Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright(c) 2015 EZchip Technologies.
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/module.h>
  7#include <linux/etherdevice.h>
  8#include <linux/interrupt.h>
  9#include <linux/mod_devicetable.h>
 10#include <linux/of_net.h>
 11#include <linux/platform_device.h>
 12#include "nps_enet.h"
 13
 14#define DRV_NAME			"nps_mgt_enet"
 15
 16static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
 17{
 18	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
 19	u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
 20
 21	return (!tx_ctrl_ct && priv->tx_skb);
 22}
 23
 24static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
 25{
 26	struct nps_enet_priv *priv = netdev_priv(ndev);
 27	u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
 28
 29	/* Empty Rx FIFO buffer by reading all words */
 30	for (i = 0; i < len; i++)
 31		nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
 32}
 33
 34static void nps_enet_read_rx_fifo(struct net_device *ndev,
 35				  unsigned char *dst, u32 length)
 36{
 37	struct nps_enet_priv *priv = netdev_priv(ndev);
 38	s32 i, last = length & (sizeof(u32) - 1);
 39	u32 *reg = (u32 *)dst, len = length / sizeof(u32);
 40	bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
 41
 42	/* In case dst is not aligned we need an intermediate buffer */
 43	if (dst_is_aligned) {
 44		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
 45		reg += len;
 46	} else { /* !dst_is_aligned */
 47		for (i = 0; i < len; i++, reg++) {
 48			u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
 49
 50			put_unaligned_be32(buf, reg);
 51		}
 52	}
 53	/* copy last bytes (if any) */
 54	if (last) {
 55		u32 buf;
 56
 57		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
 58		memcpy((u8 *)reg, &buf, last);
 59	}
 60}
 61
 62static u32 nps_enet_rx_handler(struct net_device *ndev)
 63{
 64	u32 frame_len, err = 0;
 65	u32 work_done = 0;
 66	struct nps_enet_priv *priv = netdev_priv(ndev);
 67	struct sk_buff *skb;
 68	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
 69	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
 70	u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
 71	u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
 72
 73	frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
 74
 75	/* Check if we got RX */
 76	if (!rx_ctrl_cr)
 77		return work_done;
 78
 79	/* If we got here there is a work for us */
 80	work_done++;
 81
 82	/* Check Rx error */
 83	if (rx_ctrl_er) {
 84		ndev->stats.rx_errors++;
 85		err = 1;
 86	}
 87
 88	/* Check Rx CRC error */
 89	if (rx_ctrl_crc) {
 90		ndev->stats.rx_crc_errors++;
 91		ndev->stats.rx_dropped++;
 92		err = 1;
 93	}
 94
 95	/* Check Frame length Min 64b */
 96	if (unlikely(frame_len < ETH_ZLEN)) {
 97		ndev->stats.rx_length_errors++;
 98		ndev->stats.rx_dropped++;
 99		err = 1;
100	}
101
102	if (err)
103		goto rx_irq_clean;
104
105	/* Skb allocation */
106	skb = netdev_alloc_skb_ip_align(ndev, frame_len);
107	if (unlikely(!skb)) {
108		ndev->stats.rx_errors++;
109		ndev->stats.rx_dropped++;
110		goto rx_irq_clean;
111	}
112
113	/* Copy frame from Rx fifo into the skb */
114	nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
115
116	skb_put(skb, frame_len);
117	skb->protocol = eth_type_trans(skb, ndev);
118	skb->ip_summed = CHECKSUM_UNNECESSARY;
119
120	ndev->stats.rx_packets++;
121	ndev->stats.rx_bytes += frame_len;
122	netif_receive_skb(skb);
123
124	goto rx_irq_frame_done;
125
126rx_irq_clean:
127	/* Clean Rx fifo */
128	nps_enet_clean_rx_fifo(ndev, frame_len);
129
130rx_irq_frame_done:
131	/* Ack Rx ctrl register */
132	nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
133
134	return work_done;
135}
136
137static void nps_enet_tx_handler(struct net_device *ndev)
138{
139	struct nps_enet_priv *priv = netdev_priv(ndev);
140	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
141	u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
142	u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
143
144	/* Check if we got TX */
145	if (!nps_enet_is_tx_pending(priv))
146		return;
147
148	/* Ack Tx ctrl register */
149	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
150
151	/* Check Tx transmit error */
152	if (unlikely(tx_ctrl_et)) {
153		ndev->stats.tx_errors++;
154	} else {
155		ndev->stats.tx_packets++;
156		ndev->stats.tx_bytes += tx_ctrl_nt;
157	}
158
159	dev_kfree_skb(priv->tx_skb);
160	priv->tx_skb = NULL;
161
162	if (netif_queue_stopped(ndev))
163		netif_wake_queue(ndev);
164}
165
166/**
167 * nps_enet_poll - NAPI poll handler.
