Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
 
 
 
 
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
 
  25
  26#include <linux/usb/ch9.h>
  27#include <linux/usb/gadget.h>
  28#include <linux/usb/phy.h>
  29#include <linux/usb/composite.h>
  30
  31
  32#include "core.h"
  33#include "hw.h"
  34
  35/* conversion functions */
  36static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  37{
  38	return container_of(req, struct dwc2_hsotg_req, req);
  39}
  40
  41static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  42{
  43	return container_of(ep, struct dwc2_hsotg_ep, ep);
  44}
  45
  46static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  47{
  48	return container_of(gadget, struct dwc2_hsotg, gadget);
  49}
  50
  51static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  52{
  53	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
  54}
  55
  56static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  57{
  58	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
  59}
  60
  61static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  62						u32 ep_index, u32 dir_in)
  63{
  64	if (dir_in)
  65		return hsotg->eps_in[ep_index];
  66	else
  67		return hsotg->eps_out[ep_index];
  68}
  69
  70/* forward declaration of functions */
  71static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  72
  73/**
  74 * using_dma - return the DMA status of the driver.
  75 * @hsotg: The driver state.
  76 *
  77 * Return true if we're using DMA.
  78 *
  79 * Currently, we have the DMA support code worked into everywhere
  80 * that needs it, but the AMBA DMA implementation in the hardware can
  81 * only DMA from 32bit aligned addresses. This means that gadgets such
  82 * as the CDC Ethernet cannot work as they often pass packets which are
  83 * not 32bit aligned.
  84 *
  85 * Unfortunately the choice to use DMA or not is global to the controller
  86 * and seems to be only settable when the controller is being put through
  87 * a core reset. This means we either need to fix the gadgets to take
  88 * account of DMA alignment, or add bounce buffers (yuerk).
  89 *
  90 * g_using_dma is set depending on dts flag.
  91 */
  92static inline bool using_dma(struct dwc2_hsotg *hsotg)
  93{
  94	return hsotg->params.g_dma;
  95}
  96
  97/*
  98 * using_desc_dma - return the descriptor DMA status of the driver.
  99 * @hsotg: The driver state.
 100 *
 101 * Return true if we're using descriptor DMA.
 102 */
 103static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 104{
 105	return hsotg->params.g_dma_desc;
 106}
 107
 108/**
 109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 110 * @hs_ep: The endpoint
 
 111 *
 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 114 */
 115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 116{
 117	struct dwc2_hsotg *hsotg = hs_ep->parent;
 118	u16 limit = DSTS_SOFFN_LIMIT;
 119
 120	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 121		limit >>= 3;
 122
 123	hs_ep->target_frame += hs_ep->interval;
 124	if (hs_ep->target_frame > limit) {
 125		hs_ep->frame_overrun = true;
 126		hs_ep->target_frame &= limit;
 127	} else {
 128		hs_ep->frame_overrun = false;
 129	}
 130}
 131
 132/**
 133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 134 *                                    by one.
 135 * @hs_ep: The endpoint.
 136 *
 137 * This function used in service interval based scheduling flow to calculate
 138 * descriptor frame number filed value. For service interval mode frame
 139 * number in descriptor should point to last (u)frame in the interval.
 140 *
 141 */
 142static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
 143{
 144	struct dwc2_hsotg *hsotg = hs_ep->parent;
 145	u16 limit = DSTS_SOFFN_LIMIT;
 146
 147	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 148		limit >>= 3;
 149
 150	if (hs_ep->target_frame)
 151		hs_ep->target_frame -= 1;
 152	else
 153		hs_ep->target_frame = limit;
 154}
 155
 156/**
 157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 158 * @hsotg: The device state
 159 * @ints: A bitmask of the interrupts to enable
 160 */
 161static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 162{
 163	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 164	u32 new_gsintmsk;
 165
 166	new_gsintmsk = gsintmsk | ints;
 167
 168	if (new_gsintmsk != gsintmsk) {
 169		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 170		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 171	}
 172}
 173
 174/**
 175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 176 * @hsotg: The device state
 177 * @ints: A bitmask of the interrupts to enable
 178 */
 179static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 180{
 181	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 182	u32 new_gsintmsk;
 183
 184	new_gsintmsk = gsintmsk & ~ints;
 185
 186	if (new_gsintmsk != gsintmsk)
 187		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 188}
 189
 190/**
 191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 192 * @hsotg: The device state
 193 * @ep: The endpoint index
 194 * @dir_in: True if direction is in.
 195 * @en: The enable value, true to enable
 196 *
 197 * Set or clear the mask for an individual endpoint's interrupt
 198 * request.
 199 */
 200static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 201				  unsigned int ep, unsigned int dir_in,
 202				 unsigned int en)
 203{
 204	unsigned long flags;
 205	u32 bit = 1 << ep;
 206	u32 daint;
 207
 208	if (!dir_in)
 209		bit <<= 16;
 210
 211	local_irq_save(flags);
 212	daint = dwc2_readl(hsotg, DAINTMSK);
 213	if (en)
 214		daint |= bit;
 215	else
 216		daint &= ~bit;
 217	dwc2_writel(hsotg, daint, DAINTMSK);
 218	local_irq_restore(flags);
 219}
 220
 221/**
 222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 223 *
 224 * @hsotg: Programming view of the DWC_otg controller
 225 */
 226int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 227{
 228	if (hsotg->hw_params.en_multiple_tx_fifo)
 229		/* In dedicated FIFO mode we need count of IN EPs */
 230		return hsotg->hw_params.num_dev_in_eps;
 231	else
 232		/* In shared FIFO mode we need count of Periodic IN EPs */
 233		return hsotg->hw_params.num_dev_perio_in_ep;
 234}
 235
 236/**
 237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 238 * device mode TX FIFOs
 239 *
 240 * @hsotg: Programming view of the DWC_otg controller
 241 */
 242int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 243{
 244	int addr;
 245	int tx_addr_max;
 246	u32 np_tx_fifo_size;
 247
 248	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 249				hsotg->params.g_np_tx_fifo_size);
 250
 251	/* Get Endpoint Info Control block size in DWORDs. */
 252	tx_addr_max = hsotg->hw_params.total_fifo_size;
 253
 254	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 255	if (tx_addr_max <= addr)
 256		return 0;
 257
 258	return tx_addr_max - addr;
 259}
 260
 261/**
 262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 263 *
 264 * @hsotg: Programming view of the DWC_otg controller
 265 *
 266 */
 267static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
 268{
 269	u32 gintsts2;
 270	u32 gintmsk2;
 271
 272	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
 273	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
 274	gintsts2 &= gintmsk2;
 275
 276	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
 277		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
 278		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
 279		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
 280	}
 281}
 282
 283/**
 284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 285 * TX FIFOs
 286 *
 287 * @hsotg: Programming view of the DWC_otg controller
 288 */
 289int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 290{
 291	int tx_fifo_count;
 292	int tx_fifo_depth;
 293
 294	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 295
 296	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 297
 298	if (!tx_fifo_count)
 299		return tx_fifo_depth;
 300	else
 301		return tx_fifo_depth / tx_fifo_count;
 302}
 303
 304/**
 305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 306 * @hsotg: The device instance.
 307 */
 308static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 309{
 310	unsigned int ep;
 311	unsigned int addr;
 312	int timeout;
 313
 314	u32 val;
 315	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 316
 317	/* Reset fifo map if not correctly cleared during previous session */
 318	WARN_ON(hsotg->fifo_map);
 319	hsotg->fifo_map = 0;
 320
 321	/* set RX/NPTX FIFO sizes */
 322	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
 323	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
 324		    FIFOSIZE_STARTADDR_SHIFT) |
 325		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 326		    GNPTXFSIZ);
 327
 328	/*
 329	 * arange all the rest of the TX FIFOs, as some versions of this
 330	 * block have overlapping default addresses. This also ensures
 331	 * that if the settings have been changed, then they are set to
 332	 * known values.
 333	 */
 334
 335	/* start at the end of the GNPTXFSIZ, rounded up */
 336	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 337
 338	/*
 339	 * Configure fifos sizes from provided configuration and assign
 340	 * them to endpoints dynamically according to maxpacket size value of
 341	 * given endpoint.
 342	 */
 343	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 344		if (!txfsz[ep])
 345			continue;
 346		val = addr;
 347		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 348		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 349			  "insufficient fifo memory");
 350		addr += txfsz[ep];
 351
 352		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
 353		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
 354	}
 355
 356	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
 357		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 358		    GDFIFOCFG);
 359	/*
 360	 * according to p428 of the design guide, we need to ensure that
 361	 * all fifos are flushed before continuing
 362	 */
 363
 364	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 365	       GRSTCTL_RXFFLSH, GRSTCTL);
 366
 367	/* wait until the fifos are both flushed */
 368	timeout = 100;
 369	while (1) {
 370		val = dwc2_readl(hsotg, GRSTCTL);
 371
 372		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 373			break;
 374
 375		if (--timeout == 0) {
 376			dev_err(hsotg->dev,
 377				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 378				__func__, val);
 379			break;
 380		}
 381
 382		udelay(1);
 383	}
 384
 385	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 386}
 387
 388/**
 389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
 390 * @ep: USB endpoint to allocate request for.
 391 * @flags: Allocation flags
 392 *
 393 * Allocate a new USB request structure appropriate for the specified endpoint
 394 */
 395static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 396						       gfp_t flags)
 397{
 398	struct dwc2_hsotg_req *req;
 399
 400	req = kzalloc(sizeof(*req), flags);
 401	if (!req)
 402		return NULL;
 403
 404	INIT_LIST_HEAD(&req->queue);
 405
 406	return &req->req;
 407}
 408
 409/**
 410 * is_ep_periodic - return true if the endpoint is in periodic mode.
 411 * @hs_ep: The endpoint to query.
 412 *
 413 * Returns true if the endpoint is in periodic mode, meaning it is being
 414 * used for an Interrupt or ISO transfer.
 415 */
 416static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 417{
 418	return hs_ep->periodic;
 419}
 420
 421/**
 422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 423 * @hsotg: The device state.
 424 * @hs_ep: The endpoint for the request
 425 * @hs_req: The request being processed.
 426 *
 427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 428 * of a request to ensure the buffer is ready for access by the caller.
 429 */
 430static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 431				 struct dwc2_hsotg_ep *hs_ep,
 432				struct dwc2_hsotg_req *hs_req)
 433{
 434	struct usb_request *req = &hs_req->req;
 435
 436	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
 437}
 438
 439/*
 440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 441 * for Control endpoint
 442 * @hsotg: The device state.
 443 *
 444 * This function will allocate 4 descriptor chains for EP 0: 2 for
 445 * Setup stage, per one for IN and OUT data/status transactions.
 446 */
 447static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 448{
 449	hsotg->setup_desc[0] =
 450		dmam_alloc_coherent(hsotg->dev,
 451				    sizeof(struct dwc2_dma_desc),
 452				    &hsotg->setup_desc_dma[0],
 453				    GFP_KERNEL);
 454	if (!hsotg->setup_desc[0])
 455		goto fail;
 456
 457	hsotg->setup_desc[1] =
 458		dmam_alloc_coherent(hsotg->dev,
 459				    sizeof(struct dwc2_dma_desc),
 460				    &hsotg->setup_desc_dma[1],
 461				    GFP_KERNEL);
 462	if (!hsotg->setup_desc[1])
 463		goto fail;
 464
 465	hsotg->ctrl_in_desc =
 466		dmam_alloc_coherent(hsotg->dev,
 467				    sizeof(struct dwc2_dma_desc),
 468				    &hsotg->ctrl_in_desc_dma,
 469				    GFP_KERNEL);
 470	if (!hsotg->ctrl_in_desc)
 471		goto fail;
 472
 473	hsotg->ctrl_out_desc =
 474		dmam_alloc_coherent(hsotg->dev,
 475				    sizeof(struct dwc2_dma_desc),
 476				    &hsotg->ctrl_out_desc_dma,
 477				    GFP_KERNEL);
 478	if (!hsotg->ctrl_out_desc)
 479		goto fail;
 480
 481	return 0;
 482
 483fail:
 484	return -ENOMEM;
 485}
 486
 487/**
 488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 489 * @hsotg: The controller state.
 490 * @hs_ep: The endpoint we're going to write for.
 491 * @hs_req: The request to write data for.
 492 *
 493 * This is called when the TxFIFO has some space in it to hold a new
 494 * transmission and we have something to give it. The actual setup of
 495 * the data size is done elsewhere, so all we have to do is to actually
 496 * write the data.
 497 *
 498 * The return value is zero if there is more space (or nothing was done)
 499 * otherwise -ENOSPC is returned if the FIFO space was used up.
 500 *
 501 * This routine is only needed for PIO
 502 */
 503static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 504				 struct dwc2_hsotg_ep *hs_ep,
 505				struct dwc2_hsotg_req *hs_req)
 506{
 507	bool periodic = is_ep_periodic(hs_ep);
 508	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
 509	int buf_pos = hs_req->req.actual;
 510	int to_write = hs_ep->size_loaded;
 511	void *data;
 512	int can_write;
 513	int pkt_round;
 514	int max_transfer;
 515
 516	to_write -= (buf_pos - hs_ep->last_load);
 517
 518	/* if there's nothing to write, get out early */
 519	if (to_write == 0)
 520		return 0;
 521
 522	if (periodic && !hsotg->dedicated_fifos) {
 523		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
 524		int size_left;
 525		int size_done;
 526
 527		/*
 528		 * work out how much data was loaded so we can calculate
 529		 * how much data is left in the fifo.
 530		 */
 531
 532		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 533
 534		/*
 535		 * if shared fifo, we cannot write anything until the
 536		 * previous data has been completely sent.
 537		 */
 538		if (hs_ep->fifo_load != 0) {
 539			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 540			return -ENOSPC;
 541		}
 542
 543		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 544			__func__, size_left,
 545			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 546
 547		/* how much of the data has moved */
 548		size_done = hs_ep->size_loaded - size_left;
 549
 550		/* how much data is left in the fifo */
 551		can_write = hs_ep->fifo_load - size_done;
 552		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 553			__func__, can_write);
 554
 555		can_write = hs_ep->fifo_size - can_write;
 556		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 557			__func__, can_write);
 558
 559		if (can_write <= 0) {
 560			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 561			return -ENOSPC;
 562		}
 563	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 564		can_write = dwc2_readl(hsotg,
 565				       DTXFSTS(hs_ep->fifo_index));
 566
 567		can_write &= 0xffff;
 568		can_write *= 4;
 569	} else {
 570		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 571			dev_dbg(hsotg->dev,
 572				"%s: no queue slots available (0x%08x)\n",
 573				__func__, gnptxsts);
 574
 575			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 576			return -ENOSPC;
 577		}
 578
 579		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 580		can_write *= 4;	/* fifo size is in 32bit quantities. */
 581	}
 582
 583	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 584
 585	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 586		__func__, gnptxsts, can_write, to_write, max_transfer);
 587
 588	/*
 589	 * limit to 512 bytes of data, it seems at least on the non-periodic
 590	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 591	 * fragment of the end of the transfer in it.
 592	 */
 593	if (can_write > 512 && !periodic)
 594		can_write = 512;
 595
 596	/*
 597	 * limit the write to one max-packet size worth of data, but allow
 598	 * the transfer to return that it did not run out of fifo space
 599	 * doing it.
 600	 */
 601	if (to_write > max_transfer) {
 602		to_write = max_transfer;
 603
 604		/* it's needed only when we do not use dedicated fifos */
 605		if (!hsotg->dedicated_fifos)
 606			dwc2_hsotg_en_gsint(hsotg,
 607					    periodic ? GINTSTS_PTXFEMP :
 608					   GINTSTS_NPTXFEMP);
 609	}
 610
 611	/* see if we can write data */
 612
 613	if (to_write > can_write) {
 614		to_write = can_write;
 615		pkt_round = to_write % max_transfer;
 616
 617		/*
 618		 * Round the write down to an
 619		 * exact number of packets.
 620		 *
 621		 * Note, we do not currently check to see if we can ever
 622		 * write a full packet or not to the FIFO.
 623		 */
 624
 625		if (pkt_round)
 626			to_write -= pkt_round;
 627
 628		/*
 629		 * enable correct FIFO interrupt to alert us when there
 630		 * is more room left.
 631		 */
 632
 633		/* it's needed only when we do not use dedicated fifos */
 634		if (!hsotg->dedicated_fifos)
 635			dwc2_hsotg_en_gsint(hsotg,
 636					    periodic ? GINTSTS_PTXFEMP :
 637					   GINTSTS_NPTXFEMP);
 638	}
 639
 640	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 641		to_write, hs_req->req.length, can_write, buf_pos);
 642
 643	if (to_write <= 0)
 644		return -ENOSPC;
 645
 646	hs_req->req.actual = buf_pos + to_write;
 647	hs_ep->total_data += to_write;
 648
 649	if (periodic)
 650		hs_ep->fifo_load += to_write;
 651
 652	to_write = DIV_ROUND_UP(to_write, 4);
 653	data = hs_req->req.buf + buf_pos;
 654
 655	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
 656
 657	return (to_write >= can_write) ? -ENOSPC : 0;
 658}
 659
 660/**
 661 * get_ep_limit - get the maximum data legnth for this endpoint
 662 * @hs_ep: The endpoint
 663 *
 664 * Return the maximum data that can be queued in one go on a given endpoint
 665 * so that transfers that are too long can be split.
 666 */
 667static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 668{
 669	int index = hs_ep->index;
 670	unsigned int maxsize;
 671	unsigned int maxpkt;
 672
 673	if (index != 0) {
 674		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 675		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 676	} else {
 677		maxsize = 64 + 64;
 678		if (hs_ep->dir_in)
 679			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 680		else
 681			maxpkt = 2;
 682	}
 683
 684	/* we made the constant loading easier above by using +1 */
 685	maxpkt--;
 686	maxsize--;
 687
 688	/*
 689	 * constrain by packet count if maxpkts*pktsize is greater
 690	 * than the length register size.
 691	 */
 692
 693	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 694		maxsize = maxpkt * hs_ep->ep.maxpacket;
 695
 696	return maxsize;
 697}
 698
 699/**
 700 * dwc2_hsotg_read_frameno - read current frame number
 701 * @hsotg: The device instance
 702 *
 703 * Return the current frame number
 704 */
 705static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 706{
 707	u32 dsts;
 708
 709	dsts = dwc2_readl(hsotg, DSTS);
 710	dsts &= DSTS_SOFFN_MASK;
 711	dsts >>= DSTS_SOFFN_SHIFT;
 712
 713	return dsts;
 714}
 715
 716/**
 717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 718 * DMA descriptor chain prepared for specific endpoint
 719 * @hs_ep: The endpoint
 720 *
 721 * Return the maximum data that can be queued in one go on a given endpoint
 722 * depending on its descriptor chain capacity so that transfers that
 723 * are too long can be split.
 724 */
 725static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 726{
 727	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 728	int is_isoc = hs_ep->isochronous;
 729	unsigned int maxsize;
 730	u32 mps = hs_ep->ep.maxpacket;
 731	int dir_in = hs_ep->dir_in;
 732
 733	if (is_isoc)
 734		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 735					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
 736					   MAX_DMA_DESC_NUM_HS_ISOC;
 737	else
 738		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
 739
 740	/* Interrupt OUT EP with mps not multiple of 4 */
 741	if (hs_ep->index)
 742		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
 743			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
 744
 745	return maxsize;
 746}
 747
 748/*
 749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 750 * @hs_ep: The endpoint
 751 * @mask: RX/TX bytes mask to be defined
 752 *
 753 * Returns maximum data payload for one descriptor after analyzing endpoint
 754 * characteristics.
 755 * DMA descriptor transfer bytes limit depends on EP type:
 756 * Control out - MPS,
 757 * Isochronous - descriptor rx/tx bytes bitfield limit,
 758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 759 * have concatenations from various descriptors within one packet.
 760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
 761 * to a single descriptor.
 762 *
 763 * Selects corresponding mask for RX/TX bytes as well.
 764 */
 765static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 766{
 767	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 768	u32 mps = hs_ep->ep.maxpacket;
 769	int dir_in = hs_ep->dir_in;
 770	u32 desc_size = 0;
 771
 772	if (!hs_ep->index && !dir_in) {
 773		desc_size = mps;
 774		*mask = DEV_DMA_NBYTES_MASK;
 775	} else if (hs_ep->isochronous) {
 776		if (dir_in) {
 777			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 778			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 779		} else {
 780			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 781			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 782		}
 783	} else {
 784		desc_size = DEV_DMA_NBYTES_LIMIT;
 785		*mask = DEV_DMA_NBYTES_MASK;
 786
 787		/* Round down desc_size to be mps multiple */
 788		desc_size -= desc_size % mps;
 789	}
 790
 791	/* Interrupt OUT EP with mps not multiple of 4 */
 792	if (hs_ep->index)
 793		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
 794			desc_size = mps;
 795			*mask = DEV_DMA_NBYTES_MASK;
 796		}
 797
 798	return desc_size;
 799}
 800
 801static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
 802						 struct dwc2_dma_desc **desc,
 
 
 
 
 
 
 
 
 803						 dma_addr_t dma_buff,
 804						 unsigned int len,
 805						 bool true_last)
 806{
 
 807	int dir_in = hs_ep->dir_in;
 
 808	u32 mps = hs_ep->ep.maxpacket;
 809	u32 maxsize = 0;
 810	u32 offset = 0;
 811	u32 mask = 0;
 812	int i;
 813
 814	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 815
 816	hs_ep->desc_count = (len / maxsize) +
 817				((len % maxsize) ? 1 : 0);
 818	if (len == 0)
 819		hs_ep->desc_count = 1;
 820
 821	for (i = 0; i < hs_ep->desc_count; ++i) {
 822		(*desc)->status = 0;
 823		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
 824				 << DEV_DMA_BUFF_STS_SHIFT);
 825
 826		if (len > maxsize) {
 827			if (!hs_ep->index && !dir_in)
 828				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 829
 830			(*desc)->status |=
 831				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
 832			(*desc)->buf = dma_buff + offset;
 833
 834			len -= maxsize;
 835			offset += maxsize;
 836		} else {
 837			if (true_last)
 838				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 839
 840			if (dir_in)
 841				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
 842					((hs_ep->send_zlp && true_last) ?
 843					DEV_DMA_SHORT : 0);
 
 844
 845			(*desc)->status |=
 846				len << DEV_DMA_NBYTES_SHIFT & mask;
 847			(*desc)->buf = dma_buff + offset;
 848		}
 849
 850		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
 851		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
 852				 << DEV_DMA_BUFF_STS_SHIFT);
 853		(*desc)++;
 854	}
 855}
 856
 857/*
 858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 859 * @hs_ep: The endpoint
 860 * @ureq: Request to transfer
 861 * @offset: offset in bytes
 862 * @len: Length of the transfer
 863 *
 864 * This function will iterate over descriptor chain and fill its entries
 865 * with corresponding information based on transfer data.
 866 */
 867static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 868						 dma_addr_t dma_buff,
 869						 unsigned int len)
 870{
 871	struct usb_request *ureq = NULL;
 872	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 873	struct scatterlist *sg;
 874	int i;
 875	u8 desc_count = 0;
 876
 877	if (hs_ep->req)
 878		ureq = &hs_ep->req->req;
 879
 880	/* non-DMA sg buffer */
 881	if (!ureq || !ureq->num_sgs) {
 882		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 883			dma_buff, len, true);
 884		return;
 885	}
 886
 887	/* DMA sg buffer */
 888	for_each_sg(ureq->sg, sg, ureq->num_mapped_sgs, i) {
 889		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 890			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
 891			(i == (ureq->num_mapped_sgs - 1)));
 892		desc_count += hs_ep->desc_count;
 893	}
 894
 895	hs_ep->desc_count = desc_count;
 896}
 897
 898/*
 899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 900 * @hs_ep: The isochronous endpoint.
 901 * @dma_buff: usb requests dma buffer.
 902 * @len: usb request transfer length.
 903 *
 904 * Fills next free descriptor with the data of the arrived usb request,
 
 
 905 * frame info, sets Last and IOC bits increments next_desc. If filled
 906 * descriptor is not the first one, removes L bit from the previous descriptor
 907 * status.
 908 */
 909static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 910				      dma_addr_t dma_buff, unsigned int len)
 911{
 912	struct dwc2_dma_desc *desc;
 913	struct dwc2_hsotg *hsotg = hs_ep->parent;
 914	u32 index;
 
 915	u32 mask = 0;
 916	u8 pid = 0;
 917
 918	dwc2_gadget_get_desc_params(hs_ep, &mask);
 
 
 
 
 919
 920	index = hs_ep->next_desc;
 921	desc = &hs_ep->desc_list[index];
 
 
 
 
 922
 923	/* Check if descriptor chain full */
 924	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
 925	    DEV_DMA_BUFF_STS_HREADY) {
 926		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 927		return 1;
 
 
 
 
 
 
 
 928	}
 929
 
 
 930	/* Clear L bit of previous desc if more than one entries in the chain */
 931	if (hs_ep->next_desc)
 932		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 933
 934	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 935		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 936
 937	desc->status = 0;
 938	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 939
 940	desc->buf = dma_buff;
 941	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 942			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 943
 944	if (hs_ep->dir_in) {
 945		if (len)
 946			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
 947		else
 948			pid = 1;
 949		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
 950				 DEV_DMA_ISOC_PID_MASK) |
 951				((len % hs_ep->ep.maxpacket) ?
 952				 DEV_DMA_SHORT : 0) |
 953				((hs_ep->target_frame <<
 954				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 955				 DEV_DMA_ISOC_FRNUM_MASK);
 956	}
 957
 958	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 959	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 960
 961	/* Increment frame number by interval for IN */
 962	if (hs_ep->dir_in)
 963		dwc2_gadget_incr_frame_num(hs_ep);
 964
 965	/* Update index of last configured entry in the chain */
 966	hs_ep->next_desc++;
 967	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
 968		hs_ep->next_desc = 0;
 969
 970	return 0;
 971}
 972
 973/*
 974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 975 * @hs_ep: The isochronous endpoint.
 976 *
 977 * Prepare descriptor chain for isochronous endpoints. Afterwards
 978 * write DMA address to HW and enable the endpoint.
 
 
 
 979 */
 980static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 981{
 982	struct dwc2_hsotg *hsotg = hs_ep->parent;
 983	struct dwc2_hsotg_req *hs_req, *treq;
 984	int index = hs_ep->index;
 985	int ret;
 986	int i;
 987	u32 dma_reg;
 988	u32 depctl;
 989	u32 ctrl;
 990	struct dwc2_dma_desc *desc;
 991
 992	if (list_empty(&hs_ep->queue)) {
 993		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 994		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 995		return;
 996	}
 997
 998	/* Initialize descriptor chain by Host Busy status */
 999	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1000		desc = &hs_ep->desc_list[i];
1001		desc->status = 0;
1002		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1003				    << DEV_DMA_BUFF_STS_SHIFT);
1004	}
1005
1006	hs_ep->next_desc = 0;
1007	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1008		dma_addr_t dma_addr = hs_req->req.dma;
1009
1010		if (hs_req->req.num_sgs) {
1011			WARN_ON(hs_req->req.num_sgs > 1);
1012			dma_addr = sg_dma_address(hs_req->req.sg);
1013		}
1014		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1015						 hs_req->req.length);
1016		if (ret)
 
1017			break;
 
1018	}
1019
1020	hs_ep->compl_desc = 0;
1021	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1022	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1023
1024	/* write descriptor chain address to control register */
1025	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1026
1027	ctrl = dwc2_readl(hsotg, depctl);
1028	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1029	dwc2_writel(hsotg, ctrl, depctl);
1030}
1031
1032static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1033static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1034					struct dwc2_hsotg_ep *hs_ep,
1035				       struct dwc2_hsotg_req *hs_req,
1036				       int result);
1037
1038/**
1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040 * @hsotg: The controller state.
1041 * @hs_ep: The endpoint to process a request for
1042 * @hs_req: The request to start.
1043 * @continuing: True if we are doing more for the current request.
1044 *
1045 * Start the given request running by setting the endpoint registers
1046 * appropriately, and writing any data to the FIFOs.
1047 */
1048static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1049				 struct dwc2_hsotg_ep *hs_ep,
1050				struct dwc2_hsotg_req *hs_req,
1051				bool continuing)
1052{
1053	struct usb_request *ureq = &hs_req->req;
1054	int index = hs_ep->index;
1055	int dir_in = hs_ep->dir_in;
1056	u32 epctrl_reg;
1057	u32 epsize_reg;
1058	u32 epsize;
1059	u32 ctrl;
1060	unsigned int length;
1061	unsigned int packets;
1062	unsigned int maxreq;
1063	unsigned int dma_reg;
1064
1065	if (index != 0) {
1066		if (hs_ep->req && !continuing) {
1067			dev_err(hsotg->dev, "%s: active request\n", __func__);
1068			WARN_ON(1);
1069			return;
1070		} else if (hs_ep->req != hs_req && continuing) {
1071			dev_err(hsotg->dev,
1072				"%s: continue different req\n", __func__);
1073			WARN_ON(1);
1074			return;
1075		}
1076	}
1077
1078	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1079	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1080	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1081
1082	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1084		hs_ep->dir_in ? "in" : "out");
1085
1086	/* If endpoint is stalled, we will restart request later */
1087	ctrl = dwc2_readl(hsotg, epctrl_reg);
1088
1089	if (index && ctrl & DXEPCTL_STALL) {
1090		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1091		return;
1092	}
1093
1094	length = ureq->length - ureq->actual;
1095	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1096		ureq->length, ureq->actual);
1097
1098	if (!using_desc_dma(hsotg))
1099		maxreq = get_ep_limit(hs_ep);
1100	else
1101		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1102
1103	if (length > maxreq) {
1104		int round = maxreq % hs_ep->ep.maxpacket;
1105
1106		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1107			__func__, length, maxreq, round);
1108
1109		/* round down to multiple of packets */
1110		if (round)
1111			maxreq -= round;
1112
1113		length = maxreq;
1114	}
1115
1116	if (length)
1117		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1118	else
1119		packets = 1;	/* send one packet if length is zero. */
1120
 
 
 
 
 
1121	if (dir_in && index != 0)
1122		if (hs_ep->isochronous)
1123			epsize = DXEPTSIZ_MC(packets);
1124		else
1125			epsize = DXEPTSIZ_MC(1);
1126	else
1127		epsize = 0;
1128
1129	/*
1130	 * zero length packet should be programmed on its own and should not
1131	 * be counted in DIEPTSIZ.PktCnt with other packets.
1132	 */
1133	if (dir_in && ureq->zero && !continuing) {
1134		/* Test if zlp is actually required. */
1135		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1136		    !(ureq->length % hs_ep->ep.maxpacket))
1137			hs_ep->send_zlp = 1;
1138	}
1139
1140	epsize |= DXEPTSIZ_PKTCNT(packets);
1141	epsize |= DXEPTSIZ_XFERSIZE(length);
1142
1143	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144		__func__, packets, length, ureq->length, epsize, epsize_reg);
1145
1146	/* store the request as the current one we're doing */
1147	hs_ep->req = hs_req;
1148
1149	if (using_desc_dma(hsotg)) {
1150		u32 offset = 0;
1151		u32 mps = hs_ep->ep.maxpacket;
1152
1153		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1154		if (!dir_in) {
1155			if (!index)
1156				length = mps;
1157			else if (length % mps)
1158				length += (mps - (length % mps));
1159		}
1160
1161		if (continuing)
 
 
 
 
 
