Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*------------------------------------------------------------------------
3 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
4 .
5 . Copyright (C) 1996 by Erik Stahlman
6 . Copyright (C) 2001 Standard Microsystems Corporation
7 . Developed by Simple Network Magic Corporation
8 . Copyright (C) 2003 Monta Vista Software, Inc.
9 . Unified SMC91x driver by Nicolas Pitre
10 .
11 .
12 . Information contained in this file was obtained from the LAN91C111
13 . manual from SMC. To get a copy, if you really want one, you can find
14 . information under www.smsc.com.
15 .
16 . Authors
17 . Erik Stahlman <erik@vt.edu>
18 . Daris A Nevil <dnevil@snmc.com>
19 . Nicolas Pitre <nico@fluxnic.net>
20 .
21 ---------------------------------------------------------------------------*/
22#ifndef _SMC91X_H_
23#define _SMC91X_H_
24
25#include <linux/dmaengine.h>
26#include <linux/smc91x.h>
27
28/*
29 * Any 16-bit access is performed with two 8-bit accesses if the hardware
30 * can't do it directly. Most registers are 16-bit so those are mandatory.
31 */
32#define SMC_outw_b(x, a, r) \
33 do { \
34 unsigned int __val16 = (x); \
35 unsigned int __reg = (r); \
36 SMC_outb(__val16, a, __reg); \
37 SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT)); \
38 } while (0)
39
40#define SMC_inw_b(a, r) \
41 ({ \
42 unsigned int __val16; \
43 unsigned int __reg = r; \
44 __val16 = SMC_inb(a, __reg); \
45 __val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
46 __val16; \
47 })
48
49/*
50 * Define your architecture specific bus configuration parameters here.
51 */
52
53#if defined(CONFIG_ARM)
54
55#include <asm/mach-types.h>
56
57/* Now the bus width is specified in the platform data
58 * pretend here to support all I/O access types
59 */
60#define SMC_CAN_USE_8BIT 1
61#define SMC_CAN_USE_16BIT 1
62#define SMC_CAN_USE_32BIT 1
63#define SMC_NOWAIT 1
64
65#define SMC_IO_SHIFT (lp->io_shift)
66
67#define SMC_inb(a, r) readb((a) + (r))
68#define SMC_inw(a, r) \
69 ({ \
70 unsigned int __smc_r = r; \
71 SMC_16BIT(lp) ? readw((a) + __smc_r) : \
72 SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) : \
73 ({ BUG(); 0; }); \
74 })
75
76#define SMC_inl(a, r) readl((a) + (r))
77#define SMC_outb(v, a, r) writeb(v, (a) + (r))
78#define SMC_outw(lp, v, a, r) \
79 do { \
80 unsigned int __v = v, __smc_r = r; \
81 if (SMC_16BIT(lp)) \
82 __SMC_outw(lp, __v, a, __smc_r); \
83 else if (SMC_8BIT(lp)) \
84 SMC_outw_b(__v, a, __smc_r); \
85 else \
86 BUG(); \
87 } while (0)
88
89#define SMC_outl(v, a, r) writel(v, (a) + (r))
90#define SMC_insb(a, r, p, l) readsb((a) + (r), p, l)
91#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, l)
92#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
93#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
94#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
95#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
96#define SMC_IRQ_FLAGS (-1) /* from resource */
97
98/* We actually can't write halfwords properly if not word aligned */
99static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
100 bool use_align4_workaround)
101{
102 if (use_align4_workaround) {
103 unsigned int v = val << 16;
104 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
105 writel(v, ioaddr + (reg & ~2));
106 } else {
107 writew(val, ioaddr + reg);
108 }
109}
110
111#define __SMC_outw(lp, v, a, r) \
112 _SMC_outw_align4((v), (a), (r), \
113 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) && \
114 (lp)->cfg.pxa_u16_align4)
115
116
117#elif defined(CONFIG_ATARI)
118
119#define SMC_CAN_USE_8BIT 1
120#define SMC_CAN_USE_16BIT 1
121#define SMC_CAN_USE_32BIT 1
122#define SMC_NOWAIT 1
123
124#define SMC_inb(a, r) readb((a) + (r))
125#define SMC_inw(a, r) readw((a) + (r))
126#define SMC_inl(a, r) readl((a) + (r))
127#define SMC_outb(v, a, r) writeb(v, (a) + (r))
128#define SMC_outw(lp, v, a, r) writew(v, (a) + (r))
129#define SMC_outl(v, a, r) writel(v, (a) + (r))
130#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
131#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
132#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
133#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
134
135#define RPC_LSA_DEFAULT RPC_LED_100_10
136#define RPC_LSB_DEFAULT RPC_LED_TX_RX
137
138#elif defined(CONFIG_COLDFIRE)
139
140#define SMC_CAN_USE_8BIT 0
141#define SMC_CAN_USE_16BIT 1
142#define SMC_CAN_USE_32BIT 0
143#define SMC_NOWAIT 1
144
145static inline void mcf_insw(void __iomem *a, unsigned char *p, int l)
146{
147 u16 *wp = (u16 *) p;
148 while (l-- > 0)
149 *wp++ = readw(a);
150}
151
152static inline void mcf_outsw(void __iomem *a, unsigned char *p, int l)
153{
154 u16 *wp = (u16 *) p;
155 while (l-- > 0)
156 writew(*wp++, a);
157}
158
159#define SMC_inw(a, r) ioread16be((a) + (r))
160#define SMC_outw(lp, v, a, r) iowrite16be(v, (a) + (r))
161#define SMC_insw(a, r, p, l) mcf_insw(a + r, p, l)
162#define SMC_outsw(a, r, p, l) mcf_outsw(a + r, p, l)
163
164#define SMC_IRQ_FLAGS 0
165
166#else
167
168/*
169 * Default configuration
170 */
171
172#define SMC_CAN_USE_8BIT 1
173#define SMC_CAN_USE_16BIT 1
174#define SMC_CAN_USE_32BIT 1
175#define SMC_NOWAIT 1
176
177#define SMC_IO_SHIFT (lp->io_shift)
178
179#define SMC_inb(a, r) ioread8((a) + (r))
180#define SMC_inw(a, r) ioread16((a) + (r))
181#define SMC_inl(a, r) ioread32((a) + (r))
182#define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
183#define SMC_outw(lp, v, a, r) iowrite16(v, (a) + (r))
184#define SMC_outl(v, a, r) iowrite32(v, (a) + (r))
185#define SMC_insw(a, r, p, l) ioread16_rep((a) + (r), p, l)
186#define SMC_outsw(a, r, p, l) iowrite16_rep((a) + (r), p, l)
187#define SMC_insl(a, r, p, l) ioread32_rep((a) + (r), p, l)
188#define SMC_outsl(a, r, p, l) iowrite32_rep((a) + (r), p, l)
189
190#define RPC_LSA_DEFAULT RPC_LED_100_10
191#define RPC_LSB_DEFAULT RPC_LED_TX_RX
192
193#endif
194
195
196/* store this information for the driver.. */
197struct smc_local {
198 /*
199 * If I have to wait until memory is available to send a
200 * packet, I will store the skbuff here, until I get the
201 * desired memory. Then, I'll send it out and free it.
202 */
203 struct sk_buff *pending_tx_skb;
204 struct tasklet_struct tx_task;
205
206 struct gpio_desc *power_gpio;
207 struct gpio_desc *reset_gpio;
208
209 /* version/revision of the SMC91x chip */
210 int version;
211
212 /* Contains the current active transmission mode */
213 int tcr_cur_mode;
214
215 /* Contains the current active receive mode */
216 int rcr_cur_mode;
217
218 /* Contains the current active receive/phy mode */
219 int rpc_cur_mode;
220 int ctl_rfduplx;
221 int ctl_rspeed;
222
223 u32 msg_enable;
224 u32 phy_type;
225 struct mii_if_info mii;
226
227 /* work queue */
228 struct work_struct phy_configure;
229 struct net_device *dev;
230 int work_pending;
231
232 spinlock_t lock;
233
234#ifdef CONFIG_ARCH_PXA
235 /* DMA needs the physical address of the chip */
236 u_long physaddr;
237 struct device *device;
238#endif
239 struct dma_chan *dma_chan;
240 void __iomem *base;
241 void __iomem *datacs;
242
243 /* the low address lines on some platforms aren't connected... */
244 int io_shift;
245 /* on some platforms a u16 write must be 4-bytes aligned */
246 bool half_word_align4;
247
248 struct smc91x_platdata cfg;
249};
250
251#define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT)
252#define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT)
253#define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT)
254
255#ifdef CONFIG_ARCH_PXA
256/*
257 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
258 * always happening in irq context so no need to worry about races. TX is
259 * different and probably not worth it for that reason, and not as critical
260 * as RX which can overrun memory and lose packets.