168 * @napi:       Pointer to napi_struct structure.
169 * @budget:     How many frames to process on one call.
170 *
171 * returns:     Number of processed frames
172 */
173static int nps_enet_poll(struct napi_struct *napi, int budget)
174{
175	struct net_device *ndev = napi->dev;
176	struct nps_enet_priv *priv = netdev_priv(ndev);
177	u32 work_done;
178
179	nps_enet_tx_handler(ndev);
180	work_done = nps_enet_rx_handler(ndev);
181	if ((work_done < budget) && napi_complete_done(napi, work_done)) {
182		u32 buf_int_enable_value = 0;
183
 
 
184		/* set tx_done and rx_rdy bits */
185		buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
186		buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
187
188		nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
189				 buf_int_enable_value);
190
191		/* in case we will get a tx interrupt while interrupts
192		 * are masked, we will lose it since the tx is edge interrupt.
193		 * specifically, while executing the code section above,
194		 * between nps_enet_tx_handler and the interrupts enable, all
195		 * tx requests will be stuck until we will get an rx interrupt.
196		 * the two code lines below will solve this situation by
197		 * re-adding ourselves to the poll list.
198		 */
199		if (nps_enet_is_tx_pending(priv)) {
200			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
201			napi_schedule(napi);
202		}
203	}
204
205	return work_done;
206}
207
208/**
209 * nps_enet_irq_handler - Global interrupt handler for ENET.
210 * @irq:                irq number.
211 * @dev_instance:       device instance.
212 *
213 * returns: IRQ_HANDLED for all cases.
214 *
215 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
216 * CTRL registers we may tell what is a reason for interrupt to fire up.
217 * We got one for RX and the other for TX (completion).
218 */
219static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
220{
221	struct net_device *ndev = dev_instance;
222	struct nps_enet_priv *priv = netdev_priv(ndev);
223	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
224	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
225
226	if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
227		if (likely(napi_schedule_prep(&priv->napi))) {
228			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
229			__napi_schedule(&priv->napi);
230		}
231
232	return IRQ_HANDLED;
233}
234
235static void nps_enet_set_hw_mac_address(struct net_device *ndev)
236{
237	struct nps_enet_priv *priv = netdev_priv(ndev);
238	u32 ge_mac_cfg_1_value = 0;
239	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
240
241	/* set MAC address in HW */
242	ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
243	ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
244	ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
245	ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
246	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
247		 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
248	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
249		 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
250
251	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
252			 ge_mac_cfg_1_value);
253
254	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
255			 *ge_mac_cfg_2_value);
256}
257
258/**
259 * nps_enet_hw_reset - Reset the network device.
260 * @ndev:       Pointer to the network device.
261 *
262 * This function reset the PCS and TX fifo.
263 * The programming model is to set the relevant reset bits
264 * wait for some time for this to propagate and then unset
265 * the reset bits. This way we ensure that reset procedure
266 * is done successfully by device.
267 */
268static void nps_enet_hw_reset(struct net_device *ndev)
269{
270	struct nps_enet_priv *priv = netdev_priv(ndev);
271	u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
272
273	/* Pcs reset sequence*/
274	ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
275	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
276	usleep_range(10, 20);
277	ge_rst_value = 0;
278	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
279
280	/* Tx fifo reset sequence */
281	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
282	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
283	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
284			 phase_fifo_ctl_value);
285	usleep_range(10, 20);
286	phase_fifo_ctl_value = 0;
287	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
288			 phase_fifo_ctl_value);
289}
290
291static void nps_enet_hw_enable_control(struct net_device *ndev)
292{
293	struct nps_enet_priv *priv = netdev_priv(ndev);
294	u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
295	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
296	u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
297	s32 max_frame_length;
298
299	/* Enable Rx and Tx statistics */
300	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
301		 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
302
303	/* Discard packets with different MAC address */
304	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
305		 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
306
307	/* Discard multicast packets */
308	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
309		 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
310
311	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
312			 *ge_mac_cfg_2_value);
313
314	/* Discard Packets bigger than max frame length */
315	max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
316	if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
317		*ge_mac_cfg_3_value =
318			 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
319			 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
320	}
321
322	/* Enable interrupts */
323	buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
324	buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
325	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
326			 buf_int_enable_value);
327
328	/* Write device MAC address to HW */
329	nps_enet_set_hw_mac_address(ndev);
330
331	/* Rx and Tx HW features */
332	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
333	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
334	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
335
336	/* IFG configuration */
337	ge_mac_cfg_0_value |=
338		 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
339	ge_mac_cfg_0_value |=
340		 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
341
342	/* preamble configuration */
343	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
344	ge_mac_cfg_0_value |=
345		 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
346
347	/* enable flow control frames */
348	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
349	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
350	ge_mac_cfg_0_value |=
351		 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
352	*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
353		 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
354
355	/* Enable Rx and Tx */
356	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
357	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
358
359	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
360			 *ge_mac_cfg_3_value);
361	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
362			 ge_mac_cfg_0_value);
363}
364
365static void nps_enet_hw_disable_control(struct net_device *ndev)
366{
367	struct nps_enet_priv *priv = netdev_priv(ndev);
368
369	/* Disable interrupts */
370	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
371
372	/* Disable Rx and Tx */
373	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
374}
375
376static void nps_enet_send_frame(struct net_device *ndev,
377				struct sk_buff *skb)
378{
379	struct nps_enet_priv *priv = netdev_priv(ndev);
380	u32 tx_ctrl_value = 0;
381	short length = skb->len;
382	u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
383	u32 *src = (void *)skb->data;
384	bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
385
386	/* In case src is not aligned we need an intermediate buffer */
387	if (src_is_aligned)
388		iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
389	else /* !src_is_aligned */
390		for (i = 0; i < len; i++, src++)
391			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
392					 get_unaligned_be32(src));
393
394	/* Write the length of the Frame */
395	tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
396
397	tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
398	/* Send Frame */
399	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
400}
401
402/**
403 * nps_enet_set_mac_address - Set the MAC address for this device.
