Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright(c) 2015 EZchip Technologies.
4 */
5
6#include <linux/module.h>
7#include <linux/etherdevice.h>
8#include <linux/interrupt.h>
9#include <linux/mod_devicetable.h>
10#include <linux/of_net.h>
11#include <linux/platform_device.h>
12#include "nps_enet.h"
13
14#define DRV_NAME "nps_mgt_enet"
15
16static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
17{
18 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
19 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
20
21 return (!tx_ctrl_ct && priv->tx_skb);
22}
23
24static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
25{
26 struct nps_enet_priv *priv = netdev_priv(ndev);
27 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
28
29 /* Empty Rx FIFO buffer by reading all words */
30 for (i = 0; i < len; i++)
31 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
32}
33
34static void nps_enet_read_rx_fifo(struct net_device *ndev,
35 unsigned char *dst, u32 length)
36{
37 struct nps_enet_priv *priv = netdev_priv(ndev);
38 s32 i, last = length & (sizeof(u32) - 1);
39 u32 *reg = (u32 *)dst, len = length / sizeof(u32);
40 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
41
42 /* In case dst is not aligned we need an intermediate buffer */
43 if (dst_is_aligned) {
44 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
45 reg += len;
46 } else { /* !dst_is_aligned */
47 for (i = 0; i < len; i++, reg++) {
48 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
49
50 put_unaligned_be32(buf, reg);
51 }
52 }
53 /* copy last bytes (if any) */
54 if (last) {
55 u32 buf;
56
57 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
58 memcpy((u8 *)reg, &buf, last);
59 }
60}
61
62static u32 nps_enet_rx_handler(struct net_device *ndev)
63{
64 u32 frame_len, err = 0;
65 u32 work_done = 0;
66 struct nps_enet_priv *priv = netdev_priv(ndev);
67 struct sk_buff *skb;
68 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
69 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
70 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
71 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
72
73 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
74
75 /* Check if we got RX */
76 if (!rx_ctrl_cr)
77 return work_done;
78
79 /* If we got here there is a work for us */
80 work_done++;
81
82 /* Check Rx error */
83 if (rx_ctrl_er) {
84 ndev->stats.rx_errors++;
85 err = 1;
86 }
87
88 /* Check Rx CRC error */
89 if (rx_ctrl_crc) {
90 ndev->stats.rx_crc_errors++;
91 ndev->stats.rx_dropped++;
92 err = 1;
93 }
94
95 /* Check Frame length Min 64b */
96 if (unlikely(frame_len < ETH_ZLEN)) {
97 ndev->stats.rx_length_errors++;
98 ndev->stats.rx_dropped++;
99 err = 1;
100 }
101
102 if (err)
103 goto rx_irq_clean;
104
105 /* Skb allocation */
106 skb = netdev_alloc_skb_ip_align(ndev, frame_len);
107 if (unlikely(!skb)) {
108 ndev->stats.rx_errors++;
109 ndev->stats.rx_dropped++;
110 goto rx_irq_clean;
111 }
112
113 /* Copy frame from Rx fifo into the skb */
114 nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
115
116 skb_put(skb, frame_len);
117 skb->protocol = eth_type_trans(skb, ndev);
118 skb->ip_summed = CHECKSUM_UNNECESSARY;
119
120 ndev->stats.rx_packets++;
121 ndev->stats.rx_bytes += frame_len;
122 netif_receive_skb(skb);
123
124 goto rx_irq_frame_done;
125
126rx_irq_clean:
127 /* Clean Rx fifo */
128 nps_enet_clean_rx_fifo(ndev, frame_len);
129
130rx_irq_frame_done:
131 /* Ack Rx ctrl register */
132 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
133
134 return work_done;
135}
136
137static void nps_enet_tx_handler(struct net_device *ndev)
138{
139 struct nps_enet_priv *priv = netdev_priv(ndev);
140 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
141 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
142 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
143
144 /* Check if we got TX */
145 if (!nps_enet_is_tx_pending(priv))
146 return;
147
148 /* Ack Tx ctrl register */
149 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
150
151 /* Check Tx transmit error */
152 if (unlikely(tx_ctrl_et)) {
153 ndev->stats.tx_errors++;
154 } else {
155 ndev->stats.tx_packets++;
156 ndev->stats.tx_bytes += tx_ctrl_nt;
157 }
158
159 dev_kfree_skb(priv->tx_skb);
160 priv->tx_skb = NULL;
161
162 if (netif_queue_stopped(ndev))
163 netif_wake_queue(ndev);
164}
165
166/**
167 * nps_enet_poll - NAPI poll handler.
168 * @napi: Pointer to napi_struct structure.