 
1162			offset = ureq->actual;
1163
1164		/* Fill DDMA chain entries */
1165		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1166						     length);
1167
1168		/* write descriptor chain address to control register */
1169		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1170
1171		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1172			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1173	} else {
1174		/* write size / packets */
1175		dwc2_writel(hsotg, epsize, epsize_reg);
1176
1177		if (using_dma(hsotg) && !continuing && (length != 0)) {
1178			/*
1179			 * write DMA address to control register, buffer
1180			 * already synced by dwc2_hsotg_ep_queue().
1181			 */
1182
1183			dwc2_writel(hsotg, ureq->dma, dma_reg);
1184
1185			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1186				__func__, &ureq->dma, dma_reg);
1187		}
1188	}
1189
1190	if (hs_ep->isochronous) {
1191		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1192			if (hs_ep->interval == 1) {
1193				if (hs_ep->target_frame & 0x1)
1194					ctrl |= DXEPCTL_SETODDFR;
1195				else
1196					ctrl |= DXEPCTL_SETEVENFR;
1197			}
1198			ctrl |= DXEPCTL_CNAK;
1199		} else {
1200			hs_req->req.frame_number = hs_ep->target_frame;
1201			hs_req->req.actual = 0;
1202			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1203			return;
1204		}
1205	}
1206
1207	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1208
1209	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1210
1211	/* For Setup request do not clear NAK */
1212	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1213		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1214
1215	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1216	dwc2_writel(hsotg, ctrl, epctrl_reg);
1217
1218	/*
1219	 * set these, it seems that DMA support increments past the end
1220	 * of the packet buffer so we need to calculate the length from
1221	 * this information.
1222	 */
1223	hs_ep->size_loaded = length;
1224	hs_ep->last_load = ureq->actual;
1225
1226	if (dir_in && !using_dma(hsotg)) {
1227		/* set these anyway, we may need them for non-periodic in */
1228		hs_ep->fifo_load = 0;
1229
1230		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1231	}
1232
1233	/*
1234	 * Note, trying to clear the NAK here causes problems with transmit
1235	 * on the S3C6400 ending up with the TXFIFO becoming full.
1236	 */
1237
1238	/* check ep is enabled */
1239	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1240		dev_dbg(hsotg->dev,
1241			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242			 index, dwc2_readl(hsotg, epctrl_reg));
1243
1244	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1245		__func__, dwc2_readl(hsotg, epctrl_reg));
1246
1247	/* enable ep interrupts */
1248	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1249}
1250
1251/**
1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253 * @hsotg: The device state.
1254 * @hs_ep: The endpoint the request is on.
1255 * @req: The request being processed.
1256 *
1257 * We've been asked to queue a request, so ensure that the memory buffer
1258 * is correctly setup for DMA. If we've been passed an extant DMA address
1259 * then ensure the buffer has been synced to memory. If our buffer has no
1260 * DMA memory, then we map the memory and mark our request to allow us to
1261 * cleanup on completion.
1262 */
1263static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1264			      struct dwc2_hsotg_ep *hs_ep,
1265			     struct usb_request *req)
1266{
1267	int ret;
1268
1269	hs_ep->map_dir = hs_ep->dir_in;
1270	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1271	if (ret)
1272		goto dma_error;
1273
1274	return 0;
1275
1276dma_error:
1277	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1278		__func__, req->buf, req->length);
1279
1280	return -EIO;
1281}
1282
1283static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1284						 struct dwc2_hsotg_ep *hs_ep,
1285						 struct dwc2_hsotg_req *hs_req)
1286{
1287	void *req_buf = hs_req->req.buf;
1288
1289	/* If dma is not being used or buffer is aligned */
1290	if (!using_dma(hsotg) || !((long)req_buf & 3))
1291		return 0;
1292
1293	WARN_ON(hs_req->saved_req_buf);
1294
1295	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1296		hs_ep->ep.name, req_buf, hs_req->req.length);
1297
1298	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1299	if (!hs_req->req.buf) {
1300		hs_req->req.buf = req_buf;
1301		dev_err(hsotg->dev,
1302			"%s: unable to allocate memory for bounce buffer\n",
1303			__func__);
1304		return -ENOMEM;
1305	}
1306
1307	/* Save actual buffer */
1308	hs_req->saved_req_buf = req_buf;
1309
1310	if (hs_ep->dir_in)
1311		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1312	return 0;
1313}
1314
1315static void
1316dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1317					 struct dwc2_hsotg_ep *hs_ep,
1318					 struct dwc2_hsotg_req *hs_req)
1319{
1320	/* If dma is not being used or buffer was aligned */
1321	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1322		return;
1323
1324	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1325		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1326
1327	/* Copy data from bounce buffer on successful out transfer */
1328	if (!hs_ep->dir_in && !hs_req->req.status)
1329		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1330		       hs_req->req.actual);
1331
1332	/* Free bounce buffer */
1333	kfree(hs_req->req.buf);
1334
1335	hs_req->req.buf = hs_req->saved_req_buf;
1336	hs_req->saved_req_buf = NULL;
1337}
1338
1339/**
1340 * dwc2_gadget_target_frame_elapsed - Checks target frame
1341 * @hs_ep: The driver endpoint to check
1342 *
1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344 * corresponding transfer.
1345 */
1346static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1347{
1348	struct dwc2_hsotg *hsotg = hs_ep->parent;
1349	u32 target_frame = hs_ep->target_frame;
1350	u32 current_frame = hsotg->frame_number;
1351	bool frame_overrun = hs_ep->frame_overrun;
1352	u16 limit = DSTS_SOFFN_LIMIT;
1353
1354	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1355		limit >>= 3;
1356
1357	if (!frame_overrun && current_frame >= target_frame)
1358		return true;
1359
1360	if (frame_overrun && current_frame >= target_frame &&
1361	    ((current_frame - target_frame) < limit / 2))
1362		return true;
1363
1364	return false;
1365}
1366
1367/*
1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369 * @hsotg: The driver state
1370 * @hs_ep: the ep descriptor chain is for
1371 *
1372 * Called to update EP0 structure's pointers depend on stage of
1373 * control transfer.
1374 */
1375static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1376					  struct dwc2_hsotg_ep *hs_ep)
1377{
1378	switch (hsotg->ep0_state) {
1379	case DWC2_EP0_SETUP:
1380	case DWC2_EP0_STATUS_OUT:
1381		hs_ep->desc_list = hsotg->setup_desc[0];
1382		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1383		break;
1384	case DWC2_EP0_DATA_IN:
1385	case DWC2_EP0_STATUS_IN:
1386		hs_ep->desc_list = hsotg->ctrl_in_desc;
1387		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1388		break;
1389	case DWC2_EP0_DATA_OUT:
1390		hs_ep->desc_list = hsotg->ctrl_out_desc;
1391		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1392		break;
1393	default:
1394		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1395			hsotg->ep0_state);
1396		return -EINVAL;
1397	}
1398
1399	return 0;
1400}
1401
1402static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1403			       gfp_t gfp_flags)
1404{
1405	struct dwc2_hsotg_req *hs_req = our_req(req);
1406	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1407	struct dwc2_hsotg *hs = hs_ep->parent;
1408	bool first;
1409	int ret;
1410	u32 maxsize = 0;
1411	u32 mask = 0;
1412
1413
1414	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415		ep->name, req, req->length, req->buf, req->no_interrupt,
1416		req->zero, req->short_not_ok);
1417
1418	if (hs->lx_state == DWC2_L1) {
1419		dwc2_wakeup_from_lpm_l1(hs, true);
1420	}
1421
1422	/* Prevent new request submission when controller is suspended */
1423	if (hs->lx_state != DWC2_L0) {
1424		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1425			__func__);
1426		return -EAGAIN;
1427	}
1428
1429	/* initialise status of the request */
1430	INIT_LIST_HEAD(&hs_req->queue);
1431	req->actual = 0;
1432	req->status = -EINPROGRESS;
1433
1434	/* Don't queue ISOC request if length greater than mps*mc */
1435	if (hs_ep->isochronous &&
1436	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1437		dev_err(hs->dev, "req length > maxpacket*mc\n");
1438		return -EINVAL;
1439	}
1440
1441	/* In DDMA mode for ISOC's don't queue request if length greater
1442	 * than descriptor limits.
1443	 */
1444	if (using_desc_dma(hs) && hs_ep->isochronous) {
1445		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1446		if (hs_ep->dir_in && req->length > maxsize) {
1447			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1448				req->length, maxsize);
1449			return -EINVAL;
1450		}
1451
1452		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1453			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1454				req->length, hs_ep->ep.maxpacket);
1455			return -EINVAL;
1456		}
1457	}
1458
1459	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1460	if (ret)
1461		return ret;
1462
1463	/* if we're using DMA, sync the buffers as necessary */
1464	if (using_dma(hs)) {
1465		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1466		if (ret)
1467			return ret;
1468	}
1469	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1470	if (using_desc_dma(hs) && !hs_ep->index) {
1471		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1472		if (ret)
1473			return ret;
1474	}
1475
1476	first = list_empty(&hs_ep->queue);
1477	list_add_tail(&hs_req->queue, &hs_ep->queue);
1478
1479	/*
1480	 * Handle DDMA isochronous transfers separately - just add new entry
1481	 * to the descriptor chain.
1482	 * Transfer will be started once SW gets either one of NAK or
1483	 * OutTknEpDis interrupts.
1484	 */
1485	if (using_desc_dma(hs) && hs_ep->isochronous) {
1486		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1487			dma_addr_t dma_addr = hs_req->req.dma;
1488
1489			if (hs_req->req.num_sgs) {
1490				WARN_ON(hs_req->req.num_sgs > 1);
1491				dma_addr = sg_dma_address(hs_req->req.sg);
1492			}
1493			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1494						   hs_req->req.length);
1495		}
1496		return 0;
1497	}
1498
1499	/* Change EP direction if status phase request is after data out */
1500	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1501	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1502		hs_ep->dir_in = 1;
1503
1504	if (first) {
1505		if (!hs_ep->isochronous) {
1506			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1507			return 0;
1508		}
1509
1510		/* Update current frame number value. */
1511		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1512		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1513			dwc2_gadget_incr_frame_num(hs_ep);
1514			/* Update current frame number value once more as it
1515			 * changes here.
1516			 */
1517			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1518		}
1519
1520		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1521			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1522	}
1523	return 0;
1524}
1525
1526static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1527				    gfp_t gfp_flags)
1528{
1529	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1530	struct dwc2_hsotg *hs = hs_ep->parent;
1531	unsigned long flags;
1532	int ret;
1533
1534	spin_lock_irqsave(&hs->lock, flags);
1535	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1536	spin_unlock_irqrestore(&hs->lock, flags);
1537
1538	return ret;
1539}
1540
1541static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1542				       struct usb_request *req)
1543{
1544	struct dwc2_hsotg_req *hs_req = our_req(req);
1545
1546	kfree(hs_req);
1547}
1548
1549/**
1550 * dwc2_hsotg_complete_oursetup - setup completion callback
1551 * @ep: The endpoint the request was on.
1552 * @req: The request completed.
1553 *
1554 * Called on completion of any requests the driver itself
1555 * submitted that need cleaning up.
1556 */
1557static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1558					 struct usb_request *req)
1559{
1560	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1561	struct dwc2_hsotg *hsotg = hs_ep->parent;
1562
1563	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1564
1565	dwc2_hsotg_ep_free_request(ep, req);
1566}
1567
1568/**
1569 * ep_from_windex - convert control wIndex value to endpoint
1570 * @hsotg: The driver state.
1571 * @windex: The control request wIndex field (in host order).
1572 *
1573 * Convert the given wIndex into a pointer to an driver endpoint
1574 * structure, or return NULL if it is not a valid endpoint.
1575 */
1576static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1577					    u32 windex)
1578{
 
1579	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1580	int idx = windex & 0x7F;
1581
1582	if (windex >= 0x100)
1583		return NULL;
1584
1585	if (idx > hsotg->num_of_eps)
1586		return NULL;
1587
1588	return index_to_ep(hsotg, idx, dir);
 
 
 
 
 
1589}
1590
1591/**
1592 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1593 * @hsotg: The driver state.
1594 * @testmode: requested usb test mode
1595 * Enable usb Test Mode requested by the Host.
1596 */
1597int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1598{
1599	int dctl = dwc2_readl(hsotg, DCTL);
1600
1601	dctl &= ~DCTL_TSTCTL_MASK;
1602	switch (testmode) {
1603	case USB_TEST_J:
1604	case USB_TEST_K:
1605	case USB_TEST_SE0_NAK:
1606	case USB_TEST_PACKET:
1607	case USB_TEST_FORCE_ENABLE:
1608		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1609		break;
1610	default:
1611		return -EINVAL;
1612	}
1613	dwc2_writel(hsotg, dctl, DCTL);
1614	return 0;
1615}
1616
1617/**
1618 * dwc2_hsotg_send_reply - send reply to control request
1619 * @hsotg: The device state
1620 * @ep: Endpoint 0
1621 * @buff: Buffer for request
1622 * @length: Length of reply.
1623 *
1624 * Create a request and queue it on the given endpoint. This is useful as
1625 * an internal method of sending replies to certain control requests, etc.
1626 */
1627static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1628				 struct dwc2_hsotg_ep *ep,
1629				void *buff,
1630				int length)
1631{
1632	struct usb_request *req;
1633	int ret;
1634
1635	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1636
1637	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1638	hsotg->ep0_reply = req;
1639	if (!req) {
1640		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1641		return -ENOMEM;
1642	}
1643
1644	req->buf = hsotg->ep0_buff;
1645	req->length = length;
1646	/*
1647	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1648	 * STATUS stage.
1649	 */
1650	req->zero = 0;
1651	req->complete = dwc2_hsotg_complete_oursetup;
1652
1653	if (length)
1654		memcpy(req->buf, buff, length);
1655
1656	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1657	if (ret) {
1658		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1659		return ret;
1660	}
1661
1662	return 0;
1663}
1664
1665/**
1666 * dwc2_hsotg_process_req_status - process request GET_STATUS
1667 * @hsotg: The device state
1668 * @ctrl: USB control request
1669 */
1670static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1671					 struct usb_ctrlrequest *ctrl)
1672{
1673	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1674	struct dwc2_hsotg_ep *ep;
1675	__le16 reply;
1676	u16 status;
1677	int ret;
1678
1679	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1680
1681	if (!ep0->dir_in) {
1682		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1683		return -EINVAL;
1684	}
1685
1686	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1687	case USB_RECIP_DEVICE:
1688		status = hsotg->gadget.is_selfpowered <<
1689			 USB_DEVICE_SELF_POWERED;
1690		status |= hsotg->remote_wakeup_allowed <<
1691			  USB_DEVICE_REMOTE_WAKEUP;
1692		reply = cpu_to_le16(status);
1693		break;
1694
1695	case USB_RECIP_INTERFACE:
1696		/* currently, the data result should be zero */
1697		reply = cpu_to_le16(0);
1698		break;
1699
1700	case USB_RECIP_ENDPOINT:
1701		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1702		if (!ep)
1703			return -ENOENT;
1704
1705		reply = cpu_to_le16(ep->halted ? 1 : 0);
1706		break;
1707
1708	default:
1709		return 0;
1710	}
1711
1712	if (le16_to_cpu(ctrl->wLength) != 2)
1713		return -EINVAL;
1714
1715	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1716	if (ret) {
1717		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1718		return ret;
1719	}
1720
1721	return 1;
1722}
1723
1724static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1725
1726/**
1727 * get_ep_head - return the first request on the endpoint
1728 * @hs_ep: The controller endpoint to get
1729 *
1730 * Get the first request on the endpoint.
1731 */
1732static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1733{
1734	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1735					queue);
1736}
1737
1738/**
1739 * dwc2_gadget_start_next_request - Starts next request from ep queue
1740 * @hs_ep: Endpoint structure
1741 *
1742 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1743 * in its handler. Hence we need to unmask it here to be able to do
1744 * resynchronization.
1745 */
1746static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1747{
 
1748	struct dwc2_hsotg *hsotg = hs_ep->parent;
1749	int dir_in = hs_ep->dir_in;
1750	struct dwc2_hsotg_req *hs_req;
 
1751
1752	if (!list_empty(&hs_ep->queue)) {
1753		hs_req = get_ep_head(hs_ep);
1754		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1755		return;
1756	}
1757	if (!hs_ep->isochronous)
1758		return;
1759
1760	if (dir_in) {
1761		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1762			__func__);
1763	} else {
1764		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1765			__func__);
 
 
 
1766	}
1767}
1768
1769/**
1770 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1771 * @hsotg: The device state
1772 * @ctrl: USB control request
1773 */
1774static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1775					  struct usb_ctrlrequest *ctrl)
1776{
1777	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1778	struct dwc2_hsotg_req *hs_req;
1779	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1780	struct dwc2_hsotg_ep *ep;
1781	int ret;
1782	bool halted;
1783	u32 recip;
1784	u32 wValue;
1785	u32 wIndex;
1786
1787	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1788		__func__, set ? "SET" : "CLEAR");
1789
1790	wValue = le16_to_cpu(ctrl->wValue);
1791	wIndex = le16_to_cpu(ctrl->wIndex);
1792	recip = ctrl->bRequestType & USB_RECIP_MASK;
1793
1794	switch (recip) {
1795	case USB_RECIP_DEVICE:
1796		switch (wValue) {
1797		case USB_DEVICE_REMOTE_WAKEUP:
1798			if (set)
1799				hsotg->remote_wakeup_allowed = 1;
1800			else
1801				hsotg->remote_wakeup_allowed = 0;
1802			break;
1803
1804		case USB_DEVICE_TEST_MODE:
1805			if ((wIndex & 0xff) != 0)
1806				return -EINVAL;
1807			if (!set)
1808				return -EINVAL;
1809
1810			hsotg->test_mode = wIndex >> 8;
 
 
 
 
 
 
1811			break;
1812		default:
1813			return -ENOENT;
1814		}
1815
1816		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1817		if (ret) {
1818			dev_err(hsotg->dev,
1819				"%s: failed to send reply\n", __func__);
1820			return ret;
1821		}
1822		break;
1823
1824	case USB_RECIP_ENDPOINT:
1825		ep = ep_from_windex(hsotg, wIndex);
1826		if (!ep) {
1827			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1828				__func__, wIndex);
1829			return -ENOENT;
1830		}
1831
1832		switch (wValue) {
1833		case USB_ENDPOINT_HALT:
1834			halted = ep->halted;
1835
1836			if (!ep->wedged)
1837				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1838
1839			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1840			if (ret) {
1841				dev_err(hsotg->dev,
1842					"%s: failed to send reply\n", __func__);
1843				return ret;
1844			}
1845
1846			/*
1847			 * we have to complete all requests for ep if it was
1848			 * halted, and the halt was cleared by CLEAR_FEATURE
1849			 */
1850
1851			if (!set && halted) {
1852				/*
1853				 * If we have request in progress,
1854				 * then complete it
1855				 */
1856				if (ep->req) {
1857					hs_req = ep->req;
1858					ep->req = NULL;
1859					list_del_init(&hs_req->queue);
1860					if (hs_req->req.complete) {
1861						spin_unlock(&hsotg->lock);
1862						usb_gadget_giveback_request(
1863							&ep->ep, &hs_req->req);
1864						spin_lock(&hsotg->lock);
1865					}
1866				}
1867
1868				/* If we have pending request, then start it */
1869				if (!ep->req)
1870					dwc2_gadget_start_next_request(ep);
 
1871			}
1872
1873			break;
1874
1875		default:
1876			return -ENOENT;
1877		}
1878		break;
1879	default:
1880		return -ENOENT;
1881	}
1882	return 1;
1883}
1884
1885static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1886
1887/**
1888 * dwc2_hsotg_stall_ep0 - stall ep0
1889 * @hsotg: The device state
1890 *
1891 * Set stall for ep0 as response for setup request.
1892 */
1893static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1894{
1895	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1896	u32 reg;
1897	u32 ctrl;
1898
1899	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1900	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1901
1902	/*
1903	 * DxEPCTL_Stall will be cleared by EP once it has
1904	 * taken effect, so no need to clear later.
1905	 */
1906
1907	ctrl = dwc2_readl(hsotg, reg);
1908	ctrl |= DXEPCTL_STALL;
1909	ctrl |= DXEPCTL_CNAK;
1910	dwc2_writel(hsotg, ctrl, reg);
1911
1912	dev_dbg(hsotg->dev,
1913		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1914		ctrl, reg, dwc2_readl(hsotg, reg));
1915
1916	 /*
1917	  * complete won't be called, so we enqueue
1918	  * setup request here
1919	  */
1920	 dwc2_hsotg_enqueue_setup(hsotg);
1921}
1922
1923/**
1924 * dwc2_hsotg_process_control - process a control request
1925 * @hsotg: The device state
1926 * @ctrl: The control request received
1927 *
1928 * The controller has received the SETUP phase of a control request, and
1929 * needs to work out what to do next (and whether to pass it on to the
1930 * gadget driver).
1931 */
1932static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1933				       struct usb_ctrlrequest *ctrl)
1934{
1935	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1936	int ret = 0;
1937	u32 dcfg;
1938
1939	dev_dbg(hsotg->dev,
1940		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1941		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1942		ctrl->wIndex, ctrl->wLength);
1943
1944	if (ctrl->wLength == 0) {
1945		ep0->dir_in = 1;
1946		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1947	} else if (ctrl->bRequestType & USB_DIR_IN) {
1948		ep0->dir_in = 1;
1949		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1950	} else {
1951		ep0->dir_in = 0;
1952		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1953	}
1954
1955	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1956		switch (ctrl->bRequest) {
1957		case USB_REQ_SET_ADDRESS:
1958			hsotg->connected = 1;
1959			dcfg = dwc2_readl(hsotg, DCFG);
1960			dcfg &= ~DCFG_DEVADDR_MASK;
1961			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1962				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1963			dwc2_writel(hsotg, dcfg, DCFG);
1964
1965			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1966
1967			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1968			return;
1969
1970		case USB_REQ_GET_STATUS:
1971			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1972			break;
1973
1974		case USB_REQ_CLEAR_FEATURE:
1975		case USB_REQ_SET_FEATURE:
1976			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1977			break;
1978		}
1979	}
1980
1981	/* as a fallback, try delivering it to the driver to deal with */
1982
1983	if (ret == 0 && hsotg->driver) {
1984		spin_unlock(&hsotg->lock);
1985		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1986		spin_lock(&hsotg->lock);
1987		if (ret < 0)
1988			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1989	}
1990
1991	hsotg->delayed_status = false;
1992	if (ret == USB_GADGET_DELAYED_STATUS)
1993		hsotg->delayed_status = true;
1994
1995	/*
1996	 * the request is either unhandlable, or is not formatted correctly
1997	 * so respond with a STALL for the status stage to indicate failure.
1998	 */
1999
2000	if (ret < 0)
2001		dwc2_hsotg_stall_ep0(hsotg);
2002}
2003
2004/**
2005 * dwc2_hsotg_complete_setup - completion of a setup transfer
2006 * @ep: The endpoint the request was on.
2007 * @req: The request completed.
2008 *
2009 * Called on completion of any requests the driver itself submitted for
2010 * EP0 setup packets
2011 */
2012static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2013				      struct usb_request *req)
2014{
2015	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2016	struct dwc2_hsotg *hsotg = hs_ep->parent;
2017
2018	if (req->status < 0) {
2019		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2020		return;
2021	}
2022
2023	spin_lock(&hsotg->lock);
2024	if (req->actual == 0)
2025		dwc2_hsotg_enqueue_setup(hsotg);
2026	else
2027		dwc2_hsotg_process_control(hsotg, req->buf);
2028	spin_unlock(&hsotg->lock);
2029}
2030
2031/**
2032 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2033 * @hsotg: The device state.
2034 *
2035 * Enqueue a request on EP0 if necessary to received any SETUP packets
2036 * received from the host.
2037 */
2038static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2039{
2040	struct usb_request *req = hsotg->ctrl_req;
2041	struct dwc2_hsotg_req *hs_req = our_req(req);
2042	int ret;
2043
2044	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2045
2046	req->zero = 0;
2047	req->length = 8;
2048	req->buf = hsotg->ctrl_buff;
2049	req->complete = dwc2_hsotg_complete_setup;
2050
2051	if (!list_empty(&hs_req->queue)) {
2052		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2053		return;
2054	}
2055
2056	hsotg->eps_out[0]->dir_in = 0;
2057	hsotg->eps_out[0]->send_zlp = 0;
2058	hsotg->ep0_state = DWC2_EP0_SETUP;
2059
2060	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2061	if (ret < 0) {
2062		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2063		/*
2064		 * Don't think there's much we can do other than watch the
2065		 * driver fail.
2066		 */
2067	}
2068}
2069
2070static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2071				   struct dwc2_hsotg_ep *hs_ep)
2072{
2073	u32 ctrl;
2074	u8 index = hs_ep->index;
2075	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2076	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2077
2078	if (hs_ep->dir_in)
2079		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2080			index);
2081	else
2082		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2083			index);
2084	if (using_desc_dma(hsotg)) {
2085		/* Not specific buffer needed for ep0 ZLP */
2086		dma_addr_t dma = hs_ep->desc_list_dma;
2087
2088		if (!index)
2089			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2090
2091		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2092	} else {
2093		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2094			    DXEPTSIZ_XFERSIZE(0),
2095			    epsiz_reg);
2096	}
2097
2098	ctrl = dwc2_readl(hsotg, epctl_reg);
2099	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2100	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2101	ctrl |= DXEPCTL_USBACTEP;
2102	dwc2_writel(hsotg, ctrl, epctl_reg);
2103}
2104
2105/**
2106 * dwc2_hsotg_complete_request - complete a request given to us
2107 * @hsotg: The device state.
2108 * @hs_ep: The endpoint the request was on.
2109 * @hs_req: The request to complete.
2110 * @result: The result code (0 => Ok, otherwise errno)
2111 *
2112 * The given request has finished, so call the necessary completion
2113 * if it has one and then look to see if we can start a new request
2114 * on the endpoint.
2115 *
2116 * Note, expects the ep to already be locked as appropriate.
2117 */
2118static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2119					struct dwc2_hsotg_ep *hs_ep,
2120				       struct dwc2_hsotg_req *hs_req,
2121				       int result)
2122{
 
2123	if (!hs_req) {
2124		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2125		return;
2126	}
2127
2128	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2129		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2130
2131	/*
2132	 * only replace the status if we've not already set an error
2133	 * from a previous transaction
2134	 */
2135
2136	if (hs_req->req.status == -EINPROGRESS)
2137		hs_req->req.status = result;
2138
2139	if (using_dma(hsotg))
2140		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2141
2142	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2143
2144	hs_ep->req = NULL;
2145	list_del_init(&hs_req->queue);
2146
2147	/*
2148	 * call the complete request with the locks off, just in case the
2149	 * request tries to queue more work for this endpoint.
2150	 */
2151
2152	if (hs_req->req.complete) {
2153		spin_unlock(&hsotg->lock);
2154		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2155		spin_lock(&hsotg->lock);
2156	}
2157
2158	/* In DDMA don't need to proceed to starting of next ISOC request */
2159	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2160		return;
2161
2162	/*
2163	 * Look to see if there is anything else to do. Note, the completion
2164	 * of the previous request may have caused a new request to be started
2165	 * so be careful when doing this.
2166	 */
2167
2168	if (!hs_ep->req && result >= 0)
2169		dwc2_gadget_start_next_request(hs_ep);
 
2170}
2171
2172/*
2173 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2174 * @hs_ep: The endpoint the request was on.
2175 *
2176 * Get first request from the ep queue, determine descriptor on which complete
2177 * happened. SW discovers which descriptor currently in use by HW, adjusts
2178 * dma_address and calculates index of completed descriptor based on the value
2179 * of DEPDMA register. Update actual length of request, giveback to gadget.
 
2180 */
2181static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2182{
2183	struct dwc2_hsotg *hsotg = hs_ep->parent;
2184	struct dwc2_hsotg_req *hs_req;
2185	struct usb_request *ureq;
 
 
 
 
2186	u32 desc_sts;
2187	u32 mask;
2188
2189	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2190
2191	/* Process only descriptors with buffer status set to DMA done */
2192	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2193		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2194
2195		hs_req = get_ep_head(hs_ep);
2196		if (!hs_req) {
2197			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2198			return;
2199		}
2200		ureq = &hs_req->req;
2201
2202		/* Check completion status */
2203		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2204			DEV_DMA_STS_SUCC) {
2205			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2206				DEV_DMA_ISOC_RX_NBYTES_MASK;
2207			ureq->actual = ureq->length - ((desc_sts & mask) >>
2208				DEV_DMA_ISOC_NBYTES_SHIFT);
2209
2210			/* Adjust actual len for ISOC Out if len is
2211			 * not align of 4
2212			 */
2213			if (!hs_ep->dir_in && ureq->length & 0x3)
2214				ureq->actual += 4 - (ureq->length & 0x3);
2215
2216			/* Set actual frame number for completed transfers */
2217			ureq->frame_number =
2218				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2219				DEV_DMA_ISOC_FRNUM_SHIFT;
2220		}
2221
2222		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223
2224		hs_ep->compl_desc++;
2225		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2226			hs_ep->compl_desc = 0;
2227		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2228	}
2229}
2230
2231/*
2232 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2233 * @hs_ep: The isochronous endpoint.
2234 *
2235 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2236 * interrupt. Reset target frame and next_desc to allow to start
2237 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2238 * interrupt for OUT direction.
2239 */
2240static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2241{
2242	struct dwc2_hsotg *hsotg = hs_ep->parent;
 
 
 
 
 
 
 
 
2243
2244	if (!hs_ep->dir_in)
2245		dwc2_flush_rx_fifo(hsotg);
2246	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2247
2248	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2249	hs_ep->next_desc = 0;
2250	hs_ep->compl_desc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251}
2252
2253/**
2254 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2255 * @hsotg: The device state.
2256 * @ep_idx: The endpoint index for the data
2257 * @size: The size of data in the fifo, in bytes
2258 *
2259 * The FIFO status shows there is data to read from the FIFO for a given
2260 * endpoint, so sort out whether we need to read the data into a request
2261 * that has been made for that endpoint.
2262 */
2263static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2264{
2265	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2266	struct dwc2_hsotg_req *hs_req = hs_ep->req;
 
2267	int to_read;
2268	int max_req;
2269	int read_ptr;
2270
 
2271	if (!hs_req) {
2272		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2273		int ptr;
2274
2275		dev_dbg(hsotg->dev,
2276			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2277			 __func__, size, ep_idx, epctl);
2278
2279		/* dump the data from the FIFO, we've nothing we can do */
2280		for (ptr = 0; ptr < size; ptr += 4)
2281			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2282
2283		return;
2284	}
2285
2286	to_read = size;
2287	read_ptr = hs_req->req.actual;
2288	max_req = hs_req->req.length - read_ptr;
2289
2290	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2291		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2292
2293	if (to_read > max_req) {
2294		/*
2295		 * more data appeared than we where willing
2296		 * to deal with in this request.
2297		 */
2298
2299		/* currently we don't deal this */
2300		WARN_ON_ONCE(1);
2301	}
2302
2303	hs_ep->total_data += to_read;
2304	hs_req->req.actual += to_read;
2305	to_read = DIV_ROUND_UP(to_read, 4);
2306
2307	/*
2308	 * note, we might over-write the buffer end by 3 bytes depending on
2309	 * alignment of the data.
2310	 */
2311	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2312		       hs_req->req.buf + read_ptr, to_read);
2313}
2314
2315/**
2316 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2317 * @hsotg: The device instance
2318 * @dir_in: If IN zlp
2319 *
2320 * Generate a zero-length IN packet request for terminating a SETUP
2321 * transaction.
2322 *
2323 * Note, since we don't write any data to the TxFIFO, then it is
2324 * currently believed that we do not need to wait for any space in
2325 * the TxFIFO.
2326 */
2327static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2328{
2329	/* eps_out[0] is used in both directions */
2330	hsotg->eps_out[0]->dir_in = dir_in;
2331	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2332
2333	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2334}
2335
 
 
 
 
 
 
 
 
 
 
 
 
 
2336/*
2337 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2338 * @hs_ep - The endpoint on which transfer went
2339 *
2340 * Iterate over endpoints descriptor chain and get info on bytes remained
2341 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2342 */
2343static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2344{
2345	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2346	struct dwc2_hsotg *hsotg = hs_ep->parent;
2347	unsigned int bytes_rem = 0;
2348	unsigned int bytes_rem_correction = 0;
2349	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2350	int i;
2351	u32 status;
2352	u32 mps = hs_ep->ep.maxpacket;
2353	int dir_in = hs_ep->dir_in;
2354
2355	if (!desc)
2356		return -EINVAL;
2357
2358	/* Interrupt OUT EP with mps not multiple of 4 */
2359	if (hs_ep->index)
2360		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2361			bytes_rem_correction = 4 - (mps % 4);
2362
2363	for (i = 0; i < hs_ep->desc_count; ++i) {
2364		status = desc->status;
2365		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2366		bytes_rem -= bytes_rem_correction;
2367
2368		if (status & DEV_DMA_STS_MASK)
2369			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2370				i, status & DEV_DMA_STS_MASK);
2371
2372		if (status & DEV_DMA_L)
2373			break;
2374
2375		desc++;
2376	}
2377
2378	return bytes_rem;
2379}
2380
2381/**
2382 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2383 * @hsotg: The device instance
2384 * @epnum: The endpoint received from
2385 *
2386 * The RXFIFO has delivered an OutDone event, which means that the data
2387 * transfer for an OUT endpoint has been completed, either by a short
2388 * packet or by the finish of a transfer.
2389 */
2390static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2391{
2392	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2393	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2394	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2395	struct usb_request *req = &hs_req->req;
2396	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2397	int result = 0;
2398
2399	if (!hs_req) {
2400		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2401		return;
2402	}
2403
2404	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2405		dev_dbg(hsotg->dev, "zlp packet received\n");
2406		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2407		dwc2_hsotg_enqueue_setup(hsotg);
2408		return;
2409	}
2410
2411	if (using_desc_dma(hsotg))
2412		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2413
2414	if (using_dma(hsotg)) {
2415		unsigned int size_done;
2416
2417		/*
2418		 * Calculate the size of the transfer by checking how much
2419		 * is left in the endpoint size register and then working it
2420		 * out from the amount we loaded for the transfer.
2421		 *
2422		 * We need to do this as DMA pointers are always 32bit aligned
2423		 * so may overshoot/undershoot the transfer.
2424		 */
2425
2426		size_done = hs_ep->size_loaded - size_left;
2427		size_done += hs_ep->last_load;
2428
2429		req->actual = size_done;
2430	}
2431
2432	/* if there is more request to do, schedule new transfer */
2433	if (req->actual < req->length && size_left == 0) {
2434		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2435		return;
2436	}
2437
2438	if (req->actual < req->length && req->short_not_ok) {
2439		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2440			__func__, req->actual, req->length);
2441
2442		/*
2443		 * todo - what should we return here? there's no one else
2444		 * even bothering to check the status.
2445		 */
2446	}
2447
2448	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2449	if (!using_desc_dma(hsotg) && epnum == 0 &&
2450	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2451		/* Move to STATUS IN */
2452		if (!hsotg->delayed_status)
2453			dwc2_hsotg_ep0_zlp(hsotg, true);
2454	}
2455
2456	/* Set actual frame number for completed transfers */
2457	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2458		req->frame_number = hs_ep->target_frame;
2459		dwc2_gadget_incr_frame_num(hs_ep);
 
 
 
 
 
2460	}
2461
2462	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2463}
2464
2465/**
2466 * dwc2_hsotg_handle_rx - RX FIFO has data
2467 * @hsotg: The device instance
2468 *
2469 * The IRQ handler has detected that the RX FIFO has some data in it
2470 * that requires processing, so find out what is in there and do the
2471 * appropriate read.
2472 *
2473 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2474 * chunks, so if you have x packets received on an endpoint you'll get x
2475 * FIFO events delivered, each with a packet's worth of data in it.
2476 *
2477 * When using DMA, we should not be processing events from the RXFIFO
2478 * as the actual data should be sent to the memory directly and we turn
2479 * on the completion interrupts to get notifications of transfer completion.
2480 */
2481static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2482{
2483	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2484	u32 epnum, status, size;
2485
2486	WARN_ON(using_dma(hsotg));
2487
2488	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2489	status = grxstsr & GRXSTS_PKTSTS_MASK;
2490
2491	size = grxstsr & GRXSTS_BYTECNT_MASK;
2492	size >>= GRXSTS_BYTECNT_SHIFT;
2493
2494	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2495		__func__, grxstsr, size, epnum);
2496
2497	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2498	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2499		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2500		break;
2501
2502	case GRXSTS_PKTSTS_OUTDONE:
2503		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2504			dwc2_hsotg_read_frameno(hsotg));
2505
2506		if (!using_dma(hsotg))
2507			dwc2_hsotg_handle_outdone(hsotg, epnum);
2508		break;
2509
2510	case GRXSTS_PKTSTS_SETUPDONE:
2511		dev_dbg(hsotg->dev,
2512			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2513			dwc2_hsotg_read_frameno(hsotg),
2514			dwc2_readl(hsotg, DOEPCTL(0)));
2515		/*
2516		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2517		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2518		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2519		 */
2520		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2521			dwc2_hsotg_handle_outdone(hsotg, epnum);
2522		break;
2523
2524	case GRXSTS_PKTSTS_OUTRX:
2525		dwc2_hsotg_rx_data(hsotg, epnum, size);
2526		break;
2527
2528	case GRXSTS_PKTSTS_SETUPRX:
2529		dev_dbg(hsotg->dev,
2530			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2531			dwc2_hsotg_read_frameno(hsotg),
2532			dwc2_readl(hsotg, DOEPCTL(0)));
2533
2534		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2535
2536		dwc2_hsotg_rx_data(hsotg, epnum, size);
2537		break;
2538
2539	default:
2540		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2541			 __func__, grxstsr);
2542
2543		dwc2_hsotg_dump(hsotg);
2544		break;
2545	}
2546}
2547
2548/**
2549 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2550 * @mps: The maximum packet size in bytes.
2551 */
2552static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2553{
2554	switch (mps) {
2555	case 64:
2556		return D0EPCTL_MPS_64;
2557	case 32:
2558		return D0EPCTL_MPS_32;
2559	case 16:
2560		return D0EPCTL_MPS_16;
2561	case 8:
2562		return D0EPCTL_MPS_8;
2563	}
2564
2565	/* bad max packet size, warn and return invalid result */
2566	WARN_ON(1);
2567	return (u32)-1;
2568}
2569
2570/**
2571 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2572 * @hsotg: The driver state.
2573 * @ep: The index number of the endpoint
2574 * @mps: The maximum packet size in bytes
2575 * @mc: The multicount value
2576 * @dir_in: True if direction is in.
2577 *
2578 * Configure the maximum packet size for the given endpoint, updating
2579 * the hardware control registers to reflect this.
2580 */
2581static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2582					unsigned int ep, unsigned int mps,
2583					unsigned int mc, unsigned int dir_in)
2584{
2585	struct dwc2_hsotg_ep *hs_ep;
 
2586	u32 reg;
2587
2588	hs_ep = index_to_ep(hsotg, ep, dir_in);
2589	if (!hs_ep)
2590		return;
2591
2592	if (ep == 0) {
2593		u32 mps_bytes = mps;
2594
2595		/* EP0 is a special case */
2596		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2597		if (mps > 3)
2598			goto bad_mps;
2599		hs_ep->ep.maxpacket = mps_bytes;
2600		hs_ep->mc = 1;
2601	} else {
2602		if (mps > 1024)
2603			goto bad_mps;
2604		hs_ep->mc = mc;
2605		if (mc > 3)
2606			goto bad_mps;
2607		hs_ep->ep.maxpacket = mps;
2608	}
2609
2610	if (dir_in) {
2611		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2612		reg &= ~DXEPCTL_MPS_MASK;
2613		reg |= mps;
2614		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2615	} else {
2616		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2617		reg &= ~DXEPCTL_MPS_MASK;
2618		reg |= mps;
2619		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2620	}
2621
2622	return;
2623
2624bad_mps:
2625	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2626}
2627
2628/**
2629 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2630 * @hsotg: The driver state
2631 * @idx: The index for the endpoint (0..15)
2632 */
2633static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2634{
2635	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2636		    GRSTCTL);
 
