Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
   4 *
 
 
 
 
   5 * Driver for the ARC EMAC 10100 (hardware revision 5)
   6 *
   7 * Contributors:
   8 *		Amit Bhor
   9 *		Sameer Dhavale
  10 *		Vineet Gupta
  11 */
  12
  13#include <linux/crc32.h>
  14#include <linux/etherdevice.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/module.h>
  18#include <linux/of.h>
  19#include <linux/of_address.h>
  20#include <linux/of_irq.h>
  21#include <linux/of_mdio.h>
  22#include <linux/of_net.h>
 
  23
  24#include "emac.h"
  25
  26static void arc_emac_restart(struct net_device *ndev);
  27
  28/**
  29 * arc_emac_tx_avail - Return the number of available slots in the tx ring.
  30 * @priv: Pointer to ARC EMAC private data structure.
  31 *
  32 * returns: the number of slots available for transmission in tx the ring.
  33 */
  34static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
  35{
  36	return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
  37}
  38
  39/**
  40 * arc_emac_adjust_link - Adjust the PHY link duplex.
  41 * @ndev:	Pointer to the net_device structure.
  42 *
  43 * This function is called to change the duplex setting after auto negotiation
  44 * is done by the PHY.
  45 */
  46static void arc_emac_adjust_link(struct net_device *ndev)
  47{
  48	struct arc_emac_priv *priv = netdev_priv(ndev);
  49	struct phy_device *phy_dev = ndev->phydev;
  50	unsigned int reg, state_changed = 0;
  51
  52	if (priv->link != phy_dev->link) {
  53		priv->link = phy_dev->link;
  54		state_changed = 1;
  55	}
  56
  57	if (priv->speed != phy_dev->speed) {
  58		priv->speed = phy_dev->speed;
  59		state_changed = 1;
  60		if (priv->set_mac_speed)
  61			priv->set_mac_speed(priv, priv->speed);
  62	}
  63
  64	if (priv->duplex != phy_dev->duplex) {
  65		reg = arc_reg_get(priv, R_CTRL);
  66
  67		if (phy_dev->duplex == DUPLEX_FULL)
  68			reg |= ENFL_MASK;
  69		else
  70			reg &= ~ENFL_MASK;
  71
  72		arc_reg_set(priv, R_CTRL, reg);
  73		priv->duplex = phy_dev->duplex;
  74		state_changed = 1;
  75	}
  76
  77	if (state_changed)
  78		phy_print_status(phy_dev);
  79}
  80
  81/**
  82 * arc_emac_get_drvinfo - Get EMAC driver information.
  83 * @ndev:	Pointer to net_device structure.
  84 * @info:	Pointer to ethtool_drvinfo structure.
  85 *
  86 * This implements ethtool command for getting the driver information.
  87 * Issue "ethtool -i ethX" under linux prompt to execute this function.
  88 */
  89static void arc_emac_get_drvinfo(struct net_device *ndev,
  90				 struct ethtool_drvinfo *info)
  91{
  92	struct arc_emac_priv *priv = netdev_priv(ndev);
  93
  94	strscpy(info->driver, priv->drv_name, sizeof(info->driver));
 
  95}
  96
  97static const struct ethtool_ops arc_emac_ethtool_ops = {
  98	.get_drvinfo	= arc_emac_get_drvinfo,
  99	.get_link	= ethtool_op_get_link,
 100	.get_link_ksettings = phy_ethtool_get_link_ksettings,
 101	.set_link_ksettings = phy_ethtool_set_link_ksettings,
 102};
 103
 104#define FIRST_OR_LAST_MASK	(FIRST_MASK | LAST_MASK)
 105
 106/**
 107 * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
 108 * @ndev:	Pointer to the network device.
 109 */
 110static void arc_emac_tx_clean(struct net_device *ndev)
 111{
 112	struct arc_emac_priv *priv = netdev_priv(ndev);
 113	struct net_device_stats *stats = &ndev->stats;
 114	struct device *dev = ndev->dev.parent;
 115	unsigned int i;
 116
 117	for (i = 0; i < TX_BD_NUM; i++) {
 118		unsigned int *txbd_dirty = &priv->txbd_dirty;
 119		struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
 120		struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
 121		struct sk_buff *skb = tx_buff->skb;
 122		unsigned int info = le32_to_cpu(txbd->info);
 123
 124		if ((info & FOR_EMAC) || !txbd->data || !skb)
 125			break;
 126
 127		if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
 128			stats->tx_errors++;
 129			stats->tx_dropped++;
 130
 131			if (info & DEFR)
 132				stats->tx_carrier_errors++;
 133
 134			if (info & LTCL)
 135				stats->collisions++;
 136
 137			if (info & UFLO)
 138				stats->tx_fifo_errors++;
 139		} else if (likely(info & FIRST_OR_LAST_MASK)) {
 140			stats->tx_packets++;
 141			stats->tx_bytes += skb->len;
 142		}
 143
 144		dma_unmap_single(dev, dma_unmap_addr(tx_buff, addr),
 145				 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
 146
 147		/* return the sk_buff to system */
 148		dev_consume_skb_irq(skb);
 149
 150		txbd->data = 0;
 151		txbd->info = 0;
 152		tx_buff->skb = NULL;
 153
 154		*txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
 155	}
 156
 157	/* Ensure that txbd_dirty is visible to tx() before checking
 158	 * for queue stopped.
 159	 */
 160	smp_mb();
 161
 162	if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
 163		netif_wake_queue(ndev);
 164}
 165
 166/**
 167 * arc_emac_rx - processing of Rx packets.
 168 * @ndev:	Pointer to the network device.
 169 * @budget:	How many BDs to process on 1 call.
 170 *
 171 * returns:	Number of processed BDs
 172 *
 173 * Iterate through Rx BDs and deliver received packages to upper layer.
 174 */
 175static int arc_emac_rx(struct net_device *ndev, int budget)
 176{
 177	struct arc_emac_priv *priv = netdev_priv(ndev);
 178	struct device *dev = ndev->dev.parent;
 179	unsigned int work_done;
 180
 181	for (work_done = 0; work_done < budget; work_done++) {
 182		unsigned int *last_rx_bd = &priv->last_rx_bd;
 183		struct net_device_stats *stats = &ndev->stats;
 184		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
 185		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
 186		unsigned int pktlen, info = le32_to_cpu(rxbd->info);
 187		struct sk_buff *skb;
 188		dma_addr_t addr;
 189
 190		if (unlikely((info & OWN_MASK) == FOR_EMAC))
 191			break;
 192
 193		/* Make a note that we saw a packet at this BD.
 194		 * So next time, driver starts from this + 1
 195		 */
 196		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
 197
 198		if (unlikely((info & FIRST_OR_LAST_MASK) !=
 199			     FIRST_OR_LAST_MASK)) {
 200			/* We pre-allocate buffers of MTU size so incoming
 201			 * packets won't be split/chained.
 202			 */
 203			if (net_ratelimit())
 204				netdev_err(ndev, "incomplete packet received\n");
 205
 206			/* Return ownership to EMAC */
 207			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
 208			stats->rx_errors++;
 209			stats->rx_length_errors++;
 210			continue;
 211		}
 212
 213		/* Prepare the BD for next cycle. netif_receive_skb()
 214		 * only if new skb was allocated and mapped to avoid holes
 215		 * in the RX fifo.
 216		 */
 217		skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE);
 218		if (unlikely(!skb)) {
 219			if (net_ratelimit())
 220				netdev_err(ndev, "cannot allocate skb\n");
 221			/* Return ownership to EMAC */
 222			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
 
 
 
 
 
 223			stats->rx_errors++;
 
 224			stats->rx_dropped++;
 225			continue;
 226		}
 227
 228		addr = dma_map_single(dev, (void *)skb->data,
 
 
 