404 * @ndev:       Pointer to net_device structure.
405 * @p:          6 byte Address to be written as MAC address.
406 *
407 * This function copies the HW address from the sockaddr structure to the
408 * net_device structure and updates the address in HW.
409 *
410 * returns:     -EBUSY if the net device is busy or 0 if the address is set
411 *              successfully.
412 */
413static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
414{
415	struct sockaddr *addr = p;
416	s32 res;
417
418	if (netif_running(ndev))
419		return -EBUSY;
420
421	res = eth_mac_addr(ndev, p);
422	if (!res) {
423		eth_hw_addr_set(ndev, addr->sa_data);
424		nps_enet_set_hw_mac_address(ndev);
425	}
426
427	return res;
428}
429
430/**
431 * nps_enet_set_rx_mode - Change the receive filtering mode.
432 * @ndev:       Pointer to the network device.
433 *
434 * This function enables/disables promiscuous mode
435 */
436static void nps_enet_set_rx_mode(struct net_device *ndev)
437{
438	struct nps_enet_priv *priv = netdev_priv(ndev);
439	u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
440
441	if (ndev->flags & IFF_PROMISC) {
442		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
443			 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
444		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
445			 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
446
447	} else {
448		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
449			 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
450		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
451			 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
452	}
453
454	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
455}
456
457/**
458 * nps_enet_open - Open the network device.
459 * @ndev:       Pointer to the network device.
460 *
461 * returns: 0, on success or non-zero error value on failure.
462 *
463 * This function sets the MAC address, requests and enables an IRQ
464 * for the ENET device and starts the Tx queue.
465 */
466static s32 nps_enet_open(struct net_device *ndev)
467{
468	struct nps_enet_priv *priv = netdev_priv(ndev);
469	s32 err;
470
471	/* Reset private variables */
472	priv->tx_skb = NULL;
473	priv->ge_mac_cfg_2_value = 0;
474	priv->ge_mac_cfg_3_value = 0;
475
476	/* ge_mac_cfg_3 default values */
477	priv->ge_mac_cfg_3_value |=
478		 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
479
480	priv->ge_mac_cfg_3_value |=
481		 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
482
483	/* Disable HW device */
484	nps_enet_hw_disable_control(ndev);
485
486	/* irq Rx allocation */
487	err = request_irq(priv->irq, nps_enet_irq_handler,
488			  0, "enet-rx-tx", ndev);
489	if (err)
490		return err;
491
492	napi_enable(&priv->napi);
493
494	/* Enable HW device */
495	nps_enet_hw_reset(ndev);
496	nps_enet_hw_enable_control(ndev);
497
498	netif_start_queue(ndev);
499
500	return 0;
501}
502
503/**
504 * nps_enet_stop - Close the network device.
505 * @ndev:       Pointer to the network device.
506 *
507 * This function stops the Tx queue, disables interrupts for the ENET device.
508 */
509static s32 nps_enet_stop(struct net_device *ndev)
510{
511	struct nps_enet_priv *priv = netdev_priv(ndev);
512
513	napi_disable(&priv->napi);
514	netif_stop_queue(ndev);
515	nps_enet_hw_disable_control(ndev);
516	free_irq(priv->irq, ndev);
517
518	return 0;
519}
520
521/**
522 * nps_enet_start_xmit - Starts the data transmission.
523 * @skb:        sk_buff pointer that contains data to be Transmitted.
524 * @ndev:       Pointer to net_device structure.
525 *
526 * returns: NETDEV_TX_OK, on success
527 *              NETDEV_TX_BUSY, if any of the descriptors are not free.
