Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/ratelimit.h>
   8#include <linux/sched/mm.h>
   9#include <crypto/hash.h>
  10#include "ctree.h"
  11#include "discard.h"
  12#include "volumes.h"
  13#include "disk-io.h"
  14#include "ordered-data.h"
  15#include "transaction.h"
  16#include "backref.h"
  17#include "extent_io.h"
  18#include "dev-replace.h"
 
 
  19#include "raid56.h"
  20#include "block-group.h"
  21#include "zoned.h"
  22#include "fs.h"
  23#include "accessors.h"
  24#include "file-item.h"
  25#include "scrub.h"
  26#include "raid-stripe-tree.h"
  27
  28/*
  29 * This is only the first step towards a full-features scrub. It reads all
  30 * extent and super block and verifies the checksums. In case a bad checksum
  31 * is found or the extent cannot be read, good data will be written back if
  32 * any can be found.
  33 *
  34 * Future enhancements:
  35 *  - In case an unrepairable extent is encountered, track which files are
  36 *    affected and report them
  37 *  - track and record media errors, throw out bad devices
  38 *  - add a mode to also read unallocated space
  39 */
  40
 
  41struct scrub_ctx;
  42
  43/*
  44 * The following value only influences the performance.
  45 *
  46 * This determines how many stripes would be submitted in one go,
  47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
  48 */
  49#define SCRUB_STRIPES_PER_GROUP		8
  50
  51/*
  52 * How many groups we have for each sctx.
  53 *
  54 * This would be 8M per device, the same value as the old scrub in-flight bios
  55 * size limit.
  56 */
  57#define SCRUB_GROUPS_PER_SCTX		16
  58
  59#define SCRUB_TOTAL_STRIPES		(SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
  60
  61/*
  62 * The following value times PAGE_SIZE needs to be large enough to match the
  63 * largest node/leaf/sector size that shall be supported.
 
  64 */
  65#define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
  66
  67/* Represent one sector and its needed info to verify the content. */
  68struct scrub_sector_verification {
  69	bool is_metadata;
  70
  71	union {
  72		/*
  73		 * Csum pointer for data csum verification.  Should point to a
  74		 * sector csum inside scrub_stripe::csums.
  75		 *
  76		 * NULL if this data sector has no csum.
  77		 */
  78		u8 *csum;
  79
  80		/*
  81		 * Extra info for metadata verification.  All sectors inside a
  82		 * tree block share the same generation.
  83		 */
  84		u64 generation;
  85	};
  86};
  87
  88enum scrub_stripe_flags {
  89	/* Set when @mirror_num, @dev, @physical and @logical are set. */
  90	SCRUB_STRIPE_FLAG_INITIALIZED,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91
  92	/* Set when the read-repair is finished. */
  93	SCRUB_STRIPE_FLAG_REPAIR_DONE,
  94
  95	/*
  96	 * Set for data stripes if it's triggered from P/Q stripe.
  97	 * During such scrub, we should not report errors in data stripes, nor
  98	 * update the accounting.
  99	 */
 100	SCRUB_STRIPE_FLAG_NO_REPORT,
 
 
 
 
 
 
 
 
 
 
 101};
 102
 103#define SCRUB_STRIPE_PAGES		(BTRFS_STRIPE_LEN / PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105/*
 106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
 107 */
 108struct scrub_stripe {
 109	struct scrub_ctx *sctx;
 110	struct btrfs_block_group *bg;
 111
 112	struct page *pages[SCRUB_STRIPE_PAGES];
 113	struct scrub_sector_verification *sectors;
 114
 115	struct btrfs_device *dev;
 116	u64 logical;
 117	u64 physical;
 118
 119	u16 mirror_num;
 120
 121	/* Should be BTRFS_STRIPE_LEN / sectorsize. */
 122	u16 nr_sectors;
 123
 124	/*
 125	 * How many data/meta extents are in this stripe.  Only for scrub status
 126	 * reporting purposes.
 127	 */
 128	u16 nr_data_extents;
 129	u16 nr_meta_extents;
 130
 131	atomic_t pending_io;
 132	wait_queue_head_t io_wait;
 133	wait_queue_head_t repair_wait;
 134
 135	/*
 136	 * Indicate the states of the stripe.  Bits are defined in
 137	 * scrub_stripe_flags enum.
 138	 */
 139	unsigned long state;
 140
 141	/* Indicate which sectors are covered by extent items. */
 142	unsigned long extent_sector_bitmap;
 143
 144	/*
 145	 * The errors hit during the initial read of the stripe.
 146	 *
 147	 * Would be utilized for error reporting and repair.
 148	 *
 149	 * The remaining init_nr_* records the number of errors hit, only used
 150	 * by error reporting.
 151	 */
 152	unsigned long init_error_bitmap;
 153	unsigned int init_nr_io_errors;
 154	unsigned int init_nr_csum_errors;
 155	unsigned int init_nr_meta_errors;
 156
 157	/*
 158	 * The following error bitmaps are all for the current status.
 159	 * Every time we submit a new read, these bitmaps may be updated.
 160	 *
 161	 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
 162	 *
 163	 * IO and csum errors can happen for both metadata and data.
 164	 */
 165	unsigned long error_bitmap;
 166	unsigned long io_error_bitmap;
 167	unsigned long csum_error_bitmap;
 168	unsigned long meta_error_bitmap;
 169
 170	/* For writeback (repair or replace) error reporting. */
 171	unsigned long write_error_bitmap;
 172
 173	/* Writeback can be concurrent, thus we need to protect the bitmap. */
 174	spinlock_t write_error_lock;
 175
 176	/*
 177	 * Checksum for the whole stripe if this stripe is inside a data block
 178	 * group.
 179	 */
 180	u8 *csums;
 181
 182	struct work_struct work;
 
 
 
 
 
 183};
 184
 185struct scrub_ctx {
 186	struct scrub_stripe	stripes[SCRUB_TOTAL_STRIPES];
 187	struct scrub_stripe	*raid56_data_stripes;
 188	struct btrfs_fs_info	*fs_info;
 189	struct btrfs_path	extent_path;
 190	struct btrfs_path	csum_path;
 191	int			first_free;
 192	int			cur_stripe;
 
 
 
 
 
 
 193	atomic_t		cancel_req;
 194	int			readonly;
 195
 196	/* State of IO submission throttling affecting the associated device */
 197	ktime_t			throttle_deadline;
 198	u64			throttle_sent;
 199
 200	int			is_dev_replace;
 201	u64			write_pointer;
 202
 203	struct mutex            wr_lock;
 204	struct btrfs_device     *wr_tgtdev;
 205
 206	/*
 207	 * statistics
 208	 */
 209	struct btrfs_scrub_progress stat;
 210	spinlock_t		stat_lock;
 211
 212	/*
 213	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 214	 * decrement bios_in_flight and workers_pending and then do a wakeup
 215	 * on the list_wait wait queue. We must ensure the main scrub task
 216	 * doesn't free the scrub context before or while the workers are
 217	 * doing the wakeup() call.
 218	 */
 219	refcount_t              refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220};
 221
 222struct scrub_warning {
 223	struct btrfs_path	*path;
 224	u64			extent_item_size;
 225	const char		*errstr;
 226	u64			physical;
 227	u64			logical;
 228	struct btrfs_device	*dev;
 229};
 230
 231static void release_scrub_stripe(struct scrub_stripe *stripe)
 232{
 233	if (!stripe)
 234		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235
 236	for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
 237		if (stripe->pages[i])
 238			__free_page(stripe->pages[i]);
 239		stripe->pages[i] = NULL;
 240	}
 241	kfree(stripe->sectors);
 242	kfree(stripe->csums);
 243	stripe->sectors = NULL;
 244	stripe->csums = NULL;
 245	stripe->sctx = NULL;
 246	stripe->state = 0;
 247}
 248
 249static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
 250			     struct scrub_stripe *stripe)
 251{
 252	int ret;
 253
 254	memset(stripe, 0, sizeof(*stripe));
 255
 256	stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 257	stripe->state = 0;
 258
 259	init_waitqueue_head(&stripe->io_wait);
 260	init_waitqueue_head(&stripe->repair_wait);
 261	atomic_set(&stripe->pending_io, 0);
 262	spin_lock_init(&stripe->write_error_lock);
 263
 264	ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, false);
 265	if (ret < 0)
 266		goto error;
 267
 268	stripe->sectors = kcalloc(stripe->nr_sectors,
 269				  sizeof(struct scrub_sector_verification),
 270				  GFP_KERNEL);
 271	if (!stripe->sectors)
 272		goto error;
 273
 274	stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
 275				fs_info->csum_size, GFP_KERNEL);
 276	if (!stripe->csums)
 277		goto error;
 278	return 0;
 279error:
 280	release_scrub_stripe(stripe);
 281	return -ENOMEM;
 282}
 283
 284static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
 285{
 286	wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
 
 
 287}
 288
 289static void scrub_put_ctx(struct scrub_ctx *sctx);
 290
 291static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 292{
 293	while (atomic_read(&fs_info->scrub_pause_req)) {
 294		mutex_unlock(&fs_info->scrub_lock);
 295		wait_event(fs_info->scrub_pause_wait,
 296		   atomic_read(&fs_info->scrub_pause_req) == 0);
 297		mutex_lock(&fs_info->scrub_lock);
 298	}
 299}
 300
 301static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 302{
 303	atomic_inc(&fs_info->scrubs_paused);
 304	wake_up(&fs_info->scrub_pause_wait);
 305}
 306
 307static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 308{
 309	mutex_lock(&fs_info->scrub_lock);
 310	__scrub_blocked_if_needed(fs_info);
 311	atomic_dec(&fs_info->scrubs_paused);
 312	mutex_unlock(&fs_info->scrub_lock);
 313
 314	wake_up(&fs_info->scrub_pause_wait);
 315}
 316
 317static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 318{
 319	scrub_pause_on(fs_info);
 320	scrub_pause_off(fs_info);
 321}
 322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 324{
 325	int i;
 326
 327	if (!sctx)
 328		return;
 329
 330	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
 331		release_scrub_stripe(&sctx->stripes[i]);
 332
 333	kvfree(sctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334}
 335
 336static void scrub_put_ctx(struct scrub_ctx *sctx)
 337{
 338	if (refcount_dec_and_test(&sctx->refs))
 339		scrub_free_ctx(sctx);
 340}
 341
 342static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
 343		struct btrfs_fs_info *fs_info, int is_dev_replace)
 344{
 345	struct scrub_ctx *sctx;
 346	int		i;
 
 
 347
 348	/* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
 349	 * kvzalloc().
 350	 */
 351	sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
 352	if (!sctx)
 353		goto nomem;
 354	refcount_set(&sctx->refs, 1);
 355	sctx->is_dev_replace = is_dev_replace;
 356	sctx->fs_info = fs_info;
 357	sctx->extent_path.search_commit_root = 1;
 358	sctx->extent_path.skip_locking = 1;
 359	sctx->csum_path.search_commit_root = 1;
 360	sctx->csum_path.skip_locking = 1;
 361	for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
 362		int ret;
 363
 364		ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
 365		if (ret < 0)
 366			goto nomem;
 367		sctx->stripes[i].sctx = sctx;
 
 
 
 
 
 
 
 
 
 
 
 368	}
 369	sctx->first_free = 0;
 
 
 
 
 370	atomic_set(&sctx->cancel_req, 0);
 
 
 371
 
 372	spin_lock_init(&sctx->stat_lock);
 373	sctx->throttle_deadline = 0;
 374
 375	mutex_init(&sctx->wr_lock);
 376	if (is_dev_replace) {
 377		WARN_ON(!fs_info->dev_replace.tgtdev);
 378		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
 
 379	}
 380
 381	return sctx;
 382
 383nomem:
 384	scrub_free_ctx(sctx);
 385	return ERR_PTR(-ENOMEM);
 386}
 387
 388static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
 389				     u64 root, void *warn_ctx)
 390{
 
 391	u32 nlink;
 392	int ret;
 393	int i;
 394	unsigned nofs_flag;
 395	struct extent_buffer *eb;
 396	struct btrfs_inode_item *inode_item;
 397	struct scrub_warning *swarn = warn_ctx;
 398	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 399	struct inode_fs_paths *ipath = NULL;
 400	struct btrfs_root *local_root;
 
 401	struct btrfs_key key;
 402
 403	local_root = btrfs_get_fs_root(fs_info, root, true);
 
 
 
 404	if (IS_ERR(local_root)) {
 405		ret = PTR_ERR(local_root);
 406		goto err;
 407	}
 408
 409	/*
 410	 * this makes the path point to (inum INODE_ITEM ioff)
 411	 */
 412	key.objectid = inum;
 413	key.type = BTRFS_INODE_ITEM_KEY;
 414	key.offset = 0;
 415
 416	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 417	if (ret) {
 418		btrfs_put_root(local_root);
 419		btrfs_release_path(swarn->path);
 420		goto err;
 421	}
 422
 423	eb = swarn->path->nodes[0];
 424	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 425					struct btrfs_inode_item);
 
 426	nlink = btrfs_inode_nlink(eb, inode_item);
 427	btrfs_release_path(swarn->path);
 428
 429	/*
 430	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
 431	 * uses GFP_NOFS in this context, so we keep it consistent but it does
 432	 * not seem to be strictly necessary.
 433	 */
 434	nofs_flag = memalloc_nofs_save();
 435	ipath = init_ipath(4096, local_root, swarn->path);
 436	memalloc_nofs_restore(nofs_flag);
 437	if (IS_ERR(ipath)) {
 438		btrfs_put_root(local_root);
 439		ret = PTR_ERR(ipath);
 440		ipath = NULL;
 441		goto err;
 442	}
 443	ret = paths_from_inode(inum, ipath);
 444
 445	if (ret < 0)
 446		goto err;
 447
 448	/*
 449	 * we deliberately ignore the bit ipath might have been too small to
 450	 * hold all of the paths here
 451	 */
 452	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 453		btrfs_warn_in_rcu(fs_info,
 454"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
 455				  swarn->errstr, swarn->logical,
 456				  btrfs_dev_name(swarn->dev),
 457				  swarn->physical,
 458				  root, inum, offset,
 459				  fs_info->sectorsize, nlink,
 460				  (char *)(unsigned long)ipath->fspath->val[i]);
 461
 462	btrfs_put_root(local_root);
 463	free_ipath(ipath);
 464	return 0;
 465
 466err:
 467	btrfs_warn_in_rcu(fs_info,
 468			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 469			  swarn->errstr, swarn->logical,
 470			  btrfs_dev_name(swarn->dev),
 471			  swarn->physical,
 472			  root, inum, offset, ret);
 473
 474	free_ipath(ipath);
 475	return 0;
 476}
 477
 478static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
 479				       bool is_super, u64 logical, u64 physical)
 480{
 481	struct btrfs_fs_info *fs_info = dev->fs_info;
 
 482	struct btrfs_path *path;
 483	struct btrfs_key found_key;
 484	struct extent_buffer *eb;
 485	struct btrfs_extent_item *ei;
 486	struct scrub_warning swarn;
 
 
 487	u64 flags = 0;
 
 488	u32 item_size;
 
 489	int ret;
 490
 491	/* Super block error, no need to search extent tree. */
 492	if (is_super) {
 493		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
 494				  errstr, btrfs_dev_name(dev), physical);
 495		return;
 496	}
 497	path = btrfs_alloc_path();
 498	if (!path)
 499		return;
 500
 501	swarn.physical = physical;
 502	swarn.logical = logical;
 503	swarn.errstr = errstr;
 504	swarn.dev = NULL;
 505
 506	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 507				  &flags);
 508	if (ret < 0)
 509		goto out;
 510
 
 511	swarn.extent_item_size = found_key.offset;
 512
 513	eb = path->nodes[0];
 514	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 515	item_size = btrfs_item_size(eb, path->slots[0]);
 516
 517	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 518		unsigned long ptr = 0;
 519		u8 ref_level;
 520		u64 ref_root;
 521
 522		while (true) {
 523			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 524						      item_size, &ref_root,
 525						      &ref_level);
 526			if (ret < 0) {
 527				btrfs_warn(fs_info,
 528				"failed to resolve tree backref for logical %llu: %d",
 529						  swarn.logical, ret);
 530				break;
 531			}
 532			if (ret > 0)
 533				break;
 534			btrfs_warn_in_rcu(fs_info,
 535"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
 536				errstr, swarn.logical, btrfs_dev_name(dev),
 537				swarn.physical, (ref_level ? "node" : "leaf"),
 538				ref_level, ref_root);
 539		}
 
 
 
 540		btrfs_release_path(path);
 541	} else {
 542		struct btrfs_backref_walk_ctx ctx = { 0 };
 543
 544		btrfs_release_path(path);
 545
 546		ctx.bytenr = found_key.objectid;
 547		ctx.extent_item_pos = swarn.logical - found_key.objectid;
 548		ctx.fs_info = fs_info;
 549
 550		swarn.path = path;
 551		swarn.dev = dev;
 552
 553		iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
 
 554	}
 555
 556out:
 557	btrfs_free_path(path);
 558}
 559
 560static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
 561{
 562	int ret = 0;
 563	u64 length;
 
 
 
 
 
 
 
 
 
 564
 565	if (!btrfs_is_zoned(sctx->fs_info))
 566		return 0;
 
 567
 568	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
 569		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570
 571	if (sctx->write_pointer < physical) {
 572		length = physical - sctx->write_pointer;
 573
 574		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
 575						sctx->write_pointer, length);
 576		if (!ret)
 577			sctx->write_pointer = physical;
 578	}
 579	return ret;
 580}
 581
 582static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
 583{
 584	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 585	int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586
 587	return stripe->pages[page_index];
 588}
 
 
 
 
 
 
 
 
 
 589
 590static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
 591						 int sector_nr)
 592{
 593	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 594
 595	return offset_in_page(sector_nr << fs_info->sectorsize_bits);
 596}
 597
 598static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
 599{
 600	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 601	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 602	const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
 603	const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
 604	const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
 605	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 606	u8 on_disk_csum[BTRFS_CSUM_SIZE];
 607	u8 calculated_csum[BTRFS_CSUM_SIZE];
 608	struct btrfs_header *header;
 609
 610	/*
 611	 * Here we don't have a good way to attach the pages (and subpages)
 612	 * to a dummy extent buffer, thus we have to directly grab the members
 613	 * from pages.
 614	 */
 615	header = (struct btrfs_header *)(page_address(first_page) + first_off);
 616	memcpy(on_disk_csum, header->csum, fs_info->csum_size);
 617
 618	if (logical != btrfs_stack_header_bytenr(header)) {
 619		bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 620		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 621		btrfs_warn_rl(fs_info,
 622		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
 623			      logical, stripe->mirror_num,
 624			      btrfs_stack_header_bytenr(header), logical);
 625		return;
 626	}
 627	if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
 628		   BTRFS_FSID_SIZE) != 0) {
 629		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 630		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 631		btrfs_warn_rl(fs_info,
 632		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
 633			      logical, stripe->mirror_num,
 634			      header->fsid, fs_info->fs_devices->fsid);
 635		return;
 636	}
 637	if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
 638		   BTRFS_UUID_SIZE) != 0) {
 639		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 640		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 641		btrfs_warn_rl(fs_info,
 642		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
 643			      logical, stripe->mirror_num,
 644			      header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
 645		return;
 646	}
 647
 648	/* Now check tree block csum. */
 649	shash->tfm = fs_info->csum_shash;
 650	crypto_shash_init(shash);
 651	crypto_shash_update(shash, page_address(first_page) + first_off +
 652			    BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
 653
 654	for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
 655		struct page *page = scrub_stripe_get_page(stripe, i);
 656		unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
 657
 658		crypto_shash_update(shash, page_address(page) + page_off,
 659				    fs_info->sectorsize);
 660	}
 661
 662	crypto_shash_final(shash, calculated_csum);
 663	if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
 664		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 665		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 666		btrfs_warn_rl(fs_info,
 667		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
 668			      logical, stripe->mirror_num,
 669			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
 670			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
 671		return;
 672	}
 673	if (stripe->sectors[sector_nr].generation !=
 674	    btrfs_stack_header_generation(header)) {
 675		bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 676		bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 677		btrfs_warn_rl(fs_info,
 678		"tree block %llu mirror %u has bad generation, has %llu want %llu",
 679			      logical, stripe->mirror_num,
 680			      btrfs_stack_header_generation(header),
 681			      stripe->sectors[sector_nr].generation);
 682		return;
 683	}
 684	bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
 685	bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
 686	bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
 687}
 688
 689static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
 690{
 691	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 692	struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
 693	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 694	struct page *page = scrub_stripe_get_page(stripe, sector_nr);
 695	unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
 696	u8 csum_buf[BTRFS_CSUM_SIZE];
 697	int ret;
 
 
 
 
 
 698
 699	ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
 700
 701	/* Sector not utilized, skip it. */
 702	if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
 703		return;
 704
 705	/* IO error, no need to check. */
 706	if (test_bit(sector_nr, &stripe->io_error_bitmap))
 707		return;
 
 
 
 
 
 708
 709	/* Metadata, verify the full tree block. */
 710	if (sector->is_metadata) {
 711		/*
 712		 * Check if the tree block crosses the stripe boundary.  If
 713		 * crossed the boundary, we cannot verify it but only give a
 714		 * warning.
 715		 *
 716		 * This can only happen on a very old filesystem where chunks
 717		 * are not ensured to be stripe aligned.
 718		 */
 719		if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
 720			btrfs_warn_rl(fs_info,
 721			"tree block at %llu crosses stripe boundary %llu",
 722				      stripe->logical +
 723				      (sector_nr << fs_info->sectorsize_bits),
 724				      stripe->logical);
 725			return;
 726		}
 727		scrub_verify_one_metadata(stripe, sector_nr);
 728		return;
 729	}
 730
 731	/*
 732	 * Data is easier, we just verify the data csum (if we have it).  For
 733	 * cases without csum, we have no other choice but to trust it.
 
 
 
 
 
 734	 */
 735	if (!sector->csum) {
 736		clear_bit(sector_nr, &stripe->error_bitmap);
 737		return;
 738	}
 739
 740	ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
 741	if (ret < 0) {
 742		set_bit(sector_nr, &stripe->csum_error_bitmap);
 743		set_bit(sector_nr, &stripe->error_bitmap);
 744	} else {
 745		clear_bit(sector_nr, &stripe->csum_error_bitmap);
 746		clear_bit(sector_nr, &stripe->error_bitmap);
 747	}
 748}
 749
 750/* Verify specified sectors of a stripe. */
 751static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
 752{
 753	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 754	const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
 755	int sector_nr;
 756
 757	for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
 758		scrub_verify_one_sector(stripe, sector_nr);
 759		if (stripe->sectors[sector_nr].is_metadata)
 760			sector_nr += sectors_per_tree - 1;
 
 
 
 
 
 
 
 
 761	}
 
 
 
 
 
 762}
 763
 764static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
 765{
 766	int i;
 
 767
 768	for (i = 0; i < stripe->nr_sectors; i++) {
 769		if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
 770		    scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
 771			break;
 
 772	}
 773	ASSERT(i < stripe->nr_sectors);
 774	return i;
 775}
 776
 777/*
 778 * Repair read is different to the regular read:
 779 *
 780 * - Only reads the failed sectors
 781 * - May have extra blocksize limits
 
 
 782 */
 783static void scrub_repair_read_endio(struct btrfs_bio *bbio)
 784{
 785	struct scrub_stripe *stripe = bbio->private;
 786	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 787	struct bio_vec *bvec;
 788	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
 789	u32 bio_size = 0;
 790	int i;
 791
 792	ASSERT(sector_nr < stripe->nr_sectors);
 793
 794	bio_for_each_bvec_all(bvec, &bbio->bio, i)
 795		bio_size += bvec->bv_len;
 
 
 
 
 
 796
 797	if (bbio->bio.bi_status) {
 798		bitmap_set(&stripe->io_error_bitmap, sector_nr,
 799			   bio_size >> fs_info->sectorsize_bits);
 800		bitmap_set(&stripe->error_bitmap, sector_nr,
 801			   bio_size >> fs_info->sectorsize_bits);
 802	} else {
 803		bitmap_clear(&stripe->io_error_bitmap, sector_nr,
 804			     bio_size >> fs_info->sectorsize_bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	}
 806	bio_put(&bbio->bio);
 807	if (atomic_dec_and_test(&stripe->pending_io))
 808		wake_up(&stripe->io_wait);
 809}
 810
 811static int calc_next_mirror(int mirror, int num_copies)
 812{
 813	ASSERT(mirror <= num_copies);
 814	return (mirror + 1 > num_copies) ? 1 : mirror + 1;
 815}
 816
 817static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
 818					    int mirror, int blocksize, bool wait)
 819{
 820	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 821	struct btrfs_bio *bbio = NULL;
 822	const unsigned long old_error_bitmap = stripe->error_bitmap;
 823	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824
 825	ASSERT(stripe->mirror_num >= 1);
 826	ASSERT(atomic_read(&stripe->pending_io) == 0);
 
 
 
 
 
 
 
 
 
 827
 828	for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
 829		struct page *page;
 830		int pgoff;
 831		int ret;
 
 
 
 
 
 
 
 
 832
 833		page = scrub_stripe_get_page(stripe, i);
 834		pgoff = scrub_stripe_get_page_offset(stripe, i);
 835
 836		/* The current sector cannot be merged, submit the bio. */
 837		if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
 838			     bbio->bio.bi_iter.bi_size >= blocksize)) {
 839			ASSERT(bbio->bio.bi_iter.bi_size);
 840			atomic_inc(&stripe->pending_io);
 841			btrfs_submit_bbio(bbio, mirror);
 842			if (wait)
 843				wait_scrub_stripe_io(stripe);
 844			bbio = NULL;
 845		}
 
 
 
 
 846
 847		if (!bbio) {
 848			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
 849				fs_info, scrub_repair_read_endio, stripe);
 850			bbio->bio.bi_iter.bi_sector = (stripe->logical +
 851				(i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
 852		}
 853
 854		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
 855		ASSERT(ret == fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	}
 857	if (bbio) {
 858		ASSERT(bbio->bio.bi_iter.bi_size);
 859		atomic_inc(&stripe->pending_io);
 860		btrfs_submit_bbio(bbio, mirror);
 861		if (wait)
 862			wait_scrub_stripe_io(stripe);
 863	}
 864}
 865
 866static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
 867				       struct scrub_stripe *stripe)
 868{
 869	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
 870				      DEFAULT_RATELIMIT_BURST);
 871	struct btrfs_fs_info *fs_info = sctx->fs_info;
 872	struct btrfs_device *dev = NULL;
 873	u64 physical = 0;
 874	int nr_data_sectors = 0;
 875	int nr_meta_sectors = 0;
 876	int nr_nodatacsum_sectors = 0;
 877	int nr_repaired_sectors = 0;
 878	int sector_nr;
 879
 880	if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
 881		return;
 882
 883	/*
 884	 * Init needed infos for error reporting.
 885	 *
 886	 * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
 887	 * thus no need for dev/physical, error reporting still needs dev and physical.
 888	 */
 889	if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
 890		u64 mapped_len = fs_info->sectorsize;
 891		struct btrfs_io_context *bioc = NULL;
 892		int stripe_index = stripe->mirror_num - 1;
 893		int ret;
 894
 895		/* For scrub, our mirror_num should always start at 1. */
 896		ASSERT(stripe->mirror_num >= 1);
 897		ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
 898				      stripe->logical, &mapped_len, &bioc,
 899				      NULL, NULL);
 900		/*
 901		 * If we failed, dev will be NULL, and later detailed reports
 902		 * will just be skipped.
 