 
 
2637
2638	/* wait until the fifo is flushed */
2639	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2640		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2641			 __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642}
2643
2644/**
2645 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2646 * @hsotg: The driver state
2647 * @hs_ep: The driver endpoint to check.
2648 *
2649 * Check to see if there is a request that has data to send, and if so
2650 * make an attempt to write data into the FIFO.
2651 */
2652static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2653			    struct dwc2_hsotg_ep *hs_ep)
2654{
2655	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2656
2657	if (!hs_ep->dir_in || !hs_req) {
2658		/**
2659		 * if request is not enqueued, we disable interrupts
2660		 * for endpoints, excepting ep0
2661		 */
2662		if (hs_ep->index != 0)
2663			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2664					      hs_ep->dir_in, 0);
2665		return 0;
2666	}
2667
2668	if (hs_req->req.actual < hs_req->req.length) {
2669		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2670			hs_ep->index);
2671		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2672	}
2673
2674	return 0;
2675}
2676
2677/**
2678 * dwc2_hsotg_complete_in - complete IN transfer
2679 * @hsotg: The device state.
2680 * @hs_ep: The endpoint that has just completed.
2681 *
2682 * An IN transfer has been completed, update the transfer's state and then
2683 * call the relevant completion routines.
2684 */
2685static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2686				   struct dwc2_hsotg_ep *hs_ep)
2687{
2688	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2689	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2690	int size_left, size_done;
2691
2692	if (!hs_req) {
2693		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2694		return;
2695	}
2696
2697	/* Finish ZLP handling for IN EP0 transactions */
2698	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2699		dev_dbg(hsotg->dev, "zlp packet sent\n");
2700
2701		/*
2702		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2703		 * changed to IN. Change back to complete OUT transfer request
2704		 */
2705		hs_ep->dir_in = 0;
2706
2707		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2708		if (hsotg->test_mode) {
2709			int ret;
2710
2711			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2712			if (ret < 0) {
2713				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2714					hsotg->test_mode);
2715				dwc2_hsotg_stall_ep0(hsotg);
2716				return;
2717			}
2718		}
2719		dwc2_hsotg_enqueue_setup(hsotg);
2720		return;
2721	}
2722
2723	/*
2724	 * Calculate the size of the transfer by checking how much is left
2725	 * in the endpoint size register and then working it out from
2726	 * the amount we loaded for the transfer.
2727	 *
2728	 * We do this even for DMA, as the transfer may have incremented
2729	 * past the end of the buffer (DMA transfers are always 32bit
2730	 * aligned).
2731	 */
2732	if (using_desc_dma(hsotg)) {
2733		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2734		if (size_left < 0)
2735			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2736				size_left);
2737	} else {
2738		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2739	}
2740
2741	size_done = hs_ep->size_loaded - size_left;
2742	size_done += hs_ep->last_load;
2743
2744	if (hs_req->req.actual != size_done)
2745		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2746			__func__, hs_req->req.actual, size_done);
2747
2748	hs_req->req.actual = size_done;
2749	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2750		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2751
2752	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2753		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2754		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2755		return;
2756	}
2757
2758	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2759	if (hs_ep->send_zlp) {
 
2760		hs_ep->send_zlp = 0;
2761		if (!using_desc_dma(hsotg)) {
2762			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2763			/* transfer will be completed on next complete interrupt */
2764			return;
2765		}
2766	}
2767
2768	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2769		/* Move to STATUS OUT */
2770		dwc2_hsotg_ep0_zlp(hsotg, false);
2771		return;
2772	}
2773
2774	/* Set actual frame number for completed transfers */
2775	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2776		hs_req->req.frame_number = hs_ep->target_frame;
2777		dwc2_gadget_incr_frame_num(hs_ep);
2778	}
2779
2780	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2781}
2782
2783/**
2784 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2785 * @hsotg: The device state.
2786 * @idx: Index of ep.
2787 * @dir_in: Endpoint direction 1-in 0-out.
2788 *
2789 * Reads for endpoint with given index and direction, by masking
2790 * epint_reg with coresponding mask.
2791 */
2792static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2793					  unsigned int idx, int dir_in)
2794{
2795	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2796	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2797	u32 ints;
2798	u32 mask;
2799	u32 diepempmsk;
2800
2801	mask = dwc2_readl(hsotg, epmsk_reg);
2802	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2803	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2804	mask |= DXEPINT_SETUP_RCVD;
2805
2806	ints = dwc2_readl(hsotg, epint_reg);
2807	ints &= mask;
2808	return ints;
2809}
2810
2811/**
2812 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2813 * @hs_ep: The endpoint on which interrupt is asserted.
2814 *
2815 * This interrupt indicates that the endpoint has been disabled per the
2816 * application's request.
2817 *
2818 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2819 * in case of ISOC completes current request.
2820 *
2821 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2822 * request starts it.
2823 */
2824static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2825{
2826	struct dwc2_hsotg *hsotg = hs_ep->parent;
2827	struct dwc2_hsotg_req *hs_req;
2828	unsigned char idx = hs_ep->index;
2829	int dir_in = hs_ep->dir_in;
2830	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2831	int dctl = dwc2_readl(hsotg, DCTL);
2832
2833	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2834
2835	if (dir_in) {
2836		int epctl = dwc2_readl(hsotg, epctl_reg);
2837
2838		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2839
 
 
 
 
 
2840		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2841			int dctl = dwc2_readl(hsotg, DCTL);
2842
2843			dctl |= DCTL_CGNPINNAK;
2844			dwc2_writel(hsotg, dctl, DCTL);
2845		}
2846	} else {
 
2847
2848		if (dctl & DCTL_GOUTNAKSTS) {
2849			dctl |= DCTL_CGOUTNAK;
2850			dwc2_writel(hsotg, dctl, DCTL);
2851		}
2852	}
2853
2854	if (!hs_ep->isochronous)
2855		return;
2856
2857	if (list_empty(&hs_ep->queue)) {
2858		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2859			__func__, hs_ep);
2860		return;
2861	}
2862
2863	do {
2864		hs_req = get_ep_head(hs_ep);
2865		if (hs_req) {
2866			hs_req->req.frame_number = hs_ep->target_frame;
2867			hs_req->req.actual = 0;
2868			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2869						    -ENODATA);
2870		}
2871		dwc2_gadget_incr_frame_num(hs_ep);
2872		/* Update current frame number value. */
2873		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2874	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
 
 
2875}
2876
2877/**
2878 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2879 * @ep: The endpoint on which interrupt is asserted.
2880 *
2881 * This is starting point for ISOC-OUT transfer, synchronization done with
2882 * first out token received from host while corresponding EP is disabled.
2883 *
2884 * Device does not know initial frame in which out token will come. For this
2885 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2886 * getting this interrupt SW starts calculation for next transfer frame.
2887 */
2888static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2889{
2890	struct dwc2_hsotg *hsotg = ep->parent;
2891	struct dwc2_hsotg_req *hs_req;
2892	int dir_in = ep->dir_in;
 
 
2893
2894	if (dir_in || !ep->isochronous)
2895		return;
2896
 
 
 
 
 
 
 
 
2897	if (using_desc_dma(hsotg)) {
2898		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2899			/* Start first ISO Out */
2900			ep->target_frame = hsotg->frame_number;
2901			dwc2_gadget_start_isoc_ddma(ep);
2902		}
2903		return;
2904	}
2905
2906	if (ep->target_frame == TARGET_FRAME_INITIAL) {
 
 
2907		u32 ctrl;
2908
2909		ep->target_frame = hsotg->frame_number;
2910		if (ep->interval > 1) {
2911			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2912			if (ep->target_frame & 0x1)
2913				ctrl |= DXEPCTL_SETODDFR;
2914			else
2915				ctrl |= DXEPCTL_SETEVENFR;
2916
2917			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2918		}
2919	}
2920
2921	while (dwc2_gadget_target_frame_elapsed(ep)) {
2922		hs_req = get_ep_head(ep);
2923		if (hs_req) {
2924			hs_req->req.frame_number = ep->target_frame;
2925			hs_req->req.actual = 0;
2926			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2927		}
2928
2929		dwc2_gadget_incr_frame_num(ep);
2930		/* Update current frame number value. */
2931		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2932	}
2933
2934	if (!ep->req)
2935		dwc2_gadget_start_next_request(ep);
2936
 
2937}
2938
2939static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2940				   struct dwc2_hsotg_ep *hs_ep);
2941
2942/**
2943 * dwc2_gadget_handle_nak - handle NAK interrupt
2944 * @hs_ep: The endpoint on which interrupt is asserted.
2945 *
2946 * This is starting point for ISOC-IN transfer, synchronization done with
2947 * first IN token received from host while corresponding EP is disabled.
2948 *
2949 * Device does not know when first one token will arrive from host. On first
2950 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2951 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2952 * sent in response to that as there was no data in FIFO. SW is basing on this
2953 * interrupt to obtain frame in which token has come and then based on the
2954 * interval calculates next frame for transfer.
2955 */
2956static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2957{
2958	struct dwc2_hsotg *hsotg = hs_ep->parent;
2959	struct dwc2_hsotg_req *hs_req;
2960	int dir_in = hs_ep->dir_in;
2961	u32 ctrl;
2962
2963	if (!dir_in || !hs_ep->isochronous)
2964		return;
2965
2966	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
 
2967
2968		if (using_desc_dma(hsotg)) {
2969			hs_ep->target_frame = hsotg->frame_number;
2970			dwc2_gadget_incr_frame_num(hs_ep);
2971
2972			/* In service interval mode target_frame must
2973			 * be set to last (u)frame of the service interval.
2974			 */
2975			if (hsotg->params.service_interval) {
2976				/* Set target_frame to the first (u)frame of
2977				 * the service interval
2978				 */
2979				hs_ep->target_frame &= ~hs_ep->interval + 1;
2980
2981				/* Set target_frame to the last (u)frame of
2982				 * the service interval
2983				 */
2984				dwc2_gadget_incr_frame_num(hs_ep);
2985				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2986			}
2987
2988			dwc2_gadget_start_isoc_ddma(hs_ep);
2989			return;
2990		}
2991
2992		hs_ep->target_frame = hsotg->frame_number;
2993		if (hs_ep->interval > 1) {
2994			u32 ctrl = dwc2_readl(hsotg,
2995					      DIEPCTL(hs_ep->index));
2996			if (hs_ep->target_frame & 0x1)
2997				ctrl |= DXEPCTL_SETODDFR;
2998			else
2999				ctrl |= DXEPCTL_SETEVENFR;
3000
3001			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
3002		}
3003	}
3004
3005	if (using_desc_dma(hsotg))
3006		return;
3007
3008	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3009	if (ctrl & DXEPCTL_EPENA)
3010		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3011	else
3012		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3013
3014	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3015		hs_req = get_ep_head(hs_ep);
3016		if (hs_req) {
3017			hs_req->req.frame_number = hs_ep->target_frame;
3018			hs_req->req.actual = 0;
3019			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3020		}
3021
3022		dwc2_gadget_incr_frame_num(hs_ep);
3023		/* Update current frame number value. */
3024		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3025	}
3026
3027	if (!hs_ep->req)
3028		dwc2_gadget_start_next_request(hs_ep);
3029}
3030
3031/**
3032 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3033 * @hsotg: The driver state
3034 * @idx: The index for the endpoint (0..15)
3035 * @dir_in: Set if this is an IN endpoint
3036 *
3037 * Process and clear any interrupt pending for an individual endpoint
3038 */
3039static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3040			     int dir_in)
3041{
3042	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3043	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3044	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3045	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3046	u32 ints;
 
3047
3048	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
 
3049
3050	/* Clear endpoint interrupts */
3051	dwc2_writel(hsotg, ints, epint_reg);
3052
3053	if (!hs_ep) {
3054		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3055			__func__, idx, dir_in ? "in" : "out");
3056		return;
3057	}
3058
3059	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3060		__func__, idx, dir_in ? "in" : "out", ints);
3061
3062	/* Don't process XferCompl interrupt if it is a setup packet */
3063	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3064		ints &= ~DXEPINT_XFERCOMPL;
3065
3066	/*
3067	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3068	 * stage and xfercomplete was generated without SETUP phase done
3069	 * interrupt. SW should parse received setup packet only after host's
3070	 * exit from setup phase of control transfer.
3071	 */
3072	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3073	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3074		ints &= ~DXEPINT_XFERCOMPL;
3075
3076	if (ints & DXEPINT_XFERCOMPL) {
3077		dev_dbg(hsotg->dev,
3078			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3079			__func__, dwc2_readl(hsotg, epctl_reg),
3080			dwc2_readl(hsotg, epsiz_reg));
3081
3082		/* In DDMA handle isochronous requests separately */
3083		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3084			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
 
 
3085		} else if (dir_in) {
3086			/*
3087			 * We get OutDone from the FIFO, so we only
3088			 * need to look at completing IN requests here
3089			 * if operating slave mode
3090			 */
3091			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3092				dwc2_hsotg_complete_in(hsotg, hs_ep);
 
 
 
 
3093
3094			if (idx == 0 && !hs_ep->req)
3095				dwc2_hsotg_enqueue_setup(hsotg);
3096		} else if (using_dma(hsotg)) {
3097			/*
3098			 * We're using DMA, we need to fire an OutDone here
3099			 * as we ignore the RXFIFO.
3100			 */
3101			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3102				dwc2_hsotg_handle_outdone(hsotg, idx);
 
 
3103		}
3104	}
3105
3106	if (ints & DXEPINT_EPDISBLD)
3107		dwc2_gadget_handle_ep_disabled(hs_ep);
3108
3109	if (ints & DXEPINT_OUTTKNEPDIS)
3110		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3111
3112	if (ints & DXEPINT_NAKINTRPT)
3113		dwc2_gadget_handle_nak(hs_ep);
3114
3115	if (ints & DXEPINT_AHBERR)
3116		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3117
3118	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3119		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3120
3121		if (using_dma(hsotg) && idx == 0) {
3122			/*
3123			 * this is the notification we've received a
3124			 * setup packet. In non-DMA mode we'd get this
3125			 * from the RXFIFO, instead we need to process
3126			 * the setup here.
3127			 */
3128
3129			if (dir_in)
3130				WARN_ON_ONCE(1);
3131			else
3132				dwc2_hsotg_handle_outdone(hsotg, 0);
3133		}
3134	}
3135
3136	if (ints & DXEPINT_STSPHSERCVD) {
3137		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3138
3139		/* Safety check EP0 state when STSPHSERCVD asserted */
3140		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3141			/* Move to STATUS IN for DDMA */
3142			if (using_desc_dma(hsotg)) {
3143				if (!hsotg->delayed_status)
3144					dwc2_hsotg_ep0_zlp(hsotg, true);
3145				else
3146				/* In case of 3 stage Control Write with delayed
3147				 * status, when Status IN transfer started
3148				 * before STSPHSERCVD asserted, NAKSTS bit not
3149				 * cleared by CNAK in dwc2_hsotg_start_req()
3150				 * function. Clear now NAKSTS to allow complete
3151				 * transfer.
3152				 */
3153					dwc2_set_bit(hsotg, DIEPCTL(0),
3154						     DXEPCTL_CNAK);
3155			}
3156		}
3157
3158	}
3159
3160	if (ints & DXEPINT_BACK2BACKSETUP)
3161		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3162
3163	if (ints & DXEPINT_BNAINTR) {
3164		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
 
 
 
 
 
 
 
3165		if (hs_ep->isochronous)
3166			dwc2_gadget_handle_isoc_bna(hs_ep);
3167	}
3168
3169	if (dir_in && !hs_ep->isochronous) {
3170		/* not sure if this is important, but we'll clear it anyway */
3171		if (ints & DXEPINT_INTKNTXFEMP) {
3172			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3173				__func__, idx);
3174		}
3175
3176		/* this probably means something bad is happening */
3177		if (ints & DXEPINT_INTKNEPMIS) {
3178			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3179				 __func__, idx);
3180		}
3181
3182		/* FIFO has space or is empty (see GAHBCFG) */
3183		if (hsotg->dedicated_fifos &&
3184		    ints & DXEPINT_TXFEMP) {
3185			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3186				__func__, idx);
3187			if (!using_dma(hsotg))
3188				dwc2_hsotg_trytx(hsotg, hs_ep);
3189		}
3190	}
3191}
3192
3193/**
3194 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3195 * @hsotg: The device state.
3196 *
3197 * Handle updating the device settings after the enumeration phase has
3198 * been completed.
3199 */
3200static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3201{
3202	u32 dsts = dwc2_readl(hsotg, DSTS);
3203	int ep0_mps = 0, ep_mps = 8;
3204
3205	/*
3206	 * This should signal the finish of the enumeration phase
3207	 * of the USB handshaking, so we should now know what rate
3208	 * we connected at.
3209	 */
3210
3211	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3212
3213	/*
3214	 * note, since we're limited by the size of transfer on EP0, and
3215	 * it seems IN transfers must be a even number of packets we do
3216	 * not advertise a 64byte MPS on EP0.
3217	 */
3218
3219	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3220	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3221	case DSTS_ENUMSPD_FS:
3222	case DSTS_ENUMSPD_FS48:
3223		hsotg->gadget.speed = USB_SPEED_FULL;
3224		ep0_mps = EP0_MPS_LIMIT;
3225		ep_mps = 1023;
3226		break;
3227
3228	case DSTS_ENUMSPD_HS:
3229		hsotg->gadget.speed = USB_SPEED_HIGH;
3230		ep0_mps = EP0_MPS_LIMIT;
3231		ep_mps = 1024;
3232		break;
3233
3234	case DSTS_ENUMSPD_LS:
3235		hsotg->gadget.speed = USB_SPEED_LOW;
3236		ep0_mps = 8;
3237		ep_mps = 8;
3238		/*
3239		 * note, we don't actually support LS in this driver at the
3240		 * moment, and the documentation seems to imply that it isn't
3241		 * supported by the PHYs on some of the devices.
3242		 */
3243		break;
3244	}
3245	dev_info(hsotg->dev, "new device is %s\n",
3246		 usb_speed_string(hsotg->gadget.speed));
3247
3248	/*
3249	 * we should now know the maximum packet size for an
3250	 * endpoint, so set the endpoints to a default value.
3251	 */
3252
3253	if (ep0_mps) {
3254		int i;
3255		/* Initialize ep0 for both in and out directions */
3256		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3257		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3258		for (i = 1; i < hsotg->num_of_eps; i++) {
3259			if (hsotg->eps_in[i])
3260				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3261							    0, 1);
3262			if (hsotg->eps_out[i])
3263				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3264							    0, 0);
3265		}
3266	}
3267
3268	/* ensure after enumeration our EP0 is active */
3269
3270	dwc2_hsotg_enqueue_setup(hsotg);
3271
3272	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3273		dwc2_readl(hsotg, DIEPCTL0),
3274		dwc2_readl(hsotg, DOEPCTL0));
3275}
3276
3277/**
3278 * kill_all_requests - remove all requests from the endpoint's queue
3279 * @hsotg: The device state.
3280 * @ep: The endpoint the requests may be on.
3281 * @result: The result code to use.
3282 *
3283 * Go through the requests on the given endpoint and mark them
3284 * completed with the given result code.
3285 */
3286static void kill_all_requests(struct dwc2_hsotg *hsotg,
3287			      struct dwc2_hsotg_ep *ep,
3288			      int result)
3289{
3290	unsigned int size;
 
3291
3292	ep->req = NULL;
3293
3294	while (!list_empty(&ep->queue)) {
3295		struct dwc2_hsotg_req *req = get_ep_head(ep);
3296
3297		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3298	}
3299
3300	if (!hsotg->dedicated_fifos)
3301		return;
3302	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3303	if (size < ep->fifo_size)
3304		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3305}
3306
3307/**
3308 * dwc2_hsotg_disconnect - disconnect service
3309 * @hsotg: The device state.
3310 *
3311 * The device has been disconnected. Remove all current
3312 * transactions and signal the gadget driver that this
3313 * has happened.
3314 */
3315void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3316{
3317	unsigned int ep;
3318
3319	if (!hsotg->connected)
3320		return;
3321
3322	hsotg->connected = 0;
3323	hsotg->test_mode = 0;
3324
3325	/* all endpoints should be shutdown */
3326	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3327		if (hsotg->eps_in[ep])
3328			kill_all_requests(hsotg, hsotg->eps_in[ep],
3329					  -ESHUTDOWN);
3330		if (hsotg->eps_out[ep])
3331			kill_all_requests(hsotg, hsotg->eps_out[ep],
3332					  -ESHUTDOWN);
3333	}
3334
3335	call_gadget(hsotg, disconnect);
3336	hsotg->lx_state = DWC2_L3;
3337
3338	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3339}
3340
3341/**
3342 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3343 * @hsotg: The device state:
3344 * @periodic: True if this is a periodic FIFO interrupt
3345 */
3346static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3347{
3348	struct dwc2_hsotg_ep *ep;
3349	int epno, ret;
3350
3351	/* look through for any more data to transmit */
3352	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3353		ep = index_to_ep(hsotg, epno, 1);
3354
3355		if (!ep)
3356			continue;
3357
3358		if (!ep->dir_in)
3359			continue;
3360
3361		if ((periodic && !ep->periodic) ||
3362		    (!periodic && ep->periodic))
3363			continue;
3364
3365		ret = dwc2_hsotg_trytx(hsotg, ep);
3366		if (ret < 0)
3367			break;
3368	}
3369}
3370
3371/* IRQ flags which will trigger a retry around the IRQ loop */
3372#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3373			GINTSTS_PTXFEMP |  \
3374			GINTSTS_RXFLVL)
3375
3376static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3377/**
3378 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3379 * @hsotg: The device state
3380 * @is_usb_reset: Usb resetting flag
3381 *
3382 * Issue a soft reset to the core, and await the core finishing it.
3383 */
3384void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3385				       bool is_usb_reset)
3386{
3387	u32 intmsk;
3388	u32 val;
3389	u32 usbcfg;
3390	u32 dcfg = 0;
3391	int ep;
3392
3393	/* Kill any ep0 requests as controller will be reinitialized */
3394	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3395
3396	if (!is_usb_reset) {
3397		if (dwc2_core_reset(hsotg, true))
3398			return;
3399	} else {
3400		/* all endpoints should be shutdown */
3401		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3402			if (hsotg->eps_in[ep])
3403				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3404			if (hsotg->eps_out[ep])
3405				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3406		}
3407	}
3408
3409	/*
3410	 * we must now enable ep0 ready for host detection and then
3411	 * set configuration.
3412	 */
3413
3414	/* keep other bits untouched (so e.g. forced modes are not lost) */
3415	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3416	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3417	usbcfg |= GUSBCFG_TOUTCAL(7);
3418
3419	/* remove the HNP/SRP and set the PHY */
3420	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3421        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3422
3423	dwc2_phy_init(hsotg, true);
 
 
 
 
 
 
 
3424
3425	dwc2_hsotg_init_fifo(hsotg);
3426
3427	if (!is_usb_reset) {
3428		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3429		if (hsotg->params.eusb2_disc)
3430			dwc2_set_bit(hsotg, GOTGCTL, GOTGCTL_EUSB2_DISC_SUPP);
3431	}
3432
3433	dcfg |= DCFG_EPMISCNT(1);
3434
3435	switch (hsotg->params.speed) {
3436	case DWC2_SPEED_PARAM_LOW:
3437		dcfg |= DCFG_DEVSPD_LS;
3438		break;
3439	case DWC2_SPEED_PARAM_FULL:
3440		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3441			dcfg |= DCFG_DEVSPD_FS48;
3442		else
3443			dcfg |= DCFG_DEVSPD_FS;
3444		break;
3445	default:
3446		dcfg |= DCFG_DEVSPD_HS;
3447	}
3448
3449	if (hsotg->params.ipg_isoc_en)
3450		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3451
3452	dwc2_writel(hsotg, dcfg,  DCFG);
3453
3454	/* Clear any pending OTG interrupts */
3455	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3456
3457	/* Clear any pending interrupts */
3458	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3459	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3460		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3461		GINTSTS_USBRST | GINTSTS_RESETDET |
3462		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3463		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3464		GINTSTS_LPMTRANRCVD;
3465
3466	if (!using_desc_dma(hsotg))
3467		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3468
3469	if (!hsotg->params.external_id_pin_ctl)
3470		intmsk |= GINTSTS_CONIDSTSCHNG;
3471
3472	dwc2_writel(hsotg, intmsk, GINTMSK);
3473
3474	if (using_dma(hsotg)) {
3475		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3476			    hsotg->params.ahbcfg,
3477			    GAHBCFG);
3478
3479		/* Set DDMA mode support in the core if needed */
3480		if (using_desc_dma(hsotg))
3481			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3482
3483	} else {
3484		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3485						(GAHBCFG_NP_TXF_EMP_LVL |
3486						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3487			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3488	}
3489
3490	/*
3491	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3492	 * when we have no data to transfer. Otherwise we get being flooded by
3493	 * interrupts.
3494	 */
3495
3496	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3497		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3498		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3499		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3500		DIEPMSK);
3501
3502	/*
3503	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3504	 * DMA mode we may need this and StsPhseRcvd.
3505	 */
3506	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3507		DOEPMSK_STSPHSERCVDMSK) : 0) |
3508		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3509		DOEPMSK_SETUPMSK,
3510		DOEPMSK);
3511
3512	/* Enable BNA interrupt for DDMA */
3513	if (using_desc_dma(hsotg)) {
3514		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3515		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3516	}
3517
3518	/* Enable Service Interval mode if supported */
3519	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3520		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3521
3522	dwc2_writel(hsotg, 0, DAINTMSK);
3523
3524	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3525		dwc2_readl(hsotg, DIEPCTL0),
3526		dwc2_readl(hsotg, DOEPCTL0));
3527
3528	/* enable in and out endpoint interrupts */
3529	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3530
3531	/*
3532	 * Enable the RXFIFO when in slave mode, as this is how we collect
3533	 * the data. In DMA mode, we get events from the FIFO but also
3534	 * things we cannot process, so do not use it.
3535	 */
3536	if (!using_dma(hsotg))
3537		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3538
3539	/* Enable interrupts for EP0 in and out */
3540	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3541	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3542
3543	if (!is_usb_reset) {
3544		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3545		udelay(10);  /* see openiboot */
3546		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3547	}
3548
3549	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3550
3551	/*
3552	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3553	 * writing to the EPCTL register..
3554	 */
3555
3556	/* set to read 1 8byte packet */
3557	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3558	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3559
3560	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3561	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3562	       DXEPCTL_USBACTEP,
3563	       DOEPCTL0);
3564
3565	/* enable, but don't activate EP0in */
3566	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3567	       DXEPCTL_USBACTEP, DIEPCTL0);
 
 
 
 
 
 
3568
3569	/* clear global NAKs */
3570	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3571	if (!is_usb_reset)
3572		val |= DCTL_SFTDISCON;
3573	dwc2_set_bit(hsotg, DCTL, val);
3574
3575	/* configure the core to support LPM */
3576	dwc2_gadget_init_lpm(hsotg);
3577
3578	/* program GREFCLK register if needed */
3579	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3580		dwc2_gadget_program_ref_clk(hsotg);
3581
3582	/* must be at-least 3ms to allow bus to see disconnect */
3583	mdelay(3);
3584
3585	hsotg->lx_state = DWC2_L0;
3586
3587	dwc2_hsotg_enqueue_setup(hsotg);
3588
3589	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3590		dwc2_readl(hsotg, DIEPCTL0),
3591		dwc2_readl(hsotg, DOEPCTL0));
3592}
3593
3594void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3595{
3596	/* set the soft-disconnect bit */
3597	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3598}
3599
3600void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3601{
3602	/* remove the soft-disconnect and let's go */
3603	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3604		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3605}
3606
3607/**
3608 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3609 * @hsotg: The device state:
3610 *
3611 * This interrupt indicates one of the following conditions occurred while
3612 * transmitting an ISOC transaction.
3613 * - Corrupted IN Token for ISOC EP.
3614 * - Packet not complete in FIFO.
3615 *
3616 * The following actions will be taken:
3617 * - Determine the EP
3618 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3619 */
3620static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3621{
3622	struct dwc2_hsotg_ep *hs_ep;
3623	u32 epctrl;
3624	u32 daintmsk;
3625	u32 idx;
3626
3627	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3628
3629	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3630
3631	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3632		hs_ep = hsotg->eps_in[idx];
3633		/* Proceed only unmasked ISOC EPs */
3634		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3635			continue;
3636
3637		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3638		if ((epctrl & DXEPCTL_EPENA) &&
3639		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3640			epctrl |= DXEPCTL_SNAK;
3641			epctrl |= DXEPCTL_EPDIS;
3642			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3643		}
3644	}
3645
3646	/* Clear interrupt */
3647	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3648}
3649
3650/**
3651 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3652 * @hsotg: The device state:
3653 *
3654 * This interrupt indicates one of the following conditions occurred while
3655 * transmitting an ISOC transaction.
3656 * - Corrupted OUT Token for ISOC EP.
3657 * - Packet not complete in FIFO.
3658 *
3659 * The following actions will be taken:
3660 * - Determine the EP
3661 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3662 */
3663static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3664{
3665	u32 gintsts;
3666	u32 gintmsk;
3667	u32 daintmsk;
3668	u32 epctrl;
3669	struct dwc2_hsotg_ep *hs_ep;
3670	int idx;
3671
3672	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3673
3674	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3675	daintmsk >>= DAINT_OUTEP_SHIFT;
3676
3677	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3678		hs_ep = hsotg->eps_out[idx];
3679		/* Proceed only unmasked ISOC EPs */
3680		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3681			continue;
3682
3683		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3684		if ((epctrl & DXEPCTL_EPENA) &&
3685		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3686			/* Unmask GOUTNAKEFF interrupt */
3687			gintmsk = dwc2_readl(hsotg, GINTMSK);
3688			gintmsk |= GINTSTS_GOUTNAKEFF;
3689			dwc2_writel(hsotg, gintmsk, GINTMSK);
3690
3691			gintsts = dwc2_readl(hsotg, GINTSTS);
3692			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3693				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3694				break;
3695			}
3696		}
3697	}
3698
3699	/* Clear interrupt */
3700	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3701}
3702
3703/**
3704 * dwc2_hsotg_irq - handle device interrupt
3705 * @irq: The IRQ number triggered
3706 * @pw: The pw value when registered the handler.
3707 */
3708static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3709{
3710	struct dwc2_hsotg *hsotg = pw;
3711	int retry_count = 8;
3712	u32 gintsts;
3713	u32 gintmsk;
3714
3715	if (!dwc2_is_device_mode(hsotg))
3716		return IRQ_NONE;
3717
3718	spin_lock(&hsotg->lock);
3719irq_retry:
3720	gintsts = dwc2_readl(hsotg, GINTSTS);
3721	gintmsk = dwc2_readl(hsotg, GINTMSK);
3722
3723	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3724		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3725
3726	gintsts &= gintmsk;
3727
3728	if (gintsts & GINTSTS_RESETDET) {
3729		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3730
3731		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3732
3733		/* This event must be used only if controller is suspended */
3734		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3735			dwc2_exit_partial_power_down(hsotg, 0, true);
3736
3737		/* Exit gadget mode clock gating. */
3738		if (hsotg->params.power_down ==
3739		    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended &&
3740		    !hsotg->params.no_clock_gating)
3741			dwc2_gadget_exit_clock_gating(hsotg, 0);
3742
3743		hsotg->lx_state = DWC2_L0;
3744	}
3745
3746	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3747		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
 