 229				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
 230		if (dma_mapping_error(dev, addr)) {
 231			if (net_ratelimit())
 232				netdev_err(ndev, "cannot map dma buffer\n");
 233			dev_kfree_skb(skb);
 234			/* Return ownership to EMAC */
 235			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
 236			stats->rx_errors++;
 237			stats->rx_dropped++;
 238			continue;
 239		}
 240
 241		/* unmap previosly mapped skb */
 242		dma_unmap_single(dev, dma_unmap_addr(rx_buff, addr),
 243				 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
 244
 245		pktlen = info & LEN_MASK;
 246		stats->rx_packets++;
 247		stats->rx_bytes += pktlen;
 248		skb_put(rx_buff->skb, pktlen);
 249		rx_buff->skb->dev = ndev;
 250		rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev);
 251
 252		netif_receive_skb(rx_buff->skb);
 253
 254		rx_buff->skb = skb;
 255		dma_unmap_addr_set(rx_buff, addr, addr);
 256		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
 257
 258		rxbd->data = cpu_to_le32(addr);
 259
 260		/* Make sure pointer to data buffer is set */
 261		wmb();
 262
 263		/* Return ownership to EMAC */
 264		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
 265	}
 266
 267	return work_done;
 268}
 269
 270/**
 271 * arc_emac_rx_miss_handle - handle R_MISS register
 272 * @ndev:	Pointer to the net_device structure.
 273 */
 274static void arc_emac_rx_miss_handle(struct net_device *ndev)
 275{
 276	struct arc_emac_priv *priv = netdev_priv(ndev);
 277	struct net_device_stats *stats = &ndev->stats;
 278	unsigned int miss;
 279
 280	miss = arc_reg_get(priv, R_MISS);
 281	if (miss) {
 282		stats->rx_errors += miss;
 283		stats->rx_missed_errors += miss;
 284		priv->rx_missed_errors += miss;
 285	}
 286}
 287
 288/**
 289 * arc_emac_rx_stall_check - check RX stall
 290 * @ndev:	Pointer to the net_device structure.
 291 * @budget:	How many BDs requested to process on 1 call.
 292 * @work_done:	How many BDs processed
 293 *
 294 * Under certain conditions EMAC stop reception of incoming packets and
 295 * continuously increment R_MISS register instead of saving data into
 296 * provided buffer. This function detect that condition and restart
 297 * EMAC.
 298 */
 299static void arc_emac_rx_stall_check(struct net_device *ndev,
 300				    int budget, unsigned int work_done)
 301{
 302	struct arc_emac_priv *priv = netdev_priv(ndev);
 303	struct arc_emac_bd *rxbd;
 304
 305	if (work_done)
 306		priv->rx_missed_errors = 0;
 307
 308	if (priv->rx_missed_errors && budget) {
 309		rxbd = &priv->rxbd[priv->last_rx_bd];
 310		if (le32_to_cpu(rxbd->info) & FOR_EMAC) {
 311			arc_emac_restart(ndev);
 312			priv->rx_missed_errors = 0;
 313		}
 314	}
 315}
 316
 317/**
 318 * arc_emac_poll - NAPI poll handler.
 319 * @napi:	Pointer to napi_struct structure.
 320 * @budget:	How many BDs to process on 1 call.
 321 *
 322 * returns:	Number of processed BDs
 323 */
 324static int arc_emac_poll(struct napi_struct *napi, int budget)
 325{
 326	struct net_device *ndev = napi->dev;
 327	struct arc_emac_priv *priv = netdev_priv(ndev);
 328	unsigned int work_done;
 329
 330	arc_emac_tx_clean(ndev);
 331	arc_emac_rx_miss_handle(ndev);
 332
 333	work_done = arc_emac_rx(ndev, budget);
 334	if (work_done < budget) {
 335		napi_complete_done(napi, work_done);
 336		arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
 337	}
 338
 339	arc_emac_rx_stall_check(ndev, budget, work_done);
 340
 341	return work_done;
 342}
 343
 344/**
 345 * arc_emac_intr - Global interrupt handler for EMAC.
 346 * @irq:		irq number.
 347 * @dev_instance:	device instance.
 348 *
 349 * returns: IRQ_HANDLED for all cases.
 350 *
 351 * ARC EMAC has only 1 interrupt line, and depending on bits raised in
 352 * STATUS register we may tell what is a reason for interrupt to fire.
 353 */
 354static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
 355{
 356	struct net_device *ndev = dev_instance;
 357	struct arc_emac_priv *priv = netdev_priv(ndev);
 358	struct net_device_stats *stats = &ndev->stats;
 359	unsigned int status;
 360
 361	status = arc_reg_get(priv, R_STATUS);
 362	status &= ~MDIO_MASK;
 363
 364	/* Reset all flags except "MDIO complete" */
 365	arc_reg_set(priv, R_STATUS, status);
 366
 367	if (status & (RXINT_MASK | TXINT_MASK)) {
 368		if (likely(napi_schedule_prep(&priv->napi))) {
 369			arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
 370			__napi_schedule(&priv->napi);
 371		}
 372	}
 373
 374	if (status & ERR_MASK) {
 375		/* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
 376		 * 8-bit error counter overrun.
 377		 */
 378
 379		if (status & MSER_MASK) {
 380			stats->rx_missed_errors += 0x100;
 381			stats->rx_errors += 0x100;
 382			priv->rx_missed_errors += 0x100;
 383			napi_schedule(&priv->napi);
 384		}
 385
 386		if (status & RXCR_MASK) {
 387			stats->rx_crc_errors += 0x100;
 388			stats->rx_errors += 0x100;
 389		}
 390
 391		if (status & RXFR_MASK) {
 392			stats->rx_frame_errors += 0x100;
 393			stats->rx_errors += 0x100;
 394		}
 395
 396		if (status & RXFL_MASK) {
 397			stats->rx_over_errors += 0x100;
 398			stats->rx_errors += 0x100;
 399		}
 400	}
 401
 402	return IRQ_HANDLED;
 403}
 404
 405#ifdef CONFIG_NET_POLL_CONTROLLER
 406static void arc_emac_poll_controller(struct net_device *dev)
 407{
 408	disable_irq(dev->irq);
 409	arc_emac_intr(dev->irq, dev);
 410	enable_irq(dev->irq);
 411}
 412#endif
 413
 414/**
 415 * arc_emac_open - Open the network device.
 416 * @ndev:	Pointer to the network device.
 417 *
 418 * returns: 0, on success or non-zero error value on failure.
 419 *
 420 * This function sets the MAC address, requests and enables an IRQ
 421 * for the EMAC device and starts the Tx queue.
 422 * It also connects to the phy device.
 423 */
 424static int arc_emac_open(struct net_device *ndev)
 425{
 426	struct arc_emac_priv *priv = netdev_priv(ndev);
 427	struct phy_device *phy_dev = ndev->phydev;
 428	struct device *dev = ndev->dev.parent;
 429	int i;
 430
 431	phy_dev->autoneg = AUTONEG_ENABLE;
 432	phy_dev->speed = 0;
 433	phy_dev->duplex = 0;
 434	linkmode_and(phy_dev->advertising, phy_dev->advertising,
 435		     phy_dev->supported);
 436
 437	priv->last_rx_bd = 0;
 438
 439	/* Allocate and set buffers for Rx BD's */
 440	for (i = 0; i < RX_BD_NUM; i++) {
 441		dma_addr_t addr;
 442		unsigned int *last_rx_bd = &priv->last_rx_bd;
 443		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
 444		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
 445
 446		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
 447							 EMAC_BUFFER_SIZE);
 448		if (unlikely(!rx_buff->skb))
 449			return -ENOMEM;
 450
 451		addr = dma_map_single(dev, (void *)rx_buff->skb->data,
 452				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
 453		if (dma_mapping_error(dev, addr)) {
 454			netdev_err(ndev, "cannot dma map\n");
 455			dev_kfree_skb(rx_buff->skb);
 456			return -ENOMEM;
 457		}
 458		dma_unmap_addr_set(rx_buff, addr, addr);
 459		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
 460
 461		rxbd->data = cpu_to_le32(addr);
 462
 463		/* Make sure pointer to data buffer is set */
 464		wmb();
 465
 466		/* Return ownership to EMAC */
 467		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
 468
 469		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
 470	}
 471
 472	priv->txbd_curr = 0;
 473	priv->txbd_dirty = 0;
 474
 475	/* Clean Tx BD's */
 476	memset(priv->txbd, 0, TX_RING_SZ);
 477
 478	/* Initialize logical address filter */
 479	arc_reg_set(priv, R_LAFL, 0);
 480	arc_reg_set(priv, R_LAFH, 0);
 481
 482	/* Set BD ring pointers for device side */
 483	arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
 484	arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
 485
 486	/* Enable interrupts */
 487	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
 488
 489	/* Set CONTROL */
 490	arc_reg_set(priv, R_CTRL,
 491		    (RX_BD_NUM << 24) |	/* RX BD table length */
 492		    (TX_BD_NUM << 16) |	/* TX BD table length */
 493		    TXRN_MASK | RXRN_MASK);
 494
 495	napi_enable(&priv->napi);
 496
 497	/* Enable EMAC */
 498	arc_reg_or(priv, R_CTRL, EN_MASK);
 499
 500	phy_start(ndev->phydev);
 501
 502	netif_start_queue(ndev);
 503
 504	return 0;
 505}
 506
 507/**
 508 * arc_emac_set_rx_mode - Change the receive filtering mode.
 509 * @ndev:	Pointer to the network device.
 510 *
 511 * This function enables/disables promiscuous or all-multicast mode
 512 * and updates the multicast filtering list of the network device.
 513 */
 514static void arc_emac_set_rx_mode(struct net_device *ndev)
 515{
 516	struct arc_emac_priv *priv = netdev_priv(ndev);
 517
 518	if (ndev->flags & IFF_PROMISC) {
 519		arc_reg_or(priv, R_CTRL, PROM_MASK);
 520	} else {
 521		arc_reg_clr(priv, R_CTRL, PROM_MASK);
 522
 523		if (ndev->flags & IFF_ALLMULTI) {
 524			arc_reg_set(priv, R_LAFL, ~0);
 525			arc_reg_set(priv, R_LAFH, ~0);
 526		} else if (ndev->flags & IFF_MULTICAST) {
 527			struct netdev_hw_addr *ha;
 528			unsigned int filter[2] = { 0, 0 };
 529			int bit;
 530
 531			netdev_for_each_mc_addr(ha, ndev) {
 532				bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
 533				filter[bit >> 5] |= 1 << (bit & 31);
 534			}
 535
 536			arc_reg_set(priv, R_LAFL, filter[0]);
 537			arc_reg_set(priv, R_LAFH, filter[1]);
 538		} else {
 539			arc_reg_set(priv, R_LAFL, 0);
 540			arc_reg_set(priv, R_LAFH, 0);
 541		}
 542	}
 543}
 544
 545/**
 546 * arc_free_tx_queue - free skb from tx queue
 547 * @ndev:	Pointer to the network device.
 548 *
 549 * This function must be called while EMAC disable
 550 */
 551static void arc_free_tx_queue(struct net_device *ndev)
 552{
 553	struct arc_emac_priv *priv = netdev_priv(ndev);
 554	struct device *dev = ndev->dev.parent;
 555	unsigned int i;
 556
 557	for (i = 0; i < TX_BD_NUM; i++) {
 558		struct arc_emac_bd *txbd = &priv->txbd[i];
 559		struct buffer_state *tx_buff = &priv->tx_buff[i];
 560
 561		if (tx_buff->skb) {
 562			dma_unmap_single(dev,
 563					 dma_unmap_addr(tx_buff, addr),
 564					 dma_unmap_len(tx_buff, len),
 565					 DMA_TO_DEVICE);
 566
 567			/* return the sk_buff to system */
 568			dev_kfree_skb_irq(tx_buff->skb);
 569		}
 570
 571		txbd->info = 0;
 572		txbd->data = 0;
 573		tx_buff->skb = NULL;
 574	}
 575}
 576
 577/**
 578 * arc_free_rx_queue - free skb from rx queue
 579 * @ndev:	Pointer to the network device.
 580 *
 581 * This function must be called while EMAC disable
 582 */
 583static void arc_free_rx_queue(struct net_device *ndev)
 584{
 585	struct arc_emac_priv *priv = netdev_priv(ndev);
 586	struct device *dev = ndev->dev.parent;
 587	unsigned int i;
 588
 589	for (i = 0; i < RX_BD_NUM; i++) {
 590		struct arc_emac_bd *rxbd = &priv->rxbd[i];
 591		struct buffer_state *rx_buff = &priv->rx_buff[i];
 592
 593		if (rx_buff->skb) {
 594			dma_unmap_single(dev,
 595					 dma_unmap_addr(rx_buff, addr),
 596					 dma_unmap_len(rx_buff, len),
 597					 DMA_FROM_DEVICE);
 598
 599			/* return the sk_buff to system */
 600			dev_kfree_skb_irq(rx_buff->skb);
 601		}
 602
 603		rxbd->info = 0;
 604		rxbd->data = 0;
 605		rx_buff->skb = NULL;
 606	}
 607}
 608
 609/**
 610 * arc_emac_stop - Close the network device.
 611 * @ndev:	Pointer to the network device.
 612 *
 613 * This function stops the Tx queue, disables interrupts and frees the IRQ for
 614 * the EMAC device.
 615 * It also disconnects the PHY device associated with the EMAC device.
 616 */
 617static int arc_emac_stop(struct net_device *ndev)
 618{
 619	struct arc_emac_priv *priv = netdev_priv(ndev);
 620
 621	napi_disable(&priv->napi);
 622	netif_stop_queue(ndev);
 623
 624	phy_stop(ndev->phydev);
 625
 626	/* Disable interrupts */
 627	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
 628
 629	/* Disable EMAC */
 630	arc_reg_clr(priv, R_CTRL, EN_MASK);
 631
 632	/* Return the sk_buff to system */
 633	arc_free_tx_queue(ndev);
 634	arc_free_rx_queue(ndev);
 635
 636	return 0;
 637}
 638
 639/**
 640 * arc_emac_stats - Get system network statistics.
 641 * @ndev:	Pointer to net_device structure.
 642 *
 643 * Returns the address of the device statistics structure.
 644 * Statistics are updated in interrupt handler.
 645 */
 646static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
 647{
 648	struct arc_emac_priv *priv = netdev_priv(ndev);
 649	struct net_device_stats *stats = &ndev->stats;
 650	unsigned long miss, rxerr;
 651	u8 rxcrc, rxfram, rxoflow;
 652
 653	rxerr = arc_reg_get(priv, R_RXERR);
 654	miss = arc_reg_get(priv, R_MISS);
 655
 656	rxcrc = rxerr;
 657	rxfram = rxerr >> 8;
 658	rxoflow = rxerr >> 16;
 659
 660	stats->rx_errors += miss;
 661	stats->rx_errors += rxcrc + rxfram + rxoflow;
 662
 663	stats->rx_over_errors += rxoflow;
 664	stats->rx_frame_errors += rxfram;
 665	stats->rx_crc_errors += rxcrc;
 666	stats->rx_missed_errors += miss;
 667
 668	return stats;
 669}
 670
 671/**
 672 * arc_emac_tx - Starts the data transmission.
 673 * @skb:	sk_buff pointer that contains data to be Transmitted.
 674 * @ndev:	Pointer to net_device structure.
 675 *
 676 * returns: NETDEV_TX_OK, on success
 677 *		NETDEV_TX_BUSY, if any of the descriptors are not free.
 678 *
 679 * This function is invoked from upper layers to initiate transmission.
 680 */
 681static netdev_tx_t arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
 682{
 683	struct arc_emac_priv *priv = netdev_priv(ndev);
 684	unsigned int len, *txbd_curr = &priv->txbd_curr;
 685	struct net_device_stats *stats = &ndev->stats;
 686	__le32 *info = &priv->txbd[*txbd_curr].info;
 687	struct device *dev = ndev->dev.parent;
 688	dma_addr_t addr;
 689
 690	if (skb_padto(skb, ETH_ZLEN))
 691		return NETDEV_TX_OK;
 692
 693	len = max_t(unsigned int, ETH_ZLEN, skb->len);
 694
 695	if (unlikely(!arc_emac_tx_avail(priv))) {
 696		netif_stop_queue(ndev);
 697		netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
 698		return NETDEV_TX_BUSY;
 699	}
 700
 701	addr = dma_map_single(dev, (void *)skb->data, len, DMA_TO_DEVICE);
 
