Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * AMD 10Gb Ethernet driver
   3 *
   4 * This file is available to you under your choice of the following two
   5 * licenses:
   6 *
   7 * License 1: GPLv2
   8 *
   9 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
  10 *
  11 * This file is free software; you may copy, redistribute and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation, either version 2 of the License, or (at
  14 * your option) any later version.
  15 *
  16 * This file is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19 * General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  23 *
  24 * This file incorporates work covered by the following copyright and
  25 * permission notice:
  26 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
  27 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
  28 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
  29 *     and you.
  30 *
  31 *     The Software IS NOT an item of Licensed Software or Licensed Product
  32 *     under any End User Software License Agreement or Agreement for Licensed
  33 *     Product with Synopsys or any supplement thereto.  Permission is hereby
  34 *     granted, free of charge, to any person obtaining a copy of this software
  35 *     annotated with this license and the Software, to deal in the Software
  36 *     without restriction, including without limitation the rights to use,
  37 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
  38 *     of the Software, and to permit persons to whom the Software is furnished
  39 *     to do so, subject to the following conditions:
  40 *
  41 *     The above copyright notice and this permission notice shall be included
  42 *     in all copies or substantial portions of the Software.
  43 *
  44 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
  45 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
  46 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
  47 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
  48 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  49 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  50 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  51 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  52 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  53 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  54 *     THE POSSIBILITY OF SUCH DAMAGE.
  55 *
  56 *
  57 * License 2: Modified BSD
  58 *
  59 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
  60 * All rights reserved.
  61 *
  62 * Redistribution and use in source and binary forms, with or without
  63 * modification, are permitted provided that the following conditions are met:
  64 *     * Redistributions of source code must retain the above copyright
  65 *       notice, this list of conditions and the following disclaimer.
  66 *     * Redistributions in binary form must reproduce the above copyright
  67 *       notice, this list of conditions and the following disclaimer in the
  68 *       documentation and/or other materials provided with the distribution.
  69 *     * Neither the name of Advanced Micro Devices, Inc. nor the
  70 *       names of its contributors may be used to endorse or promote products
  71 *       derived from this software without specific prior written permission.
  72 *
  73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  83 *
  84 * This file incorporates work covered by the following copyright and
  85 * permission notice:
  86 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
  87 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
  88 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
  89 *     and you.
  90 *
  91 *     The Software IS NOT an item of Licensed Software or Licensed Product
  92 *     under any End User Software License Agreement or Agreement for Licensed
  93 *     Product with Synopsys or any supplement thereto.  Permission is hereby
  94 *     granted, free of charge, to any person obtaining a copy of this software
  95 *     annotated with this license and the Software, to deal in the Software
  96 *     without restriction, including without limitation the rights to use,
  97 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
  98 *     of the Software, and to permit persons to whom the Software is furnished
  99 *     to do so, subject to the following conditions:
 100 *
 101 *     The above copyright notice and this permission notice shall be included
 102 *     in all copies or substantial portions of the Software.
 103 *
 104 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
 105 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 106 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 107 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
 108 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 109 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 110 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 111 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 112 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 113 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 114 *     THE POSSIBILITY OF SUCH DAMAGE.
 115 */
 116
 117#include <linux/phy.h>
 118#include <linux/mdio.h>
 119#include <linux/clk.h>
 120#include <linux/bitrev.h>
 121#include <linux/crc32.h>
 122#include <linux/crc32poly.h>
 123
 124#include "xgbe.h"
 125#include "xgbe-common.h"
 126
 127static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
 128{
 129	return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 130}
 131
 132static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
 133				      unsigned int usec)
 134{
 135	unsigned long rate;
 136	unsigned int ret;
 137
 138	DBGPR("-->xgbe_usec_to_riwt\n");
 139
 140	rate = pdata->sysclk_rate;
 141
 142	/*
 143	 * Convert the input usec value to the watchdog timer value. Each
 144	 * watchdog timer value is equivalent to 256 clock cycles.
 145	 * Calculate the required value as:
 146	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
 147	 */
 148	ret = (usec * (rate / 1000000)) / 256;
 149
 150	DBGPR("<--xgbe_usec_to_riwt\n");
 151
 152	return ret;
 153}
 154
 155static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
 156				      unsigned int riwt)
 157{
 158	unsigned long rate;
 159	unsigned int ret;
 160
 161	DBGPR("-->xgbe_riwt_to_usec\n");
 162
 163	rate = pdata->sysclk_rate;
 164
 165	/*
 166	 * Convert the input watchdog timer value to the usec value. Each
 167	 * watchdog timer value is equivalent to 256 clock cycles.
 168	 * Calculate the required value as:
 169	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
 170	 */
 171	ret = (riwt * 256) / (rate / 1000000);
 172
 173	DBGPR("<--xgbe_riwt_to_usec\n");
 174
 175	return ret;
 176}
 177
 178static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
 179{
 180	unsigned int pblx8, pbl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181	unsigned int i;
 182
 183	pblx8 = DMA_PBL_X8_DISABLE;
 184	pbl = pdata->pbl;
 