261 */
262#include <linux/dma-mapping.h>
263
264#ifdef SMC_insl
265#undef SMC_insl
266#define SMC_insl(a, r, p, l) \
267 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
268static inline void
269smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
270{
271 dma_addr_t dmabuf;
272 struct dma_async_tx_descriptor *tx;
273 dma_cookie_t cookie;
274 enum dma_status status;
275 struct dma_tx_state state;
276
277 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
278 tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
279 DMA_DEV_TO_MEM, 0);
280 if (tx) {
281 cookie = dmaengine_submit(tx);
282 dma_async_issue_pending(lp->dma_chan);
283 do {
284 status = dmaengine_tx_status(lp->dma_chan, cookie,
285 &state);
286 cpu_relax();
287 } while (status != DMA_COMPLETE && status != DMA_ERROR &&
288 state.residue);
289 dmaengine_terminate_all(lp->dma_chan);
290 }
291 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
292}
293
294static inline void
295smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
296 u_char *buf, int len)
297{
298 struct dma_slave_config config;
299 int ret;
300
301 /* fallback if no DMA available */
302 if (!lp->dma_chan) {
303 readsl(ioaddr + reg, buf, len);
304 return;
305 }
306
307 /* 64 bit alignment is required for memory to memory DMA */
308 if ((long)buf & 4) {
309 *((u32 *)buf) = SMC_inl(ioaddr, reg);
310 buf += 4;
311 len--;
312 }
313
314 memset(&config, 0, sizeof(config));
315 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
316 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
317 config.src_addr = lp->physaddr + reg;
318 config.dst_addr = lp->physaddr + reg;
319 config.src_maxburst = 32;
320 config.dst_maxburst = 32;
321 ret = dmaengine_slave_config(lp->dma_chan, &config);
322 if (ret) {
323 dev_err(lp->device, "dma channel configuration failed: %d\n",
324 ret);
325 return;
326 }
327
328 len *= 4;
329 smc_pxa_dma_inpump(lp, buf, len);
330}
331#endif
332
333#ifdef SMC_insw
334#undef SMC_insw
335#define SMC_insw(a, r, p, l) \
336 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
337static inline void
338smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
339 u_char *buf, int len)
340{
341 struct dma_slave_config config;
342 int ret;
343
344 /* fallback if no DMA available */
345 if (!lp->dma_chan) {
346 readsw(ioaddr + reg, buf, len);
347 return;
348 }
349
350 /* 64 bit alignment is required for memory to memory DMA */
351 while ((long)buf & 6) {
352 *((u16 *)buf) = SMC_inw(ioaddr, reg);
353 buf += 2;
354 len--;
355 }
356
357 memset(&config, 0, sizeof(config));
358 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
359 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
360 config.src_addr = lp->physaddr + reg;
361 config.dst_addr = lp->physaddr + reg;
362 config.src_maxburst = 32;
363 config.dst_maxburst = 32;
364 ret = dmaengine_slave_config(lp->dma_chan, &config);
365 if (ret) {
366 dev_err(lp->device, "dma channel configuration failed: %d\n",
367 ret);
368 return;
369 }
370
371 len *= 2;
372 smc_pxa_dma_inpump(lp, buf, len);
373}
374#endif
375
376#endif /* CONFIG_ARCH_PXA */
377
378
379/*
380 * Everything a particular hardware setup needs should have been defined
381 * at this point. Add stubs for the undefined cases, mainly to avoid
382 * compilation warnings since they'll be optimized away, or to prevent buggy
383 * use of them.
384 */
385
386#if ! SMC_CAN_USE_32BIT
387#define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
388#define SMC_outl(x, ioaddr, reg) BUG()
389#define SMC_insl(a, r, p, l) BUG()
390#define SMC_outsl(a, r, p, l) BUG()
391#endif
392
393#if !defined(SMC_insl) || !defined(SMC_outsl)
394#define SMC_insl(a, r, p, l) BUG()
395#define SMC_outsl(a, r, p, l) BUG()
396#endif
397
398#if ! SMC_CAN_USE_16BIT
399
400#define SMC_outw(lp, x, ioaddr, reg) SMC_outw_b(x, ioaddr, reg)
401#define SMC_inw(ioaddr, reg) SMC_inw_b(ioaddr, reg)
402#define SMC_insw(a, r, p, l) BUG()
403#define SMC_outsw(a, r, p, l) BUG()
404
405#endif
406
407#if !defined(SMC_insw) || !defined(SMC_outsw)
408#define SMC_insw(a, r, p, l) BUG()
409#define SMC_outsw(a, r, p, l) BUG()
410#endif
411
412#if ! SMC_CAN_USE_8BIT
413#undef SMC_inb
414#define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
415#undef SMC_outb
416#define SMC_outb(x, ioaddr, reg) BUG()
417#define SMC_insb(a, r, p, l) BUG()
418#define SMC_outsb(a, r, p, l) BUG()
419#endif
420
421#if !defined(SMC_insb) || !defined(SMC_outsb)
422#define SMC_insb(a, r, p, l) BUG()
423#define SMC_outsb(a, r, p, l) BUG()
424#endif
425
426#ifndef SMC_CAN_USE_DATACS
427#define SMC_CAN_USE_DATACS 0
428#endif
429
430#ifndef SMC_IO_SHIFT
431#define SMC_IO_SHIFT 0
432#endif
433
434#ifndef SMC_IRQ_FLAGS
435#define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
436#endif
437
438#ifndef SMC_INTERRUPT_PREAMBLE
439#define SMC_INTERRUPT_PREAMBLE
440#endif
441
442
443/* Because of bank switching, the LAN91x uses only 16 I/O ports */
444#define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
445#define SMC_DATA_EXTENT (4)
446
447/*
448 . Bank Select Register:
449 .
450 . yyyy yyyy 0000 00xx
451 . xx = bank number
452 . yyyy yyyy = 0x33, for identification purposes.
453*/
454#define BANK_SELECT (14 << SMC_IO_SHIFT)
455
456
457// Transmit Control Register
458/* BANK 0 */
459#define TCR_REG(lp) SMC_REG(lp, 0x0000, 0)
460#define TCR_ENABLE 0x0001 // When 1 we can transmit
461#define TCR_LOOP 0x0002 // Controls output pin LBK
462#define TCR_FORCOL 0x0004 // When 1 will force a collision
463#define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
464#define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
465#define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
466#define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
467#define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
468#define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
469#define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
470
471#define TCR_CLEAR 0 /* do NOTHING */
472/* the default settings for the TCR register : */
473#define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
474
475
476// EPH Status Register
477/* BANK 0 */
478#define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0)
479#define ES_TX_SUC 0x0001 // Last TX was successful
480#define ES_SNGL_COL 0x0002 // Single collision detected for last tx
481#define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
482#define ES_LTX_MULT 0x0008 // Last tx was a multicast
483#define ES_16COL 0x0010 // 16 Collisions Reached
484#define ES_SQET 0x0020 // Signal Quality Error Test
485#define ES_LTXBRD 0x0040 // Last tx was a broadcast
486#define ES_TXDEFR 0x0080 // Transmit Deferred
487#define ES_LATCOL 0x0200 // Late collision detected on last tx
488#define ES_LOSTCARR 0x0400 // Lost Carrier Sense
489#define ES_EXC_DEF 0x0800 // Excessive Deferral
490#define ES_CTR_ROL 0x1000 // Counter Roll Over indication
491#define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
492#define ES_TXUNRN 0x8000 // Tx Underrun
493
494
495// Receive Control Register
496/* BANK 0 */
497#define RCR_REG(lp) SMC_REG(lp, 0x0004, 0)
498#define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
499#define RCR_PRMS 0x0002 // Enable promiscuous mode
500#define RCR_ALMUL 0x0004 // When set accepts all multicast frames
501#define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
502#define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
503#define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
504#define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
505#define RCR_SOFTRST 0x8000 // resets the chip
506
507/* the normal settings for the RCR register : */
508#define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
509#define RCR_CLEAR 0x0 // set it to a base state
510
511
512// Counter Register
513/* BANK 0 */
514#define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0)
515
516
517// Memory Information Register
518/* BANK 0 */
519#define MIR_REG(lp) SMC_REG(lp, 0x0008, 0)
520
521
522// Receive/Phy Control Register
523/* BANK 0 */
524#define RPC_REG(lp) SMC_REG(lp, 0x000A, 0)
525#define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
526#define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
527#define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
528#define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
529#define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
530
531#ifndef RPC_LSA_DEFAULT
532#define RPC_LSA_DEFAULT RPC_LED_100
533#endif
534#ifndef RPC_LSB_DEFAULT
535#define RPC_LSB_DEFAULT RPC_LED_FD
536#endif
537
538#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
539
540
541/* Bank 0 0x0C is reserved */
542
543// Bank Select Register
544/* All Banks */
545#define BSR_REG 0x000E
546
547
548// Configuration Reg
549/* BANK 1 */
550#define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1)
551#define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
552#define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
553#define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
554#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
555
556// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
557#define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
558
559
560// Base Address Register
561/* BANK 1 */
562#define BASE_REG(lp) SMC_REG(lp, 0x0002, 1)
563
564
565// Individual Address Registers
566/* BANK 1 */