3748		u32 connected = hsotg->connected;
3749
3750		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3751		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3752			dwc2_readl(hsotg, GNPTXSTS));
3753
3754		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3755
3756		/* Report disconnection if it is not already done. */
3757		dwc2_hsotg_disconnect(hsotg);
3758
3759		/* Reset device address to zero */
3760		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3761
3762		if (usb_status & GOTGCTL_BSESVLD && connected)
3763			dwc2_hsotg_core_init_disconnected(hsotg, true);
3764	}
3765
3766	if (gintsts & GINTSTS_ENUMDONE) {
3767		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3768
3769		dwc2_hsotg_irq_enumdone(hsotg);
3770	}
3771
3772	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3773		u32 daint = dwc2_readl(hsotg, DAINT);
3774		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3775		u32 daint_out, daint_in;
3776		int ep;
3777
3778		daint &= daintmsk;
3779		daint_out = daint >> DAINT_OUTEP_SHIFT;
3780		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3781
3782		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3783
3784		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3785						ep++, daint_out >>= 1) {
3786			if (daint_out & 1)
3787				dwc2_hsotg_epint(hsotg, ep, 0);
3788		}
3789
3790		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3791						ep++, daint_in >>= 1) {
3792			if (daint_in & 1)
3793				dwc2_hsotg_epint(hsotg, ep, 1);
3794		}
3795	}
3796
3797	/* check both FIFOs */
3798
3799	if (gintsts & GINTSTS_NPTXFEMP) {
3800		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3801
3802		/*
3803		 * Disable the interrupt to stop it happening again
3804		 * unless one of these endpoint routines decides that
3805		 * it needs re-enabling
3806		 */
3807
3808		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3809		dwc2_hsotg_irq_fifoempty(hsotg, false);
3810	}
3811
3812	if (gintsts & GINTSTS_PTXFEMP) {
3813		dev_dbg(hsotg->dev, "PTxFEmp\n");
3814
3815		/* See note in GINTSTS_NPTxFEmp */
3816
3817		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3818		dwc2_hsotg_irq_fifoempty(hsotg, true);
3819	}
3820
3821	if (gintsts & GINTSTS_RXFLVL) {
3822		/*
3823		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3824		 * we need to retry dwc2_hsotg_handle_rx if this is still
3825		 * set.
3826		 */
3827
3828		dwc2_hsotg_handle_rx(hsotg);
3829	}
3830
3831	if (gintsts & GINTSTS_ERLYSUSP) {
3832		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3833		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3834	}
3835
3836	/*
3837	 * these next two seem to crop-up occasionally causing the core
3838	 * to shutdown the USB transfer, so try clearing them and logging
3839	 * the occurrence.
3840	 */
3841
3842	if (gintsts & GINTSTS_GOUTNAKEFF) {
3843		u8 idx;
3844		u32 epctrl;
3845		u32 gintmsk;
3846		u32 daintmsk;
3847		struct dwc2_hsotg_ep *hs_ep;
3848
3849		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3850		daintmsk >>= DAINT_OUTEP_SHIFT;
3851		/* Mask this interrupt */
3852		gintmsk = dwc2_readl(hsotg, GINTMSK);
3853		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3854		dwc2_writel(hsotg, gintmsk, GINTMSK);
3855
3856		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3857		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3858			hs_ep = hsotg->eps_out[idx];
3859			/* Proceed only unmasked ISOC EPs */
3860			if (BIT(idx) & ~daintmsk)
3861				continue;
3862
3863			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3864
3865			//ISOC Ep's only
3866			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3867				epctrl |= DXEPCTL_SNAK;
3868				epctrl |= DXEPCTL_EPDIS;
3869				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3870				continue;
3871			}
3872
3873			//Non-ISOC EP's
3874			if (hs_ep->halted) {
3875				if (!(epctrl & DXEPCTL_EPENA))
3876					epctrl |= DXEPCTL_EPENA;
3877				epctrl |= DXEPCTL_EPDIS;
3878				epctrl |= DXEPCTL_STALL;
3879				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3880			}
3881		}
3882
3883		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3884	}
3885
3886	if (gintsts & GINTSTS_GINNAKEFF) {
3887		dev_info(hsotg->dev, "GINNakEff triggered\n");
3888
3889		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3890
3891		dwc2_hsotg_dump(hsotg);
3892	}
3893
3894	if (gintsts & GINTSTS_INCOMPL_SOIN)
3895		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3896
3897	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3898		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3899
3900	/*
3901	 * if we've had fifo events, we should try and go around the
3902	 * loop again to see if there's any point in returning yet.
3903	 */
3904
3905	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3906		goto irq_retry;
3907
3908	/* Check WKUP_ALERT interrupt*/
3909	if (hsotg->params.service_interval)
3910		dwc2_gadget_wkup_alert_handler(hsotg);
3911
3912	spin_unlock(&hsotg->lock);
3913
3914	return IRQ_HANDLED;
3915}
3916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3917static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3918				   struct dwc2_hsotg_ep *hs_ep)
3919{
3920	u32 epctrl_reg;
3921	u32 epint_reg;
3922
3923	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3924		DOEPCTL(hs_ep->index);
3925	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3926		DOEPINT(hs_ep->index);
3927
3928	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3929		hs_ep->name);
3930
3931	if (hs_ep->dir_in) {
3932		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3933			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3934			/* Wait for Nak effect */
3935			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3936						    DXEPINT_INEPNAKEFF, 100))
3937				dev_warn(hsotg->dev,
3938					 "%s: timeout DIEPINT.NAKEFF\n",
3939					 __func__);
3940		} else {
3941			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3942			/* Wait for Nak effect */
3943			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3944						    GINTSTS_GINNAKEFF, 100))
3945				dev_warn(hsotg->dev,
3946					 "%s: timeout GINTSTS.GINNAKEFF\n",
3947					 __func__);
3948		}
3949	} else {
3950		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3951		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3952
3953		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3954			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3955
3956		if (!using_dma(hsotg)) {
3957			/* Wait for GINTSTS_RXFLVL interrupt */
3958			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3959						    GINTSTS_RXFLVL, 100)) {
3960				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3961					 __func__);
3962			} else {
3963				/*
3964				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3965				 * to assert GOUTNAKEFF interrupt
3966				 */
3967				dwc2_readl(hsotg, GRXSTSP);
3968			}
3969		}
3970
3971		/* Wait for global nak to take effect */
3972		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3973					    GINTSTS_GOUTNAKEFF, 100))
3974			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3975				 __func__);
3976	}
3977
3978	/* Disable ep */
3979	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3980
3981	/* Wait for ep to be disabled */
3982	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3983		dev_warn(hsotg->dev,
3984			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3985
3986	/* Clear EPDISBLD interrupt */
3987	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3988
3989	if (hs_ep->dir_in) {
3990		unsigned short fifo_index;
3991
3992		if (hsotg->dedicated_fifos || hs_ep->periodic)
3993			fifo_index = hs_ep->fifo_index;
3994		else
3995			fifo_index = 0;
3996
3997		/* Flush TX FIFO */
3998		dwc2_flush_tx_fifo(hsotg, fifo_index);
3999
4000		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
4001		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
4002			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
4003
4004	} else {
4005		/* Remove global NAKs */
4006		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
4007	}
4008}
4009
4010/**
4011 * dwc2_hsotg_ep_enable - enable the given endpoint
4012 * @ep: The USB endpint to configure
4013 * @desc: The USB endpoint descriptor to configure with.
4014 *
4015 * This is called from the USB gadget code's usb_ep_enable().
4016 */
4017static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4018				const struct usb_endpoint_descriptor *desc)
4019{
4020	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4021	struct dwc2_hsotg *hsotg = hs_ep->parent;
4022	unsigned long flags;
4023	unsigned int index = hs_ep->index;
4024	u32 epctrl_reg;
4025	u32 epctrl;
4026	u32 mps;
4027	u32 mc;
4028	u32 mask;
4029	unsigned int dir_in;
4030	unsigned int i, val, size;
4031	int ret = 0;
4032	unsigned char ep_type;
4033	int desc_num;
4034
4035	dev_dbg(hsotg->dev,
4036		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4037		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4038		desc->wMaxPacketSize, desc->bInterval);
4039
4040	/* not to be called for EP0 */
4041	if (index == 0) {
4042		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4043		return -EINVAL;
4044	}
4045
4046	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4047	if (dir_in != hs_ep->dir_in) {
4048		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4049		return -EINVAL;
4050	}
4051
4052	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4053	mps = usb_endpoint_maxp(desc);
4054	mc = usb_endpoint_maxp_mult(desc);
4055
4056	/* ISOC IN in DDMA supported bInterval up to 10 */
4057	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4058	    dir_in && desc->bInterval > 10) {
4059		dev_err(hsotg->dev,
4060			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4061		return -EINVAL;
4062	}
4063
4064	/* High bandwidth ISOC OUT in DDMA not supported */
4065	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4066	    !dir_in && mc > 1) {
4067		dev_err(hsotg->dev,
4068			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4069		return -EINVAL;
4070	}
4071
4072	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4073
4074	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4075	epctrl = dwc2_readl(hsotg, epctrl_reg);
4076
4077	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4078		__func__, epctrl, epctrl_reg);
4079
4080	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4081		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4082	else
4083		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4084
4085	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4086	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4087		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4088			desc_num * sizeof(struct dwc2_dma_desc),
 
4089			&hs_ep->desc_list_dma, GFP_ATOMIC);
4090		if (!hs_ep->desc_list) {
4091			ret = -ENOMEM;
4092			goto error2;
4093		}
4094	}
4095
4096	spin_lock_irqsave(&hsotg->lock, flags);
4097
4098	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4099	epctrl |= DXEPCTL_MPS(mps);
4100
4101	/*
4102	 * mark the endpoint as active, otherwise the core may ignore
4103	 * transactions entirely for this endpoint
4104	 */
4105	epctrl |= DXEPCTL_USBACTEP;
4106
4107	/* update the endpoint state */
4108	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4109
4110	/* default, set to non-periodic */
4111	hs_ep->isochronous = 0;
4112	hs_ep->periodic = 0;
4113	hs_ep->halted = 0;
4114	hs_ep->wedged = 0;
4115	hs_ep->interval = desc->bInterval;
4116
4117	switch (ep_type) {
4118	case USB_ENDPOINT_XFER_ISOC:
4119		epctrl |= DXEPCTL_EPTYPE_ISO;
4120		epctrl |= DXEPCTL_SETEVENFR;
4121		hs_ep->isochronous = 1;
4122		hs_ep->interval = 1 << (desc->bInterval - 1);
4123		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 
4124		hs_ep->next_desc = 0;
4125		hs_ep->compl_desc = 0;
4126		if (dir_in) {
4127			hs_ep->periodic = 1;
4128			mask = dwc2_readl(hsotg, DIEPMSK);
4129			mask |= DIEPMSK_NAKMSK;
4130			dwc2_writel(hsotg, mask, DIEPMSK);
4131		} else {
4132			epctrl |= DXEPCTL_SNAK;
4133			mask = dwc2_readl(hsotg, DOEPMSK);
4134			mask |= DOEPMSK_OUTTKNEPDISMSK;
4135			dwc2_writel(hsotg, mask, DOEPMSK);
4136		}
4137		break;
4138
4139	case USB_ENDPOINT_XFER_BULK:
4140		epctrl |= DXEPCTL_EPTYPE_BULK;
4141		break;
4142
4143	case USB_ENDPOINT_XFER_INT:
4144		if (dir_in)
4145			hs_ep->periodic = 1;
4146
4147		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4148			hs_ep->interval = 1 << (desc->bInterval - 1);
4149
4150		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4151		break;
4152
4153	case USB_ENDPOINT_XFER_CONTROL:
4154		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4155		break;
4156	}
4157
4158	/*
4159	 * if the hardware has dedicated fifos, we must give each IN EP
4160	 * a unique tx-fifo even if it is non-periodic.
4161	 */
4162	if (dir_in && hsotg->dedicated_fifos) {
4163		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4164		u32 fifo_index = 0;
4165		u32 fifo_size = UINT_MAX;
4166
4167		size = hs_ep->ep.maxpacket * hs_ep->mc;
4168		for (i = 1; i <= fifo_count; ++i) {
4169			if (hsotg->fifo_map & (1 << i))
4170				continue;
4171			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4172			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4173			if (val < size)
4174				continue;
4175			/* Search for smallest acceptable fifo */
4176			if (val < fifo_size) {
4177				fifo_size = val;
4178				fifo_index = i;
4179			}
4180		}
4181		if (!fifo_index) {
4182			dev_err(hsotg->dev,
4183				"%s: No suitable fifo found\n", __func__);
4184			ret = -ENOMEM;
4185			goto error1;
4186		}
4187		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4188		hsotg->fifo_map |= 1 << fifo_index;
4189		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4190		hs_ep->fifo_index = fifo_index;
4191		hs_ep->fifo_size = fifo_size;
4192	}
4193
4194	/* for non control endpoints, set PID to D0 */
4195	if (index && !hs_ep->isochronous)
4196		epctrl |= DXEPCTL_SETD0PID;
4197
4198	/* WA for Full speed ISOC IN in DDMA mode.
4199	 * By Clear NAK status of EP, core will send ZLP
4200	 * to IN token and assert NAK interrupt relying
4201	 * on TxFIFO status only
4202	 */
4203
4204	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4205	    hs_ep->isochronous && dir_in) {
4206		/* The WA applies only to core versions from 2.72a
4207		 * to 4.00a (including both). Also for FS_IOT_1.00a
4208		 * and HS_IOT_1.00a.
4209		 */
4210		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4211
4212		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4213		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4214		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4215		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4216			epctrl |= DXEPCTL_CNAK;
4217	}
4218
4219	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4220		__func__, epctrl);
4221
4222	dwc2_writel(hsotg, epctrl, epctrl_reg);
4223	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4224		__func__, dwc2_readl(hsotg, epctrl_reg));
4225
4226	/* enable the endpoint interrupt */
4227	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4228
4229error1:
4230	spin_unlock_irqrestore(&hsotg->lock, flags);
4231
4232error2:
4233	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4234		dmam_free_coherent(hsotg->dev, desc_num *
4235			sizeof(struct dwc2_dma_desc),
4236			hs_ep->desc_list, hs_ep->desc_list_dma);
4237		hs_ep->desc_list = NULL;
4238	}
4239
4240	return ret;
4241}
4242
4243/**
4244 * dwc2_hsotg_ep_disable - disable given endpoint
4245 * @ep: The endpoint to disable.
4246 */
4247static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4248{
4249	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4250	struct dwc2_hsotg *hsotg = hs_ep->parent;
4251	int dir_in = hs_ep->dir_in;
4252	int index = hs_ep->index;
 
4253	u32 epctrl_reg;
4254	u32 ctrl;
4255
4256	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4257
4258	if (ep == &hsotg->eps_out[0]->ep) {
4259		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4260		return -EINVAL;
4261	}
4262
4263	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4264		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4265		return -EINVAL;
4266	}
4267
4268	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4269
4270	ctrl = dwc2_readl(hsotg, epctrl_reg);
 
 
4271
4272	if (ctrl & DXEPCTL_EPENA)
4273		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4274
4275	ctrl &= ~DXEPCTL_EPENA;
4276	ctrl &= ~DXEPCTL_USBACTEP;
4277	ctrl |= DXEPCTL_SNAK;
4278
4279	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4280	dwc2_writel(hsotg, ctrl, epctrl_reg);
4281
4282	/* disable endpoint interrupts */
4283	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4284
4285	/* terminate all requests with shutdown */
4286	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4287
4288	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4289	hs_ep->fifo_index = 0;
4290	hs_ep->fifo_size = 0;
4291
4292	return 0;
4293}
4294
4295static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4296{
4297	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4298	struct dwc2_hsotg *hsotg = hs_ep->parent;
4299	unsigned long flags;
4300	int ret;
4301
4302	spin_lock_irqsave(&hsotg->lock, flags);
4303	ret = dwc2_hsotg_ep_disable(ep);
4304	spin_unlock_irqrestore(&hsotg->lock, flags);
4305	return ret;
4306}
4307
4308/**
4309 * on_list - check request is on the given endpoint
4310 * @ep: The endpoint to check.
4311 * @test: The request to test if it is on the endpoint.
4312 */
4313static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4314{
4315	struct dwc2_hsotg_req *req, *treq;
4316
4317	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4318		if (req == test)
4319			return true;
4320	}
4321
4322	return false;
4323}
4324
4325/**
4326 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4327 * @ep: The endpoint to dequeue.
4328 * @req: The request to be removed from a queue.
4329 */
4330static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4331{
4332	struct dwc2_hsotg_req *hs_req = our_req(req);
4333	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4334	struct dwc2_hsotg *hs = hs_ep->parent;
4335	unsigned long flags;
4336
4337	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4338
4339	spin_lock_irqsave(&hs->lock, flags);
4340
4341	if (!on_list(hs_ep, hs_req)) {
4342		spin_unlock_irqrestore(&hs->lock, flags);
4343		return -EINVAL;
4344	}
4345
4346	/* Dequeue already started request */
4347	if (req == &hs_ep->req->req)
4348		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4349
4350	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4351	spin_unlock_irqrestore(&hs->lock, flags);
4352
4353	return 0;
4354}
4355
4356/**
4357 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4358 * @ep: The endpoint to be wedged.
4359 *
4360 */
4361static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4362{
4363	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4364	struct dwc2_hsotg *hs = hs_ep->parent;
4365
4366	unsigned long	flags;
4367	int		ret;
4368
4369	spin_lock_irqsave(&hs->lock, flags);
4370	hs_ep->wedged = 1;
4371	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4372	spin_unlock_irqrestore(&hs->lock, flags);
4373
4374	return ret;
4375}
4376
4377/**
4378 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4379 * @ep: The endpoint to set halt.
4380 * @value: Set or unset the halt.
4381 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4382 *       the endpoint is busy processing requests.
4383 *
4384 * We need to stall the endpoint immediately if request comes from set_feature
4385 * protocol command handler.
4386 */
4387static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4388{
4389	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4390	struct dwc2_hsotg *hs = hs_ep->parent;
4391	int index = hs_ep->index;
4392	u32 epreg;
4393	u32 epctl;
4394	u32 xfertype;
4395
4396	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4397
4398	if (index == 0) {
4399		if (value)
4400			dwc2_hsotg_stall_ep0(hs);
4401		else
4402			dev_warn(hs->dev,
4403				 "%s: can't clear halt on ep0\n", __func__);
4404		return 0;
4405	}
4406
4407	if (hs_ep->isochronous) {
4408		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4409		return -EINVAL;
4410	}
4411
4412	if (!now && value && !list_empty(&hs_ep->queue)) {
4413		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4414			ep->name);
4415		return -EAGAIN;
4416	}
4417
4418	if (hs_ep->dir_in) {
4419		epreg = DIEPCTL(index);
4420		epctl = dwc2_readl(hs, epreg);
4421
4422		if (value) {
4423			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4424			if (epctl & DXEPCTL_EPENA)
4425				epctl |= DXEPCTL_EPDIS;
4426		} else {
4427			epctl &= ~DXEPCTL_STALL;
4428			hs_ep->wedged = 0;
4429			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4430			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4431			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4432				epctl |= DXEPCTL_SETD0PID;
4433		}
4434		dwc2_writel(hs, epctl, epreg);
4435	} else {
4436		epreg = DOEPCTL(index);
4437		epctl = dwc2_readl(hs, epreg);
4438
4439		if (value) {
4440			/* Unmask GOUTNAKEFF interrupt */
4441			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4442
4443			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4444				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4445			// STALL bit will be set in GOUTNAKEFF interrupt handler
4446		} else {
4447			epctl &= ~DXEPCTL_STALL;
4448			hs_ep->wedged = 0;
4449			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4450			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4451			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4452				epctl |= DXEPCTL_SETD0PID;
4453			dwc2_writel(hs, epctl, epreg);
4454		}
 
4455	}
4456
4457	hs_ep->halted = value;
 
4458	return 0;
4459}
4460
4461/**
4462 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4463 * @ep: The endpoint to set halt.
4464 * @value: Set or unset the halt.
4465 */
4466static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4467{
4468	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4469	struct dwc2_hsotg *hs = hs_ep->parent;
4470	unsigned long flags;
4471	int ret;
4472
4473	spin_lock_irqsave(&hs->lock, flags);
4474	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4475	spin_unlock_irqrestore(&hs->lock, flags);
4476
4477	return ret;
4478}
4479
4480static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4481	.enable		= dwc2_hsotg_ep_enable,
4482	.disable	= dwc2_hsotg_ep_disable_lock,
4483	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4484	.free_request	= dwc2_hsotg_ep_free_request,
4485	.queue		= dwc2_hsotg_ep_queue_lock,
4486	.dequeue	= dwc2_hsotg_ep_dequeue,
4487	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4488	.set_wedge	= dwc2_gadget_ep_set_wedge,
4489	/* note, don't believe we have any call for the fifo routines */
4490};
4491
4492/**
4493 * dwc2_hsotg_init - initialize the usb core
4494 * @hsotg: The driver state
4495 */
4496static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4497{
 
 
4498	/* unmask subset of endpoint interrupts */
4499
4500	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4501		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4502		    DIEPMSK);
4503
4504	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4505		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4506		    DOEPMSK);
4507
4508	dwc2_writel(hsotg, 0, DAINTMSK);
4509
4510	/* Be in disconnected state until gadget is registered */
4511	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4512
4513	/* setup fifos */
4514
4515	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4516		dwc2_readl(hsotg, GRXFSIZ),
4517		dwc2_readl(hsotg, GNPTXFSIZ));
4518
4519	dwc2_hsotg_init_fifo(hsotg);
4520
 
 
 
 
 
 
 
 
 
 
 
4521	if (using_dma(hsotg))
4522		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4523}
4524
4525/**
4526 * dwc2_hsotg_udc_start - prepare the udc for work
4527 * @gadget: The usb gadget state
4528 * @driver: The usb gadget driver
4529 *
4530 * Perform initialization to prepare udc device and driver
4531 * to work.
4532 */
4533static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4534				struct usb_gadget_driver *driver)
4535{
4536	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4537	unsigned long flags;
4538	int ret;
4539
4540	if (!hsotg) {
4541		pr_err("%s: called with no device\n", __func__);
4542		return -ENODEV;
4543	}
4544
4545	if (!driver) {
4546		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4547		return -EINVAL;
4548	}
4549
4550	if (driver->max_speed < USB_SPEED_FULL)
4551		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4552
4553	if (!driver->setup) {
4554		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4555		return -EINVAL;
4556	}
4557
4558	WARN_ON(hsotg->driver);
4559
 
4560	hsotg->driver = driver;
4561	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4562	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4563
4564	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4565		ret = dwc2_lowlevel_hw_enable(hsotg);
4566		if (ret)
4567			goto err;
4568	}
4569
4570	if (!IS_ERR_OR_NULL(hsotg->uphy))
4571		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4572
4573	spin_lock_irqsave(&hsotg->lock, flags);
4574	if (dwc2_hw_is_device(hsotg)) {
4575		dwc2_hsotg_init(hsotg);
4576		dwc2_hsotg_core_init_disconnected(hsotg, false);
4577	}
4578
4579	hsotg->enabled = 0;
4580	spin_unlock_irqrestore(&hsotg->lock, flags);
4581
4582	gadget->sg_supported = using_desc_dma(hsotg);
4583	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4584
4585	return 0;
4586
4587err:
4588	hsotg->driver = NULL;
4589	return ret;
4590}
4591
4592/**
4593 * dwc2_hsotg_udc_stop - stop the udc
4594 * @gadget: The usb gadget state
 
4595 *
4596 * Stop udc hw block and stay tunned for future transmissions
4597 */
4598static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4599{
4600	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4601	unsigned long flags;
4602	int ep;
4603
4604	if (!hsotg)
4605		return -ENODEV;
4606
4607	/* all endpoints should be shutdown */
4608	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4609		if (hsotg->eps_in[ep])
4610			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4611		if (hsotg->eps_out[ep])
4612			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4613	}
4614
4615	spin_lock_irqsave(&hsotg->lock, flags);
4616
4617	hsotg->driver = NULL;
4618	hsotg->gadget.dev.of_node = NULL;
4619	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4620	hsotg->enabled = 0;
4621
4622	spin_unlock_irqrestore(&hsotg->lock, flags);
4623
4624	if (!IS_ERR_OR_NULL(hsotg->uphy))
4625		otg_set_peripheral(hsotg->uphy->otg, NULL);
4626
4627	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4628		dwc2_lowlevel_hw_disable(hsotg);
4629
4630	return 0;
4631}
4632
4633/**
4634 * dwc2_hsotg_gadget_getframe - read the frame number
4635 * @gadget: The usb gadget state
4636 *
4637 * Read the {micro} frame number
4638 */
4639static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4640{
4641	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4642}
4643
4644/**
4645 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4646 * @gadget: The usb gadget state
4647 * @is_selfpowered: Whether the device is self-powered
4648 *
4649 * Set if the device is self or bus powered.
4650 */
4651static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4652				      int is_selfpowered)
4653{
4654	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4655	unsigned long flags;
4656
4657	spin_lock_irqsave(&hsotg->lock, flags);
4658	gadget->is_selfpowered = !!is_selfpowered;
4659	spin_unlock_irqrestore(&hsotg->lock, flags);
4660
4661	return 0;
4662}
4663
4664/**
4665 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4666 * @gadget: The usb gadget state
4667 * @is_on: Current state of the USB PHY
4668 *
4669 * Connect/Disconnect the USB PHY pullup
4670 */
4671static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4672{
4673	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4674	unsigned long flags;
4675
4676	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4677		hsotg->op_state);
4678
4679	/* Don't modify pullup state while in host mode */
4680	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4681		hsotg->enabled = is_on;
4682		return 0;
4683	}
4684
4685	spin_lock_irqsave(&hsotg->lock, flags);
4686	if (is_on) {
4687		hsotg->enabled = 1;
4688		dwc2_hsotg_core_init_disconnected(hsotg, false);
4689		/* Enable ACG feature in device mode,if supported */
4690		dwc2_enable_acg(hsotg);
4691		dwc2_hsotg_core_connect(hsotg);
4692	} else {
4693		dwc2_hsotg_core_disconnect(hsotg);
4694		dwc2_hsotg_disconnect(hsotg);
4695		hsotg->enabled = 0;
4696	}
4697
4698	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4699	spin_unlock_irqrestore(&hsotg->lock, flags);
4700
4701	return 0;
4702}
4703
4704static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4705{
4706	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4707	unsigned long flags;
4708
4709	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4710	spin_lock_irqsave(&hsotg->lock, flags);
4711
4712	/*
4713	 * If controller is in partial power down state, it must exit from
4714	 * that state before being initialized / de-initialized
4715	 */
4716	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4717		/*
4718		 * No need to check the return value as
4719		 * registers are not being restored.
4720		 */
4721		dwc2_exit_partial_power_down(hsotg, 0, false);
4722
4723	if (is_active) {
4724		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4725
4726		dwc2_hsotg_core_init_disconnected(hsotg, false);
4727		if (hsotg->enabled) {
4728			/* Enable ACG feature in device mode,if supported */
4729			dwc2_enable_acg(hsotg);
4730			dwc2_hsotg_core_connect(hsotg);
4731		}
4732	} else {
4733		dwc2_hsotg_core_disconnect(hsotg);
4734		dwc2_hsotg_disconnect(hsotg);
4735	}
4736
4737	spin_unlock_irqrestore(&hsotg->lock, flags);
4738	return 0;
4739}
4740
4741/**
4742 * dwc2_hsotg_vbus_draw - report bMaxPower field
4743 * @gadget: The usb gadget state
4744 * @mA: Amount of current
4745 *
4746 * Report how much power the device may consume to the phy.
4747 */
4748static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4749{
4750	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4751
4752	if (IS_ERR_OR_NULL(hsotg->uphy))
4753		return -ENOTSUPP;
4754	return usb_phy_set_power(hsotg->uphy, mA);
4755}
4756
4757static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4758{
4759	struct dwc2_hsotg *hsotg = to_hsotg(g);
4760	unsigned long		flags;
4761
4762	spin_lock_irqsave(&hsotg->lock, flags);
4763	switch (speed) {
4764	case USB_SPEED_HIGH:
4765		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4766		break;
4767	case USB_SPEED_FULL:
4768		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4769		break;
4770	case USB_SPEED_LOW:
4771		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4772		break;
4773	default:
4774		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4775	}
4776	spin_unlock_irqrestore(&hsotg->lock, flags);
4777}
4778
4779static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4780	.get_frame	= dwc2_hsotg_gadget_getframe,
4781	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4782	.udc_start		= dwc2_hsotg_udc_start,
4783	.udc_stop		= dwc2_hsotg_udc_stop,
4784	.pullup                 = dwc2_hsotg_pullup,
4785	.udc_set_speed		= dwc2_gadget_set_speed,
4786	.vbus_session		= dwc2_hsotg_vbus_session,
4787	.vbus_draw		= dwc2_hsotg_vbus_draw,
4788};
4789
4790/**
4791 * dwc2_hsotg_initep - initialise a single endpoint
4792 * @hsotg: The device state.
4793 * @hs_ep: The endpoint to be initialised.
4794 * @epnum: The endpoint number
4795 * @dir_in: True if direction is in.
4796 *
4797 * Initialise the given endpoint (as part of the probe and device state
4798 * creation) to give to the gadget driver. Setup the endpoint name, any
4799 * direction information and other state that may be required.
4800 */
4801static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4802			      struct dwc2_hsotg_ep *hs_ep,
4803				       int epnum,
4804				       bool dir_in)
4805{
4806	char *dir;
4807
4808	if (epnum == 0)
4809		dir = "";
4810	else if (dir_in)
4811		dir = "in";
4812	else
4813		dir = "out";
4814
4815	hs_ep->dir_in = dir_in;
4816	hs_ep->index = epnum;
4817
4818	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4819
4820	INIT_LIST_HEAD(&hs_ep->queue);
4821	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4822
4823	/* add to the list of endpoints known by the gadget driver */
4824	if (epnum)
4825		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4826
4827	hs_ep->parent = hsotg;
4828	hs_ep->ep.name = hs_ep->name;
4829
4830	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4831		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4832	else
4833		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4834					   epnum ? 1024 : EP0_MPS_LIMIT);
4835	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4836
4837	if (epnum == 0) {
4838		hs_ep->ep.caps.type_control = true;
4839	} else {
4840		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4841			hs_ep->ep.caps.type_iso = true;
4842			hs_ep->ep.caps.type_bulk = true;
4843		}
4844		hs_ep->ep.caps.type_int = true;
4845	}
4846
4847	if (dir_in)
4848		hs_ep->ep.caps.dir_in = true;
4849	else
4850		hs_ep->ep.caps.dir_out = true;
4851
4852	/*
4853	 * if we're using dma, we need to set the next-endpoint pointer
4854	 * to be something valid.
4855	 */
4856
4857	if (using_dma(hsotg)) {
4858		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4859
4860		if (dir_in)
4861			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4862		else
4863			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4864	}
4865}
4866
4867/**
4868 * dwc2_hsotg_hw_cfg - read HW configuration registers
4869 * @hsotg: Programming view of the DWC_otg controller
4870 *
4871 * Read the USB core HW configuration registers
4872 */
4873static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4874{
4875	u32 cfg;
4876	u32 ep_type;
4877	u32 i;
4878
4879	/* check hardware configuration */
4880
4881	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4882
4883	/* Add ep0 */
4884	hsotg->num_of_eps++;
4885
4886	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4887					sizeof(struct dwc2_hsotg_ep),
4888					GFP_KERNEL);
4889	if (!hsotg->eps_in[0])
4890		return -ENOMEM;
4891	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4892	hsotg->eps_out[0] = hsotg->eps_in[0];
4893
4894	cfg = hsotg->hw_params.dev_ep_dirs;
4895	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4896		ep_type = cfg & 3;
4897		/* Direction in or both */
4898		if (!(ep_type & 2)) {
4899			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4900				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4901			if (!hsotg->eps_in[i])
4902				return -ENOMEM;
4903		}
4904		/* Direction out or both */
4905		if (!(ep_type & 1)) {
4906			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4907				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4908			if (!hsotg->eps_out[i])
4909				return -ENOMEM;
4910		}
4911	}
4912
4913	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4914	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4915
4916	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4917		 hsotg->num_of_eps,
4918		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4919		 hsotg->fifo_mem);
4920	return 0;
4921}
4922
4923/**
4924 * dwc2_hsotg_dump - dump state of the udc
4925 * @hsotg: Programming view of the DWC_otg controller
4926 *
4927 */
4928static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4929{
4930#ifdef DEBUG
4931	struct device *dev = hsotg->dev;
 
4932	u32 val;
4933	int idx;
4934
4935	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4936		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4937		 dwc2_readl(hsotg, DIEPMSK));
4938
4939	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4940		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4941
4942	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4943		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4944
4945	/* show periodic fifo settings */
4946
4947	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4948		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4949		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4950			 val >> FIFOSIZE_DEPTH_SHIFT,
4951			 val & FIFOSIZE_STARTADDR_MASK);
4952	}
4953
4954	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4955		dev_info(dev,
4956			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4957			 dwc2_readl(hsotg, DIEPCTL(idx)),
4958			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4959			 dwc2_readl(hsotg, DIEPDMA(idx)));
4960
4961		val = dwc2_readl(hsotg, DOEPCTL(idx));
4962		dev_info(dev,
4963			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4964			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4965			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4966			 dwc2_readl(hsotg, DOEPDMA(idx)));
 
4967	}
4968
4969	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4970		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4971#endif
4972}
4973
4974/**
4975 * dwc2_gadget_init - init function for gadget
4976 * @hsotg: Programming view of the DWC_otg controller
4977 *
4978 */
4979int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4980{
4981	struct device *dev = hsotg->dev;
4982	int epnum;
4983	int ret;
4984
4985	/* Dump fifo information */
4986	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4987		hsotg->params.g_np_tx_fifo_size);
4988	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4989
4990	switch (hsotg->params.speed) {
4991	case DWC2_SPEED_PARAM_LOW:
4992		hsotg->gadget.max_speed = USB_SPEED_LOW;
4993		break;
4994	case DWC2_SPEED_PARAM_FULL:
4995		hsotg->gadget.max_speed = USB_SPEED_FULL;
4996		break;
4997	default:
4998		hsotg->gadget.max_speed = USB_SPEED_HIGH;
4999		break;
5000	}
5001
5002	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
5003	hsotg->gadget.name = dev_name(dev);
5004	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
5005	hsotg->remote_wakeup_allowed = 0;
5006
5007	if (hsotg->params.lpm)
5008		hsotg->gadget.lpm_capable = true;
5009
5010	if (hsotg->dr_mode == USB_DR_MODE_OTG)
5011		hsotg->gadget.is_otg = 1;
5012	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
5013		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5014
5015	ret = dwc2_hsotg_hw_cfg(hsotg);
5016	if (ret) {
5017		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5018		return ret;
5019	}
5020
5021	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5022			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5023	if (!hsotg->ctrl_buff)
5024		return -ENOMEM;
5025
5026	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5027			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5028	if (!hsotg->ep0_buff)
5029		return -ENOMEM;
5030
5031	if (using_desc_dma(hsotg)) {
5032		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5033		if (ret < 0)
5034			return ret;
5035	}
5036
5037	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5038			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5039	if (ret < 0) {
5040		dev_err(dev, "cannot claim IRQ for gadget\n");
5041		return ret;
5042	}
5043
5044	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5045
5046	if (hsotg->num_of_eps == 0) {
5047		dev_err(dev, "wrong number of EPs (zero)\n");
5048		return -EINVAL;
5049	}
5050
5051	/* setup endpoint information */
5052
5053	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5054	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5055
5056	/* allocate EP0 request */
5057
5058	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5059						     GFP_KERNEL);
5060	if (!hsotg->ctrl_req) {
5061		dev_err(dev, "failed to allocate ctrl req\n");
5062		return -ENOMEM;
5063	}
5064
5065	/* initialise the endpoints now the core has been initialised */
5066	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5067		if (hsotg->eps_in[epnum])
5068			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5069					  epnum, 1);
5070		if (hsotg->eps_out[epnum])
5071			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5072					  epnum, 0);
5073	}
5074
 
 
 
 
5075	dwc2_hsotg_dump(hsotg);
5076
5077	return 0;
5078}
5079
5080/**
5081 * dwc2_hsotg_remove - remove function for hsotg driver
5082 * @hsotg: Programming view of the DWC_otg controller
5083 *
5084 */
5085int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5086{
5087	usb_del_gadget_udc(&hsotg->gadget);
5088	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5089
5090	return 0;
5091}
5092
5093int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5094{
5095	unsigned long flags;
5096
5097	if (hsotg->lx_state != DWC2_L0)
5098		return 0;
5099
5100	if (hsotg->driver) {
5101		int ep;
5102
5103		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5104			 hsotg->driver->driver.name);
5105
5106		spin_lock_irqsave(&hsotg->lock, flags);
5107		if (hsotg->enabled)
5108			dwc2_hsotg_core_disconnect(hsotg);
5109		dwc2_hsotg_disconnect(hsotg);
5110		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5111		spin_unlock_irqrestore(&hsotg->lock, flags);
5112
5113		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5114			if (hsotg->eps_in[ep])
5115				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5116			if (hsotg->eps_out[ep])
5117				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5118		}
5119	}
5120
5121	return 0;
5122}
5123
5124int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5125{
5126	unsigned long flags;
5127
5128	if (hsotg->lx_state == DWC2_L2)
5129		return 0;
5130
5131	if (hsotg->driver) {
5132		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5133			 hsotg->driver->driver.name);
5134
5135		spin_lock_irqsave(&hsotg->lock, flags);
5136		dwc2_hsotg_core_init_disconnected(hsotg, false);
5137		if (hsotg->enabled) {
5138			/* Enable ACG feature in device mode,if supported */
5139			dwc2_enable_acg(hsotg);
5140			dwc2_hsotg_core_connect(hsotg);
5141		}
5142		spin_unlock_irqrestore(&hsotg->lock, flags);
5143	}
5144
5145	return 0;
5146}
5147
5148/**
5149 * dwc2_backup_device_registers() - Backup controller device registers.
5150 * When suspending usb bus, registers needs to be backuped
5151 * if controller power is disabled once suspended.
5152 *
5153 * @hsotg: Programming view of the DWC_otg controller
5154 */
5155int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5156{
5157	struct dwc2_dregs_backup *dr;
5158	int i;
5159
5160	dev_dbg(hsotg->dev, "%s\n", __func__);
5161
5162	/* Backup dev regs */
5163	dr = &hsotg->dr_backup;
5164
5165	dr->dcfg = dwc2_readl(hsotg, DCFG);
5166	dr->dctl = dwc2_readl(hsotg, DCTL);
5167	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5168	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5169	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5170
5171	for (i = 0; i < hsotg->num_of_eps; i++) {
5172		/* Backup IN EPs */
5173		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5174
5175		/* Ensure DATA PID is correctly configured */
5176		if (dr->diepctl[i] & DXEPCTL_DPID)
5177			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5178		else
5179			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5180
5181		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5182		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5183
5184		/* Backup OUT EPs */
5185		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5186
5187		/* Ensure DATA PID is correctly configured */
5188		if (dr->doepctl[i] & DXEPCTL_DPID)
5189			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5190		else
5191			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5192
5193		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5194		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5195		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5196	}
5197	dr->valid = true;
5198	return 0;
5199}
5200
5201/**
5202 * dwc2_restore_device_registers() - Restore controller device registers.
5203 * When resuming usb bus, device registers needs to be restored
5204 * if controller power were disabled.
5205 *
5206 * @hsotg: Programming view of the DWC_otg controller
5207 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5208 *
5209 * Return: 0 if successful, negative error code otherwise
5210 */
5211int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5212{
5213	struct dwc2_dregs_backup *dr;
 