 702
 703	if (unlikely(dma_mapping_error(dev, addr))) {
 704		stats->tx_dropped++;
 705		stats->tx_errors++;
 706		dev_kfree_skb_any(skb);
 707		return NETDEV_TX_OK;
 708	}
 709	dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
 710	dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
 711
 712	priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
 713
 714	/* Make sure pointer to data buffer is set */
 715	wmb();
 716
 717	skb_tx_timestamp(skb);
 718
 719	*info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
 720
 721	/* Make sure info word is set */
 722	wmb();
 723
 724	priv->tx_buff[*txbd_curr].skb = skb;
 725
 726	/* Increment index to point to the next BD */
 727	*txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
 728
 729	/* Ensure that tx_clean() sees the new txbd_curr before
 730	 * checking the queue status. This prevents an unneeded wake
 731	 * of the queue in tx_clean().
 732	 */
 733	smp_mb();
 734
 735	if (!arc_emac_tx_avail(priv)) {
 736		netif_stop_queue(ndev);
 737		/* Refresh tx_dirty */
 738		smp_mb();
 739		if (arc_emac_tx_avail(priv))
 740			netif_start_queue(ndev);
 741	}
 742
 743	arc_reg_set(priv, R_STATUS, TXPL_MASK);
 744
 745	return NETDEV_TX_OK;
 746}
 747
 748static void arc_emac_set_address_internal(struct net_device *ndev)
 749{
 750	struct arc_emac_priv *priv = netdev_priv(ndev);
 751	unsigned int addr_low, addr_hi;
 752
 753	addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
 754	addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
 755
 756	arc_reg_set(priv, R_ADDRL, addr_low);
 757	arc_reg_set(priv, R_ADDRH, addr_hi);
 758}
 759
 760/**
 761 * arc_emac_set_address - Set the MAC address for this device.
 762 * @ndev:	Pointer to net_device structure.
 763 * @p:		6 byte Address to be written as MAC address.
 764 *
 765 * This function copies the HW address from the sockaddr structure to the
 766 * net_device structure and updates the address in HW.
 767 *
 768 * returns:	-EBUSY if the net device is busy or 0 if the address is set
 769 *		successfully.
 770 */
 771static int arc_emac_set_address(struct net_device *ndev, void *p)
 772{
 773	struct sockaddr *addr = p;
 774
 775	if (netif_running(ndev))
 776		return -EBUSY;
 777
 778	if (!is_valid_ether_addr(addr->sa_data))
 779		return -EADDRNOTAVAIL;
 780
 781	eth_hw_addr_set(ndev, addr->sa_data);
 782
 783	arc_emac_set_address_internal(ndev);
 784
 785	return 0;
 786}
 787
 788/**
 789 * arc_emac_restart - Restart EMAC
 790 * @ndev:	Pointer to net_device structure.
 791 *
 792 * This function do hardware reset of EMAC in order to restore
 793 * network packets reception.
 794 */
 795static void arc_emac_restart(struct net_device *ndev)
 796{
 797	struct arc_emac_priv *priv = netdev_priv(ndev);
 798	struct net_device_stats *stats = &ndev->stats;
 799	int i;
 800
 801	if (net_ratelimit())
 802		netdev_warn(ndev, "restarting stalled EMAC\n");
 803
 804	netif_stop_queue(ndev);
 805
 806	/* Disable interrupts */
 807	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
 808
 809	/* Disable EMAC */
 810	arc_reg_clr(priv, R_CTRL, EN_MASK);
 811
 812	/* Return the sk_buff to system */
 813	arc_free_tx_queue(ndev);
 814
 815	/* Clean Tx BD's */
 816	priv->txbd_curr = 0;
 817	priv->txbd_dirty = 0;
 818	memset(priv->txbd, 0, TX_RING_SZ);
 819
 820	for (i = 0; i < RX_BD_NUM; i++) {
 821		struct arc_emac_bd *rxbd = &priv->rxbd[i];
 822		unsigned int info = le32_to_cpu(rxbd->info);
 823
 824		if (!(info & FOR_EMAC)) {
 825			stats->rx_errors++;
 826			stats->rx_dropped++;
 827		}
 828		/* Return ownership to EMAC */
 829		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
 830	}
 831	priv->last_rx_bd = 0;
 832
 833	/* Make sure info is visible to EMAC before enable */
 834	wmb();
 835
 836	/* Enable interrupts */
 837	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
 838
 839	/* Enable EMAC */
 840	arc_reg_or(priv, R_CTRL, EN_MASK);
 841
 842	netif_start_queue(ndev);
 843}
 844
 845static const struct net_device_ops arc_emac_netdev_ops = {
 846	.ndo_open		= arc_emac_open,
 847	.ndo_stop		= arc_emac_stop,
 848	.ndo_start_xmit		= arc_emac_tx,
 849	.ndo_set_mac_address	= arc_emac_set_address,
 850	.ndo_get_stats		= arc_emac_stats,
 851	.ndo_set_rx_mode	= arc_emac_set_rx_mode,
 852	.ndo_eth_ioctl		= phy_do_ioctl_running,
 853#ifdef CONFIG_NET_POLL_CONTROLLER
 854	.ndo_poll_controller	= arc_emac_poll_controller,
 855#endif
 856};
 857
 858int arc_emac_probe(struct net_device *ndev, int interface)
 859{
 860	struct device *dev = ndev->dev.parent;
 861	struct resource res_regs;
 862	struct device_node *phy_node;
 863	struct phy_device *phydev = NULL;
 864	struct arc_emac_priv *priv;
 