567#define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1)
568#define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1)
569#define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1)
570
571
572// General Purpose Register
573/* BANK 1 */
574#define GP_REG(lp) SMC_REG(lp, 0x000A, 1)
575
576
577// Control Register
578/* BANK 1 */
579#define CTL_REG(lp) SMC_REG(lp, 0x000C, 1)
580#define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
581#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
582#define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
583#define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
584#define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
585#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
586#define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
587#define CTL_STORE 0x0001 // When set stores registers into EEPROM
588
589
590// MMU Command Register
591/* BANK 2 */
592#define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2)
593#define MC_BUSY 1 // When 1 the last release has not completed
594#define MC_NOP (0<<5) // No Op
595#define MC_ALLOC (1<<5) // OR with number of 256 byte packets
596#define MC_RESET (2<<5) // Reset MMU to initial state
597#define MC_REMOVE (3<<5) // Remove the current rx packet
598#define MC_RELEASE (4<<5) // Remove and release the current rx packet
599#define MC_FREEPKT (5<<5) // Release packet in PNR register
600#define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
601#define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
602
603
604// Packet Number Register
605/* BANK 2 */
606#define PN_REG(lp) SMC_REG(lp, 0x0002, 2)
607
608
609// Allocation Result Register
610/* BANK 2 */
611#define AR_REG(lp) SMC_REG(lp, 0x0003, 2)
612#define AR_FAILED 0x80 // Alocation Failed
613
614
615// TX FIFO Ports Register
616/* BANK 2 */
617#define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
618#define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
619
620// RX FIFO Ports Register
621/* BANK 2 */
622#define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2)
623#define RXFIFO_REMPTY 0x80 // RX FIFO Empty
624
625#define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
626
627// Pointer Register
628/* BANK 2 */
629#define PTR_REG(lp) SMC_REG(lp, 0x0006, 2)
630#define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
631#define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
632#define PTR_READ 0x2000 // When 1 the operation is a read
633
634
635// Data Register
636/* BANK 2 */
637#define DATA_REG(lp) SMC_REG(lp, 0x0008, 2)
638
639
640// Interrupt Status/Acknowledge Register
641/* BANK 2 */
642#define INT_REG(lp) SMC_REG(lp, 0x000C, 2)
643
644
645// Interrupt Mask Register
646/* BANK 2 */
647#define IM_REG(lp) SMC_REG(lp, 0x000D, 2)
648#define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
649#define IM_ERCV_INT 0x40 // Early Receive Interrupt
650#define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
651#define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
652#define IM_ALLOC_INT 0x08 // Set when allocation request is completed
653#define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
654#define IM_TX_INT 0x02 // Transmit Interrupt
655#define IM_RCV_INT 0x01 // Receive Interrupt
656
657
658// Multicast Table Registers
659/* BANK 3 */
660#define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3)
661#define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3)
662#define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3)
663#define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3)
664
665
666// Management Interface Register (MII)
667/* BANK 3 */
668#define MII_REG(lp) SMC_REG(lp, 0x0008, 3)
669#define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
670#define MII_MDOE 0x0008 // MII Output Enable
671#define MII_MCLK 0x0004 // MII Clock, pin MDCLK
672#define MII_MDI 0x0002 // MII Input, pin MDI
673#define MII_MDO 0x0001 // MII Output, pin MDO
674
675
676// Revision Register
677/* BANK 3 */
678/* ( hi: chip id low: rev # ) */
679#define REV_REG(lp) SMC_REG(lp, 0x000A, 3)
680
681
682// Early RCV Register
683/* BANK 3 */
684/* this is NOT on SMC9192 */
685#define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3)
686#define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
687#define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
688
689
690// External Register
691/* BANK 7 */
692#define EXT_REG(lp) SMC_REG(lp, 0x0000, 7)
693
694
695#define CHIP_9192 3
696#define CHIP_9194 4
697#define CHIP_9195 5
698#define CHIP_9196 6
699#define CHIP_91100 7
700#define CHIP_91100FD 8
701#define CHIP_91111FD 9
702
703static const char * chip_ids[ 16 ] = {
704 NULL, NULL, NULL,
705 /* 3 */ "SMC91C90/91C92",
706 /* 4 */ "SMC91C94",
707 /* 5 */ "SMC91C95",
708 /* 6 */ "SMC91C96",
709 /* 7 */ "SMC91C100",
710 /* 8 */ "SMC91C100FD",
711 /* 9 */ "SMC91C11xFD",
712 NULL, NULL, NULL,
713 NULL, NULL, NULL};
714
715
716/*
717 . Receive status bits
718*/
719#define RS_ALGNERR 0x8000
720#define RS_BRODCAST 0x4000
721#define RS_BADCRC 0x2000
722#define RS_ODDFRAME 0x1000
723#define RS_TOOLONG 0x0800
724#define RS_TOOSHORT 0x0400
725#define RS_MULTICAST 0x0001
726#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
727
728
729/*
730 * PHY IDs
731 * LAN83C183 == LAN91C111 Internal PHY
732 */
733#define PHY_LAN83C183 0x0016f840
734#define PHY_LAN83C180 0x02821c50
735
736/*
737 * PHY Register Addresses (LAN91C111 Internal PHY)
738 *
739 * Generic PHY registers can be found in <linux/mii.h>
740 *
741 * These phy registers are specific to our on-board phy.
742 */
743
744// PHY Configuration Register 1
745#define PHY_CFG1_REG 0x10
746#define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
747#define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
748#define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
749#define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
750#define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
751#define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
752#define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
753#define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
754#define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
755#define PHY_CFG1_TLVL_MASK 0x003C
756#define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
757
758
759// PHY Configuration Register 2
760#define PHY_CFG2_REG 0x11
761#define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
762#define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
763#define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
764#define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
765
766// PHY Status Output (and Interrupt status) Register
767#define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
768#define PHY_INT_INT 0x8000 // 1=bits have changed since last read
769#define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
770#define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
771#define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
772#define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
773#define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
774#define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
775#define PHY_INT_JAB 0x0100 // 1=Jabber detected
776#define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
777#define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
778
779// PHY Interrupt/Status Mask Register
780#define PHY_MASK_REG 0x13 // Interrupt Mask
781// Uses the same bit definitions as PHY_INT_REG
782
783
784/*
785 * SMC91C96 ethernet config and status registers.
786 * These are in the "attribute" space.
787 */
788#define ECOR 0x8000
789#define ECOR_RESET 0x80
790#define ECOR_LEVEL_IRQ 0x40
791#define ECOR_WR_ATTRIB 0x04
792#define ECOR_ENABLE 0x01
793
794#define ECSR 0x8002
795#define ECSR_IOIS8 0x20
796#define ECSR_PWRDWN 0x04
797#define ECSR_INT 0x02
798
799#define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
800
801
802/*
803 * Macros to abstract register access according to the data bus
804 * capabilities. Please use those and not the in/out primitives.
805 * Note: the following macros do *not* select the bank -- this must
806 * be done separately as needed in the main code. The SMC_REG() macro
807 * only uses the bank argument for debugging purposes (when enabled).
808 *
809 * Note: despite inline functions being safer, everything leading to this
810 * should preferably be macros to let BUG() display the line number in
811 * the core source code since we're interested in the top call site
812 * not in any inline function location.
813 */
814
815#if SMC_DEBUG > 0
816#define SMC_REG(lp, reg, bank) \
817 ({ \
818 int __b = SMC_CURRENT_BANK(lp); \
819 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
820 pr_err("%s: bank reg screwed (0x%04x)\n", \
821 CARDNAME, __b); \
822 BUG(); \
823 } \
824 reg<<SMC_IO_SHIFT; \
825 })
826#else
827#define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT)
828#endif
829
830/*
831 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
832 * aligned to a 32 bit boundary. I tell you that does exist!
833 * Fortunately the affected register accesses can be easily worked around
834 * since we can write zeroes to the preceding 16 bits without adverse
835 * effects and use a 32-bit access.
836 *
837 * Enforce it on any 32-bit capable setup for now.