 
 
 903		 */
 904		if (ret < 0)
 905			goto skip;
 906		physical = bioc->stripes[stripe_index].physical;
 907		dev = bioc->stripes[stripe_index].dev;
 908		btrfs_put_bioc(bioc);
 
 
 
 
 
 
 
 
 
 909	}
 910
 911skip:
 912	for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
 913		bool repaired = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914
 915		if (stripe->sectors[sector_nr].is_metadata) {
 916			nr_meta_sectors++;
 917		} else {
 918			nr_data_sectors++;
 919			if (!stripe->sectors[sector_nr].csum)
 920				nr_nodatacsum_sectors++;
 921		}
 922
 923		if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
 924		    !test_bit(sector_nr, &stripe->error_bitmap)) {
 925			nr_repaired_sectors++;
 926			repaired = true;
 
 
 
 
 
 
 
 
 
 
 
 927		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928
 929		/* Good sector from the beginning, nothing need to be done. */
 930		if (!test_bit(sector_nr, &stripe->init_error_bitmap))
 931			continue;
 932
 933		/*
 934		 * Report error for the corrupted sectors.  If repaired, just
 935		 * output the message of repaired message.
 936		 */
 937		if (repaired) {
 938			if (dev) {
 939				btrfs_err_rl_in_rcu(fs_info,
 940			"fixed up error at logical %llu on dev %s physical %llu",
 941					    stripe->logical, btrfs_dev_name(dev),
 942					    physical);
 943			} else {
 944				btrfs_err_rl_in_rcu(fs_info,
 945			"fixed up error at logical %llu on mirror %u",
 946					    stripe->logical, stripe->mirror_num);
 947			}
 948			continue;
 
 949		}
 950
 951		/* The remaining are all for unrepaired. */
 952		if (dev) {
 953			btrfs_err_rl_in_rcu(fs_info,
 954	"unable to fixup (regular) error at logical %llu on dev %s physical %llu",
 955					    stripe->logical, btrfs_dev_name(dev),
 956					    physical);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957		} else {
 
 
 
 
 
 958			btrfs_err_rl_in_rcu(fs_info,
 959	"unable to fixup (regular) error at logical %llu on mirror %u",
 960					    stripe->logical, stripe->mirror_num);
 961		}
 
 
 
 
 
 
 
 
 
 962
 963		if (test_bit(sector_nr, &stripe->io_error_bitmap))
 964			if (__ratelimit(&rs) && dev)
 965				scrub_print_common_warning("i/o error", dev, false,
 966						     stripe->logical, physical);
 967		if (test_bit(sector_nr, &stripe->csum_error_bitmap))
 968			if (__ratelimit(&rs) && dev)
 969				scrub_print_common_warning("checksum error", dev, false,
 970						     stripe->logical, physical);
 971		if (test_bit(sector_nr, &stripe->meta_error_bitmap))
 972			if (__ratelimit(&rs) && dev)
 973				scrub_print_common_warning("header error", dev, false,
 974						     stripe->logical, physical);
 
 
 
 
 
 
 
 
 
 
 975	}
 976
 977	spin_lock(&sctx->stat_lock);
 978	sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
 979	sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
 980	sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
 981	sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
 982	sctx->stat.no_csum += nr_nodatacsum_sectors;
 983	sctx->stat.read_errors += stripe->init_nr_io_errors;
 984	sctx->stat.csum_errors += stripe->init_nr_csum_errors;
 985	sctx->stat.verify_errors += stripe->init_nr_meta_errors;
 986	sctx->stat.uncorrectable_errors +=
 987		bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
 988	sctx->stat.corrected_errors += nr_repaired_sectors;
 989	spin_unlock(&sctx->stat_lock);
 990}
 991
 992static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
 993				unsigned long write_bitmap, bool dev_replace);
 
 
 
 
 
 
 
 994
 995/*
 996 * The main entrance for all read related scrub work, including:
 997 *
 998 * - Wait for the initial read to finish
 999 * - Verify and locate any bad sectors
1000 * - Go through the remaining mirrors and try to read as large blocksize as
1001 *   possible
1002 * - Go through all mirrors (including the failed mirror) sector-by-sector
1003 * - Submit writeback for repaired sectors
1004 *
1005 * Writeback for dev-replace does not happen here, it needs extra
1006 * synchronization for zoned devices.
1007 */
1008static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009{
1010	struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011	struct scrub_ctx *sctx = stripe->sctx;
1012	struct btrfs_fs_info *fs_info = sctx->fs_info;
1013	int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014					  stripe->bg->length);
1015	unsigned long repaired;
1016	int mirror;
1017	int i;
1018
1019	ASSERT(stripe->mirror_num > 0);
1020
1021	wait_scrub_stripe_io(stripe);
1022	scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023	/* Save the initial failed bitmap for later repair and report usage. */
1024	stripe->init_error_bitmap = stripe->error_bitmap;
1025	stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026						  stripe->nr_sectors);
1027	stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028						    stripe->nr_sectors);
1029	stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030						    stripe->nr_sectors);
1031
1032	if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033		goto out;
 
 
1034
1035	/*
1036	 * Try all remaining mirrors.
1037	 *
1038	 * Here we still try to read as large block as possible, as this is
1039	 * faster and we have extra safety nets to rely on.
1040	 */
1041	for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042	     mirror != stripe->mirror_num;
1043	     mirror = calc_next_mirror(mirror, num_copies)) {
1044		const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046		scrub_stripe_submit_repair_read(stripe, mirror,
1047						BTRFS_STRIPE_LEN, false);
1048		wait_scrub_stripe_io(stripe);
1049		scrub_verify_one_stripe(stripe, old_error_bitmap);
1050		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051			goto out;
1052	}
 
1053
1054	/*
1055	 * Last safety net, try re-checking all mirrors, including the failed
1056	 * one, sector-by-sector.
1057	 *
1058	 * As if one sector failed the drive's internal csum, the whole read
1059	 * containing the offending sector would be marked as error.
1060	 * Thus here we do sector-by-sector read.
1061	 *
1062	 * This can be slow, thus we only try it as the last resort.
1063	 */
 
 
 
 
 
 
 
 
 
 
1064
1065	for (i = 0, mirror = stripe->mirror_num;
1066	     i < num_copies;
1067	     i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068		const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070		scrub_stripe_submit_repair_read(stripe, mirror,
1071						fs_info->sectorsize, true);
1072		wait_scrub_stripe_io(stripe);
1073		scrub_verify_one_stripe(stripe, old_error_bitmap);
1074		if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075			goto out;
1076	}
1077out:
1078	/*
1079	 * Submit the repaired sectors.  For zoned case, we cannot do repair
1080	 * in-place, but queue the bg to be relocated.
 
1081	 */
1082	bitmap_andnot(&repaired, &stripe->init_error_bitmap, &stripe->error_bitmap,
1083		      stripe->nr_sectors);
1084	if (!sctx->readonly && !bitmap_empty(&repaired, stripe->nr_sectors)) {
1085		if (btrfs_is_zoned(fs_info)) {
1086			btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1087		} else {
1088			scrub_write_sectors(sctx, stripe, repaired, false);
1089			wait_scrub_stripe_io(stripe);
1090		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091	}
1092
1093	scrub_stripe_report_errors(sctx, stripe);
1094	set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095	wake_up(&stripe->repair_wait);
1096}
1097
1098static void scrub_read_endio(struct btrfs_bio *bbio)
 
 
 
 
 
1099{
1100	struct scrub_stripe *stripe = bbio->private;
1101	struct bio_vec *bvec;
1102	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1103	int num_sectors;
1104	u32 bio_size = 0;
1105	int i;
1106
1107	ASSERT(sector_nr < stripe->nr_sectors);
1108	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1109		bio_size += bvec->bv_len;
1110	num_sectors = bio_size >> stripe->bg->fs_info->sectorsize_bits;
1111
1112	if (bbio->bio.bi_status) {
1113		bitmap_set(&stripe->io_error_bitmap, sector_nr, num_sectors);
1114		bitmap_set(&stripe->error_bitmap, sector_nr, num_sectors);
1115	} else {
1116		bitmap_clear(&stripe->io_error_bitmap, sector_nr, num_sectors);
1117	}
1118	bio_put(&bbio->bio);
1119	if (atomic_dec_and_test(&stripe->pending_io)) {
1120		wake_up(&stripe->io_wait);
1121		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1122		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1123	}
1124}
1125
1126static void scrub_write_endio(struct btrfs_bio *bbio)
1127{
1128	struct scrub_stripe *stripe = bbio->private;
1129	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1130	struct bio_vec *bvec;
1131	int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1132	u32 bio_size = 0;
1133	int i;
1134
1135	bio_for_each_bvec_all(bvec, &bbio->bio, i)
1136		bio_size += bvec->bv_len;
1137
1138	if (bbio->bio.bi_status) {
1139		unsigned long flags;
1140
1141		spin_lock_irqsave(&stripe->write_error_lock, flags);
1142		bitmap_set(&stripe->write_error_bitmap, sector_nr,
1143			   bio_size >> fs_info->sectorsize_bits);
1144		spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1145	}
1146	bio_put(&bbio->bio);
1147
1148	if (atomic_dec_and_test(&stripe->pending_io))
1149		wake_up(&stripe->io_wait);
1150}
1151
1152static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1153				   struct scrub_stripe *stripe,
1154				   struct btrfs_bio *bbio, bool dev_replace)
1155{
1156	struct btrfs_fs_info *fs_info = sctx->fs_info;
1157	u32 bio_len = bbio->bio.bi_iter.bi_size;
1158	u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1159		      stripe->logical;
1160
1161	fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1162	atomic_inc(&stripe->pending_io);
1163	btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1164	if (!btrfs_is_zoned(fs_info))
1165		return;
1166	/*
1167	 * For zoned writeback, queue depth must be 1, thus we must wait for
1168	 * the write to finish before the next write.
1169	 */
1170	wait_scrub_stripe_io(stripe);
1171
1172	/*
1173	 * And also need to update the write pointer if write finished
1174	 * successfully.
1175	 */
1176	if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1177		      &stripe->write_error_bitmap))
1178		sctx->write_pointer += bio_len;
 
 
 
 
 
 
 
 
 
 
1179}
1180
1181/*
1182 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1183 *
1184 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1185 *
1186 * - Only needs logical bytenr and mirror_num
1187 *   Just like the scrub read path
1188 *
1189 * - Would only result in writes to the specified mirror
1190 *   Unlike the regular writeback path, which would write back to all stripes
1191 *
1192 * - Handle dev-replace and read-repair writeback differently
1193 */
1194static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1195				unsigned long write_bitmap, bool dev_replace)
 
1196{
1197	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1198	struct btrfs_bio *bbio = NULL;
1199	int sector_nr;
1200
1201	for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1202		struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1203		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1204		int ret;
1205
1206		/* We should only writeback sectors covered by an extent. */
1207		ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
 
1208
1209		/* Cannot merge with previous sector, submit the current one. */
1210		if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1211			scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1212			bbio = NULL;
1213		}
1214		if (!bbio) {
1215			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1216					       fs_info, scrub_write_endio, stripe);
1217			bbio->bio.bi_iter.bi_sector = (stripe->logical +
1218				(sector_nr << fs_info->sectorsize_bits)) >>
1219				SECTOR_SHIFT;
 
1220		}
1221		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1222		ASSERT(ret == fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
1223	}
1224	if (bbio)
1225		scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
 
1226}
1227
1228/*
1229 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1230 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1231 */
1232static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1233				  unsigned int bio_size)
1234{
1235	const int time_slice = 1000;
1236	s64 delta;
1237	ktime_t now;
1238	u32 div;
1239	u64 bwlimit;
1240
1241	bwlimit = READ_ONCE(device->scrub_speed_max);
1242	if (bwlimit == 0)
1243		return;
1244
1245	/*
1246	 * Slice is divided into intervals when the IO is submitted, adjust by
1247	 * bwlimit and maximum of 64 intervals.
1248	 */
1249	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1250	div = min_t(u32, 64, div);
1251
1252	/* Start new epoch, set deadline */
1253	now = ktime_get();
1254	if (sctx->throttle_deadline == 0) {
1255		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1256		sctx->throttle_sent = 0;
1257	}
1258
1259	/* Still in the time to send? */
1260	if (ktime_before(now, sctx->throttle_deadline)) {
1261		/* If current bio is within the limit, send it */
1262		sctx->throttle_sent += bio_size;
1263		if (sctx->throttle_sent <= div_u64(bwlimit, div))
1264			return;
1265
1266		/* We're over the limit, sleep until the rest of the slice */
1267		delta = ktime_ms_delta(sctx->throttle_deadline, now);
1268	} else {
1269		/* New request after deadline, start new epoch */
1270		delta = 0;
 
 
 
 
 
 
 
 
 
1271	}
1272
1273	if (delta) {
1274		long timeout;
1275
1276		timeout = div_u64(delta * HZ, 1000);
1277		schedule_timeout_interruptible(timeout);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1278	}
1279
1280	/* Next call will start the deadline period */
1281	sctx->throttle_deadline = 0;
1282}
1283
1284/*
1285 * Given a physical address, this will calculate it's
1286 * logical offset. if this is a parity stripe, it will return
1287 * the most left data stripe's logical offset.
1288 *
1289 * return 0 if it is a data stripe, 1 means parity stripe.
1290 */
1291static int get_raid56_logic_offset(u64 physical, int num,
1292				   struct btrfs_chunk_map *map, u64 *offset,
1293				   u64 *stripe_start)
1294{
1295	int i;
1296	int j = 0;
1297	u64 last_offset;
1298	const int data_stripes = nr_data_stripes(map);
1299
1300	last_offset = (physical - map->stripes[num].physical) * data_stripes;
1301	if (stripe_start)
1302		*stripe_start = last_offset;
 
 
 
1303
1304	*offset = last_offset;
1305	for (i = 0; i < data_stripes; i++) {
1306		u32 stripe_nr;
1307		u32 stripe_index;
1308		u32 rot;
1309
1310		*offset = last_offset + btrfs_stripe_nr_to_offset(i);
 
 
 
 
 
1311
1312		stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
 
 
 
1313
1314		/* Work out the disk rotation on this stripe-set */
1315		rot = stripe_nr % map->num_stripes;
1316		/* calculate which stripe this data locates */
1317		rot += i;
1318		stripe_index = rot % map->num_stripes;
1319		if (stripe_index == num)
1320			return 0;
1321		if (stripe_index < num)
1322			j++;
1323	}
1324	*offset = last_offset + btrfs_stripe_nr_to_offset(j);
1325	return 1;
1326}
1327
1328/*
1329 * Return 0 if the extent item range covers any byte of the range.
1330 * Return <0 if the extent item is before @search_start.
1331 * Return >0 if the extent item is after @start_start + @search_len.
1332 */
1333static int compare_extent_item_range(struct btrfs_path *path,
1334				     u64 search_start, u64 search_len)
1335{
1336	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1337	u64 len;
1338	struct btrfs_key key;
1339
1340	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1341	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1342	       key.type == BTRFS_METADATA_ITEM_KEY);
1343	if (key.type == BTRFS_METADATA_ITEM_KEY)
1344		len = fs_info->nodesize;
1345	else
1346		len = key.offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347
1348	if (key.objectid + len <= search_start)
1349		return -1;
1350	if (key.objectid >= search_start + search_len)
1351		return 1;
1352	return 0;
1353}
1354
1355/*
1356 * Locate one extent item which covers any byte in range
1357 * [@search_start, @search_start + @search_length)
1358 *
1359 * If the path is not initialized, we will initialize the search by doing
1360 * a btrfs_search_slot().
1361 * If the path is already initialized, we will use the path as the initial
1362 * slot, to avoid duplicated btrfs_search_slot() calls.
1363 *
1364 * NOTE: If an extent item starts before @search_start, we will still
1365 * return the extent item. This is for data extent crossing stripe boundary.
1366 *
1367 * Return 0 if we found such extent item, and @path will point to the extent item.
1368 * Return >0 if no such extent item can be found, and @path will be released.
1369 * Return <0 if hit fatal error, and @path will be released.
1370 */
1371static int find_first_extent_item(struct btrfs_root *extent_root,
1372				  struct btrfs_path *path,
1373				  u64 search_start, u64 search_len)
1374{
1375	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1376	struct btrfs_key key;
1377	int ret;
1378
1379	/* Continue using the existing path */
1380	if (path->nodes[0])
1381		goto search_forward;
1382
1383	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1384		key.type = BTRFS_METADATA_ITEM_KEY;
1385	else
1386		key.type = BTRFS_EXTENT_ITEM_KEY;
1387	key.objectid = search_start;
1388	key.offset = (u64)-1;
 
 
 
 
1389
1390	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1391	if (ret < 0)
1392		return ret;
1393	if (ret == 0) {
1394		/*
1395		 * Key with offset -1 found, there would have to exist an extent
1396		 * item with such offset, but this is out of the valid range.
1397		 */
1398		btrfs_release_path(path);
1399		return -EUCLEAN;
1400	}
1401
1402	/*
1403	 * Here we intentionally pass 0 as @min_objectid, as there could be
1404	 * an extent item starting before @search_start.
1405	 */
1406	ret = btrfs_previous_extent_item(extent_root, path, 0);
1407	if (ret < 0)
1408		return ret;
1409	/*
1410	 * No matter whether we have found an extent item, the next loop will
1411	 * properly do every check on the key.
1412	 */
1413search_forward:
1414	while (true) {
1415		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1416		if (key.objectid >= search_start + search_len)
1417			break;
1418		if (key.type != BTRFS_METADATA_ITEM_KEY &&
1419		    key.type != BTRFS_EXTENT_ITEM_KEY)
1420			goto next;
1421
1422		ret = compare_extent_item_range(path, search_start, search_len);
1423		if (ret == 0)
1424			return ret;
1425		if (ret > 0)
1426			break;
1427next:
1428		ret = btrfs_next_item(extent_root, path);
1429		if (ret) {
1430			/* Either no more items or a fatal error. */
1431			btrfs_release_path(path);
1432			return ret;
 
 
 
 
 
 
 
 
 
 
 
1433		}
1434	}
1435	btrfs_release_path(path);
1436	return 1;
 
 
 
 
 
1437}
1438
1439static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1440			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1441{
1442	struct btrfs_key key;
1443	struct btrfs_extent_item *ei;
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1446	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1447	       key.type == BTRFS_EXTENT_ITEM_KEY);
1448	*extent_start_ret = key.objectid;
1449	if (key.type == BTRFS_METADATA_ITEM_KEY)
1450		*size_ret = path->nodes[0]->fs_info->nodesize;
 
 
 
1451	else
1452		*size_ret = key.offset;
1453	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1454	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1455	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
 
1456}
1457
1458static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1459					u64 physical, u64 physical_end)
1460{
1461	struct btrfs_fs_info *fs_info = sctx->fs_info;
1462	int ret = 0;
 
 
 
 
 
 
1463
1464	if (!btrfs_is_zoned(fs_info))
 
1465		return 0;
1466
1467	mutex_lock(&sctx->wr_lock);
1468	if (sctx->write_pointer < physical_end) {
1469		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1470						    physical,
1471						    sctx->write_pointer);
1472		if (ret)
1473			btrfs_err(fs_info,
1474				  "zoned: failed to recover write pointer");
 
 
 
 
 
 
 
 
 
 
 
1475	}
1476	mutex_unlock(&sctx->wr_lock);
1477	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1478
1479	return ret;
1480}
 
1481
1482static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1483				 struct scrub_stripe *stripe,
1484				 u64 extent_start, u64 extent_len,
1485				 u64 extent_flags, u64 extent_gen)
1486{
1487	for (u64 cur_logical = max(stripe->logical, extent_start);
1488	     cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1489			       extent_start + extent_len);
1490	     cur_logical += fs_info->sectorsize) {
1491		const int nr_sector = (cur_logical - stripe->logical) >>
1492				      fs_info->sectorsize_bits;
1493		struct scrub_sector_verification *sector =
1494						&stripe->sectors[nr_sector];
1495
1496		set_bit(nr_sector, &stripe->extent_sector_bitmap);
1497		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1498			sector->is_metadata = true;
1499			sector->generation = extent_gen;
1500		}
1501	}
1502}
1503
1504static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1505{
1506	stripe->extent_sector_bitmap = 0;
1507	stripe->init_error_bitmap = 0;
1508	stripe->init_nr_io_errors = 0;
1509	stripe->init_nr_csum_errors = 0;
1510	stripe->init_nr_meta_errors = 0;
1511	stripe->error_bitmap = 0;
1512	stripe->io_error_bitmap = 0;
1513	stripe->csum_error_bitmap = 0;
1514	stripe->meta_error_bitmap = 0;
1515}
 
 
1516
1517/*
1518 * Locate one stripe which has at least one extent in its range.
1519 *
1520 * Return 0 if found such stripe, and store its info into @stripe.
1521 * Return >0 if there is no such stripe in the specified range.
1522 * Return <0 for error.
1523 */
1524static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1525					struct btrfs_path *extent_path,
1526					struct btrfs_path *csum_path,
1527					struct btrfs_device *dev, u64 physical,
1528					int mirror_num, u64 logical_start,
1529					u32 logical_len,
1530					struct scrub_stripe *stripe)
1531{
1532	struct btrfs_fs_info *fs_info = bg->fs_info;
1533	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1534	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1535	const u64 logical_end = logical_start + logical_len;
1536	u64 cur_logical = logical_start;
1537	u64 stripe_end;
1538	u64 extent_start;
1539	u64 extent_len;
1540	u64 extent_flags;
1541	u64 extent_gen;
1542	int ret;
1543
1544	if (unlikely(!extent_root)) {
1545		btrfs_err(fs_info, "no valid extent root for scrub");
1546		return -EUCLEAN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547	}
1548	memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1549				   stripe->nr_sectors);
1550	scrub_stripe_reset_bitmaps(stripe);
1551
1552	/* The range must be inside the bg. */
1553	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
 
1554
1555	ret = find_first_extent_item(extent_root, extent_path, logical_start,
1556				     logical_len);
1557	/* Either error or not found. */
1558	if (ret)
1559		goto out;
1560	get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1561			&extent_gen);
1562	if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1563		stripe->nr_meta_extents++;
1564	if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1565		stripe->nr_data_extents++;
1566	cur_logical = max(extent_start, cur_logical);
1567
1568	/*
1569	 * Round down to stripe boundary.
1570	 *
1571	 * The extra calculation against bg->start is to handle block groups
1572	 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1573	 */
1574	stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1575			  bg->start;
1576	stripe->physical = physical + stripe->logical - logical_start;
1577	stripe->dev = dev;
1578	stripe->bg = bg;
1579	stripe->mirror_num = mirror_num;
1580	stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1581
1582	/* Fill the first extent info into stripe->sectors[] array. */
1583	fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1584			     extent_flags, extent_gen);
1585	cur_logical = extent_start + extent_len;
1586
1587	/* Fill the extent info for the remaining sectors. */
1588	while (cur_logical <= stripe_end) {
1589		ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1590					     stripe_end - cur_logical + 1);
1591		if (ret < 0)
1592			goto out;
1593		if (ret > 0) {
1594			ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595			break;
1596		}
1597		get_extent_info(extent_path, &extent_start, &extent_len,
1598				&extent_flags, &extent_gen);
1599		if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1600			stripe->nr_meta_extents++;
1601		if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1602			stripe->nr_data_extents++;
1603		fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1604				     extent_flags, extent_gen);
1605		cur_logical = extent_start + extent_len;
1606	}
1607
1608	/* Now fill the data csum. */
1609	if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1610		int sector_nr;
1611		unsigned long csum_bitmap = 0;
1612
1613		/* Csum space should have already been allocated. */
1614		ASSERT(stripe->csums);
1615
1616		/*
1617		 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1618		 * should contain at most 16 sectors.
1619		 */
1620		ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1621
1622		ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1623						stripe->logical, stripe_end,
1624						stripe->csums, &csum_bitmap);
1625		if (ret < 0)
1626			goto out;
1627		if (ret > 0)
1628			ret = 0;
1629
1630		for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1631			stripe->sectors[sector_nr].csum = stripe->csums +
1632				sector_nr * fs_info->csum_size;
1633		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634	}
1635	set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1636out:
1637	return ret;
 
 
 
 
1638}
1639
1640static void scrub_reset_stripe(struct scrub_stripe *stripe)
1641{
1642	scrub_stripe_reset_bitmaps(stripe);
 
1643
1644	stripe->nr_meta_extents = 0;
1645	stripe->nr_data_extents = 0;
1646	stripe->state = 0;
1647
1648	for (int i = 0; i < stripe->nr_sectors; i++) {
1649		stripe->sectors[i].is_metadata = false;
1650		stripe->sectors[i].csum = NULL;
1651		stripe->sectors[i].generation = 0;
1652	}
1653}
1654
1655static u32 stripe_length(const struct scrub_stripe *stripe)
1656{
1657	ASSERT(stripe->bg);
 
1658
1659	return min(BTRFS_STRIPE_LEN,
1660		   stripe->bg->start + stripe->bg->length - stripe->logical);
 
 
 
 
 
1661}
1662
1663static void scrub_submit_extent_sector_read(struct scrub_stripe *stripe)
1664{
1665	struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1666	struct btrfs_bio *bbio = NULL;
1667	unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1668	u64 stripe_len = BTRFS_STRIPE_LEN;
1669	int mirror = stripe->mirror_num;
1670	int i;
1671
1672	atomic_inc(&stripe->pending_io);
 
1673
1674	for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1675		struct page *page = scrub_stripe_get_page(stripe, i);
1676		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
 
 
1677
1678		/* We're beyond the chunk boundary, no need to read anymore. */
1679		if (i >= nr_sectors)
1680			break;
 
 
 
1681
1682		/* The current sector cannot be merged, submit the bio. */
1683		if (bbio &&
1684		    ((i > 0 &&
1685		      !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1686		     bbio->bio.bi_iter.bi_size >= stripe_len)) {
1687			ASSERT(bbio->bio.bi_iter.bi_size);
1688			atomic_inc(&stripe->pending_io);
1689			btrfs_submit_bbio(bbio, mirror);
1690			bbio = NULL;
 
 
 
 
 
 
1691		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693		if (!bbio) {
1694			struct btrfs_io_stripe io_stripe = {};
1695			struct btrfs_io_context *bioc = NULL;
1696			const u64 logical = stripe->logical +
1697					    (i << fs_info->sectorsize_bits);
1698			int err;
1699
1700			io_stripe.rst_search_commit_root = true;
1701			stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
1702			/*
1703			 * For RST cases, we need to manually split the bbio to
1704			 * follow the RST boundary.
1705			 */
1706			err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1707					      &stripe_len, &bioc, &io_stripe, &mirror);
1708			btrfs_put_bioc(bioc);
1709			if (err < 0) {
1710				if (err != -ENODATA) {
1711					/*
1712					 * Earlier btrfs_get_raid_extent_offset()
1713					 * returned -ENODATA, which means there's
1714					 * no entry for the corresponding range
1715					 * in the stripe tree.  But if it's in
1716					 * the extent tree, then it's a preallocated
1717					 * extent and not an error.
1718					 */
1719					set_bit(i, &stripe->io_error_bitmap);
1720					set_bit(i, &stripe->error_bitmap);
1721				}
1722				continue;
1723			}
1724
1725			bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1726					       fs_info, scrub_read_endio, stripe);
1727			bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1728		}
1729
1730		__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1731	}
1732
1733	if (bbio) {
1734		ASSERT(bbio->bio.bi_iter.bi_size);
1735		atomic_inc(&stripe->pending_io);
1736		btrfs_submit_bbio(bbio, mirror);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1737	}
1738
1739	if (atomic_dec_and_test(&stripe->pending_io)) {
1740		wake_up(&stripe->io_wait);
1741		INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1742		queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
 
 
 
1743	}
 
 
1744}
1745
1746static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1747				      struct scrub_stripe *stripe)
1748{
 
1749	struct btrfs_fs_info *fs_info = sctx->fs_info;
1750	struct btrfs_bio *bbio;
1751	unsigned int nr_sectors = stripe_length(stripe) >> fs_info->sectorsize_bits;
1752	int mirror = stripe->mirror_num;
 
 
 
 
1753
1754	ASSERT(stripe->bg);
1755	ASSERT(stripe->mirror_num > 0);
1756	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
 
1757
1758	if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1759		scrub_submit_extent_sector_read(stripe);
1760		return;
 
 
 
 
 
 
1761	}
1762
1763	bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1764			       scrub_read_endio, stripe);
 
1765
1766	bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1767	/* Read the whole range inside the chunk boundary. */
1768	for (unsigned int cur = 0; cur < nr_sectors; cur++) {
1769		struct page *page = scrub_stripe_get_page(stripe, cur);
1770		unsigned int pgoff = scrub_stripe_get_page_offset(stripe, cur);
1771		int ret;
1772
1773		ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1774		/* We should have allocated enough bio vectors. */
1775		ASSERT(ret == fs_info->sectorsize);
1776	}
1777	atomic_inc(&stripe->pending_io);
1778
1779	/*
1780	 * For dev-replace, either user asks to avoid the source dev, or
1781	 * the device is missing, we try the next mirror instead.
1782	 */
1783	if (sctx->is_dev_replace &&
1784	    (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1785	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1786	     !stripe->dev->bdev)) {
1787		int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1788						  stripe->bg->length);
1789
1790		mirror = calc_next_mirror(mirror, num_copies);
1791	}
1792	btrfs_submit_bbio(bbio, mirror);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793}
1794
1795static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
 
 
 
1796{
1797	int i;
 
1798
1799	for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1800		if (stripe->sectors[i].is_metadata) {
1801			struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
 
 
 
 
1802
1803			btrfs_err(fs_info,
1804			"stripe %llu has unrepaired metadata sector at %llu",
1805				  stripe->logical,
1806				  stripe->logical + (i << fs_info->sectorsize_bits));
1807			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808		}
 
 
 
 
 
 
 
 
1809	}
1810	return false;
1811}
1812
1813static void submit_initial_group_read(struct scrub_ctx *sctx,
1814				      unsigned int first_slot,
1815				      unsigned int nr_stripes)
1816{
1817	struct blk_plug plug;
1818
1819	ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1820	ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
 
 
 
 
 
 
 
 
 
1821
1822	scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1823			      btrfs_stripe_nr_to_offset(nr_stripes));
1824	blk_start_plug(&plug);
1825	for (int i = 0; i < nr_stripes; i++) {
1826		struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
 
1827
1828		/* Those stripes should be initialized. */
1829		ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1830		scrub_submit_initial_read(sctx, stripe);
1831	}
1832	blk_finish_plug(&plug);
 
 
 
1833}
1834
1835static int flush_scrub_stripes(struct scrub_ctx *sctx)
1836{
1837	struct btrfs_fs_info *fs_info = sctx->fs_info;
1838	struct scrub_stripe *stripe;
1839	const int nr_stripes = sctx->cur_stripe;
1840	int ret = 0;
1841
1842	if (!nr_stripes)
1843		return 0;
 
 
 
1844
1845	ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
 
 
 
 
1846
1847	/* Submit the stripes which are populated but not submitted. */
1848	if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1849		const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
 
1850
1851		submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
 
 
1852	}
1853
1854	for (int i = 0; i < nr_stripes; i++) {
1855		stripe = &sctx->stripes[i];
 
 
1856
1857		wait_event(stripe->repair_wait,
1858			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
1859	}
1860
1861	/* Submit for dev-replace. */
1862	if (sctx->is_dev_replace) {
1863		/*
1864		 * For dev-replace, if we know there is something wrong with
1865		 * metadata, we should immediately abort.
1866		 */
1867		for (int i = 0; i < nr_stripes; i++) {
1868			if (stripe_has_metadata_error(&sctx->stripes[i])) {
1869				ret = -EIO;
1870				goto out;
1871			}
1872		}
1873		for (int i = 0; i < nr_stripes; i++) {
1874			unsigned long good;
1875
1876			stripe = &sctx->stripes[i];
 
 
 
 
 
1877
1878			ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
 
1879
1880			bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1881				      &stripe->error_bitmap, stripe->nr_sectors);
1882			scrub_write_sectors(sctx, stripe, good, true);
1883		}
 
 
 
 
 
 
 
1884	}
1885
1886	/* Wait for the above writebacks to finish. */
1887	for (int i = 0; i < nr_stripes; i++) {
1888		stripe = &sctx->stripes[i];
 
1889
1890		wait_scrub_stripe_io(stripe);
1891		spin_lock(&sctx->stat_lock);
1892		sctx->stat.last_physical = stripe->physical + stripe_length(stripe);
1893		spin_unlock(&sctx->stat_lock);
1894		scrub_reset_stripe(stripe);
1895	}
1896out:
1897	sctx->cur_stripe = 0;
1898	return ret;
1899}
1900
1901static void raid56_scrub_wait_endio(struct bio *bio)
 