528 *
529 * This function is invoked from upper layers to initiate transmission.
530 */
531static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
532				       struct net_device *ndev)
533{
534	struct nps_enet_priv *priv = netdev_priv(ndev);
535
536	/* This driver handles one frame at a time  */
537	netif_stop_queue(ndev);
538
539	priv->tx_skb = skb;
540
541	/* make sure tx_skb is actually written to the memory
542	 * before the HW is informed and the IRQ is fired.
543	 */
544	wmb();
545
546	nps_enet_send_frame(ndev, skb);
547
548	return NETDEV_TX_OK;
549}
550
551#ifdef CONFIG_NET_POLL_CONTROLLER
552static void nps_enet_poll_controller(struct net_device *ndev)
553{
554	disable_irq(ndev->irq);
555	nps_enet_irq_handler(ndev->irq, ndev);
556	enable_irq(ndev->irq);
557}
558#endif
559
560static const struct net_device_ops nps_netdev_ops = {
561	.ndo_open		= nps_enet_open,
562	.ndo_stop		= nps_enet_stop,
563	.ndo_start_xmit		= nps_enet_start_xmit,
564	.ndo_set_mac_address	= nps_enet_set_mac_address,
565	.ndo_set_rx_mode        = nps_enet_set_rx_mode,
566#ifdef CONFIG_NET_POLL_CONTROLLER
567	.ndo_poll_controller	= nps_enet_poll_controller,
568#endif
569};
570
571static s32 nps_enet_probe(struct platform_device *pdev)
572{
573	struct device *dev = &pdev->dev;
574	struct net_device *ndev;
575	struct nps_enet_priv *priv;
576	s32 err = 0;
 
 
577
578	if (!dev->of_node)
579		return -ENODEV;
580
581	ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
582	if (!ndev)
583		return -ENOMEM;
584
585	platform_set_drvdata(pdev, ndev);
586	SET_NETDEV_DEV(ndev, dev);
587	priv = netdev_priv(ndev);
588
589	/* The EZ NET specific entries in the device structure. */
590	ndev->netdev_ops = &nps_netdev_ops;
591	ndev->watchdog_timeo = (400 * HZ / 1000);
592	/* FIXME :: no multicast support yet */
593	ndev->flags &= ~IFF_MULTICAST;
594
595	priv->regs_base = devm_platform_ioremap_resource(pdev, 0);
 
596	if (IS_ERR(priv->regs_base)) {
597		err = PTR_ERR(priv->regs_base);
598		goto out_netdev;
599	}
600	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
601
602	/* set kernel MAC address to dev */
603	err = of_get_ethdev_address(dev->of_node, ndev);
604	if (err)
 
 
605		eth_hw_addr_random(ndev);
606
607	/* Get IRQ number */
608	priv->irq = platform_get_irq(pdev, 0);
609	if (priv->irq < 0) {
 
610		err = -ENODEV;
611		goto out_netdev;
612	}
613
614	netif_napi_add_weight(ndev, &priv->napi, nps_enet_poll,
615			      NPS_ENET_NAPI_POLL_WEIGHT);
616
617	/* Register the driver. Should be the last thing in probe */
618	err = register_netdev(ndev);
619	if (err) {
620		dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
621			ndev->name, (s32)err);
622		goto out_netif_api;
623	}
624
625	dev_info(dev, "(rx/tx=%d)\n", priv->irq);
626	return 0;
627
628out_netif_api:
629	netif_napi_del(&priv->napi);
630out_netdev:
631	free_netdev(ndev);
 
632
633	return err;
634}
635
636static void nps_enet_remove(struct platform_device *pdev)
637{
638	struct net_device *ndev = platform_get_drvdata(pdev);
639	struct nps_enet_priv *priv = netdev_priv(ndev);
640
641	unregister_netdev(ndev);
642	netif_napi_del(&priv->napi);
643	free_netdev(ndev);
 
 
 
644}
645
646static const struct of_device_id nps_enet_dt_ids[] = {
647	{ .compatible = "ezchip,nps-mgt-enet" },
648	{ /* Sentinel */ }
649};
650MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
651
652static struct platform_driver nps_enet_driver = {
653	.probe = nps_enet_probe,
654	.remove = nps_enet_remove,
655	.driver = {
656		.name = DRV_NAME,
657		.of_match_table  = nps_enet_dt_ids,
658	},
659};
660
661module_platform_driver(nps_enet_driver);
662
663MODULE_AUTHOR("EZchip Semiconductor");
664MODULE_DESCRIPTION("EZchip NPS Ethernet driver");
665MODULE_LICENSE("GPL v2");
v4.10.11
 
  1/*
  2 * Copyright(c) 2015 EZchip Technologies.
  3 *
  4 * This program is free software; you can redistribute it and/or modify it
  5 * under the terms and conditions of the GNU General Public License,
  6 * version 2, as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope it will be useful, but WITHOUT
  9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 11 * more details.