838 */
839#define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp)
840
841#define SMC_GET_PN(lp) \
842 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \
843 : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
844
845#define SMC_SET_PN(lp, x) \
846 do { \
847 if (SMC_MUST_ALIGN_WRITE(lp)) \
848 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \
849 else if (SMC_8BIT(lp)) \
850 SMC_outb(x, ioaddr, PN_REG(lp)); \
851 else \
852 SMC_outw(lp, x, ioaddr, PN_REG(lp)); \
853 } while (0)
854
855#define SMC_GET_AR(lp) \
856 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \
857 : (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
858
859#define SMC_GET_TXFIFO(lp) \
860 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \
861 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
862
863#define SMC_GET_RXFIFO(lp) \
864 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \
865 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
866
867#define SMC_GET_INT(lp) \
868 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \
869 : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
870
871#define SMC_ACK_INT(lp, x) \
872 do { \
873 if (SMC_8BIT(lp)) \
874 SMC_outb(x, ioaddr, INT_REG(lp)); \
875 else { \
876 unsigned long __flags; \
877 int __mask; \
878 local_irq_save(__flags); \
879 __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
880 SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
881 local_irq_restore(__flags); \
882 } \
883 } while (0)
884
885#define SMC_GET_INT_MASK(lp) \
886 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \
887 : (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
888
889#define SMC_SET_INT_MASK(lp, x) \
890 do { \
891 if (SMC_8BIT(lp)) \
892 SMC_outb(x, ioaddr, IM_REG(lp)); \
893 else \
894 SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp)); \
895 } while (0)
896
897#define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT)
898
899#define SMC_SELECT_BANK(lp, x) \
900 do { \
901 if (SMC_MUST_ALIGN_WRITE(lp)) \
902 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
903 else \
904 SMC_outw(lp, x, ioaddr, BANK_SELECT); \
905 } while (0)
906
907#define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp))
908
909#define SMC_SET_BASE(lp, x) SMC_outw(lp, x, ioaddr, BASE_REG(lp))
910
911#define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp))
912
913#define SMC_SET_CONFIG(lp, x) SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
914
915#define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp))
916
917#define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp))
918
919#define SMC_SET_CTL(lp, x) SMC_outw(lp, x, ioaddr, CTL_REG(lp))
920
921#define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp))
922
923#define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp))
924
925#define SMC_SET_GP(lp, x) \
926 do { \
927 if (SMC_MUST_ALIGN_WRITE(lp)) \
928 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \
929 else \
930 SMC_outw(lp, x, ioaddr, GP_REG(lp)); \
931 } while (0)
932
933#define SMC_SET_MII(lp, x) SMC_outw(lp, x, ioaddr, MII_REG(lp))
934
935#define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp))
936
937#define SMC_SET_MIR(lp, x) SMC_outw(lp, x, ioaddr, MIR_REG(lp))
938
939#define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp))
940
941#define SMC_SET_MMU_CMD(lp, x) SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
942
943#define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp))
944
945#define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp))
946
947#define SMC_SET_PTR(lp, x) \
948 do { \
949 if (SMC_MUST_ALIGN_WRITE(lp)) \
950 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \
951 else \
952 SMC_outw(lp, x, ioaddr, PTR_REG(lp)); \
953 } while (0)
954
955#define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp))
956
957#define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp))
958
959#define SMC_SET_RCR(lp, x) SMC_outw(lp, x, ioaddr, RCR_REG(lp))
960
961#define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp))
962
963#define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp))
964
965#define SMC_SET_RPC(lp, x) \
966 do { \
967 if (SMC_MUST_ALIGN_WRITE(lp)) \
968 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \
969 else \
970 SMC_outw(lp, x, ioaddr, RPC_REG(lp)); \
971 } while (0)
972
973#define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp))
974
975#define SMC_SET_TCR(lp, x) SMC_outw(lp, x, ioaddr, TCR_REG(lp))
976
977#ifndef SMC_GET_MAC_ADDR
978#define SMC_GET_MAC_ADDR(lp, addr) \
979 do { \
980 unsigned int __v; \
981 __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \
982 addr[0] = __v; addr[1] = __v >> 8; \
983 __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \
984 addr[2] = __v; addr[3] = __v >> 8; \
985 __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \
986 addr[4] = __v; addr[5] = __v >> 8; \
987 } while (0)
988#endif
989
990#define SMC_SET_MAC_ADDR(lp, addr) \
991 do { \
992 SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
993 SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
994 SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
995 } while (0)
996
997#define SMC_SET_MCAST(lp, x) \
998 do { \
999 const unsigned char *mt = (x); \
1000 SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1001 SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1002 SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1003 SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1004 } while (0)
1005
1006#define SMC_PUT_PKT_HDR(lp, status, length) \
1007 do { \
1008 if (SMC_32BIT(lp)) \
1009 SMC_outl((status) | (length)<<16, ioaddr, \
1010 DATA_REG(lp)); \
1011 else { \
1012 SMC_outw(lp, status, ioaddr, DATA_REG(lp)); \
1013 SMC_outw(lp, length, ioaddr, DATA_REG(lp)); \
1014 } \
1015 } while (0)
1016
1017#define SMC_GET_PKT_HDR(lp, status, length) \
1018 do { \
1019 if (SMC_32BIT(lp)) { \
1020 unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1021 (status) = __val & 0xffff; \
1022 (length) = __val >> 16; \
1023 } else { \
1024 (status) = SMC_inw(ioaddr, DATA_REG(lp)); \
1025 (length) = SMC_inw(ioaddr, DATA_REG(lp)); \
1026 } \
1027 } while (0)
1028
1029#define SMC_PUSH_DATA(lp, p, l) \
1030 do { \
1031 if (SMC_32BIT(lp)) { \
1032 void *__ptr = (p); \
1033 int __len = (l); \
1034 void __iomem *__ioaddr = ioaddr; \
1035 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1036 __len -= 2; \
1037 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1038 __ptr += 2; \
1039 } \
1040 if (SMC_CAN_USE_DATACS && lp->datacs) \
1041 __ioaddr = lp->datacs; \
1042 SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1043 if (__len & 2) { \
1044 __ptr += (__len & ~3); \
1045 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1046 } \
1047 } else if (SMC_16BIT(lp)) \
1048 SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1049 else if (SMC_8BIT(lp)) \
1050 SMC_outsb(ioaddr, DATA_REG(lp), p, l); \
1051 } while (0)
1052
1053#define SMC_PULL_DATA(lp, p, l) \
1054 do { \
1055 if (SMC_32BIT(lp)) { \
1056 void *__ptr = (p); \
1057 int __len = (l); \
1058 void __iomem *__ioaddr = ioaddr; \
1059 if ((unsigned long)__ptr & 2) { \
1060 /* \
1061 * We want 32bit alignment here. \
1062 * Since some buses perform a full \
1063 * 32bit fetch even for 16bit data \
1064 * we can't use SMC_inw() here. \
1065 * Back both source (on-chip) and \
1066 * destination pointers of 2 bytes. \
1067 * This is possible since the call to \
1068 * SMC_GET_PKT_HDR() already advanced \
1069 * the source pointer of 4 bytes, and \
1070 * the skb_reserve(skb, 2) advanced \
1071 * the destination pointer of 2 bytes. \
1072 */ \
1073 __ptr -= 2; \
1074 __len += 2; \
1075 SMC_SET_PTR(lp, \
1076 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1077 } \
1078 if (SMC_CAN_USE_DATACS && lp->datacs) \
1079 __ioaddr = lp->datacs; \
1080 __len += 2; \
1081 SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1082 } else if (SMC_16BIT(lp)) \
1083 SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1084 else if (SMC_8BIT(lp)) \
1085 SMC_insb(ioaddr, DATA_REG(lp), p, l); \
1086 } while (0)
1087
1088#endif /* _SMC91X_H_ */
1/*------------------------------------------------------------------------
2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3 .
4 . Copyright (C) 1996 by Erik Stahlman
5 . Copyright (C) 2001 Standard Microsystems Corporation
6 . Developed by Simple Network Magic Corporation
7 . Copyright (C) 2003 Monta Vista Software, Inc.
8 . Unified SMC91x driver by Nicolas Pitre
9 .
10 . This program is free software; you can redistribute it and/or modify
11 . it under the terms of the GNU General Public License as published by
12 . the Free Software Foundation; either version 2 of the License, or
13 . (at your option) any later version.
14 .
15 . This program is distributed in the hope that it will be useful,
16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 . GNU General Public License for more details.
19 .
20 . You should have received a copy of the GNU General Public License
21 . along with this program; if not, see <http://www.gnu.org/licenses/>.
22 .
23 . Information contained in this file was obtained from the LAN91C111
24 . manual from SMC. To get a copy, if you really want one, you can find
25 . information under www.smsc.com.
26 .
27 . Authors
28 . Erik Stahlman <erik@vt.edu>
29 . Daris A Nevil <dnevil@snmc.com>
30 . Nicolas Pitre <nico@fluxnic.net>
31 .
32 ---------------------------------------------------------------------------*/
33#ifndef _SMC91X_H_
34#define _SMC91X_H_
35
36#include <linux/dmaengine.h>
37#include <linux/smc91x.h>
38
39/*
40 * Any 16-bit access is performed with two 8-bit accesses if the hardware
41 * can't do it directly. Most registers are 16-bit so those are mandatory.