1902{
1903	complete(bio->bi_private);
1904}
1905
1906static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1907			      struct btrfs_device *dev, int mirror_num,
1908			      u64 logical, u32 length, u64 physical,
1909			      u64 *found_logical_ret)
1910{
1911	struct scrub_stripe *stripe;
1912	int ret;
1913
1914	/*
1915	 * There should always be one slot left, as caller filling the last
1916	 * slot should flush them all.
1917	 */
1918	ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1919
1920	/* @found_logical_ret must be specified. */
1921	ASSERT(found_logical_ret);
 
1922
1923	stripe = &sctx->stripes[sctx->cur_stripe];
1924	scrub_reset_stripe(stripe);
1925	ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1926					   &sctx->csum_path, dev, physical,
1927					   mirror_num, logical, length, stripe);
1928	/* Either >0 as no more extents or <0 for error. */
1929	if (ret)
1930		return ret;
1931	*found_logical_ret = stripe->logical;
1932	sctx->cur_stripe++;
 
 
 
1933
1934	/* We filled one group, submit it. */
1935	if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1936		const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
 
1937
1938		submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
 
1939	}
1940
1941	/* Last slot used, flush them all. */
1942	if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1943		return flush_scrub_stripes(sctx);
1944	return 0;
1945}
1946
1947static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1948				      struct btrfs_device *scrub_dev,
1949				      struct btrfs_block_group *bg,
1950				      struct btrfs_chunk_map *map,
1951				      u64 full_stripe_start)
1952{
1953	DECLARE_COMPLETION_ONSTACK(io_done);
1954	struct btrfs_fs_info *fs_info = sctx->fs_info;
1955	struct btrfs_raid_bio *rbio;
1956	struct btrfs_io_context *bioc = NULL;
1957	struct btrfs_path extent_path = { 0 };
1958	struct btrfs_path csum_path = { 0 };
1959	struct bio *bio;
1960	struct scrub_stripe *stripe;
1961	bool all_empty = true;
1962	const int data_stripes = nr_data_stripes(map);
1963	unsigned long extent_bitmap = 0;
1964	u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1965	int ret;
1966
1967	ASSERT(sctx->raid56_data_stripes);
1968
1969	/*
1970	 * For data stripe search, we cannot reuse the same extent/csum paths,
1971	 * as the data stripe bytenr may be smaller than previous extent.  Thus
1972	 * we have to use our own extent/csum paths.
1973	 */
1974	extent_path.search_commit_root = 1;
1975	extent_path.skip_locking = 1;
1976	csum_path.search_commit_root = 1;
1977	csum_path.skip_locking = 1;
1978
1979	for (int i = 0; i < data_stripes; i++) {
1980		int stripe_index;
1981		int rot;
1982		u64 physical;
1983
1984		stripe = &sctx->raid56_data_stripes[i];
1985		rot = div_u64(full_stripe_start - bg->start,
1986			      data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1987		stripe_index = (i + rot) % map->num_stripes;
1988		physical = map->stripes[stripe_index].physical +
1989			   btrfs_stripe_nr_to_offset(rot);
1990
1991		scrub_reset_stripe(stripe);
1992		set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1993		ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1994				map->stripes[stripe_index].dev, physical, 1,
1995				full_stripe_start + btrfs_stripe_nr_to_offset(i),
1996				BTRFS_STRIPE_LEN, stripe);
1997		if (ret < 0)
1998			goto out;
1999		/*
2000		 * No extent in this data stripe, need to manually mark them
2001		 * initialized to make later read submission happy.
2002		 */
2003		if (ret > 0) {
2004			stripe->logical = full_stripe_start +
2005					  btrfs_stripe_nr_to_offset(i);
2006			stripe->dev = map->stripes[stripe_index].dev;
2007			stripe->mirror_num = 1;
2008			set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
2009		}
2010	}
2011
2012	/* Check if all data stripes are empty. */
2013	for (int i = 0; i < data_stripes; i++) {
2014		stripe = &sctx->raid56_data_stripes[i];
2015		if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
2016			all_empty = false;
 
2017			break;
2018		}
 
 
 
 
2019	}
2020	if (all_empty) {
2021		ret = 0;
2022		goto out;
 
 
 
 
 
 
2023	}
 
 
2024
2025	for (int i = 0; i < data_stripes; i++) {
2026		stripe = &sctx->raid56_data_stripes[i];
2027		scrub_submit_initial_read(sctx, stripe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2028	}
2029	for (int i = 0; i < data_stripes; i++) {
2030		stripe = &sctx->raid56_data_stripes[i];
2031
2032		wait_event(stripe->repair_wait,
2033			   test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034	}
2035	/* For now, no zoned support for RAID56. */
2036	ASSERT(!btrfs_is_zoned(sctx->fs_info));
2037
2038	/*
2039	 * Now all data stripes are properly verified. Check if we have any
2040	 * unrepaired, if so abort immediately or we could further corrupt the
2041	 * P/Q stripes.
2042	 *
2043	 * During the loop, also populate extent_bitmap.
2044	 */
2045	for (int i = 0; i < data_stripes; i++) {
2046		unsigned long error;
2047
2048		stripe = &sctx->raid56_data_stripes[i];
 
 
 
 
 
 
2049
2050		/*
2051		 * We should only check the errors where there is an extent.
2052		 * As we may hit an empty data stripe while it's missing.
2053		 */
2054		bitmap_and(&error, &stripe->error_bitmap,
2055			   &stripe->extent_sector_bitmap, stripe->nr_sectors);
2056		if (!bitmap_empty(&error, stripe->nr_sectors)) {
2057			btrfs_err(fs_info,
2058"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2059				  full_stripe_start, i, stripe->nr_sectors,
2060				  &error);
2061			ret = -EIO;
2062			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2063		}
2064		bitmap_or(&extent_bitmap, &extent_bitmap,
2065			  &stripe->extent_sector_bitmap, stripe->nr_sectors);
 
 
 
 
 
2066	}
2067
2068	/* Now we can check and regenerate the P/Q stripe. */
2069	bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2070	bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2071	bio->bi_private = &io_done;
2072	bio->bi_end_io = raid56_scrub_wait_endio;
2073
2074	btrfs_bio_counter_inc_blocked(fs_info);
2075	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2076			      &length, &bioc, NULL, NULL);
2077	if (ret < 0) {
2078		btrfs_put_bioc(bioc);
2079		btrfs_bio_counter_dec(fs_info);
2080		goto out;
2081	}
2082	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2083				BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2084	btrfs_put_bioc(bioc);
2085	if (!rbio) {
2086		ret = -ENOMEM;
2087		btrfs_bio_counter_dec(fs_info);
2088		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2089	}
2090	/* Use the recovered stripes as cache to avoid read them from disk again. */
2091	for (int i = 0; i < data_stripes; i++) {
2092		stripe = &sctx->raid56_data_stripes[i];
2093
2094		raid56_parity_cache_data_pages(rbio, stripe->pages,
2095				full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
 
 
 
 
 
2096	}
2097	raid56_parity_submit_scrub_rbio(rbio);
2098	wait_for_completion_io(&io_done);
2099	ret = blk_status_to_errno(bio->bi_status);
2100	bio_put(bio);
2101	btrfs_bio_counter_dec(fs_info);
2102
2103	btrfs_release_path(&extent_path);
2104	btrfs_release_path(&csum_path);
2105out:
2106	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107}
2108
2109/*
2110 * Scrub one range which can only has simple mirror based profile.
2111 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2112 *  RAID0/RAID10).
2113 *
2114 * Since we may need to handle a subset of block group, we need @logical_start
2115 * and @logical_length parameter.
2116 */
2117static int scrub_simple_mirror(struct scrub_ctx *sctx,
2118			       struct btrfs_block_group *bg,
2119			       u64 logical_start, u64 logical_length,
2120			       struct btrfs_device *device,
2121			       u64 physical, int mirror_num)
2122{
2123	struct btrfs_fs_info *fs_info = sctx->fs_info;
2124	const u64 logical_end = logical_start + logical_length;
2125	u64 cur_logical = logical_start;
2126	int ret = 0;
 
 
2127
2128	/* The range must be inside the bg */
2129	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
 
 
2130
2131	/* Go through each extent items inside the logical range */
2132	while (cur_logical < logical_end) {
2133		u64 found_logical = U64_MAX;
2134		u64 cur_physical = physical + cur_logical - logical_start;
2135
2136		/* Canceled? */
2137		if (atomic_read(&fs_info->scrub_cancel_req) ||
2138		    atomic_read(&sctx->cancel_req)) {
2139			ret = -ECANCELED;
2140			break;
2141		}
2142		/* Paused? */
2143		if (atomic_read(&fs_info->scrub_pause_req)) {
2144			/* Push queued extents */
2145			scrub_blocked_if_needed(fs_info);
2146		}
2147		/* Block group removed? */
2148		spin_lock(&bg->lock);
2149		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2150			spin_unlock(&bg->lock);
2151			ret = 0;
2152			break;
2153		}
2154		spin_unlock(&bg->lock);
2155
2156		ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2157					 cur_logical, logical_end - cur_logical,
2158					 cur_physical, &found_logical);
2159		if (ret > 0) {
2160			/* No more extent, just update the accounting */
2161			spin_lock(&sctx->stat_lock);
2162			sctx->stat.last_physical = physical + logical_length;
2163			spin_unlock(&sctx->stat_lock);
2164			ret = 0;
2165			break;
2166		}
2167		if (ret < 0)
2168			break;
 
 
 
 
 
 
2169
2170		/* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2171		ASSERT(found_logical != U64_MAX);
2172		cur_logical = found_logical + BTRFS_STRIPE_LEN;
 
 
 
 
2173
2174		/* Don't hold CPU for too long time */
2175		cond_resched();
 
2176	}
2177	return ret;
 
2178}
2179
2180/* Calculate the full stripe length for simple stripe based profiles */
2181static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2182{
2183	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2184			    BTRFS_BLOCK_GROUP_RAID10));
 
2185
2186	return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
 
2187}
2188
2189/* Get the logical bytenr for the stripe */
2190static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2191				     struct btrfs_block_group *bg,
2192				     int stripe_index)
2193{
2194	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2195			    BTRFS_BLOCK_GROUP_RAID10));
2196	ASSERT(stripe_index < map->num_stripes);
2197
2198	/*
2199	 * (stripe_index / sub_stripes) gives how many data stripes we need to
2200	 * skip.
2201	 */
2202	return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2203	       bg->start;
 
 
 
2204}
2205
2206/* Get the mirror number for the stripe */
2207static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2208{
2209	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2210			    BTRFS_BLOCK_GROUP_RAID10));
2211	ASSERT(stripe_index < map->num_stripes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212
2213	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2214	return stripe_index % map->sub_stripes + 1;
 
 
 
 
 
 
 
 
 
2215}
2216
2217static int scrub_simple_stripe(struct scrub_ctx *sctx,
2218			       struct btrfs_block_group *bg,
2219			       struct btrfs_chunk_map *map,
2220			       struct btrfs_device *device,
2221			       int stripe_index)
2222{
2223	const u64 logical_increment = simple_stripe_full_stripe_len(map);
2224	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2225	const u64 orig_physical = map->stripes[stripe_index].physical;
2226	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2227	u64 cur_logical = orig_logical;
2228	u64 cur_physical = orig_physical;
2229	int ret = 0;
2230
2231	while (cur_logical < bg->start + bg->length) {
2232		/*
2233		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2234		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2235		 * this stripe.
2236		 */
2237		ret = scrub_simple_mirror(sctx, bg, cur_logical,
2238					  BTRFS_STRIPE_LEN, device, cur_physical,
2239					  mirror_num);
2240		if (ret)
2241			return ret;
2242		/* Skip to next stripe which belongs to the target device */
2243		cur_logical += logical_increment;
2244		/* For physical offset, we just go to next stripe */
2245		cur_physical += BTRFS_STRIPE_LEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246	}
2247	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248}
2249
2250static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2251					   struct btrfs_block_group *bg,
2252					   struct btrfs_chunk_map *map,
2253					   struct btrfs_device *scrub_dev,
2254					   int stripe_index)
 
2255{
 
2256	struct btrfs_fs_info *fs_info = sctx->fs_info;
2257	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2258	const u64 chunk_logical = bg->start;
 
 
 
2259	int ret;
2260	int ret2;
2261	u64 physical = map->stripes[stripe_index].physical;
2262	const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2263	const u64 physical_end = physical + dev_stripe_len;
2264	u64 logical;
2265	u64 logic_end;
2266	/* The logical increment after finishing one stripe */
2267	u64 increment;
2268	/* Offset inside the chunk */
 
 
 
 
 
2269	u64 offset;
 
 
 
2270	u64 stripe_logical;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271
2272	/* Extent_path should be released by now. */
2273	ASSERT(sctx->extent_path.nodes[0] == NULL);
2274
2275	scrub_blocked_if_needed(fs_info);
2276
2277	if (sctx->is_dev_replace &&
2278	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2279		mutex_lock(&sctx->wr_lock);
2280		sctx->write_pointer = physical;
2281		mutex_unlock(&sctx->wr_lock);
2282	}
2283
2284	/* Prepare the extra data stripes used by RAID56. */
2285	if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2286		ASSERT(sctx->raid56_data_stripes == NULL);
2287
2288		sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2289						    sizeof(struct scrub_stripe),
2290						    GFP_KERNEL);
2291		if (!sctx->raid56_data_stripes) {
2292			ret = -ENOMEM;
2293			goto out;
2294		}
2295		for (int i = 0; i < nr_data_stripes(map); i++) {
2296			ret = init_scrub_stripe(fs_info,
2297						&sctx->raid56_data_stripes[i]);
2298			if (ret < 0)
2299				goto out;
2300			sctx->raid56_data_stripes[i].bg = bg;
2301			sctx->raid56_data_stripes[i].sctx = sctx;
2302		}
2303	}
2304	/*
2305	 * There used to be a big double loop to handle all profiles using the
2306	 * same routine, which grows larger and more gross over time.
2307	 *
2308	 * So here we handle each profile differently, so simpler profiles
2309	 * have simpler scrubbing function.
2310	 */
2311	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2312			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2313		/*
2314		 * Above check rules out all complex profile, the remaining
2315		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2316		 * mirrored duplication without stripe.
2317		 *
2318		 * Only @physical and @mirror_num needs to calculated using
2319		 * @stripe_index.
2320		 */
2321		ret = scrub_simple_mirror(sctx, bg, bg->start, bg->length,
2322				scrub_dev, map->stripes[stripe_index].physical,
2323				stripe_index + 1);
2324		offset = 0;
2325		goto out;
2326	}
2327	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2328		ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2329		offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2330		goto out;
2331	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332
2333	/* Only RAID56 goes through the old code */
2334	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2335	ret = 0;
2336
2337	/* Calculate the logical end of the stripe */
2338	get_raid56_logic_offset(physical_end, stripe_index,
2339				map, &logic_end, NULL);
2340	logic_end += chunk_logical;
2341
2342	/* Initialize @offset in case we need to go to out: label */
2343	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2344	increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2345
2346	/*
2347	 * Due to the rotation, for RAID56 it's better to iterate each stripe
2348	 * using their physical offset.
2349	 */
 
2350	while (physical < physical_end) {
2351		ret = get_raid56_logic_offset(physical, stripe_index, map,
2352					      &logical, &stripe_logical);
2353		logical += chunk_logical;
2354		if (ret) {
2355			/* it is parity strip */
2356			stripe_logical += chunk_logical;
2357			ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2358							 map, stripe_logical);
2359			spin_lock(&sctx->stat_lock);
2360			sctx->stat.last_physical = min(physical + BTRFS_STRIPE_LEN,
2361						       physical_end);
2362			spin_unlock(&sctx->stat_lock);
2363			if (ret)
2364				goto out;
2365			goto next;
2366		}
2367
2368		/*
2369		 * Now we're at a data stripe, scrub each extents in the range.
2370		 *
2371		 * At this stage, if we ignore the repair part, inside each data
2372		 * stripe it is no different than SINGLE profile.
2373		 * We can reuse scrub_simple_mirror() here, as the repair part
2374		 * is still based on @mirror_num.
2375		 */
2376		ret = scrub_simple_mirror(sctx, bg, logical, BTRFS_STRIPE_LEN,
2377					  scrub_dev, physical, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378		if (ret < 0)
2379			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380next:
 
 
 
 
2381		logical += increment;
2382		physical += BTRFS_STRIPE_LEN;
2383		spin_lock(&sctx->stat_lock);
2384		sctx->stat.last_physical = physical;
 
 
 
 
2385		spin_unlock(&sctx->stat_lock);
 
 
2386	}
2387out:
2388	ret2 = flush_scrub_stripes(sctx);
2389	if (!ret)
2390		ret = ret2;
2391	btrfs_release_path(&sctx->extent_path);
2392	btrfs_release_path(&sctx->csum_path);
2393
2394	if (sctx->raid56_data_stripes) {
2395		for (int i = 0; i < nr_data_stripes(map); i++)
2396			release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2397		kfree(sctx->raid56_data_stripes);
2398		sctx->raid56_data_stripes = NULL;
2399	}
2400
2401	if (sctx->is_dev_replace && ret >= 0) {
2402		int ret2;
2403
2404		ret2 = sync_write_pointer_for_zoned(sctx,
2405				chunk_logical + offset,
2406				map->stripes[stripe_index].physical,
2407				physical_end);
2408		if (ret2)
2409			ret = ret2;
2410	}
2411
 
 
 
2412	return ret < 0 ? ret : 0;
2413}
2414
2415static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2416					  struct btrfs_block_group *bg,
2417					  struct btrfs_device *scrub_dev,
 
2418					  u64 dev_offset,
2419					  u64 dev_extent_len)
 
2420{
2421	struct btrfs_fs_info *fs_info = sctx->fs_info;
2422	struct btrfs_chunk_map *map;
 
 
2423	int i;
2424	int ret = 0;
2425
2426	map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2427	if (!map) {
 
 
 
2428		/*
2429		 * Might have been an unused block group deleted by the cleaner
2430		 * kthread or relocation.
2431		 */
2432		spin_lock(&bg->lock);
2433		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2434			ret = -EINVAL;
2435		spin_unlock(&bg->lock);
2436
2437		return ret;
2438	}
2439	if (map->start != bg->start)
 
 
2440		goto out;
2441	if (map->chunk_len < dev_extent_len)
 
2442		goto out;
2443
2444	for (i = 0; i < map->num_stripes; ++i) {
2445		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2446		    map->stripes[i].physical == dev_offset) {
2447			ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
 
 
2448			if (ret)
2449				goto out;
2450		}
2451	}
2452out:
2453	btrfs_free_chunk_map(map);
2454
2455	return ret;
2456}
2457
2458static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2459					  struct btrfs_block_group *cache)
2460{
2461	struct btrfs_fs_info *fs_info = cache->fs_info;
2462
2463	if (!btrfs_is_zoned(fs_info))
2464		return 0;
2465
2466	btrfs_wait_block_group_reservations(cache);
2467	btrfs_wait_nocow_writers(cache);
2468	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2469
2470	return btrfs_commit_current_transaction(root);
2471}
2472
2473static noinline_for_stack
2474int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2475			   struct btrfs_device *scrub_dev, u64 start, u64 end)
 
2476{
2477	struct btrfs_dev_extent *dev_extent = NULL;
2478	struct btrfs_path *path;
2479	struct btrfs_fs_info *fs_info = sctx->fs_info;
2480	struct btrfs_root *root = fs_info->dev_root;
 
2481	u64 chunk_offset;
2482	int ret = 0;
2483	int ro_set;
2484	int slot;
2485	struct extent_buffer *l;
2486	struct btrfs_key key;
2487	struct btrfs_key found_key;
2488	struct btrfs_block_group *cache;
2489	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2490
2491	path = btrfs_alloc_path();
2492	if (!path)
2493		return -ENOMEM;
2494
2495	path->reada = READA_FORWARD;
2496	path->search_commit_root = 1;
2497	path->skip_locking = 1;
2498
2499	key.objectid = scrub_dev->devid;
2500	key.offset = 0ull;
2501	key.type = BTRFS_DEV_EXTENT_KEY;
2502
2503	while (1) {
2504		u64 dev_extent_len;
2505
2506		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2507		if (ret < 0)
2508			break;
2509		if (ret > 0) {
2510			if (path->slots[0] >=
2511			    btrfs_header_nritems(path->nodes[0])) {
2512				ret = btrfs_next_leaf(root, path);
2513				if (ret < 0)
2514					break;
2515				if (ret > 0) {
2516					ret = 0;
2517					break;
2518				}
2519			} else {
2520				ret = 0;
2521			}
2522		}
2523
2524		l = path->nodes[0];
2525		slot = path->slots[0];
2526
2527		btrfs_item_key_to_cpu(l, &found_key, slot);
2528
2529		if (found_key.objectid != scrub_dev->devid)
2530			break;
2531
2532		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2533			break;
2534
2535		if (found_key.offset >= end)
2536			break;
2537
2538		if (found_key.offset < key.offset)
2539			break;
2540
2541		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2542		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2543
2544		if (found_key.offset + dev_extent_len <= start)
2545			goto skip;
2546
2547		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2548
2549		/*
2550		 * get a reference on the corresponding block group to prevent
2551		 * the chunk from going away while we scrub it
2552		 */
2553		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2554
2555		/* some chunks are removed but not committed to disk yet,
2556		 * continue scrubbing */
2557		if (!cache)
2558			goto skip;
2559
2560		ASSERT(cache->start <= chunk_offset);
2561		/*
2562		 * We are using the commit root to search for device extents, so
2563		 * that means we could have found a device extent item from a
2564		 * block group that was deleted in the current transaction. The
2565		 * logical start offset of the deleted block group, stored at
2566		 * @chunk_offset, might be part of the logical address range of
2567		 * a new block group (which uses different physical extents).
2568		 * In this case btrfs_lookup_block_group() has returned the new
2569		 * block group, and its start address is less than @chunk_offset.
2570		 *
2571		 * We skip such new block groups, because it's pointless to
2572		 * process them, as we won't find their extents because we search
2573		 * for them using the commit root of the extent tree. For a device
2574		 * replace it's also fine to skip it, we won't miss copying them
2575		 * to the target device because we have the write duplication
2576		 * setup through the regular write path (by btrfs_map_block()),
2577		 * and we have committed a transaction when we started the device
2578		 * replace, right after setting up the device replace state.
2579		 */
2580		if (cache->start < chunk_offset) {
2581			btrfs_put_block_group(cache);
2582			goto skip;
2583		}
2584
2585		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2586			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2587				btrfs_put_block_group(cache);
2588				goto skip;
2589			}
2590		}
2591
2592		/*
2593		 * Make sure that while we are scrubbing the corresponding block
2594		 * group doesn't get its logical address and its device extents
2595		 * reused for another block group, which can possibly be of a
2596		 * different type and different profile. We do this to prevent
2597		 * false error detections and crashes due to bogus attempts to
2598		 * repair extents.
2599		 */
2600		spin_lock(&cache->lock);
2601		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2602			spin_unlock(&cache->lock);
2603			btrfs_put_block_group(cache);
2604			goto skip;
2605		}
2606		btrfs_freeze_block_group(cache);
2607		spin_unlock(&cache->lock);
2608
2609		/*
2610		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2611		 * to avoid deadlock caused by:
2612		 * btrfs_inc_block_group_ro()
2613		 * -> btrfs_wait_for_commit()
2614		 * -> btrfs_commit_transaction()
2615		 * -> btrfs_scrub_pause()
2616		 */
2617		scrub_pause_on(fs_info);
2618
2619		/*
2620		 * Don't do chunk preallocation for scrub.
2621		 *
2622		 * This is especially important for SYSTEM bgs, or we can hit
2623		 * -EFBIG from btrfs_finish_chunk_alloc() like:
2624		 * 1. The only SYSTEM bg is marked RO.
2625		 *    Since SYSTEM bg is small, that's pretty common.
2626		 * 2. New SYSTEM bg will be allocated
2627		 *    Due to regular version will allocate new chunk.
2628		 * 3. New SYSTEM bg is empty and will get cleaned up
2629		 *    Before cleanup really happens, it's marked RO again.
2630		 * 4. Empty SYSTEM bg get scrubbed
2631		 *    We go back to 2.
2632		 *
2633		 * This can easily boost the amount of SYSTEM chunks if cleaner
2634		 * thread can't be triggered fast enough, and use up all space
2635		 * of btrfs_super_block::sys_chunk_array
2636		 *
2637		 * While for dev replace, we need to try our best to mark block
2638		 * group RO, to prevent race between:
2639		 * - Write duplication
2640		 *   Contains latest data
2641		 * - Scrub copy
2642		 *   Contains data from commit tree
2643		 *
2644		 * If target block group is not marked RO, nocow writes can
2645		 * be overwritten by scrub copy, causing data corruption.
2646		 * So for dev-replace, it's not allowed to continue if a block
2647		 * group is not RO.
2648		 */
2649		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2650		if (!ret && sctx->is_dev_replace) {
2651			ret = finish_extent_writes_for_zoned(root, cache);
2652			if (ret) {
2653				btrfs_dec_block_group_ro(cache);
2654				scrub_pause_off(fs_info);
2655				btrfs_put_block_group(cache);
2656				break;
2657			}
2658		}
 
2659
2660		if (ret == 0) {
2661			ro_set = 1;
2662		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2663			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2664			/*
2665			 * btrfs_inc_block_group_ro return -ENOSPC when it
2666			 * failed in creating new chunk for metadata.
2667			 * It is not a problem for scrub, because
2668			 * metadata are always cowed, and our scrub paused
2669			 * commit_transactions.
2670			 *
2671			 * For RAID56 chunks, we have to mark them read-only
2672			 * for scrub, as later we would use our own cache
2673			 * out of RAID56 realm.
2674			 * Thus we want the RAID56 bg to be marked RO to
2675			 * prevent RMW from screwing up out cache.
2676			 */
2677			ro_set = 0;
2678		} else if (ret == -ETXTBSY) {
2679			btrfs_warn(fs_info,
2680		   "skipping scrub of block group %llu due to active swapfile",
2681				   cache->start);
2682			scrub_pause_off(fs_info);
2683			ret = 0;
2684			goto skip_unfreeze;
2685		} else {
2686			btrfs_warn(fs_info,
2687				   "failed setting block group ro: %d", ret);
2688			btrfs_unfreeze_block_group(cache);
2689			btrfs_put_block_group(cache);
2690			scrub_pause_off(fs_info);
2691			break;
2692		}
2693
 
 
 
 
 
 
 
 
2694		/*
2695		 * Now the target block is marked RO, wait for nocow writes to
2696		 * finish before dev-replace.
2697		 * COW is fine, as COW never overwrites extents in commit tree.
 