 12 *
 13 * The full GNU General Public License is included in this distribution in
 14 * the file called "COPYING".
 15 */
 16
 17#include <linux/module.h>
 18#include <linux/etherdevice.h>
 19#include <linux/of_address.h>
 20#include <linux/of_irq.h>
 21#include <linux/of_net.h>
 22#include <linux/of_platform.h>
 23#include "nps_enet.h"
 24
 25#define DRV_NAME			"nps_mgt_enet"
 26
 27static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
 28{
 29	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
 30	u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
 31
 32	return (!tx_ctrl_ct && priv->tx_skb);
 33}
 34
 35static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
 36{
 37	struct nps_enet_priv *priv = netdev_priv(ndev);
 38	u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
 39
 40	/* Empty Rx FIFO buffer by reading all words */
 41	for (i = 0; i < len; i++)
 42		nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
 43}
 44
 45static void nps_enet_read_rx_fifo(struct net_device *ndev,
 46				  unsigned char *dst, u32 length)
 47{
 48	struct nps_enet_priv *priv = netdev_priv(ndev);
 49	s32 i, last = length & (sizeof(u32) - 1);
 50	u32 *reg = (u32 *)dst, len = length / sizeof(u32);
 51	bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
 52
 53	/* In case dst is not aligned we need an intermediate buffer */
 54	if (dst_is_aligned) {
 55		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
 56		reg += len;
 57	} else { /* !dst_is_aligned */
 58		for (i = 0; i < len; i++, reg++) {
 59			u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
 60
 61			put_unaligned_be32(buf, reg);
 62		}
 63	}
 64	/* copy last bytes (if any) */
 65	if (last) {
 66		u32 buf;
 67
 68		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
 69		memcpy((u8 *)reg, &buf, last);
 70	}
 71}
 72
 73static u32 nps_enet_rx_handler(struct net_device *ndev)
 74{
 75	u32 frame_len, err = 0;
 76	u32 work_done = 0;
 77	struct nps_enet_priv *priv = netdev_priv(ndev);
 78	struct sk_buff *skb;
 79	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
 80	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
 81	u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
 82	u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
 83
 84	frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
 85
 86	/* Check if we got RX */
 87	if (!rx_ctrl_cr)
 88		return work_done;
 89
 90	/* If we got here there is a work for us */
 91	work_done++;
 92
 93	/* Check Rx error */
 94	if (rx_ctrl_er) {
 95		ndev->stats.rx_errors++;
 96		err = 1;
 97	}
 98
 99	/* Check Rx CRC error */
100	if (rx_ctrl_crc) {
101		ndev->stats.rx_crc_errors++;
102		ndev->stats.rx_dropped++;
103		err = 1;
104	}
105
106	/* Check Frame length Min 64b */
107	if (unlikely(frame_len < ETH_ZLEN)) {
108		ndev->stats.rx_length_errors++;
109		ndev->stats.rx_dropped++;
110		err = 1;
111	}
112
113	if (err)
114		goto rx_irq_clean;
115
116	/* Skb allocation */
117	skb = netdev_alloc_skb_ip_align(ndev, frame_len);
118	if (unlikely(!skb)) {
119		ndev->stats.rx_errors++;
120		ndev->stats.rx_dropped++;
121		goto rx_irq_clean;
122	}
123
124	/* Copy frame from Rx fifo into the skb */
125	nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
126
127	skb_put(skb, frame_len);
128	skb->protocol = eth_type_trans(skb, ndev);
129	skb->ip_summed = CHECKSUM_UNNECESSARY;
130
131	ndev->stats.rx_packets++;
132	ndev->stats.rx_bytes += frame_len;
133	netif_receive_skb(skb);
134
135	goto rx_irq_frame_done;
136
137rx_irq_clean:
138	/* Clean Rx fifo */
139	nps_enet_clean_rx_fifo(ndev, frame_len);
140
141rx_irq_frame_done:
142	/* Ack Rx ctrl register */
143	nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
144
145	return work_done;
146}
147
148static void nps_enet_tx_handler(struct net_device *ndev)
149{
150	struct nps_enet_priv *priv = netdev_priv(ndev);
151	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
152	u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
153	u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
154
155	/* Check if we got TX */
156	if (!nps_enet_is_tx_pending(priv))
157		return;
158
159	/* Ack Tx ctrl register */
160	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
161
162	/* Check Tx transmit error */
163	if (unlikely(tx_ctrl_et)) {
164		ndev->stats.tx_errors++;
165	} else {
166		ndev->stats.tx_packets++;
167		ndev->stats.tx_bytes += tx_ctrl_nt;
168	}
169
170	dev_kfree_skb(priv->tx_skb);
171	priv->tx_skb = NULL;
172
173	if (netif_queue_stopped(ndev))
174		netif_wake_queue(ndev);
175}
176
177/**
178 * nps_enet_poll - NAPI poll handler.