42 */
43#define SMC_outw_b(x, a, r) \
44 do { \
45 unsigned int __val16 = (x); \
46 unsigned int __reg = (r); \
47 SMC_outb(__val16, a, __reg); \
48 SMC_outb(__val16 >> 8, a, __reg + (1 << SMC_IO_SHIFT)); \
49 } while (0)
50
51#define SMC_inw_b(a, r) \
52 ({ \
53 unsigned int __val16; \
54 unsigned int __reg = r; \
55 __val16 = SMC_inb(a, __reg); \
56 __val16 |= SMC_inb(a, __reg + (1 << SMC_IO_SHIFT)) << 8; \
57 __val16; \
58 })
59
60/*
61 * Define your architecture specific bus configuration parameters here.
62 */
63
64#if defined(CONFIG_ARM)
65
66#include <asm/mach-types.h>
67
68/* Now the bus width is specified in the platform data
69 * pretend here to support all I/O access types
70 */
71#define SMC_CAN_USE_8BIT 1
72#define SMC_CAN_USE_16BIT 1
73#define SMC_CAN_USE_32BIT 1
74#define SMC_NOWAIT 1
75
76#define SMC_IO_SHIFT (lp->io_shift)
77
78#define SMC_inb(a, r) readb((a) + (r))
79#define SMC_inw(a, r) \
80 ({ \
81 unsigned int __smc_r = r; \
82 SMC_16BIT(lp) ? readw((a) + __smc_r) : \
83 SMC_8BIT(lp) ? SMC_inw_b(a, __smc_r) : \
84 ({ BUG(); 0; }); \
85 })
86
87#define SMC_inl(a, r) readl((a) + (r))
88#define SMC_outb(v, a, r) writeb(v, (a) + (r))
89#define SMC_outw(lp, v, a, r) \
90 do { \
91 unsigned int __v = v, __smc_r = r; \
92 if (SMC_16BIT(lp)) \
93 __SMC_outw(lp, __v, a, __smc_r); \
94 else if (SMC_8BIT(lp)) \
95 SMC_outw_b(__v, a, __smc_r); \
96 else \
97 BUG(); \
98 } while (0)
99
100#define SMC_outl(v, a, r) writel(v, (a) + (r))
101#define SMC_insb(a, r, p, l) readsb((a) + (r), p, l)
102#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, l)
103#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
104#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
105#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
106#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
107#define SMC_IRQ_FLAGS (-1) /* from resource */
108
109/* We actually can't write halfwords properly if not word aligned */
110static inline void _SMC_outw_align4(u16 val, void __iomem *ioaddr, int reg,
111 bool use_align4_workaround)
112{
113 if (use_align4_workaround) {
114 unsigned int v = val << 16;
115 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
116 writel(v, ioaddr + (reg & ~2));
117 } else {
118 writew(val, ioaddr + reg);
119 }
120}
121
122#define __SMC_outw(lp, v, a, r) \
123 _SMC_outw_align4((v), (a), (r), \
124 IS_BUILTIN(CONFIG_ARCH_PXA) && ((r) & 2) && \
125 (lp)->cfg.pxa_u16_align4)
126
127
128#elif defined(CONFIG_SH_SH4202_MICRODEV)
129
130#define SMC_CAN_USE_8BIT 0
131#define SMC_CAN_USE_16BIT 1
132#define SMC_CAN_USE_32BIT 0
133
134#define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
135#define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
136#define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
137#define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
138#define SMC_outw(lp, v, a, r) outw(v, (a) + (r) - 0xa0000000)
139#define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
140#define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
141#define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
142#define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
143#define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
144
145#define SMC_IRQ_FLAGS (0)
146
147#elif defined(CONFIG_M32R)
148
149#define SMC_CAN_USE_8BIT 0
150#define SMC_CAN_USE_16BIT 1
151#define SMC_CAN_USE_32BIT 0
152
153#define SMC_inb(a, r) inb(((u32)a) + (r))
154#define SMC_inw(a, r) inw(((u32)a) + (r))
155#define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
156#define SMC_outw(lp, v, a, r) outw(v, ((u32)a) + (r))
157#define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
158#define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
159
160#define SMC_IRQ_FLAGS (0)
161
162#define RPC_LSA_DEFAULT RPC_LED_TX_RX
163#define RPC_LSB_DEFAULT RPC_LED_100_10
164
165#elif defined(CONFIG_MN10300)
166
167/*
168 * MN10300/AM33 configuration
169 */
170
171#include <unit/smc91111.h>
172
173#elif defined(CONFIG_ATARI)
174
175#define SMC_CAN_USE_8BIT 1
176#define SMC_CAN_USE_16BIT 1
177#define SMC_CAN_USE_32BIT 1
178#define SMC_NOWAIT 1
179
180#define SMC_inb(a, r) readb((a) + (r))
181#define SMC_inw(a, r) readw((a) + (r))
182#define SMC_inl(a, r) readl((a) + (r))
183#define SMC_outb(v, a, r) writeb(v, (a) + (r))
184#define SMC_outw(lp, v, a, r) writew(v, (a) + (r))
185#define SMC_outl(v, a, r) writel(v, (a) + (r))
186#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
187#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
188#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
189#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
190
191#define RPC_LSA_DEFAULT RPC_LED_100_10
192#define RPC_LSB_DEFAULT RPC_LED_TX_RX
193
194#elif defined(CONFIG_COLDFIRE)
195
196#define SMC_CAN_USE_8BIT 0
197#define SMC_CAN_USE_16BIT 1
198#define SMC_CAN_USE_32BIT 0
199#define SMC_NOWAIT 1
200
201static inline void mcf_insw(void *a, unsigned char *p, int l)
202{
203 u16 *wp = (u16 *) p;
204 while (l-- > 0)
205 *wp++ = readw(a);
206}
207
208static inline void mcf_outsw(void *a, unsigned char *p, int l)
209{
210 u16 *wp = (u16 *) p;
211 while (l-- > 0)
212 writew(*wp++, a);
213}
214
215#define SMC_inw(a, r) _swapw(readw((a) + (r)))
216#define SMC_outw(lp, v, a, r) writew(_swapw(v), (a) + (r))
217#define SMC_insw(a, r, p, l) mcf_insw(a + r, p, l)
218#define SMC_outsw(a, r, p, l) mcf_outsw(a + r, p, l)
219
220#define SMC_IRQ_FLAGS 0
221
222#elif defined(CONFIG_H8300)
223#define SMC_CAN_USE_8BIT 1
224#define SMC_CAN_USE_16BIT 0
225#define SMC_CAN_USE_32BIT 0
226#define SMC_NOWAIT 0
227
228#define SMC_inb(a, r) ioread8((a) + (r))
229#define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
230#define SMC_insb(a, r, p, l) ioread8_rep((a) + (r), p, l)
231#define SMC_outsb(a, r, p, l) iowrite8_rep((a) + (r), p, l)
232
233#else
234
235/*
236 * Default configuration
237 */
238
239#define SMC_CAN_USE_8BIT 1
240#define SMC_CAN_USE_16BIT 1
241#define SMC_CAN_USE_32BIT 1
242#define SMC_NOWAIT 1
243
244#define SMC_IO_SHIFT (lp->io_shift)
245
246#define SMC_inb(a, r) ioread8((a) + (r))
247#define SMC_inw(a, r) ioread16((a) + (r))
248#define SMC_inl(a, r) ioread32((a) + (r))
249#define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
250#define SMC_outw(lp, v, a, r) iowrite16(v, (a) + (r))
251#define SMC_outl(v, a, r) iowrite32(v, (a) + (r))
252#define SMC_insw(a, r, p, l) ioread16_rep((a) + (r), p, l)
253#define SMC_outsw(a, r, p, l) iowrite16_rep((a) + (r), p, l)
254#define SMC_insl(a, r, p, l) ioread32_rep((a) + (r), p, l)
255#define SMC_outsl(a, r, p, l) iowrite32_rep((a) + (r), p, l)
256
257#define RPC_LSA_DEFAULT RPC_LED_100_10
258#define RPC_LSB_DEFAULT RPC_LED_TX_RX
259
260#endif
261
262
263/* store this information for the driver.. */
264struct smc_local {
265 /*
266 * If I have to wait until memory is available to send a
267 * packet, I will store the skbuff here, until I get the
268 * desired memory. Then, I'll send it out and free it.