5214	int i;
5215
5216	dev_dbg(hsotg->dev, "%s\n", __func__);
5217
5218	/* Restore dev regs */
5219	dr = &hsotg->dr_backup;
5220	if (!dr->valid) {
5221		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5222			__func__);
5223		return -EINVAL;
5224	}
5225	dr->valid = false;
5226
5227	if (!remote_wakeup)
5228		dwc2_writel(hsotg, dr->dctl, DCTL);
5229
5230	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5231	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5232	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5233
5234	for (i = 0; i < hsotg->num_of_eps; i++) {
5235		/* Restore IN EPs */
5236		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5237		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5238		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5239		/** WA for enabled EPx's IN in DDMA mode. On entering to
5240		 * hibernation wrong value read and saved from DIEPDMAx,
5241		 * as result BNA interrupt asserted on hibernation exit
5242		 * by restoring from saved area.
5243		 */
5244		if (using_desc_dma(hsotg) &&
5245		    (dr->diepctl[i] & DXEPCTL_EPENA))
5246			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5247		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5248		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5249		/* Restore OUT EPs */
5250		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5251		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5252		 * hibernation wrong value read and saved from DOEPDMAx,
5253		 * as result BNA interrupt asserted on hibernation exit
5254		 * by restoring from saved area.
5255		 */
5256		if (using_desc_dma(hsotg) &&
5257		    (dr->doepctl[i] & DXEPCTL_EPENA))
5258			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5259		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5260		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5261	}
5262
5263	return 0;
5264}
5265
5266/**
5267 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5268 *
5269 * @hsotg: Programming view of DWC_otg controller
5270 *
5271 */
5272void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5273{
5274	u32 val;
5275
5276	if (!hsotg->params.lpm)
5277		return;
5278
5279	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5280	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5281	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5282	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5283	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5284	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5285	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5286	dwc2_writel(hsotg, val, GLPMCFG);
5287	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5288
5289	/* Unmask WKUP_ALERT Interrupt */
5290	if (hsotg->params.service_interval)
5291		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5292}
5293
5294/**
5295 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5296 *
5297 * @hsotg: Programming view of DWC_otg controller
5298 *
5299 */
5300void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5301{
5302	u32 val = 0;
5303
5304	val |= GREFCLK_REF_CLK_MODE;
5305	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5306	val |= hsotg->params.sof_cnt_wkup_alert <<
5307	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5308
5309	dwc2_writel(hsotg, val, GREFCLK);
5310	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5311}
5312
5313/**
5314 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5315 *
5316 * @hsotg: Programming view of the DWC_otg controller
5317 *
5318 * Return non-zero if failed to enter to hibernation.
5319 */
5320int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5321{
5322	u32 gpwrdn;
5323	u32 gusbcfg;
5324	u32 pcgcctl;
5325	int ret = 0;
5326
5327	/* Change to L2(suspend) state */
5328	hsotg->lx_state = DWC2_L2;
5329	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5330	ret = dwc2_backup_global_registers(hsotg);
5331	if (ret) {
5332		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5333			__func__);
5334		return ret;
5335	}
5336	ret = dwc2_backup_device_registers(hsotg);
5337	if (ret) {
5338		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5339			__func__);
5340		return ret;
5341	}
5342
5343	gpwrdn = GPWRDN_PWRDNRSTN;
5344	udelay(10);
5345	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5346	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5347		/* ULPI interface */
5348		gpwrdn |= GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
5349	}
5350	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5351	udelay(10);
5352
5353	/* Suspend the Phy Clock */
5354	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5355	pcgcctl |= PCGCTL_STOPPCLK;
5356	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5357	udelay(10);
5358
5359	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5360	gpwrdn |= GPWRDN_PMUACTV;
5361	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5362	udelay(10);
5363
5364	/* Set flag to indicate that we are in hibernation */
5365	hsotg->hibernated = 1;
5366
5367	/* Enable interrupts from wake up logic */
5368	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5369	gpwrdn |= GPWRDN_PMUINTSEL;
5370	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5371	udelay(10);
5372
5373	/* Unmask device mode interrupts in GPWRDN */
5374	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5375	gpwrdn |= GPWRDN_RST_DET_MSK;
5376	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5377	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5378	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5379	udelay(10);
5380
5381	/* Enable Power Down Clamp */
5382	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5383	gpwrdn |= GPWRDN_PWRDNCLMP;
5384	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5385	udelay(10);
5386
5387	/* Switch off VDD */
5388	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5389	gpwrdn |= GPWRDN_PWRDNSWTCH;
5390	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5391	udelay(10);
5392
5393	/* Save gpwrdn register for further usage if stschng interrupt */
5394	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5395	dev_dbg(hsotg->dev, "Hibernation completed\n");
5396
5397	return ret;
5398}
5399
5400/**
5401 * dwc2_gadget_exit_hibernation()
5402 * This function is for exiting from Device mode hibernation by host initiated
5403 * resume/reset and device initiated remote-wakeup.
5404 *
5405 * @hsotg: Programming view of the DWC_otg controller
5406 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5407 * @reset: indicates whether resume is initiated by Reset.
5408 *
5409 * Return non-zero if failed to exit from hibernation.
5410 */
5411int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5412				 int rem_wakeup, int reset)
5413{
5414	u32 pcgcctl;
5415	u32 gpwrdn;
5416	u32 dctl;
5417	int ret = 0;
5418	struct dwc2_gregs_backup *gr;
5419	struct dwc2_dregs_backup *dr;
5420
5421	gr = &hsotg->gr_backup;
5422	dr = &hsotg->dr_backup;
5423
5424	if (!hsotg->hibernated) {
5425		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5426		return 1;
5427	}
5428	dev_dbg(hsotg->dev,
5429		"%s: called with rem_wakeup = %d reset = %d\n",
5430		__func__, rem_wakeup, reset);
5431
5432	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5433
5434	if (!reset) {
5435		/* Clear all pending interupts */
5436		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5437	}
5438
5439	/* De-assert Restore */
5440	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5441	gpwrdn &= ~GPWRDN_RESTORE;
5442	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5443	udelay(10);
5444
5445	if (!rem_wakeup) {
5446		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5447		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5448		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5449	}
5450
5451	/* Restore GUSBCFG, DCFG and DCTL */
5452	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5453	dwc2_writel(hsotg, dr->dcfg, DCFG);
5454	dwc2_writel(hsotg, dr->dctl, DCTL);
5455
5456	/* On USB Reset, reset device address to zero */
5457	if (reset)
5458		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5459
5460	/* Reset ULPI latch */
5461	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5462	gpwrdn &= ~GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
5463	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5464
5465	/* De-assert Wakeup Logic */
5466	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5467	gpwrdn &= ~GPWRDN_PMUACTV;
5468	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5469
5470	if (rem_wakeup) {
5471		udelay(10);
5472		/* Start Remote Wakeup Signaling */
5473		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5474	} else {
5475		udelay(50);
5476		/* Set Device programming done bit */
5477		dctl = dwc2_readl(hsotg, DCTL);
5478		dctl |= DCTL_PWRONPRGDONE;
5479		dwc2_writel(hsotg, dctl, DCTL);
5480	}
5481	/* Wait for interrupts which must be cleared */
5482	mdelay(2);
5483	/* Clear all pending interupts */
5484	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5485
5486	/* Restore global registers */
5487	ret = dwc2_restore_global_registers(hsotg);
5488	if (ret) {
5489		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5490			__func__);
5491		return ret;
5492	}
5493
5494	/* Restore device registers */
5495	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5496	if (ret) {
5497		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5498			__func__);
5499		return ret;
5500	}
5501
5502	if (rem_wakeup) {
5503		mdelay(10);
5504		dctl = dwc2_readl(hsotg, DCTL);
5505		dctl &= ~DCTL_RMTWKUPSIG;
5506		dwc2_writel(hsotg, dctl, DCTL);
5507	}
5508
5509	hsotg->hibernated = 0;
5510	hsotg->lx_state = DWC2_L0;
5511	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5512
5513	return ret;
5514}
5515
5516/**
5517 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5518 * power down.
5519 *
5520 * @hsotg: Programming view of the DWC_otg controller
5521 *
5522 * Return: non-zero if failed to enter device partial power down.
5523 *
5524 * This function is for entering device mode partial power down.
5525 */
5526int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5527{
5528	u32 pcgcctl;
5529	int ret = 0;
5530
5531	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5532
5533	/* Backup all registers */
5534	ret = dwc2_backup_global_registers(hsotg);
5535	if (ret) {
5536		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5537			__func__);
5538		return ret;
5539	}
5540
5541	ret = dwc2_backup_device_registers(hsotg);
5542	if (ret) {
5543		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5544			__func__);
5545		return ret;
5546	}
5547
5548	/*
5549	 * Clear any pending interrupts since dwc2 will not be able to
5550	 * clear them after entering partial_power_down.
5551	 */
5552	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5553
5554	/* Put the controller in low power state */
5555	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5556
5557	pcgcctl |= PCGCTL_PWRCLMP;
5558	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5559	udelay(5);
5560
5561	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5562	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5563	udelay(5);
5564
5565	pcgcctl |= PCGCTL_STOPPCLK;
5566	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5567
5568	/* Set in_ppd flag to 1 as here core enters suspend. */
5569	hsotg->in_ppd = 1;
5570	hsotg->lx_state = DWC2_L2;
5571
5572	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5573
5574	return ret;
5575}
5576
5577/*
5578 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5579 * power down.
5580 *
5581 * @hsotg: Programming view of the DWC_otg controller
5582 * @restore: indicates whether need to restore the registers or not.
5583 *
5584 * Return: non-zero if failed to exit device partial power down.
5585 *
5586 * This function is for exiting from device mode partial power down.
5587 */
5588int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5589					bool restore)
5590{
5591	u32 pcgcctl;
5592	u32 dctl;
5593	struct dwc2_dregs_backup *dr;
5594	int ret = 0;
5595
5596	dr = &hsotg->dr_backup;
5597
5598	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5599
5600	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5601	pcgcctl &= ~PCGCTL_STOPPCLK;
5602	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5603
5604	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5605	pcgcctl &= ~PCGCTL_PWRCLMP;
5606	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5607
5608	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5609	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5610	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5611
5612	udelay(100);
5613	if (restore) {
5614		ret = dwc2_restore_global_registers(hsotg);
5615		if (ret) {
5616			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5617				__func__);
5618			return ret;
5619		}
5620		/* Restore DCFG */
5621		dwc2_writel(hsotg, dr->dcfg, DCFG);
5622
5623		ret = dwc2_restore_device_registers(hsotg, 0);
5624		if (ret) {
5625			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5626				__func__);
5627			return ret;
5628		}
5629	}
5630
5631	/* Set the Power-On Programming done bit */
5632	dctl = dwc2_readl(hsotg, DCTL);
5633	dctl |= DCTL_PWRONPRGDONE;
5634	dwc2_writel(hsotg, dctl, DCTL);
5635
5636	/* Set in_ppd flag to 0 as here core exits from suspend. */
5637	hsotg->in_ppd = 0;
5638	hsotg->lx_state = DWC2_L0;
5639
5640	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5641	return ret;
5642}
5643
5644/**
5645 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5646 *
5647 * @hsotg: Programming view of the DWC_otg controller
5648 *
5649 * Return: non-zero if failed to enter device partial power down.
5650 *
5651 * This function is for entering device mode clock gating.
5652 */
5653void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5654{
5655	u32 pcgctl;
5656
5657	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5658
5659	/* Set the Phy Clock bit as suspend is received. */
5660	pcgctl = dwc2_readl(hsotg, PCGCTL);
5661	pcgctl |= PCGCTL_STOPPCLK;
5662	dwc2_writel(hsotg, pcgctl, PCGCTL);
5663	udelay(5);
5664
5665	/* Set the Gate hclk as suspend is received. */
5666	pcgctl = dwc2_readl(hsotg, PCGCTL);
5667	pcgctl |= PCGCTL_GATEHCLK;
5668	dwc2_writel(hsotg, pcgctl, PCGCTL);
5669	udelay(5);
5670
5671	hsotg->lx_state = DWC2_L2;
5672	hsotg->bus_suspended = true;
5673}
5674
5675/*
5676 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5677 *
5678 * @hsotg: Programming view of the DWC_otg controller
5679 * @rem_wakeup: indicates whether remote wake up is enabled.
5680 *
5681 * This function is for exiting from device mode clock gating.
5682 */
5683void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5684{
5685	u32 pcgctl;
5686	u32 dctl;
5687
5688	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5689
5690	/* Clear the Gate hclk. */
5691	pcgctl = dwc2_readl(hsotg, PCGCTL);
5692	pcgctl &= ~PCGCTL_GATEHCLK;
5693	dwc2_writel(hsotg, pcgctl, PCGCTL);
5694	udelay(5);
5695
5696	/* Phy Clock bit. */
5697	pcgctl = dwc2_readl(hsotg, PCGCTL);
5698	pcgctl &= ~PCGCTL_STOPPCLK;
5699	dwc2_writel(hsotg, pcgctl, PCGCTL);
5700	udelay(5);
5701
5702	if (rem_wakeup) {
5703		/* Set Remote Wakeup Signaling */
5704		dctl = dwc2_readl(hsotg, DCTL);
5705		dctl |= DCTL_RMTWKUPSIG;
5706		dwc2_writel(hsotg, dctl, DCTL);
5707	}
5708
5709	/* Change to L0 state */
5710	call_gadget(hsotg, resume);
5711	hsotg->lx_state = DWC2_L0;
5712	hsotg->bus_suspended = false;
5713}
v4.10.11
   1/**
 
   2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   3 *		http://www.samsung.com
   4 *
   5 * Copyright 2008 Openmoko, Inc.
   6 * Copyright 2008 Simtec Electronics
   7 *      Ben Dooks <ben@simtec.co.uk>
   8 *      http://armlinux.simtec.co.uk/
   9 *
  10 * S3C USB2.0 High-speed / OtG driver
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/mutex.h>
  24#include <linux/seq_file.h>
  25#include <linux/delay.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/of_platform.h>
  29
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/usb/phy.h>
 
 
  33
  34#include "core.h"
  35#include "hw.h"
  36
  37/* conversion functions */
  38static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  39{
  40	return container_of(req, struct dwc2_hsotg_req, req);
  41}
  42
  43static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  44{
  45	return container_of(ep, struct dwc2_hsotg_ep, ep);
  46}
  47
  48static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  49{
  50	return container_of(gadget, struct dwc2_hsotg, gadget);
  51}
  52
  53static inline void __orr32(void __iomem *ptr, u32 val)
  54{
  55	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  56}
  57
  58static inline void __bic32(void __iomem *ptr, u32 val)
  59{
  60	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  61}
  62
  63static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  64						u32 ep_index, u32 dir_in)
  65{
  66	if (dir_in)
  67		return hsotg->eps_in[ep_index];
  68	else
  69		return hsotg->eps_out[ep_index];
  70}
  71
  72/* forward declaration of functions */
  73static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  74
  75/**
  76 * using_dma - return the DMA status of the driver.
  77 * @hsotg: The driver state.
  78 *
  79 * Return true if we're using DMA.
  80 *
  81 * Currently, we have the DMA support code worked into everywhere
  82 * that needs it, but the AMBA DMA implementation in the hardware can
  83 * only DMA from 32bit aligned addresses. This means that gadgets such
  84 * as the CDC Ethernet cannot work as they often pass packets which are
  85 * not 32bit aligned.
  86 *
  87 * Unfortunately the choice to use DMA or not is global to the controller
  88 * and seems to be only settable when the controller is being put through
  89 * a core reset. This means we either need to fix the gadgets to take
  90 * account of DMA alignment, or add bounce buffers (yuerk).
  91 *
  92 * g_using_dma is set depending on dts flag.
  93 */
  94static inline bool using_dma(struct dwc2_hsotg *hsotg)
  95{
  96	return hsotg->params.g_dma;
  97}
  98
  99/*
 100 * using_desc_dma - return the descriptor DMA status of the driver.
 101 * @hsotg: The driver state.
 102 *
 103 * Return true if we're using descriptor DMA.
 104 */
 105static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 106{
 107	return hsotg->params.g_dma_desc;
 108}
 109
 110/**
 111 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 112 * @hs_ep: The endpoint
 113 * @increment: The value to increment by
 114 *
 115 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 116 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 117 */
 118static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 119{
 
 
 
 
 
 
 120	hs_ep->target_frame += hs_ep->interval;
 121	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
 122		hs_ep->frame_overrun = 1;
 123		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
 124	} else {
 125		hs_ep->frame_overrun = 0;
 126	}
 127}
 128
 129/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 131 * @hsotg: The device state
 132 * @ints: A bitmask of the interrupts to enable
 133 */
 134static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 135{
 136	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 137	u32 new_gsintmsk;
 138
 139	new_gsintmsk = gsintmsk | ints;
 140
 141	if (new_gsintmsk != gsintmsk) {
 142		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 143		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 144	}
 145}
 146
 147/**
 148 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 149 * @hsotg: The device state
 150 * @ints: A bitmask of the interrupts to enable
 151 */
 152static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 153{
 154	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 155	u32 new_gsintmsk;
 156
 157	new_gsintmsk = gsintmsk & ~ints;
 158
 159	if (new_gsintmsk != gsintmsk)
 160		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 161}
 162
 163/**
 164 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 165 * @hsotg: The device state
 166 * @ep: The endpoint index
 167 * @dir_in: True if direction is in.
 168 * @en: The enable value, true to enable
 169 *
 170 * Set or clear the mask for an individual endpoint's interrupt
 171 * request.
 172 */
 173static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 174				 unsigned int ep, unsigned int dir_in,
 175				 unsigned int en)
 176{
 177	unsigned long flags;
 178	u32 bit = 1 << ep;
 179	u32 daint;
 180
 181	if (!dir_in)
 182		bit <<= 16;
 183
 184	local_irq_save(flags);
 185	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 186	if (en)
 187		daint |= bit;
 188	else
 189		daint &= ~bit;
 190	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 191	local_irq_restore(flags);
 192}
 193
 194/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 196 * @hsotg: The device instance.
 197 */
 198static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 199{
 200	unsigned int ep;
 201	unsigned int addr;
 202	int timeout;
 
 203	u32 val;
 204	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 205
 206	/* Reset fifo map if not correctly cleared during previous session */
 207	WARN_ON(hsotg->fifo_map);
 208	hsotg->fifo_map = 0;
 209
 210	/* set RX/NPTX FIFO sizes */
 211	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
 212	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
 
 213		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 214		    hsotg->regs + GNPTXFSIZ);
 215
 216	/*
 217	 * arange all the rest of the TX FIFOs, as some versions of this
 218	 * block have overlapping default addresses. This also ensures
 219	 * that if the settings have been changed, then they are set to
 220	 * known values.
 221	 */
 222
 223	/* start at the end of the GNPTXFSIZ, rounded up */
 224	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 225
 226	/*
 227	 * Configure fifos sizes from provided configuration and assign
 228	 * them to endpoints dynamically according to maxpacket size value of
 229	 * given endpoint.
 230	 */
 231	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 232		if (!txfsz[ep])
 233			continue;
 234		val = addr;
 235		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 236		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 237			  "insufficient fifo memory");
 238		addr += txfsz[ep];
 239
 240		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 241		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
 242	}
 243
 
 
 
 244	/*
 245	 * according to p428 of the design guide, we need to ensure that
 246	 * all fifos are flushed before continuing
 247	 */
 248
 249	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 250	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 251
 252	/* wait until the fifos are both flushed */
 253	timeout = 100;
 254	while (1) {
 255		val = dwc2_readl(hsotg->regs + GRSTCTL);
 256
 257		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 258			break;
 259
 260		if (--timeout == 0) {
 261			dev_err(hsotg->dev,
 262				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 263				__func__, val);
 264			break;
 265		}
 266
 267		udelay(1);
 268	}
 269
 270	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 271}
 272
 273/**
 
 274 * @ep: USB endpoint to allocate request for.
 275 * @flags: Allocation flags
 276 *
 277 * Allocate a new USB request structure appropriate for the specified endpoint
 278 */
 279static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 280						      gfp_t flags)
 281{
 282	struct dwc2_hsotg_req *req;
 283
 284	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
 285	if (!req)
 286		return NULL;
 287
 288	INIT_LIST_HEAD(&req->queue);
 289
 290	return &req->req;
 291}
 292
 293/**
 294 * is_ep_periodic - return true if the endpoint is in periodic mode.
 295 * @hs_ep: The endpoint to query.
 296 *
 297 * Returns true if the endpoint is in periodic mode, meaning it is being
 298 * used for an Interrupt or ISO transfer.
 299 */
 300static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 301{
 302	return hs_ep->periodic;
 303}
 304
 305/**
 306 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 307 * @hsotg: The device state.
 308 * @hs_ep: The endpoint for the request
 309 * @hs_req: The request being processed.
 310 *
 311 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 312 * of a request to ensure the buffer is ready for access by the caller.
 313 */
 314static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 315				struct dwc2_hsotg_ep *hs_ep,
 316				struct dwc2_hsotg_req *hs_req)
 317{
 318	struct usb_request *req = &hs_req->req;
 319	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 
 320}
 321
 322/*
 323 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 324 * for Control endpoint
 325 * @hsotg: The device state.
 326 *
 327 * This function will allocate 4 descriptor chains for EP 0: 2 for
 328 * Setup stage, per one for IN and OUT data/status transactions.
 329 */
 330static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 331{
 332	hsotg->setup_desc[0] =
 333		dmam_alloc_coherent(hsotg->dev,
 334				    sizeof(struct dwc2_dma_desc),
 335				    &hsotg->setup_desc_dma[0],
 336				    GFP_KERNEL);
 337	if (!hsotg->setup_desc[0])
 338		goto fail;
 339
 340	hsotg->setup_desc[1] =
 341		dmam_alloc_coherent(hsotg->dev,
 342				    sizeof(struct dwc2_dma_desc),
 343				    &hsotg->setup_desc_dma[1],
 344				    GFP_KERNEL);
 345	if (!hsotg->setup_desc[1])
 346		goto fail;
 347
 348	hsotg->ctrl_in_desc =
 349		dmam_alloc_coherent(hsotg->dev,
 350				    sizeof(struct dwc2_dma_desc),
 351				    &hsotg->ctrl_in_desc_dma,
 352				    GFP_KERNEL);
 353	if (!hsotg->ctrl_in_desc)
 354		goto fail;
 355
 356	hsotg->ctrl_out_desc =
 357		dmam_alloc_coherent(hsotg->dev,
 358				    sizeof(struct dwc2_dma_desc),
 359				    &hsotg->ctrl_out_desc_dma,
 360				    GFP_KERNEL);
 361	if (!hsotg->ctrl_out_desc)
 362		goto fail;
 363
 364	return 0;
 365
 366fail:
 367	return -ENOMEM;
 368}
 369
 370/**
 371 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 372 * @hsotg: The controller state.
 373 * @hs_ep: The endpoint we're going to write for.
 374 * @hs_req: The request to write data for.
 375 *
 376 * This is called when the TxFIFO has some space in it to hold a new
 377 * transmission and we have something to give it. The actual setup of
 378 * the data size is done elsewhere, so all we have to do is to actually
 379 * write the data.
 380 *
 381 * The return value is zero if there is more space (or nothing was done)
 382 * otherwise -ENOSPC is returned if the FIFO space was used up.
 383 *
 384 * This routine is only needed for PIO
 385 */
 386static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 387				struct dwc2_hsotg_ep *hs_ep,
 388				struct dwc2_hsotg_req *hs_req)
 389{
 390	bool periodic = is_ep_periodic(hs_ep);
 391	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 392	int buf_pos = hs_req->req.actual;
 393	int to_write = hs_ep->size_loaded;
 394	void *data;
 395	int can_write;
 396	int pkt_round;
 397	int max_transfer;
 398
 399	to_write -= (buf_pos - hs_ep->last_load);
 400
 401	/* if there's nothing to write, get out early */
 402	if (to_write == 0)
 403		return 0;
 404
 405	if (periodic && !hsotg->dedicated_fifos) {
 406		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 407		int size_left;
 408		int size_done;
 409
 410		/*
 411		 * work out how much data was loaded so we can calculate
 412		 * how much data is left in the fifo.
 413		 */
 414
 415		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 416
 417		/*
 418		 * if shared fifo, we cannot write anything until the
 419		 * previous data has been completely sent.
 420		 */
 421		if (hs_ep->fifo_load != 0) {
 422			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 423			return -ENOSPC;
 424		}
 425
 426		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 427			__func__, size_left,
 428			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 429
 430		/* how much of the data has moved */
 431		size_done = hs_ep->size_loaded - size_left;
 432
 433		/* how much data is left in the fifo */
 434		can_write = hs_ep->fifo_load - size_done;
 435		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 436			__func__, can_write);
 437
 438		can_write = hs_ep->fifo_size - can_write;
 439		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 440			__func__, can_write);
 441
 442		if (can_write <= 0) {
 443			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 444			return -ENOSPC;
 445		}
 446	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 447		can_write = dwc2_readl(hsotg->regs +
 448				DTXFSTS(hs_ep->fifo_index));
 449
 450		can_write &= 0xffff;
 451		can_write *= 4;
 452	} else {
 453		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 454			dev_dbg(hsotg->dev,
 455				"%s: no queue slots available (0x%08x)\n",
 456				__func__, gnptxsts);
 457
 458			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 459			return -ENOSPC;
 460		}
 461
 462		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 463		can_write *= 4;	/* fifo size is in 32bit quantities. */
 464	}
 465
 466	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 467
 468	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 469		 __func__, gnptxsts, can_write, to_write, max_transfer);
 470
 471	/*
 472	 * limit to 512 bytes of data, it seems at least on the non-periodic
 473	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 474	 * fragment of the end of the transfer in it.
 475	 */
 476	if (can_write > 512 && !periodic)
 477		can_write = 512;
 478
 479	/*
 480	 * limit the write to one max-packet size worth of data, but allow
 481	 * the transfer to return that it did not run out of fifo space
 482	 * doing it.
 483	 */
 484	if (to_write > max_transfer) {
 485		to_write = max_transfer;
 486
 487		/* it's needed only when we do not use dedicated fifos */
 488		if (!hsotg->dedicated_fifos)
 489			dwc2_hsotg_en_gsint(hsotg,
 490					   periodic ? GINTSTS_PTXFEMP :
 491					   GINTSTS_NPTXFEMP);
 492	}
 493
 494	/* see if we can write data */
 495
 496	if (to_write > can_write) {
 497		to_write = can_write;
 498		pkt_round = to_write % max_transfer;
 499
 500		/*
 501		 * Round the write down to an
 502		 * exact number of packets.
 503		 *
 504		 * Note, we do not currently check to see if we can ever
 505		 * write a full packet or not to the FIFO.
 506		 */
 507
 508		if (pkt_round)
 509			to_write -= pkt_round;
 510
 511		/*
 512		 * enable correct FIFO interrupt to alert us when there
 513		 * is more room left.
 514		 */
 515
 516		/* it's needed only when we do not use dedicated fifos */
 517		if (!hsotg->dedicated_fifos)
 518			dwc2_hsotg_en_gsint(hsotg,
 519					   periodic ? GINTSTS_PTXFEMP :
 520					   GINTSTS_NPTXFEMP);
 521	}
 522
 523	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 524		 to_write, hs_req->req.length, can_write, buf_pos);
 525
 526	if (to_write <= 0)
 527		return -ENOSPC;
 528
 529	hs_req->req.actual = buf_pos + to_write;
 530	hs_ep->total_data += to_write;
 531
 532	if (periodic)
 533		hs_ep->fifo_load += to_write;
 534
 535	to_write = DIV_ROUND_UP(to_write, 4);
 536	data = hs_req->req.buf + buf_pos;
 537
 538	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 539
 540	return (to_write >= can_write) ? -ENOSPC : 0;
 541}
 542
 543/**
 544 * get_ep_limit - get the maximum data legnth for this endpoint
 545 * @hs_ep: The endpoint
 546 *
 547 * Return the maximum data that can be queued in one go on a given endpoint
 548 * so that transfers that are too long can be split.
 549 */
 550static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 551{
 552	int index = hs_ep->index;
 553	unsigned maxsize;
 554	unsigned maxpkt;
 555
 556	if (index != 0) {
 557		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 558		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 559	} else {
 560		maxsize = 64+64;
 561		if (hs_ep->dir_in)
 562			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 563		else
 564			maxpkt = 2;
 565	}
 566
 567	/* we made the constant loading easier above by using +1 */
 568	maxpkt--;
 569	maxsize--;
 570
 571	/*
 572	 * constrain by packet count if maxpkts*pktsize is greater
 573	 * than the length register size.
 574	 */
 575
 576	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 577		maxsize = maxpkt * hs_ep->ep.maxpacket;
 578
 579	return maxsize;
 580}
 581
 582/**
 583* dwc2_hsotg_read_frameno - read current frame number
 584* @hsotg: The device instance
 585*
 586* Return the current frame number
 587*/
 588static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 589{
 590	u32 dsts;
 591
 592	dsts = dwc2_readl(hsotg->regs + DSTS);
 593	dsts &= DSTS_SOFFN_MASK;
 594	dsts >>= DSTS_SOFFN_SHIFT;
 595
 596	return dsts;
 597}
 598
 599/**
 600 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 601 * DMA descriptor chain prepared for specific endpoint
 602 * @hs_ep: The endpoint
 603 *
 604 * Return the maximum data that can be queued in one go on a given endpoint
 605 * depending on its descriptor chain capacity so that transfers that
 606 * are too long can be split.
 607 */
 608static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 609{
 
 610	int is_isoc = hs_ep->isochronous;
 611	unsigned int maxsize;
 
 
 612
 613	if (is_isoc)
 614		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 615					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 
 616	else
 617		maxsize = DEV_DMA_NBYTES_LIMIT;
 618
 619	/* Above size of one descriptor was chosen, multiple it */
 620	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
 
 
 621
 622	return maxsize;
 623}
 624
 625/*
 626 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 627 * @hs_ep: The endpoint
 628 * @mask: RX/TX bytes mask to be defined
 629 *
 630 * Returns maximum data payload for one descriptor after analyzing endpoint
 631 * characteristics.
 632 * DMA descriptor transfer bytes limit depends on EP type:
 633 * Control out - MPS,
 634 * Isochronous - descriptor rx/tx bytes bitfield limit,
 635 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 636 * have concatenations from various descriptors within one packet.
 
 
 637 *
 638 * Selects corresponding mask for RX/TX bytes as well.
 639 */
 640static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 641{
 
 642	u32 mps = hs_ep->ep.maxpacket;
 643	int dir_in = hs_ep->dir_in;
 644	u32 desc_size = 0;
 645
 646	if (!hs_ep->index && !dir_in) {
 647		desc_size = mps;
 648		*mask = DEV_DMA_NBYTES_MASK;
 649	} else if (hs_ep->isochronous) {
 650		if (dir_in) {
 651			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 652			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 653		} else {
 654			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 655			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 656		}
 657	} else {
 658		desc_size = DEV_DMA_NBYTES_LIMIT;
 659		*mask = DEV_DMA_NBYTES_MASK;
 660
 661		/* Round down desc_size to be mps multiple */
 662		desc_size -= desc_size % mps;
 663	}
 664
 
 
 
 
 
 
 
 665	return desc_size;
 666}
 667
 668/*
 669 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 670 * @hs_ep: The endpoint
 671 * @dma_buff: DMA address to use
 672 * @len: Length of the transfer
 673 *
 674 * This function will iterate over descriptor chain and fill its entries
 675 * with corresponding information based on transfer data.
 676 */
 677static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 678						 dma_addr_t dma_buff,
 679						 unsigned int len)
 
 680{
 681	struct dwc2_hsotg *hsotg = hs_ep->parent;
 682	int dir_in = hs_ep->dir_in;
 683	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 684	u32 mps = hs_ep->ep.maxpacket;
 685	u32 maxsize = 0;
 686	u32 offset = 0;
 687	u32 mask = 0;
 688	int i;
 689
 690	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 691
 692	hs_ep->desc_count = (len / maxsize) +
 693				((len % maxsize) ? 1 : 0);
 694	if (len == 0)
 695		hs_ep->desc_count = 1;
 696
 697	for (i = 0; i < hs_ep->desc_count; ++i) {
 698		desc->status = 0;
 699		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
 700				 << DEV_DMA_BUFF_STS_SHIFT);
 701
 702		if (len > maxsize) {
 703			if (!hs_ep->index && !dir_in)
 704				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
 705
 706			desc->status |= (maxsize <<
 707						DEV_DMA_NBYTES_SHIFT & mask);
 708			desc->buf = dma_buff + offset;
 709
 710			len -= maxsize;
 711			offset += maxsize;
 712		} else {
 713			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
 
 714
 715			if (dir_in)
 716				desc->status |= (len % mps) ? DEV_DMA_SHORT :
 717					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
 718			if (len > maxsize)
 719				dev_err(hsotg->dev, "wrong len %d\n", len);
 720
 721			desc->status |=
 722				len << DEV_DMA_NBYTES_SHIFT & mask;
 723			desc->buf = dma_buff + offset;
 724		}
 725
 726		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 727		desc->status |= (DEV_DMA_BUFF_STS_HREADY
 728				 << DEV_DMA_BUFF_STS_SHIFT);
 729		desc++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730	}
 
 
 731}
 732
 733/*
 734 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 735 * @hs_ep: The isochronous endpoint.
 736 * @dma_buff: usb requests dma buffer.
 737 * @len: usb request transfer length.
 738 *
 739 * Finds out index of first free entry either in the bottom or up half of
 740 * descriptor chain depend on which is under SW control and not processed
 741 * by HW. Then fills that descriptor with the data of the arrived usb request,
 742 * frame info, sets Last and IOC bits increments next_desc. If filled
 743 * descriptor is not the first one, removes L bit from the previous descriptor
 744 * status.
 745 */
 746static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 747				      dma_addr_t dma_buff, unsigned int len)
 748{
 749	struct dwc2_dma_desc *desc;
 750	struct dwc2_hsotg *hsotg = hs_ep->parent;
 751	u32 index;
 752	u32 maxsize = 0;
 753	u32 mask = 0;
 
 754
 755	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 756	if (len > maxsize) {
 757		dev_err(hsotg->dev, "wrong len %d\n", len);
 758		return -EINVAL;
 759	}
 760
 761	/*
 762	 * If SW has already filled half of chain, then return and wait for
 763	 * the other chain to be processed by HW.
 764	 */
 765	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
 766		return -EBUSY;
 767
 768	/* Increment frame number by interval for IN */
 769	if (hs_ep->dir_in)
 770		dwc2_gadget_incr_frame_num(hs_ep);
 771
 772	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
 773		 hs_ep->next_desc;
 774
 775	/* Sanity check of calculated index */
 776	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
 777	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
 778		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
 779		return -EINVAL;
 780	}
 781
 782	desc = &hs_ep->desc_list[index];
 783
 784	/* Clear L bit of previous desc if more than one entries in the chain */
 785	if (hs_ep->next_desc)
 786		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 787
 788	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 789		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 790
 791	desc->status = 0;
 792	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 793
 794	desc->buf = dma_buff;
 795	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 796			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 797
 798	if (hs_ep->dir_in) {
 799		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
 
 
 
 
 800				 DEV_DMA_ISOC_PID_MASK) |
 801				((len % hs_ep->ep.maxpacket) ?
 802				 DEV_DMA_SHORT : 0) |
 803				((hs_ep->target_frame <<
 804				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 805				 DEV_DMA_ISOC_FRNUM_MASK);
 806	}
 807
 808	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 809	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 810
 
 
 
 
 811	/* Update index of last configured entry in the chain */
 812	hs_ep->next_desc++;
 
 
 813
 814	return 0;
 815}
 816
 817/*
 818 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 819 * @hs_ep: The isochronous endpoint.
 820 *
 821 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 822 * write DMA address to HW and enable the endpoint.
 823 *
 824 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 825 * to prepare second descriptor chain while first one is being processed by HW.
 826 */
 827static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 828{
 829	struct dwc2_hsotg *hsotg = hs_ep->parent;
 830	struct dwc2_hsotg_req *hs_req, *treq;
 831	int index = hs_ep->index;
 832	int ret;
 