 
 185
 186	if (pdata->pbl > 32) {
 187		pblx8 = DMA_PBL_X8_ENABLE;
 188		pbl >>= 3;
 189	}
 190
 191	for (i = 0; i < pdata->channel_count; i++) {
 192		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
 193				       pblx8);
 
 
 
 
 
 
 
 
 
 194
 195		if (pdata->channel[i]->tx_ring)
 196			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
 197					       PBL, pbl);
 
 198
 199		if (pdata->channel[i]->rx_ring)
 200			XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
 201					       PBL, pbl);
 202	}
 203
 204	return 0;
 205}
 206
 207static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
 208{
 
 209	unsigned int i;
 210
 211	for (i = 0; i < pdata->channel_count; i++) {
 212		if (!pdata->channel[i]->tx_ring)
 
 213			break;
 214
 215		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
 216				       pdata->tx_osp_mode);
 217	}
 218
 219	return 0;
 220}
 221
 222static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
 223{
 224	unsigned int i;
 225
 226	for (i = 0; i < pdata->rx_q_count; i++)
 227		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
 228
 229	return 0;
 230}
 231
 232static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
 233{
 234	unsigned int i;
 235
 236	for (i = 0; i < pdata->tx_q_count; i++)
 237		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
 238
 239	return 0;
 240}
 241
 242static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
 243				    unsigned int val)
 244{
 245	unsigned int i;
 246
 247	for (i = 0; i < pdata->rx_q_count; i++)
 248		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
 249
 250	return 0;
 251}
 252
 253static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
 254				    unsigned int val)
 255{
 256	unsigned int i;
 257
 258	for (i = 0; i < pdata->tx_q_count; i++)
 259		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
 260
 261	return 0;
 262}
 263
 264static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
 265{
 
 266	unsigned int i;
 267
 268	for (i = 0; i < pdata->channel_count; i++) {
 269		if (!pdata->channel[i]->rx_ring)
 
 270			break;
 271
 272		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
 273				       pdata->rx_riwt);
 274	}
 275
 276	return 0;
 277}
 278
 279static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
 280{
 281	return 0;
 282}
 283
 284static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
 285{
 
 286	unsigned int i;
 287
 288	for (i = 0; i < pdata->channel_count; i++) {
 289		if (!pdata->channel[i]->rx_ring)
 
 290			break;
 291
 292		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
 293				       pdata->rx_buf_size);
 294	}
 295}
 296
 297static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
 298{
 
 299	unsigned int i;
 300
 301	for (i = 0; i < pdata->channel_count; i++) {
 302		if (!pdata->channel[i]->tx_ring)
 
 303			break;
 304
 305		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
 306	}
 307}
 308
 309static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
 310{
 