269 */
270 struct sk_buff *pending_tx_skb;
271 struct tasklet_struct tx_task;
272
273 struct gpio_desc *power_gpio;
274 struct gpio_desc *reset_gpio;
275
276 /* version/revision of the SMC91x chip */
277 int version;
278
279 /* Contains the current active transmission mode */
280 int tcr_cur_mode;
281
282 /* Contains the current active receive mode */
283 int rcr_cur_mode;
284
285 /* Contains the current active receive/phy mode */
286 int rpc_cur_mode;
287 int ctl_rfduplx;
288 int ctl_rspeed;
289
290 u32 msg_enable;
291 u32 phy_type;
292 struct mii_if_info mii;
293
294 /* work queue */
295 struct work_struct phy_configure;
296 struct net_device *dev;
297 int work_pending;
298
299 spinlock_t lock;
300
301#ifdef CONFIG_ARCH_PXA
302 /* DMA needs the physical address of the chip */
303 u_long physaddr;
304 struct device *device;
305#endif
306 struct dma_chan *dma_chan;
307 void __iomem *base;
308 void __iomem *datacs;
309
310 /* the low address lines on some platforms aren't connected... */
311 int io_shift;
312 /* on some platforms a u16 write must be 4-bytes aligned */
313 bool half_word_align4;
314
315 struct smc91x_platdata cfg;
316};
317
318#define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT)
319#define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT)
320#define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT)
321
322#ifdef CONFIG_ARCH_PXA
323/*
324 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
325 * always happening in irq context so no need to worry about races. TX is
326 * different and probably not worth it for that reason, and not as critical
327 * as RX which can overrun memory and lose packets.
328 */
329#include <linux/dma-mapping.h>
330#include <linux/dma/pxa-dma.h>
331
332#ifdef SMC_insl
333#undef SMC_insl
334#define SMC_insl(a, r, p, l) \
335 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
336static inline void
337smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
338{
339 dma_addr_t dmabuf;
340 struct dma_async_tx_descriptor *tx;
341 dma_cookie_t cookie;
342 enum dma_status status;
343 struct dma_tx_state state;
344
345 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
346 tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
347 DMA_DEV_TO_MEM, 0);
348 if (tx) {
349 cookie = dmaengine_submit(tx);
350 dma_async_issue_pending(lp->dma_chan);
351 do {
352 status = dmaengine_tx_status(lp->dma_chan, cookie,
353 &state);
354 cpu_relax();
355 } while (status != DMA_COMPLETE && status != DMA_ERROR &&
356 state.residue);
357 dmaengine_terminate_all(lp->dma_chan);
358 }
359 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
360}
361
362static inline void
363smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
364 u_char *buf, int len)
365{
366 struct dma_slave_config config;
367 int ret;
368
369 /* fallback if no DMA available */
370 if (!lp->dma_chan) {
371 readsl(ioaddr + reg, buf, len);
372 return;
373 }
374
375 /* 64 bit alignment is required for memory to memory DMA */
376 if ((long)buf & 4) {
377 *((u32 *)buf) = SMC_inl(ioaddr, reg);
378 buf += 4;
379 len--;
380 }
381
382 memset(&config, 0, sizeof(config));
383 config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
384 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
385 config.src_addr = lp->physaddr + reg;
386 config.dst_addr = lp->physaddr + reg;
387 config.src_maxburst = 32;
388 config.dst_maxburst = 32;
389 ret = dmaengine_slave_config(lp->dma_chan, &config);
390 if (ret) {
391 dev_err(lp->device, "dma channel configuration failed: %d\n",
392 ret);
393 return;
394 }
395
396 len *= 4;
397 smc_pxa_dma_inpump(lp, buf, len);
398}
399#endif
400
401#ifdef SMC_insw
402#undef SMC_insw
403#define SMC_insw(a, r, p, l) \
404 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
405static inline void
406smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
407 u_char *buf, int len)
408{
409 struct dma_slave_config config;
410 int ret;
411
412 /* fallback if no DMA available */
413 if (!lp->dma_chan) {
414 readsw(ioaddr + reg, buf, len);
415 return;
416 }
417
418 /* 64 bit alignment is required for memory to memory DMA */
419 while ((long)buf & 6) {
420 *((u16 *)buf) = SMC_inw(ioaddr, reg);
421 buf += 2;
422 len--;
423 }
424
425 memset(&config, 0, sizeof(config));
426 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
427 config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
428 config.src_addr = lp->physaddr + reg;
429 config.dst_addr = lp->physaddr + reg;
430 config.src_maxburst = 32;
431 config.dst_maxburst = 32;
432 ret = dmaengine_slave_config(lp->dma_chan, &config);
433 if (ret) {
434 dev_err(lp->device, "dma channel configuration failed: %d\n",
435 ret);
436 return;
437 }
438
439 len *= 2;
440 smc_pxa_dma_inpump(lp, buf, len);
441}
442#endif
443
444#endif /* CONFIG_ARCH_PXA */
445
446
447/*
448 * Everything a particular hardware setup needs should have been defined
449 * at this point. Add stubs for the undefined cases, mainly to avoid
450 * compilation warnings since they'll be optimized away, or to prevent buggy
451 * use of them.
452 */
453
454#if ! SMC_CAN_USE_32BIT
455#define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
456#define SMC_outl(x, ioaddr, reg) BUG()
457#define SMC_insl(a, r, p, l) BUG()
458#define SMC_outsl(a, r, p, l) BUG()
459#endif
460
461#if !defined(SMC_insl) || !defined(SMC_outsl)
462#define SMC_insl(a, r, p, l) BUG()
463#define SMC_outsl(a, r, p, l) BUG()
464#endif
465
466#if ! SMC_CAN_USE_16BIT
467
468#define SMC_outw(lp, x, ioaddr, reg) SMC_outw_b(x, ioaddr, reg)
469#define SMC_inw(ioaddr, reg) SMC_inw_b(ioaddr, reg)
470#define SMC_insw(a, r, p, l) BUG()
471#define SMC_outsw(a, r, p, l) BUG()
472
473#endif
474
475#if !defined(SMC_insw) || !defined(SMC_outsw)
476#define SMC_insw(a, r, p, l) BUG()
477#define SMC_outsw(a, r, p, l) BUG()
478#endif
479
480#if ! SMC_CAN_USE_8BIT
481#undef SMC_inb
482#define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
483#undef SMC_outb
484#define SMC_outb(x, ioaddr, reg) BUG()
485#define SMC_insb(a, r, p, l) BUG()
486#define SMC_outsb(a, r, p, l) BUG()
487#endif
488
489#if !defined(SMC_insb) || !defined(SMC_outsb)
490#define SMC_insb(a, r, p, l) BUG()
491#define SMC_outsb(a, r, p, l) BUG()
492#endif
493
494#ifndef SMC_CAN_USE_DATACS
495#define SMC_CAN_USE_DATACS 0
496#endif
497
498#ifndef SMC_IO_SHIFT
499#define SMC_IO_SHIFT 0
500#endif
501
502#ifndef SMC_IRQ_FLAGS
503#define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
504#endif
505
506#ifndef SMC_INTERRUPT_PREAMBLE
507#define SMC_INTERRUPT_PREAMBLE
508#endif
509
510
511/* Because of bank switching, the LAN91x uses only 16 I/O ports */
512#define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
513#define SMC_DATA_EXTENT (4)
514
515/*
516 . Bank Select Register:
517 .
518 . yyyy yyyy 0000 00xx
519 . xx = bank number
520 . yyyy yyyy = 0x33, for identification purposes.