 833	u32 dma_reg;
 834	u32 depctl;
 835	u32 ctrl;
 
 836
 837	if (list_empty(&hs_ep->queue)) {
 
 838		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 839		return;
 840	}
 841
 
 
 
 
 
 
 
 
 
 842	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
 843		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
 
 
 
 
 
 
 844						 hs_req->req.length);
 845		if (ret) {
 846			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 847			break;
 848		}
 849	}
 850
 
 851	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
 852	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
 853
 854	/* write descriptor chain address to control register */
 855	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
 856
 857	ctrl = dwc2_readl(hsotg->regs + depctl);
 858	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
 859	dwc2_writel(ctrl, hsotg->regs + depctl);
 
 860
 861	/* Switch ISOC descriptor chain number being processed by SW*/
 862	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
 863	hs_ep->next_desc = 0;
 864}
 
 865
 866/**
 867 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 868 * @hsotg: The controller state.
 869 * @hs_ep: The endpoint to process a request for
 870 * @hs_req: The request to start.
 871 * @continuing: True if we are doing more for the current request.
 872 *
 873 * Start the given request running by setting the endpoint registers
 874 * appropriately, and writing any data to the FIFOs.
 875 */
 876static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 877				struct dwc2_hsotg_ep *hs_ep,
 878				struct dwc2_hsotg_req *hs_req,
 879				bool continuing)
 880{
 881	struct usb_request *ureq = &hs_req->req;
 882	int index = hs_ep->index;
 883	int dir_in = hs_ep->dir_in;
 884	u32 epctrl_reg;
 885	u32 epsize_reg;
 886	u32 epsize;
 887	u32 ctrl;
 888	unsigned length;
 889	unsigned packets;
 890	unsigned maxreq;
 891	unsigned int dma_reg;
 892
 893	if (index != 0) {
 894		if (hs_ep->req && !continuing) {
 895			dev_err(hsotg->dev, "%s: active request\n", __func__);
 896			WARN_ON(1);
 897			return;
 898		} else if (hs_ep->req != hs_req && continuing) {
 899			dev_err(hsotg->dev,
 900				"%s: continue different req\n", __func__);
 901			WARN_ON(1);
 902			return;
 903		}
 904	}
 905
 906	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 907	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 908	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 909
 910	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 911		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 912		hs_ep->dir_in ? "in" : "out");
 913
 914	/* If endpoint is stalled, we will restart request later */
 915	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 916
 917	if (index && ctrl & DXEPCTL_STALL) {
 918		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 919		return;
 920	}
 921
 922	length = ureq->length - ureq->actual;
 923	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 924		ureq->length, ureq->actual);
 925
 926	if (!using_desc_dma(hsotg))
 927		maxreq = get_ep_limit(hs_ep);
 928	else
 929		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
 930
 931	if (length > maxreq) {
 932		int round = maxreq % hs_ep->ep.maxpacket;
 933
 934		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 935			__func__, length, maxreq, round);
 936
 937		/* round down to multiple of packets */
 938		if (round)
 939			maxreq -= round;
 940
 941		length = maxreq;
 942	}
 943
 944	if (length)
 945		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 946	else
 947		packets = 1;	/* send one packet if length is zero. */
 948
 949	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
 950		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
 951		return;
 952	}
 953
 954	if (dir_in && index != 0)
 955		if (hs_ep->isochronous)
 956			epsize = DXEPTSIZ_MC(packets);
 957		else
 958			epsize = DXEPTSIZ_MC(1);
 959	else
 960		epsize = 0;
 961
 962	/*
 963	 * zero length packet should be programmed on its own and should not
 964	 * be counted in DIEPTSIZ.PktCnt with other packets.
 965	 */
 966	if (dir_in && ureq->zero && !continuing) {
 967		/* Test if zlp is actually required. */
 968		if ((ureq->length >= hs_ep->ep.maxpacket) &&
 969					!(ureq->length % hs_ep->ep.maxpacket))
 970			hs_ep->send_zlp = 1;
 971	}
 972
 973	epsize |= DXEPTSIZ_PKTCNT(packets);
 974	epsize |= DXEPTSIZ_XFERSIZE(length);
 975
 976	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 977		__func__, packets, length, ureq->length, epsize, epsize_reg);
 978
 979	/* store the request as the current one we're doing */
 980	hs_ep->req = hs_req;
 981
 982	if (using_desc_dma(hsotg)) {
 983		u32 offset = 0;
 984		u32 mps = hs_ep->ep.maxpacket;
 985
 986		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
 987		if (!dir_in) {
 988			if (!index)
 989				length = mps;
 990			else if (length % mps)
 991				length += (mps - (length % mps));
 992		}
 993
 994		/*
 995		 * If more data to send, adjust DMA for EP0 out data stage.
 996		 * ureq->dma stays unchanged, hence increment it by already
 997		 * passed passed data count before starting new transaction.
 998		 */
 999		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1000		    continuing)
1001			offset = ureq->actual;
1002
1003		/* Fill DDMA chain entries */
1004		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1005						     length);
1006
1007		/* write descriptor chain address to control register */
1008		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1009
1010		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1011			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1012	} else {
1013		/* write size / packets */
1014		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1015
1016		if (using_dma(hsotg) && !continuing && (length != 0)) {
1017			/*
1018			 * write DMA address to control register, buffer
1019			 * already synced by dwc2_hsotg_ep_queue().
1020			 */
1021
1022			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1023
1024			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1025				__func__, &ureq->dma, dma_reg);
1026		}
1027	}
1028
1029	if (hs_ep->isochronous && hs_ep->interval == 1) {
1030		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1031		dwc2_gadget_incr_frame_num(hs_ep);
1032
1033		if (hs_ep->target_frame & 0x1)
1034			ctrl |= DXEPCTL_SETODDFR;
1035		else
1036			ctrl |= DXEPCTL_SETEVENFR;
 
 
 
 
 
 
 
1037	}
1038
1039	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1040
1041	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1042
1043	/* For Setup request do not clear NAK */
1044	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1045		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1046
1047	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1048	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1049
1050	/*
1051	 * set these, it seems that DMA support increments past the end
1052	 * of the packet buffer so we need to calculate the length from
1053	 * this information.
1054	 */
1055	hs_ep->size_loaded = length;
1056	hs_ep->last_load = ureq->actual;
1057
1058	if (dir_in && !using_dma(hsotg)) {
1059		/* set these anyway, we may need them for non-periodic in */
1060		hs_ep->fifo_load = 0;
1061
1062		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1063	}
1064
1065	/*
1066	 * Note, trying to clear the NAK here causes problems with transmit
1067	 * on the S3C6400 ending up with the TXFIFO becoming full.
1068	 */
1069
1070	/* check ep is enabled */
1071	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1072		dev_dbg(hsotg->dev,
1073			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1074			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1075
1076	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1077		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1078
1079	/* enable ep interrupts */
1080	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1081}
1082
1083/**
1084 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1085 * @hsotg: The device state.
1086 * @hs_ep: The endpoint the request is on.
1087 * @req: The request being processed.
1088 *
1089 * We've been asked to queue a request, so ensure that the memory buffer
1090 * is correctly setup for DMA. If we've been passed an extant DMA address
1091 * then ensure the buffer has been synced to memory. If our buffer has no
1092 * DMA memory, then we map the memory and mark our request to allow us to
1093 * cleanup on completion.
1094 */
1095static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1096			     struct dwc2_hsotg_ep *hs_ep,
1097			     struct usb_request *req)
1098{
1099	int ret;
1100
 
1101	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1102	if (ret)
1103		goto dma_error;
1104
1105	return 0;
1106
1107dma_error:
1108	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1109		__func__, req->buf, req->length);
1110
1111	return -EIO;
1112}
1113
1114static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1115	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
1116{
1117	void *req_buf = hs_req->req.buf;
1118
1119	/* If dma is not being used or buffer is aligned */
1120	if (!using_dma(hsotg) || !((long)req_buf & 3))
1121		return 0;
1122
1123	WARN_ON(hs_req->saved_req_buf);
1124
1125	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1126			hs_ep->ep.name, req_buf, hs_req->req.length);
1127
1128	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1129	if (!hs_req->req.buf) {
1130		hs_req->req.buf = req_buf;
1131		dev_err(hsotg->dev,
1132			"%s: unable to allocate memory for bounce buffer\n",
1133			__func__);
1134		return -ENOMEM;
1135	}
1136
1137	/* Save actual buffer */
1138	hs_req->saved_req_buf = req_buf;
1139
1140	if (hs_ep->dir_in)
1141		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1142	return 0;
1143}
1144
1145static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1146	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 
1147{
1148	/* If dma is not being used or buffer was aligned */
1149	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1150		return;
1151
1152	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1153		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1154
1155	/* Copy data from bounce buffer on successful out transfer */
1156	if (!hs_ep->dir_in && !hs_req->req.status)
1157		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1158							hs_req->req.actual);
1159
1160	/* Free bounce buffer */
1161	kfree(hs_req->req.buf);
1162
1163	hs_req->req.buf = hs_req->saved_req_buf;
1164	hs_req->saved_req_buf = NULL;
1165}
1166
1167/**
1168 * dwc2_gadget_target_frame_elapsed - Checks target frame
1169 * @hs_ep: The driver endpoint to check
1170 *
1171 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1172 * corresponding transfer.
1173 */
1174static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1175{
1176	struct dwc2_hsotg *hsotg = hs_ep->parent;
1177	u32 target_frame = hs_ep->target_frame;
1178	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1179	bool frame_overrun = hs_ep->frame_overrun;
 
 
 
 
1180
1181	if (!frame_overrun && current_frame >= target_frame)
1182		return true;
1183
1184	if (frame_overrun && current_frame >= target_frame &&
1185	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1186		return true;
1187
1188	return false;
1189}
1190
1191/*
1192 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1193 * @hsotg: The driver state
1194 * @hs_ep: the ep descriptor chain is for
1195 *
1196 * Called to update EP0 structure's pointers depend on stage of
1197 * control transfer.
1198 */
1199static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1200					  struct dwc2_hsotg_ep *hs_ep)
1201{
1202	switch (hsotg->ep0_state) {
1203	case DWC2_EP0_SETUP:
1204	case DWC2_EP0_STATUS_OUT:
1205		hs_ep->desc_list = hsotg->setup_desc[0];
1206		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1207		break;
1208	case DWC2_EP0_DATA_IN:
1209	case DWC2_EP0_STATUS_IN:
1210		hs_ep->desc_list = hsotg->ctrl_in_desc;
1211		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1212		break;
1213	case DWC2_EP0_DATA_OUT:
1214		hs_ep->desc_list = hsotg->ctrl_out_desc;
1215		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1216		break;
1217	default:
1218		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1219			hsotg->ep0_state);
1220		return -EINVAL;
1221	}
1222
1223	return 0;
1224}
1225
1226static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1227			      gfp_t gfp_flags)
1228{
1229	struct dwc2_hsotg_req *hs_req = our_req(req);
1230	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1231	struct dwc2_hsotg *hs = hs_ep->parent;
1232	bool first;
1233	int ret;
 
 
 
1234
1235	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1236		ep->name, req, req->length, req->buf, req->no_interrupt,
1237		req->zero, req->short_not_ok);
1238
 
 
 
 
1239	/* Prevent new request submission when controller is suspended */
1240	if (hs->lx_state == DWC2_L2) {
1241		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1242				__func__);
1243		return -EAGAIN;
1244	}
1245
1246	/* initialise status of the request */
1247	INIT_LIST_HEAD(&hs_req->queue);
1248	req->actual = 0;
1249	req->status = -EINPROGRESS;
1250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1252	if (ret)
1253		return ret;
1254
1255	/* if we're using DMA, sync the buffers as necessary */
1256	if (using_dma(hs)) {
1257		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1258		if (ret)
1259			return ret;
1260	}
1261	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1262	if (using_desc_dma(hs) && !hs_ep->index) {
1263		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1264		if (ret)
1265			return ret;
1266	}
1267
1268	first = list_empty(&hs_ep->queue);
1269	list_add_tail(&hs_req->queue, &hs_ep->queue);
1270
1271	/*
1272	 * Handle DDMA isochronous transfers separately - just add new entry
1273	 * to the half of descriptor chain that is not processed by HW.
1274	 * Transfer will be started once SW gets either one of NAK or
1275	 * OutTknEpDis interrupts.
1276	 */
1277	if (using_desc_dma(hs) && hs_ep->isochronous &&
1278	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1279		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1280						 hs_req->req.length);
1281		if (ret)
1282			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1283
 
 
 
 
1284		return 0;
1285	}
1286
 
 
 
 
 
1287	if (first) {
1288		if (!hs_ep->isochronous) {
1289			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1290			return 0;
1291		}
1292
1293		while (dwc2_gadget_target_frame_elapsed(hs_ep))
 
 
1294			dwc2_gadget_incr_frame_num(hs_ep);
 
 
 
 
 
1295
1296		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1297			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1298	}
1299	return 0;
1300}
1301
1302static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1303			      gfp_t gfp_flags)
1304{
1305	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1306	struct dwc2_hsotg *hs = hs_ep->parent;
1307	unsigned long flags = 0;
1308	int ret = 0;
1309
1310	spin_lock_irqsave(&hs->lock, flags);
1311	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1312	spin_unlock_irqrestore(&hs->lock, flags);
1313
1314	return ret;
1315}
1316
1317static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1318				      struct usb_request *req)
1319{
1320	struct dwc2_hsotg_req *hs_req = our_req(req);
1321
1322	kfree(hs_req);
1323}
1324
1325/**
1326 * dwc2_hsotg_complete_oursetup - setup completion callback
1327 * @ep: The endpoint the request was on.
1328 * @req: The request completed.
1329 *
1330 * Called on completion of any requests the driver itself
1331 * submitted that need cleaning up.
1332 */
1333static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1334					struct usb_request *req)
1335{
1336	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1337	struct dwc2_hsotg *hsotg = hs_ep->parent;
1338
1339	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1340
1341	dwc2_hsotg_ep_free_request(ep, req);
1342}
1343
1344/**
1345 * ep_from_windex - convert control wIndex value to endpoint
1346 * @hsotg: The driver state.
1347 * @windex: The control request wIndex field (in host order).
1348 *
1349 * Convert the given wIndex into a pointer to an driver endpoint
1350 * structure, or return NULL if it is not a valid endpoint.
1351 */
1352static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1353					   u32 windex)
1354{
1355	struct dwc2_hsotg_ep *ep;
1356	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1357	int idx = windex & 0x7F;
1358
1359	if (windex >= 0x100)
1360		return NULL;
1361
1362	if (idx > hsotg->num_of_eps)
1363		return NULL;
1364
1365	ep = index_to_ep(hsotg, idx, dir);
1366
1367	if (idx && ep->dir_in != dir)
1368		return NULL;
1369
1370	return ep;
1371}
1372
1373/**
1374 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1375 * @hsotg: The driver state.
1376 * @testmode: requested usb test mode
1377 * Enable usb Test Mode requested by the Host.
1378 */
1379int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1380{
1381	int dctl = dwc2_readl(hsotg->regs + DCTL);
1382
1383	dctl &= ~DCTL_TSTCTL_MASK;
1384	switch (testmode) {
1385	case TEST_J:
1386	case TEST_K:
1387	case TEST_SE0_NAK:
1388	case TEST_PACKET:
1389	case TEST_FORCE_EN:
1390		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1391		break;
1392	default:
1393		return -EINVAL;
1394	}
1395	dwc2_writel(dctl, hsotg->regs + DCTL);
1396	return 0;
1397}
1398
1399/**
1400 * dwc2_hsotg_send_reply - send reply to control request
1401 * @hsotg: The device state
1402 * @ep: Endpoint 0
1403 * @buff: Buffer for request
1404 * @length: Length of reply.
1405 *
1406 * Create a request and queue it on the given endpoint. This is useful as
1407 * an internal method of sending replies to certain control requests, etc.
1408 */
1409static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1410				struct dwc2_hsotg_ep *ep,
1411				void *buff,
1412				int length)
1413{
1414	struct usb_request *req;
1415	int ret;
1416
1417	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1418
1419	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1420	hsotg->ep0_reply = req;
1421	if (!req) {
1422		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1423		return -ENOMEM;
1424	}
1425
1426	req->buf = hsotg->ep0_buff;
1427	req->length = length;
1428	/*
1429	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1430	 * STATUS stage.
1431	 */
1432	req->zero = 0;
1433	req->complete = dwc2_hsotg_complete_oursetup;
1434
1435	if (length)
1436		memcpy(req->buf, buff, length);
1437
1438	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1439	if (ret) {
1440		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1441		return ret;
1442	}
1443
1444	return 0;
1445}
1446
1447/**
1448 * dwc2_hsotg_process_req_status - process request GET_STATUS
1449 * @hsotg: The device state
1450 * @ctrl: USB control request
1451 */
1452static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1453					struct usb_ctrlrequest *ctrl)
1454{
1455	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1456	struct dwc2_hsotg_ep *ep;
1457	__le16 reply;
 
1458	int ret;
1459
1460	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1461
1462	if (!ep0->dir_in) {
1463		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1464		return -EINVAL;
1465	}
1466
1467	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1468	case USB_RECIP_DEVICE:
1469		reply = cpu_to_le16(0); /* bit 0 => self powered,
1470					 * bit 1 => remote wakeup */
 
 
 
1471		break;
1472
1473	case USB_RECIP_INTERFACE:
1474		/* currently, the data result should be zero */
1475		reply = cpu_to_le16(0);
1476		break;
1477
1478	case USB_RECIP_ENDPOINT:
1479		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1480		if (!ep)
1481			return -ENOENT;
1482
1483		reply = cpu_to_le16(ep->halted ? 1 : 0);
1484		break;
1485
1486	default:
1487		return 0;
1488	}
1489
1490	if (le16_to_cpu(ctrl->wLength) != 2)
1491		return -EINVAL;
1492
1493	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1494	if (ret) {
1495		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1496		return ret;
1497	}
1498
1499	return 1;
1500}
1501
1502static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1503
1504/**
1505 * get_ep_head - return the first request on the endpoint
1506 * @hs_ep: The controller endpoint to get
1507 *
1508 * Get the first request on the endpoint.
1509 */
1510static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1511{
1512	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1513					queue);
1514}
1515
1516/**
1517 * dwc2_gadget_start_next_request - Starts next request from ep queue
1518 * @hs_ep: Endpoint structure
1519 *
1520 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1521 * in its handler. Hence we need to unmask it here to be able to do
1522 * resynchronization.
1523 */
1524static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1525{
1526	u32 mask;
1527	struct dwc2_hsotg *hsotg = hs_ep->parent;
1528	int dir_in = hs_ep->dir_in;
1529	struct dwc2_hsotg_req *hs_req;
1530	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1531
1532	if (!list_empty(&hs_ep->queue)) {
1533		hs_req = get_ep_head(hs_ep);
1534		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1535		return;
1536	}
1537	if (!hs_ep->isochronous)
1538		return;
1539
1540	if (dir_in) {
1541		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1542			__func__);
1543	} else {
1544		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1545			__func__);
1546		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1547		mask |= DOEPMSK_OUTTKNEPDISMSK;
1548		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1549	}
1550}
1551
1552/**
1553 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1554 * @hsotg: The device state
1555 * @ctrl: USB control request
1556 */
1557static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1558					 struct usb_ctrlrequest *ctrl)
1559{
1560	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1561	struct dwc2_hsotg_req *hs_req;
1562	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1563	struct dwc2_hsotg_ep *ep;
1564	int ret;
1565	bool halted;
1566	u32 recip;
1567	u32 wValue;
1568	u32 wIndex;
1569
1570	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1571		__func__, set ? "SET" : "CLEAR");
1572
1573	wValue = le16_to_cpu(ctrl->wValue);
1574	wIndex = le16_to_cpu(ctrl->wIndex);
1575	recip = ctrl->bRequestType & USB_RECIP_MASK;
1576
1577	switch (recip) {
1578	case USB_RECIP_DEVICE:
1579		switch (wValue) {
 
 
 
 
 
 
 
1580		case USB_DEVICE_TEST_MODE:
1581			if ((wIndex & 0xff) != 0)
1582				return -EINVAL;
1583			if (!set)
1584				return -EINVAL;
1585
1586			hsotg->test_mode = wIndex >> 8;
1587			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1588			if (ret) {
1589				dev_err(hsotg->dev,
1590					"%s: failed to send reply\n", __func__);
1591				return ret;
1592			}
1593			break;
1594		default:
1595			return -ENOENT;
1596		}
 
 
 
 
 
 
 
1597		break;
1598
1599	case USB_RECIP_ENDPOINT:
1600		ep = ep_from_windex(hsotg, wIndex);
1601		if (!ep) {
1602			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1603				__func__, wIndex);
1604			return -ENOENT;
1605		}
1606
1607		switch (wValue) {
1608		case USB_ENDPOINT_HALT:
1609			halted = ep->halted;
1610
1611			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
 
1612
1613			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1614			if (ret) {
1615				dev_err(hsotg->dev,
1616					"%s: failed to send reply\n", __func__);
1617				return ret;
1618			}
1619
1620			/*
1621			 * we have to complete all requests for ep if it was
1622			 * halted, and the halt was cleared by CLEAR_FEATURE
1623			 */
1624
1625			if (!set && halted) {
1626				/*
1627				 * If we have request in progress,
1628				 * then complete it
1629				 */
1630				if (ep->req) {
1631					hs_req = ep->req;
1632					ep->req = NULL;
1633					list_del_init(&hs_req->queue);
1634					if (hs_req->req.complete) {
1635						spin_unlock(&hsotg->lock);
1636						usb_gadget_giveback_request(
1637							&ep->ep, &hs_req->req);
1638						spin_lock(&hsotg->lock);
1639					}
1640				}
1641
1642				/* If we have pending request, then start it */
1643				if (!ep->req) {
1644					dwc2_gadget_start_next_request(ep);
1645				}
1646			}
1647
1648			break;
1649
1650		default:
1651			return -ENOENT;
1652		}
1653		break;
1654	default:
1655		return -ENOENT;
1656	}
1657	return 1;
1658}
1659
1660static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1661
1662/**
1663 * dwc2_hsotg_stall_ep0 - stall ep0
1664 * @hsotg: The device state
1665 *
1666 * Set stall for ep0 as response for setup request.
1667 */
1668static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1669{
1670	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671	u32 reg;
1672	u32 ctrl;
1673
1674	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1675	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1676
1677	/*
1678	 * DxEPCTL_Stall will be cleared by EP once it has
1679	 * taken effect, so no need to clear later.
1680	 */
1681
1682	ctrl = dwc2_readl(hsotg->regs + reg);
1683	ctrl |= DXEPCTL_STALL;
1684	ctrl |= DXEPCTL_CNAK;
1685	dwc2_writel(ctrl, hsotg->regs + reg);
1686
1687	dev_dbg(hsotg->dev,
1688		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1689		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1690
1691	 /*
1692	  * complete won't be called, so we enqueue
1693	  * setup request here
1694	  */
1695	 dwc2_hsotg_enqueue_setup(hsotg);
1696}
1697
1698/**
1699 * dwc2_hsotg_process_control - process a control request
1700 * @hsotg: The device state
1701 * @ctrl: The control request received
1702 *
1703 * The controller has received the SETUP phase of a control request, and
1704 * needs to work out what to do next (and whether to pass it on to the
1705 * gadget driver).
1706 */
1707static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1708				      struct usb_ctrlrequest *ctrl)
1709{
1710	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1711	int ret = 0;
1712	u32 dcfg;
1713
1714	dev_dbg(hsotg->dev,
1715		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1716		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1717		ctrl->wIndex, ctrl->wLength);
1718
1719	if (ctrl->wLength == 0) {
1720		ep0->dir_in = 1;
1721		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1722	} else if (ctrl->bRequestType & USB_DIR_IN) {
1723		ep0->dir_in = 1;
1724		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1725	} else {
1726		ep0->dir_in = 0;
1727		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1728	}
1729
1730	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1731		switch (ctrl->bRequest) {
1732		case USB_REQ_SET_ADDRESS:
1733			hsotg->connected = 1;
1734			dcfg = dwc2_readl(hsotg->regs + DCFG);
1735			dcfg &= ~DCFG_DEVADDR_MASK;
1736			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1737				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1738			dwc2_writel(dcfg, hsotg->regs + DCFG);
1739
1740			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1741
1742			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1743			return;
1744
1745		case USB_REQ_GET_STATUS:
1746			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1747			break;
1748
1749		case USB_REQ_CLEAR_FEATURE:
1750		case USB_REQ_SET_FEATURE:
1751			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1752			break;
1753		}
1754	}
1755
1756	/* as a fallback, try delivering it to the driver to deal with */
1757
1758	if (ret == 0 && hsotg->driver) {
1759		spin_unlock(&hsotg->lock);
1760		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1761		spin_lock(&hsotg->lock);
1762		if (ret < 0)
1763			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1764	}
1765
 
 
 
 
1766	/*
1767	 * the request is either unhandlable, or is not formatted correctly
1768	 * so respond with a STALL for the status stage to indicate failure.
1769	 */
1770
1771	if (ret < 0)
1772		dwc2_hsotg_stall_ep0(hsotg);
1773}
1774
1775/**
1776 * dwc2_hsotg_complete_setup - completion of a setup transfer
1777 * @ep: The endpoint the request was on.
1778 * @req: The request completed.
1779 *
1780 * Called on completion of any requests the driver itself submitted for
1781 * EP0 setup packets
1782 */
1783static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1784				     struct usb_request *req)
1785{
1786	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1787	struct dwc2_hsotg *hsotg = hs_ep->parent;
1788
1789	if (req->status < 0) {
1790		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1791		return;
1792	}
1793
1794	spin_lock(&hsotg->lock);
1795	if (req->actual == 0)
1796		dwc2_hsotg_enqueue_setup(hsotg);
1797	else
1798		dwc2_hsotg_process_control(hsotg, req->buf);
1799	spin_unlock(&hsotg->lock);
1800}
1801
1802/**
1803 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1804 * @hsotg: The device state.
1805 *
1806 * Enqueue a request on EP0 if necessary to received any SETUP packets
1807 * received from the host.
1808 */
1809static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1810{
1811	struct usb_request *req = hsotg->ctrl_req;
1812	struct dwc2_hsotg_req *hs_req = our_req(req);
1813	int ret;
1814
1815	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1816
1817	req->zero = 0;
1818	req->length = 8;
1819	req->buf = hsotg->ctrl_buff;
1820	req->complete = dwc2_hsotg_complete_setup;
1821
1822	if (!list_empty(&hs_req->queue)) {
1823		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1824		return;
1825	}
1826
1827	hsotg->eps_out[0]->dir_in = 0;
1828	hsotg->eps_out[0]->send_zlp = 0;
1829	hsotg->ep0_state = DWC2_EP0_SETUP;
1830
1831	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1832	if (ret < 0) {
1833		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1834		/*
1835		 * Don't think there's much we can do other than watch the
1836		 * driver fail.
1837		 */
1838	}
1839}
1840
1841static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1842					struct dwc2_hsotg_ep *hs_ep)
1843{
1844	u32 ctrl;
1845	u8 index = hs_ep->index;
1846	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1847	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1848
1849	if (hs_ep->dir_in)
1850		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1851			index);
1852	else
1853		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1854			index);
1855	if (using_desc_dma(hsotg)) {
1856		/* Not specific buffer needed for ep0 ZLP */
1857		dma_addr_t dma = hs_ep->desc_list_dma;
1858
1859		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
 
 
1860		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1861	} else {
1862		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1863			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1864			    epsiz_reg);
1865	}
1866
1867	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1868	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1869	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1870	ctrl |= DXEPCTL_USBACTEP;
1871	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1872}
1873
1874/**
1875 * dwc2_hsotg_complete_request - complete a request given to us
1876 * @hsotg: The device state.
1877 * @hs_ep: The endpoint the request was on.
1878 * @hs_req: The request to complete.
1879 * @result: The result code (0 => Ok, otherwise errno)
1880 *
1881 * The given request has finished, so call the necessary completion
1882 * if it has one and then look to see if we can start a new request
1883 * on the endpoint.
1884 *
1885 * Note, expects the ep to already be locked as appropriate.
1886 */
1887static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1888				       struct dwc2_hsotg_ep *hs_ep,
1889				       struct dwc2_hsotg_req *hs_req,
1890				       int result)
1891{
1892
1893	if (!hs_req) {
1894		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1895		return;
1896	}
1897
1898	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1899		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1900
1901	/*
1902	 * only replace the status if we've not already set an error
1903	 * from a previous transaction
1904	 */
1905
1906	if (hs_req->req.status == -EINPROGRESS)
1907		hs_req->req.status = result;
1908
1909	if (using_dma(hsotg))
1910		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1911
1912	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1913
1914	hs_ep->req = NULL;
1915	list_del_init(&hs_req->queue);
1916
1917	/*
1918	 * call the complete request with the locks off, just in case the
1919	 * request tries to queue more work for this endpoint.
1920	 */
1921
1922	if (hs_req->req.complete) {
1923		spin_unlock(&hsotg->lock);
1924		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1925		spin_lock(&hsotg->lock);
1926	}
1927
1928	/* In DDMA don't need to proceed to starting of next ISOC request */
1929	if (using_desc_dma(hsotg) && hs_ep->isochronous)
1930		return;
1931
1932	/*
1933	 * Look to see if there is anything else to do. Note, the completion
1934	 * of the previous request may have caused a new request to be started
1935	 * so be careful when doing this.
1936	 */
1937
1938	if (!hs_ep->req && result >= 0) {
1939		dwc2_gadget_start_next_request(hs_ep);
1940	}
1941}
1942
1943/*
1944 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
1945 * @hs_ep: The endpoint the request was on.
1946 *
1947 * Get first request from the ep queue, determine descriptor on which complete
1948 * happened. SW based on isoc_chain_num discovers which half of the descriptor
1949 * chain is currently in use by HW, adjusts dma_address and calculates index
1950 * of completed descriptor based on the value of DEPDMA register. Update actual
1951 * length of request, giveback to gadget.
1952 */
1953static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
1954{
1955	struct dwc2_hsotg *hsotg = hs_ep->parent;
1956	struct dwc2_hsotg_req *hs_req;
1957	struct usb_request *ureq;
1958	int index;
1959	dma_addr_t dma_addr;
1960	u32 dma_reg;
1961	u32 depdma;
1962	u32 desc_sts;
1963	u32 mask;
1964
1965	hs_req = get_ep_head(hs_ep);
1966	if (!hs_req) {
1967		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
1968		return;
1969	}
1970	ureq = &hs_req->req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972	dma_addr = hs_ep->desc_list_dma;
 
 
 
 
1973
1974	/*
1975	 * If lower half of  descriptor chain is currently use by SW,
1976	 * that means higher half is being processed by HW, so shift
1977	 * DMA address to higher half of descriptor chain.
1978	 */
1979	if (!hs_ep->isoc_chain_num)
1980		dma_addr += sizeof(struct dwc2_dma_desc) *
1981			    (MAX_DMA_DESC_NUM_GENERIC / 2);
1982
1983	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
1984	depdma = dwc2_readl(hsotg->regs + dma_reg);
1985
1986	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
1987	desc_sts = hs_ep->desc_list[index].status;
1988
1989	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
1990	       DEV_DMA_ISOC_RX_NBYTES_MASK;
1991	ureq->actual = ureq->length -
1992		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
1993
1994	/* Adjust actual length for ISOC Out if length is not align of 4 */
1995	if (!hs_ep->dir_in && ureq->length & 0x3)
1996		ureq->actual += 4 - (ureq->length & 0x3);
1997
1998	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
 
 
 
 
1999}
2000
2001/*
2002 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2003 * @hs_ep: The isochronous endpoint to be re-enabled.
2004 *
2005 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2006 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2007 * was under SW control till HW was busy and restart the endpoint if needed.
 