 865	unsigned int id, clock_frequency, irq;
 866	int err;
 867
 868	/* Get PHY from device tree */
 869	phy_node = of_parse_phandle(dev->of_node, "phy", 0);
 870	if (!phy_node) {
 871		dev_err(dev, "failed to retrieve phy description from device tree\n");
 872		return -ENODEV;
 873	}
 874
 875	/* Get EMAC registers base address from device tree */
 876	err = of_address_to_resource(dev->of_node, 0, &res_regs);
 877	if (err) {
 878		dev_err(dev, "failed to retrieve registers base from device tree\n");
 879		err = -ENODEV;
 880		goto out_put_node;
 881	}
 882
 883	/* Get IRQ from device tree */
 884	irq = irq_of_parse_and_map(dev->of_node, 0);
 885	if (!irq) {
 886		dev_err(dev, "failed to retrieve <irq> value from device tree\n");
 887		err = -ENODEV;
 888		goto out_put_node;
 889	}
 890
 891	ndev->netdev_ops = &arc_emac_netdev_ops;
 892	ndev->ethtool_ops = &arc_emac_ethtool_ops;
 893	ndev->watchdog_timeo = TX_TIMEOUT;
 894
 895	priv = netdev_priv(ndev);
 896	priv->dev = dev;
 897
 898	priv->regs = devm_ioremap_resource(dev, &res_regs);
 899	if (IS_ERR(priv->regs)) {
 900		err = PTR_ERR(priv->regs);
 901		goto out_put_node;
 902	}
 903
 904	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
 905
 906	if (priv->clk) {
 907		err = clk_prepare_enable(priv->clk);
 908		if (err) {
 909			dev_err(dev, "failed to enable clock\n");
 910			goto out_put_node;
 911		}
 912
 913		clock_frequency = clk_get_rate(priv->clk);
 914	} else {
 915		/* Get CPU clock frequency from device tree */
 916		if (of_property_read_u32(dev->of_node, "clock-frequency",
 917					 &clock_frequency)) {
 918			dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
 919			err = -EINVAL;
 920			goto out_put_node;
 921		}
 922	}
 923
 924	id = arc_reg_get(priv, R_ID);
 925
 926	/* Check for EMAC revision 5 or 7, magic number */
 927	if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
 928		dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
 929		err = -ENODEV;
 930		goto out_clken;
 931	}
 932	dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
 933
 934	/* Set poll rate so that it polls every 1 ms */
 935	arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
 936
 937	ndev->irq = irq;
 938	dev_info(dev, "IRQ is %d\n", ndev->irq);
 939
 940	/* Register interrupt handler for device */
 941	err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
 942			       ndev->name, ndev);
 943	if (err) {
 944		dev_err(dev, "could not allocate IRQ\n");
 945		goto out_clken;
 946	}
 947
 948	/* Get MAC address from device tree */
 949	err = of_get_ethdev_address(dev->of_node, ndev);
 950	if (err)
 