521*/
522#define BANK_SELECT (14 << SMC_IO_SHIFT)
523
524
525// Transmit Control Register
526/* BANK 0 */
527#define TCR_REG(lp) SMC_REG(lp, 0x0000, 0)
528#define TCR_ENABLE 0x0001 // When 1 we can transmit
529#define TCR_LOOP 0x0002 // Controls output pin LBK
530#define TCR_FORCOL 0x0004 // When 1 will force a collision
531#define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
532#define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
533#define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
534#define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
535#define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
536#define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
537#define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
538
539#define TCR_CLEAR 0 /* do NOTHING */
540/* the default settings for the TCR register : */
541#define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
542
543
544// EPH Status Register
545/* BANK 0 */
546#define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0)
547#define ES_TX_SUC 0x0001 // Last TX was successful
548#define ES_SNGL_COL 0x0002 // Single collision detected for last tx
549#define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
550#define ES_LTX_MULT 0x0008 // Last tx was a multicast
551#define ES_16COL 0x0010 // 16 Collisions Reached
552#define ES_SQET 0x0020 // Signal Quality Error Test
553#define ES_LTXBRD 0x0040 // Last tx was a broadcast
554#define ES_TXDEFR 0x0080 // Transmit Deferred
555#define ES_LATCOL 0x0200 // Late collision detected on last tx
556#define ES_LOSTCARR 0x0400 // Lost Carrier Sense
557#define ES_EXC_DEF 0x0800 // Excessive Deferral
558#define ES_CTR_ROL 0x1000 // Counter Roll Over indication
559#define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
560#define ES_TXUNRN 0x8000 // Tx Underrun
561
562
563// Receive Control Register
564/* BANK 0 */
565#define RCR_REG(lp) SMC_REG(lp, 0x0004, 0)
566#define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
567#define RCR_PRMS 0x0002 // Enable promiscuous mode
568#define RCR_ALMUL 0x0004 // When set accepts all multicast frames
569#define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
570#define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
571#define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
572#define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
573#define RCR_SOFTRST 0x8000 // resets the chip
574
575/* the normal settings for the RCR register : */
576#define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
577#define RCR_CLEAR 0x0 // set it to a base state
578
579
580// Counter Register
581/* BANK 0 */
582#define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0)
583
584
585// Memory Information Register
586/* BANK 0 */
587#define MIR_REG(lp) SMC_REG(lp, 0x0008, 0)
588
589
590// Receive/Phy Control Register
591/* BANK 0 */
592#define RPC_REG(lp) SMC_REG(lp, 0x000A, 0)
593#define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
594#define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
595#define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
596#define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
597#define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
598
599#ifndef RPC_LSA_DEFAULT
600#define RPC_LSA_DEFAULT RPC_LED_100
601#endif
602#ifndef RPC_LSB_DEFAULT
603#define RPC_LSB_DEFAULT RPC_LED_FD
604#endif
605
606#define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
607
608
609/* Bank 0 0x0C is reserved */
610
611// Bank Select Register
612/* All Banks */
613#define BSR_REG 0x000E
614
615
616// Configuration Reg
617/* BANK 1 */
618#define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1)
619#define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
620#define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
621#define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
622#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
623
624// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
625#define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
626
627
628// Base Address Register
629/* BANK 1 */
630#define BASE_REG(lp) SMC_REG(lp, 0x0002, 1)
631
632
633// Individual Address Registers
634/* BANK 1 */
635#define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1)
636#define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1)
637#define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1)
638
639
640// General Purpose Register
641/* BANK 1 */
642#define GP_REG(lp) SMC_REG(lp, 0x000A, 1)
643
644
645// Control Register
646/* BANK 1 */
647#define CTL_REG(lp) SMC_REG(lp, 0x000C, 1)
648#define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
649#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
650#define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
651#define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
652#define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
653#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
654#define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
655#define CTL_STORE 0x0001 // When set stores registers into EEPROM
656
657
658// MMU Command Register
659/* BANK 2 */
660#define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2)
661#define MC_BUSY 1 // When 1 the last release has not completed
662#define MC_NOP (0<<5) // No Op
663#define MC_ALLOC (1<<5) // OR with number of 256 byte packets
664#define MC_RESET (2<<5) // Reset MMU to initial state
665#define MC_REMOVE (3<<5) // Remove the current rx packet
666#define MC_RELEASE (4<<5) // Remove and release the current rx packet
667#define MC_FREEPKT (5<<5) // Release packet in PNR register
668#define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
669#define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
670
671
672// Packet Number Register
673/* BANK 2 */
674#define PN_REG(lp) SMC_REG(lp, 0x0002, 2)
675
676
677// Allocation Result Register
678/* BANK 2 */
679#define AR_REG(lp) SMC_REG(lp, 0x0003, 2)
680#define AR_FAILED 0x80 // Alocation Failed
681
682
683// TX FIFO Ports Register
684/* BANK 2 */
685#define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
686#define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
687
688// RX FIFO Ports Register
689/* BANK 2 */
690#define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2)
691#define RXFIFO_REMPTY 0x80 // RX FIFO Empty
692
693#define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
694
695// Pointer Register
696/* BANK 2 */
697#define PTR_REG(lp) SMC_REG(lp, 0x0006, 2)
698#define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
699#define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
700#define PTR_READ 0x2000 // When 1 the operation is a read
701
702
703// Data Register
704/* BANK 2 */
705#define DATA_REG(lp) SMC_REG(lp, 0x0008, 2)
706
707
708// Interrupt Status/Acknowledge Register
709/* BANK 2 */
710#define INT_REG(lp) SMC_REG(lp, 0x000C, 2)
711
712
713// Interrupt Mask Register
714/* BANK 2 */
715#define IM_REG(lp) SMC_REG(lp, 0x000D, 2)
716#define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
717#define IM_ERCV_INT 0x40 // Early Receive Interrupt
718#define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
719#define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
720#define IM_ALLOC_INT 0x08 // Set when allocation request is completed
721#define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
722#define IM_TX_INT 0x02 // Transmit Interrupt
723#define IM_RCV_INT 0x01 // Receive Interrupt
724
725
726// Multicast Table Registers
727/* BANK 3 */
728#define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3)
729#define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3)
730#define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3)
731#define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3)
732
733
734// Management Interface Register (MII)
735/* BANK 3 */
736#define MII_REG(lp) SMC_REG(lp, 0x0008, 3)
737#define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
738#define MII_MDOE 0x0008 // MII Output Enable
739#define MII_MCLK 0x0004 // MII Clock, pin MDCLK
740#define MII_MDI 0x0002 // MII Input, pin MDI
741#define MII_MDO 0x0001 // MII Output, pin MDO
742
743
744// Revision Register
745/* BANK 3 */
746/* ( hi: chip id low: rev # ) */
747#define REV_REG(lp) SMC_REG(lp, 0x000A, 3)
748
749
750// Early RCV Register
751/* BANK 3 */
752/* this is NOT on SMC9192 */
753#define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3)
754#define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
755#define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
756
757
758// External Register
759/* BANK 7 */
760#define EXT_REG(lp) SMC_REG(lp, 0x0000, 7)
761
762
763#define CHIP_9192 3
764#define CHIP_9194 4
765#define CHIP_9195 5
766#define CHIP_9196 6
767#define CHIP_91100 7
768#define CHIP_91100FD 8
769#define CHIP_91111FD 9
770
771static const char * chip_ids[ 16 ] = {
772 NULL, NULL, NULL,
773 /* 3 */ "SMC91C90/91C92",
774 /* 4 */ "SMC91C94",
775 /* 5 */ "SMC91C95",
776 /* 6 */ "SMC91C96",
777 /* 7 */ "SMC91C100",
778 /* 8 */ "SMC91C100FD",
779 /* 9 */ "SMC91C11xFD",
780 NULL, NULL, NULL,
781 NULL, NULL, NULL};
782
783
784/*
785 . Receive status bits
786*/
787#define RS_ALGNERR 0x8000
788#define RS_BRODCAST 0x4000
789#define RS_BADCRC 0x2000
790#define RS_ODDFRAME 0x1000
791#define RS_TOOLONG 0x0800
792#define RS_TOOSHORT 0x0400
793#define RS_MULTICAST 0x0001
794#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
795
796
797/*
798 * PHY IDs
799 * LAN83C183 == LAN91C111 Internal PHY
800 */
801#define PHY_LAN83C183 0x0016f840
802#define PHY_LAN83C180 0x02821c50
803
804/*
805 * PHY Register Addresses (LAN91C111 Internal PHY)
806 *
807 * Generic PHY registers can be found in <linux/mii.h>
808 *
809 * These phy registers are specific to our on-board phy.
810 */
811
812// PHY Configuration Register 1
813#define PHY_CFG1_REG 0x10
814#define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
815#define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
816#define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
817#define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
818#define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
819#define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
820#define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
821#define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
822#define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
823#define PHY_CFG1_TLVL_MASK 0x003C
824#define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
825
826
827// PHY Configuration Register 2
828#define PHY_CFG2_REG 0x11
829#define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
830#define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
831#define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
832#define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
833
834// PHY Status Output (and Interrupt status) Register
835#define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
836#define PHY_INT_INT 0x8000 // 1=bits have changed since last read
837#define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
838#define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
839#define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
840#define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
841#define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
842#define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
843#define PHY_INT_JAB 0x0100 // 1=Jabber detected
844#define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
845#define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
846
847// PHY Interrupt/Status Mask Register
848#define PHY_MASK_REG 0x13 // Interrupt Mask
849// Uses the same bit definitions as PHY_INT_REG
850
851
852/*
853 * SMC91C96 ethernet config and status registers.
854 * These are in the "attribute" space.
855 */
856#define ECOR 0x8000
857#define ECOR_RESET 0x80
858#define ECOR_LEVEL_IRQ 0x40
859#define ECOR_WR_ATTRIB 0x04
860#define ECOR_ENABLE 0x01
861
862#define ECSR 0x8002
863#define ECSR_IOIS8 0x20
864#define ECSR_PWRDWN 0x04
865#define ECSR_INT 0x02
866
867#define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
868
869
870/*
871 * Macros to abstract register access according to the data bus
872 * capabilities. Please use those and not the in/out primitives.
873 * Note: the following macros do *not* select the bank -- this must
874 * be done separately as needed in the main code. The SMC_REG() macro
875 * only uses the bank argument for debugging purposes (when enabled).
876 *
877 * Note: despite inline functions being safer, everything leading to this
878 * should preferably be macros to let BUG() display the line number in
879 * the core source code since we're interested in the top call site
880 * not in any inline function location.
881 */
882
883#if SMC_DEBUG > 0
884#define SMC_REG(lp, reg, bank) \
885 ({ \
886 int __b = SMC_CURRENT_BANK(lp); \
887 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
888 pr_err("%s: bank reg screwed (0x%04x)\n", \
889 CARDNAME, __b); \
890 BUG(); \
891 } \
892 reg<<SMC_IO_SHIFT; \
893 })
894#else
895#define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT)
896#endif
897
898/*
899 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
900 * aligned to a 32 bit boundary. I tell you that does exist!