179 * @napi:       Pointer to napi_struct structure.
180 * @budget:     How many frames to process on one call.
181 *
182 * returns:     Number of processed frames
183 */
184static int nps_enet_poll(struct napi_struct *napi, int budget)
185{
186	struct net_device *ndev = napi->dev;
187	struct nps_enet_priv *priv = netdev_priv(ndev);
188	u32 work_done;
189
190	nps_enet_tx_handler(ndev);
191	work_done = nps_enet_rx_handler(ndev);
192	if (work_done < budget) {
193		u32 buf_int_enable_value = 0;
194
195		napi_complete(napi);
196
197		/* set tx_done and rx_rdy bits */
198		buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
199		buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
200
201		nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
202				 buf_int_enable_value);
203
204		/* in case we will get a tx interrupt while interrupts
205		 * are masked, we will lose it since the tx is edge interrupt.
206		 * specifically, while executing the code section above,
207		 * between nps_enet_tx_handler and the interrupts enable, all
208		 * tx requests will be stuck until we will get an rx interrupt.
209		 * the two code lines below will solve this situation by
210		 * re-adding ourselves to the poll list.
211		 */
212		if (nps_enet_is_tx_pending(priv)) {
213			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
214			napi_reschedule(napi);
215		}
216	}
217
218	return work_done;
219}
220
221/**
222 * nps_enet_irq_handler - Global interrupt handler for ENET.
223 * @irq:                irq number.
224 * @dev_instance:       device instance.
225 *
226 * returns: IRQ_HANDLED for all cases.
227 *
228 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
229 * CTRL registers we may tell what is a reason for interrupt to fire up.
230 * We got one for RX and the other for TX (completion).
231 */
232static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
233{
234	struct net_device *ndev = dev_instance;
235	struct nps_enet_priv *priv = netdev_priv(ndev);
236	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
237	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
238
239	if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
240		if (likely(napi_schedule_prep(&priv->napi))) {
241			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
242			__napi_schedule(&priv->napi);
243		}
244
245	return IRQ_HANDLED;
246}
247
248static void nps_enet_set_hw_mac_address(struct net_device *ndev)
249{
250	struct nps_enet_priv *priv = netdev_priv(ndev);
251	u32 ge_mac_cfg_1_value = 0;
252	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
253
254	/* set MAC address in HW */
255	ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
256	ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
257	ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
258	ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
259	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
260		 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
261	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
262		 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
263
264	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
265			 ge_mac_cfg_1_value);
266
267	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
268			 *ge_mac_cfg_2_value);
269}
270
271/**
272 * nps_enet_hw_reset - Reset the network device.
273 * @ndev:       Pointer to the network device.
274 *
275 * This function reset the PCS and TX fifo.
276 * The programming model is to set the relevant reset bits
277 * wait for some time for this to propagate and then unset
278 * the reset bits. This way we ensure that reset procedure
279 * is done successfully by device.
280 */
281static void nps_enet_hw_reset(struct net_device *ndev)
282{
283	struct nps_enet_priv *priv = netdev_priv(ndev);
284	u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
285
286	/* Pcs reset sequence*/
287	ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
288	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
289	usleep_range(10, 20);
290	ge_rst_value = 0;
291	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
292
293	/* Tx fifo reset sequence */
294	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
295	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
296	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
297			 phase_fifo_ctl_value);
298	usleep_range(10, 20);
299	phase_fifo_ctl_value = 0;
300	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
301			 phase_fifo_ctl_value);
302}
303
304static void nps_enet_hw_enable_control(struct net_device *ndev)
305{
306	struct nps_enet_priv *priv = netdev_priv(ndev);
307	u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
308	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
309	u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
310	s32 max_frame_length;
311
312	/* Enable Rx and Tx statistics */
313	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
314		 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
315
316	/* Discard packets with different MAC address */
317	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
318		 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
319
320	/* Discard multicast packets */
321	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
322		 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
323
324	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
325			 *ge_mac_cfg_2_value);
326
327	/* Discard Packets bigger than max frame length */
328	max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
329	if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
330		*ge_mac_cfg_3_value =
331			 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
332			 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
333	}
334
335	/* Enable interrupts */
336	buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
337	buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
338	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
339			 buf_int_enable_value);
340
341	/* Write device MAC address to HW */
342	nps_enet_set_hw_mac_address(ndev);
343
344	/* Rx and Tx HW features */
345	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
346	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
347	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
348
349	/* IFG configuration */
350	ge_mac_cfg_0_value |=
351		 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
352	ge_mac_cfg_0_value |=
353		 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
354
355	/* preamble configuration */
356	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
357	ge_mac_cfg_0_value |=
358		 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
359
360	/* enable flow control frames */
361	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
362	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
363	ge_mac_cfg_0_value |=
364		 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
365	*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
366		 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
367
368	/* Enable Rx and Tx */
369	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
370	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
371
372	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
373			 *ge_mac_cfg_3_value);
374	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
375			 ge_mac_cfg_0_value);
376}
377
378static void nps_enet_hw_disable_control(struct net_device *ndev)
379{
380	struct nps_enet_priv *priv = netdev_priv(ndev);
381
382	/* Disable interrupts */
383	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
384
385	/* Disable Rx and Tx */
386	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
387}
388
389static void nps_enet_send_frame(struct net_device *ndev,
390				struct sk_buff *skb)
391{
392	struct nps_enet_priv *priv = netdev_priv(ndev);
393	u32 tx_ctrl_value = 0;
394	short length = skb->len;
395	u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
396	u32 *src = (void *)skb->data;
397	bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
398
399	/* In case src is not aligned we need an intermediate buffer */
400	if (src_is_aligned)
401		iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
402	else /* !src_is_aligned */
403		for (i = 0; i < len; i++, src++)
404			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
405					 get_unaligned_be32(src));
406
407	/* Write the length of the Frame */
408	tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
409
410	tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
411	/* Send Frame */
412	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
413}
414
415/**
416 * nps_enet_set_mac_address - Set the MAC address for this device.