2008 */
2009static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2010{
2011	struct dwc2_hsotg *hsotg = hs_ep->parent;
2012	u32 depctl;
2013	u32 dma_reg;
2014	u32 ctrl;
2015	u32 dma_addr = hs_ep->desc_list_dma;
2016	unsigned char index = hs_ep->index;
2017
2018	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2019	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2020
2021	ctrl = dwc2_readl(hsotg->regs + depctl);
 
 
2022
2023	/*
2024	 * EP was disabled if HW has processed last descriptor or BNA was set.
2025	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2026	 * routine while HW was busy.
2027	 */
2028	if (!(ctrl & DXEPCTL_EPENA)) {
2029		if (!hs_ep->next_desc) {
2030			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2031				__func__);
2032			return;
2033		}
2034
2035		dma_addr += sizeof(struct dwc2_dma_desc) *
2036			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2037			    hs_ep->isoc_chain_num;
2038		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2039
2040		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2041		dwc2_writel(ctrl, hsotg->regs + depctl);
2042
2043		/* Switch ISOC descriptor chain number being processed by SW*/
2044		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2045		hs_ep->next_desc = 0;
2046
2047		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2048			__func__);
2049	}
2050}
2051
2052/**
2053 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2054 * @hsotg: The device state.
2055 * @ep_idx: The endpoint index for the data
2056 * @size: The size of data in the fifo, in bytes
2057 *
2058 * The FIFO status shows there is data to read from the FIFO for a given
2059 * endpoint, so sort out whether we need to read the data into a request
2060 * that has been made for that endpoint.
2061 */
2062static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2063{
2064	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2065	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2066	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2067	int to_read;
2068	int max_req;
2069	int read_ptr;
2070
2071
2072	if (!hs_req) {
2073		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2074		int ptr;
2075
2076		dev_dbg(hsotg->dev,
2077			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2078			 __func__, size, ep_idx, epctl);
2079
2080		/* dump the data from the FIFO, we've nothing we can do */
2081		for (ptr = 0; ptr < size; ptr += 4)
2082			(void)dwc2_readl(fifo);
2083
2084		return;
2085	}
2086
2087	to_read = size;
2088	read_ptr = hs_req->req.actual;
2089	max_req = hs_req->req.length - read_ptr;
2090
2091	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2092		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2093
2094	if (to_read > max_req) {
2095		/*
2096		 * more data appeared than we where willing
2097		 * to deal with in this request.
2098		 */
2099
2100		/* currently we don't deal this */
2101		WARN_ON_ONCE(1);
2102	}
2103
2104	hs_ep->total_data += to_read;
2105	hs_req->req.actual += to_read;
2106	to_read = DIV_ROUND_UP(to_read, 4);
2107
2108	/*
2109	 * note, we might over-write the buffer end by 3 bytes depending on
2110	 * alignment of the data.
2111	 */
2112	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
 
2113}
2114
2115/**
2116 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2117 * @hsotg: The device instance
2118 * @dir_in: If IN zlp
2119 *
2120 * Generate a zero-length IN packet request for terminating a SETUP
2121 * transaction.
2122 *
2123 * Note, since we don't write any data to the TxFIFO, then it is
2124 * currently believed that we do not need to wait for any space in
2125 * the TxFIFO.
2126 */
2127static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2128{
2129	/* eps_out[0] is used in both directions */
2130	hsotg->eps_out[0]->dir_in = dir_in;
2131	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2132
2133	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2134}
2135
2136static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2137			u32 epctl_reg)
2138{
2139	u32 ctrl;
2140
2141	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2142	if (ctrl & DXEPCTL_EOFRNUM)
2143		ctrl |= DXEPCTL_SETEVENFR;
2144	else
2145		ctrl |= DXEPCTL_SETODDFR;
2146	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2147}
2148
2149/*
2150 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2151 * @hs_ep - The endpoint on which transfer went
2152 *
2153 * Iterate over endpoints descriptor chain and get info on bytes remained
2154 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2155 */
2156static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2157{
 
2158	struct dwc2_hsotg *hsotg = hs_ep->parent;
2159	unsigned int bytes_rem = 0;
 
2160	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2161	int i;
2162	u32 status;
 
 
2163
2164	if (!desc)
2165		return -EINVAL;
2166
 
 
 
 
 
2167	for (i = 0; i < hs_ep->desc_count; ++i) {
2168		status = desc->status;
2169		bytes_rem += status & DEV_DMA_NBYTES_MASK;
 
2170
2171		if (status & DEV_DMA_STS_MASK)
2172			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2173				i, status & DEV_DMA_STS_MASK);
 
 
 
 
 
2174	}
2175
2176	return bytes_rem;
2177}
2178
2179/**
2180 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2181 * @hsotg: The device instance
2182 * @epnum: The endpoint received from
2183 *
2184 * The RXFIFO has delivered an OutDone event, which means that the data
2185 * transfer for an OUT endpoint has been completed, either by a short
2186 * packet or by the finish of a transfer.
2187 */
2188static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2189{
2190	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2191	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2192	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2193	struct usb_request *req = &hs_req->req;
2194	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2195	int result = 0;
2196
2197	if (!hs_req) {
2198		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2199		return;
2200	}
2201
2202	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2203		dev_dbg(hsotg->dev, "zlp packet received\n");
2204		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2205		dwc2_hsotg_enqueue_setup(hsotg);
2206		return;
2207	}
2208
2209	if (using_desc_dma(hsotg))
2210		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2211
2212	if (using_dma(hsotg)) {
2213		unsigned size_done;
2214
2215		/*
2216		 * Calculate the size of the transfer by checking how much
2217		 * is left in the endpoint size register and then working it
2218		 * out from the amount we loaded for the transfer.
2219		 *
2220		 * We need to do this as DMA pointers are always 32bit aligned
2221		 * so may overshoot/undershoot the transfer.
2222		 */
2223
2224		size_done = hs_ep->size_loaded - size_left;
2225		size_done += hs_ep->last_load;
2226
2227		req->actual = size_done;
2228	}
2229
2230	/* if there is more request to do, schedule new transfer */
2231	if (req->actual < req->length && size_left == 0) {
2232		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2233		return;
2234	}
2235
2236	if (req->actual < req->length && req->short_not_ok) {
2237		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2238			__func__, req->actual, req->length);
2239
2240		/*
2241		 * todo - what should we return here? there's no one else
2242		 * even bothering to check the status.
2243		 */
2244	}
2245
2246	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2247	if (!using_desc_dma(hsotg) && epnum == 0 &&
2248	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2249		/* Move to STATUS IN */
2250		dwc2_hsotg_ep0_zlp(hsotg, true);
2251		return;
2252	}
2253
2254	/*
2255	 * Slave mode OUT transfers do not go through XferComplete so
2256	 * adjust the ISOC parity here.
2257	 */
2258	if (!using_dma(hsotg)) {
2259		if (hs_ep->isochronous && hs_ep->interval == 1)
2260			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2261		else if (hs_ep->isochronous && hs_ep->interval > 1)
2262			dwc2_gadget_incr_frame_num(hs_ep);
2263	}
2264
2265	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2266}
2267
2268/**
2269 * dwc2_hsotg_handle_rx - RX FIFO has data
2270 * @hsotg: The device instance
2271 *
2272 * The IRQ handler has detected that the RX FIFO has some data in it
2273 * that requires processing, so find out what is in there and do the
2274 * appropriate read.
2275 *
2276 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2277 * chunks, so if you have x packets received on an endpoint you'll get x
2278 * FIFO events delivered, each with a packet's worth of data in it.
2279 *
2280 * When using DMA, we should not be processing events from the RXFIFO
2281 * as the actual data should be sent to the memory directly and we turn
2282 * on the completion interrupts to get notifications of transfer completion.
2283 */
2284static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2285{
2286	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2287	u32 epnum, status, size;
2288
2289	WARN_ON(using_dma(hsotg));
2290
2291	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2292	status = grxstsr & GRXSTS_PKTSTS_MASK;
2293
2294	size = grxstsr & GRXSTS_BYTECNT_MASK;
2295	size >>= GRXSTS_BYTECNT_SHIFT;
2296
2297	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2298			__func__, grxstsr, size, epnum);
2299
2300	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2301	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2302		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2303		break;
2304
2305	case GRXSTS_PKTSTS_OUTDONE:
2306		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2307			dwc2_hsotg_read_frameno(hsotg));
2308
2309		if (!using_dma(hsotg))
2310			dwc2_hsotg_handle_outdone(hsotg, epnum);
2311		break;
2312
2313	case GRXSTS_PKTSTS_SETUPDONE:
2314		dev_dbg(hsotg->dev,
2315			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2316			dwc2_hsotg_read_frameno(hsotg),
2317			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2318		/*
2319		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2320		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2321		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2322		 */
2323		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2324			dwc2_hsotg_handle_outdone(hsotg, epnum);
2325		break;
2326
2327	case GRXSTS_PKTSTS_OUTRX:
2328		dwc2_hsotg_rx_data(hsotg, epnum, size);
2329		break;
2330
2331	case GRXSTS_PKTSTS_SETUPRX:
2332		dev_dbg(hsotg->dev,
2333			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2334			dwc2_hsotg_read_frameno(hsotg),
2335			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2336
2337		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2338
2339		dwc2_hsotg_rx_data(hsotg, epnum, size);
2340		break;
2341
2342	default:
2343		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2344			 __func__, grxstsr);
2345
2346		dwc2_hsotg_dump(hsotg);
2347		break;
2348	}
2349}
2350
2351/**
2352 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2353 * @mps: The maximum packet size in bytes.
2354 */
2355static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2356{
2357	switch (mps) {
2358	case 64:
2359		return D0EPCTL_MPS_64;
2360	case 32:
2361		return D0EPCTL_MPS_32;
2362	case 16:
2363		return D0EPCTL_MPS_16;
2364	case 8:
2365		return D0EPCTL_MPS_8;
2366	}
2367
2368	/* bad max packet size, warn and return invalid result */
2369	WARN_ON(1);
2370	return (u32)-1;
2371}
2372
2373/**
2374 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2375 * @hsotg: The driver state.
2376 * @ep: The index number of the endpoint
2377 * @mps: The maximum packet size in bytes
2378 * @mc: The multicount value
 
2379 *
2380 * Configure the maximum packet size for the given endpoint, updating
2381 * the hardware control registers to reflect this.
2382 */
2383static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2384					unsigned int ep, unsigned int mps,
2385					unsigned int mc, unsigned int dir_in)
2386{
2387	struct dwc2_hsotg_ep *hs_ep;
2388	void __iomem *regs = hsotg->regs;
2389	u32 reg;
2390
2391	hs_ep = index_to_ep(hsotg, ep, dir_in);
2392	if (!hs_ep)
2393		return;
2394
2395	if (ep == 0) {
2396		u32 mps_bytes = mps;
2397
2398		/* EP0 is a special case */
2399		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2400		if (mps > 3)
2401			goto bad_mps;
2402		hs_ep->ep.maxpacket = mps_bytes;
2403		hs_ep->mc = 1;
2404	} else {
2405		if (mps > 1024)
2406			goto bad_mps;
2407		hs_ep->mc = mc;
2408		if (mc > 3)
2409			goto bad_mps;
2410		hs_ep->ep.maxpacket = mps;
2411	}
2412
2413	if (dir_in) {
2414		reg = dwc2_readl(regs + DIEPCTL(ep));
2415		reg &= ~DXEPCTL_MPS_MASK;
2416		reg |= mps;
2417		dwc2_writel(reg, regs + DIEPCTL(ep));
2418	} else {
2419		reg = dwc2_readl(regs + DOEPCTL(ep));
2420		reg &= ~DXEPCTL_MPS_MASK;
2421		reg |= mps;
2422		dwc2_writel(reg, regs + DOEPCTL(ep));
2423	}
2424
2425	return;
2426
2427bad_mps:
2428	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2429}
2430
2431/**
2432 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2433 * @hsotg: The driver state
2434 * @idx: The index for the endpoint (0..15)
2435 */
2436static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2437{
2438	int timeout;
2439	int val;
2440
2441	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2442		    hsotg->regs + GRSTCTL);
2443
2444	/* wait until the fifo is flushed */
2445	timeout = 100;
2446
2447	while (1) {
2448		val = dwc2_readl(hsotg->regs + GRSTCTL);
2449
2450		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2451			break;
2452
2453		if (--timeout == 0) {
2454			dev_err(hsotg->dev,
2455				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2456				__func__, val);
2457			break;
2458		}
2459
2460		udelay(1);
2461	}
2462}
2463
2464/**
2465 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2466 * @hsotg: The driver state
2467 * @hs_ep: The driver endpoint to check.
2468 *
2469 * Check to see if there is a request that has data to send, and if so
2470 * make an attempt to write data into the FIFO.
2471 */
2472static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2473			   struct dwc2_hsotg_ep *hs_ep)
2474{
2475	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2476
2477	if (!hs_ep->dir_in || !hs_req) {
2478		/**
2479		 * if request is not enqueued, we disable interrupts
2480		 * for endpoints, excepting ep0
2481		 */
2482		if (hs_ep->index != 0)
2483			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2484					     hs_ep->dir_in, 0);
2485		return 0;
2486	}
2487
2488	if (hs_req->req.actual < hs_req->req.length) {
2489		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2490			hs_ep->index);
2491		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2492	}
2493
2494	return 0;
2495}
2496
2497/**
2498 * dwc2_hsotg_complete_in - complete IN transfer
2499 * @hsotg: The device state.
2500 * @hs_ep: The endpoint that has just completed.
2501 *
2502 * An IN transfer has been completed, update the transfer's state and then
2503 * call the relevant completion routines.
2504 */
2505static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2506				  struct dwc2_hsotg_ep *hs_ep)
2507{
2508	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2509	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2510	int size_left, size_done;
2511
2512	if (!hs_req) {
2513		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2514		return;
2515	}
2516
2517	/* Finish ZLP handling for IN EP0 transactions */
2518	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2519		dev_dbg(hsotg->dev, "zlp packet sent\n");
2520
2521		/*
2522		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2523		 * changed to IN. Change back to complete OUT transfer request
2524		 */
2525		hs_ep->dir_in = 0;
2526
2527		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2528		if (hsotg->test_mode) {
2529			int ret;
2530
2531			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2532			if (ret < 0) {
2533				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2534						hsotg->test_mode);
2535				dwc2_hsotg_stall_ep0(hsotg);
2536				return;
2537			}
2538		}
2539		dwc2_hsotg_enqueue_setup(hsotg);
2540		return;
2541	}
2542
2543	/*
2544	 * Calculate the size of the transfer by checking how much is left
2545	 * in the endpoint size register and then working it out from
2546	 * the amount we loaded for the transfer.
2547	 *
2548	 * We do this even for DMA, as the transfer may have incremented
2549	 * past the end of the buffer (DMA transfers are always 32bit
2550	 * aligned).
2551	 */
2552	if (using_desc_dma(hsotg)) {
2553		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2554		if (size_left < 0)
2555			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2556				size_left);
2557	} else {
2558		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2559	}
2560
2561	size_done = hs_ep->size_loaded - size_left;
2562	size_done += hs_ep->last_load;
2563
2564	if (hs_req->req.actual != size_done)
2565		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2566			__func__, hs_req->req.actual, size_done);
2567
2568	hs_req->req.actual = size_done;
2569	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2570		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2571
2572	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2573		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2574		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2575		return;
2576	}
2577
2578	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2579	if (hs_ep->send_zlp) {
2580		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2581		hs_ep->send_zlp = 0;
2582		/* transfer will be completed on next complete interrupt */
2583		return;
 
 
 
2584	}
2585
2586	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2587		/* Move to STATUS OUT */
2588		dwc2_hsotg_ep0_zlp(hsotg, false);
2589		return;
2590	}
2591
 
 
 
 
 
 
2592	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2593}
2594
2595/**
2596 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2597 * @hsotg: The device state.
2598 * @idx: Index of ep.
2599 * @dir_in: Endpoint direction 1-in 0-out.
2600 *
2601 * Reads for endpoint with given index and direction, by masking
2602 * epint_reg with coresponding mask.
2603 */
2604static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2605					  unsigned int idx, int dir_in)
2606{
2607	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2608	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2609	u32 ints;
2610	u32 mask;
2611	u32 diepempmsk;
2612
2613	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2614	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2615	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2616	mask |= DXEPINT_SETUP_RCVD;
2617
2618	ints = dwc2_readl(hsotg->regs + epint_reg);
2619	ints &= mask;
2620	return ints;
2621}
2622
2623/**
2624 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2625 * @hs_ep: The endpoint on which interrupt is asserted.
2626 *
2627 * This interrupt indicates that the endpoint has been disabled per the
2628 * application's request.
2629 *
2630 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2631 * in case of ISOC completes current request.
2632 *
2633 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2634 * request starts it.
2635 */
2636static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2637{
2638	struct dwc2_hsotg *hsotg = hs_ep->parent;
2639	struct dwc2_hsotg_req *hs_req;
2640	unsigned char idx = hs_ep->index;
2641	int dir_in = hs_ep->dir_in;
2642	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2643	int dctl = dwc2_readl(hsotg->regs + DCTL);
2644
2645	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2646
2647	if (dir_in) {
2648		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2649
2650		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2651
2652		if (hs_ep->isochronous) {
2653			dwc2_hsotg_complete_in(hsotg, hs_ep);
2654			return;
2655		}
2656
2657		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2658			int dctl = dwc2_readl(hsotg->regs + DCTL);
2659
2660			dctl |= DCTL_CGNPINNAK;
2661			dwc2_writel(dctl, hsotg->regs + DCTL);
2662		}
2663		return;
2664	}
2665
2666	if (dctl & DCTL_GOUTNAKSTS) {
2667		dctl |= DCTL_CGOUTNAK;
2668		dwc2_writel(dctl, hsotg->regs + DCTL);
 
2669	}
2670
2671	if (!hs_ep->isochronous)
2672		return;
2673
2674	if (list_empty(&hs_ep->queue)) {
2675		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2676			__func__, hs_ep);
2677		return;
2678	}
2679
2680	do {
2681		hs_req = get_ep_head(hs_ep);
2682		if (hs_req)
 
 
2683			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2684						    -ENODATA);
 
2685		dwc2_gadget_incr_frame_num(hs_ep);
 
 
2686	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2687
2688	dwc2_gadget_start_next_request(hs_ep);
2689}
2690
2691/**
2692 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2693 * @hs_ep: The endpoint on which interrupt is asserted.
2694 *
2695 * This is starting point for ISOC-OUT transfer, synchronization done with
2696 * first out token received from host while corresponding EP is disabled.
2697 *
2698 * Device does not know initial frame in which out token will come. For this
2699 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2700 * getting this interrupt SW starts calculation for next transfer frame.
2701 */
2702static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2703{
2704	struct dwc2_hsotg *hsotg = ep->parent;
 
2705	int dir_in = ep->dir_in;
2706	u32 doepmsk;
2707	u32 tmp;
2708
2709	if (dir_in || !ep->isochronous)
2710		return;
2711
2712	/*
2713	 * Store frame in which irq was asserted here, as
2714	 * it can change while completing request below.
2715	 */
2716	tmp = dwc2_hsotg_read_frameno(hsotg);
2717
2718	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2719
2720	if (using_desc_dma(hsotg)) {
2721		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2722			/* Start first ISO Out */
2723			ep->target_frame = tmp;
2724			dwc2_gadget_start_isoc_ddma(ep);
2725		}
2726		return;
2727	}
2728
2729	if (ep->interval > 1 &&
2730	    ep->target_frame == TARGET_FRAME_INITIAL) {
2731		u32 dsts;
2732		u32 ctrl;
2733
2734		dsts = dwc2_readl(hsotg->regs + DSTS);
2735		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2736		dwc2_gadget_incr_frame_num(ep);
 
 
 
 
 
 
 
 
2737
2738		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2739		if (ep->target_frame & 0x1)
2740			ctrl |= DXEPCTL_SETODDFR;
2741		else
2742			ctrl |= DXEPCTL_SETEVENFR;
 
 
2743
2744		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
 
 
2745	}
2746
2747	dwc2_gadget_start_next_request(ep);
2748	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2749	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2750	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2751}
2752
 
 
 
2753/**
2754* dwc2_gadget_handle_nak - handle NAK interrupt
2755* @hs_ep: The endpoint on which interrupt is asserted.
2756*
2757* This is starting point for ISOC-IN transfer, synchronization done with
2758* first IN token received from host while corresponding EP is disabled.
2759*
2760* Device does not know when first one token will arrive from host. On first
2761* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2762* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2763* sent in response to that as there was no data in FIFO. SW is basing on this
2764* interrupt to obtain frame in which token has come and then based on the
2765* interval calculates next frame for transfer.
2766*/
2767static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2768{
2769	struct dwc2_hsotg *hsotg = hs_ep->parent;
 
2770	int dir_in = hs_ep->dir_in;
 
2771
2772	if (!dir_in || !hs_ep->isochronous)
2773		return;
2774
2775	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2776		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2777
2778		if (using_desc_dma(hsotg)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779			dwc2_gadget_start_isoc_ddma(hs_ep);
2780			return;
2781		}
2782
 
2783		if (hs_ep->interval > 1) {
2784			u32 ctrl = dwc2_readl(hsotg->regs +
2785					      DIEPCTL(hs_ep->index));
2786			if (hs_ep->target_frame & 0x1)
2787				ctrl |= DXEPCTL_SETODDFR;
2788			else
2789				ctrl |= DXEPCTL_SETEVENFR;
2790
2791			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792		}
2793
2794		dwc2_hsotg_complete_request(hsotg, hs_ep,
2795					    get_ep_head(hs_ep), 0);
 
2796	}
2797
2798	dwc2_gadget_incr_frame_num(hs_ep);
 
2799}
2800
2801/**
2802 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2803 * @hsotg: The driver state
2804 * @idx: The index for the endpoint (0..15)
2805 * @dir_in: Set if this is an IN endpoint
2806 *
2807 * Process and clear any interrupt pending for an individual endpoint
2808 */
2809static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2810			    int dir_in)
2811{
2812	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2813	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2814	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2815	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2816	u32 ints;
2817	u32 ctrl;
2818
2819	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2820	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2821
2822	/* Clear endpoint interrupts */
2823	dwc2_writel(ints, hsotg->regs + epint_reg);
2824
2825	if (!hs_ep) {
2826		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2827					__func__, idx, dir_in ? "in" : "out");
2828		return;
2829	}
2830
2831	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2832		__func__, idx, dir_in ? "in" : "out", ints);
2833
2834	/* Don't process XferCompl interrupt if it is a setup packet */
2835	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2836		ints &= ~DXEPINT_XFERCOMPL;
2837
2838	/*
2839	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2840	 * stage and xfercomplete was generated without SETUP phase done
2841	 * interrupt. SW should parse received setup packet only after host's
2842	 * exit from setup phase of control transfer.
2843	 */
2844	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2845	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2846		ints &= ~DXEPINT_XFERCOMPL;
2847
2848	if (ints & DXEPINT_XFERCOMPL) {
2849		dev_dbg(hsotg->dev,
2850			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2851			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2852			dwc2_readl(hsotg->regs + epsiz_reg));
2853
2854		/* In DDMA handle isochronous requests separately */
2855		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2856			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2857			/* Try to start next isoc request */
2858			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2859		} else if (dir_in) {
2860			/*
2861			 * We get OutDone from the FIFO, so we only
2862			 * need to look at completing IN requests here
2863			 * if operating slave mode
2864			 */
2865			if (hs_ep->isochronous && hs_ep->interval > 1)
2866				dwc2_gadget_incr_frame_num(hs_ep);
2867
2868			dwc2_hsotg_complete_in(hsotg, hs_ep);
2869			if (ints & DXEPINT_NAKINTRPT)
2870				ints &= ~DXEPINT_NAKINTRPT;
2871
2872			if (idx == 0 && !hs_ep->req)
2873				dwc2_hsotg_enqueue_setup(hsotg);
2874		} else if (using_dma(hsotg)) {
2875			/*
2876			 * We're using DMA, we need to fire an OutDone here
2877			 * as we ignore the RXFIFO.
2878			 */
2879			if (hs_ep->isochronous && hs_ep->interval > 1)
2880				dwc2_gadget_incr_frame_num(hs_ep);
2881
2882			dwc2_hsotg_handle_outdone(hsotg, idx);
2883		}
2884	}
2885
2886	if (ints & DXEPINT_EPDISBLD)
2887		dwc2_gadget_handle_ep_disabled(hs_ep);
2888
2889	if (ints & DXEPINT_OUTTKNEPDIS)
2890		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2891
2892	if (ints & DXEPINT_NAKINTRPT)
2893		dwc2_gadget_handle_nak(hs_ep);
2894
2895	if (ints & DXEPINT_AHBERR)
2896		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2897
2898	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2899		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2900
2901		if (using_dma(hsotg) && idx == 0) {
2902			/*
2903			 * this is the notification we've received a
2904			 * setup packet. In non-DMA mode we'd get this
2905			 * from the RXFIFO, instead we need to process
2906			 * the setup here.
2907			 */
2908
2909			if (dir_in)
2910				WARN_ON_ONCE(1);
2911			else
2912				dwc2_hsotg_handle_outdone(hsotg, 0);
2913		}
2914	}
2915
2916	if (ints & DXEPINT_STSPHSERCVD) {
2917		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2918
2919		/* Move to STATUS IN for DDMA */
2920		if (using_desc_dma(hsotg))
2921			dwc2_hsotg_ep0_zlp(hsotg, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2922	}
2923
2924	if (ints & DXEPINT_BACK2BACKSETUP)
2925		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2926
2927	if (ints & DXEPINT_BNAINTR) {
2928		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2929
2930		/*
2931		 * Try to start next isoc request, if any.
2932		 * Sometimes the endpoint remains enabled after BNA interrupt
2933		 * assertion, which is not expected, hence we can enter here
2934		 * couple of times.
2935		 */
2936		if (hs_ep->isochronous)
2937			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2938	}
2939
2940	if (dir_in && !hs_ep->isochronous) {
2941		/* not sure if this is important, but we'll clear it anyway */
2942		if (ints & DXEPINT_INTKNTXFEMP) {
2943			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2944				__func__, idx);
2945		}
2946
2947		/* this probably means something bad is happening */
2948		if (ints & DXEPINT_INTKNEPMIS) {
2949			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2950				 __func__, idx);
2951		}
2952
2953		/* FIFO has space or is empty (see GAHBCFG) */
2954		if (hsotg->dedicated_fifos &&
2955		    ints & DXEPINT_TXFEMP) {
2956			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2957				__func__, idx);
2958			if (!using_dma(hsotg))
2959				dwc2_hsotg_trytx(hsotg, hs_ep);
2960		}
2961	}
2962}
2963
2964/**
2965 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2966 * @hsotg: The device state.
2967 *
2968 * Handle updating the device settings after the enumeration phase has
2969 * been completed.
2970 */
2971static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2972{
2973	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2974	int ep0_mps = 0, ep_mps = 8;
2975
2976	/*
2977	 * This should signal the finish of the enumeration phase
2978	 * of the USB handshaking, so we should now know what rate
2979	 * we connected at.
2980	 */
2981
2982	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2983
2984	/*
2985	 * note, since we're limited by the size of transfer on EP0, and
2986	 * it seems IN transfers must be a even number of packets we do
2987	 * not advertise a 64byte MPS on EP0.
2988	 */
2989
2990	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2991	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2992	case DSTS_ENUMSPD_FS:
2993	case DSTS_ENUMSPD_FS48:
2994		hsotg->gadget.speed = USB_SPEED_FULL;
2995		ep0_mps = EP0_MPS_LIMIT;
2996		ep_mps = 1023;
2997		break;
2998
2999	case DSTS_ENUMSPD_HS:
3000		hsotg->gadget.speed = USB_SPEED_HIGH;
3001		ep0_mps = EP0_MPS_LIMIT;
3002		ep_mps = 1024;
3003		break;
3004
3005	case DSTS_ENUMSPD_LS:
3006		hsotg->gadget.speed = USB_SPEED_LOW;
3007		ep0_mps = 8;
3008		ep_mps = 8;
3009		/*
3010		 * note, we don't actually support LS in this driver at the
3011		 * moment, and the documentation seems to imply that it isn't
3012		 * supported by the PHYs on some of the devices.
3013		 */
3014		break;
3015	}
3016	dev_info(hsotg->dev, "new device is %s\n",
3017		 usb_speed_string(hsotg->gadget.speed));
3018
3019	/*
3020	 * we should now know the maximum packet size for an
3021	 * endpoint, so set the endpoints to a default value.
3022	 */
3023
3024	if (ep0_mps) {
3025		int i;
3026		/* Initialize ep0 for both in and out directions */
3027		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3028		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3029		for (i = 1; i < hsotg->num_of_eps; i++) {
3030			if (hsotg->eps_in[i])
3031				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3032							    0, 1);
3033			if (hsotg->eps_out[i])
3034				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3035							    0, 0);
3036		}
3037	}
3038
3039	/* ensure after enumeration our EP0 is active */
3040
3041	dwc2_hsotg_enqueue_setup(hsotg);
3042
3043	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3044		dwc2_readl(hsotg->regs + DIEPCTL0),
3045		dwc2_readl(hsotg->regs + DOEPCTL0));
3046}
3047
3048/**
3049 * kill_all_requests - remove all requests from the endpoint's queue
3050 * @hsotg: The device state.
3051 * @ep: The endpoint the requests may be on.
3052 * @result: The result code to use.
3053 *
3054 * Go through the requests on the given endpoint and mark them
3055 * completed with the given result code.
3056 */
3057static void kill_all_requests(struct dwc2_hsotg *hsotg,
3058			      struct dwc2_hsotg_ep *ep,
3059			      int result)
3060{
3061	struct dwc2_hsotg_req *req, *treq;
3062	unsigned size;
3063
3064	ep->req = NULL;
3065
3066	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3067		dwc2_hsotg_complete_request(hsotg, ep, req,
3068					   result);
 
 
3069
3070	if (!hsotg->dedicated_fifos)
3071		return;
3072	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3073	if (size < ep->fifo_size)
3074		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3075}
3076
3077/**
3078 * dwc2_hsotg_disconnect - disconnect service
3079 * @hsotg: The device state.
3080 *
3081 * The device has been disconnected. Remove all current
3082 * transactions and signal the gadget driver that this
3083 * has happened.
3084 */
3085void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3086{
3087	unsigned ep;
3088
3089	if (!hsotg->connected)
3090		return;
3091
3092	hsotg->connected = 0;
3093	hsotg->test_mode = 0;
3094
 
3095	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3096		if (hsotg->eps_in[ep])
3097			kill_all_requests(hsotg, hsotg->eps_in[ep],
3098								-ESHUTDOWN);
3099		if (hsotg->eps_out[ep])
3100			kill_all_requests(hsotg, hsotg->eps_out[ep],
3101								-ESHUTDOWN);
3102	}
3103
3104	call_gadget(hsotg, disconnect);
3105	hsotg->lx_state = DWC2_L3;
 
 
3106}
3107
3108/**
3109 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3110 * @hsotg: The device state:
3111 * @periodic: True if this is a periodic FIFO interrupt
3112 */
3113static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3114{
3115	struct dwc2_hsotg_ep *ep;
3116	int epno, ret;
3117
3118	/* look through for any more data to transmit */
3119	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3120		ep = index_to_ep(hsotg, epno, 1);
3121
3122		if (!ep)
3123			continue;
3124
3125		if (!ep->dir_in)
3126			continue;
3127
3128		if ((periodic && !ep->periodic) ||
3129		    (!periodic && ep->periodic))
3130			continue;
3131
3132		ret = dwc2_hsotg_trytx(hsotg, ep);
3133		if (ret < 0)
3134			break;
3135	}
3136}
3137
3138/* IRQ flags which will trigger a retry around the IRQ loop */
3139#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3140			GINTSTS_PTXFEMP |  \
3141			GINTSTS_RXFLVL)
3142
 
3143/**
3144 * dwc2_hsotg_core_init - issue softreset to the core
3145 * @hsotg: The device state
 
3146 *
3147 * Issue a soft reset to the core, and await the core finishing it.
3148 */
3149void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3150						bool is_usb_reset)
3151{
3152	u32 intmsk;
3153	u32 val;
3154	u32 usbcfg;
3155	u32 dcfg = 0;
 
3156
3157	/* Kill any ep0 requests as controller will be reinitialized */
3158	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3159
3160	if (!is_usb_reset)
3161		if (dwc2_core_reset(hsotg))
3162			return;
 
 
 
 
 
 
 
 
 
3163
3164	/*
3165	 * we must now enable ep0 ready for host detection and then
3166	 * set configuration.
3167	 */
3168
3169	/* keep other bits untouched (so e.g. forced modes are not lost) */
3170	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3171	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3172		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3173
3174	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3175	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3176	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3177		/* FS/LS Dedicated Transceiver Interface */
3178		usbcfg |= GUSBCFG_PHYSEL;
3179	} else {
3180		/* set the PLL on, remove the HNP/SRP and set the PHY */
3181		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3182		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3183			(val << GUSBCFG_USBTRDTIM_SHIFT);
3184	}
3185	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3186
3187	dwc2_hsotg_init_fifo(hsotg);
3188
3189	if (!is_usb_reset)
3190		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
 
 
3191
3192	dcfg |= DCFG_EPMISCNT(1);
3193
3194	switch (hsotg->params.speed) {
3195	case DWC2_SPEED_PARAM_LOW:
3196		dcfg |= DCFG_DEVSPD_LS;
3197		break;
3198	case DWC2_SPEED_PARAM_FULL:
3199		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3200			dcfg |= DCFG_DEVSPD_FS48;
3201		else
3202			dcfg |= DCFG_DEVSPD_FS;
3203		break;
3204	default:
3205		dcfg |= DCFG_DEVSPD_HS;
3206	}
3207
3208	dwc2_writel(dcfg,  hsotg->regs + DCFG);
 
 
 
3209
3210	/* Clear any pending OTG interrupts */
3211	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3212
3213	/* Clear any pending interrupts */
3214	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3215	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3216		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3217		GINTSTS_USBRST | GINTSTS_RESETDET |
3218		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3219		GINTSTS_USBSUSP | GINTSTS_WKUPINT;
 
3220
3221	if (!using_desc_dma(hsotg))
3222		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3223
3224	if (hsotg->params.external_id_pin_ctl <= 0)
3225		intmsk |= GINTSTS_CONIDSTSCHNG;
3226
3227	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3228
3229	if (using_dma(hsotg)) {
3230		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3231			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3232			    hsotg->regs + GAHBCFG);
3233
3234		/* Set DDMA mode support in the core if needed */
3235		if (using_desc_dma(hsotg))
3236			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3237
3238	} else {
3239		dwc2_writel(((hsotg->dedicated_fifos) ?
3240						(GAHBCFG_NP_TXF_EMP_LVL |
3241						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3242			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3243	}
3244
3245	/*
3246	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3247	 * when we have no data to transfer. Otherwise we get being flooded by
3248	 * interrupts.
3249	 */
3250
3251	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3252		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3253		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3254		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3255		hsotg->regs + DIEPMSK);
3256
3257	/*
3258	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3259	 * DMA mode we may need this and StsPhseRcvd.
3260	 */
3261	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3262		DOEPMSK_STSPHSERCVDMSK) : 0) |
3263		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3264		DOEPMSK_SETUPMSK,
3265		hsotg->regs + DOEPMSK);
3266
3267	/* Enable BNA interrupt for DDMA */
3268	if (using_desc_dma(hsotg))
3269		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
 
 
 
 
 
 
3270
3271	dwc2_writel(0, hsotg->regs + DAINTMSK);
3272
3273	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3274		dwc2_readl(hsotg->regs + DIEPCTL0),
3275		dwc2_readl(hsotg->regs + DOEPCTL0));
3276
3277	/* enable in and out endpoint interrupts */
3278	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3279
3280	/*
3281	 * Enable the RXFIFO when in slave mode, as this is how we collect
3282	 * the data. In DMA mode, we get events from the FIFO but also
3283	 * things we cannot process, so do not use it.
3284	 */
3285	if (!using_dma(hsotg))
3286		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3287
3288	/* Enable interrupts for EP0 in and out */
3289	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3290	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3291
3292	if (!is_usb_reset) {
3293		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3294		udelay(10);  /* see openiboot */
3295		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3296	}
3297
3298	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3299
3300	/*
3301	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3302	 * writing to the EPCTL register..
3303	 */
3304
3305	/* set to read 1 8byte packet */
3306	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3307	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3308
3309	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3310	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3311	       DXEPCTL_USBACTEP,
3312	       hsotg->regs + DOEPCTL0);
3313
3314	/* enable, but don't activate EP0in */
3315	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3316	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3317
3318	dwc2_hsotg_enqueue_setup(hsotg);
3319
3320	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3321		dwc2_readl(hsotg->regs + DIEPCTL0),
3322		dwc2_readl(hsotg->regs + DOEPCTL0));
3323
3324	/* clear global NAKs */
3325	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3326	if (!is_usb_reset)
3327		val |= DCTL_SFTDISCON;
3328	__orr32(hsotg->regs + DCTL, val);
 
 
 
 
 
 
 
3329
3330	/* must be at-least 3ms to allow bus to see disconnect */
3331	mdelay(3);
3332
3333	hsotg->lx_state = DWC2_L0;
 
 
 
 
 
 
3334}
3335
3336static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3337{
3338	/* set the soft-disconnect bit */
3339	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3340}
3341
3342void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3343{
3344	/* remove the soft-disconnect and let's go */
3345	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
3346}
3347
3348/**
3349 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3350 * @hsotg: The device state:
3351 *
3352 * This interrupt indicates one of the following conditions occurred while
3353 * transmitting an ISOC transaction.
3354 * - Corrupted IN Token for ISOC EP.
3355 * - Packet not complete in FIFO.
3356 *
3357 * The following actions will be taken:
3358 * - Determine the EP
3359 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3360 */
3361static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3362{
3363	struct dwc2_hsotg_ep *hs_ep;
3364	u32 epctrl;
 
3365	u32 idx;
3366
3367	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3368
3369	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
 
 
3370		hs_ep = hsotg->eps_in[idx];
3371		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3372		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
 
 
 
 
3373		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3374			epctrl |= DXEPCTL_SNAK;
3375			epctrl |= DXEPCTL_EPDIS;
3376			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3377		}
3378	}
3379
3380	/* Clear interrupt */
3381	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3382}
3383
3384/**
3385 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3386 * @hsotg: The device state:
3387 *
3388 * This interrupt indicates one of the following conditions occurred while
3389 * transmitting an ISOC transaction.
3390 * - Corrupted OUT Token for ISOC EP.
3391 * - Packet not complete in FIFO.
3392 *
3393 * The following actions will be taken:
3394 * - Determine the EP
3395 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3396 */
3397static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3398{
3399	u32 gintsts;
3400	u32 gintmsk;
 
3401	u32 epctrl;
3402	struct dwc2_hsotg_ep *hs_ep;
3403	int idx;
3404
3405	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3406
3407	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
 
 
 
3408		hs_ep = hsotg->eps_out[idx];
3409		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3410		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
 
 
 
 
3411		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3412			/* Unmask GOUTNAKEFF interrupt */
3413			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3414			gintmsk |= GINTSTS_GOUTNAKEFF;
3415			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3416
3417			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3418			if (!(gintsts & GINTSTS_GOUTNAKEFF))
3419				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
 