 
 
 951		eth_hw_addr_random(ndev);
 952
 953	arc_emac_set_address_internal(ndev);
 954	dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
 955
 956	/* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
 957	priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
 958					 &priv->rxbd_dma, GFP_KERNEL);
 959
 960	if (!priv->rxbd) {
 961		dev_err(dev, "failed to allocate data buffers\n");
 962		err = -ENOMEM;
 963		goto out_clken;
 964	}
 965
 966	priv->txbd = priv->rxbd + RX_BD_NUM;
 967
 968	priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
 969	dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
 970		(unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
 971
 972	err = arc_mdio_probe(priv);
 973	if (err) {
 974		dev_err(dev, "failed to probe MII bus\n");
 975		goto out_clken;
 976	}
 977
 978	phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
 979				interface);
 980	if (!phydev) {
 981		dev_err(dev, "of_phy_connect() failed\n");
 982		err = -ENODEV;
 983		goto out_mdio;
 984	}
 985
 986	dev_info(dev, "connected to %s phy with id 0x%x\n",
 987		 phydev->drv->name, phydev->phy_id);
 988
 989	netif_napi_add_weight(ndev, &priv->napi, arc_emac_poll,
 990			      ARC_EMAC_NAPI_WEIGHT);
 991
 992	err = register_netdev(ndev);
 993	if (err) {
 994		dev_err(dev, "failed to register network device\n");
 995		goto out_netif_api;
 996	}
 997
 998	of_node_put(phy_node);
 999	return 0;
1000
1001out_netif_api:
1002	netif_napi_del(&priv->napi);
1003	phy_disconnect(phydev);
1004out_mdio:
1005	arc_mdio_remove(priv);
1006out_clken:
1007	if (priv->clk)
1008		clk_disable_unprepare(priv->clk);
1009out_put_node:
1010	of_node_put(phy_node);
1011
1012	return err;
1013}
1014EXPORT_SYMBOL_GPL(arc_emac_probe);
1015
1016void arc_emac_remove(struct net_device *ndev)
1017{
1018	struct arc_emac_priv *priv = netdev_priv(ndev);
1019
1020	phy_disconnect(ndev->phydev);
1021	arc_mdio_remove(priv);
1022	unregister_netdev(ndev);
1023	netif_napi_del(&priv->napi);
1024
1025	if (!IS_ERR(priv->clk))
1026		clk_disable_unprepare(priv->clk);
 
 
1027}
1028EXPORT_SYMBOL_GPL(arc_emac_remove);
1029
1030MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
1031MODULE_DESCRIPTION("ARC EMAC driver");
1032MODULE_LICENSE("GPL");
v4.10.11
 
  1/*
  2 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 *
  8 * Driver for the ARC EMAC 10100 (hardware revision 5)
  9 *
 10 * Contributors:
 11 *		Amit Bhor
 12 *		Sameer Dhavale
 13 *		Vineet Gupta
 14 */
 15
 16#include <linux/crc32.h>
 17#include <linux/etherdevice.h>
 18#include <linux/interrupt.h>
 19#include <linux/io.h>
 20#include <linux/module.h>
 
 21#include <linux/of_address.h>
 22#include <linux/of_irq.h>
 23#include <linux/of_mdio.h>
 24#include <linux/of_net.h>
 25#include <linux/of_platform.h>
 26
 27#include "emac.h"
 28
 
 
 29/**
 30 * arc_emac_tx_avail - Return the number of available slots in the tx ring.
 31 * @priv: Pointer to ARC EMAC private data structure.
 32 *
 33 * returns: the number of slots available for transmission in tx the ring.
 34 */
 35static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
 36{
 37	return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
 38}
 39
 40/**
 41 * arc_emac_adjust_link - Adjust the PHY link duplex.
 42 * @ndev:	Pointer to the net_device structure.
 43 *
 44 * This function is called to change the duplex setting after auto negotiation
 45 * is done by the PHY.
 46 */
 47static void arc_emac_adjust_link(struct net_device *ndev)
 48{
 49	struct arc_emac_priv *priv = netdev_priv(ndev);
 50	struct phy_device *phy_dev = ndev->phydev;
 51	unsigned int reg, state_changed = 0;
 52
 53	if (priv->link != phy_dev->link) {
 54		priv->link = phy_dev->link;
 55		state_changed = 1;
 56	}
 57
 58	if (priv->speed != phy_dev->speed) {
 59		priv->speed = phy_dev->speed;
 60		state_changed = 1;
 61		if (priv->set_mac_speed)
 62			priv->set_mac_speed(priv, priv->speed);
 63	}
 64
 65	if (priv->duplex != phy_dev->duplex) {
 66		reg = arc_reg_get(priv, R_CTRL);
 67
 68		if (phy_dev->duplex == DUPLEX_FULL)
 69			reg |= ENFL_MASK;
 70		else
 71			reg &= ~ENFL_MASK;
 72
 73		arc_reg_set(priv, R_CTRL, reg);
 74		priv->duplex = phy_dev->duplex;
 75		state_changed = 1;
 76	}
 77
 78	if (state_changed)
 79		phy_print_status(phy_dev);
 80}
 81
 82/**
 83 * arc_emac_get_drvinfo - Get EMAC driver information.
 84 * @ndev:	Pointer to net_device structure.
 85 * @info:	Pointer to ethtool_drvinfo structure.
 86 *
 87 * This implements ethtool command for getting the driver information.
 88 * Issue "ethtool -i ethX" under linux prompt to execute this function.
 89 */
 90static void arc_emac_get_drvinfo(struct net_device *ndev,
 91				 struct ethtool_drvinfo *info)
 92{
 93	struct arc_emac_priv *priv = netdev_priv(ndev);
 94
 95	strlcpy(info->driver, priv->drv_name, sizeof(info->driver));
 96	strlcpy(info->version, priv->drv_version, sizeof(info->version));
 97}
 98
 99static const struct ethtool_ops arc_emac_ethtool_ops = {
100	.get_drvinfo	= arc_emac_get_drvinfo,
101	.get_link	= ethtool_op_get_link,
102	.get_link_ksettings = phy_ethtool_get_link_ksettings,
103	.set_link_ksettings = phy_ethtool_set_link_ksettings,
104};
105
106#define FIRST_OR_LAST_MASK	(FIRST_MASK | LAST_MASK)
107
108/**
109 * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
110 * @ndev:	Pointer to the network device.
111 */
112static void arc_emac_tx_clean(struct net_device *ndev)
113{
114	struct arc_emac_priv *priv = netdev_priv(ndev);
115	struct net_device_stats *stats = &ndev->stats;
 