169 * @budget: How many frames to process on one call.
170 *
171 * returns: Number of processed frames
172 */
173static int nps_enet_poll(struct napi_struct *napi, int budget)
174{
175 struct net_device *ndev = napi->dev;
176 struct nps_enet_priv *priv = netdev_priv(ndev);
177 u32 work_done;
178
179 nps_enet_tx_handler(ndev);
180 work_done = nps_enet_rx_handler(ndev);
181 if ((work_done < budget) && napi_complete_done(napi, work_done)) {
182 u32 buf_int_enable_value = 0;
183
184 /* set tx_done and rx_rdy bits */
185 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
186 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
187
188 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
189 buf_int_enable_value);
190
191 /* in case we will get a tx interrupt while interrupts
192 * are masked, we will lose it since the tx is edge interrupt.
193 * specifically, while executing the code section above,
194 * between nps_enet_tx_handler and the interrupts enable, all
195 * tx requests will be stuck until we will get an rx interrupt.
196 * the two code lines below will solve this situation by
197 * re-adding ourselves to the poll list.
198 */
199 if (nps_enet_is_tx_pending(priv)) {
200 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
201 napi_schedule(napi);
202 }
203 }
204
205 return work_done;
206}
207
208/**
209 * nps_enet_irq_handler - Global interrupt handler for ENET.
210 * @irq: irq number.
211 * @dev_instance: device instance.
212 *
213 * returns: IRQ_HANDLED for all cases.
214 *
215 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
216 * CTRL registers we may tell what is a reason for interrupt to fire up.
217 * We got one for RX and the other for TX (completion).
218 */
219static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
220{
221 struct net_device *ndev = dev_instance;
222 struct nps_enet_priv *priv = netdev_priv(ndev);
223 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
224 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
225
226 if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
227 if (likely(napi_schedule_prep(&priv->napi))) {
228 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
229 __napi_schedule(&priv->napi);
230 }
231
232 return IRQ_HANDLED;
233}
234
235static void nps_enet_set_hw_mac_address(struct net_device *ndev)
236{
237 struct nps_enet_priv *priv = netdev_priv(ndev);
238 u32 ge_mac_cfg_1_value = 0;
239 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
240
241 /* set MAC address in HW */
242 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
243 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
244 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
245 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
246 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
247 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
248 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
249 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
250
251 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
252 ge_mac_cfg_1_value);
253
254 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
255 *ge_mac_cfg_2_value);
256}
257
258/**
259 * nps_enet_hw_reset - Reset the network device.
260 * @ndev: Pointer to the network device.
261 *
262 * This function reset the PCS and TX fifo.
263 * The programming model is to set the relevant reset bits
264 * wait for some time for this to propagate and then unset
265 * the reset bits. This way we ensure that reset procedure
266 * is done successfully by device.
267 */
268static void nps_enet_hw_reset(struct net_device *ndev)
269{
270 struct nps_enet_priv *priv = netdev_priv(ndev);
271 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
272
273 /* Pcs reset sequence*/
274 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
275 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
276 usleep_range(10, 20);
277 ge_rst_value = 0;
278 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
279
280 /* Tx fifo reset sequence */
281 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
282 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
283 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
284 phase_fifo_ctl_value);
285 usleep_range(10, 20);
286 phase_fifo_ctl_value = 0;
287 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
288 phase_fifo_ctl_value);
289}
290
291static void nps_enet_hw_enable_control(struct net_device *ndev)
292{
293 struct nps_enet_priv *priv = netdev_priv(ndev);
294 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
295 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
296 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
297 s32 max_frame_length;
298
299 /* Enable Rx and Tx statistics */
300 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
301 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
302
303 /* Discard packets with different MAC address */
304 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
305 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
306
307 /* Discard multicast packets */
308 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
309 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
310
311 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
312 *ge_mac_cfg_2_value);
313
314 /* Discard Packets bigger than max frame length */
315 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
316 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
317 *ge_mac_cfg_3_value =
318 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
319 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
320 }
321
322 /* Enable interrupts */
323 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
324 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
325 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
326 buf_int_enable_value);
327
328 /* Write device MAC address to HW */
329 nps_enet_set_hw_mac_address(ndev);
330
331 /* Rx and Tx HW features */
332 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
333 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
334 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
335
336 /* IFG configuration */
337 ge_mac_cfg_0_value |=
338 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
339 ge_mac_cfg_0_value |=
340 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
341
342 /* preamble configuration */
343 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
344 ge_mac_cfg_0_value |=
345 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
346
347 /* enable flow control frames */
348 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
349 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
350 ge_mac_cfg_0_value |=
351 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
352 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
353 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
354
355 /* Enable Rx and Tx */
356 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
357 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
358
359 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
360 *ge_mac_cfg_3_value);
361 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
362 ge_mac_cfg_0_value);
363}
364
365static void nps_enet_hw_disable_control(struct net_device *ndev)
366{
367 struct nps_enet_priv *priv = netdev_priv(ndev);
368
369 /* Disable interrupts */
370 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
371
372 /* Disable Rx and Tx */
373 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
374}
375
376static void nps_enet_send_frame(struct net_device *ndev,
377 struct sk_buff *skb)
378{
379 struct nps_enet_priv *priv = netdev_priv(ndev);
380 u32 tx_ctrl_value = 0;
381 short length = skb->len;
382 u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
383 u32 *src = (void *)skb->data;
384 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
385
386 /* In case src is not aligned we need an intermediate buffer */
387 if (src_is_aligned)
388 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
389 else /* !src_is_aligned */
390 for (i = 0; i < len; i++, src++)
391 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
392 get_unaligned_be32(src));
393
394 /* Write the length of the Frame */
395 tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
396
397 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
398 /* Send Frame */
399 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
400}
401
402/**
403 * nps_enet_set_mac_address - Set the MAC address for this device.