901 * Fortunately the affected register accesses can be easily worked around
902 * since we can write zeroes to the preceding 16 bits without adverse
903 * effects and use a 32-bit access.
904 *
905 * Enforce it on any 32-bit capable setup for now.
906 */
907#define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp)
908
909#define SMC_GET_PN(lp) \
910 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \
911 : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
912
913#define SMC_SET_PN(lp, x) \
914 do { \
915 if (SMC_MUST_ALIGN_WRITE(lp)) \
916 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \
917 else if (SMC_8BIT(lp)) \
918 SMC_outb(x, ioaddr, PN_REG(lp)); \
919 else \
920 SMC_outw(lp, x, ioaddr, PN_REG(lp)); \
921 } while (0)
922
923#define SMC_GET_AR(lp) \
924 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \
925 : (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
926
927#define SMC_GET_TXFIFO(lp) \
928 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \
929 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
930
931#define SMC_GET_RXFIFO(lp) \
932 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \
933 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
934
935#define SMC_GET_INT(lp) \
936 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \
937 : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
938
939#define SMC_ACK_INT(lp, x) \
940 do { \
941 if (SMC_8BIT(lp)) \
942 SMC_outb(x, ioaddr, INT_REG(lp)); \
943 else { \
944 unsigned long __flags; \
945 int __mask; \
946 local_irq_save(__flags); \
947 __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
948 SMC_outw(lp, __mask | (x), ioaddr, INT_REG(lp)); \
949 local_irq_restore(__flags); \
950 } \
951 } while (0)
952
953#define SMC_GET_INT_MASK(lp) \
954 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \
955 : (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
956
957#define SMC_SET_INT_MASK(lp, x) \
958 do { \
959 if (SMC_8BIT(lp)) \
960 SMC_outb(x, ioaddr, IM_REG(lp)); \
961 else \
962 SMC_outw(lp, (x) << 8, ioaddr, INT_REG(lp)); \
963 } while (0)
964
965#define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT)
966
967#define SMC_SELECT_BANK(lp, x) \
968 do { \
969 if (SMC_MUST_ALIGN_WRITE(lp)) \
970 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
971 else \
972 SMC_outw(lp, x, ioaddr, BANK_SELECT); \
973 } while (0)
974
975#define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp))
976
977#define SMC_SET_BASE(lp, x) SMC_outw(lp, x, ioaddr, BASE_REG(lp))
978
979#define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp))
980
981#define SMC_SET_CONFIG(lp, x) SMC_outw(lp, x, ioaddr, CONFIG_REG(lp))
982
983#define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp))
984
985#define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp))
986
987#define SMC_SET_CTL(lp, x) SMC_outw(lp, x, ioaddr, CTL_REG(lp))
988
989#define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp))
990
991#define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp))
992
993#define SMC_SET_GP(lp, x) \
994 do { \
995 if (SMC_MUST_ALIGN_WRITE(lp)) \
996 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \
997 else \
998 SMC_outw(lp, x, ioaddr, GP_REG(lp)); \
999 } while (0)
1000
1001#define SMC_SET_MII(lp, x) SMC_outw(lp, x, ioaddr, MII_REG(lp))
1002
1003#define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp))
1004
1005#define SMC_SET_MIR(lp, x) SMC_outw(lp, x, ioaddr, MIR_REG(lp))
1006
1007#define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp))
1008
1009#define SMC_SET_MMU_CMD(lp, x) SMC_outw(lp, x, ioaddr, MMU_CMD_REG(lp))
1010
1011#define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp))
1012
1013#define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp))
1014
1015#define SMC_SET_PTR(lp, x) \
1016 do { \
1017 if (SMC_MUST_ALIGN_WRITE(lp)) \
1018 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \
1019 else \
1020 SMC_outw(lp, x, ioaddr, PTR_REG(lp)); \
1021 } while (0)
1022
1023#define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp))
1024
1025#define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp))
1026
1027#define SMC_SET_RCR(lp, x) SMC_outw(lp, x, ioaddr, RCR_REG(lp))
1028
1029#define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp))
1030
1031#define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp))
1032
1033#define SMC_SET_RPC(lp, x) \
1034 do { \
1035 if (SMC_MUST_ALIGN_WRITE(lp)) \
1036 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \
1037 else \
1038 SMC_outw(lp, x, ioaddr, RPC_REG(lp)); \
1039 } while (0)
1040
1041#define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp))
1042
1043#define SMC_SET_TCR(lp, x) SMC_outw(lp, x, ioaddr, TCR_REG(lp))
1044
1045#ifndef SMC_GET_MAC_ADDR
1046#define SMC_GET_MAC_ADDR(lp, addr) \
1047 do { \
1048 unsigned int __v; \
1049 __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \
1050 addr[0] = __v; addr[1] = __v >> 8; \
1051 __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \
1052 addr[2] = __v; addr[3] = __v >> 8; \
1053 __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \
1054 addr[4] = __v; addr[5] = __v >> 8; \
1055 } while (0)
1056#endif
1057
1058#define SMC_SET_MAC_ADDR(lp, addr) \
1059 do { \
1060 SMC_outw(lp, addr[0] | (addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1061 SMC_outw(lp, addr[2] | (addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1062 SMC_outw(lp, addr[4] | (addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1063 } while (0)
1064
1065#define SMC_SET_MCAST(lp, x) \
1066 do { \
1067 const unsigned char *mt = (x); \
1068 SMC_outw(lp, mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1069 SMC_outw(lp, mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1070 SMC_outw(lp, mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1071 SMC_outw(lp, mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1072 } while (0)
1073
1074#define SMC_PUT_PKT_HDR(lp, status, length) \
1075 do { \
1076 if (SMC_32BIT(lp)) \
1077 SMC_outl((status) | (length)<<16, ioaddr, \
1078 DATA_REG(lp)); \
1079 else { \
1080 SMC_outw(lp, status, ioaddr, DATA_REG(lp)); \
1081 SMC_outw(lp, length, ioaddr, DATA_REG(lp)); \
1082 } \
1083 } while (0)
1084
1085#define SMC_GET_PKT_HDR(lp, status, length) \
1086 do { \
1087 if (SMC_32BIT(lp)) { \
1088 unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1089 (status) = __val & 0xffff; \
1090 (length) = __val >> 16; \
1091 } else { \
1092 (status) = SMC_inw(ioaddr, DATA_REG(lp)); \
1093 (length) = SMC_inw(ioaddr, DATA_REG(lp)); \
1094 } \
1095 } while (0)
1096
1097#define SMC_PUSH_DATA(lp, p, l) \
1098 do { \
1099 if (SMC_32BIT(lp)) { \
1100 void *__ptr = (p); \
1101 int __len = (l); \
1102 void __iomem *__ioaddr = ioaddr; \
1103 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1104 __len -= 2; \
1105 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1106 __ptr += 2; \
1107 } \
1108 if (SMC_CAN_USE_DATACS && lp->datacs) \
1109 __ioaddr = lp->datacs; \
1110 SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1111 if (__len & 2) { \
1112 __ptr += (__len & ~3); \
1113 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1114 } \
1115 } else if (SMC_16BIT(lp)) \
1116 SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1117 else if (SMC_8BIT(lp)) \
1118 SMC_outsb(ioaddr, DATA_REG(lp), p, l); \
1119 } while (0)
1120
1121#define SMC_PULL_DATA(lp, p, l) \
1122 do { \
1123 if (SMC_32BIT(lp)) { \
1124 void *__ptr = (p); \
1125 int __len = (l); \
1126 void __iomem *__ioaddr = ioaddr; \
1127 if ((unsigned long)__ptr & 2) { \
1128 /* \
1129 * We want 32bit alignment here. \
1130 * Since some buses perform a full \
1131 * 32bit fetch even for 16bit data \
1132 * we can't use SMC_inw() here. \
1133 * Back both source (on-chip) and \
1134 * destination pointers of 2 bytes. \
1135 * This is possible since the call to \
1136 * SMC_GET_PKT_HDR() already advanced \
1137 * the source pointer of 4 bytes, and \
1138 * the skb_reserve(skb, 2) advanced \
1139 * the destination pointer of 2 bytes. \
1140 */ \
1141 __ptr -= 2; \
1142 __len += 2; \
1143 SMC_SET_PTR(lp, \
1144 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1145 } \
1146 if (SMC_CAN_USE_DATACS && lp->datacs) \
1147 __ioaddr = lp->datacs; \
1148 __len += 2; \
1149 SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1150 } else if (SMC_16BIT(lp)) \
1151 SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1152 else if (SMC_8BIT(lp)) \
1153 SMC_insb(ioaddr, DATA_REG(lp), p, l); \
1154 } while (0)
1155
1156#endif /* _SMC91X_H_ */