116	unsigned int i;
117
118	for (i = 0; i < TX_BD_NUM; i++) {
119		unsigned int *txbd_dirty = &priv->txbd_dirty;
120		struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
121		struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
122		struct sk_buff *skb = tx_buff->skb;
123		unsigned int info = le32_to_cpu(txbd->info);
124
125		if ((info & FOR_EMAC) || !txbd->data || !skb)
126			break;
127
128		if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
129			stats->tx_errors++;
130			stats->tx_dropped++;
131
132			if (info & DEFR)
133				stats->tx_carrier_errors++;
134
135			if (info & LTCL)
136				stats->collisions++;
137
138			if (info & UFLO)
139				stats->tx_fifo_errors++;
140		} else if (likely(info & FIRST_OR_LAST_MASK)) {
141			stats->tx_packets++;
142			stats->tx_bytes += skb->len;
143		}
144
145		dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr),
146				 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
147
148		/* return the sk_buff to system */
149		dev_kfree_skb_irq(skb);
150
151		txbd->data = 0;
152		txbd->info = 0;
153		tx_buff->skb = NULL;
154
155		*txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
156	}
157
158	/* Ensure that txbd_dirty is visible to tx() before checking
159	 * for queue stopped.
160	 */
161	smp_mb();
162
163	if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
164		netif_wake_queue(ndev);
165}
166
167/**
168 * arc_emac_rx - processing of Rx packets.
169 * @ndev:	Pointer to the network device.
170 * @budget:	How many BDs to process on 1 call.
171 *
172 * returns:	Number of processed BDs
173 *
174 * Iterate through Rx BDs and deliver received packages to upper layer.
175 */
176static int arc_emac_rx(struct net_device *ndev, int budget)
177{
178	struct arc_emac_priv *priv = netdev_priv(ndev);
 
179	unsigned int work_done;
180
181	for (work_done = 0; work_done < budget; work_done++) {
182		unsigned int *last_rx_bd = &priv->last_rx_bd;
183		struct net_device_stats *stats = &ndev->stats;
184		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
185		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
186		unsigned int pktlen, info = le32_to_cpu(rxbd->info);
187		struct sk_buff *skb;
188		dma_addr_t addr;
189
190		if (unlikely((info & OWN_MASK) == FOR_EMAC))
191			break;
192
193		/* Make a note that we saw a packet at this BD.
194		 * So next time, driver starts from this + 1
195		 */
196		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
197
198		if (unlikely((info & FIRST_OR_LAST_MASK) !=
199			     FIRST_OR_LAST_MASK)) {
200			/* We pre-allocate buffers of MTU size so incoming
201			 * packets won't be split/chained.
202			 */
203			if (net_ratelimit())
204				netdev_err(ndev, "incomplete packet received\n");
205
206			/* Return ownership to EMAC */
207			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
208			stats->rx_errors++;
209			stats->rx_length_errors++;
210			continue;
211		}
212
213		pktlen = info & LEN_MASK;
214		stats->rx_packets++;
215		stats->rx_bytes += pktlen;
216		skb = rx_buff->skb;
217		skb_put(skb, pktlen);
218		skb->dev = ndev;
219		skb->protocol = eth_type_trans(skb, ndev);
220
221		dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr),
222				 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
223
224		/* Prepare the BD for next cycle */
225		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
226							 EMAC_BUFFER_SIZE);
227		if (unlikely(!rx_buff->skb)) {
228			stats->rx_errors++;
229			/* Because receive_skb is below, increment rx_dropped */
230			stats->rx_dropped++;
231			continue;
232		}
233
234		/* receive_skb only if new skb was allocated to avoid holes */
235		netif_receive_skb(skb);
236
237		addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
238				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
239		if (dma_mapping_error(&ndev->dev, addr)) {
240			if (net_ratelimit())
241				netdev_err(ndev, "cannot dma map\n");
242			dev_kfree_skb(rx_buff->skb);
 
 
243			stats->rx_errors++;
 
244			continue;
245		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246		dma_unmap_addr_set(rx_buff, addr, addr);
247		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
248
249		rxbd->data = cpu_to_le32(addr);
250
251		/* Make sure pointer to data buffer is set */
252		wmb();
253
254		/* Return ownership to EMAC */
255		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
256	}
257
258	return work_done;
259}
260
261/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262 * arc_emac_poll - NAPI poll handler.
263 * @napi:	Pointer to napi_struct structure.
264 * @budget:	How many BDs to process on 1 call.
265 *
266 * returns:	Number of processed BDs
267 */
268static int arc_emac_poll(struct napi_struct *napi, int budget)
269{
270	struct net_device *ndev = napi->dev;
271	struct arc_emac_priv *priv = netdev_priv(ndev);
272	unsigned int work_done;
273
274	arc_emac_tx_clean(ndev);
 
275
276	work_done = arc_emac_rx(ndev, budget);
277	if (work_done < budget) {
278		napi_complete(napi);
279		arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
280	}
281
 
 
282	return work_done;
283}
284
285/**
286 * arc_emac_intr - Global interrupt handler for EMAC.
287 * @irq:		irq number.
288 * @dev_instance:	device instance.
289 *
290 * returns: IRQ_HANDLED for all cases.
291 *
292 * ARC EMAC has only 1 interrupt line, and depending on bits raised in
293 * STATUS register we may tell what is a reason for interrupt to fire.
294 */
295static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
296{
297	struct net_device *ndev = dev_instance;
298	struct arc_emac_priv *priv = netdev_priv(ndev);
299	struct net_device_stats *stats = &ndev->stats;
300	unsigned int status;
301
302	status = arc_reg_get(priv, R_STATUS);
303	status &= ~MDIO_MASK;
304
305	/* Reset all flags except "MDIO complete" */
306	arc_reg_set(priv, R_STATUS, status);
307
308	if (status & (RXINT_MASK | TXINT_MASK)) {
309		if (likely(napi_schedule_prep(&priv->napi))) {
310			arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
311			__napi_schedule(&priv->napi);
312		}
313	}
314
315	if (status & ERR_MASK) {
316		/* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
317		 * 8-bit error counter overrun.
318		 */
319
320		if (status & MSER_MASK) {
321			stats->rx_missed_errors += 0x100;
322			stats->rx_errors += 0x100;
 
 
323		}
324
325		if (status & RXCR_MASK) {
326			stats->rx_crc_errors += 0x100;
327			stats->rx_errors += 0x100;
328		}
329
330		if (status & RXFR_MASK) {
331			stats->rx_frame_errors += 0x100;
332			stats->rx_errors += 0x100;
333		}
334
335		if (status & RXFL_MASK) {
336			stats->rx_over_errors += 0x100;
337			stats->rx_errors += 0x100;
338		}
339	}
340
341	return IRQ_HANDLED;
342}
343
344#ifdef CONFIG_NET_POLL_CONTROLLER
345static void arc_emac_poll_controller(struct net_device *dev)
346{
347	disable_irq(dev->irq);
348	arc_emac_intr(dev->irq, dev);
349	enable_irq(dev->irq);
350}
351#endif
352
353/**
354 * arc_emac_open - Open the network device.
355 * @ndev:	Pointer to the network device.
356 *
357 * returns: 0, on success or non-zero error value on failure.
358 *
359 * This function sets the MAC address, requests and enables an IRQ
360 * for the EMAC device and starts the Tx queue.
361 * It also connects to the phy device.
362 */
363static int arc_emac_open(struct net_device *ndev)
364{
365	struct arc_emac_priv *priv = netdev_priv(ndev);
366	struct phy_device *phy_dev = ndev->phydev;
 
367	int i;
368
369	phy_dev->autoneg = AUTONEG_ENABLE;
370	phy_dev->speed = 0;
371	phy_dev->duplex = 0;
372	phy_dev->advertising &= phy_dev->supported;
 