 
 
 
 
2698		 */
2699		if (sctx->is_dev_replace) {
2700			btrfs_wait_nocow_writers(cache);
2701			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache);
2702		}
 
2703
2704		scrub_pause_off(fs_info);
2705		down_write(&dev_replace->rwsem);
2706		dev_replace->cursor_right = found_key.offset + dev_extent_len;
2707		dev_replace->cursor_left = found_key.offset;
2708		dev_replace->item_needs_writeback = 1;
2709		up_write(&dev_replace->rwsem);
2710
2711		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2712				  dev_extent_len);
2713		if (sctx->is_dev_replace &&
2714		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2715						      cache, found_key.offset))
2716			ro_set = 0;
 
 
 
 
 
 
2717
2718		down_write(&dev_replace->rwsem);
2719		dev_replace->cursor_left = dev_replace->cursor_right;
2720		dev_replace->item_needs_writeback = 1;
2721		up_write(&dev_replace->rwsem);
2722
2723		if (ro_set)
2724			btrfs_dec_block_group_ro(cache);
2725
2726		/*
2727		 * We might have prevented the cleaner kthread from deleting
2728		 * this block group if it was already unused because we raced
2729		 * and set it to RO mode first. So add it back to the unused
2730		 * list, otherwise it might not ever be deleted unless a manual
2731		 * balance is triggered or it becomes used and unused again.
2732		 */
2733		spin_lock(&cache->lock);
2734		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2735		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
2736			spin_unlock(&cache->lock);
2737			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2738				btrfs_discard_queue_work(&fs_info->discard_ctl,
2739							 cache);
2740			else
2741				btrfs_mark_bg_unused(cache);
 
 
2742		} else {
2743			spin_unlock(&cache->lock);
2744		}
2745skip_unfreeze:
2746		btrfs_unfreeze_block_group(cache);
2747		btrfs_put_block_group(cache);
2748		if (ret)
2749			break;
2750		if (sctx->is_dev_replace &&
2751		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2752			ret = -EIO;
2753			break;
2754		}
2755		if (sctx->stat.malloc_errors > 0) {
2756			ret = -ENOMEM;
2757			break;
2758		}
2759skip:
2760		key.offset = found_key.offset + dev_extent_len;
2761		btrfs_release_path(path);
2762	}
2763
2764	btrfs_free_path(path);
2765
2766	return ret;
2767}
2768
2769static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2770			   struct page *page, u64 physical, u64 generation)
2771{
2772	struct btrfs_fs_info *fs_info = sctx->fs_info;
2773	struct bio_vec bvec;
2774	struct bio bio;
2775	struct btrfs_super_block *sb = page_address(page);
2776	int ret;
2777
2778	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2779	bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2780	__bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2781	ret = submit_bio_wait(&bio);
2782	bio_uninit(&bio);
2783
2784	if (ret < 0)
2785		return ret;
2786	ret = btrfs_check_super_csum(fs_info, sb);
2787	if (ret != 0) {
2788		btrfs_err_rl(fs_info,
2789			"super block at physical %llu devid %llu has bad csum",
2790			physical, dev->devid);
2791		return -EIO;
2792	}
2793	if (btrfs_super_generation(sb) != generation) {
2794		btrfs_err_rl(fs_info,
2795"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2796			     physical, dev->devid,
2797			     btrfs_super_generation(sb), generation);
2798		return -EUCLEAN;
2799	}
2800
2801	return btrfs_validate_super(fs_info, sb, -1);
2802}
2803
2804static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2805					   struct btrfs_device *scrub_dev)
2806{
2807	int	i;
2808	u64	bytenr;
2809	u64	gen;
2810	int ret = 0;
2811	struct page *page;
2812	struct btrfs_fs_info *fs_info = sctx->fs_info;
2813
2814	if (BTRFS_FS_ERROR(fs_info))
2815		return -EROFS;
2816
2817	page = alloc_page(GFP_KERNEL);
2818	if (!page) {
2819		spin_lock(&sctx->stat_lock);
2820		sctx->stat.malloc_errors++;
2821		spin_unlock(&sctx->stat_lock);
2822		return -ENOMEM;
2823	}
2824
2825	/* Seed devices of a new filesystem has their own generation. */
2826	if (scrub_dev->fs_devices != fs_info->fs_devices)
2827		gen = scrub_dev->generation;
2828	else
2829		gen = btrfs_get_last_trans_committed(fs_info);
2830
2831	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2832		ret = btrfs_sb_log_location(scrub_dev, i, 0, &bytenr);
2833		if (ret == -ENOENT)
2834			break;
2835
2836		if (ret) {
2837			spin_lock(&sctx->stat_lock);
2838			sctx->stat.super_errors++;
2839			spin_unlock(&sctx->stat_lock);
2840			continue;
2841		}
2842
2843		if (bytenr + BTRFS_SUPER_INFO_SIZE >
2844		    scrub_dev->commit_total_bytes)
2845			break;
2846		if (!btrfs_check_super_location(scrub_dev, bytenr))
2847			continue;
2848
2849		ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2850		if (ret) {
2851			spin_lock(&sctx->stat_lock);
2852			sctx->stat.super_errors++;
2853			spin_unlock(&sctx->stat_lock);
2854		}
2855	}
2856	__free_page(page);
2857	return 0;
2858}
2859
2860static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2861{
2862	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2863					&fs_info->scrub_lock)) {
2864		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2865
2866		fs_info->scrub_workers = NULL;
2867		mutex_unlock(&fs_info->scrub_lock);
2868
2869		if (scrub_workers)
2870			destroy_workqueue(scrub_workers);
2871	}
2872}
2873
2874/*
2875 * get a reference count on fs_info->scrub_workers. start worker if necessary
2876 */
2877static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
 
2878{
2879	struct workqueue_struct *scrub_workers = NULL;
2880	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2881	int max_active = fs_info->thread_pool_size;
2882	int ret = -ENOMEM;
2883
2884	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2885		return 0;
2886
2887	scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2888	if (!scrub_workers)
2889		return -ENOMEM;
2890
2891	mutex_lock(&fs_info->scrub_lock);
2892	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2893		ASSERT(fs_info->scrub_workers == NULL);
2894		fs_info->scrub_workers = scrub_workers;
2895		refcount_set(&fs_info->scrub_workers_refcnt, 1);
2896		mutex_unlock(&fs_info->scrub_lock);
2897		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2898	}
2899	/* Other thread raced in and created the workers for us */
2900	refcount_inc(&fs_info->scrub_workers_refcnt);
2901	mutex_unlock(&fs_info->scrub_lock);
2902
2903	ret = 0;
 
 
 
 
 
 
 
 
2904
2905	destroy_workqueue(scrub_workers);
2906	return ret;
 
 
 
 
 
 
 
2907}
2908
2909int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2910		    u64 end, struct btrfs_scrub_progress *progress,
2911		    int readonly, int is_dev_replace)
2912{
2913	struct btrfs_dev_lookup_args args = { .devid = devid };
2914	struct scrub_ctx *sctx;
2915	int ret;
2916	struct btrfs_device *dev;
2917	unsigned int nofs_flag;
2918	bool need_commit = false;
2919
2920	if (btrfs_fs_closing(fs_info))
2921		return -EAGAIN;
2922
2923	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2924	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
 
 
 
 
 
 
 
 
 
 
2925
2926	/*
2927	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2928	 * value (max nodesize / min sectorsize), thus nodesize should always
2929	 * be fine.
2930	 */
2931	ASSERT(fs_info->nodesize <=
2932	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2933
2934	/* Allocate outside of device_list_mutex */
2935	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2936	if (IS_ERR(sctx))
2937		return PTR_ERR(sctx);
 
 
 
 
 
 
 
 
 
 
 
2938
2939	ret = scrub_workers_get(fs_info);
2940	if (ret)
2941		goto out_free_ctx;
2942
2943	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2944	dev = btrfs_find_device(fs_info->fs_devices, &args);
2945	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2946		     !is_dev_replace)) {
2947		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2948		ret = -ENODEV;
2949		goto out;
2950	}
2951
2952	if (!is_dev_replace && !readonly &&
2953	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2954		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2955		btrfs_err_in_rcu(fs_info,
2956			"scrub on devid %llu: filesystem on %s is not writable",
2957				 devid, btrfs_dev_name(dev));
2958		ret = -EROFS;
2959		goto out;
 
2960	}
2961
2962	mutex_lock(&fs_info->scrub_lock);
2963	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2964	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2965		mutex_unlock(&fs_info->scrub_lock);
2966		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2967		ret = -EIO;
2968		goto out;
2969	}
2970
2971	down_read(&fs_info->dev_replace.rwsem);
2972	if (dev->scrub_ctx ||
2973	    (!is_dev_replace &&
2974	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2975		up_read(&fs_info->dev_replace.rwsem);
2976		mutex_unlock(&fs_info->scrub_lock);
2977		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2978		ret = -EINPROGRESS;
2979		goto out;
2980	}
2981	up_read(&fs_info->dev_replace.rwsem);
2982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2983	sctx->readonly = readonly;
2984	dev->scrub_ctx = sctx;
2985	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2986
2987	/*
2988	 * checking @scrub_pause_req here, we can avoid
2989	 * race between committing transaction and scrubbing.
2990	 */
2991	__scrub_blocked_if_needed(fs_info);
2992	atomic_inc(&fs_info->scrubs_running);
2993	mutex_unlock(&fs_info->scrub_lock);
2994
2995	/*
2996	 * In order to avoid deadlock with reclaim when there is a transaction
2997	 * trying to pause scrub, make sure we use GFP_NOFS for all the
2998	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2999	 * invoked by our callees. The pausing request is done when the
3000	 * transaction commit starts, and it blocks the transaction until scrub
3001	 * is paused (done at specific points at scrub_stripe() or right above
3002	 * before incrementing fs_info->scrubs_running).
3003	 */
3004	nofs_flag = memalloc_nofs_save();
3005	if (!is_dev_replace) {
3006		u64 old_super_errors;
3007
3008		spin_lock(&sctx->stat_lock);
3009		old_super_errors = sctx->stat.super_errors;
3010		spin_unlock(&sctx->stat_lock);
3011
3012		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3013		/*
3014		 * by holding device list mutex, we can
3015		 * kick off writing super in log tree sync.
3016		 */
3017		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018		ret = scrub_supers(sctx, dev);
3019		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020
3021		spin_lock(&sctx->stat_lock);
3022		/*
3023		 * Super block errors found, but we can not commit transaction
3024		 * at current context, since btrfs_commit_transaction() needs
3025		 * to pause the current running scrub (hold by ourselves).
3026		 */
3027		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
3028			need_commit = true;
3029		spin_unlock(&sctx->stat_lock);
3030	}
3031
3032	if (!ret)
3033		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3034	memalloc_nofs_restore(nofs_flag);
3035
 
3036	atomic_dec(&fs_info->scrubs_running);
3037	wake_up(&fs_info->scrub_pause_wait);
3038
 
 
3039	if (progress)
3040		memcpy(progress, &sctx->stat, sizeof(*progress));
3041
3042	if (!is_dev_replace)
3043		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3044			ret ? "not finished" : "finished", devid, ret);
3045
3046	mutex_lock(&fs_info->scrub_lock);
3047	dev->scrub_ctx = NULL;
 
3048	mutex_unlock(&fs_info->scrub_lock);
3049
3050	scrub_workers_put(fs_info);
3051	scrub_put_ctx(sctx);
3052
3053	/*
3054	 * We found some super block errors before, now try to force a
3055	 * transaction commit, as scrub has finished.
3056	 */
3057	if (need_commit) {
3058		struct btrfs_trans_handle *trans;
3059
3060		trans = btrfs_start_transaction(fs_info->tree_root, 0);
3061		if (IS_ERR(trans)) {
3062			ret = PTR_ERR(trans);
3063			btrfs_err(fs_info,
3064	"scrub: failed to start transaction to fix super block errors: %d", ret);
3065			return ret;
3066		}
3067		ret = btrfs_commit_transaction(trans);
3068		if (ret < 0)
3069			btrfs_err(fs_info,
3070	"scrub: failed to commit transaction to fix super block errors: %d", ret);
3071	}
3072	return ret;
3073out:
3074	scrub_workers_put(fs_info);
3075out_free_ctx:
3076	scrub_free_ctx(sctx);
3077
3078	return ret;
3079}
3080
3081void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3082{
3083	mutex_lock(&fs_info->scrub_lock);
3084	atomic_inc(&fs_info->scrub_pause_req);
3085	while (atomic_read(&fs_info->scrubs_paused) !=
3086	       atomic_read(&fs_info->scrubs_running)) {
3087		mutex_unlock(&fs_info->scrub_lock);
3088		wait_event(fs_info->scrub_pause_wait,
3089			   atomic_read(&fs_info->scrubs_paused) ==
3090			   atomic_read(&fs_info->scrubs_running));
3091		mutex_lock(&fs_info->scrub_lock);
3092	}
3093	mutex_unlock(&fs_info->scrub_lock);
3094}
3095
3096void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3097{
3098	atomic_dec(&fs_info->scrub_pause_req);
3099	wake_up(&fs_info->scrub_pause_wait);
3100}
3101
3102int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3103{
3104	mutex_lock(&fs_info->scrub_lock);
3105	if (!atomic_read(&fs_info->scrubs_running)) {
3106		mutex_unlock(&fs_info->scrub_lock);
3107		return -ENOTCONN;
3108	}
3109
3110	atomic_inc(&fs_info->scrub_cancel_req);
3111	while (atomic_read(&fs_info->scrubs_running)) {
3112		mutex_unlock(&fs_info->scrub_lock);
3113		wait_event(fs_info->scrub_pause_wait,
3114			   atomic_read(&fs_info->scrubs_running) == 0);
3115		mutex_lock(&fs_info->scrub_lock);
3116	}
3117	atomic_dec(&fs_info->scrub_cancel_req);
3118	mutex_unlock(&fs_info->scrub_lock);
3119
3120	return 0;
3121}
3122
3123int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
 
3124{
3125	struct btrfs_fs_info *fs_info = dev->fs_info;
3126	struct scrub_ctx *sctx;
3127
3128	mutex_lock(&fs_info->scrub_lock);
3129	sctx = dev->scrub_ctx;
3130	if (!sctx) {
3131		mutex_unlock(&fs_info->scrub_lock);
3132		return -ENOTCONN;
3133	}
3134	atomic_inc(&sctx->cancel_req);
3135	while (dev->scrub_ctx) {
3136		mutex_unlock(&fs_info->scrub_lock);
3137		wait_event(fs_info->scrub_pause_wait,
3138			   dev->scrub_ctx == NULL);
3139		mutex_lock(&fs_info->scrub_lock);
3140	}
3141	mutex_unlock(&fs_info->scrub_lock);
3142
3143	return 0;
3144}
3145
3146int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3147			 struct btrfs_scrub_progress *progress)
3148{
3149	struct btrfs_dev_lookup_args args = { .devid = devid };
3150	struct btrfs_device *dev;
3151	struct scrub_ctx *sctx = NULL;
3152
3153	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3154	dev = btrfs_find_device(fs_info->fs_devices, &args);
3155	if (dev)
3156		sctx = dev->scrub_ctx;
3157	if (sctx)
3158		memcpy(progress, &sctx->stat, sizeof(*progress));
3159	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3160
3161	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3162}
v4.10.11
 
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
 
 
  21#include "ctree.h"
 
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
 
 
 
 
 
 
 
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
 
 
 
 
 
 
 
 
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
  65
  66struct scrub_recover {
  67	atomic_t		refs;
  68	struct btrfs_bio	*bbio;
  69	u64			map_length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70};
  71
  72struct scrub_page {
  73	struct scrub_block	*sblock;
  74	struct page		*page;
  75	struct btrfs_device	*dev;
  76	struct list_head	list;
  77	u64			flags;  /* extent flags */
  78	u64			generation;
  79	u64			logical;
  80	u64			physical;
  81	u64			physical_for_dev_replace;
  82	atomic_t		refs;
  83	struct {
  84		unsigned int	mirror_num:8;
  85		unsigned int	have_csum:1;
  86		unsigned int	io_error:1;
  87	};
  88	u8			csum[BTRFS_CSUM_SIZE];
  89
  90	struct scrub_recover	*recover;
  91};
  92
  93struct scrub_bio {
  94	int			index;
  95	struct scrub_ctx	*sctx;
  96	struct btrfs_device	*dev;
  97	struct bio		*bio;
  98	int			err;
  99	u64			logical;
 100	u64			physical;
 101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
 102	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
 103#else
 104	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
 105#endif
 106	int			page_count;
 107	int			next_free;
 108	struct btrfs_work	work;
 109};
 110
 111struct scrub_block {
 112	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 113	int			page_count;
 114	atomic_t		outstanding_pages;
 115	atomic_t		refs; /* free mem on transition to zero */
 116	struct scrub_ctx	*sctx;
 117	struct scrub_parity	*sparity;
 118	struct {
 119		unsigned int	header_error:1;
 120		unsigned int	checksum_error:1;
 121		unsigned int	no_io_error_seen:1;
 122		unsigned int	generation_error:1; /* also sets header_error */
 123
 124		/* The following is for the data used to check parity */
 125		/* It is for the data with checksum */
 126		unsigned int	data_corrected:1;
 127	};
 128	struct btrfs_work	work;
 129};
 130
 131/* Used for the chunks with parity stripe such RAID5/6 */
 132struct scrub_parity {
 133	struct scrub_ctx	*sctx;
 
 
 
 134
 135	struct btrfs_device	*scrub_dev;
 
 136
 137	u64			logic_start;
 
 
 138
 139	u64			logic_end;
 140
 141	int			nsectors;
 
 142
 143	int			stripe_len;
 
 
 
 
 
 144
 145	atomic_t		refs;
 
 
 146
 147	struct list_head	spages;
 
 
 
 
 148
 149	/* Work of parity check and repair */
 150	struct btrfs_work	work;
 151
 152	/* Mark the parity blocks which have data */
 153	unsigned long		*dbitmap;
 
 
 
 
 
 
 
 
 
 
 154
 155	/*
 156	 * Mark the parity blocks which have data, but errors happen when
 157	 * read data or check data
 
 
 
 
 158	 */
 159	unsigned long		*ebitmap;
 
 
 
 
 
 
 160
 161	unsigned long		bitmap[0];
 162};
 
 
 
 
 
 
 163
 164struct scrub_wr_ctx {
 165	struct scrub_bio *wr_curr_bio;
 166	struct btrfs_device *tgtdev;
 167	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 168	atomic_t flush_all_writes;
 169	struct mutex wr_lock;
 170};
 171
 172struct scrub_ctx {
 173	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
 
 174	struct btrfs_fs_info	*fs_info;
 
 
 175	int			first_free;
 176	int			curr;
 177	atomic_t		bios_in_flight;
 178	atomic_t		workers_pending;
 179	spinlock_t		list_lock;
 180	wait_queue_head_t	list_wait;
 181	u16			csum_size;
 182	struct list_head	csum_list;
 183	atomic_t		cancel_req;
 184	int			readonly;
 185	int			pages_per_rd_bio;
 186	u32			sectorsize;
 187	u32			nodesize;
 
 188
 189	int			is_dev_replace;
 190	struct scrub_wr_ctx	wr_ctx;
 
 
 
 191
 192	/*
 193	 * statistics
 194	 */
 195	struct btrfs_scrub_progress stat;
 196	spinlock_t		stat_lock;
 197
 198	/*
 199	 * Use a ref counter to avoid use-after-free issues. Scrub workers
 200	 * decrement bios_in_flight and workers_pending and then do a wakeup
 201	 * on the list_wait wait queue. We must ensure the main scrub task
 202	 * doesn't free the scrub context before or while the workers are
 203	 * doing the wakeup() call.
 204	 */
 205	atomic_t                refs;
 206};
 207
 208struct scrub_fixup_nodatasum {
 209	struct scrub_ctx	*sctx;
 210	struct btrfs_device	*dev;
 211	u64			logical;
 212	struct btrfs_root	*root;
 213	struct btrfs_work	work;
 214	int			mirror_num;
 215};
 216
 217struct scrub_nocow_inode {
 218	u64			inum;
 219	u64			offset;
 220	u64			root;
 221	struct list_head	list;
 222};
 223
 224struct scrub_copy_nocow_ctx {
 225	struct scrub_ctx	*sctx;
 226	u64			logical;
 227	u64			len;
 228	int			mirror_num;
 229	u64			physical_for_dev_replace;
 230	struct list_head	inodes;
 231	struct btrfs_work	work;
 232};
 233
 234struct scrub_warning {
 235	struct btrfs_path	*path;
 236	u64			extent_item_size;
 237	const char		*errstr;
 238	sector_t		sector;
 239	u64			logical;
 240	struct btrfs_device	*dev;
 241};
 242
 243static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 244static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 245static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 246static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 247static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 248static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
 249				     struct scrub_block *sblocks_for_recheck);
 250static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 251				struct scrub_block *sblock,
 252				int retry_failed_mirror);
 253static void scrub_recheck_block_checksum(struct scrub_block *sblock);
 254static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 255					     struct scrub_block *sblock_good);
 256static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 257					    struct scrub_block *sblock_good,
 258					    int page_num, int force_write);
 259static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 260static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 261					   int page_num);
 262static int scrub_checksum_data(struct scrub_block *sblock);
 263static int scrub_checksum_tree_block(struct scrub_block *sblock);
 264static int scrub_checksum_super(struct scrub_block *sblock);
 265static void scrub_block_get(struct scrub_block *sblock);
 266static void scrub_block_put(struct scrub_block *sblock);
 267static void scrub_page_get(struct scrub_page *spage);
 268static void scrub_page_put(struct scrub_page *spage);
 269static void scrub_parity_get(struct scrub_parity *sparity);
 270static void scrub_parity_put(struct scrub_parity *sparity);
 271static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 272				    struct scrub_page *spage);
 273static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 274		       u64 physical, struct btrfs_device *dev, u64 flags,
 275		       u64 gen, int mirror_num, u8 *csum, int force,
 276		       u64 physical_for_dev_replace);
 277static void scrub_bio_end_io(struct bio *bio);
 278static void scrub_bio_end_io_worker(struct btrfs_work *work);
 279static void scrub_block_complete(struct scrub_block *sblock);
 280static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 281			       u64 extent_logical, u64 extent_len,
 282			       u64 *extent_physical,
 283			       struct btrfs_device **extent_dev,
 284			       int *extent_mirror_num);
 285static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 286			      struct scrub_wr_ctx *wr_ctx,
 287			      struct btrfs_fs_info *fs_info,
 288			      struct btrfs_device *dev,
 289			      int is_dev_replace);
 290static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 291static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 292				    struct scrub_page *spage);
 293static void scrub_wr_submit(struct scrub_ctx *sctx);
 294static void scrub_wr_bio_end_io(struct bio *bio);
 295static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 296static int write_page_nocow(struct scrub_ctx *sctx,
 297			    u64 physical_for_dev_replace, struct page *page);
 298static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 299				      struct scrub_copy_nocow_ctx *ctx);
 300static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 301			    int mirror_num, u64 physical_for_dev_replace);
 302static void copy_nocow_pages_worker(struct btrfs_work *work);
 303static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 304static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
 305static void scrub_put_ctx(struct scrub_ctx *sctx);
 306
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 
 309{
 310	atomic_inc(&sctx->refs);
 311	atomic_inc(&sctx->bios_in_flight);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312}
 313
 314static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 315{
 316	atomic_dec(&sctx->bios_in_flight);
 317	wake_up(&sctx->list_wait);
 318	scrub_put_ctx(sctx);
 319}
 320
 
 
 321static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 322{
 323	while (atomic_read(&fs_info->scrub_pause_req)) {
 324		mutex_unlock(&fs_info->scrub_lock);
 325		wait_event(fs_info->scrub_pause_wait,
 326		   atomic_read(&fs_info->scrub_pause_req) == 0);
 327		mutex_lock(&fs_info->scrub_lock);
 328	}
 329}
 330
 331static void scrub_pause_on(struct btrfs_fs_info *fs_info)
 332{
 333	atomic_inc(&fs_info->scrubs_paused);
 334	wake_up(&fs_info->scrub_pause_wait);
 335}
 336
 337static void scrub_pause_off(struct btrfs_fs_info *fs_info)
 338{
 339	mutex_lock(&fs_info->scrub_lock);
 340	__scrub_blocked_if_needed(fs_info);
 341	atomic_dec(&fs_info->scrubs_paused);
 342	mutex_unlock(&fs_info->scrub_lock);
 343
 344	wake_up(&fs_info->scrub_pause_wait);
 345}
 346
 347static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
 348{
 349	scrub_pause_on(fs_info);
 350	scrub_pause_off(fs_info);
 351}
 352
 353/*
 354 * used for workers that require transaction commits (i.e., for the
 355 * NOCOW case)
 356 */
 357static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 358{
 359	struct btrfs_fs_info *fs_info = sctx->fs_info;
 360
 361	atomic_inc(&sctx->refs);
 362	/*
 363	 * increment scrubs_running to prevent cancel requests from
 364	 * completing as long as a worker is running. we must also
 365	 * increment scrubs_paused to prevent deadlocking on pause
 366	 * requests used for transactions commits (as the worker uses a
 367	 * transaction context). it is safe to regard the worker
 368	 * as paused for all matters practical. effectively, we only
 369	 * avoid cancellation requests from completing.
 370	 */
 371	mutex_lock(&fs_info->scrub_lock);
 372	atomic_inc(&fs_info->scrubs_running);
 373	atomic_inc(&fs_info->scrubs_paused);
 374	mutex_unlock(&fs_info->scrub_lock);
 375
 376	/*
 377	 * check if @scrubs_running=@scrubs_paused condition
 378	 * inside wait_event() is not an atomic operation.
 379	 * which means we may inc/dec @scrub_running/paused
 380	 * at any time. Let's wake up @scrub_pause_wait as
 381	 * much as we can to let commit transaction blocked less.
 382	 */
 383	wake_up(&fs_info->scrub_pause_wait);
 384
 385	atomic_inc(&sctx->workers_pending);
 386}
 387
 388/* used for workers that require transaction commits */
 389static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 390{
 391	struct btrfs_fs_info *fs_info = sctx->fs_info;
 392
 393	/*
 394	 * see scrub_pending_trans_workers_inc() why we're pretending
 395	 * to be paused in the scrub counters
 396	 */
 397	mutex_lock(&fs_info->scrub_lock);
 398	atomic_dec(&fs_info->scrubs_running);
 399	atomic_dec(&fs_info->scrubs_paused);
 400	mutex_unlock(&fs_info->scrub_lock);
 401	atomic_dec(&sctx->workers_pending);
 402	wake_up(&fs_info->scrub_pause_wait);
 403	wake_up(&sctx->list_wait);
 404	scrub_put_ctx(sctx);
 405}
 406
 407static void scrub_free_csums(struct scrub_ctx *sctx)
 408{
 409	while (!list_empty(&sctx->csum_list)) {
 410		struct btrfs_ordered_sum *sum;
 411		sum = list_first_entry(&sctx->csum_list,
 412				       struct btrfs_ordered_sum, list);
 413		list_del(&sum->list);
 414		kfree(sum);
 415	}
 416}
 417
 418static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 419{
 420	int i;
 421
 422	if (!sctx)
 423		return;
 424
 425	scrub_free_wr_ctx(&sctx->wr_ctx);
 
 426
 427	/* this can happen when scrub is cancelled */
 428	if (sctx->curr != -1) {
 429		struct scrub_bio *sbio = sctx->bios[sctx->curr];
 430
 431		for (i = 0; i < sbio->page_count; i++) {
 432			WARN_ON(!sbio->pagev[i]->page);
 433			scrub_block_put(sbio->pagev[i]->sblock);
 434		}
 435		bio_put(sbio->bio);
 436	}
 437
 438	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 439		struct scrub_bio *sbio = sctx->bios[i];
 440
 441		if (!sbio)
 442			break;
 443		kfree(sbio);
 444	}
 445
 446	scrub_free_csums(sctx);
 447	kfree(sctx);
 448}
 449
 450static void scrub_put_ctx(struct scrub_ctx *sctx)
 451{
 452	if (atomic_dec_and_test(&sctx->refs))
 453		scrub_free_ctx(sctx);
 454}
 455
 456static noinline_for_stack
 457struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 458{
 459	struct scrub_ctx *sctx;
 460	int		i;
 461	struct btrfs_fs_info *fs_info = dev->fs_info;
 462	int ret;
 463
 464	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
 
 
 
 465	if (!sctx)
 466		goto nomem;
 467	atomic_set(&sctx->refs, 1);
 468	sctx->is_dev_replace = is_dev_replace;
 469	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 470	sctx->curr = -1;
 471	sctx->fs_info = dev->fs_info;
 472	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 473		struct scrub_bio *sbio;
 
 
 474
 475		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
 476		if (!sbio)
 477			goto nomem;
 478		sctx->bios[i] = sbio;
 479
 480		sbio->index = i;
 481		sbio->sctx = sctx;
 482		sbio->page_count = 0;
 483		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
 484				scrub_bio_end_io_worker, NULL, NULL);
 485
 486		if (i != SCRUB_BIOS_PER_SCTX - 1)
 487			sctx->bios[i]->next_free = i + 1;
 488		else
 489			sctx->bios[i]->next_free = -1;
 490	}
 491	sctx->first_free = 0;
 492	sctx->nodesize = fs_info->nodesize;
 493	sctx->sectorsize = fs_info->sectorsize;
 494	atomic_set(&sctx->bios_in_flight, 0);
 495	atomic_set(&sctx->workers_pending, 0);
 496	atomic_set(&sctx->cancel_req, 0);
 497	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 498	INIT_LIST_HEAD(&sctx->csum_list);
 499
 500	spin_lock_init(&sctx->list_lock);
 501	spin_lock_init(&sctx->stat_lock);
 502	init_waitqueue_head(&sctx->list_wait);
 503
 504	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 505				 fs_info->dev_replace.tgtdev, is_dev_replace);
 506	if (ret) {
 507		scrub_free_ctx(sctx);
 508		return ERR_PTR(ret);
 509	}
 
 510	return sctx;
 511
 512nomem:
 513	scrub_free_ctx(sctx);
 514	return ERR_PTR(-ENOMEM);
 515}
 516
 517static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 518				     void *warn_ctx)
 519{
 520	u64 isize;
 521	u32 nlink;
 522	int ret;
 523	int i;
 
 524	struct extent_buffer *eb;
 525	struct btrfs_inode_item *inode_item;
 526	struct scrub_warning *swarn = warn_ctx;
 527	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
 528	struct inode_fs_paths *ipath = NULL;
 529	struct btrfs_root *local_root;
 530	struct btrfs_key root_key;
 531	struct btrfs_key key;
 532
 533	root_key.objectid = root;
 534	root_key.type = BTRFS_ROOT_ITEM_KEY;
 535	root_key.offset = (u64)-1;
 536	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 537	if (IS_ERR(local_root)) {
 538		ret = PTR_ERR(local_root);
 539		goto err;
 540	}
 541
 542	/*
 543	 * this makes the path point to (inum INODE_ITEM ioff)
 544	 */
 545	key.objectid = inum;
 546	key.type = BTRFS_INODE_ITEM_KEY;
 547	key.offset = 0;
 548
 549	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
 550	if (ret) {
 
 551		btrfs_release_path(swarn->path);
 552		goto err;
 553	}
 554
 555	eb = swarn->path->nodes[0];
 556	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 557					struct btrfs_inode_item);
 558	isize = btrfs_inode_size(eb, inode_item);
 559	nlink = btrfs_inode_nlink(eb, inode_item);
 560	btrfs_release_path(swarn->path);
 561
 
 
 
 
 
 
 562	ipath = init_ipath(4096, local_root, swarn->path);
 
 563	if (IS_ERR(ipath)) {
 
 564		ret = PTR_ERR(ipath);
 565		ipath = NULL;
 566		goto err;
 567	}
 568	ret = paths_from_inode(inum, ipath);
 569
 570	if (ret < 0)
 571		goto err;
 572
 573	/*
 574	 * we deliberately ignore the bit ipath might have been too small to
 575	 * hold all of the paths here
 576	 */
 577	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 578		btrfs_warn_in_rcu(fs_info,
 579				  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
 580				  swarn->errstr, swarn->logical,
 581				  rcu_str_deref(swarn->dev->name),
 582				  (unsigned long long)swarn->sector,
 583				  root, inum, offset,
 584				  min(isize - offset, (u64)PAGE_SIZE), nlink,
 585				  (char *)(unsigned long)ipath->fspath->val[i]);
 586
 
 587	free_ipath(ipath);
 588	return 0;
 589
 590err:
 591	btrfs_warn_in_rcu(fs_info,
 592			  "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
 593			  swarn->errstr, swarn->logical,
 594			  rcu_str_deref(swarn->dev->name),
 595			  (unsigned long long)swarn->sector,
 596			  root, inum, offset, ret);
 597
 598	free_ipath(ipath);
 599	return 0;
 600}
 601
 602static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 
 603{
 604	struct btrfs_device *dev;
 605	struct btrfs_fs_info *fs_info;
 606	struct btrfs_path *path;
 607	struct btrfs_key found_key;
 608	struct extent_buffer *eb;
 609	struct btrfs_extent_item *ei;
 610	struct scrub_warning swarn;
 611	unsigned long ptr = 0;
 612	u64 extent_item_pos;
 613	u64 flags = 0;
 614	u64 ref_root;
 615	u32 item_size;
 616	u8 ref_level = 0;
 617	int ret;
 618
 619	WARN_ON(sblock->page_count < 1);
 620	dev = sblock->pagev[0]->dev;
 621	fs_info = sblock->sctx->fs_info;
 622
 