 311	unsigned int i;
 312
 313	for (i = 0; i < pdata->channel_count; i++) {
 314		if (!pdata->channel[i]->rx_ring)
 
 315			break;
 316
 317		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
 318	}
 319
 320	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
 321}
 322
 323static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
 324			      unsigned int index, unsigned int val)
 325{
 326	unsigned int wait;
 327	int ret = 0;
 328
 329	mutex_lock(&pdata->rss_mutex);
 330
 331	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
 332		ret = -EBUSY;
 333		goto unlock;
 334	}
 335
 336	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
 337
 338	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
 339	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
 340	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
 341	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
 342
 343	wait = 1000;
 344	while (wait--) {
 345		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
 346			goto unlock;
 347
 348		usleep_range(1000, 1500);
 349	}
 350
 351	ret = -EBUSY;
 352
 353unlock:
 354	mutex_unlock(&pdata->rss_mutex);
 355
 356	return ret;
 357}
 358
 359static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
 360{
 361	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
 362	unsigned int *key = (unsigned int *)&pdata->rss_key;
 363	int ret;
 364
 365	while (key_regs--) {
 366		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
 367					 key_regs, *key++);
 368		if (ret)
 369			return ret;
 370	}
 371
 372	return 0;
 373}
 374
 375static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
 376{
 377	unsigned int i;
 378	int ret;
 379
 380	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
 381		ret = xgbe_write_rss_reg(pdata,
 382					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
 383					 pdata->rss_table[i]);
 384		if (ret)
 385			return ret;
 386	}
 387
 388	return 0;
 389}
 390
 391static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
 392{
 393	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
 394
 395	return xgbe_write_rss_hash_key(pdata);
 396}
 397
 398static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
 399				     const u32 *table)
 400{
 401	unsigned int i;
 402
 403	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
 404		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
 405
 406	return xgbe_write_rss_lookup_table(pdata);
 407}
 408
 409static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
 410{
 411	int ret;
 412
 413	if (!pdata->hw_feat.rss)
 414		return -EOPNOTSUPP;
 415
 416	/* Program the hash key */
 417	ret = xgbe_write_rss_hash_key(pdata);
 418	if (ret)
 419		return ret;
 420
 421	/* Program the lookup table */
 422	ret = xgbe_write_rss_lookup_table(pdata);
 423	if (ret)
 424		return ret;
 425
 426	/* Set the RSS options */
 427	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
 428
 429	/* Enable RSS */
 430	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
 431
 432	return 0;
 433}
 434
 435static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
 436{
 437	if (!pdata->hw_feat.rss)
 438		return -EOPNOTSUPP;
 439
 440	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
 441
 442	return 0;
 443}
 444
 445static void xgbe_config_rss(struct xgbe_prv_data *pdata)
 446{
 447	int ret;
 448
 449	if (!pdata->hw_feat.rss)
 450		return;
 451
 452	if (pdata->netdev->features & NETIF_F_RXHASH)
 453		ret = xgbe_enable_rss(pdata);
 454	else
 455		ret = xgbe_disable_rss(pdata);
 456
 457	if (ret)
 458		netdev_err(pdata->netdev,
 459			   "error configuring RSS, RSS disabled\n");
 460}
 461
 462static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
 463			      unsigned int queue)
 464{
 465	unsigned int prio, tc;
 466
 467	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
 468		/* Does this queue handle the priority? */
 469		if (pdata->prio2q_map[prio] != queue)
 470			continue;
 471
 472		/* Get the Traffic Class for this priority */
 473		tc = pdata->ets->prio_tc[prio];
 474
 475		/* Check if PFC is enabled for this traffic class */
 476		if (pdata->pfc->pfc_en & (1 << tc))
 477			return true;
 478	}
 479
 480	return false;
 481}
 482
 483static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
 484{
 485	/* Program the VXLAN port */
 486	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
 487
 488	netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
 489		  pdata->vxlan_port);
 490}
 491
 492static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
 493{
 494	if (!pdata->hw_feat.vxn)
 495		return;
 496
 497	/* Program the VXLAN port */
 498	xgbe_set_vxlan_id(pdata);
 499
 500	/* Allow for IPv6/UDP zero-checksum VXLAN packets */
 501	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
 502
 503	/* Enable VXLAN tunneling mode */
 504	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
 505	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
 506
 507	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
 508}
 509
 510static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
 511{
 512	if (!pdata->hw_feat.vxn)
 513		return;
 514
 515	/* Disable tunneling mode */
 516	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
 517
 518	/* Clear IPv6/UDP zero-checksum VXLAN packets setting */
 519	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
 520
 521	/* Clear the VXLAN port */
 522	XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
 523
 524	netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
 525}
 526
 527static unsigned int xgbe_get_fc_queue_count(struct xgbe_prv_data *pdata)
 528{
 529	unsigned int max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
 530
 531	/* From MAC ver 30H the TFCR is per priority, instead of per queue */
 532	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) >= 0x30)
 533		return max_q_count;
 534	else
 535		return min_t(unsigned int, pdata->tx_q_count, max_q_count);
 536}
 537
 538static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
 539{
 