417 * @ndev:       Pointer to net_device structure.
418 * @p:          6 byte Address to be written as MAC address.
419 *
420 * This function copies the HW address from the sockaddr structure to the
421 * net_device structure and updates the address in HW.
422 *
423 * returns:     -EBUSY if the net device is busy or 0 if the address is set
424 *              successfully.
425 */
426static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
427{
428	struct sockaddr *addr = p;
429	s32 res;
430
431	if (netif_running(ndev))
432		return -EBUSY;
433
434	res = eth_mac_addr(ndev, p);
435	if (!res) {
436		ether_addr_copy(ndev->dev_addr, addr->sa_data);
437		nps_enet_set_hw_mac_address(ndev);
438	}
439
440	return res;
441}
442
443/**
444 * nps_enet_set_rx_mode - Change the receive filtering mode.
445 * @ndev:       Pointer to the network device.
446 *
447 * This function enables/disables promiscuous mode
448 */
449static void nps_enet_set_rx_mode(struct net_device *ndev)
450{
451	struct nps_enet_priv *priv = netdev_priv(ndev);
452	u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
453
454	if (ndev->flags & IFF_PROMISC) {
455		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
456			 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
457		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
458			 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
459
460	} else {
461		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
462			 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
463		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
464			 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
465	}
466
467	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
468}
469
470/**
471 * nps_enet_open - Open the network device.
472 * @ndev:       Pointer to the network device.
473 *
474 * returns: 0, on success or non-zero error value on failure.
475 *
476 * This function sets the MAC address, requests and enables an IRQ
477 * for the ENET device and starts the Tx queue.
478 */
479static s32 nps_enet_open(struct net_device *ndev)
480{
481	struct nps_enet_priv *priv = netdev_priv(ndev);
482	s32 err;
483
484	/* Reset private variables */
485	priv->tx_skb = NULL;
486	priv->ge_mac_cfg_2_value = 0;
487	priv->ge_mac_cfg_3_value = 0;
488
489	/* ge_mac_cfg_3 default values */
490	priv->ge_mac_cfg_3_value |=
491		 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
492
493	priv->ge_mac_cfg_3_value |=
494		 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
495
496	/* Disable HW device */
497	nps_enet_hw_disable_control(ndev);
498
499	/* irq Rx allocation */
500	err = request_irq(priv->irq, nps_enet_irq_handler,
501			  0, "enet-rx-tx", ndev);
502	if (err)
503		return err;
504
505	napi_enable(&priv->napi);
506
507	/* Enable HW device */
508	nps_enet_hw_reset(ndev);
509	nps_enet_hw_enable_control(ndev);
510
511	netif_start_queue(ndev);
512
513	return 0;
514}
515
516/**
517 * nps_enet_stop - Close the network device.
518 * @ndev:       Pointer to the network device.
519 *
520 * This function stops the Tx queue, disables interrupts for the ENET device.
521 */
522static s32 nps_enet_stop(struct net_device *ndev)
523{
524	struct nps_enet_priv *priv = netdev_priv(ndev);
525
526	napi_disable(&priv->napi);
527	netif_stop_queue(ndev);
528	nps_enet_hw_disable_control(ndev);
529	free_irq(priv->irq, ndev);
530
531	return 0;
532}
533
534/**
535 * nps_enet_start_xmit - Starts the data transmission.
536 * @skb:        sk_buff pointer that contains data to be Transmitted.
537 * @ndev:       Pointer to net_device structure.