404 * @ndev: Pointer to net_device structure.
405 * @p: 6 byte Address to be written as MAC address.
406 *
407 * This function copies the HW address from the sockaddr structure to the
408 * net_device structure and updates the address in HW.
409 *
410 * returns: -EBUSY if the net device is busy or 0 if the address is set
411 * successfully.
412 */
413static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
414{
415 struct sockaddr *addr = p;
416 s32 res;
417
418 if (netif_running(ndev))
419 return -EBUSY;
420
421 res = eth_mac_addr(ndev, p);
422 if (!res) {
423 eth_hw_addr_set(ndev, addr->sa_data);
424 nps_enet_set_hw_mac_address(ndev);
425 }
426
427 return res;
428}
429
430/**
431 * nps_enet_set_rx_mode - Change the receive filtering mode.
432 * @ndev: Pointer to the network device.
433 *
434 * This function enables/disables promiscuous mode
435 */
436static void nps_enet_set_rx_mode(struct net_device *ndev)
437{
438 struct nps_enet_priv *priv = netdev_priv(ndev);
439 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
440
441 if (ndev->flags & IFF_PROMISC) {
442 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
443 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
444 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
445 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
446
447 } else {
448 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
449 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
450 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
451 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
452 }
453
454 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
455}
456
457/**
458 * nps_enet_open - Open the network device.
459 * @ndev: Pointer to the network device.
460 *
461 * returns: 0, on success or non-zero error value on failure.
462 *
463 * This function sets the MAC address, requests and enables an IRQ
464 * for the ENET device and starts the Tx queue.
465 */
466static s32 nps_enet_open(struct net_device *ndev)
467{
468 struct nps_enet_priv *priv = netdev_priv(ndev);
469 s32 err;
470
471 /* Reset private variables */
472 priv->tx_skb = NULL;
473 priv->ge_mac_cfg_2_value = 0;
474 priv->ge_mac_cfg_3_value = 0;
475
476 /* ge_mac_cfg_3 default values */
477 priv->ge_mac_cfg_3_value |=
478 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
479
480 priv->ge_mac_cfg_3_value |=
481 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
482
483 /* Disable HW device */
484 nps_enet_hw_disable_control(ndev);
485
486 /* irq Rx allocation */
487 err = request_irq(priv->irq, nps_enet_irq_handler,
488 0, "enet-rx-tx", ndev);
489 if (err)
490 return err;
491
492 napi_enable(&priv->napi);
493
494 /* Enable HW device */
495 nps_enet_hw_reset(ndev);
496 nps_enet_hw_enable_control(ndev);
497
498 netif_start_queue(ndev);
499
500 return 0;
501}
502
503/**
504 * nps_enet_stop - Close the network device.
505 * @ndev: Pointer to the network device.
506 *
507 * This function stops the Tx queue, disables interrupts for the ENET device.
508 */
509static s32 nps_enet_stop(struct net_device *ndev)
510{
511 struct nps_enet_priv *priv = netdev_priv(ndev);
512
513 napi_disable(&priv->napi);
514 netif_stop_queue(ndev);
515 nps_enet_hw_disable_control(ndev);
516 free_irq(priv->irq, ndev);
517
518 return 0;
519}
520
521/**
522 * nps_enet_start_xmit - Starts the data transmission.
523 * @skb: sk_buff pointer that contains data to be Transmitted.
524 * @ndev: Pointer to net_device structure.