 540	unsigned int reg, reg_val;
 541	unsigned int i, q_count;
 542
 543	/* Clear MTL flow control */
 544	for (i = 0; i < pdata->rx_q_count; i++)
 545		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
 546
 547	/* Clear MAC flow control */
 548	q_count = xgbe_get_fc_queue_count(pdata);
 
 549	reg = MAC_Q0TFCR;
 550	for (i = 0; i < q_count; i++) {
 551		reg_val = XGMAC_IOREAD(pdata, reg);
 552		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
 553		XGMAC_IOWRITE(pdata, reg, reg_val);
 554
 555		reg += MAC_QTFCR_INC;
 556	}
 557
 558	return 0;
 559}
 560
 561static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
 562{
 563	struct ieee_pfc *pfc = pdata->pfc;
 564	struct ieee_ets *ets = pdata->ets;
 
 565	unsigned int reg, reg_val;
 566	unsigned int i, q_count;
 567
 568	/* Set MTL flow control */
 569	for (i = 0; i < pdata->rx_q_count; i++) {
 570		unsigned int ehfc = 0;
 571
 572		if (pdata->rx_rfd[i]) {
 573			/* Flow control thresholds are established */
 574			if (pfc && ets) {
 575				if (xgbe_is_pfc_queue(pdata, i))
 576					ehfc = 1;
 577			} else {
 578				ehfc = 1;
 579			}
 580		}
 581
 582		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
 583
 584		netif_dbg(pdata, drv, pdata->netdev,
 585			  "flow control %s for RXq%u\n",
 586			  ehfc ? "enabled" : "disabled", i);
 587	}
 588
 589	/* Set MAC flow control */
 590	q_count = xgbe_get_fc_queue_count(pdata);
 
 591	reg = MAC_Q0TFCR;
 592	for (i = 0; i < q_count; i++) {
 593		reg_val = XGMAC_IOREAD(pdata, reg);
 594
 595		/* Enable transmit flow control */
 596		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
 597		/* Set pause time */
 598		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
 599
 600		XGMAC_IOWRITE(pdata, reg, reg_val);
 601
 602		reg += MAC_QTFCR_INC;
 603	}
 604
 605	return 0;
 606}
 607
 608static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
 609{
 610	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
 611
 612	return 0;
 613}
 614
 615static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
 616{
 617	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
 618
 619	return 0;
 620}
 621
 622static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
 623{
 624	struct ieee_pfc *pfc = pdata->pfc;
 625
 626	if (pdata->tx_pause || (pfc && pfc->pfc_en))
 627		xgbe_enable_tx_flow_control(pdata);
 628	else
 629		xgbe_disable_tx_flow_control(pdata);
 630
 631	return 0;
 632}
 633
 634static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
 635{
 636	struct ieee_pfc *pfc = pdata->pfc;
 637
 638	if (pdata->rx_pause || (pfc && pfc->pfc_en))
 639		xgbe_enable_rx_flow_control(pdata);
 640	else
 641		xgbe_disable_rx_flow_control(pdata);
 642
 643	return 0;
 644}
 645
 646static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
 647{
 648	struct ieee_pfc *pfc = pdata->pfc;
 649
 650	xgbe_config_tx_flow_control(pdata);
 651	xgbe_config_rx_flow_control(pdata);
 652
 653	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
 654			   (pfc && pfc->pfc_en) ? 1 : 0);
 655}
 656
 657static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
 658{
 659	struct xgbe_channel *channel;
 660	unsigned int i, ver;
 