373
374	priv->last_rx_bd = 0;
375
376	/* Allocate and set buffers for Rx BD's */
377	for (i = 0; i < RX_BD_NUM; i++) {
378		dma_addr_t addr;
379		unsigned int *last_rx_bd = &priv->last_rx_bd;
380		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
381		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
382
383		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
384							 EMAC_BUFFER_SIZE);
385		if (unlikely(!rx_buff->skb))
386			return -ENOMEM;
387
388		addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
389				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
390		if (dma_mapping_error(&ndev->dev, addr)) {
391			netdev_err(ndev, "cannot dma map\n");
392			dev_kfree_skb(rx_buff->skb);
393			return -ENOMEM;
394		}
395		dma_unmap_addr_set(rx_buff, addr, addr);
396		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
397
398		rxbd->data = cpu_to_le32(addr);
399
400		/* Make sure pointer to data buffer is set */
401		wmb();
402
403		/* Return ownership to EMAC */
404		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
405
406		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
407	}
408
409	priv->txbd_curr = 0;
410	priv->txbd_dirty = 0;
411
412	/* Clean Tx BD's */
413	memset(priv->txbd, 0, TX_RING_SZ);
414
415	/* Initialize logical address filter */
416	arc_reg_set(priv, R_LAFL, 0);
417	arc_reg_set(priv, R_LAFH, 0);
418
419	/* Set BD ring pointers for device side */
420	arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
421	arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
422
423	/* Enable interrupts */
424	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
425
426	/* Set CONTROL */
427	arc_reg_set(priv, R_CTRL,
428		    (RX_BD_NUM << 24) |	/* RX BD table length */
429		    (TX_BD_NUM << 16) |	/* TX BD table length */
430		    TXRN_MASK | RXRN_MASK);
431
432	napi_enable(&priv->napi);
433
434	/* Enable EMAC */
435	arc_reg_or(priv, R_CTRL, EN_MASK);
436
437	phy_start_aneg(ndev->phydev);
438
439	netif_start_queue(ndev);
440
441	return 0;
442}
443
444/**
445 * arc_emac_set_rx_mode - Change the receive filtering mode.
446 * @ndev:	Pointer to the network device.
447 *
448 * This function enables/disables promiscuous or all-multicast mode
449 * and updates the multicast filtering list of the network device.
450 */
451static void arc_emac_set_rx_mode(struct net_device *ndev)
452{
453	struct arc_emac_priv *priv = netdev_priv(ndev);
454
455	if (ndev->flags & IFF_PROMISC) {
456		arc_reg_or(priv, R_CTRL, PROM_MASK);
457	} else {
458		arc_reg_clr(priv, R_CTRL, PROM_MASK);
459
460		if (ndev->flags & IFF_ALLMULTI) {
461			arc_reg_set(priv, R_LAFL, ~0);
462			arc_reg_set(priv, R_LAFH, ~0);
463		} else if (ndev->flags & IFF_MULTICAST) {
464			struct netdev_hw_addr *ha;
465			unsigned int filter[2] = { 0, 0 };
466			int bit;
467
468			netdev_for_each_mc_addr(ha, ndev) {
469				bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
470				filter[bit >> 5] |= 1 << (bit & 31);
471			}
472
473			arc_reg_set(priv, R_LAFL, filter[0]);
474			arc_reg_set(priv, R_LAFH, filter[1]);
475		} else {
476			arc_reg_set(priv, R_LAFL, 0);
477			arc_reg_set(priv, R_LAFH, 0);
478		}
479	}
480}
481
482/**
483 * arc_free_tx_queue - free skb from tx queue
484 * @ndev:	Pointer to the network device.
485 *
486 * This function must be called while EMAC disable
487 */
488static void arc_free_tx_queue(struct net_device *ndev)
489{
490	struct arc_emac_priv *priv = netdev_priv(ndev);
 
491	unsigned int i;
492
493	for (i = 0; i < TX_BD_NUM; i++) {
494		struct arc_emac_bd *txbd = &priv->txbd[i];
495		struct buffer_state *tx_buff = &priv->tx_buff[i];
496
497		if (tx_buff->skb) {
498			dma_unmap_single(&ndev->dev,
499					 dma_unmap_addr(tx_buff, addr),
500					 dma_unmap_len(tx_buff, len),
501					 DMA_TO_DEVICE);
502
503			/* return the sk_buff to system */
504			dev_kfree_skb_irq(tx_buff->skb);
505		}
506
507		txbd->info = 0;
508		txbd->data = 0;
509		tx_buff->skb = NULL;
510	}
511}
512
513/**
514 * arc_free_rx_queue - free skb from rx queue
515 * @ndev:	Pointer to the network device.
516 *
517 * This function must be called while EMAC disable
518 */
519static void arc_free_rx_queue(struct net_device *ndev)
520{
521	struct arc_emac_priv *priv = netdev_priv(ndev);
 
522	unsigned int i;
523
524	for (i = 0; i < RX_BD_NUM; i++) {
525		struct arc_emac_bd *rxbd = &priv->rxbd[i];
526		struct buffer_state *rx_buff = &priv->rx_buff[i];
527
528		if (rx_buff->skb) {
529			dma_unmap_single(&ndev->dev,
530					 dma_unmap_addr(rx_buff, addr),
531					 dma_unmap_len(rx_buff, len),
532					 DMA_FROM_DEVICE);
533
534			/* return the sk_buff to system */
535			dev_kfree_skb_irq(rx_buff->skb);
536		}
537
538		rxbd->info = 0;
539		rxbd->data = 0;
540		rx_buff->skb = NULL;
541	}
542}
543
544/**
545 * arc_emac_stop - Close the network device.
546 * @ndev:	Pointer to the network device.
547 *
548 * This function stops the Tx queue, disables interrupts and frees the IRQ for
549 * the EMAC device.
550 * It also disconnects the PHY device associated with the EMAC device.
551 */
552static int arc_emac_stop(struct net_device *ndev)
553{
554	struct arc_emac_priv *priv = netdev_priv(ndev);
555
556	napi_disable(&priv->napi);
557	netif_stop_queue(ndev);
558
 
 
559	/* Disable interrupts */
560	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
561
562	/* Disable EMAC */
563	arc_reg_clr(priv, R_CTRL, EN_MASK);
564
565	/* Return the sk_buff to system */
566	arc_free_tx_queue(ndev);
567	arc_free_rx_queue(ndev);
568
569	return 0;
570}
571
572/**
573 * arc_emac_stats - Get system network statistics.
574 * @ndev:	Pointer to net_device structure.
575 *
576 * Returns the address of the device statistics structure.
577 * Statistics are updated in interrupt handler.
578 */
579static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
580{
581	struct arc_emac_priv *priv = netdev_priv(ndev);
582	struct net_device_stats *stats = &ndev->stats;
583	unsigned long miss, rxerr;
584	u8 rxcrc, rxfram, rxoflow;
585
586	rxerr = arc_reg_get(priv, R_RXERR);
587	miss = arc_reg_get(priv, R_MISS);
588
589	rxcrc = rxerr;
590	rxfram = rxerr >> 8;
591	rxoflow = rxerr >> 16;
592
593	stats->rx_errors += miss;
594	stats->rx_errors += rxcrc + rxfram + rxoflow;
595
596	stats->rx_over_errors += rxoflow;
597	stats->rx_frame_errors += rxfram;
598	stats->rx_crc_errors += rxcrc;
599	stats->rx_missed_errors += miss;
600
601	return stats;
602}
603
604/**
605 * arc_emac_tx - Starts the data transmission.
606 * @skb:	sk_buff pointer that contains data to be Transmitted.
607 * @ndev:	Pointer to net_device structure.
608 *
609 * returns: NETDEV_TX_OK, on success
610 *		NETDEV_TX_BUSY, if any of the descriptors are not free.
611 *
612 * This function is invoked from upper layers to initiate transmission.
613 */
614static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
615{
616	struct arc_emac_priv *priv = netdev_priv(ndev);
617	unsigned int len, *txbd_curr = &priv->txbd_curr;
618	struct net_device_stats *stats = &ndev->stats;
619	__le32 *info = &priv->txbd[*txbd_curr].info;
 