 
 623	path = btrfs_alloc_path();
 624	if (!path)
 625		return;
 626
 627	swarn.sector = (sblock->pagev[0]->physical) >> 9;
 628	swarn.logical = sblock->pagev[0]->logical;
 629	swarn.errstr = errstr;
 630	swarn.dev = NULL;
 631
 632	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 633				  &flags);
 634	if (ret < 0)
 635		goto out;
 636
 637	extent_item_pos = swarn.logical - found_key.objectid;
 638	swarn.extent_item_size = found_key.offset;
 639
 640	eb = path->nodes[0];
 641	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 642	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 643
 644	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 645		do {
 
 
 
 
 646			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
 647						      item_size, &ref_root,
 648						      &ref_level);
 
 
 
 
 
 
 
 
 649			btrfs_warn_in_rcu(fs_info,
 650				"%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
 651				errstr, swarn.logical,
 652				rcu_str_deref(dev->name),
 653				(unsigned long long)swarn.sector,
 654				ref_level ? "node" : "leaf",
 655				ret < 0 ? -1 : ref_level,
 656				ret < 0 ? -1 : ref_root);
 657		} while (ret != 1);
 658		btrfs_release_path(path);
 659	} else {
 
 
 660		btrfs_release_path(path);
 
 
 
 
 
 661		swarn.path = path;
 662		swarn.dev = dev;
 663		iterate_extent_inodes(fs_info, found_key.objectid,
 664					extent_item_pos, 1,
 665					scrub_print_warning_inode, &swarn);
 666	}
 667
 668out:
 669	btrfs_free_path(path);
 670}
 671
 672static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 673{
 674	struct page *page = NULL;
 675	unsigned long index;
 676	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 677	int ret;
 678	int corrected = 0;
 679	struct btrfs_key key;
 680	struct inode *inode = NULL;
 681	struct btrfs_fs_info *fs_info;
 682	u64 end = offset + PAGE_SIZE - 1;
 683	struct btrfs_root *local_root;
 684	int srcu_index;
 685
 686	key.objectid = root;
 687	key.type = BTRFS_ROOT_ITEM_KEY;
 688	key.offset = (u64)-1;
 689
 690	fs_info = fixup->root->fs_info;
 691	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 692
 693	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 694	if (IS_ERR(local_root)) {
 695		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 696		return PTR_ERR(local_root);
 697	}
 698
 699	key.type = BTRFS_INODE_ITEM_KEY;
 700	key.objectid = inum;
 701	key.offset = 0;
 702	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 703	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 704	if (IS_ERR(inode))
 705		return PTR_ERR(inode);
 706
 707	index = offset >> PAGE_SHIFT;
 
 708
 709	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 710	if (!page) {
 711		ret = -ENOMEM;
 712		goto out;
 713	}
 
 
 714
 715	if (PageUptodate(page)) {
 716		if (PageDirty(page)) {
 717			/*
 718			 * we need to write the data to the defect sector. the
 719			 * data that was in that sector is not in memory,
 720			 * because the page was modified. we must not write the
 721			 * modified page to that sector.
 722			 *
 723			 * TODO: what could be done here: wait for the delalloc
 724			 *       runner to write out that page (might involve
 725			 *       COW) and see whether the sector is still
 726			 *       referenced afterwards.
 727			 *
 728			 * For the meantime, we'll treat this error
 729			 * incorrectable, although there is a chance that a
 730			 * later scrub will find the bad sector again and that
 731			 * there's no dirty page in memory, then.
 732			 */
 733			ret = -EIO;
 734			goto out;
 735		}
 736		ret = repair_io_failure(inode, offset, PAGE_SIZE,
 737					fixup->logical, page,
 738					offset - page_offset(page),
 739					fixup->mirror_num);
 740		unlock_page(page);
 741		corrected = !ret;
 742	} else {
 743		/*
 744		 * we need to get good data first. the general readpage path
 745		 * will call repair_io_failure for us, we just have to make
 746		 * sure we read the bad mirror.
 747		 */
 748		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 749					EXTENT_DAMAGED);
 750		if (ret) {
 751			/* set_extent_bits should give proper error */
 752			WARN_ON(ret > 0);
 753			if (ret > 0)
 754				ret = -EFAULT;
 755			goto out;
 756		}
 757
 758		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 759						btrfs_get_extent,
 760						fixup->mirror_num);
 761		wait_on_page_locked(page);
 762
 763		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 764						end, EXTENT_DAMAGED, 0, NULL);
 765		if (!corrected)
 766			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 767						EXTENT_DAMAGED);
 768	}
 769
 770out:
 771	if (page)
 772		put_page(page);
 
 773
 774	iput(inode);
 
 775
 776	if (ret < 0)
 777		return ret;
 
 
 
 
 
 
 
 
 
 778
 779	if (ret == 0 && corrected) {
 780		/*
 781		 * we only need to call readpage for one of the inodes belonging
 782		 * to this extent. so make iterate_extent_inodes stop
 783		 */
 784		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	}
 786
 787	return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790static void scrub_fixup_nodatasum(struct btrfs_work *work)
 791{
 792	struct btrfs_fs_info *fs_info;
 
 
 
 
 
 793	int ret;
 794	struct scrub_fixup_nodatasum *fixup;
 795	struct scrub_ctx *sctx;
 796	struct btrfs_trans_handle *trans = NULL;
 797	struct btrfs_path *path;
 798	int uncorrectable = 0;
 799
 800	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 801	sctx = fixup->sctx;
 802	fs_info = fixup->root->fs_info;
 
 
 803
 804	path = btrfs_alloc_path();
 805	if (!path) {
 806		spin_lock(&sctx->stat_lock);
 807		++sctx->stat.malloc_errors;
 808		spin_unlock(&sctx->stat_lock);
 809		uncorrectable = 1;
 810		goto out;
 811	}
 812
 813	trans = btrfs_join_transaction(fixup->root);
 814	if (IS_ERR(trans)) {
 815		uncorrectable = 1;
 816		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817	}
 818
 819	/*
 820	 * the idea is to trigger a regular read through the standard path. we
 821	 * read a page from the (failed) logical address by specifying the
 822	 * corresponding copynum of the failed sector. thus, that readpage is
 823	 * expected to fail.
 824	 * that is the point where on-the-fly error correction will kick in
 825	 * (once it's finished) and rewrite the failed sector if a good copy
 826	 * can be found.
 827	 */
 828	ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
 829					  scrub_fixup_readpage, fixup);
 
 
 
 
 830	if (ret < 0) {
 831		uncorrectable = 1;
 832		goto out;
 
 
 
 833	}
 834	WARN_ON(ret != 1);
 835
 836	spin_lock(&sctx->stat_lock);
 837	++sctx->stat.corrected_errors;
 838	spin_unlock(&sctx->stat_lock);
 
 
 
 839
 840out:
 841	if (trans && !IS_ERR(trans))
 842		btrfs_end_transaction(trans);
 843	if (uncorrectable) {
 844		spin_lock(&sctx->stat_lock);
 845		++sctx->stat.uncorrectable_errors;
 846		spin_unlock(&sctx->stat_lock);
 847		btrfs_dev_replace_stats_inc(
 848			&fs_info->dev_replace.num_uncorrectable_read_errors);
 849		btrfs_err_rl_in_rcu(fs_info,
 850		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
 851			fixup->logical, rcu_str_deref(fixup->dev->name));
 852	}
 853
 854	btrfs_free_path(path);
 855	kfree(fixup);
 856
 857	scrub_pending_trans_workers_dec(sctx);
 858}
 859
 860static inline void scrub_get_recover(struct scrub_recover *recover)
 861{
 862	atomic_inc(&recover->refs);
 863}
 864
 865static inline void scrub_put_recover(struct scrub_recover *recover)
 866{
 867	if (atomic_dec_and_test(&recover->refs)) {
 868		btrfs_put_bbio(recover->bbio);
 869		kfree(recover);
 870	}
 
 
 871}
 872
 873/*
 874 * scrub_handle_errored_block gets called when either verification of the
 875 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 876 * case, this function handles all pages in the bio, even though only one
 877 * may be bad.
 878 * The goal of this function is to repair the errored block by using the
 879 * contents of one of the mirrors.
 880 */
 881static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 882{
 883	struct scrub_ctx *sctx = sblock_to_check->sctx;
 884	struct btrfs_device *dev;
 885	struct btrfs_fs_info *fs_info;
 886	u64 length;
 887	u64 logical;
 888	unsigned int failed_mirror_index;
 889	unsigned int is_metadata;
 890	unsigned int have_csum;
 891	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 892	struct scrub_block *sblock_bad;
 893	int ret;
 894	int mirror_index;
 895	int page_num;
 896	int success;
 897	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 898				      DEFAULT_RATELIMIT_BURST);
 899
 900	BUG_ON(sblock_to_check->page_count < 1);
 901	fs_info = sctx->fs_info;
 902	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 903		/*
 904		 * if we find an error in a super block, we just report it.
 905		 * They will get written with the next transaction commit
 906		 * anyway
 907		 */
 908		spin_lock(&sctx->stat_lock);
 909		++sctx->stat.super_errors;
 910		spin_unlock(&sctx->stat_lock);
 911		return 0;
 912	}
 913	length = sblock_to_check->page_count * PAGE_SIZE;
 914	logical = sblock_to_check->pagev[0]->logical;
 915	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 916	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 917	is_metadata = !(sblock_to_check->pagev[0]->flags &
 918			BTRFS_EXTENT_FLAG_DATA);
 919	have_csum = sblock_to_check->pagev[0]->have_csum;
 920	dev = sblock_to_check->pagev[0]->dev;
 921
 922	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 923		sblocks_for_recheck = NULL;
 924		goto nodatasum_case;
 925	}
 
 
 
 
 
 
 
 
 
 
 926
 927	/*
 928	 * read all mirrors one after the other. This includes to
 929	 * re-read the extent or metadata block that failed (that was
 930	 * the cause that this fixup code is called) another time,
 931	 * page by page this time in order to know which pages
 932	 * caused I/O errors and which ones are good (for all mirrors).
 933	 * It is the goal to handle the situation when more than one
 934	 * mirror contains I/O errors, but the errors do not
 935	 * overlap, i.e. the data can be repaired by selecting the
 936	 * pages from those mirrors without I/O error on the
 937	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 938	 * would be that mirror #1 has an I/O error on the first page,
 939	 * the second page is good, and mirror #2 has an I/O error on
 940	 * the second page, but the first page is good.
 941	 * Then the first page of the first mirror can be repaired by
 942	 * taking the first page of the second mirror, and the
 943	 * second page of the second mirror can be repaired by
 944	 * copying the contents of the 2nd page of the 1st mirror.
 945	 * One more note: if the pages of one mirror contain I/O
 946	 * errors, the checksum cannot be verified. In order to get
 947	 * the best data for repairing, the first attempt is to find
 948	 * a mirror without I/O errors and with a validated checksum.
 949	 * Only if this is not possible, the pages are picked from
 950	 * mirrors with I/O errors without considering the checksum.
 951	 * If the latter is the case, at the end, the checksum of the
 952	 * repaired area is verified in order to correctly maintain
 953	 * the statistics.
 954	 */
 955
 956	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
 957				      sizeof(*sblocks_for_recheck), GFP_NOFS);
 958	if (!sblocks_for_recheck) {
 959		spin_lock(&sctx->stat_lock);
 960		sctx->stat.malloc_errors++;
 961		sctx->stat.read_errors++;
 962		sctx->stat.uncorrectable_errors++;
 963		spin_unlock(&sctx->stat_lock);
 964		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 965		goto out;
 966	}
 967
 968	/* setup the context, map the logical blocks and alloc the pages */
 969	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
 970	if (ret) {
 971		spin_lock(&sctx->stat_lock);
 972		sctx->stat.read_errors++;
 973		sctx->stat.uncorrectable_errors++;
 974		spin_unlock(&sctx->stat_lock);
 975		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 976		goto out;
 977	}
 978	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 979	sblock_bad = sblocks_for_recheck + failed_mirror_index;
 980
 981	/* build and submit the bios for the failed mirror, check checksums */
 982	scrub_recheck_block(fs_info, sblock_bad, 1);
 983
 984	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 985	    sblock_bad->no_io_error_seen) {
 986		/*
 987		 * the error disappeared after reading page by page, or
 988		 * the area was part of a huge bio and other parts of the
 989		 * bio caused I/O errors, or the block layer merged several
 990		 * read requests into one and the error is caused by a
 991		 * different bio (usually one of the two latter cases is
 992		 * the cause)
 993		 */
 994		spin_lock(&sctx->stat_lock);
 995		sctx->stat.unverified_errors++;
 996		sblock_to_check->data_corrected = 1;
 997		spin_unlock(&sctx->stat_lock);
 998
 999		if (sctx->is_dev_replace)
1000			scrub_write_block_to_dev_replace(sblock_bad);
1001		goto out;
1002	}
 
 
1003
1004	if (!sblock_bad->no_io_error_seen) {
1005		spin_lock(&sctx->stat_lock);
1006		sctx->stat.read_errors++;
1007		spin_unlock(&sctx->stat_lock);
1008		if (__ratelimit(&_rs))
1009			scrub_print_warning("i/o error", sblock_to_check);
1010		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1011	} else if (sblock_bad->checksum_error) {
1012		spin_lock(&sctx->stat_lock);
1013		sctx->stat.csum_errors++;
1014		spin_unlock(&sctx->stat_lock);
1015		if (__ratelimit(&_rs))
1016			scrub_print_warning("checksum error", sblock_to_check);
1017		btrfs_dev_stat_inc_and_print(dev,
1018					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1019	} else if (sblock_bad->header_error) {
1020		spin_lock(&sctx->stat_lock);
1021		sctx->stat.verify_errors++;
1022		spin_unlock(&sctx->stat_lock);
1023		if (__ratelimit(&_rs))
1024			scrub_print_warning("checksum/header error",
1025					    sblock_to_check);
1026		if (sblock_bad->generation_error)
1027			btrfs_dev_stat_inc_and_print(dev,
1028				BTRFS_DEV_STAT_GENERATION_ERRS);
1029		else
1030			btrfs_dev_stat_inc_and_print(dev,
1031				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032	}
1033
1034	if (sctx->readonly) {
1035		ASSERT(!sctx->is_dev_replace);
1036		goto out;
 
 
1037	}
 
1038
1039	if (!is_metadata && !have_csum) {
1040		struct scrub_fixup_nodatasum *fixup_nodatasum;
 
 
 
 
 
 
 
 
 
 
 
1041
1042		WARN_ON(sctx->is_dev_replace);
 
1043
1044nodatasum_case:
 
 
 
 
 
 
 
 
 
 
1045
 
 
 
 
 
1046		/*
1047		 * !is_metadata and !have_csum, this means that the data
1048		 * might not be COWed, that it might be modified
1049		 * concurrently. The general strategy to work on the
1050		 * commit root does not help in the case when COW is not
1051		 * used.
1052		 */
1053		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1054		if (!fixup_nodatasum)
1055			goto did_not_correct_error;
1056		fixup_nodatasum->sctx = sctx;
1057		fixup_nodatasum->dev = dev;
1058		fixup_nodatasum->logical = logical;
1059		fixup_nodatasum->root = fs_info->extent_root;
1060		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1061		scrub_pending_trans_workers_inc(sctx);
1062		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1063				scrub_fixup_nodatasum, NULL, NULL);
1064		btrfs_queue_work(fs_info->scrub_workers,
1065				 &fixup_nodatasum->work);
1066		goto out;
1067	}
1068
1069	/*
1070	 * now build and submit the bios for the other mirrors, check
1071	 * checksums.
1072	 * First try to pick the mirror which is completely without I/O
1073	 * errors and also does not have a checksum error.
1074	 * If one is found, and if a checksum is present, the full block
1075	 * that is known to contain an error is rewritten. Afterwards
1076	 * the block is known to be corrected.
1077	 * If a mirror is found which is completely correct, and no
1078	 * checksum is present, only those pages are rewritten that had
1079	 * an I/O error in the block to be repaired, since it cannot be
1080	 * determined, which copy of the other pages is better (and it
1081	 * could happen otherwise that a correct page would be
1082	 * overwritten by a bad one).
1083	 */
1084	for (mirror_index = 0;
1085	     mirror_index < BTRFS_MAX_MIRRORS &&
1086	     sblocks_for_recheck[mirror_index].page_count > 0;
1087	     mirror_index++) {
1088		struct scrub_block *sblock_other;
1089
1090		if (mirror_index == failed_mirror_index)
1091			continue;
1092		sblock_other = sblocks_for_recheck + mirror_index;
 
 
 
 
1093
1094		/* build and submit the bios, check checksums */
1095		scrub_recheck_block(fs_info, sblock_other, 0);
1096
1097		if (!sblock_other->header_error &&
1098		    !sblock_other->checksum_error &&
1099		    sblock_other->no_io_error_seen) {
1100			if (sctx->is_dev_replace) {
1101				scrub_write_block_to_dev_replace(sblock_other);
1102				goto corrected_error;
1103			} else {
1104				ret = scrub_repair_block_from_good_copy(
1105						sblock_bad, sblock_other);
1106				if (!ret)
1107					goto corrected_error;
1108			}
1109		}
1110	}
1111
1112	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1113		goto did_not_correct_error;
1114
1115	/*
1116	 * In case of I/O errors in the area that is supposed to be
1117	 * repaired, continue by picking good copies of those pages.
1118	 * Select the good pages from mirrors to rewrite bad pages from
1119	 * the area to fix. Afterwards verify the checksum of the block
1120	 * that is supposed to be repaired. This verification step is
1121	 * only done for the purpose of statistic counting and for the
1122	 * final scrub report, whether errors remain.
1123	 * A perfect algorithm could make use of the checksum and try
1124	 * all possible combinations of pages from the different mirrors
1125	 * until the checksum verification succeeds. For example, when
1126	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127	 * of mirror #2 is readable but the final checksum test fails,
1128	 * then the 2nd page of mirror #3 could be tried, whether now
1129	 * the final checksum succeeds. But this would be a rare
1130	 * exception and is therefore not implemented. At least it is
1131	 * avoided that the good copy is overwritten.
1132	 * A more useful improvement would be to pick the sectors
1133	 * without I/O error based on sector sizes (512 bytes on legacy
1134	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135	 * mirror could be repaired by taking 512 byte of a different
1136	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137	 * area are unreadable.
1138	 */
1139	success = 1;
1140	for (page_num = 0; page_num < sblock_bad->page_count;
1141	     page_num++) {
1142		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1143		struct scrub_block *sblock_other = NULL;
1144
1145		/* skip no-io-error page in scrub */
1146		if (!page_bad->io_error && !sctx->is_dev_replace)
1147			continue;
1148
1149		/* try to find no-io-error page in mirrors */
1150		if (page_bad->io_error) {
1151			for (mirror_index = 0;
1152			     mirror_index < BTRFS_MAX_MIRRORS &&
1153			     sblocks_for_recheck[mirror_index].page_count > 0;
1154			     mirror_index++) {
1155				if (!sblocks_for_recheck[mirror_index].
1156				    pagev[page_num]->io_error) {
1157					sblock_other = sblocks_for_recheck +
1158						       mirror_index;
1159					break;
1160				}
 
 
1161			}
1162			if (!sblock_other)
1163				success = 0;
1164		}
1165
1166		if (sctx->is_dev_replace) {
1167			/*
1168			 * did not find a mirror to fetch the page
1169			 * from. scrub_write_page_to_dev_replace()
1170			 * handles this case (page->io_error), by
1171			 * filling the block with zeros before
1172			 * submitting the write request
1173			 */
1174			if (!sblock_other)
1175				sblock_other = sblock_bad;
1176
1177			if (scrub_write_page_to_dev_replace(sblock_other,
1178							    page_num) != 0) {
1179				btrfs_dev_replace_stats_inc(
1180					&fs_info->dev_replace.num_write_errors);
1181				success = 0;
1182			}
1183		} else if (sblock_other) {
1184			ret = scrub_repair_page_from_good_copy(sblock_bad,
1185							       sblock_other,
1186							       page_num, 0);
1187			if (0 == ret)
1188				page_bad->io_error = 0;
1189			else
1190				success = 0;
1191		}
1192	}
1193
1194	if (success && !sctx->is_dev_replace) {
1195		if (is_metadata || have_csum) {
1196			/*
1197			 * need to verify the checksum now that all
1198			 * sectors on disk are repaired (the write
1199			 * request for data to be repaired is on its way).
1200			 * Just be lazy and use scrub_recheck_block()
1201			 * which re-reads the data before the checksum
1202			 * is verified, but most likely the data comes out
1203			 * of the page cache.
1204			 */
1205			scrub_recheck_block(fs_info, sblock_bad, 1);
1206			if (!sblock_bad->header_error &&
1207			    !sblock_bad->checksum_error &&
1208			    sblock_bad->no_io_error_seen)
1209				goto corrected_error;
1210			else
1211				goto did_not_correct_error;
1212		} else {
1213corrected_error:
1214			spin_lock(&sctx->stat_lock);
1215			sctx->stat.corrected_errors++;
1216			sblock_to_check->data_corrected = 1;
1217			spin_unlock(&sctx->stat_lock);
1218			btrfs_err_rl_in_rcu(fs_info,
1219				"fixed up error at logical %llu on dev %s",
1220				logical, rcu_str_deref(dev->name));
1221		}
1222	} else {
1223did_not_correct_error:
1224		spin_lock(&sctx->stat_lock);
1225		sctx->stat.uncorrectable_errors++;
1226		spin_unlock(&sctx->stat_lock);
1227		btrfs_err_rl_in_rcu(fs_info,
1228			"unable to fixup (regular) error at logical %llu on dev %s",
1229			logical, rcu_str_deref(dev->name));
1230	}
1231
1232out:
1233	if (sblocks_for_recheck) {
1234		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1235		     mirror_index++) {
1236			struct scrub_block *sblock = sblocks_for_recheck +
1237						     mirror_index;
1238			struct scrub_recover *recover;
1239			int page_index;
1240
1241			for (page_index = 0; page_index < sblock->page_count;
1242			     page_index++) {
1243				sblock->pagev[page_index]->sblock = NULL;
1244				recover = sblock->pagev[page_index]->recover;
1245				if (recover) {
1246					scrub_put_recover(recover);
1247					sblock->pagev[page_index]->recover =
1248									NULL;
1249				}
1250				scrub_page_put(sblock->pagev[page_index]);
1251			}
1252		}
1253		kfree(sblocks_for_recheck);
1254	}
1255
1256	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1257}
1258
1259static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1260{
1261	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1262		return 2;
1263	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1264		return 3;
1265	else
1266		return (int)bbio->num_stripes;
1267}
1268
1269static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1270						 u64 *raid_map,
1271						 u64 mapped_length,
1272						 int nstripes, int mirror,
1273						 int *stripe_index,
1274						 u64 *stripe_offset)
 
 
 
 
 
 
 
 
1275{
 
 
 
 
 
 
 
1276	int i;
1277
1278	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1279		/* RAID5/6 */
1280		for (i = 0; i < nstripes; i++) {
1281			if (raid_map[i] == RAID6_Q_STRIPE ||
1282			    raid_map[i] == RAID5_P_STRIPE)
1283				continue;
 
 
 
 
 
 
1284
1285			if (logical >= raid_map[i] &&
1286			    logical < raid_map[i] + mapped_length)
1287				break;
1288		}
1289
1290		*stripe_index = i;
1291		*stripe_offset = logical - raid_map[i];
1292	} else {
1293		/* The other RAID type */
1294		*stripe_index = mirror;
1295		*stripe_offset = 0;
 
 
 
 
 
 
 
 
 
 
 
1296	}
1297}
1298
1299static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1300				     struct scrub_block *sblocks_for_recheck)
1301{
1302	struct scrub_ctx *sctx = original_sblock->sctx;
1303	struct btrfs_fs_info *fs_info = sctx->fs_info;
1304	u64 length = original_sblock->page_count * PAGE_SIZE;
1305	u64 logical = original_sblock->pagev[0]->logical;
1306	u64 generation = original_sblock->pagev[0]->generation;
1307	u64 flags = original_sblock->pagev[0]->flags;
1308	u64 have_csum = original_sblock->pagev[0]->have_csum;
1309	struct scrub_recover *recover;
1310	struct btrfs_bio *bbio;
1311	u64 sublen;
1312	u64 mapped_length;
1313	u64 stripe_offset;
1314	int stripe_index;
1315	int page_index = 0;
1316	int mirror_index;
1317	int nmirrors;
1318	int ret;
1319
 
 
 
 
 
 
 
 
 
 
 
 
 
1320	/*
1321	 * note: the two members refs and outstanding_pages
1322	 * are not used (and not set) in the blocks that are used for
1323	 * the recheck procedure
1324	 */
1325
1326	while (length > 0) {
1327		sublen = min_t(u64, length, PAGE_SIZE);
1328		mapped_length = sublen;
1329		bbio = NULL;
1330
1331		/*
1332		 * with a length of PAGE_SIZE, each returned stripe
1333		 * represents one mirror
1334		 */
1335		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1336				logical, &mapped_length, &bbio, 0, 1);
1337		if (ret || !bbio || mapped_length < sublen) {
1338			btrfs_put_bbio(bbio);
1339			return -EIO;
1340		}
1341
1342		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1343		if (!recover) {
1344			btrfs_put_bbio(bbio);
1345			return -ENOMEM;
1346		}
1347
1348		atomic_set(&recover->refs, 1);
1349		recover->bbio = bbio;
1350		recover->map_length = mapped_length;
1351
1352		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1353
1354		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1355
1356		for (mirror_index = 0; mirror_index < nmirrors;
1357		     mirror_index++) {
1358			struct scrub_block *sblock;
1359			struct scrub_page *page;
1360
1361			sblock = sblocks_for_recheck + mirror_index;
1362			sblock->sctx = sctx;
1363
1364			page = kzalloc(sizeof(*page), GFP_NOFS);
1365			if (!page) {
1366leave_nomem:
1367				spin_lock(&sctx->stat_lock);
1368				sctx->stat.malloc_errors++;
1369				spin_unlock(&sctx->stat_lock);
1370				scrub_put_recover(recover);
1371				return -ENOMEM;
1372			}
1373			scrub_page_get(page);
1374			sblock->pagev[page_index] = page;
1375			page->sblock = sblock;
1376			page->flags = flags;
1377			page->generation = generation;
1378			page->logical = logical;
1379			page->have_csum = have_csum;
1380			if (have_csum)
1381				memcpy(page->csum,
1382				       original_sblock->pagev[0]->csum,
1383				       sctx->csum_size);
1384
1385			scrub_stripe_index_and_offset(logical,
1386						      bbio->map_type,
1387						      bbio->raid_map,
1388						      mapped_length,
1389						      bbio->num_stripes -
1390						      bbio->num_tgtdevs,
1391						      mirror_index,
1392						      &stripe_index,
1393						      &stripe_offset);
1394			page->physical = bbio->stripes[stripe_index].physical +
1395					 stripe_offset;
1396			page->dev = bbio->stripes[stripe_index].dev;
1397
1398			BUG_ON(page_index >= original_sblock->page_count);
1399			page->physical_for_dev_replace =
1400				original_sblock->pagev[page_index]->
1401				physical_for_dev_replace;
1402			/* for missing devices, dev->bdev is NULL */
1403			page->mirror_num = mirror_index + 1;
1404			sblock->page_count++;
1405			page->page = alloc_page(GFP_NOFS);
1406			if (!page->page)
1407				goto leave_nomem;
1408
1409			scrub_get_recover(recover);
1410			page->recover = recover;
1411		}
1412		scrub_put_recover(recover);
1413		length -= sublen;
1414		logical += sublen;
1415		page_index++;
1416	}
1417
1418	return 0;
 
 
1419}
1420
1421struct scrub_bio_ret {
1422	struct completion event;
1423	int error;
1424};
1425
1426static void scrub_bio_wait_endio(struct bio *bio)
1427{
1428	struct scrub_bio_ret *ret = bio->bi_private;
 
 
 
 
 
1429
1430	ret->error = bio->bi_error;
1431	complete(&ret->event);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432}
1433
1434static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1435{
1436	return page->recover &&
1437	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438}
1439
1440static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1441					struct bio *bio,
1442					struct scrub_page *page)
1443{
1444	struct scrub_bio_ret done;
1445	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447	init_completion(&done.event);
1448	done.error = 0;
1449	bio->bi_iter.bi_sector = page->logical >> 9;
1450	bio->bi_private = &done;
1451	bio->bi_end_io = scrub_bio_wait_endio;
1452
1453	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1454				    page->recover->map_length,
1455				    page->mirror_num, 0);
1456	if (ret)
1457		return ret;
1458
1459	wait_for_completion(&done.event);
1460	if (done.error)
1461		return -EIO;
1462
1463	return 0;
1464}
1465
1466/*
1467 * this function will check the on disk data for checksum errors, header
1468 * errors and read I/O errors. If any I/O errors happen, the exact pages
1469 * which are errored are marked as being bad. The goal is to enable scrub
1470 * to take those pages that are not errored from all the mirrors so that
1471 * the pages that are errored in the just handled mirror can be repaired.
 