 661
 662	/* Set the interrupt mode if supported */
 663	if (pdata->channel_irq_mode)
 664		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
 665				   pdata->channel_irq_mode);
 666
 667	ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
 668
 669	for (i = 0; i < pdata->channel_count; i++) {
 670		channel = pdata->channel[i];
 671
 672		/* Clear all the interrupts which are set */
 673		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
 674				  XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
 675
 676		/* Clear all interrupt enable bits */
 677		channel->curr_ier = 0;
 678
 679		/* Enable following interrupts
 680		 *   NIE  - Normal Interrupt Summary Enable
 681		 *   AIE  - Abnormal Interrupt Summary Enable
 682		 *   FBEE - Fatal Bus Error Enable
 683		 */
 684		if (ver < 0x21) {
 685			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
 686			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
 687		} else {
 688			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
 689			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
 690		}
 691		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
 692
 693		if (channel->tx_ring) {
 694			/* Enable the following Tx interrupts
 695			 *   TIE  - Transmit Interrupt Enable (unless using
 696			 *          per channel interrupts in edge triggered
 697			 *          mode)
 698			 */
 699			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
 700				XGMAC_SET_BITS(channel->curr_ier,
 701					       DMA_CH_IER, TIE, 1);
 702		}
 703		if (channel->rx_ring) {
 704			/* Enable following Rx interrupts
 705			 *   RBUE - Receive Buffer Unavailable Enable
 706			 *   RIE  - Receive Interrupt Enable (unless using
 707			 *          per channel interrupts in edge triggered
 708			 *          mode)
 709			 */
 710			XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
 711			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
 712				XGMAC_SET_BITS(channel->curr_ier,
 713					       DMA_CH_IER, RIE, 1);
 714		}
 715
 716		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
 717	}
 718}
 719
 720static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
 721{
 722	unsigned int mtl_q_isr;
 723	unsigned int q_count, i;
 724
 725	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
 726	for (i = 0; i < q_count; i++) {
 727		/* Clear all the interrupts which are set */
 728		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
 729		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
 730
 731		/* No MTL interrupts to be enabled */
 732		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
 733	}
 734}
 735
 736static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
 737{
 738	unsigned int mac_ier = 0;
 739
 740	/* Enable Timestamp interrupt */
 741	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
 742
 743	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
 744
 745	/* Enable all counter interrupts */
 746	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
 747	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
 748
 749	/* Enable MDIO single command completion interrupt */
 750	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
 751}
 752
 753static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
 754{
 755	unsigned int ecc_isr, ecc_ier = 0;
 756
 757	if (!pdata->vdata->ecc_support)
 758		return;
 759
 760	/* Clear all the interrupts which are set */
 761	ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
 762	XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
 763
 764	/* Enable ECC interrupts */
 765	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
 766	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
 767	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
 768	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
 769	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
 770	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
 771
 772	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 773}
 774
 775static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
 776{
 777	unsigned int ecc_ier;
 778
 779	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
 780
 781	/* Disable ECC DED interrupts */
 782	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
 783	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
 784	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
 785
 786	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 787}
 788
 789static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
 790				 enum xgbe_ecc_sec sec)
 791{
 792	unsigned int ecc_ier;
 793
 794	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
 795
 796	/* Disable ECC SEC interrupt */
 797	switch (sec) {
 798	case XGBE_ECC_SEC_TX:
 799	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
 800		break;
 801	case XGBE_ECC_SEC_RX:
 802	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
 803		break;
 804	case XGBE_ECC_SEC_DESC:
 805	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
 806		break;
 807	}
 808
 809	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 810}
 811
 812static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
 813{
 814	unsigned int ss;
 815
 816	switch (speed) {
 817	case SPEED_10:
 818		ss = 0x07;
 819		break;
 820	case SPEED_1000:
 821		ss = 0x03;
 822		break;
 823	case SPEED_2500:
 824		ss = 0x02;
 825		break;
 826	case SPEED_10000:
 827		ss = 0x00;
 828		break;
 829	default:
 830		return -EINVAL;
 831	}
 832
 833	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
 834		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
 835
 836	return 0;
 837}
 838
 839static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
 840{
 841	/* Put the VLAN tag in the Rx descriptor */
 842	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
 843
 844	/* Don't check the VLAN type */
 845	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
 846
 847	/* Check only C-TAG (0x8100) packets */
 848	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
 849
 850	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
 851	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
 852
 853	/* Enable VLAN tag stripping */
 854	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
 855
 856	return 0;
 857}
 858
 859static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
 860{
 861	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
 862
 863	return 0;
 864}
 865
 866static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
 867{
 868	/* Enable VLAN filtering */
 869	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
 870
 871	/* Enable VLAN Hash Table filtering */
 872	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
 873
 874	/* Disable VLAN tag inverse matching */
 875	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
 876
 877	/* Only filter on the lower 12-bits of the VLAN tag */
 878	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
 879
 880	/* In order for the VLAN Hash Table filtering to be effective,
 881	 * the VLAN tag identifier in the VLAN Tag Register must not
 882	 * be zero.  Set the VLAN tag identifier to "1" to enable the
 883	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
 884	 * 1 will always pass filtering.
 885	 */
 886	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
 887
 888	return 0;
 889}
 890
 891static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
 892{
 893	/* Disable VLAN filtering */
 894	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
 895
 896	return 0;
 897}
 898
 899static u32 xgbe_vid_crc32_le(__le16 vid_le)
 900{
 