525 *
526 * returns: NETDEV_TX_OK, on success
527 * NETDEV_TX_BUSY, if any of the descriptors are not free.
528 *
529 * This function is invoked from upper layers to initiate transmission.
530 */
531static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
532 struct net_device *ndev)
533{
534 struct nps_enet_priv *priv = netdev_priv(ndev);
535
536 /* This driver handles one frame at a time */
537 netif_stop_queue(ndev);
538
539 priv->tx_skb = skb;
540
541 /* make sure tx_skb is actually written to the memory
542 * before the HW is informed and the IRQ is fired.
543 */
544 wmb();
545
546 nps_enet_send_frame(ndev, skb);
547
548 return NETDEV_TX_OK;
549}
550
551#ifdef CONFIG_NET_POLL_CONTROLLER
552static void nps_enet_poll_controller(struct net_device *ndev)
553{
554 disable_irq(ndev->irq);
555 nps_enet_irq_handler(ndev->irq, ndev);
556 enable_irq(ndev->irq);
557}
558#endif
559
560static const struct net_device_ops nps_netdev_ops = {
561 .ndo_open = nps_enet_open,
562 .ndo_stop = nps_enet_stop,
563 .ndo_start_xmit = nps_enet_start_xmit,
564 .ndo_set_mac_address = nps_enet_set_mac_address,
565 .ndo_set_rx_mode = nps_enet_set_rx_mode,
566#ifdef CONFIG_NET_POLL_CONTROLLER
567 .ndo_poll_controller = nps_enet_poll_controller,
568#endif
569};
570
571static s32 nps_enet_probe(struct platform_device *pdev)
572{
573 struct device *dev = &pdev->dev;
574 struct net_device *ndev;
575 struct nps_enet_priv *priv;
576 s32 err = 0;
577
578 if (!dev->of_node)
579 return -ENODEV;
580
581 ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
582 if (!ndev)
583 return -ENOMEM;
584
585 platform_set_drvdata(pdev, ndev);
586 SET_NETDEV_DEV(ndev, dev);
587 priv = netdev_priv(ndev);
588
589 /* The EZ NET specific entries in the device structure. */
590 ndev->netdev_ops = &nps_netdev_ops;
591 ndev->watchdog_timeo = (400 * HZ / 1000);
592 /* FIXME :: no multicast support yet */
593 ndev->flags &= ~IFF_MULTICAST;
594
595 priv->regs_base = devm_platform_ioremap_resource(pdev, 0);
596 if (IS_ERR(priv->regs_base)) {
597 err = PTR_ERR(priv->regs_base);
598 goto out_netdev;
599 }
600 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
601
602 /* set kernel MAC address to dev */
603 err = of_get_ethdev_address(dev->of_node, ndev);
604 if (err)
605 eth_hw_addr_random(ndev);
606
607 /* Get IRQ number */
608 priv->irq = platform_get_irq(pdev, 0);
609 if (priv->irq < 0) {
610 err = -ENODEV;
611 goto out_netdev;
612 }
613
614 netif_napi_add_weight(ndev, &priv->napi, nps_enet_poll,
615 NPS_ENET_NAPI_POLL_WEIGHT);
616
617 /* Register the driver. Should be the last thing in probe */
618 err = register_netdev(ndev);
619 if (err) {
620 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
621 ndev->name, (s32)err);
622 goto out_netif_api;
623 }
624
625 dev_info(dev, "(rx/tx=%d)\n", priv->irq);
626 return 0;
627
628out_netif_api:
629 netif_napi_del(&priv->napi);
630out_netdev:
631 free_netdev(ndev);
632
633 return err;
634}
635
636static void nps_enet_remove(struct platform_device *pdev)
637{
638 struct net_device *ndev = platform_get_drvdata(pdev);
639 struct nps_enet_priv *priv = netdev_priv(ndev);
640
641 unregister_netdev(ndev);
642 netif_napi_del(&priv->napi);
643 free_netdev(ndev);
644}
645
646static const struct of_device_id nps_enet_dt_ids[] = {
647 { .compatible = "ezchip,nps-mgt-enet" },
648 { /* Sentinel */ }
649};
650MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
651
652static struct platform_driver nps_enet_driver = {
653 .probe = nps_enet_probe,
654 .remove = nps_enet_remove,
655 .driver = {
656 .name = DRV_NAME,
657 .of_match_table = nps_enet_dt_ids,
658 },
659};
660
661module_platform_driver(nps_enet_driver);
662
663MODULE_AUTHOR("EZchip Semiconductor");
664MODULE_DESCRIPTION("EZchip NPS Ethernet driver");
665MODULE_LICENSE("GPL v2");
1/*
2 * Copyright(c) 2015 EZchip Technologies.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 */
16
17#include <linux/module.h>
18#include <linux/etherdevice.h>
19#include <linux/of_address.h>
20#include <linux/of_irq.h>
21#include <linux/of_net.h>
22#include <linux/of_platform.h>
23#include "nps_enet.h"
24
25#define DRV_NAME "nps_mgt_enet"
26