 
 
 
 
 
1472 */
1473static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1474				struct scrub_block *sblock,
1475				int retry_failed_mirror)
1476{
1477	int page_num;
 
 
1478
1479	sblock->no_io_error_seen = 1;
 
 
 
1480
1481	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1482		struct bio *bio;
1483		struct scrub_page *page = sblock->pagev[page_num];
1484
1485		if (page->dev->bdev == NULL) {
1486			page->io_error = 1;
1487			sblock->no_io_error_seen = 0;
1488			continue;
1489		}
1490
1491		WARN_ON(!page->page);
1492		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1493		if (!bio) {
1494			page->io_error = 1;
1495			sblock->no_io_error_seen = 0;
1496			continue;
1497		}
1498		bio->bi_bdev = page->dev->bdev;
1499
1500		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1501		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1502			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1503				sblock->no_io_error_seen = 0;
1504		} else {
1505			bio->bi_iter.bi_sector = page->physical >> 9;
1506			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1507
1508			if (btrfsic_submit_bio_wait(bio))
1509				sblock->no_io_error_seen = 0;
1510		}
1511
1512		bio_put(bio);
1513	}
1514
1515	if (sblock->no_io_error_seen)
1516		scrub_recheck_block_checksum(sblock);
1517}
1518
1519static inline int scrub_check_fsid(u8 fsid[],
1520				   struct scrub_page *spage)
 
 
 
 
1521{
1522	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1523	int ret;
 
 
 
1524
1525	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1526	return !ret;
1527}
1528
1529static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1530{
1531	sblock->header_error = 0;
1532	sblock->checksum_error = 0;
1533	sblock->generation_error = 0;
 
1534
1535	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1536		scrub_checksum_data(sblock);
1537	else
1538		scrub_checksum_tree_block(sblock);
1539}
 
 
 
 
 
 
 
 
1540
1541static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542					     struct scrub_block *sblock_good)
1543{
1544	int page_num;
1545	int ret = 0;
1546
1547	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1548		int ret_sub;
1549
1550		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1551							   sblock_good,
1552							   page_num, 1);
1553		if (ret_sub)
1554			ret = ret_sub;
1555	}
1556
1557	return ret;
1558}
1559
1560static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1561					    struct scrub_block *sblock_good,
1562					    int page_num, int force_write)
1563{
1564	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1565	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1567
1568	BUG_ON(page_bad->page == NULL);
1569	BUG_ON(page_good->page == NULL);
1570	if (force_write || sblock_bad->header_error ||
1571	    sblock_bad->checksum_error || page_bad->io_error) {
1572		struct bio *bio;
1573		int ret;
1574
1575		if (!page_bad->dev->bdev) {
1576			btrfs_warn_rl(fs_info,
1577				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1578			return -EIO;
1579		}
1580
1581		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582		if (!bio)
1583			return -EIO;
1584		bio->bi_bdev = page_bad->dev->bdev;
1585		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1587
1588		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1589		if (PAGE_SIZE != ret) {
1590			bio_put(bio);
1591			return -EIO;
1592		}
1593
1594		if (btrfsic_submit_bio_wait(bio)) {
1595			btrfs_dev_stat_inc_and_print(page_bad->dev,
1596				BTRFS_DEV_STAT_WRITE_ERRS);
1597			btrfs_dev_replace_stats_inc(
1598				&fs_info->dev_replace.num_write_errors);
1599			bio_put(bio);
1600			return -EIO;
1601		}
1602		bio_put(bio);
1603	}
1604
1605	return 0;
 
1606}
1607
1608static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
 
 
 
 
 
 
 
 
 
1609{
1610	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1611	int page_num;
 
 
1612
1613	/*
1614	 * This block is used for the check of the parity on the source device,
1615	 * so the data needn't be written into the destination device.
1616	 */
1617	if (sblock->sparity)
1618		return;
1619
1620	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1621		int ret;
 
 
 
1622
1623		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1624		if (ret)
1625			btrfs_dev_replace_stats_inc(
1626				&fs_info->dev_replace.num_write_errors);
1627	}
1628}
1629
1630static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1631					   int page_num)
1632{
1633	struct scrub_page *spage = sblock->pagev[page_num];
1634
1635	BUG_ON(spage->page == NULL);
1636	if (spage->io_error) {
1637		void *mapped_buffer = kmap_atomic(spage->page);
1638
1639		memset(mapped_buffer, 0, PAGE_SIZE);
1640		flush_dcache_page(spage->page);
1641		kunmap_atomic(mapped_buffer);
 
 
1642	}
1643	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
 
1644}
1645
1646static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1647				    struct scrub_page *spage)
 
 
 
 
 
1648{
1649	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1650	struct scrub_bio *sbio;
1651	int ret;
1652
1653	mutex_lock(&wr_ctx->wr_lock);
1654again:
1655	if (!wr_ctx->wr_curr_bio) {
1656		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657					      GFP_KERNEL);
1658		if (!wr_ctx->wr_curr_bio) {
1659			mutex_unlock(&wr_ctx->wr_lock);
1660			return -ENOMEM;
1661		}
1662		wr_ctx->wr_curr_bio->sctx = sctx;
1663		wr_ctx->wr_curr_bio->page_count = 0;
1664	}
1665	sbio = wr_ctx->wr_curr_bio;
1666	if (sbio->page_count == 0) {
1667		struct bio *bio;
1668
1669		sbio->physical = spage->physical_for_dev_replace;
1670		sbio->logical = spage->logical;
1671		sbio->dev = wr_ctx->tgtdev;
1672		bio = sbio->bio;
1673		if (!bio) {
1674			bio = btrfs_io_bio_alloc(GFP_KERNEL,
1675					wr_ctx->pages_per_wr_bio);
1676			if (!bio) {
1677				mutex_unlock(&wr_ctx->wr_lock);
1678				return -ENOMEM;
1679			}
1680			sbio->bio = bio;
1681		}
1682
1683		bio->bi_private = sbio;
1684		bio->bi_end_io = scrub_wr_bio_end_io;
1685		bio->bi_bdev = sbio->dev->bdev;
1686		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
1688		sbio->err = 0;
1689	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1690		   spage->physical_for_dev_replace ||
1691		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1692		   spage->logical) {
1693		scrub_wr_submit(sctx);
1694		goto again;
1695	}
1696
1697	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1698	if (ret != PAGE_SIZE) {
1699		if (sbio->page_count < 1) {
1700			bio_put(sbio->bio);
1701			sbio->bio = NULL;
1702			mutex_unlock(&wr_ctx->wr_lock);
1703			return -EIO;
1704		}
1705		scrub_wr_submit(sctx);
1706		goto again;
1707	}
1708
1709	sbio->pagev[sbio->page_count] = spage;
1710	scrub_page_get(spage);
1711	sbio->page_count++;
1712	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1713		scrub_wr_submit(sctx);
1714	mutex_unlock(&wr_ctx->wr_lock);
1715
 
 
 
 
1716	return 0;
1717}
1718
1719static void scrub_wr_submit(struct scrub_ctx *sctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1720{
1721	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1722	struct scrub_bio *sbio;
 
1723
1724	if (!wr_ctx->wr_curr_bio)
1725		return;
 
1726
1727	sbio = wr_ctx->wr_curr_bio;
1728	wr_ctx->wr_curr_bio = NULL;
1729	WARN_ON(!sbio->bio->bi_bdev);
1730	scrub_pending_bio_inc(sctx);
1731	/* process all writes in a single worker thread. Then the block layer
1732	 * orders the requests before sending them to the driver which
1733	 * doubled the write performance on spinning disks when measured
1734	 * with Linux 3.5 */
1735	btrfsic_submit_bio(sbio->bio);
1736}
1737
1738static void scrub_wr_bio_end_io(struct bio *bio)
1739{
1740	struct scrub_bio *sbio = bio->bi_private;
1741	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 
 
 
 
 
 
 
1742
1743	sbio->err = bio->bi_error;
1744	sbio->bio = bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1745
1746	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1747			 scrub_wr_bio_end_io_worker, NULL, NULL);
1748	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1749}
1750
1751static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1752{
1753	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1754	struct scrub_ctx *sctx = sbio->sctx;
1755	int i;
1756
1757	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1758	if (sbio->err) {
1759		struct btrfs_dev_replace *dev_replace =
1760			&sbio->sctx->fs_info->dev_replace;
1761
1762		for (i = 0; i < sbio->page_count; i++) {
1763			struct scrub_page *spage = sbio->pagev[i];
1764
1765			spage->io_error = 1;
1766			btrfs_dev_replace_stats_inc(&dev_replace->
1767						    num_write_errors);
1768		}
1769	}
1770
1771	for (i = 0; i < sbio->page_count; i++)
1772		scrub_page_put(sbio->pagev[i]);
1773
1774	bio_put(sbio->bio);
1775	kfree(sbio);
1776	scrub_pending_bio_dec(sctx);
1777}
1778
1779static int scrub_checksum(struct scrub_block *sblock)
 
1780{
1781	u64 flags;
1782	int ret;
1783
1784	/*
1785	 * No need to initialize these stats currently,
1786	 * because this function only use return value
1787	 * instead of these stats value.
1788	 *
1789	 * Todo:
1790	 * always use stats
1791	 */
1792	sblock->header_error = 0;
1793	sblock->generation_error = 0;
1794	sblock->checksum_error = 0;
1795
1796	WARN_ON(sblock->page_count < 1);
1797	flags = sblock->pagev[0]->flags;
1798	ret = 0;
1799	if (flags & BTRFS_EXTENT_FLAG_DATA)
1800		ret = scrub_checksum_data(sblock);
1801	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1802		ret = scrub_checksum_tree_block(sblock);
1803	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1804		(void)scrub_checksum_super(sblock);
1805	else
1806		WARN_ON(1);
1807	if (ret)
1808		scrub_handle_errored_block(sblock);
1809
1810	return ret;
1811}
1812
1813static int scrub_checksum_data(struct scrub_block *sblock)
 
1814{
1815	struct scrub_ctx *sctx = sblock->sctx;
1816	u8 csum[BTRFS_CSUM_SIZE];
1817	u8 *on_disk_csum;
1818	struct page *page;
1819	void *buffer;
1820	u32 crc = ~(u32)0;
1821	u64 len;
1822	int index;
1823
1824	BUG_ON(sblock->page_count < 1);
1825	if (!sblock->pagev[0]->have_csum)
1826		return 0;
1827
1828	on_disk_csum = sblock->pagev[0]->csum;
1829	page = sblock->pagev[0]->page;
1830	buffer = kmap_atomic(page);
1831
1832	len = sctx->sectorsize;
1833	index = 0;
1834	for (;;) {
1835		u64 l = min_t(u64, len, PAGE_SIZE);
1836
1837		crc = btrfs_csum_data(buffer, crc, l);
1838		kunmap_atomic(buffer);
1839		len -= l;
1840		if (len == 0)
1841			break;
1842		index++;
1843		BUG_ON(index >= sblock->page_count);
1844		BUG_ON(!sblock->pagev[index]->page);
1845		page = sblock->pagev[index]->page;
1846		buffer = kmap_atomic(page);
1847	}
 
 
1848
1849	btrfs_csum_final(crc, csum);
1850	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1851		sblock->checksum_error = 1;
1852
1853	return sblock->checksum_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854}
1855
1856static int scrub_checksum_tree_block(struct scrub_block *sblock)
1857{
1858	struct scrub_ctx *sctx = sblock->sctx;
1859	struct btrfs_header *h;
1860	struct btrfs_fs_info *fs_info = sctx->fs_info;
1861	u8 calculated_csum[BTRFS_CSUM_SIZE];
1862	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1863	struct page *page;
1864	void *mapped_buffer;
1865	u64 mapped_size;
1866	void *p;
1867	u32 crc = ~(u32)0;
1868	u64 len;
1869	int index;
1870
1871	BUG_ON(sblock->page_count < 1);
1872	page = sblock->pagev[0]->page;
1873	mapped_buffer = kmap_atomic(page);
1874	h = (struct btrfs_header *)mapped_buffer;
1875	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1876
1877	/*
1878	 * we don't use the getter functions here, as we
1879	 * a) don't have an extent buffer and
1880	 * b) the page is already kmapped
1881	 */
1882	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883		sblock->header_error = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1884
1885	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1886		sblock->header_error = 1;
1887		sblock->generation_error = 1;
1888	}
1889
1890	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891		sblock->header_error = 1;
1892
1893	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1894		   BTRFS_UUID_SIZE))
1895		sblock->header_error = 1;
1896
1897	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1899	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1900	index = 0;
1901	for (;;) {
1902		u64 l = min_t(u64, len, mapped_size);
1903
1904		crc = btrfs_csum_data(p, crc, l);
1905		kunmap_atomic(mapped_buffer);
1906		len -= l;
1907		if (len == 0)
1908			break;
1909		index++;
1910		BUG_ON(index >= sblock->page_count);
1911		BUG_ON(!sblock->pagev[index]->page);
1912		page = sblock->pagev[index]->page;
1913		mapped_buffer = kmap_atomic(page);
1914		mapped_size = PAGE_SIZE;
1915		p = mapped_buffer;
1916	}
 
 
 
1917
1918	btrfs_csum_final(crc, calculated_csum);
1919	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920		sblock->checksum_error = 1;
1921
1922	return sblock->header_error || sblock->checksum_error;
1923}
 
 
 
 
 
 
 
 
 
 
1924
1925static int scrub_checksum_super(struct scrub_block *sblock)
1926{
1927	struct btrfs_super_block *s;
1928	struct scrub_ctx *sctx = sblock->sctx;
1929	u8 calculated_csum[BTRFS_CSUM_SIZE];
1930	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1931	struct page *page;
1932	void *mapped_buffer;
1933	u64 mapped_size;
1934	void *p;
1935	u32 crc = ~(u32)0;
1936	int fail_gen = 0;
1937	int fail_cor = 0;
1938	u64 len;
1939	int index;
1940
1941	BUG_ON(sblock->page_count < 1);
1942	page = sblock->pagev[0]->page;
1943	mapped_buffer = kmap_atomic(page);
1944	s = (struct btrfs_super_block *)mapped_buffer;
1945	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1946
1947	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948		++fail_cor;
1949
1950	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951		++fail_gen;
1952
1953	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954		++fail_cor;
1955
1956	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1957	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1958	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1959	index = 0;
1960	for (;;) {
1961		u64 l = min_t(u64, len, mapped_size);
1962
1963		crc = btrfs_csum_data(p, crc, l);
1964		kunmap_atomic(mapped_buffer);
1965		len -= l;
1966		if (len == 0)
1967			break;
1968		index++;
1969		BUG_ON(index >= sblock->page_count);
1970		BUG_ON(!sblock->pagev[index]->page);
1971		page = sblock->pagev[index]->page;
1972		mapped_buffer = kmap_atomic(page);
1973		mapped_size = PAGE_SIZE;
1974		p = mapped_buffer;
1975	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976
1977	btrfs_csum_final(crc, calculated_csum);
1978	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979		++fail_cor;
1980
1981	if (fail_cor + fail_gen) {
1982		/*
1983		 * if we find an error in a super block, we just report it.
1984		 * They will get written with the next transaction commit
1985		 * anyway
1986		 */
1987		spin_lock(&sctx->stat_lock);
1988		++sctx->stat.super_errors;
1989		spin_unlock(&sctx->stat_lock);
1990		if (fail_cor)
1991			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1993		else
1994			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995				BTRFS_DEV_STAT_GENERATION_ERRS);
1996	}
1997
1998	return fail_cor + fail_gen;
1999}
2000
2001static void scrub_block_get(struct scrub_block *sblock)
2002{
2003	atomic_inc(&sblock->refs);
2004}
2005
2006static void scrub_block_put(struct scrub_block *sblock)
2007{
2008	if (atomic_dec_and_test(&sblock->refs)) {
2009		int i;
2010
2011		if (sblock->sparity)
2012			scrub_parity_put(sblock->sparity);
 
2013
2014		for (i = 0; i < sblock->page_count; i++)
2015			scrub_page_put(sblock->pagev[i]);
2016		kfree(sblock);
 
2017	}
2018}
2019
2020static void scrub_page_get(struct scrub_page *spage)
2021{
2022	atomic_inc(&spage->refs);
2023}
2024
2025static void scrub_page_put(struct scrub_page *spage)
2026{
2027	if (atomic_dec_and_test(&spage->refs)) {
2028		if (spage->page)
2029			__free_page(spage->page);
2030		kfree(spage);
2031	}
2032}
2033
2034static void scrub_submit(struct scrub_ctx *sctx)
2035{
2036	struct scrub_bio *sbio;
 
 
 
 
 
2037
2038	if (sctx->curr == -1)
2039		return;
2040
2041	sbio = sctx->bios[sctx->curr];
2042	sctx->curr = -1;
2043	scrub_pending_bio_inc(sctx);
2044	btrfsic_submit_bio(sbio->bio);
2045}
2046
2047static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2048				    struct scrub_page *spage)
2049{
2050	struct scrub_block *sblock = spage->sblock;
2051	struct scrub_bio *sbio;
2052	int ret;
2053
2054again:
2055	/*
2056	 * grab a fresh bio or wait for one to become available
2057	 */
2058	while (sctx->curr == -1) {
2059		spin_lock(&sctx->list_lock);
2060		sctx->curr = sctx->first_free;
2061		if (sctx->curr != -1) {
2062			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2063			sctx->bios[sctx->curr]->next_free = -1;
2064			sctx->bios[sctx->curr]->page_count = 0;
2065			spin_unlock(&sctx->list_lock);
2066		} else {
2067			spin_unlock(&sctx->list_lock);
2068			wait_event(sctx->list_wait, sctx->first_free != -1);
2069		}
2070	}
2071	sbio = sctx->bios[sctx->curr];
2072	if (sbio->page_count == 0) {
2073		struct bio *bio;
2074
2075		sbio->physical = spage->physical;
2076		sbio->logical = spage->logical;
2077		sbio->dev = spage->dev;
2078		bio = sbio->bio;
2079		if (!bio) {
2080			bio = btrfs_io_bio_alloc(GFP_KERNEL,
2081					sctx->pages_per_rd_bio);
2082			if (!bio)
2083				return -ENOMEM;
2084			sbio->bio = bio;
2085		}
2086
2087		bio->bi_private = sbio;
2088		bio->bi_end_io = scrub_bio_end_io;
2089		bio->bi_bdev = sbio->dev->bdev;
2090		bio->bi_iter.bi_sector = sbio->physical >> 9;
2091		bio_set_op_attrs(bio, REQ_OP_READ, 0);
2092		sbio->err = 0;
2093	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2094		   spage->physical ||
2095		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2096		   spage->logical ||
2097		   sbio->dev != spage->dev) {
2098		scrub_submit(sctx);
2099		goto again;
2100	}
2101
2102	sbio->pagev[sbio->page_count] = spage;
2103	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2104	if (ret != PAGE_SIZE) {
2105		if (sbio->page_count < 1) {
2106			bio_put(sbio->bio);
2107			sbio->bio = NULL;
2108			return -EIO;
2109		}
2110		scrub_submit(sctx);
2111		goto again;
2112	}
2113
2114	scrub_block_get(sblock); /* one for the page added to the bio */
2115	atomic_inc(&sblock->outstanding_pages);
2116	sbio->page_count++;
2117	if (sbio->page_count == sctx->pages_per_rd_bio)
2118		scrub_submit(sctx);
2119
2120	return 0;
2121}
 
 
 
 
2122
2123static void scrub_missing_raid56_end_io(struct bio *bio)
2124{
2125	struct scrub_block *sblock = bio->bi_private;
2126	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127
2128	if (bio->bi_error)
2129		sblock->no_io_error_seen = 0;
 
 
2130
2131	bio_put(bio);
 
2132
2133	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2134}
2135
2136static void scrub_missing_raid56_worker(struct btrfs_work *work)
2137{
2138	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2139	struct scrub_ctx *sctx = sblock->sctx;
2140	struct btrfs_fs_info *fs_info = sctx->fs_info;
2141	u64 logical;
2142	struct btrfs_device *dev;
2143
2144	logical = sblock->pagev[0]->logical;
2145	dev = sblock->pagev[0]->dev;
2146
2147	if (sblock->no_io_error_seen)
2148		scrub_recheck_block_checksum(sblock);
2149
2150	if (!sblock->no_io_error_seen) {
2151		spin_lock(&sctx->stat_lock);
2152		sctx->stat.read_errors++;
2153		spin_unlock(&sctx->stat_lock);
2154		btrfs_err_rl_in_rcu(fs_info,
2155			"IO error rebuilding logical %llu for dev %s",
2156			logical, rcu_str_deref(dev->name));
2157	} else if (sblock->header_error || sblock->checksum_error) {
2158		spin_lock(&sctx->stat_lock);
2159		sctx->stat.uncorrectable_errors++;
2160		spin_unlock(&sctx->stat_lock);
2161		btrfs_err_rl_in_rcu(fs_info,
2162			"failed to rebuild valid logical %llu for dev %s",
2163			logical, rcu_str_deref(dev->name));
2164	} else {
2165		scrub_write_block_to_dev_replace(sblock);
2166	}
2167
2168	scrub_block_put(sblock);
2169
2170	if (sctx->is_dev_replace &&
2171	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2172		mutex_lock(&sctx->wr_ctx.wr_lock);
2173		scrub_wr_submit(sctx);
2174		mutex_unlock(&sctx->wr_ctx.wr_lock);
2175	}
2176
2177	scrub_pending_bio_dec(sctx);
2178}
2179
2180static void scrub_missing_raid56_pages(struct scrub_block *sblock)
 
2181{
2182	struct scrub_ctx *sctx = sblock->sctx;
2183	struct btrfs_fs_info *fs_info = sctx->fs_info;
2184	u64 length = sblock->page_count * PAGE_SIZE;
2185	u64 logical = sblock->pagev[0]->logical;
2186	struct btrfs_bio *bbio = NULL;
2187	struct bio *bio;
2188	struct btrfs_raid_bio *rbio;
2189	int ret;
2190	int i;
2191
2192	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2193			&length, &bbio, 0, 1);
2194	if (ret || !bbio || !bbio->raid_map)
2195		goto bbio_out;
2196
2197	if (WARN_ON(!sctx->is_dev_replace ||
2198		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2199		/*
2200		 * We shouldn't be scrubbing a missing device. Even for dev
2201		 * replace, we should only get here for RAID 5/6. We either
2202		 * managed to mount something with no mirrors remaining or
2203		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2204		 */
2205		goto bbio_out;
2206	}
2207
2208	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2209	if (!bio)
2210		goto bbio_out;
2211
2212	bio->bi_iter.bi_sector = logical >> 9;
2213	bio->bi_private = sblock;
2214	bio->bi_end_io = scrub_missing_raid56_end_io;
 
 
 
2215
2216	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2217	if (!rbio)
2218		goto rbio_out;
 
 
2219
2220	for (i = 0; i < sblock->page_count; i++) {
2221		struct scrub_page *spage = sblock->pagev[i];
 
 
 
 
 
 
 
 
2222
2223		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2224	}
2225
2226	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2227			scrub_missing_raid56_worker, NULL, NULL);
2228	scrub_block_get(sblock);
2229	scrub_pending_bio_inc(sctx);
2230	raid56_submit_missing_rbio(rbio);
2231	return;
2232
2233rbio_out:
2234	bio_put(bio);
2235bbio_out:
2236	btrfs_put_bbio(bbio);
2237	spin_lock(&sctx->stat_lock);
2238	sctx->stat.malloc_errors++;
2239	spin_unlock(&sctx->stat_lock);
2240}
2241
2242static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2243		       u64 physical, struct btrfs_device *dev, u64 flags,
2244		       u64 gen, int mirror_num, u8 *csum, int force,
2245		       u64 physical_for_dev_replace)
2246{
2247	struct scrub_block *sblock;
2248	int index;
2249
2250	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2251	if (!sblock) {
2252		spin_lock(&sctx->stat_lock);
2253		sctx->stat.malloc_errors++;
2254		spin_unlock(&sctx->stat_lock);
2255		return -ENOMEM;
2256	}
2257
2258	/* one ref inside this function, plus one for each page added to
2259	 * a bio later on */
2260	atomic_set(&sblock->refs, 1);
2261	sblock->sctx = sctx;
2262	sblock->no_io_error_seen = 1;
2263
2264	for (index = 0; len > 0; index++) {
2265		struct scrub_page *spage;
2266		u64 l = min_t(u64, len, PAGE_SIZE);
2267
2268		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2269		if (!spage) {
2270leave_nomem:
2271			spin_lock(&sctx->stat_lock);
2272			sctx->stat.malloc_errors++;
2273			spin_unlock(&sctx->stat_lock);
2274			scrub_block_put(sblock);
2275			return -ENOMEM;
2276		}
2277		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2278		scrub_page_get(spage);
2279		sblock->pagev[index] = spage;
2280		spage->sblock = sblock;
2281		spage->dev = dev;
2282		spage->flags = flags;
2283		spage->generation = gen;
2284		spage->logical = logical;
2285		spage->physical = physical;
2286		spage->physical_for_dev_replace = physical_for_dev_replace;
2287		spage->mirror_num = mirror_num;
2288		if (csum) {
2289			spage->have_csum = 1;
2290			memcpy(spage->csum, csum, sctx->csum_size);
2291		} else {
2292			spage->have_csum = 0;
2293		}
2294		sblock->page_count++;
2295		spage->page = alloc_page(GFP_KERNEL);
2296		if (!spage->page)
2297			goto leave_nomem;
2298		len -= l;
2299		logical += l;
2300		physical += l;
2301		physical_for_dev_replace += l;
2302	}
 
 
 
 
 
 
 
 
2303
2304	WARN_ON(sblock->page_count == 0);
2305	if (dev->missing) {
2306		/*
2307		 * This case should only be hit for RAID 5/6 device replace. See
2308		 * the comment in scrub_missing_raid56_pages() for details.
2309		 */
2310		scrub_missing_raid56_pages(sblock);
2311	} else {
2312		for (index = 0; index < sblock->page_count; index++) {
2313			struct scrub_page *spage = sblock->pagev[index];
2314			int ret;
2315
2316			ret = scrub_add_page_to_rd_bio(sctx, spage);
2317			if (ret) {
2318				scrub_block_put(sblock);
2319				return ret;
2320			}
2321		}
2322
2323		if (force)
2324			scrub_submit(sctx);
 
2325	}
2326
2327	/* last one frees, either here or in bio completion for last page */
2328	scrub_block_put(sblock);
2329	return 0;
2330}
2331
2332static void scrub_bio_end_io(struct bio *bio)
2333{
2334	struct scrub_bio *sbio = bio->bi_private;
2335	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
 
 
2336
2337	sbio->err = bio->bi_error;
2338	sbio->bio = bio;
2339
2340	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2341}
2342
2343static void scrub_bio_end_io_worker(struct btrfs_work *work)
2344{
2345	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2346	struct scrub_ctx *sctx = sbio->sctx;
2347	int i;
2348
2349	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2350	if (sbio->err) {
2351		for (i = 0; i < sbio->page_count; i++) {
2352			struct scrub_page *spage = sbio->pagev[i];
2353
2354			spage->io_error = 1;
2355			spage->sblock->no_io_error_seen = 0;
2356		}
2357	}
2358
2359	/* now complete the scrub_block items that have all pages completed */
2360	for (i = 0; i < sbio->page_count; i++) {
2361		struct scrub_page *spage = sbio->pagev[i];
2362		struct scrub_block *sblock = spage->sblock;
2363
2364		if (atomic_dec_and_test(&sblock->outstanding_pages))
2365			scrub_block_complete(sblock);
2366		scrub_block_put(sblock);
2367	}
2368
2369	bio_put(sbio->bio);
2370	sbio->bio = NULL;
2371	spin_lock(&sctx->list_lock);
2372	sbio->next_free = sctx->first_free;
2373	sctx->first_free = sbio->index;
2374	spin_unlock(&sctx->list_lock);
 
 
 
 
 
 
 
 
2375
2376	if (sctx->is_dev_replace &&
2377	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2378		mutex_lock(&sctx->wr_ctx.wr_lock);
2379		scrub_wr_submit(sctx);
2380		mutex_unlock(&sctx->wr_ctx.wr_lock);
2381	}
2382
2383	scrub_pending_bio_dec(sctx);
2384}
2385
2386static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2387				       unsigned long *bitmap,
2388				       u64 start, u64 len)
2389{
2390	u32 offset;
2391	int nsectors;
2392	int sectorsize = sparity->sctx->fs_info->sectorsize;
2393
2394	if (len >= sparity->stripe_len) {
2395		bitmap_set(bitmap, 0, sparity->nsectors);
2396		return;
2397	}
2398
2399	start -= sparity->logic_start;
2400	start = div_u64_rem(start, sparity->stripe_len, &offset);
2401	offset /= sectorsize;
2402	nsectors = (int)len / sectorsize;
2403
2404	if (offset + nsectors <= sparity->nsectors) {
2405		bitmap_set(bitmap, offset, nsectors);
2406		return;
 
 
2407	}
2408
2409	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2410	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2411}
2412
2413static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2414						   u64 start, u64 len)
2415{
2416	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2417}
2418
2419static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2420						  u64 start, u64 len)
 
 
2421{
2422	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2423}
 
 
 
 
 
 
2424
2425static void scrub_block_complete(struct scrub_block *sblock)
2426{
2427	int corrupted = 0;
2428
2429	if (!sblock->no_io_error_seen) {
2430		corrupted = 1;
2431		scrub_handle_errored_block(sblock);
2432	} else {
2433		/*
2434		 * if has checksum error, write via repair mechanism in
2435		 * dev replace case, otherwise write here in dev replace
2436		 * case.
2437		 */
2438		corrupted = scrub_checksum(sblock);
2439		if (!corrupted && sblock->sctx->is_dev_replace)
2440			scrub_write_block_to_dev_replace(sblock);
2441	}
2442
2443	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2444		u64 start = sblock->pagev[0]->logical;
2445		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2446			  PAGE_SIZE;
2447
2448		scrub_parity_mark_sectors_error(sblock->sparity,
2449						start, end - start);
2450	}
 
 
 
 
 
2451}
2452
2453static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
 
 
 
 
2454{
2455	struct btrfs_ordered_sum *sum = NULL;
2456	unsigned long index;
2457	unsigned long num_sectors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2458
2459	while (!list_empty(&sctx->csum_list)) {
2460		sum = list_first_entry(&sctx->csum_list,
2461				       struct btrfs_ordered_sum, list);
2462		if (sum->bytenr > logical)
2463			return 0;
2464		if (sum->bytenr + sum->len > logical)
2465			break;
2466
2467		++sctx->stat.csum_discards;
2468		list_del(&sum->list);
2469		kfree(sum);
2470		sum = NULL;
2471	}
2472	if (!sum)
2473		return 0;
2474
2475	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2476	num_sectors = sum->len / sctx->sectorsize;
2477	memcpy(csum, sum->sums + index, sctx->csum_size);
2478	if (index == num_sectors - 1) {
2479		list_del(&sum->list);
2480		kfree(sum);
2481	}
2482	return 1;
2483}
2484
2485/* scrub extent tries to collect up to 64 kB for each bio */
2486static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2487			u64 physical, struct btrfs_device *dev, u64 flags,
2488			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2489{
2490	int ret;
2491	u8 csum[BTRFS_CSUM_SIZE];
2492	u32 blocksize;
2493
2494	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2495		blocksize = sctx->sectorsize;
2496		spin_lock(&sctx->stat_lock);
2497		sctx->stat.data_extents_scrubbed++;
2498		sctx->stat.data_bytes_scrubbed += len;
2499		spin_unlock(&sctx->stat_lock);
2500	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2501		blocksize = sctx->nodesize;
2502		spin_lock(&sctx->stat_lock);
2503		sctx->stat.tree_extents_scrubbed++;
2504		sctx->stat.tree_bytes_scrubbed += len;
2505		spin_unlock(&sctx->stat_lock);
2506	} else {
2507		blocksize = sctx->sectorsize;
2508		WARN_ON(1);
2509	}
 