 901	u32 crc = ~0;
 902	u32 temp = 0;
 903	unsigned char *data = (unsigned char *)&vid_le;
 904	unsigned char data_byte = 0;
 905	int i, bits;
 906
 907	bits = get_bitmask_order(VLAN_VID_MASK);
 908	for (i = 0; i < bits; i++) {
 909		if ((i % 8) == 0)
 910			data_byte = data[i / 8];
 911
 912		temp = ((crc & 1) ^ data_byte) & 1;
 913		crc >>= 1;
 914		data_byte >>= 1;
 915
 916		if (temp)
 917			crc ^= CRC32_POLY_LE;
 918	}
 919
 920	return crc;
 921}
 922
 923static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
 924{
 925	u32 crc;
 926	u16 vid;
 927	__le16 vid_le;
 928	u16 vlan_hash_table = 0;
 929
 930	/* Generate the VLAN Hash Table value */
 931	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
 932		/* Get the CRC32 value of the VLAN ID */
 933		vid_le = cpu_to_le16(vid);
 934		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
 935
 936		vlan_hash_table |= (1 << crc);
 937	}
 938
 939	/* Set the VLAN Hash Table filtering register */
 940	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
 941
 942	return 0;
 943}
 944
 945static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
 946				     unsigned int enable)
 947{
 948	unsigned int val = enable ? 1 : 0;
 949
 950	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
 951		return 0;
 952
 953	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
 954		  enable ? "entering" : "leaving");
 955	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
 956
 957	/* Hardware will still perform VLAN filtering in promiscuous mode */
 958	if (enable) {
 959		xgbe_disable_rx_vlan_filtering(pdata);
 960	} else {
 961		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
 962			xgbe_enable_rx_vlan_filtering(pdata);
 963	}
 964
 965	return 0;
 966}
 967
 968static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
 969				       unsigned int enable)
 970{
 971	unsigned int val = enable ? 1 : 0;
 972
 973	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
 974		return 0;
 975
 976	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
 977		  enable ? "entering" : "leaving");
 978	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
 979
 980	return 0;
 981}
 982
 983static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
 984			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
 985{
 986	unsigned int mac_addr_hi, mac_addr_lo;
 987	u8 *mac_addr;
 988
 989	mac_addr_lo = 0;
 990	mac_addr_hi = 0;
 991
 992	if (ha) {
 993		mac_addr = (u8 *)&mac_addr_lo;
 994		mac_addr[0] = ha->addr[0];
 995		mac_addr[1] = ha->addr[1];
 996		mac_addr[2] = ha->addr[2];
 997		mac_addr[3] = ha->addr[3];
 998		mac_addr = (u8 *)&mac_addr_hi;
 999		mac_addr[0] = ha->addr[4];
1000		mac_addr[1] = ha->addr[5];
1001
1002		netif_dbg(pdata, drv, pdata->netdev,
1003			  "adding mac address %pM at %#x\n",
1004			  ha->addr, *mac_reg);
1005
1006		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
1007	}
1008
1009	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1010	*mac_reg += MAC_MACA_INC;
1011	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1012	*mac_reg += MAC_MACA_INC;
1013}
1014
1015static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1016{
1017	struct net_device *netdev = pdata->netdev;
1018	struct netdev_hw_addr *ha;
1019	unsigned int mac_reg;
1020	unsigned int addn_macs;
1021
1022	mac_reg = MAC_MACA1HR;
1023	addn_macs = pdata->hw_feat.addn_mac;
1024
1025	if (netdev_uc_count(netdev) > addn_macs) {