27static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
28{
29 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
30 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
31
32 return (!tx_ctrl_ct && priv->tx_skb);
33}
34
35static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
36{
37 struct nps_enet_priv *priv = netdev_priv(ndev);
38 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
39
40 /* Empty Rx FIFO buffer by reading all words */
41 for (i = 0; i < len; i++)
42 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
43}
44
45static void nps_enet_read_rx_fifo(struct net_device *ndev,
46 unsigned char *dst, u32 length)
47{
48 struct nps_enet_priv *priv = netdev_priv(ndev);
49 s32 i, last = length & (sizeof(u32) - 1);
50 u32 *reg = (u32 *)dst, len = length / sizeof(u32);
51 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
52
53 /* In case dst is not aligned we need an intermediate buffer */
54 if (dst_is_aligned) {
55 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
56 reg += len;
57 } else { /* !dst_is_aligned */
58 for (i = 0; i < len; i++, reg++) {
59 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
60
61 put_unaligned_be32(buf, reg);
62 }
63 }
64 /* copy last bytes (if any) */
65 if (last) {
66 u32 buf;
67
68 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
69 memcpy((u8 *)reg, &buf, last);
70 }
71}
72
73static u32 nps_enet_rx_handler(struct net_device *ndev)
74{
75 u32 frame_len, err = 0;
76 u32 work_done = 0;
77 struct nps_enet_priv *priv = netdev_priv(ndev);
78 struct sk_buff *skb;
79 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
80 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
81 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
82 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
83
84 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
85
86 /* Check if we got RX */
87 if (!rx_ctrl_cr)
88 return work_done;
89
90 /* If we got here there is a work for us */
91 work_done++;
92
93 /* Check Rx error */
94 if (rx_ctrl_er) {
95 ndev->stats.rx_errors++;
96 err = 1;
97 }
98
99 /* Check Rx CRC error */
100 if (rx_ctrl_crc) {
101 ndev->stats.rx_crc_errors++;
102 ndev->stats.rx_dropped++;
103 err = 1;
104 }
105
106 /* Check Frame length Min 64b */
107 if (unlikely(frame_len < ETH_ZLEN)) {
108 ndev->stats.rx_length_errors++;
109 ndev->stats.rx_dropped++;
110 err = 1;
111 }
112
113 if (err)
114 goto rx_irq_clean;
115
116 /* Skb allocation */
117 skb = netdev_alloc_skb_ip_align(ndev, frame_len);
118 if (unlikely(!skb)) {
119 ndev->stats.rx_errors++;
120 ndev->stats.rx_dropped++;
121 goto rx_irq_clean;
122 }
123
124 /* Copy frame from Rx fifo into the skb */
125 nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
126
127 skb_put(skb, frame_len);
128 skb->protocol = eth_type_trans(skb, ndev);
129 skb->ip_summed = CHECKSUM_UNNECESSARY;
130
131 ndev->stats.rx_packets++;
132 ndev->stats.rx_bytes += frame_len;
133 netif_receive_skb(skb);
134
135 goto rx_irq_frame_done;
136
137rx_irq_clean:
138 /* Clean Rx fifo */
139 nps_enet_clean_rx_fifo(ndev, frame_len);
140
141rx_irq_frame_done:
142 /* Ack Rx ctrl register */
143 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
144
145 return work_done;
146}
147
148static void nps_enet_tx_handler(struct net_device *ndev)
149{
150 struct nps_enet_priv *priv = netdev_priv(ndev);
151 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
152 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
153 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
154
155 /* Check if we got TX */
156 if (!nps_enet_is_tx_pending(priv))
157 return;
158
159 /* Ack Tx ctrl register */
160 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
161
162 /* Check Tx transmit error */
163 if (unlikely(tx_ctrl_et)) {
164 ndev->stats.tx_errors++;
165 } else {
166 ndev->stats.tx_packets++;
167 ndev->stats.tx_bytes += tx_ctrl_nt;
168 }
169
170 dev_kfree_skb(priv->tx_skb);
171 priv->tx_skb = NULL;
172
173 if (netif_queue_stopped(ndev))
174 netif_wake_queue(ndev);
175}
176
177/**
178 * nps_enet_poll - NAPI poll handler.
179 * @napi: Pointer to napi_struct structure.
180 * @budget: How many frames to process on one call.