 
2510
2511	while (len) {
2512		u64 l = min_t(u64, len, blocksize);
2513		int have_csum = 0;
2514
2515		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2516			/* push csums to sbio */
2517			have_csum = scrub_find_csum(sctx, logical, csum);
2518			if (have_csum == 0)
2519				++sctx->stat.no_csum;
2520			if (sctx->is_dev_replace && !have_csum) {
2521				ret = copy_nocow_pages(sctx, logical, l,
2522						       mirror_num,
2523						      physical_for_dev_replace);
2524				goto behind_scrub_pages;
2525			}
2526		}
2527		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2528				  mirror_num, have_csum ? csum : NULL, 0,
2529				  physical_for_dev_replace);
2530behind_scrub_pages:
2531		if (ret)
2532			return ret;
2533		len -= l;
2534		logical += l;
2535		physical += l;
2536		physical_for_dev_replace += l;
2537	}
2538	return 0;
2539}
2540
2541static int scrub_pages_for_parity(struct scrub_parity *sparity,
2542				  u64 logical, u64 len,
2543				  u64 physical, struct btrfs_device *dev,
2544				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2545{
2546	struct scrub_ctx *sctx = sparity->sctx;
2547	struct scrub_block *sblock;
2548	int index;
 
2549
2550	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2551	if (!sblock) {
2552		spin_lock(&sctx->stat_lock);
2553		sctx->stat.malloc_errors++;
2554		spin_unlock(&sctx->stat_lock);
2555		return -ENOMEM;
2556	}
2557
2558	/* one ref inside this function, plus one for each page added to
2559	 * a bio later on */
2560	atomic_set(&sblock->refs, 1);
2561	sblock->sctx = sctx;
2562	sblock->no_io_error_seen = 1;
2563	sblock->sparity = sparity;
2564	scrub_parity_get(sparity);
2565
2566	for (index = 0; len > 0; index++) {
2567		struct scrub_page *spage;
2568		u64 l = min_t(u64, len, PAGE_SIZE);
2569
2570		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2571		if (!spage) {
2572leave_nomem:
2573			spin_lock(&sctx->stat_lock);
2574			sctx->stat.malloc_errors++;
2575			spin_unlock(&sctx->stat_lock);
2576			scrub_block_put(sblock);
2577			return -ENOMEM;
2578		}
2579		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2580		/* For scrub block */
2581		scrub_page_get(spage);
2582		sblock->pagev[index] = spage;
2583		/* For scrub parity */
2584		scrub_page_get(spage);
2585		list_add_tail(&spage->list, &sparity->spages);
2586		spage->sblock = sblock;
2587		spage->dev = dev;
2588		spage->flags = flags;
2589		spage->generation = gen;
2590		spage->logical = logical;
2591		spage->physical = physical;
2592		spage->mirror_num = mirror_num;
2593		if (csum) {
2594			spage->have_csum = 1;
2595			memcpy(spage->csum, csum, sctx->csum_size);
2596		} else {
2597			spage->have_csum = 0;
2598		}
2599		sblock->page_count++;
2600		spage->page = alloc_page(GFP_KERNEL);
2601		if (!spage->page)
2602			goto leave_nomem;
2603		len -= l;
2604		logical += l;
2605		physical += l;
2606	}
2607
2608	WARN_ON(sblock->page_count == 0);
2609	for (index = 0; index < sblock->page_count; index++) {
2610		struct scrub_page *spage = sblock->pagev[index];
2611		int ret;
2612
2613		ret = scrub_add_page_to_rd_bio(sctx, spage);
2614		if (ret) {
2615			scrub_block_put(sblock);
2616			return ret;
2617		}
 
 
 
2618	}
2619
2620	/* last one frees, either here or in bio completion for last page */
2621	scrub_block_put(sblock);
2622	return 0;
2623}
2624
2625static int scrub_extent_for_parity(struct scrub_parity *sparity,
2626				   u64 logical, u64 len,
2627				   u64 physical, struct btrfs_device *dev,
2628				   u64 flags, u64 gen, int mirror_num)
2629{
2630	struct scrub_ctx *sctx = sparity->sctx;
2631	int ret;
2632	u8 csum[BTRFS_CSUM_SIZE];
2633	u32 blocksize;
2634
2635	if (dev->missing) {
2636		scrub_parity_mark_sectors_error(sparity, logical, len);
2637		return 0;
2638	}
 
 
 
2639
2640	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2641		blocksize = sctx->sectorsize;
2642	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2643		blocksize = sctx->nodesize;
2644	} else {
2645		blocksize = sctx->sectorsize;
2646		WARN_ON(1);
2647	}
 
 
 
 
 
2648
2649	while (len) {
2650		u64 l = min_t(u64, len, blocksize);
2651		int have_csum = 0;
2652
2653		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2654			/* push csums to sbio */
2655			have_csum = scrub_find_csum(sctx, logical, csum);
2656			if (have_csum == 0)
2657				goto skip;
2658		}
2659		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2660					     flags, gen, mirror_num,
2661					     have_csum ? csum : NULL);
2662		if (ret)
2663			return ret;
2664skip:
2665		len -= l;
2666		logical += l;
2667		physical += l;
2668	}
2669	return 0;
2670}
2671
2672/*
2673 * Given a physical address, this will calculate it's
2674 * logical offset. if this is a parity stripe, it will return
2675 * the most left data stripe's logical offset.
2676 *
2677 * return 0 if it is a data stripe, 1 means parity stripe.
 
2678 */
2679static int get_raid56_logic_offset(u64 physical, int num,
2680				   struct map_lookup *map, u64 *offset,
2681				   u64 *stripe_start)
 
 
2682{
2683	int i;
2684	int j = 0;
2685	u64 stripe_nr;
2686	u64 last_offset;
2687	u32 stripe_index;
2688	u32 rot;
2689
2690	last_offset = (physical - map->stripes[num].physical) *
2691		      nr_data_stripes(map);
2692	if (stripe_start)
2693		*stripe_start = last_offset;
2694
2695	*offset = last_offset;
2696	for (i = 0; i < nr_data_stripes(map); i++) {
2697		*offset = last_offset + i * map->stripe_len;
 
2698
2699		stripe_nr = div_u64(*offset, map->stripe_len);
2700		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701
2702		/* Work out the disk rotation on this stripe-set */
2703		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2704		/* calculate which stripe this data locates */
2705		rot += i;
2706		stripe_index = rot % map->num_stripes;
2707		if (stripe_index == num)
2708			return 0;
2709		if (stripe_index < num)
2710			j++;
2711	}
2712	*offset = last_offset + j * map->stripe_len;
2713	return 1;
2714}
2715
2716static void scrub_free_parity(struct scrub_parity *sparity)
2717{
2718	struct scrub_ctx *sctx = sparity->sctx;
2719	struct scrub_page *curr, *next;
2720	int nbits;
2721
2722	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2723	if (nbits) {
2724		spin_lock(&sctx->stat_lock);
2725		sctx->stat.read_errors += nbits;
2726		sctx->stat.uncorrectable_errors += nbits;
2727		spin_unlock(&sctx->stat_lock);
2728	}
2729
2730	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2731		list_del_init(&curr->list);
2732		scrub_page_put(curr);
2733	}
2734
2735	kfree(sparity);
2736}
2737
2738static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
 
2739{
2740	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2741						    work);
2742	struct scrub_ctx *sctx = sparity->sctx;
2743
2744	scrub_free_parity(sparity);
2745	scrub_pending_bio_dec(sctx);
2746}
2747
2748static void scrub_parity_bio_endio(struct bio *bio)
 
 
 
2749{
2750	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2751	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
 
2752
2753	if (bio->bi_error)
2754		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2755			  sparity->nsectors);
2756
2757	bio_put(bio);
2758
2759	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2760			scrub_parity_bio_endio_worker, NULL, NULL);
2761	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2762}
2763
2764static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
 
2765{
2766	struct scrub_ctx *sctx = sparity->sctx;
2767	struct btrfs_fs_info *fs_info = sctx->fs_info;
2768	struct bio *bio;
2769	struct btrfs_raid_bio *rbio;
2770	struct scrub_page *spage;
2771	struct btrfs_bio *bbio = NULL;
2772	u64 length;
2773	int ret;
2774
2775	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2776			   sparity->nsectors))
2777		goto out;
2778
2779	length = sparity->logic_end - sparity->logic_start;
2780	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2781			       &length, &bbio, 0, 1);
2782	if (ret || !bbio || !bbio->raid_map)
2783		goto bbio_out;
2784
2785	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		goto bbio_out;
2788
2789	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2790	bio->bi_private = sparity;
2791	bio->bi_end_io = scrub_parity_bio_endio;
2792
2793	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2794					      length, sparity->scrub_dev,
2795					      sparity->dbitmap,
2796					      sparity->nsectors);
2797	if (!rbio)
2798		goto rbio_out;
2799
2800	list_for_each_entry(spage, &sparity->spages, list)
2801		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2802
2803	scrub_pending_bio_inc(sctx);
2804	raid56_parity_submit_scrub_rbio(rbio);
2805	return;
2806
2807rbio_out:
2808	bio_put(bio);
2809bbio_out:
2810	btrfs_put_bbio(bbio);
2811	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2812		  sparity->nsectors);
2813	spin_lock(&sctx->stat_lock);
2814	sctx->stat.malloc_errors++;
2815	spin_unlock(&sctx->stat_lock);
2816out:
2817	scrub_free_parity(sparity);
2818}
2819
2820static inline int scrub_calc_parity_bitmap_len(int nsectors)
 
 
 
 
2821{
2822	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2823}
 
 
 
 
 
2824
2825static void scrub_parity_get(struct scrub_parity *sparity)
2826{
2827	atomic_inc(&sparity->refs);
2828}
2829
2830static void scrub_parity_put(struct scrub_parity *sparity)
2831{
2832	if (!atomic_dec_and_test(&sparity->refs))
2833		return;
2834
2835	scrub_parity_check_and_repair(sparity);
2836}
2837
2838static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2839						  struct map_lookup *map,
2840						  struct btrfs_device *sdev,
2841						  struct btrfs_path *path,
2842						  u64 logic_start,
2843						  u64 logic_end)
2844{
2845	struct btrfs_fs_info *fs_info = sctx->fs_info;
2846	struct btrfs_root *root = fs_info->extent_root;
2847	struct btrfs_root *csum_root = fs_info->csum_root;
2848	struct btrfs_extent_item *extent;
2849	struct btrfs_bio *bbio = NULL;
2850	u64 flags;
2851	int ret;
2852	int slot;
2853	struct extent_buffer *l;
2854	struct btrfs_key key;
2855	u64 generation;
2856	u64 extent_logical;
2857	u64 extent_physical;
2858	u64 extent_len;
2859	u64 mapped_length;
2860	struct btrfs_device *extent_dev;
2861	struct scrub_parity *sparity;
2862	int nsectors;
2863	int bitmap_len;
2864	int extent_mirror_num;
2865	int stop_loop = 0;
2866
2867	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2868	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2869	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2870			  GFP_NOFS);
2871	if (!sparity) {
2872		spin_lock(&sctx->stat_lock);
2873		sctx->stat.malloc_errors++;
2874		spin_unlock(&sctx->stat_lock);
2875		return -ENOMEM;
2876	}
2877
2878	sparity->stripe_len = map->stripe_len;
2879	sparity->nsectors = nsectors;
2880	sparity->sctx = sctx;
2881	sparity->scrub_dev = sdev;
2882	sparity->logic_start = logic_start;
2883	sparity->logic_end = logic_end;
2884	atomic_set(&sparity->refs, 1);
2885	INIT_LIST_HEAD(&sparity->spages);
2886	sparity->dbitmap = sparity->bitmap;
2887	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2888
2889	ret = 0;
2890	while (logic_start < logic_end) {
2891		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2892			key.type = BTRFS_METADATA_ITEM_KEY;
2893		else
2894			key.type = BTRFS_EXTENT_ITEM_KEY;
2895		key.objectid = logic_start;
2896		key.offset = (u64)-1;
2897
2898		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2899		if (ret < 0)
2900			goto out;
2901
2902		if (ret > 0) {
2903			ret = btrfs_previous_extent_item(root, path, 0);
2904			if (ret < 0)
2905				goto out;
2906			if (ret > 0) {
2907				btrfs_release_path(path);
2908				ret = btrfs_search_slot(NULL, root, &key,
2909							path, 0, 0);
2910				if (ret < 0)
2911					goto out;
2912			}
2913		}
2914
2915		stop_loop = 0;
2916		while (1) {
2917			u64 bytes;
2918
2919			l = path->nodes[0];
2920			slot = path->slots[0];
2921			if (slot >= btrfs_header_nritems(l)) {
2922				ret = btrfs_next_leaf(root, path);
2923				if (ret == 0)
2924					continue;
2925				if (ret < 0)
2926					goto out;
2927
2928				stop_loop = 1;
2929				break;
2930			}
2931			btrfs_item_key_to_cpu(l, &key, slot);
2932
2933			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2934			    key.type != BTRFS_METADATA_ITEM_KEY)
2935				goto next;
2936
2937			if (key.type == BTRFS_METADATA_ITEM_KEY)
2938				bytes = fs_info->nodesize;
2939			else
2940				bytes = key.offset;
2941
2942			if (key.objectid + bytes <= logic_start)
2943				goto next;
2944
2945			if (key.objectid >= logic_end) {
2946				stop_loop = 1;
2947				break;
2948			}
2949
2950			while (key.objectid >= logic_start + map->stripe_len)
2951				logic_start += map->stripe_len;
2952
2953			extent = btrfs_item_ptr(l, slot,
2954						struct btrfs_extent_item);
2955			flags = btrfs_extent_flags(l, extent);
2956			generation = btrfs_extent_generation(l, extent);
2957
2958			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2959			    (key.objectid < logic_start ||
2960			     key.objectid + bytes >
2961			     logic_start + map->stripe_len)) {
2962				btrfs_err(fs_info,
2963					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2964					  key.objectid, logic_start);
2965				spin_lock(&sctx->stat_lock);
2966				sctx->stat.uncorrectable_errors++;
2967				spin_unlock(&sctx->stat_lock);
2968				goto next;
2969			}
2970again:
2971			extent_logical = key.objectid;
2972			extent_len = bytes;
2973
2974			if (extent_logical < logic_start) {
2975				extent_len -= logic_start - extent_logical;
2976				extent_logical = logic_start;
2977			}
2978
2979			if (extent_logical + extent_len >
2980			    logic_start + map->stripe_len)
2981				extent_len = logic_start + map->stripe_len -
2982					     extent_logical;
2983
2984			scrub_parity_mark_sectors_data(sparity, extent_logical,
2985						       extent_len);
2986
2987			mapped_length = extent_len;
2988			bbio = NULL;
2989			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2990					extent_logical, &mapped_length, &bbio,
2991					0);
2992			if (!ret) {
2993				if (!bbio || mapped_length < extent_len)
2994					ret = -EIO;
2995			}
2996			if (ret) {
2997				btrfs_put_bbio(bbio);
2998				goto out;
2999			}
3000			extent_physical = bbio->stripes[0].physical;
3001			extent_mirror_num = bbio->mirror_num;
3002			extent_dev = bbio->stripes[0].dev;
3003			btrfs_put_bbio(bbio);
3004
3005			ret = btrfs_lookup_csums_range(csum_root,
3006						extent_logical,
3007						extent_logical + extent_len - 1,
3008						&sctx->csum_list, 1);
3009			if (ret)
3010				goto out;
3011
3012			ret = scrub_extent_for_parity(sparity, extent_logical,
3013						      extent_len,
3014						      extent_physical,
3015						      extent_dev, flags,
3016						      generation,
3017						      extent_mirror_num);
3018
3019			scrub_free_csums(sctx);
3020
3021			if (ret)
3022				goto out;
3023
3024			if (extent_logical + extent_len <
3025			    key.objectid + bytes) {
3026				logic_start += map->stripe_len;
3027
3028				if (logic_start >= logic_end) {
3029					stop_loop = 1;
3030					break;
3031				}
3032
3033				if (logic_start < key.objectid + bytes) {
3034					cond_resched();
3035					goto again;
3036				}
3037			}
3038next:
3039			path->slots[0]++;
3040		}
3041
3042		btrfs_release_path(path);
3043
3044		if (stop_loop)
3045			break;
3046
3047		logic_start += map->stripe_len;
3048	}
3049out:
3050	if (ret < 0)
3051		scrub_parity_mark_sectors_error(sparity, logic_start,
3052						logic_end - logic_start);
3053	scrub_parity_put(sparity);
3054	scrub_submit(sctx);
3055	mutex_lock(&sctx->wr_ctx.wr_lock);
3056	scrub_wr_submit(sctx);
3057	mutex_unlock(&sctx->wr_ctx.wr_lock);
3058
3059	btrfs_release_path(path);
3060	return ret < 0 ? ret : 0;
3061}
3062
3063static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3064					   struct map_lookup *map,
 
3065					   struct btrfs_device *scrub_dev,
3066					   int num, u64 base, u64 length,
3067					   int is_dev_replace)
3068{
3069	struct btrfs_path *path, *ppath;
3070	struct btrfs_fs_info *fs_info = sctx->fs_info;
3071	struct btrfs_root *root = fs_info->extent_root;
3072	struct btrfs_root *csum_root = fs_info->csum_root;
3073	struct btrfs_extent_item *extent;
3074	struct blk_plug plug;
3075	u64 flags;
3076	int ret;
3077	int slot;
3078	u64 nstripes;
3079	struct extent_buffer *l;
3080	u64 physical;
3081	u64 logical;
3082	u64 logic_end;
3083	u64 physical_end;
3084	u64 generation;
3085	int mirror_num;
3086	struct reada_control *reada1;
3087	struct reada_control *reada2;
3088	struct btrfs_key key;
3089	struct btrfs_key key_end;
3090	u64 increment = map->stripe_len;
3091	u64 offset;
3092	u64 extent_logical;
3093	u64 extent_physical;
3094	u64 extent_len;
3095	u64 stripe_logical;
3096	u64 stripe_end;
3097	struct btrfs_device *extent_dev;
3098	int extent_mirror_num;
3099	int stop_loop = 0;
3100
3101	physical = map->stripes[num].physical;
3102	offset = 0;
3103	nstripes = div_u64(length, map->stripe_len);
3104	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3105		offset = map->stripe_len * num;
3106		increment = map->stripe_len * map->num_stripes;
3107		mirror_num = 1;
3108	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3109		int factor = map->num_stripes / map->sub_stripes;
3110		offset = map->stripe_len * (num / map->sub_stripes);
3111		increment = map->stripe_len * factor;
3112		mirror_num = num % map->sub_stripes + 1;
3113	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3114		increment = map->stripe_len;
3115		mirror_num = num % map->num_stripes + 1;
3116	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3117		increment = map->stripe_len;
3118		mirror_num = num % map->num_stripes + 1;
3119	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3120		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3121		increment = map->stripe_len * nr_data_stripes(map);
3122		mirror_num = 1;
3123	} else {
3124		increment = map->stripe_len;
3125		mirror_num = 1;
3126	}
3127
3128	path = btrfs_alloc_path();
3129	if (!path)
3130		return -ENOMEM;
 
3131
3132	ppath = btrfs_alloc_path();
3133	if (!ppath) {
3134		btrfs_free_path(path);
3135		return -ENOMEM;
 
3136	}
3137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138	/*
3139	 * work on commit root. The related disk blocks are static as
3140	 * long as COW is applied. This means, it is save to rewrite
3141	 * them to repair disk errors without any race conditions
 
 
3142	 */
3143	path->search_commit_root = 1;
3144	path->skip_locking = 1;
3145
3146	ppath->search_commit_root = 1;
3147	ppath->skip_locking = 1;
3148	/*
3149	 * trigger the readahead for extent tree csum tree and wait for
3150	 * completion. During readahead, the scrub is officially paused
3151	 * to not hold off transaction commits
3152	 */
3153	logical = base + offset;
3154	physical_end = physical + nstripes * map->stripe_len;
3155	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3156		get_raid56_logic_offset(physical_end, num,
3157					map, &logic_end, NULL);
3158		logic_end += base;
3159	} else {
3160		logic_end = logical + increment * nstripes;
 
 
3161	}
3162	wait_event(sctx->list_wait,
3163		   atomic_read(&sctx->bios_in_flight) == 0);
3164	scrub_blocked_if_needed(fs_info);
3165
3166	/* FIXME it might be better to start readahead at commit root */
3167	key.objectid = logical;
3168	key.type = BTRFS_EXTENT_ITEM_KEY;
3169	key.offset = (u64)0;
3170	key_end.objectid = logic_end;
3171	key_end.type = BTRFS_METADATA_ITEM_KEY;
3172	key_end.offset = (u64)-1;
3173	reada1 = btrfs_reada_add(root, &key, &key_end);
3174
3175	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3176	key.type = BTRFS_EXTENT_CSUM_KEY;
3177	key.offset = logical;
3178	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3179	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3180	key_end.offset = logic_end;
3181	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3182
3183	if (!IS_ERR(reada1))
3184		btrfs_reada_wait(reada1);
3185	if (!IS_ERR(reada2))
3186		btrfs_reada_wait(reada2);
3187
 
 
 
3188
3189	/*
3190	 * collect all data csums for the stripe to avoid seeking during
3191	 * the scrub. This might currently (crc32) end up to be about 1MB
3192	 */
3193	blk_start_plug(&plug);
 
 
 
3194
3195	/*
3196	 * now find all extents for each stripe and scrub them
 
3197	 */
3198	ret = 0;
3199	while (physical < physical_end) {
3200		/*
3201		 * canceled?
3202		 */
3203		if (atomic_read(&fs_info->scrub_cancel_req) ||
3204		    atomic_read(&sctx->cancel_req)) {
3205			ret = -ECANCELED;
3206			goto out;
 
 
 
 
 
 
 
 
3207		}
 
3208		/*
3209		 * check to see if we have to pause
 
 
 
 
 
3210		 */
3211		if (atomic_read(&fs_info->scrub_pause_req)) {
3212			/* push queued extents */
3213			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3214			scrub_submit(sctx);
3215			mutex_lock(&sctx->wr_ctx.wr_lock);
3216			scrub_wr_submit(sctx);
3217			mutex_unlock(&sctx->wr_ctx.wr_lock);
3218			wait_event(sctx->list_wait,
3219				   atomic_read(&sctx->bios_in_flight) == 0);
3220			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3221			scrub_blocked_if_needed(fs_info);
3222		}
3223
3224		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3225			ret = get_raid56_logic_offset(physical, num, map,
3226						      &logical,
3227						      &stripe_logical);
3228			logical += base;
3229			if (ret) {
3230				/* it is parity strip */
3231				stripe_logical += base;
3232				stripe_end = stripe_logical + increment;
3233				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3234							  ppath, stripe_logical,
3235							  stripe_end);
3236				if (ret)
3237					goto out;
3238				goto skip;
3239			}
3240		}
3241
3242		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3243			key.type = BTRFS_METADATA_ITEM_KEY;
3244		else
3245			key.type = BTRFS_EXTENT_ITEM_KEY;
3246		key.objectid = logical;
3247		key.offset = (u64)-1;
3248
3249		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3250		if (ret < 0)
3251			goto out;
3252
3253		if (ret > 0) {
3254			ret = btrfs_previous_extent_item(root, path, 0);
3255			if (ret < 0)
3256				goto out;
3257			if (ret > 0) {
3258				/* there's no smaller item, so stick with the
3259				 * larger one */
3260				btrfs_release_path(path);
3261				ret = btrfs_search_slot(NULL, root, &key,
3262							path, 0, 0);
3263				if (ret < 0)
3264					goto out;
3265			}
3266		}
3267
3268		stop_loop = 0;
3269		while (1) {
3270			u64 bytes;
3271
3272			l = path->nodes[0];
3273			slot = path->slots[0];
3274			if (slot >= btrfs_header_nritems(l)) {
3275				ret = btrfs_next_leaf(root, path);
3276				if (ret == 0)
3277					continue;
3278				if (ret < 0)
3279					goto out;
3280
3281				stop_loop = 1;
3282				break;
3283			}
3284			btrfs_item_key_to_cpu(l, &key, slot);
3285
3286			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3287			    key.type != BTRFS_METADATA_ITEM_KEY)
3288				goto next;
3289
3290			if (key.type == BTRFS_METADATA_ITEM_KEY)
3291				bytes = fs_info->nodesize;
3292			else
3293				bytes = key.offset;
3294
3295			if (key.objectid + bytes <= logical)
3296				goto next;
3297
3298			if (key.objectid >= logical + map->stripe_len) {
3299				/* out of this device extent */
3300				if (key.objectid >= logic_end)
3301					stop_loop = 1;
3302				break;
3303			}
3304
3305			extent = btrfs_item_ptr(l, slot,
3306						struct btrfs_extent_item);
3307			flags = btrfs_extent_flags(l, extent);
3308			generation = btrfs_extent_generation(l, extent);
3309
3310			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3311			    (key.objectid < logical ||
3312			     key.objectid + bytes >
3313			     logical + map->stripe_len)) {
3314				btrfs_err(fs_info,
3315					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3316				       key.objectid, logical);
3317				spin_lock(&sctx->stat_lock);
3318				sctx->stat.uncorrectable_errors++;
3319				spin_unlock(&sctx->stat_lock);
3320				goto next;
3321			}
3322
3323again:
3324			extent_logical = key.objectid;
3325			extent_len = bytes;
3326
3327			/*
3328			 * trim extent to this stripe
3329			 */
3330			if (extent_logical < logical) {
3331				extent_len -= logical - extent_logical;
3332				extent_logical = logical;
3333			}
3334			if (extent_logical + extent_len >
3335			    logical + map->stripe_len) {
3336				extent_len = logical + map->stripe_len -
3337					     extent_logical;
3338			}
3339
3340			extent_physical = extent_logical - logical + physical;
3341			extent_dev = scrub_dev;
3342			extent_mirror_num = mirror_num;
3343			if (is_dev_replace)
3344				scrub_remap_extent(fs_info, extent_logical,
3345						   extent_len, &extent_physical,
3346						   &extent_dev,
3347						   &extent_mirror_num);
3348
3349			ret = btrfs_lookup_csums_range(csum_root,
3350						       extent_logical,
3351						       extent_logical +
3352						       extent_len - 1,
3353						       &sctx->csum_list, 1);
3354			if (ret)
3355				goto out;
3356
3357			ret = scrub_extent(sctx, extent_logical, extent_len,
3358					   extent_physical, extent_dev, flags,
3359					   generation, extent_mirror_num,
3360					   extent_logical - logical + physical);
3361
3362			scrub_free_csums(sctx);
3363
3364			if (ret)
3365				goto out;
3366
3367			if (extent_logical + extent_len <
3368			    key.objectid + bytes) {
3369				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3370					/*
3371					 * loop until we find next data stripe
3372					 * or we have finished all stripes.
3373					 */
3374loop:
3375					physical += map->stripe_len;
3376					ret = get_raid56_logic_offset(physical,
3377							num, map, &logical,
3378							&stripe_logical);
3379					logical += base;
3380
3381					if (ret && physical < physical_end) {
3382						stripe_logical += base;
3383						stripe_end = stripe_logical +
3384								increment;
3385						ret = scrub_raid56_parity(sctx,
3386							map, scrub_dev, ppath,
3387							stripe_logical,
3388							stripe_end);
3389						if (ret)
3390							goto out;
3391						goto loop;
3392					}
3393				} else {
3394					physical += map->stripe_len;
3395					logical += increment;
3396				}
3397				if (logical < key.objectid + bytes) {
3398					cond_resched();
3399					goto again;
3400				}
3401
3402				if (physical >= physical_end) {
3403					stop_loop = 1;
3404					break;
3405				}
3406			}
3407next:
3408			path->slots[0]++;
3409		}
3410		btrfs_release_path(path);
3411skip:
3412		logical += increment;
3413		physical += map->stripe_len;
3414		spin_lock(&sctx->stat_lock);
3415		if (stop_loop)
3416			sctx->stat.last_physical = map->stripes[num].physical +
3417						   length;
3418		else
3419			sctx->stat.last_physical = physical;
3420		spin_unlock(&sctx->stat_lock);
3421		if (stop_loop)
3422			break;
3423	}
3424out:
3425	/* push queued extents */
3426	scrub_submit(sctx);
3427	mutex_lock(&sctx->wr_ctx.wr_lock);
3428	scrub_wr_submit(sctx);
3429	mutex_unlock(&sctx->wr_ctx.wr_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3430
3431	blk_finish_plug(&plug);
3432	btrfs_free_path(path);
3433	btrfs_free_path(ppath);
3434	return ret < 0 ? ret : 0;
3435}
3436
3437static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
 