1026		xgbe_set_promiscuous_mode(pdata, 1);
1027	} else {
1028		netdev_for_each_uc_addr(ha, netdev) {
1029			xgbe_set_mac_reg(pdata, ha, &mac_reg);
1030			addn_macs--;
1031		}
1032
1033		if (netdev_mc_count(netdev) > addn_macs) {
1034			xgbe_set_all_multicast_mode(pdata, 1);
1035		} else {
1036			netdev_for_each_mc_addr(ha, netdev) {
1037				xgbe_set_mac_reg(pdata, ha, &mac_reg);
1038				addn_macs--;
1039			}
1040		}
1041	}
1042
1043	/* Clear remaining additional MAC address entries */
1044	while (addn_macs--)
1045		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1046}
1047
1048static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1049{
1050	struct net_device *netdev = pdata->netdev;
1051	struct netdev_hw_addr *ha;
1052	unsigned int hash_reg;
1053	unsigned int hash_table_shift, hash_table_count;
1054	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1055	u32 crc;
1056	unsigned int i;
1057
1058	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1059	hash_table_count = pdata->hw_feat.hash_table_size / 32;
1060	memset(hash_table, 0, sizeof(hash_table));
1061
1062	/* Build the MAC Hash Table register values */
1063	netdev_for_each_uc_addr(ha, netdev) {
1064		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1065		crc >>= hash_table_shift;
1066		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1067	}
1068
1069	netdev_for_each_mc_addr(ha, netdev) {
1070		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1071		crc >>= hash_table_shift;
1072		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1073	}
1074
1075	/* Set the MAC Hash Table registers */
1076	hash_reg = MAC_HTR0;
1077	for (i = 0; i < hash_table_count; i++) {
1078		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1079		hash_reg += MAC_HTR_INC;
1080	}
1081}
1082
1083static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1084{
1085	if (pdata->hw_feat.hash_table_size)
1086		xgbe_set_mac_hash_table(pdata);
1087	else
1088		xgbe_set_mac_addn_addrs(pdata);
1089
1090	return 0;
1091}
1092
1093static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, const u8 *addr)
1094{
1095	unsigned int mac_addr_hi, mac_addr_lo;
1096
1097	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1098	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1099		      (addr[1] <<  8) | (addr[0] <<  0);
1100
1101	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1102	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1103
1104	return 0;
1105}
1106
1107static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1108{
1109	struct net_device *netdev = pdata->netdev;
1110	unsigned int pr_mode, am_mode;
1111
1112	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1113	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1114
1115	xgbe_set_promiscuous_mode(pdata, pr_mode);
1116	xgbe_set_all_multicast_mode(pdata, am_mode);
1117
1118	xgbe_add_mac_addresses(pdata);
1119
1120	return 0;
1121}
1122
1123static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1124{
1125	unsigned int reg;
1126
1127	if (gpio > 15)
1128		return -EINVAL;
1129
1130	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1131
1132	reg &= ~(1 << (gpio + 16));
1133	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1134
1135	return 0;
1136}
1137
1138static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1139{
1140	unsigned int reg;
1141
1142	if (gpio > 15)
1143		return -EINVAL;
1144