181 *
182 * returns: Number of processed frames
183 */
184static int nps_enet_poll(struct napi_struct *napi, int budget)
185{
186 struct net_device *ndev = napi->dev;
187 struct nps_enet_priv *priv = netdev_priv(ndev);
188 u32 work_done;
189
190 nps_enet_tx_handler(ndev);
191 work_done = nps_enet_rx_handler(ndev);
192 if (work_done < budget) {
193 u32 buf_int_enable_value = 0;
194
195 napi_complete(napi);
196
197 /* set tx_done and rx_rdy bits */
198 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
199 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
200
201 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
202 buf_int_enable_value);
203
204 /* in case we will get a tx interrupt while interrupts
205 * are masked, we will lose it since the tx is edge interrupt.
206 * specifically, while executing the code section above,
207 * between nps_enet_tx_handler and the interrupts enable, all
208 * tx requests will be stuck until we will get an rx interrupt.
209 * the two code lines below will solve this situation by
210 * re-adding ourselves to the poll list.
211 */
212 if (nps_enet_is_tx_pending(priv)) {
213 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
214 napi_reschedule(napi);
215 }
216 }
217
218 return work_done;
219}
220
221/**
222 * nps_enet_irq_handler - Global interrupt handler for ENET.
223 * @irq: irq number.
224 * @dev_instance: device instance.
225 *
226 * returns: IRQ_HANDLED for all cases.
227 *
228 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
229 * CTRL registers we may tell what is a reason for interrupt to fire up.
230 * We got one for RX and the other for TX (completion).
231 */
232static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
233{
234 struct net_device *ndev = dev_instance;
235 struct nps_enet_priv *priv = netdev_priv(ndev);
236 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
237 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
238
239 if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
240 if (likely(napi_schedule_prep(&priv->napi))) {
241 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
242 __napi_schedule(&priv->napi);
243 }
244
245 return IRQ_HANDLED;
246}
247
248static void nps_enet_set_hw_mac_address(struct net_device *ndev)
249{
250 struct nps_enet_priv *priv = netdev_priv(ndev);
251 u32 ge_mac_cfg_1_value = 0;
252 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
253
254 /* set MAC address in HW */
255 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
256 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
257 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
258 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
259 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
260 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
261 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
262 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
263
264 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
265 ge_mac_cfg_1_value);
266
267 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
268 *ge_mac_cfg_2_value);
269}
270
271/**
272 * nps_enet_hw_reset - Reset the network device.
273 * @ndev: Pointer to the network device.
274 *
275 * This function reset the PCS and TX fifo.
276 * The programming model is to set the relevant reset bits
277 * wait for some time for this to propagate and then unset
278 * the reset bits. This way we ensure that reset procedure
279 * is done successfully by device.
280 */
281static void nps_enet_hw_reset(struct net_device *ndev)
282{
283 struct nps_enet_priv *priv = netdev_priv(ndev);
284 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
285
286 /* Pcs reset sequence*/
287 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
288 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
289 usleep_range(10, 20);
290 ge_rst_value = 0;
291 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
292
293 /* Tx fifo reset sequence */
294 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
295 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
296 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
297 phase_fifo_ctl_value);
298 usleep_range(10, 20);
299 phase_fifo_ctl_value = 0;
300 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
301 phase_fifo_ctl_value);
302}
303
304static void nps_enet_hw_enable_control(struct net_device *ndev)
305{
306 struct nps_enet_priv *priv = netdev_priv(ndev);
307 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
308 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
309 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
310 s32 max_frame_length;
311
312 /* Enable Rx and Tx statistics */
313 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
314 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
315
316 /* Discard packets with different MAC address */
317 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
318 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
319
320 /* Discard multicast packets */
321 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
322 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
323
324 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
325 *ge_mac_cfg_2_value);
326
327 /* Discard Packets bigger than max frame length */
328 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
329 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
330 *ge_mac_cfg_3_value =
331 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
332 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
333 }
334
335 /* Enable interrupts */
336 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
337 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
338 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
339 buf_int_enable_value);
340
341 /* Write device MAC address to HW */
342 nps_enet_set_hw_mac_address(ndev);
343
344 /* Rx and Tx HW features */
345 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
346 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
347 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
348
349 /* IFG configuration */
350 ge_mac_cfg_0_value |=
351 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
352 ge_mac_cfg_0_value |=
353 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
354
355 /* preamble configuration */
356 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
357 ge_mac_cfg_0_value |=
358 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
359
360 /* enable flow control frames */
361 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
362 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
363 ge_mac_cfg_0_value |=
364 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
365 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
366 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
367
368 /* Enable Rx and Tx */
369 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
370 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
371
372 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
373 *ge_mac_cfg_3_value);
374 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
375 ge_mac_cfg_0_value);
376}
377
378static void nps_enet_hw_disable_control(struct net_device *ndev)
379{
380 struct nps_enet_priv *priv = netdev_priv(ndev);
381
382 /* Disable interrupts */
383 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
384
385 /* Disable Rx and Tx */
386 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
387}
388
389static void nps_enet_send_frame(struct net_device *ndev,
390 struct sk_buff *skb)
391{
392 struct nps_enet_priv *priv = netdev_priv(ndev);
393 u32 tx_ctrl_value = 0;
394 short length = skb->len;
395 u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
396 u32 *src = (void *)skb->data;
397 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
398
399 /* In case src is not aligned we need an intermediate buffer */
400 if (src_is_aligned)
401 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
402 else /* !src_is_aligned */
403 for (i = 0; i < len; i++, src++)
404 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
405 get_unaligned_be32(src));
406
407 /* Write the length of the Frame */
408 tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
409
410 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
411 /* Send Frame */
412 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
413}
414
415/**
416 * nps_enet_set_mac_address - Set the MAC address for this device.