 
3420		}
3421	}
3422
3423	/* Clear interrupt */
3424	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3425}
3426
3427/**
3428 * dwc2_hsotg_irq - handle device interrupt
3429 * @irq: The IRQ number triggered
3430 * @pw: The pw value when registered the handler.
3431 */
3432static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3433{
3434	struct dwc2_hsotg *hsotg = pw;
3435	int retry_count = 8;
3436	u32 gintsts;
3437	u32 gintmsk;
3438
3439	if (!dwc2_is_device_mode(hsotg))
3440		return IRQ_NONE;
3441
3442	spin_lock(&hsotg->lock);
3443irq_retry:
3444	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3445	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3446
3447	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3448		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3449
3450	gintsts &= gintmsk;
3451
3452	if (gintsts & GINTSTS_RESETDET) {
3453		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3454
3455		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3456
3457		/* This event must be used only if controller is suspended */
3458		if (hsotg->lx_state == DWC2_L2) {
3459			dwc2_exit_hibernation(hsotg, true);
3460			hsotg->lx_state = DWC2_L0;
3461		}
 
 
 
 
 
 
3462	}
3463
3464	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3465
3466		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3467		u32 connected = hsotg->connected;
3468
3469		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3470		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3471			dwc2_readl(hsotg->regs + GNPTXSTS));
3472
3473		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3474
3475		/* Report disconnection if it is not already done. */
3476		dwc2_hsotg_disconnect(hsotg);
3477
 
 
 
3478		if (usb_status & GOTGCTL_BSESVLD && connected)
3479			dwc2_hsotg_core_init_disconnected(hsotg, true);
3480	}
3481
3482	if (gintsts & GINTSTS_ENUMDONE) {
3483		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3484
3485		dwc2_hsotg_irq_enumdone(hsotg);
3486	}
3487
3488	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3489		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3490		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3491		u32 daint_out, daint_in;
3492		int ep;
3493
3494		daint &= daintmsk;
3495		daint_out = daint >> DAINT_OUTEP_SHIFT;
3496		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3497
3498		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3499
3500		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3501						ep++, daint_out >>= 1) {
3502			if (daint_out & 1)
3503				dwc2_hsotg_epint(hsotg, ep, 0);
3504		}
3505
3506		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3507						ep++, daint_in >>= 1) {
3508			if (daint_in & 1)
3509				dwc2_hsotg_epint(hsotg, ep, 1);
3510		}
3511	}
3512
3513	/* check both FIFOs */
3514
3515	if (gintsts & GINTSTS_NPTXFEMP) {
3516		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3517
3518		/*
3519		 * Disable the interrupt to stop it happening again
3520		 * unless one of these endpoint routines decides that
3521		 * it needs re-enabling
3522		 */
3523
3524		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3525		dwc2_hsotg_irq_fifoempty(hsotg, false);
3526	}
3527
3528	if (gintsts & GINTSTS_PTXFEMP) {
3529		dev_dbg(hsotg->dev, "PTxFEmp\n");
3530
3531		/* See note in GINTSTS_NPTxFEmp */
3532
3533		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3534		dwc2_hsotg_irq_fifoempty(hsotg, true);
3535	}
3536
3537	if (gintsts & GINTSTS_RXFLVL) {
3538		/*
3539		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3540		 * we need to retry dwc2_hsotg_handle_rx if this is still
3541		 * set.
3542		 */
3543
3544		dwc2_hsotg_handle_rx(hsotg);
3545	}
3546
3547	if (gintsts & GINTSTS_ERLYSUSP) {
3548		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3549		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3550	}
3551
3552	/*
3553	 * these next two seem to crop-up occasionally causing the core
3554	 * to shutdown the USB transfer, so try clearing them and logging
3555	 * the occurrence.
3556	 */
3557
3558	if (gintsts & GINTSTS_GOUTNAKEFF) {
3559		u8 idx;
3560		u32 epctrl;
3561		u32 gintmsk;
 
3562		struct dwc2_hsotg_ep *hs_ep;
3563
 
 
3564		/* Mask this interrupt */
3565		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3566		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3567		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3568
3569		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3570		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3571			hs_ep = hsotg->eps_out[idx];
3572			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
 
 
3573
 
 
 
3574			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3575				epctrl |= DXEPCTL_SNAK;
3576				epctrl |= DXEPCTL_EPDIS;
3577				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
 
 
 
 
 
 
 
 
 
 
3578			}
3579		}
3580
3581		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3582	}
3583
3584	if (gintsts & GINTSTS_GINNAKEFF) {
3585		dev_info(hsotg->dev, "GINNakEff triggered\n");
3586
3587		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3588
3589		dwc2_hsotg_dump(hsotg);
3590	}
3591
3592	if (gintsts & GINTSTS_INCOMPL_SOIN)
3593		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3594
3595	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3596		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3597
3598	/*
3599	 * if we've had fifo events, we should try and go around the
3600	 * loop again to see if there's any point in returning yet.
3601	 */
3602
3603	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3604			goto irq_retry;
 
 
 
 
3605
3606	spin_unlock(&hsotg->lock);
3607
3608	return IRQ_HANDLED;
3609}
3610
3611static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3612				   u32 bit, u32 timeout)
3613{
3614	u32 i;
3615
3616	for (i = 0; i < timeout; i++) {
3617		if (dwc2_readl(hs_otg->regs + reg) & bit)
3618			return 0;
3619		udelay(1);
3620	}
3621
3622	return -ETIMEDOUT;
3623}
3624
3625static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3626				   struct dwc2_hsotg_ep *hs_ep)
3627{
3628	u32 epctrl_reg;
3629	u32 epint_reg;
3630
3631	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3632		DOEPCTL(hs_ep->index);
3633	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3634		DOEPINT(hs_ep->index);
3635
3636	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3637		hs_ep->name);
3638
3639	if (hs_ep->dir_in) {
3640		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3641			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3642			/* Wait for Nak effect */
3643			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3644						    DXEPINT_INEPNAKEFF, 100))
3645				dev_warn(hsotg->dev,
3646					 "%s: timeout DIEPINT.NAKEFF\n",
3647					 __func__);
3648		} else {
3649			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3650			/* Wait for Nak effect */
3651			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3652						    GINTSTS_GINNAKEFF, 100))
3653				dev_warn(hsotg->dev,
3654					 "%s: timeout GINTSTS.GINNAKEFF\n",
3655					 __func__);
3656		}
3657	} else {
3658		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3659			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3660
3661		/* Wait for global nak to take effect */
3662		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3663					    GINTSTS_GOUTNAKEFF, 100))
3664			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3665				 __func__);
3666	}
3667
3668	/* Disable ep */
3669	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3670
3671	/* Wait for ep to be disabled */
3672	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3673		dev_warn(hsotg->dev,
3674			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3675
3676	/* Clear EPDISBLD interrupt */
3677	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3678
3679	if (hs_ep->dir_in) {
3680		unsigned short fifo_index;
3681
3682		if (hsotg->dedicated_fifos || hs_ep->periodic)
3683			fifo_index = hs_ep->fifo_index;
3684		else
3685			fifo_index = 0;
3686
3687		/* Flush TX FIFO */
3688		dwc2_flush_tx_fifo(hsotg, fifo_index);
3689
3690		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3691		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3692			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3693
3694	} else {
3695		/* Remove global NAKs */
3696		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3697	}
3698}
3699
3700/**
3701 * dwc2_hsotg_ep_enable - enable the given endpoint
3702 * @ep: The USB endpint to configure
3703 * @desc: The USB endpoint descriptor to configure with.
3704 *
3705 * This is called from the USB gadget code's usb_ep_enable().
3706 */
3707static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3708			       const struct usb_endpoint_descriptor *desc)
3709{
3710	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3711	struct dwc2_hsotg *hsotg = hs_ep->parent;
3712	unsigned long flags;
3713	unsigned int index = hs_ep->index;
3714	u32 epctrl_reg;
3715	u32 epctrl;
3716	u32 mps;
3717	u32 mc;
3718	u32 mask;
3719	unsigned int dir_in;
3720	unsigned int i, val, size;
3721	int ret = 0;
 
 
3722
3723	dev_dbg(hsotg->dev,
3724		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3725		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3726		desc->wMaxPacketSize, desc->bInterval);
3727
3728	/* not to be called for EP0 */
3729	if (index == 0) {
3730		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3731		return -EINVAL;
3732	}
3733
3734	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3735	if (dir_in != hs_ep->dir_in) {
3736		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3737		return -EINVAL;
3738	}
3739
 
3740	mps = usb_endpoint_maxp(desc);
3741	mc = usb_endpoint_maxp_mult(desc);
3742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3743	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3744
3745	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3746	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3747
3748	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3749		__func__, epctrl, epctrl_reg);
3750
 
 
 
 
 
3751	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3752	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3753		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3754			MAX_DMA_DESC_NUM_GENERIC *
3755			sizeof(struct dwc2_dma_desc),
3756			&hs_ep->desc_list_dma, GFP_ATOMIC);
3757		if (!hs_ep->desc_list) {
3758			ret = -ENOMEM;
3759			goto error2;
3760		}
3761	}
3762
3763	spin_lock_irqsave(&hsotg->lock, flags);
3764
3765	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3766	epctrl |= DXEPCTL_MPS(mps);
3767
3768	/*
3769	 * mark the endpoint as active, otherwise the core may ignore
3770	 * transactions entirely for this endpoint
3771	 */
3772	epctrl |= DXEPCTL_USBACTEP;
3773
3774	/* update the endpoint state */
3775	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3776
3777	/* default, set to non-periodic */
3778	hs_ep->isochronous = 0;
3779	hs_ep->periodic = 0;
3780	hs_ep->halted = 0;
 
3781	hs_ep->interval = desc->bInterval;
3782
3783	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3784	case USB_ENDPOINT_XFER_ISOC:
3785		epctrl |= DXEPCTL_EPTYPE_ISO;
3786		epctrl |= DXEPCTL_SETEVENFR;
3787		hs_ep->isochronous = 1;
3788		hs_ep->interval = 1 << (desc->bInterval - 1);
3789		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3790		hs_ep->isoc_chain_num = 0;
3791		hs_ep->next_desc = 0;
 
3792		if (dir_in) {
3793			hs_ep->periodic = 1;
3794			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3795			mask |= DIEPMSK_NAKMSK;
3796			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3797		} else {
3798			mask = dwc2_readl(hsotg->regs + DOEPMSK);
 
3799			mask |= DOEPMSK_OUTTKNEPDISMSK;
3800			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3801		}
3802		break;
3803
3804	case USB_ENDPOINT_XFER_BULK:
3805		epctrl |= DXEPCTL_EPTYPE_BULK;
3806		break;
3807
3808	case USB_ENDPOINT_XFER_INT:
3809		if (dir_in)
3810			hs_ep->periodic = 1;
3811
3812		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3813			hs_ep->interval = 1 << (desc->bInterval - 1);
3814
3815		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3816		break;
3817
3818	case USB_ENDPOINT_XFER_CONTROL:
3819		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3820		break;
3821	}
3822
3823	/*
3824	 * if the hardware has dedicated fifos, we must give each IN EP
3825	 * a unique tx-fifo even if it is non-periodic.
3826	 */
3827	if (dir_in && hsotg->dedicated_fifos) {
 
3828		u32 fifo_index = 0;
3829		u32 fifo_size = UINT_MAX;
3830		size = hs_ep->ep.maxpacket*hs_ep->mc;
3831		for (i = 1; i < hsotg->num_of_eps; ++i) {
3832			if (hsotg->fifo_map & (1<<i))
 
3833				continue;
3834			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3835			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
3836			if (val < size)
3837				continue;
3838			/* Search for smallest acceptable fifo */
3839			if (val < fifo_size) {
3840				fifo_size = val;
3841				fifo_index = i;
3842			}
3843		}
3844		if (!fifo_index) {
3845			dev_err(hsotg->dev,
3846				"%s: No suitable fifo found\n", __func__);
3847			ret = -ENOMEM;
3848			goto error1;
3849		}
 
3850		hsotg->fifo_map |= 1 << fifo_index;
3851		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3852		hs_ep->fifo_index = fifo_index;
3853		hs_ep->fifo_size = fifo_size;
3854	}
3855
3856	/* for non control endpoints, set PID to D0 */
3857	if (index && !hs_ep->isochronous)
3858		epctrl |= DXEPCTL_SETD0PID;
3859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3860	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3861		__func__, epctrl);
3862
3863	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3864	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3865		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3866
3867	/* enable the endpoint interrupt */
3868	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3869
3870error1:
3871	spin_unlock_irqrestore(&hsotg->lock, flags);
3872
3873error2:
3874	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3875		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3876			sizeof(struct dwc2_dma_desc),
3877			hs_ep->desc_list, hs_ep->desc_list_dma);
3878		hs_ep->desc_list = NULL;
3879	}
3880
3881	return ret;
3882}
3883
3884/**
3885 * dwc2_hsotg_ep_disable - disable given endpoint
3886 * @ep: The endpoint to disable.
3887 */
3888static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3889{
3890	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3891	struct dwc2_hsotg *hsotg = hs_ep->parent;
3892	int dir_in = hs_ep->dir_in;
3893	int index = hs_ep->index;
3894	unsigned long flags;
3895	u32 epctrl_reg;
3896	u32 ctrl;
3897
3898	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3899
3900	if (ep == &hsotg->eps_out[0]->ep) {
3901		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3902		return -EINVAL;
3903	}
3904
 
 
 
 
 
3905	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3906
3907	spin_lock_irqsave(&hsotg->lock, flags);
3908
3909	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3910
3911	if (ctrl & DXEPCTL_EPENA)
3912		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3913
3914	ctrl &= ~DXEPCTL_EPENA;
3915	ctrl &= ~DXEPCTL_USBACTEP;
3916	ctrl |= DXEPCTL_SNAK;
3917
3918	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3919	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3920
3921	/* disable endpoint interrupts */
3922	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3923
3924	/* terminate all requests with shutdown */
3925	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
3926
3927	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
3928	hs_ep->fifo_index = 0;
3929	hs_ep->fifo_size = 0;
3930
 
 
 
 
 
 
 
 
 
 
 
 
3931	spin_unlock_irqrestore(&hsotg->lock, flags);
3932	return 0;
3933}
3934
3935/**
3936 * on_list - check request is on the given endpoint
3937 * @ep: The endpoint to check.
3938 * @test: The request to test if it is on the endpoint.
3939 */
3940static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3941{
3942	struct dwc2_hsotg_req *req, *treq;
3943
3944	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
3945		if (req == test)
3946			return true;
3947	}
3948
3949	return false;
3950}
3951
3952/**
3953 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3954 * @ep: The endpoint to dequeue.
3955 * @req: The request to be removed from a queue.
3956 */
3957static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3958{
3959	struct dwc2_hsotg_req *hs_req = our_req(req);
3960	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3961	struct dwc2_hsotg *hs = hs_ep->parent;
3962	unsigned long flags;
3963
3964	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3965
3966	spin_lock_irqsave(&hs->lock, flags);
3967
3968	if (!on_list(hs_ep, hs_req)) {
3969		spin_unlock_irqrestore(&hs->lock, flags);
3970		return -EINVAL;
3971	}
3972
3973	/* Dequeue already started request */
3974	if (req == &hs_ep->req->req)
3975		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
3976
3977	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3978	spin_unlock_irqrestore(&hs->lock, flags);
3979
3980	return 0;
3981}
3982
3983/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3984 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3985 * @ep: The endpoint to set halt.
3986 * @value: Set or unset the halt.
3987 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
3988 *       the endpoint is busy processing requests.
3989 *
3990 * We need to stall the endpoint immediately if request comes from set_feature
3991 * protocol command handler.
3992 */
3993static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3994{
3995	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3996	struct dwc2_hsotg *hs = hs_ep->parent;
3997	int index = hs_ep->index;
3998	u32 epreg;
3999	u32 epctl;
4000	u32 xfertype;
4001
4002	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4003
4004	if (index == 0) {
4005		if (value)
4006			dwc2_hsotg_stall_ep0(hs);
4007		else
4008			dev_warn(hs->dev,
4009				 "%s: can't clear halt on ep0\n", __func__);
4010		return 0;
4011	}
4012
4013	if (hs_ep->isochronous) {
4014		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4015		return -EINVAL;
4016	}
4017
4018	if (!now && value && !list_empty(&hs_ep->queue)) {
4019		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4020			ep->name);
4021		return -EAGAIN;
4022	}
4023
4024	if (hs_ep->dir_in) {
4025		epreg = DIEPCTL(index);
4026		epctl = dwc2_readl(hs->regs + epreg);
4027
4028		if (value) {
4029			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4030			if (epctl & DXEPCTL_EPENA)
4031				epctl |= DXEPCTL_EPDIS;
4032		} else {
4033			epctl &= ~DXEPCTL_STALL;
 
4034			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4035			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4036				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4037					epctl |= DXEPCTL_SETD0PID;
4038		}
4039		dwc2_writel(epctl, hs->regs + epreg);
4040	} else {
 
 
4041
4042		epreg = DOEPCTL(index);
4043		epctl = dwc2_readl(hs->regs + epreg);
 
4044
4045		if (value)
4046			epctl |= DXEPCTL_STALL;
4047		else {
 
4048			epctl &= ~DXEPCTL_STALL;
 
4049			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4050			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4051				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4052					epctl |= DXEPCTL_SETD0PID;
 
4053		}
4054		dwc2_writel(epctl, hs->regs + epreg);
4055	}
4056
4057	hs_ep->halted = value;
4058
4059	return 0;
4060}
4061
4062/**
4063 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4064 * @ep: The endpoint to set halt.
4065 * @value: Set or unset the halt.
4066 */
4067static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4068{
4069	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4070	struct dwc2_hsotg *hs = hs_ep->parent;
4071	unsigned long flags = 0;
4072	int ret = 0;
4073
4074	spin_lock_irqsave(&hs->lock, flags);
4075	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4076	spin_unlock_irqrestore(&hs->lock, flags);
4077
4078	return ret;
4079}
4080
4081static struct usb_ep_ops dwc2_hsotg_ep_ops = {
4082	.enable		= dwc2_hsotg_ep_enable,
4083	.disable	= dwc2_hsotg_ep_disable,
4084	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4085	.free_request	= dwc2_hsotg_ep_free_request,
4086	.queue		= dwc2_hsotg_ep_queue_lock,
4087	.dequeue	= dwc2_hsotg_ep_dequeue,
4088	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
 
4089	/* note, don't believe we have any call for the fifo routines */
4090};
4091
4092/**
4093 * dwc2_hsotg_init - initalize the usb core
4094 * @hsotg: The driver state
4095 */
4096static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4097{
4098	u32 trdtim;
4099	u32 usbcfg;
4100	/* unmask subset of endpoint interrupts */
4101
4102	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4103		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4104		    hsotg->regs + DIEPMSK);
4105
4106	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4107		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4108		    hsotg->regs + DOEPMSK);
4109
4110	dwc2_writel(0, hsotg->regs + DAINTMSK);
4111
4112	/* Be in disconnected state until gadget is registered */
4113	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4114
4115	/* setup fifos */
4116
4117	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4118		dwc2_readl(hsotg->regs + GRXFSIZ),
4119		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4120
4121	dwc2_hsotg_init_fifo(hsotg);
4122
4123	/* keep other bits untouched (so e.g. forced modes are not lost) */
4124	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4125	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4126		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4127
4128	/* set the PLL on, remove the HNP/SRP and set the PHY */
4129	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4130	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4131		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4132	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4133
4134	if (using_dma(hsotg))
4135		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4136}
4137
4138/**
4139 * dwc2_hsotg_udc_start - prepare the udc for work
4140 * @gadget: The usb gadget state
4141 * @driver: The usb gadget driver
4142 *
4143 * Perform initialization to prepare udc device and driver
4144 * to work.
4145 */
4146static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4147			   struct usb_gadget_driver *driver)
4148{
4149	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4150	unsigned long flags;
4151	int ret;
4152
4153	if (!hsotg) {
4154		pr_err("%s: called with no device\n", __func__);
4155		return -ENODEV;
4156	}
4157
4158	if (!driver) {
4159		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4160		return -EINVAL;
4161	}
4162
4163	if (driver->max_speed < USB_SPEED_FULL)
4164		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4165
4166	if (!driver->setup) {
4167		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4168		return -EINVAL;
4169	}
4170
4171	WARN_ON(hsotg->driver);
4172
4173	driver->driver.bus = NULL;
4174	hsotg->driver = driver;
4175	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4176	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4177
4178	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4179		ret = dwc2_lowlevel_hw_enable(hsotg);
4180		if (ret)
4181			goto err;
4182	}
4183
4184	if (!IS_ERR_OR_NULL(hsotg->uphy))
4185		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4186
4187	spin_lock_irqsave(&hsotg->lock, flags);
4188	if (dwc2_hw_is_device(hsotg)) {
4189		dwc2_hsotg_init(hsotg);
4190		dwc2_hsotg_core_init_disconnected(hsotg, false);
4191	}
4192
4193	hsotg->enabled = 0;
4194	spin_unlock_irqrestore(&hsotg->lock, flags);
4195
 
4196	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4197
4198	return 0;
4199
4200err:
4201	hsotg->driver = NULL;
4202	return ret;
4203}
4204
4205/**
4206 * dwc2_hsotg_udc_stop - stop the udc
4207 * @gadget: The usb gadget state
4208 * @driver: The usb gadget driver
4209 *
4210 * Stop udc hw block and stay tunned for future transmissions
4211 */
4212static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4213{
4214	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4215	unsigned long flags = 0;
4216	int ep;
4217
4218	if (!hsotg)
4219		return -ENODEV;
4220
4221	/* all endpoints should be shutdown */
4222	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4223		if (hsotg->eps_in[ep])
4224			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4225		if (hsotg->eps_out[ep])
4226			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4227	}
4228
4229	spin_lock_irqsave(&hsotg->lock, flags);
4230
4231	hsotg->driver = NULL;
 
4232	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4233	hsotg->enabled = 0;
4234
4235	spin_unlock_irqrestore(&hsotg->lock, flags);
4236
4237	if (!IS_ERR_OR_NULL(hsotg->uphy))
4238		otg_set_peripheral(hsotg->uphy->otg, NULL);
4239
4240	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4241		dwc2_lowlevel_hw_disable(hsotg);
4242
4243	return 0;
4244}
4245
4246/**
4247 * dwc2_hsotg_gadget_getframe - read the frame number
4248 * @gadget: The usb gadget state
4249 *
4250 * Read the {micro} frame number
4251 */
4252static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4253{
4254	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4255}
4256
4257/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4259 * @gadget: The usb gadget state
4260 * @is_on: Current state of the USB PHY
4261 *
4262 * Connect/Disconnect the USB PHY pullup
4263 */
4264static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4265{
4266	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4267	unsigned long flags = 0;
4268
4269	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4270			hsotg->op_state);
4271
4272	/* Don't modify pullup state while in host mode */
4273	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4274		hsotg->enabled = is_on;
4275		return 0;
4276	}
4277
4278	spin_lock_irqsave(&hsotg->lock, flags);
4279	if (is_on) {
4280		hsotg->enabled = 1;
4281		dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
4282		dwc2_hsotg_core_connect(hsotg);
4283	} else {
4284		dwc2_hsotg_core_disconnect(hsotg);
4285		dwc2_hsotg_disconnect(hsotg);
4286		hsotg->enabled = 0;
4287	}
4288
4289	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4290	spin_unlock_irqrestore(&hsotg->lock, flags);
4291
4292	return 0;
4293}
4294
4295static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4296{
4297	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4298	unsigned long flags;
4299
4300	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4301	spin_lock_irqsave(&hsotg->lock, flags);
4302
4303	/*
4304	 * If controller is hibernated, it must exit from hibernation
4305	 * before being initialized / de-initialized
4306	 */
4307	if (hsotg->lx_state == DWC2_L2)
4308		dwc2_exit_hibernation(hsotg, false);
 
 
 
 
4309
4310	if (is_active) {
4311		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4312
4313		dwc2_hsotg_core_init_disconnected(hsotg, false);
4314		if (hsotg->enabled)
 
 
4315			dwc2_hsotg_core_connect(hsotg);
 
4316	} else {
4317		dwc2_hsotg_core_disconnect(hsotg);
4318		dwc2_hsotg_disconnect(hsotg);
4319	}
4320
4321	spin_unlock_irqrestore(&hsotg->lock, flags);
4322	return 0;
4323}
4324
4325/**
4326 * dwc2_hsotg_vbus_draw - report bMaxPower field
4327 * @gadget: The usb gadget state
4328 * @mA: Amount of current
4329 *
4330 * Report how much power the device may consume to the phy.
4331 */
4332static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
4333{
4334	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4335
4336	if (IS_ERR_OR_NULL(hsotg->uphy))
4337		return -ENOTSUPP;
4338	return usb_phy_set_power(hsotg->uphy, mA);
4339}
4340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4341static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4342	.get_frame	= dwc2_hsotg_gadget_getframe,
 
4343	.udc_start		= dwc2_hsotg_udc_start,
4344	.udc_stop		= dwc2_hsotg_udc_stop,
4345	.pullup                 = dwc2_hsotg_pullup,
 
4346	.vbus_session		= dwc2_hsotg_vbus_session,
4347	.vbus_draw		= dwc2_hsotg_vbus_draw,
4348};
4349
4350/**
4351 * dwc2_hsotg_initep - initialise a single endpoint
4352 * @hsotg: The device state.
4353 * @hs_ep: The endpoint to be initialised.
4354 * @epnum: The endpoint number
 
4355 *
4356 * Initialise the given endpoint (as part of the probe and device state
4357 * creation) to give to the gadget driver. Setup the endpoint name, any
4358 * direction information and other state that may be required.
4359 */
4360static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4361				       struct dwc2_hsotg_ep *hs_ep,
4362				       int epnum,
4363				       bool dir_in)
4364{
4365	char *dir;
4366
4367	if (epnum == 0)
4368		dir = "";
4369	else if (dir_in)
4370		dir = "in";
4371	else
4372		dir = "out";
4373
4374	hs_ep->dir_in = dir_in;
4375	hs_ep->index = epnum;
4376
4377	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4378
4379	INIT_LIST_HEAD(&hs_ep->queue);
4380	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4381
4382	/* add to the list of endpoints known by the gadget driver */
4383	if (epnum)
4384		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4385
4386	hs_ep->parent = hsotg;
4387	hs_ep->ep.name = hs_ep->name;
4388
4389	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4390		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4391	else
4392		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4393					   epnum ? 1024 : EP0_MPS_LIMIT);
4394	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4395
4396	if (epnum == 0) {
4397		hs_ep->ep.caps.type_control = true;
4398	} else {
4399		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4400			hs_ep->ep.caps.type_iso = true;
4401			hs_ep->ep.caps.type_bulk = true;
4402		}
4403		hs_ep->ep.caps.type_int = true;
4404	}
4405
4406	if (dir_in)
4407		hs_ep->ep.caps.dir_in = true;
4408	else
4409		hs_ep->ep.caps.dir_out = true;
4410
4411	/*
4412	 * if we're using dma, we need to set the next-endpoint pointer
4413	 * to be something valid.
4414	 */
4415
4416	if (using_dma(hsotg)) {
4417		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
 
4418		if (dir_in)
4419			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4420		else
4421			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4422	}
4423}
4424
4425/**
4426 * dwc2_hsotg_hw_cfg - read HW configuration registers
4427 * @param: The device state
4428 *
4429 * Read the USB core HW configuration registers
4430 */
4431static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4432{
4433	u32 cfg;
4434	u32 ep_type;
4435	u32 i;
4436
4437	/* check hardware configuration */
4438
4439	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4440
4441	/* Add ep0 */
4442	hsotg->num_of_eps++;
4443
4444	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4445								GFP_KERNEL);
 
4446	if (!hsotg->eps_in[0])
4447		return -ENOMEM;
4448	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4449	hsotg->eps_out[0] = hsotg->eps_in[0];
4450
4451	cfg = hsotg->hw_params.dev_ep_dirs;
4452	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4453		ep_type = cfg & 3;
4454		/* Direction in or both */
4455		if (!(ep_type & 2)) {
4456			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4457				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4458			if (!hsotg->eps_in[i])
4459				return -ENOMEM;
4460		}
4461		/* Direction out or both */
4462		if (!(ep_type & 1)) {
4463			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4464				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4465			if (!hsotg->eps_out[i])
4466				return -ENOMEM;
4467		}
4468	}
4469
4470	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4471	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4472
4473	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4474		 hsotg->num_of_eps,
4475		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4476		 hsotg->fifo_mem);
4477	return 0;
4478}
4479
4480/**
4481 * dwc2_hsotg_dump - dump state of the udc
4482 * @param: The device state
 
4483 */
4484static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4485{
4486#ifdef DEBUG
4487	struct device *dev = hsotg->dev;
4488	void __iomem *regs = hsotg->regs;
4489	u32 val;
4490	int idx;
4491
4492	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4493		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4494		 dwc2_readl(regs + DIEPMSK));
4495
4496	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4497		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4498
4499	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4500		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4501
4502	/* show periodic fifo settings */
4503
4504	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4505		val = dwc2_readl(regs + DPTXFSIZN(idx));
4506		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4507			 val >> FIFOSIZE_DEPTH_SHIFT,
4508			 val & FIFOSIZE_STARTADDR_MASK);
4509	}
4510
4511	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4512		dev_info(dev,
4513			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4514			 dwc2_readl(regs + DIEPCTL(idx)),
4515			 dwc2_readl(regs + DIEPTSIZ(idx)),
4516			 dwc2_readl(regs + DIEPDMA(idx)));
4517
4518		val = dwc2_readl(regs + DOEPCTL(idx));
4519		dev_info(dev,
4520			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4521			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4522			 dwc2_readl(regs + DOEPTSIZ(idx)),
4523			 dwc2_readl(regs + DOEPDMA(idx)));
4524
4525	}
4526
4527	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4528		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4529#endif
4530}
4531
4532/**
4533 * dwc2_gadget_init - init function for gadget
4534 * @dwc2: The data structure for the DWC2 driver.
4535 * @irq: The IRQ number for the controller.
4536 */
4537int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4538{
4539	struct device *dev = hsotg->dev;
4540	int epnum;
4541	int ret;
4542
4543	/* Dump fifo information */
4544	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4545		hsotg->params.g_np_tx_fifo_size);
4546	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4547
4548	hsotg->gadget.max_speed = USB_SPEED_HIGH;
 
 
 
 
 
 
 
 
 
 
 
4549	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4550	hsotg->gadget.name = dev_name(dev);
 
 
 
 
 
 
4551	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4552		hsotg->gadget.is_otg = 1;
4553	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4554		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4555
4556	ret = dwc2_hsotg_hw_cfg(hsotg);
4557	if (ret) {
4558		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4559		return ret;
4560	}
4561
4562	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4563			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4564	if (!hsotg->ctrl_buff)
4565		return -ENOMEM;
4566
4567	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4568			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4569	if (!hsotg->ep0_buff)
4570		return -ENOMEM;
4571
4572	if (using_desc_dma(hsotg)) {
4573		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4574		if (ret < 0)
4575			return ret;
4576	}
4577
4578	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4579				dev_name(hsotg->dev), hsotg);
4580	if (ret < 0) {
4581		dev_err(dev, "cannot claim IRQ for gadget\n");
4582		return ret;
4583	}
4584
4585	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4586
4587	if (hsotg->num_of_eps == 0) {
4588		dev_err(dev, "wrong number of EPs (zero)\n");
4589		return -EINVAL;
4590	}
4591
4592	/* setup endpoint information */
4593
4594	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4595	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4596
4597	/* allocate EP0 request */
4598
4599	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4600						     GFP_KERNEL);
4601	if (!hsotg->ctrl_req) {
4602		dev_err(dev, "failed to allocate ctrl req\n");
4603		return -ENOMEM;
4604	}
4605
4606	/* initialise the endpoints now the core has been initialised */
4607	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4608		if (hsotg->eps_in[epnum])
4609			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4610								epnum, 1);
4611		if (hsotg->eps_out[epnum])
4612			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4613								epnum, 0);
4614	}
4615
4616	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4617	if (ret)
4618		return ret;
4619
4620	dwc2_hsotg_dump(hsotg);
4621
4622	return 0;
4623}
4624
4625/**
4626 * dwc2_hsotg_remove - remove function for hsotg driver
4627 * @pdev: The platform information for the driver
 
4628 */
4629int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4630{
4631	usb_del_gadget_udc(&hsotg->gadget);
 
4632
4633	return 0;
4634}
4635
4636int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4637{
4638	unsigned long flags;
4639
4640	if (hsotg->lx_state != DWC2_L0)
4641		return 0;
4642
4643	if (hsotg->driver) {
4644		int ep;
4645
4646		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4647			 hsotg->driver->driver.name);
4648
4649		spin_lock_irqsave(&hsotg->lock, flags);
4650		if (hsotg->enabled)
4651			dwc2_hsotg_core_disconnect(hsotg);
4652		dwc2_hsotg_disconnect(hsotg);
4653		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4654		spin_unlock_irqrestore(&hsotg->lock, flags);
4655
4656		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4657			if (hsotg->eps_in[ep])
4658				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4659			if (hsotg->eps_out[ep])
4660				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4661		}
4662	}
4663
4664	return 0;
4665}
4666
4667int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4668{
4669	unsigned long flags;
4670
4671	if (hsotg->lx_state == DWC2_L2)
4672		return 0;
4673
4674	if (hsotg->driver) {
4675		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4676			 hsotg->driver->driver.name);
4677
4678		spin_lock_irqsave(&hsotg->lock, flags);
4679		dwc2_hsotg_core_init_disconnected(hsotg, false);
4680		if (hsotg->enabled)
 
 
4681			dwc2_hsotg_core_connect(hsotg);
 
4682		spin_unlock_irqrestore(&hsotg->lock, flags);
4683	}
4684
4685	return 0;
4686}
4687
4688/**
4689 * dwc2_backup_device_registers() - Backup controller device registers.
4690 * When suspending usb bus, registers needs to be backuped
4691 * if controller power is disabled once suspended.
4692 *
4693 * @hsotg: Programming view of the DWC_otg controller
4694 */
4695int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4696{
4697	struct dwc2_dregs_backup *dr;
4698	int i;
4699
4700	dev_dbg(hsotg->dev, "%s\n", __func__);
4701
4702	/* Backup dev regs */
4703	dr = &hsotg->dr_backup;
4704
4705	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4706	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4707	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4708	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4709	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4710
4711	for (i = 0; i < hsotg->num_of_eps; i++) {
4712		/* Backup IN EPs */
4713		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4714
4715		/* Ensure DATA PID is correctly configured */
4716		if (dr->diepctl[i] & DXEPCTL_DPID)
4717			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4718		else
4719			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4720
4721		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4722		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4723
4724		/* Backup OUT EPs */
4725		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4726
4727		/* Ensure DATA PID is correctly configured */
4728		if (dr->doepctl[i] & DXEPCTL_DPID)
4729			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4730		else
4731			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4732
4733		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4734		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
 
4735	}
4736	dr->valid = true;
4737	return 0;
4738}
4739
4740/**
4741 * dwc2_restore_device_registers() - Restore controller device registers.
4742 * When resuming usb bus, device registers needs to be restored
4743 * if controller power were disabled.
4744 *
4745 * @hsotg: Programming view of the DWC_otg controller
 
 
 
4746 */
4747int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4748{
4749	struct dwc2_dregs_backup *dr;
4750	u32 dctl;
4751	int i;
4752
4753	dev_dbg(hsotg->dev, "%s\n", __func__);
4754
4755	/* Restore dev regs */
4756	dr = &hsotg->dr_backup;
4757	if (!dr->valid) {
4758		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4759			__func__);
4760		return -EINVAL;
4761	}
4762	dr->valid = false;
4763
4764	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4765	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4766	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4767	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4768	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
 
4769
4770	for (i = 0; i < hsotg->num_of_eps; i++) {
4771		/* Restore IN EPs */
4772		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4773		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4774		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4775
4776		/* Restore OUT EPs */
4777		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4778		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4779		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4780	}
4781
4782	/* Set the Power-On Programming done bit */
4783	dctl = dwc2_readl(hsotg->regs + DCTL);
4784	dctl |= DCTL_PWRONPRGDONE;
4785	dwc2_writel(dctl, hsotg->regs + DCTL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4786
4787	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4788}