cred)
2264			n = n->rb_left;
2265		else if (cred > entry->cred)
2266			n = n->rb_right;
2267		else
2268			return entry;
2269	}
2270	return NULL;
2271}
2272
2273static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274{
2275	struct nfs_inode *nfsi = NFS_I(inode);
 
2276	struct nfs_access_entry *cache;
2277	bool retry = true;
2278	int err;
2279
2280	spin_lock(&inode->i_lock);
2281	for(;;) {
2282		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2283			goto out_zap;
2284		cache = nfs_access_search_rbtree(inode, cred);
2285		err = -ENOENT;
2286		if (cache == NULL)
2287			goto out;
2288		/* Found an entry, is our attribute cache valid? */
2289		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2290			break;
 
 
2291		err = -ECHILD;
2292		if (!may_block)
2293			goto out;
2294		if (!retry)
2295			goto out_zap;
2296		spin_unlock(&inode->i_lock);
2297		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2298		if (err)
2299			return err;
2300		spin_lock(&inode->i_lock);
2301		retry = false;
2302	}
2303	res->jiffies = cache->jiffies;
2304	res->cred = cache->cred;
2305	res->mask = cache->mask;
 
2306	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2307	err = 0;
2308out:
2309	spin_unlock(&inode->i_lock);
2310	return err;
2311out_zap:
2312	spin_unlock(&inode->i_lock);
2313	nfs_access_zap_cache(inode);
2314	return -ENOENT;
2315}
2316
2317static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2318{
2319	/* Only check the most recently returned cache entry,
2320	 * but do it without locking.
2321	 */
2322	struct nfs_inode *nfsi = NFS_I(inode);
 
2323	struct nfs_access_entry *cache;
2324	int err = -ECHILD;
2325	struct list_head *lh;
2326
2327	rcu_read_lock();
2328	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2329		goto out;
2330	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2331	cache = list_entry(lh, struct nfs_access_entry, lru);
2332	if (lh == &nfsi->access_cache_entry_lru ||
2333	    cred != cache->cred)
2334		cache = NULL;
2335	if (cache == NULL)
2336		goto out;
 
 
2337	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2338		goto out;
2339	res->jiffies = cache->jiffies;
2340	res->cred = cache->cred;
2341	res->mask = cache->mask;
2342	err = 0;
2343out:
2344	rcu_read_unlock();
2345	return err;
2346}
2347
2348static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2349{
2350	struct nfs_inode *nfsi = NFS_I(inode);
2351	struct rb_root *root_node = &nfsi->access_cache;
2352	struct rb_node **p = &root_node->rb_node;
2353	struct rb_node *parent = NULL;
2354	struct nfs_access_entry *entry;
 
2355
2356	spin_lock(&inode->i_lock);
2357	while (*p != NULL) {
2358		parent = *p;
2359		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
 
2360
2361		if (set->cred < entry->cred)
2362			p = &parent->rb_left;
2363		else if (set->cred > entry->cred)
2364			p = &parent->rb_right;
2365		else
2366			goto found;
2367	}
2368	rb_link_node(&set->rb_node, parent, p);
2369	rb_insert_color(&set->rb_node, root_node);
2370	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2371	spin_unlock(&inode->i_lock);
2372	return;
2373found:
2374	rb_replace_node(parent, &set->rb_node, root_node);
2375	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2376	list_del(&entry->lru);
2377	spin_unlock(&inode->i_lock);
2378	nfs_access_free_entry(entry);
2379}
2380
2381void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
 
2382{
2383	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2384	if (cache == NULL)
2385		return;
2386	RB_CLEAR_NODE(&cache->rb_node);
2387	cache->jiffies = set->jiffies;
2388	cache->cred = get_rpccred(set->cred);
 
2389	cache->mask = set->mask;
 
2390
2391	/* The above field assignments must be visible
2392	 * before this item appears on the lru.  We cannot easily
2393	 * use rcu_assign_pointer, so just force the memory barrier.
2394	 */
2395	smp_wmb();
2396	nfs_access_add_rbtree(inode, cache);
2397
2398	/* Update accounting */
2399	smp_mb__before_atomic();
2400	atomic_long_inc(&nfs_access_nr_entries);
2401	smp_mb__after_atomic();
2402
2403	/* Add inode to global LRU list */
2404	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2405		spin_lock(&nfs_access_lru_lock);
2406		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2407			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2408					&nfs_access_lru_list);
2409		spin_unlock(&nfs_access_lru_lock);
2410	}
2411	nfs_access_cache_enforce_limit();
2412}
2413EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2415void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2416{
2417	entry->mask = 0;
2418	if (access_result & NFS4_ACCESS_READ)
2419		entry->mask |= MAY_READ;
2420	if (access_result &
2421	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2422		entry->mask |= MAY_WRITE;
2423	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2424		entry->mask |= MAY_EXEC;
2425}
2426EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2427
2428static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2429{
2430	struct nfs_access_entry cache;
2431	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
 