417 * @ndev: Pointer to net_device structure.
418 * @p: 6 byte Address to be written as MAC address.
419 *
420 * This function copies the HW address from the sockaddr structure to the
421 * net_device structure and updates the address in HW.
422 *
423 * returns: -EBUSY if the net device is busy or 0 if the address is set
424 * successfully.
425 */
426static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
427{
428 struct sockaddr *addr = p;
429 s32 res;
430
431 if (netif_running(ndev))
432 return -EBUSY;
433
434 res = eth_mac_addr(ndev, p);
435 if (!res) {
436 ether_addr_copy(ndev->dev_addr, addr->sa_data);
437 nps_enet_set_hw_mac_address(ndev);
438 }
439
440 return res;
441}
442
443/**
444 * nps_enet_set_rx_mode - Change the receive filtering mode.
445 * @ndev: Pointer to the network device.
446 *
447 * This function enables/disables promiscuous mode
448 */
449static void nps_enet_set_rx_mode(struct net_device *ndev)
450{
451 struct nps_enet_priv *priv = netdev_priv(ndev);
452 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
453
454 if (ndev->flags & IFF_PROMISC) {
455 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
456 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
457 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
458 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
459
460 } else {
461 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
462 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
463 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
464 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
465 }
466
467 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
468}
469
470/**
471 * nps_enet_open - Open the network device.
472 * @ndev: Pointer to the network device.
473 *
474 * returns: 0, on success or non-zero error value on failure.
475 *
476 * This function sets the MAC address, requests and enables an IRQ
477 * for the ENET device and starts the Tx queue.
478 */
479static s32 nps_enet_open(struct net_device *ndev)
480{
481 struct nps_enet_priv *priv = netdev_priv(ndev);
482 s32 err;
483
484 /* Reset private variables */
485 priv->tx_skb = NULL;
486 priv->ge_mac_cfg_2_value = 0;
487 priv->ge_mac_cfg_3_value = 0;
488
489 /* ge_mac_cfg_3 default values */
490 priv->ge_mac_cfg_3_value |=
491 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
492
493 priv->ge_mac_cfg_3_value |=
494 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
495
496 /* Disable HW device */
497 nps_enet_hw_disable_control(ndev);
498
499 /* irq Rx allocation */
500 err = request_irq(priv->irq, nps_enet_irq_handler,
501 0, "enet-rx-tx", ndev);
502 if (err)
503 return err;
504
505 napi_enable(&priv->napi);
506
507 /* Enable HW device */
508 nps_enet_hw_reset(ndev);
509 nps_enet_hw_enable_control(ndev);
510
511 netif_start_queue(ndev);
512
513 return 0;
514}
515
516/**
517 * nps_enet_stop - Close the network device.
518 * @ndev: Pointer to the network device.
519 *
520 * This function stops the Tx queue, disables interrupts for the ENET device.
521 */
522static s32 nps_enet_stop(struct net_device *ndev)
523{
524 struct nps_enet_priv *priv = netdev_priv(ndev);
525
526 napi_disable(&priv->napi);
527 netif_stop_queue(ndev);
528 nps_enet_hw_disable_control(ndev);
529 free_irq(priv->irq, ndev);
530
531 return 0;
532}
533
534/**
535 * nps_enet_start_xmit - Starts the data transmission.
536 * @skb: sk_buff pointer that contains data to be Transmitted.
537 * @ndev: Pointer to net_device structure.
538 *
539 * returns: NETDEV_TX_OK, on success
540 * NETDEV_TX_BUSY, if any of the descriptors are not free.