620	dma_addr_t addr;
621
622	if (skb_padto(skb, ETH_ZLEN))
623		return NETDEV_TX_OK;
624
625	len = max_t(unsigned int, ETH_ZLEN, skb->len);
626
627	if (unlikely(!arc_emac_tx_avail(priv))) {
628		netif_stop_queue(ndev);
629		netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
630		return NETDEV_TX_BUSY;
631	}
632
633	addr = dma_map_single(&ndev->dev, (void *)skb->data, len,
634			      DMA_TO_DEVICE);
635
636	if (unlikely(dma_mapping_error(&ndev->dev, addr))) {
637		stats->tx_dropped++;
638		stats->tx_errors++;
639		dev_kfree_skb_any(skb);
640		return NETDEV_TX_OK;
641	}
642	dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
643	dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
644
645	priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
646
647	/* Make sure pointer to data buffer is set */
648	wmb();
649
650	skb_tx_timestamp(skb);
651
652	*info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
653
654	/* Make sure info word is set */
655	wmb();
656
657	priv->tx_buff[*txbd_curr].skb = skb;
658
659	/* Increment index to point to the next BD */
660	*txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
661
662	/* Ensure that tx_clean() sees the new txbd_curr before
663	 * checking the queue status. This prevents an unneeded wake
664	 * of the queue in tx_clean().
665	 */
666	smp_mb();
667
668	if (!arc_emac_tx_avail(priv)) {
669		netif_stop_queue(ndev);
670		/* Refresh tx_dirty */
671		smp_mb();
672		if (arc_emac_tx_avail(priv))
673			netif_start_queue(ndev);
674	}
675
676	arc_reg_set(priv, R_STATUS, TXPL_MASK);
677
678	return NETDEV_TX_OK;
679}
680
681static void arc_emac_set_address_internal(struct net_device *ndev)
682{
683	struct arc_emac_priv *priv = netdev_priv(ndev);
684	unsigned int addr_low, addr_hi;
685
686	addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
687	addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
688
689	arc_reg_set(priv, R_ADDRL, addr_low);
690	arc_reg_set(priv, R_ADDRH, addr_hi);
691}
692
693/**
694 * arc_emac_set_address - Set the MAC address for this device.
695 * @ndev:	Pointer to net_device structure.
696 * @p:		6 byte Address to be written as MAC address.
697 *
698 * This function copies the HW address from the sockaddr structure to the
699 * net_device structure and updates the address in HW.
700 *
701 * returns:	-EBUSY if the net device is busy or 0 if the address is set
702 *		successfully.
703 */
704static int arc_emac_set_address(struct net_device *ndev, void *p)
705{
706	struct sockaddr *addr = p;
707
708	if (netif_running(ndev))
709		return -EBUSY;
710
711	if (!is_valid_ether_addr(addr->sa_data))
712		return -EADDRNOTAVAIL;
713
714	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
715
716	arc_emac_set_address_internal(ndev);
717
718	return 0;
719}
720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721static const struct net_device_ops arc_emac_netdev_ops = {
722	.ndo_open		= arc_emac_open,
723	.ndo_stop		= arc_emac_stop,
724	.ndo_start_xmit		= arc_emac_tx,
725	.ndo_set_mac_address	= arc_emac_set_address,
726	.ndo_get_stats		= arc_emac_stats,
727	.ndo_set_rx_mode	= arc_emac_set_rx_mode,
 
728#ifdef CONFIG_NET_POLL_CONTROLLER
729	.ndo_poll_controller	= arc_emac_poll_controller,
730#endif
731};
732
733int arc_emac_probe(struct net_device *ndev, int interface)
734{
735	struct device *dev = ndev->dev.parent;
736	struct resource res_regs;
737	struct device_node *phy_node;
738	struct phy_device *phydev = NULL;
739	struct arc_emac_priv *priv;
740	const char *mac_addr;
741	unsigned int id, clock_frequency, irq;
742	int err;
743
744	/* Get PHY from device tree */
745	phy_node = of_parse_phandle(dev->of_node, "phy", 0);
746	if (!phy_node) {
747		dev_err(dev, "failed to retrieve phy description from device tree\n");
748		return -ENODEV;
749	}
750
751	/* Get EMAC registers base address from device tree */
752	err = of_address_to_resource(dev->of_node, 0, &res_regs);
753	if (err) {
754		dev_err(dev, "failed to retrieve registers base from device tree\n");
755		err = -ENODEV;
756		goto out_put_node;
757	}
758
759	/* Get IRQ from device tree */
760	irq = irq_of_parse_and_map(dev->of_node, 0);
761	if (!irq) {
762		dev_err(dev, "failed to retrieve <irq> value from device tree\n");
763		err = -ENODEV;
764		goto out_put_node;
765	}
766
767	ndev->netdev_ops = &arc_emac_netdev_ops;
768	ndev->ethtool_ops = &arc_emac_ethtool_ops;
769	ndev->watchdog_timeo = TX_TIMEOUT;
770
771	priv = netdev_priv(ndev);
772	priv->dev = dev;
773
774	priv->regs = devm_ioremap_resource(dev, &res_regs);
775	if (IS_ERR(priv->regs)) {
776		err = PTR_ERR(priv->regs);
777		goto out_put_node;
778	}
779
780	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
781
782	if (priv->clk) {
783		err = clk_prepare_enable(priv->clk);
784		if (err) {
785			dev_err(dev, "failed to enable clock\n");
786			goto out_put_node;
787		}
788
789		clock_frequency = clk_get_rate(priv->clk);
790	} else {
791		/* Get CPU clock frequency from device tree */
792		if (of_property_read_u32(dev->of_node, "clock-frequency",
793					 &clock_frequency)) {
794			dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
795			err = -EINVAL;
796			goto out_put_node;
797		}
798	}
799
800	id = arc_reg_get(priv, R_ID);
801
802	/* Check for EMAC revision 5 or 7, magic number */
803	if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
804		dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
805		err = -ENODEV;
806		goto out_clken;
807	}
808	dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
809
810	/* Set poll rate so that it polls every 1 ms */
811	arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
812
813	ndev->irq = irq;
814	dev_info(dev, "IRQ is %d\n", ndev->irq);
815
816	/* Register interrupt handler for device */
817	err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
818			       ndev->name, ndev);
819	if (err) {
820		dev_err(dev, "could not allocate IRQ\n");
821		goto out_clken;
822	}
823
824	/* Get MAC address from device tree */
825	mac_addr = of_get_mac_address(dev->of_node);
826
827	if (mac_addr)
828		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
829	else
830		eth_hw_addr_random(ndev);
831
832	arc_emac_set_address_internal(ndev);
833	dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
834
835	/* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
836	priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
837					 &priv->rxbd_dma, GFP_KERNEL);
838
839	if (!priv->rxbd) {
840		dev_err(dev, "failed to allocate data buffers\n");
841		err = -ENOMEM;
842		goto out_clken;
843	}
844
845	priv->txbd = priv->rxbd + RX_BD_NUM;
846
847	priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
848	dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
849		(unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
850
851	err = arc_mdio_probe(priv);
852	if (err) {
853		dev_err(dev, "failed to probe MII bus\n");
854		goto out_clken;
855	}
856
857	phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
858				interface);
859	if (!phydev) {
860		dev_err(dev, "of_phy_connect() failed\n");
861		err = -ENODEV;
862		goto out_mdio;
863	}
864
865	dev_info(dev, "connected to %s phy with id 0x%x\n",
866		 phydev->drv->name, phydev->phy_id);
867
868	netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT);
 
869
870	err = register_netdev(ndev);
871	if (err) {
872		dev_err(dev, "failed to register network device\n");
873		goto out_netif_api;
874	}
875
876	of_node_put(phy_node);
877	return 0;
878
879out_netif_api:
880	netif_napi_del(&priv->napi);
881	phy_disconnect(phydev);
882out_mdio:
883	arc_mdio_remove(priv);
884out_clken:
885	if (priv->clk)
886		clk_disable_unprepare(priv->clk);
887out_put_node:
888	of_node_put(phy_node);
889
890	return err;
891}
892EXPORT_SYMBOL_GPL(arc_emac_probe);
893
894int arc_emac_remove(struct net_device *ndev)
895{
896	struct arc_emac_priv *priv = netdev_priv(ndev);
897
898	phy_disconnect(ndev->phydev);
899	arc_mdio_remove(priv);
900	unregister_netdev(ndev);
901	netif_napi_del(&priv->napi);
902
903	if (!IS_ERR(priv->clk))
904		clk_disable_unprepare(priv->clk);
905
906	return 0;
907}
908EXPORT_SYMBOL_GPL(arc_emac_remove);
909
910MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
911MODULE_DESCRIPTION("ARC EMAC driver");
912MODULE_LICENSE("GPL");