2432	int status;
2433
2434	trace_nfs_access_enter(inode);
2435
2436	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2437	if (status != 0)
2438		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2439	if (status == 0)
2440		goto out_cached;
2441
2442	status = -ECHILD;
2443	if (!may_block)
2444		goto out;
2445
2446	/* Be clever: ask server to check for all possible rights */
2447	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2448	cache.cred = cred;
2449	cache.jiffies = jiffies;
2450	status = NFS_PROTO(inode)->access(inode, &cache);
 
 
 
 
 
2451	if (status != 0) {
2452		if (status == -ESTALE) {
2453			nfs_zap_caches(inode);
2454			if (!S_ISDIR(inode->i_mode))
2455				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
 
 
2456		}
2457		goto out;
2458	}
2459	nfs_access_add_cache(inode, &cache);
2460out_cached:
2461	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
 
2462		status = -EACCES;
2463out:
2464	trace_nfs_access_exit(inode, status);
2465	return status;
2466}
2467
2468static int nfs_open_permission_mask(int openflags)
2469{
2470	int mask = 0;
2471
2472	if (openflags & __FMODE_EXEC) {
2473		/* ONLY check exec rights */
2474		mask = MAY_EXEC;
2475	} else {
2476		if ((openflags & O_ACCMODE) != O_WRONLY)
2477			mask |= MAY_READ;
2478		if ((openflags & O_ACCMODE) != O_RDONLY)
2479			mask |= MAY_WRITE;
2480	}
2481
2482	return mask;
2483}
2484
2485int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2486{
2487	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2488}
2489EXPORT_SYMBOL_GPL(nfs_may_open);
2490
2491static int nfs_execute_ok(struct inode *inode, int mask)
2492{
2493	struct nfs_server *server = NFS_SERVER(inode);
2494	int ret = 0;
2495
2496	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
 
 
2497		if (mask & MAY_NOT_BLOCK)
2498			return -ECHILD;
2499		ret = __nfs_revalidate_inode(server, inode);
2500	}
2501	if (ret == 0 && !execute_ok(inode))
2502		ret = -EACCES;
2503	return ret;
2504}
2505
2506int nfs_permission(struct inode *inode, int mask)
 
 
2507{
2508	struct rpc_cred *cred;
2509	int res = 0;
2510
2511	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2512
2513	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2514		goto out;
2515	/* Is this sys_access() ? */
2516	if (mask & (MAY_ACCESS | MAY_CHDIR))
2517		goto force_lookup;
2518
2519	switch (inode->i_mode & S_IFMT) {
2520		case S_IFLNK:
2521			goto out;
2522		case S_IFREG:
2523			if ((mask & MAY_OPEN) &&
2524			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2525				return 0;
2526			break;
2527		case S_IFDIR:
2528			/*
2529			 * Optimize away all write operations, since the server
2530			 * will check permissions when we perform the op.
2531			 */
2532			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2533				goto out;
2534	}
2535
2536force_lookup:
2537	if (!NFS_PROTO(inode)->access)
2538		goto out_notsup;
2539
2540	/* Always try fast lookups first */
2541	rcu_read_lock();
2542	cred = rpc_lookup_cred_nonblock();
2543	if (!IS_ERR(cred))
2544		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2545	else
2546		res = PTR_ERR(cred);
2547	rcu_read_unlock();
2548	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2549		/* Fast lookup failed, try the slow way */
2550		cred = rpc_lookup_cred();
2551		if (!IS_ERR(cred)) {
2552			res = nfs_do_access(inode, cred, mask);
2553			put_rpccred(cred);
2554		} else
2555			res = PTR_ERR(cred);
2556	}
2557out:
2558	if (!res && (mask & MAY_EXEC))
2559		res = nfs_execute_ok(inode, mask);
2560
2561	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2562		inode->i_sb->s_id, inode->i_ino, mask, res);
2563	return res;
2564out_notsup:
2565	if (mask & MAY_NOT_BLOCK)
2566		return -ECHILD;
2567
2568	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
 
2569	if (res == 0)
2570		res = generic_permission(inode, mask);
2571	goto out;
2572}
2573EXPORT_SYMBOL_GPL(nfs_permission);
2574
2575/*
2576 * Local variables:
2577 *  version-control: t
2578 *  kept-new-versions: 5
2579 * End:
2580 */