3438					  struct btrfs_device *scrub_dev,
3439					  u64 chunk_offset, u64 length,
3440					  u64 dev_offset,
3441					  struct btrfs_block_group_cache *cache,
3442					  int is_dev_replace)
3443{
3444	struct btrfs_fs_info *fs_info = sctx->fs_info;
3445	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3446	struct map_lookup *map;
3447	struct extent_map *em;
3448	int i;
3449	int ret = 0;
3450
3451	read_lock(&map_tree->map_tree.lock);
3452	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3453	read_unlock(&map_tree->map_tree.lock);
3454
3455	if (!em) {
3456		/*
3457		 * Might have been an unused block group deleted by the cleaner
3458		 * kthread or relocation.
3459		 */
3460		spin_lock(&cache->lock);
3461		if (!cache->removed)
3462			ret = -EINVAL;
3463		spin_unlock(&cache->lock);
3464
3465		return ret;
3466	}
3467
3468	map = em->map_lookup;
3469	if (em->start != chunk_offset)
3470		goto out;
3471
3472	if (em->len < length)
3473		goto out;
3474
3475	for (i = 0; i < map->num_stripes; ++i) {
3476		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3477		    map->stripes[i].physical == dev_offset) {
3478			ret = scrub_stripe(sctx, map, scrub_dev, i,
3479					   chunk_offset, length,
3480					   is_dev_replace);
3481			if (ret)
3482				goto out;
3483		}
3484	}
3485out:
3486	free_extent_map(em);
3487
3488	return ret;
3489}
3490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3491static noinline_for_stack
3492int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3493			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3494			   int is_dev_replace)
3495{
3496	struct btrfs_dev_extent *dev_extent = NULL;
3497	struct btrfs_path *path;
3498	struct btrfs_fs_info *fs_info = sctx->fs_info;
3499	struct btrfs_root *root = fs_info->dev_root;
3500	u64 length;
3501	u64 chunk_offset;
3502	int ret = 0;
3503	int ro_set;
3504	int slot;
3505	struct extent_buffer *l;
3506	struct btrfs_key key;
3507	struct btrfs_key found_key;
3508	struct btrfs_block_group_cache *cache;
3509	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3510
3511	path = btrfs_alloc_path();
3512	if (!path)
3513		return -ENOMEM;
3514
3515	path->reada = READA_FORWARD;
3516	path->search_commit_root = 1;
3517	path->skip_locking = 1;
3518
3519	key.objectid = scrub_dev->devid;
3520	key.offset = 0ull;
3521	key.type = BTRFS_DEV_EXTENT_KEY;
3522
3523	while (1) {
 
 
3524		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3525		if (ret < 0)
3526			break;
3527		if (ret > 0) {
3528			if (path->slots[0] >=
3529			    btrfs_header_nritems(path->nodes[0])) {
3530				ret = btrfs_next_leaf(root, path);
3531				if (ret < 0)
3532					break;
3533				if (ret > 0) {
3534					ret = 0;
3535					break;
3536				}
3537			} else {
3538				ret = 0;
3539			}
3540		}
3541
3542		l = path->nodes[0];
3543		slot = path->slots[0];
3544
3545		btrfs_item_key_to_cpu(l, &found_key, slot);
3546
3547		if (found_key.objectid != scrub_dev->devid)
3548			break;
3549
3550		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3551			break;
3552
3553		if (found_key.offset >= end)
3554			break;
3555
3556		if (found_key.offset < key.offset)
3557			break;
3558
3559		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3560		length = btrfs_dev_extent_length(l, dev_extent);
3561
3562		if (found_key.offset + length <= start)
3563			goto skip;
3564
3565		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3566
3567		/*
3568		 * get a reference on the corresponding block group to prevent
3569		 * the chunk from going away while we scrub it
3570		 */
3571		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3572
3573		/* some chunks are removed but not committed to disk yet,
3574		 * continue scrubbing */
3575		if (!cache)
3576			goto skip;
3577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3578		/*
3579		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3580		 * to avoid deadlock caused by:
3581		 * btrfs_inc_block_group_ro()
3582		 * -> btrfs_wait_for_commit()
3583		 * -> btrfs_commit_transaction()
3584		 * -> btrfs_scrub_pause()
3585		 */
3586		scrub_pause_on(fs_info);
3587		ret = btrfs_inc_block_group_ro(root, cache);
3588		if (!ret && is_dev_replace) {
3589			/*
3590			 * If we are doing a device replace wait for any tasks
3591			 * that started dellaloc right before we set the block
3592			 * group to RO mode, as they might have just allocated
3593			 * an extent from it or decided they could do a nocow
3594			 * write. And if any such tasks did that, wait for their
3595			 * ordered extents to complete and then commit the
3596			 * current transaction, so that we can later see the new
3597			 * extent items in the extent tree - the ordered extents
3598			 * create delayed data references (for cow writes) when
3599			 * they complete, which will be run and insert the
3600			 * corresponding extent items into the extent tree when
3601			 * we commit the transaction they used when running
3602			 * inode.c:btrfs_finish_ordered_io(). We later use
3603			 * the commit root of the extent tree to find extents
3604			 * to copy from the srcdev into the tgtdev, and we don't
3605			 * want to miss any new extents.
3606			 */
3607			btrfs_wait_block_group_reservations(cache);
3608			btrfs_wait_nocow_writers(cache);
3609			ret = btrfs_wait_ordered_roots(fs_info, -1,
3610						       cache->key.objectid,
3611						       cache->key.offset);
3612			if (ret > 0) {
3613				struct btrfs_trans_handle *trans;
3614
3615				trans = btrfs_join_transaction(root);
3616				if (IS_ERR(trans))
3617					ret = PTR_ERR(trans);
3618				else
3619					ret = btrfs_commit_transaction(trans);
3620				if (ret) {
3621					scrub_pause_off(fs_info);
3622					btrfs_put_block_group(cache);
3623					break;
3624				}
 
3625			}
3626		}
3627		scrub_pause_off(fs_info);
3628
3629		if (ret == 0) {
3630			ro_set = 1;
3631		} else if (ret == -ENOSPC) {
 
3632			/*
3633			 * btrfs_inc_block_group_ro return -ENOSPC when it
3634			 * failed in creating new chunk for metadata.
3635			 * It is not a problem for scrub/replace, because
3636			 * metadata are always cowed, and our scrub paused
3637			 * commit_transactions.
 
 
 
 
 
 
3638			 */
3639			ro_set = 0;
 
 
 
 
 
 
 
3640		} else {
3641			btrfs_warn(fs_info,
3642				   "failed setting block group ro, ret=%d\n",
3643				   ret);
3644			btrfs_put_block_group(cache);
 
3645			break;
3646		}
3647
3648		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3649		dev_replace->cursor_right = found_key.offset + length;
3650		dev_replace->cursor_left = found_key.offset;
3651		dev_replace->item_needs_writeback = 1;
3652		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3653		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3654				  found_key.offset, cache, is_dev_replace);
3655
3656		/*
3657		 * flush, submit all pending read and write bios, afterwards
3658		 * wait for them.
3659		 * Note that in the dev replace case, a read request causes
3660		 * write requests that are submitted in the read completion
3661		 * worker. Therefore in the current situation, it is required
3662		 * that all write requests are flushed, so that all read and
3663		 * write requests are really completed when bios_in_flight
3664		 * changes to 0.
3665		 */
3666		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3667		scrub_submit(sctx);
3668		mutex_lock(&sctx->wr_ctx.wr_lock);
3669		scrub_wr_submit(sctx);
3670		mutex_unlock(&sctx->wr_ctx.wr_lock);
3671
3672		wait_event(sctx->list_wait,
3673			   atomic_read(&sctx->bios_in_flight) == 0);
 
 
 
 
3674
3675		scrub_pause_on(fs_info);
3676
3677		/*
3678		 * must be called before we decrease @scrub_paused.
3679		 * make sure we don't block transaction commit while
3680		 * we are waiting pending workers finished.
3681		 */
3682		wait_event(sctx->list_wait,
3683			   atomic_read(&sctx->workers_pending) == 0);
3684		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3685
3686		scrub_pause_off(fs_info);
3687
3688		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3689		dev_replace->cursor_left = dev_replace->cursor_right;
3690		dev_replace->item_needs_writeback = 1;
3691		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3692
3693		if (ro_set)
3694			btrfs_dec_block_group_ro(cache);
3695
3696		/*
3697		 * We might have prevented the cleaner kthread from deleting
3698		 * this block group if it was already unused because we raced
3699		 * and set it to RO mode first. So add it back to the unused
3700		 * list, otherwise it might not ever be deleted unless a manual
3701		 * balance is triggered or it becomes used and unused again.
3702		 */
3703		spin_lock(&cache->lock);
3704		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3705		    btrfs_block_group_used(&cache->item) == 0) {
3706			spin_unlock(&cache->lock);
3707			spin_lock(&fs_info->unused_bgs_lock);
3708			if (list_empty(&cache->bg_list)) {
3709				btrfs_get_block_group(cache);
3710				list_add_tail(&cache->bg_list,
3711					      &fs_info->unused_bgs);
3712			}
3713			spin_unlock(&fs_info->unused_bgs_lock);
3714		} else {
3715			spin_unlock(&cache->lock);
3716		}
3717
 
3718		btrfs_put_block_group(cache);
3719		if (ret)
3720			break;
3721		if (is_dev_replace &&
3722		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3723			ret = -EIO;
3724			break;
3725		}
3726		if (sctx->stat.malloc_errors > 0) {
3727			ret = -ENOMEM;
3728			break;
3729		}
3730skip:
3731		key.offset = found_key.offset + length;
3732		btrfs_release_path(path);
3733	}
3734
3735	btrfs_free_path(path);
3736
3737	return ret;
3738}
3739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3740static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3741					   struct btrfs_device *scrub_dev)
3742{
3743	int	i;
3744	u64	bytenr;
3745	u64	gen;
3746	int	ret;
 
3747	struct btrfs_fs_info *fs_info = sctx->fs_info;
3748
3749	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3750		return -EIO;
 
 
 
 
 
 
 
 
3751
3752	/* Seed devices of a new filesystem has their own generation. */
3753	if (scrub_dev->fs_devices != fs_info->fs_devices)
3754		gen = scrub_dev->generation;
3755	else
3756		gen = fs_info->last_trans_committed;
3757
3758	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3759		bytenr = btrfs_sb_offset(i);
 
 
 
 
 
 
 
 
 
 
3760		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3761		    scrub_dev->commit_total_bytes)
3762			break;
 
 
3763
3764		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3765				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3766				  NULL, 1, bytenr);
3767		if (ret)
3768			return ret;
 
3769	}
3770	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
 
 
 
 
 
 
 
 
 
 
 
3771
3772	return 0;
 
 
3773}
3774
3775/*
3776 * get a reference count on fs_info->scrub_workers. start worker if necessary
3777 */
3778static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3779						int is_dev_replace)
3780{
 
3781	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3782	int max_active = fs_info->thread_pool_size;
 
 
 
 
 
 
 
 
3783
3784	if (fs_info->scrub_workers_refcnt == 0) {
3785		if (is_dev_replace)
3786			fs_info->scrub_workers =
3787				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3788						      1, 4);
3789		else
3790			fs_info->scrub_workers =
3791				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3792						      max_active, 4);
3793		if (!fs_info->scrub_workers)
3794			goto fail_scrub_workers;
3795
3796		fs_info->scrub_wr_completion_workers =
3797			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3798					      max_active, 2);
3799		if (!fs_info->scrub_wr_completion_workers)
3800			goto fail_scrub_wr_completion_workers;
3801
3802		fs_info->scrub_nocow_workers =
3803			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3804		if (!fs_info->scrub_nocow_workers)
3805			goto fail_scrub_nocow_workers;
3806		fs_info->scrub_parity_workers =
3807			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3808					      max_active, 2);
3809		if (!fs_info->scrub_parity_workers)
3810			goto fail_scrub_parity_workers;
3811	}
3812	++fs_info->scrub_workers_refcnt;
3813	return 0;
 
3814
3815fail_scrub_parity_workers:
3816	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3817fail_scrub_nocow_workers:
3818	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3819fail_scrub_wr_completion_workers:
3820	btrfs_destroy_workqueue(fs_info->scrub_workers);
3821fail_scrub_workers:
3822	return -ENOMEM;
3823}
3824
3825static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3826{
3827	if (--fs_info->scrub_workers_refcnt == 0) {
3828		btrfs_destroy_workqueue(fs_info->scrub_workers);
3829		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3830		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3831		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3832	}
3833	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3834}
3835
3836int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3837		    u64 end, struct btrfs_scrub_progress *progress,
3838		    int readonly, int is_dev_replace)
3839{
 
3840	struct scrub_ctx *sctx;
3841	int ret;
3842	struct btrfs_device *dev;
3843	struct rcu_string *name;
 
3844
3845	if (btrfs_fs_closing(fs_info))
3846		return -EINVAL;
3847
3848	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3849		/*
3850		 * in this case scrub is unable to calculate the checksum
3851		 * the way scrub is implemented. Do not handle this
3852		 * situation at all because it won't ever happen.
3853		 */
3854		btrfs_err(fs_info,
3855			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3856		       fs_info->nodesize,
3857		       BTRFS_STRIPE_LEN);
3858		return -EINVAL;
3859	}
3860
3861	if (fs_info->sectorsize != PAGE_SIZE) {
3862		/* not supported for data w/o checksums */
3863		btrfs_err_rl(fs_info,
3864			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3865		       fs_info->sectorsize, PAGE_SIZE);
3866		return -EINVAL;
3867	}
3868
3869	if (fs_info->nodesize >
3870	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3871	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3872		/*
3873		 * would exhaust the array bounds of pagev member in
3874		 * struct scrub_block
3875		 */
3876		btrfs_err(fs_info,
3877			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3878		       fs_info->nodesize,
3879		       SCRUB_MAX_PAGES_PER_BLOCK,
3880		       fs_info->sectorsize,
3881		       SCRUB_MAX_PAGES_PER_BLOCK);
3882		return -EINVAL;
3883	}
3884
 
 
 
3885
3886	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3887	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3888	if (!dev || (dev->missing && !is_dev_replace)) {
 
3889		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890		return -ENODEV;
 
3891	}
3892
3893	if (!is_dev_replace && !readonly && !dev->writeable) {
 
3894		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3895		rcu_read_lock();
3896		name = rcu_dereference(dev->name);
3897		btrfs_err(fs_info, "scrub: device %s is not writable",
3898			  name->str);
3899		rcu_read_unlock();
3900		return -EROFS;
3901	}
3902
3903	mutex_lock(&fs_info->scrub_lock);
3904	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
 
3905		mutex_unlock(&fs_info->scrub_lock);
3906		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3907		return -EIO;
 
3908	}
3909
3910	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3911	if (dev->scrub_device ||
3912	    (!is_dev_replace &&
3913	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3914		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3915		mutex_unlock(&fs_info->scrub_lock);
3916		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3917		return -EINPROGRESS;
 
3918	}
3919	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3920
3921	ret = scrub_workers_get(fs_info, is_dev_replace);
3922	if (ret) {
3923		mutex_unlock(&fs_info->scrub_lock);
3924		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925		return ret;
3926	}
3927
3928	sctx = scrub_setup_ctx(dev, is_dev_replace);
3929	if (IS_ERR(sctx)) {
3930		mutex_unlock(&fs_info->scrub_lock);
3931		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3932		scrub_workers_put(fs_info);
3933		return PTR_ERR(sctx);
3934	}
3935	sctx->readonly = readonly;
3936	dev->scrub_device = sctx;
3937	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3938
3939	/*
3940	 * checking @scrub_pause_req here, we can avoid
3941	 * race between committing transaction and scrubbing.
3942	 */
3943	__scrub_blocked_if_needed(fs_info);
3944	atomic_inc(&fs_info->scrubs_running);
3945	mutex_unlock(&fs_info->scrub_lock);
3946
 
 
 
 
 
 
 
 
 
 
3947	if (!is_dev_replace) {
 
 
 
 
 
 
 
3948		/*
3949		 * by holding device list mutex, we can
3950		 * kick off writing super in log tree sync.
3951		 */
3952		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3953		ret = scrub_supers(sctx, dev);
3954		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
3955	}
3956
3957	if (!ret)
3958		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3959					     is_dev_replace);
3960
3961	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3962	atomic_dec(&fs_info->scrubs_running);
3963	wake_up(&fs_info->scrub_pause_wait);
3964
3965	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3966
3967	if (progress)
3968		memcpy(progress, &sctx->stat, sizeof(*progress));
3969
 
 
 
 
3970	mutex_lock(&fs_info->scrub_lock);
3971	dev->scrub_device = NULL;
3972	scrub_workers_put(fs_info);
3973	mutex_unlock(&fs_info->scrub_lock);
3974
 
3975	scrub_put_ctx(sctx);
3976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3977	return ret;
3978}
3979
3980void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3981{
3982	mutex_lock(&fs_info->scrub_lock);
3983	atomic_inc(&fs_info->scrub_pause_req);
3984	while (atomic_read(&fs_info->scrubs_paused) !=
3985	       atomic_read(&fs_info->scrubs_running)) {
3986		mutex_unlock(&fs_info->scrub_lock);
3987		wait_event(fs_info->scrub_pause_wait,
3988			   atomic_read(&fs_info->scrubs_paused) ==
3989			   atomic_read(&fs_info->scrubs_running));
3990		mutex_lock(&fs_info->scrub_lock);
3991	}
3992	mutex_unlock(&fs_info->scrub_lock);
3993}
3994
3995void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3996{
3997	atomic_dec(&fs_info->scrub_pause_req);
3998	wake_up(&fs_info->scrub_pause_wait);
3999}
4000
4001int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4002{
4003	mutex_lock(&fs_info->scrub_lock);
4004	if (!atomic_read(&fs_info->scrubs_running)) {
4005		mutex_unlock(&fs_info->scrub_lock);
4006		return -ENOTCONN;
4007	}
4008
4009	atomic_inc(&fs_info->scrub_cancel_req);
4010	while (atomic_read(&fs_info->scrubs_running)) {
4011		mutex_unlock(&fs_info->scrub_lock);
4012		wait_event(fs_info->scrub_pause_wait,
4013			   atomic_read(&fs_info->scrubs_running) == 0);
4014		mutex_lock(&fs_info->scrub_lock);
4015	}
4016	atomic_dec(&fs_info->scrub_cancel_req);
4017	mutex_unlock(&fs_info->scrub_lock);
4018
4019	return 0;
4020}
4021
4022int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4023			   struct btrfs_device *dev)
4024{
 
4025	struct scrub_ctx *sctx;
4026
4027	mutex_lock(&fs_info->scrub_lock);
4028	sctx = dev->scrub_device;
4029	if (!sctx) {
4030		mutex_unlock(&fs_info->scrub_lock);
4031		return -ENOTCONN;
4032	}
4033	atomic_inc(&sctx->cancel_req);
4034	while (dev->scrub_device) {
4035		mutex_unlock(&fs_info->scrub_lock);
4036		wait_event(fs_info->scrub_pause_wait,
4037			   dev->scrub_device == NULL);
4038		mutex_lock(&fs_info->scrub_lock);
4039	}
4040	mutex_unlock(&fs_info->scrub_lock);
4041
4042	return 0;
4043}
4044
4045int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4046			 struct btrfs_scrub_progress *progress)
4047{
 
4048	struct btrfs_device *dev;
4049	struct scrub_ctx *sctx = NULL;
4050
4051	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4052	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
4053	if (dev)
4054		sctx = dev->scrub_device;
4055	if (sctx)
4056		memcpy(progress, &sctx->stat, sizeof(*progress));
4057	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4058
4059	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4060}
4061
4062static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4063			       u64 extent_logical, u64 extent_len,
4064			       u64 *extent_physical,
4065			       struct btrfs_device **extent_dev,
4066			       int *extent_mirror_num)
4067{
4068	u64 mapped_length;
4069	struct btrfs_bio *bbio = NULL;
4070	int ret;
4071
4072	mapped_length = extent_len;
4073	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4074			      &mapped_length, &bbio, 0);
4075	if (ret || !bbio || mapped_length < extent_len ||
4076	    !bbio->stripes[0].dev->bdev) {
4077		btrfs_put_bbio(bbio);
4078		return;
4079	}
4080
4081	*extent_physical = bbio->stripes[0].physical;
4082	*extent_mirror_num = bbio->mirror_num;
4083	*extent_dev = bbio->stripes[0].dev;
4084	btrfs_put_bbio(bbio);
4085}
4086
4087static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
4088			      struct scrub_wr_ctx *wr_ctx,
4089			      struct btrfs_fs_info *fs_info,
4090			      struct btrfs_device *dev,
4091			      int is_dev_replace)
4092{
4093	WARN_ON(wr_ctx->wr_curr_bio != NULL);
4094
4095	mutex_init(&wr_ctx->wr_lock);
4096	wr_ctx->wr_curr_bio = NULL;
4097	if (!is_dev_replace)
4098		return 0;
4099
4100	WARN_ON(!dev->bdev);
4101	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4102	wr_ctx->tgtdev = dev;
4103	atomic_set(&wr_ctx->flush_all_writes, 0);
4104	return 0;
4105}
4106
4107static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4108{
4109	mutex_lock(&wr_ctx->wr_lock);
4110	kfree(wr_ctx->wr_curr_bio);
4111	wr_ctx->wr_curr_bio = NULL;
4112	mutex_unlock(&wr_ctx->wr_lock);
4113}
4114
4115static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4116			    int mirror_num, u64 physical_for_dev_replace)
4117{
4118	struct scrub_copy_nocow_ctx *nocow_ctx;
4119	struct btrfs_fs_info *fs_info = sctx->fs_info;
4120
4121	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4122	if (!nocow_ctx) {
4123		spin_lock(&sctx->stat_lock);
4124		sctx->stat.malloc_errors++;
4125		spin_unlock(&sctx->stat_lock);
4126		return -ENOMEM;
4127	}
4128
4129	scrub_pending_trans_workers_inc(sctx);
4130
4131	nocow_ctx->sctx = sctx;
4132	nocow_ctx->logical = logical;
4133	nocow_ctx->len = len;
4134	nocow_ctx->mirror_num = mirror_num;
4135	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4136	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4137			copy_nocow_pages_worker, NULL, NULL);
4138	INIT_LIST_HEAD(&nocow_ctx->inodes);
4139	btrfs_queue_work(fs_info->scrub_nocow_workers,
4140			 &nocow_ctx->work);
4141
4142	return 0;
4143}
4144
4145static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4146{
4147	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4148	struct scrub_nocow_inode *nocow_inode;
4149
4150	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4151	if (!nocow_inode)
4152		return -ENOMEM;
4153	nocow_inode->inum = inum;
4154	nocow_inode->offset = offset;
4155	nocow_inode->root = root;
4156	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4157	return 0;
4158}
4159
4160#define COPY_COMPLETE 1
4161
4162static void copy_nocow_pages_worker(struct btrfs_work *work)
4163{
4164	struct scrub_copy_nocow_ctx *nocow_ctx =
4165		container_of(work, struct scrub_copy_nocow_ctx, work);
4166	struct scrub_ctx *sctx = nocow_ctx->sctx;
4167	struct btrfs_fs_info *fs_info = sctx->fs_info;
4168	struct btrfs_root *root = fs_info->extent_root;
4169	u64 logical = nocow_ctx->logical;
4170	u64 len = nocow_ctx->len;
4171	int mirror_num = nocow_ctx->mirror_num;
4172	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4173	int ret;
4174	struct btrfs_trans_handle *trans = NULL;
4175	struct btrfs_path *path;
4176	int not_written = 0;
4177
4178	path = btrfs_alloc_path();
4179	if (!path) {
4180		spin_lock(&sctx->stat_lock);
4181		sctx->stat.malloc_errors++;
4182		spin_unlock(&sctx->stat_lock);
4183		not_written = 1;
4184		goto out;
4185	}
4186
4187	trans = btrfs_join_transaction(root);
4188	if (IS_ERR(trans)) {
4189		not_written = 1;
4190		goto out;
4191	}
4192
4193	ret = iterate_inodes_from_logical(logical, fs_info, path,
4194					  record_inode_for_nocow, nocow_ctx);
4195	if (ret != 0 && ret != -ENOENT) {
4196		btrfs_warn(fs_info,
4197			   "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4198			   logical, physical_for_dev_replace, len, mirror_num,
4199			   ret);
4200		not_written = 1;
4201		goto out;
4202	}
4203
4204	btrfs_end_transaction(trans);
4205	trans = NULL;
4206	while (!list_empty(&nocow_ctx->inodes)) {
4207		struct scrub_nocow_inode *entry;
4208		entry = list_first_entry(&nocow_ctx->inodes,
4209					 struct scrub_nocow_inode,
4210					 list);
4211		list_del_init(&entry->list);
4212		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4213						 entry->root, nocow_ctx);
4214		kfree(entry);
4215		if (ret == COPY_COMPLETE) {
4216			ret = 0;
4217			break;
4218		} else if (ret) {
4219			break;
4220		}
4221	}
4222out:
4223	while (!list_empty(&nocow_ctx->inodes)) {
4224		struct scrub_nocow_inode *entry;
4225		entry = list_first_entry(&nocow_ctx->inodes,
4226					 struct scrub_nocow_inode,
4227					 list);
4228		list_del_init(&entry->list);
4229		kfree(entry);
4230	}
4231	if (trans && !IS_ERR(trans))
4232		btrfs_end_transaction(trans);
4233	if (not_written)
4234		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4235					    num_uncorrectable_read_errors);
4236
4237	btrfs_free_path(path);
4238	kfree(nocow_ctx);
4239
4240	scrub_pending_trans_workers_dec(sctx);
4241}
4242
4243static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4244				 u64 logical)
4245{
4246	struct extent_state *cached_state = NULL;
4247	struct btrfs_ordered_extent *ordered;
4248	struct extent_io_tree *io_tree;
4249	struct extent_map *em;
4250	u64 lockstart = start, lockend = start + len - 1;
4251	int ret = 0;
4252
4253	io_tree = &BTRFS_I(inode)->io_tree;
4254
4255	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4256	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4257	if (ordered) {
4258		btrfs_put_ordered_extent(ordered);
4259		ret = 1;
4260		goto out_unlock;
4261	}
4262
4263	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4264	if (IS_ERR(em)) {
4265		ret = PTR_ERR(em);
4266		goto out_unlock;
4267	}
4268
4269	/*
4270	 * This extent does not actually cover the logical extent anymore,
4271	 * move on to the next inode.
4272	 */
4273	if (em->block_start > logical ||
4274	    em->block_start + em->block_len < logical + len) {
4275		free_extent_map(em);
4276		ret = 1;
4277		goto out_unlock;
4278	}
4279	free_extent_map(em);
4280
4281out_unlock:
4282	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4283			     GFP_NOFS);
4284	return ret;
4285}
4286
4287static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4288				      struct scrub_copy_nocow_ctx *nocow_ctx)
4289{
4290	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
4291	struct btrfs_key key;
4292	struct inode *inode;
4293	struct page *page;
4294	struct btrfs_root *local_root;
4295	struct extent_io_tree *io_tree;
4296	u64 physical_for_dev_replace;
4297	u64 nocow_ctx_logical;
4298	u64 len = nocow_ctx->len;
4299	unsigned long index;
4300	int srcu_index;
4301	int ret = 0;
4302	int err = 0;
4303
4304	key.objectid = root;
4305	key.type = BTRFS_ROOT_ITEM_KEY;
4306	key.offset = (u64)-1;
4307
4308	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4309
4310	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4311	if (IS_ERR(local_root)) {
4312		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4313		return PTR_ERR(local_root);
4314	}
4315
4316	key.type = BTRFS_INODE_ITEM_KEY;
4317	key.objectid = inum;
4318	key.offset = 0;
4319	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4320	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4321	if (IS_ERR(inode))
4322		return PTR_ERR(inode);
4323
4324	/* Avoid truncate/dio/punch hole.. */
4325	inode_lock(inode);
4326	inode_dio_wait(inode);
4327
4328	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4329	io_tree = &BTRFS_I(inode)->io_tree;
4330	nocow_ctx_logical = nocow_ctx->logical;
4331
4332	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4333	if (ret) {
4334		ret = ret > 0 ? 0 : ret;
4335		goto out;
4336	}
4337
4338	while (len >= PAGE_SIZE) {
4339		index = offset >> PAGE_SHIFT;
4340again:
4341		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4342		if (!page) {
4343			btrfs_err(fs_info, "find_or_create_page() failed");
4344			ret = -ENOMEM;
4345			goto out;
4346		}
4347
4348		if (PageUptodate(page)) {
4349			if (PageDirty(page))
4350				goto next_page;
4351		} else {
4352			ClearPageError(page);
4353			err = extent_read_full_page(io_tree, page,
4354							   btrfs_get_extent,
4355							   nocow_ctx->mirror_num);
4356			if (err) {
4357				ret = err;
4358				goto next_page;
4359			}
4360
4361			lock_page(page);
4362			/*
4363			 * If the page has been remove from the page cache,
4364			 * the data on it is meaningless, because it may be
4365			 * old one, the new data may be written into the new
4366			 * page in the page cache.
4367			 */
4368			if (page->mapping != inode->i_mapping) {
4369				unlock_page(page);
4370				put_page(page);
4371				goto again;
4372			}
4373			if (!PageUptodate(page)) {
4374				ret = -EIO;
4375				goto next_page;
4376			}
4377		}
4378
4379		ret = check_extent_to_block(inode, offset, len,
4380					    nocow_ctx_logical);
4381		if (ret) {
4382			ret = ret > 0 ? 0 : ret;
4383			goto next_page;
4384		}
4385
4386		err = write_page_nocow(nocow_ctx->sctx,
4387				       physical_for_dev_replace, page);
4388		if (err)
4389			ret = err;
4390next_page:
4391		unlock_page(page);
4392		put_page(page);
4393
4394		if (ret)
4395			break;
4396
4397		offset += PAGE_SIZE;
4398		physical_for_dev_replace += PAGE_SIZE;
4399		nocow_ctx_logical += PAGE_SIZE;
4400		len -= PAGE_SIZE;
4401	}
4402	ret = COPY_COMPLETE;
4403out:
4404	inode_unlock(inode);
4405	iput(inode);
4406	return ret;
4407}
4408
4409static int write_page_nocow(struct scrub_ctx *sctx,
4410			    u64 physical_for_dev_replace, struct page *page)
4411{
4412	struct bio *bio;
4413	struct btrfs_device *dev;
4414	int ret;
4415
4416	dev = sctx->wr_ctx.tgtdev;
4417	if (!dev)
4418		return -EIO;
4419	if (!dev->bdev) {
4420		btrfs_warn_rl(dev->fs_info,
4421			"scrub write_page_nocow(bdev == NULL) is unexpected");
4422		return -EIO;
4423	}
4424	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4425	if (!bio) {
4426		spin_lock(&sctx->stat_lock);
4427		sctx->stat.malloc_errors++;
4428		spin_unlock(&sctx->stat_lock);
4429		return -ENOMEM;
4430	}
4431	bio->bi_iter.bi_size = 0;
4432	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4433	bio->bi_bdev = dev->bdev;
4434	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
4435	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4436	if (ret != PAGE_SIZE) {
4437leave_with_eio:
4438		bio_put(bio);
4439		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4440		return -EIO;
4441	}
4442
4443	if (btrfsic_submit_bio_wait(bio))
4444		goto leave_with_eio;
4445
4446	bio_put(bio);
4447	return 0;
4448}