538 *
539 * returns: NETDEV_TX_OK, on success
540 *              NETDEV_TX_BUSY, if any of the descriptors are not free.
541 *
542 * This function is invoked from upper layers to initiate transmission.
543 */
544static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
545				       struct net_device *ndev)
546{
547	struct nps_enet_priv *priv = netdev_priv(ndev);
548
549	/* This driver handles one frame at a time  */
550	netif_stop_queue(ndev);
551
552	priv->tx_skb = skb;
553
554	/* make sure tx_skb is actually written to the memory
555	 * before the HW is informed and the IRQ is fired.
556	 */
557	wmb();
558
559	nps_enet_send_frame(ndev, skb);
560
561	return NETDEV_TX_OK;
562}
563
564#ifdef CONFIG_NET_POLL_CONTROLLER
565static void nps_enet_poll_controller(struct net_device *ndev)
566{
567	disable_irq(ndev->irq);
568	nps_enet_irq_handler(ndev->irq, ndev);
569	enable_irq(ndev->irq);
570}
571#endif
572
573static const struct net_device_ops nps_netdev_ops = {
574	.ndo_open		= nps_enet_open,
575	.ndo_stop		= nps_enet_stop,
576	.ndo_start_xmit		= nps_enet_start_xmit,
577	.ndo_set_mac_address	= nps_enet_set_mac_address,
578	.ndo_set_rx_mode        = nps_enet_set_rx_mode,
579#ifdef CONFIG_NET_POLL_CONTROLLER
580	.ndo_poll_controller	= nps_enet_poll_controller,
581#endif
582};
583
584static s32 nps_enet_probe(struct platform_device *pdev)
585{
586	struct device *dev = &pdev->dev;
587	struct net_device *ndev;
588	struct nps_enet_priv *priv;
589	s32 err = 0;
590	const char *mac_addr;
591	struct resource *res_regs;
592
593	if (!dev->of_node)
594		return -ENODEV;
595
596	ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
597	if (!ndev)
598		return -ENOMEM;
599
600	platform_set_drvdata(pdev, ndev);
601	SET_NETDEV_DEV(ndev, dev);
602	priv = netdev_priv(ndev);
603
604	/* The EZ NET specific entries in the device structure. */
605	ndev->netdev_ops = &nps_netdev_ops;
606	ndev->watchdog_timeo = (400 * HZ / 1000);
607	/* FIXME :: no multicast support yet */
608	ndev->flags &= ~IFF_MULTICAST;
609
610	res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
611	priv->regs_base = devm_ioremap_resource(dev, res_regs);
612	if (IS_ERR(priv->regs_base)) {
613		err = PTR_ERR(priv->regs_base);
614		goto out_netdev;
615	}
616	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
617
618	/* set kernel MAC address to dev */
619	mac_addr = of_get_mac_address(dev->of_node);
620	if (mac_addr)
621		ether_addr_copy(ndev->dev_addr, mac_addr);
622	else
623		eth_hw_addr_random(ndev);
624
625	/* Get IRQ number */
626	priv->irq = platform_get_irq(pdev, 0);
627	if (!priv->irq) {
628		dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
629		err = -ENODEV;
630		goto out_netdev;
631	}
632
633	netif_napi_add(ndev, &priv->napi, nps_enet_poll,
634		       NPS_ENET_NAPI_POLL_WEIGHT);
635
636	/* Register the driver. Should be the last thing in probe */
637	err = register_netdev(ndev);
638	if (err) {
639		dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
640			ndev->name, (s32)err);
641		goto out_netif_api;
642	}
643
644	dev_info(dev, "(rx/tx=%d)\n", priv->irq);
645	return 0;
646
647out_netif_api:
648	netif_napi_del(&priv->napi);
649out_netdev:
650	if (err)
651		free_netdev(ndev);
652
653	return err;
654}
655
656static s32 nps_enet_remove(struct platform_device *pdev)
657{
658	struct net_device *ndev = platform_get_drvdata(pdev);
659	struct nps_enet_priv *priv = netdev_priv(ndev);
660
661	unregister_netdev(ndev);
 
662	free_netdev(ndev);
663	netif_napi_del(&priv->napi);
664
665	return 0;
666}
667
668static const struct of_device_id nps_enet_dt_ids[] = {
669	{ .compatible = "ezchip,nps-mgt-enet" },
670	{ /* Sentinel */ }
671};
672MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
673
674static struct platform_driver nps_enet_driver = {
675	.probe = nps_enet_probe,
676	.remove = nps_enet_remove,
677	.driver = {
678		.name = DRV_NAME,
679		.of_match_table  = nps_enet_dt_ids,
680	},
681};
682
683module_platform_driver(nps_enet_driver);
684
685MODULE_AUTHOR("EZchip Semiconductor");
 
686MODULE_LICENSE("GPL v2");