541 *
542 * This function is invoked from upper layers to initiate transmission.
543 */
544static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
545 struct net_device *ndev)
546{
547 struct nps_enet_priv *priv = netdev_priv(ndev);
548
549 /* This driver handles one frame at a time */
550 netif_stop_queue(ndev);
551
552 priv->tx_skb = skb;
553
554 /* make sure tx_skb is actually written to the memory
555 * before the HW is informed and the IRQ is fired.
556 */
557 wmb();
558
559 nps_enet_send_frame(ndev, skb);
560
561 return NETDEV_TX_OK;
562}
563
564#ifdef CONFIG_NET_POLL_CONTROLLER
565static void nps_enet_poll_controller(struct net_device *ndev)
566{
567 disable_irq(ndev->irq);
568 nps_enet_irq_handler(ndev->irq, ndev);
569 enable_irq(ndev->irq);
570}
571#endif
572
573static const struct net_device_ops nps_netdev_ops = {
574 .ndo_open = nps_enet_open,
575 .ndo_stop = nps_enet_stop,
576 .ndo_start_xmit = nps_enet_start_xmit,
577 .ndo_set_mac_address = nps_enet_set_mac_address,
578 .ndo_set_rx_mode = nps_enet_set_rx_mode,
579#ifdef CONFIG_NET_POLL_CONTROLLER
580 .ndo_poll_controller = nps_enet_poll_controller,
581#endif
582};
583
584static s32 nps_enet_probe(struct platform_device *pdev)
585{
586 struct device *dev = &pdev->dev;
587 struct net_device *ndev;
588 struct nps_enet_priv *priv;
589 s32 err = 0;
590 const char *mac_addr;
591 struct resource *res_regs;
592
593 if (!dev->of_node)
594 return -ENODEV;
595
596 ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
597 if (!ndev)
598 return -ENOMEM;
599
600 platform_set_drvdata(pdev, ndev);
601 SET_NETDEV_DEV(ndev, dev);
602 priv = netdev_priv(ndev);
603
604 /* The EZ NET specific entries in the device structure. */
605 ndev->netdev_ops = &nps_netdev_ops;
606 ndev->watchdog_timeo = (400 * HZ / 1000);
607 /* FIXME :: no multicast support yet */
608 ndev->flags &= ~IFF_MULTICAST;
609
610 res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
611 priv->regs_base = devm_ioremap_resource(dev, res_regs);
612 if (IS_ERR(priv->regs_base)) {
613 err = PTR_ERR(priv->regs_base);
614 goto out_netdev;
615 }
616 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
617
618 /* set kernel MAC address to dev */
619 mac_addr = of_get_mac_address(dev->of_node);
620 if (mac_addr)
621 ether_addr_copy(ndev->dev_addr, mac_addr);
622 else
623 eth_hw_addr_random(ndev);
624
625 /* Get IRQ number */
626 priv->irq = platform_get_irq(pdev, 0);
627 if (!priv->irq) {
628 dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
629 err = -ENODEV;
630 goto out_netdev;
631 }
632
633 netif_napi_add(ndev, &priv->napi, nps_enet_poll,
634 NPS_ENET_NAPI_POLL_WEIGHT);
635
636 /* Register the driver. Should be the last thing in probe */
637 err = register_netdev(ndev);
638 if (err) {
639 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
640 ndev->name, (s32)err);
641 goto out_netif_api;
642 }
643
644 dev_info(dev, "(rx/tx=%d)\n", priv->irq);
645 return 0;
646
647out_netif_api:
648 netif_napi_del(&priv->napi);
649out_netdev:
650 if (err)
651 free_netdev(ndev);
652
653 return err;
654}
655
656static s32 nps_enet_remove(struct platform_device *pdev)
657{
658 struct net_device *ndev = platform_get_drvdata(pdev);
659 struct nps_enet_priv *priv = netdev_priv(ndev);
660
661 unregister_netdev(ndev);
662 free_netdev(ndev);
663 netif_napi_del(&priv->napi);
664
665 return 0;
666}
667
668static const struct of_device_id nps_enet_dt_ids[] = {
669 { .compatible = "ezchip,nps-mgt-enet" },
670 { /* Sentinel */ }
671};
672MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
673
674static struct platform_driver nps_enet_driver = {
675 .probe = nps_enet_probe,
676 .remove = nps_enet_remove,
677 .driver = {
678 .name = DRV_NAME,
679 .of_match_table = nps_enet_dt_ids,
680 },
681};
682
683module_platform_driver(nps_enet_driver);
684
685MODULE_AUTHOR("EZchip Semiconductor");
686MODULE_LICENSE("GPL v2");