1145	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1146
1147	reg |= (1 << (gpio + 16));
1148	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1149
1150	return 0;
1151}
1152
1153static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1154				 int mmd_reg)
1155{
1156	unsigned long flags;
1157	unsigned int mmd_address, index, offset;
1158	int mmd_data;
1159
1160	if (mmd_reg & XGBE_ADDR_C45)
1161		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1162	else
1163		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1164
1165	/* The PCS registers are accessed using mmio. The underlying
1166	 * management interface uses indirect addressing to access the MMD
1167	 * register sets. This requires accessing of the PCS register in two
1168	 * phases, an address phase and a data phase.
1169	 *
1170	 * The mmio interface is based on 16-bit offsets and values. All
1171	 * register offsets must therefore be adjusted by left shifting the
1172	 * offset 1 bit and reading 16 bits of data.
1173	 */
1174	mmd_address <<= 1;
1175	index = mmd_address & ~pdata->xpcs_window_mask;
1176	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1177
1178	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1179	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1180	mmd_data = XPCS16_IOREAD(pdata, offset);
1181	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1182
1183	return mmd_data;
1184}
1185
1186static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1187				   int mmd_reg, int mmd_data)
1188{
1189	unsigned long flags;
1190	unsigned int mmd_address, index, offset;
1191
1192	if (mmd_reg & XGBE_ADDR_C45)
1193		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1194	else
1195		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1196
1197	/* The PCS registers are accessed using mmio. The underlying
1198	 * management interface uses indirect addressing to access the MMD
1199	 * register sets. This requires accessing of the PCS register in two
1200	 * phases, an address phase and a data phase.
1201	 *
1202	 * The mmio interface is based on 16-bit offsets and values. All
1203	 * register offsets must therefore be adjusted by left shifting the
1204	 * offset 1 bit and writing 16 bits of data.
1205	 */
1206	mmd_address <<= 1;
1207	index = mmd_address & ~pdata->xpcs_window_mask;
1208	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1209
1210	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1211	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1212	XPCS16_IOWRITE(pdata, offset, mmd_data);
1213	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1214}
1215
1216static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1217				 int mmd_reg)
1218{
1219	unsigned long flags;
1220	unsigned int mmd_address;
1221	int mmd_data;
1222
1223	if (mmd_reg & XGBE_ADDR_C45)
1224		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1225	else
1226		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1227
1228	/* The PCS registers are accessed using mmio. The underlying APB3
1229	 * management interface uses indirect addressing to access the MMD
1230	 * register sets. This requires accessing of the PCS register in two
1231	 * phases, an address phase and a data phase.
1232	 *
1233	 * The mmio interface is based on 32-bit offsets and values. All
1234	 * register offsets must therefore be adjusted by left shifting the
1235	 * offset 2 bits and reading 32 bits of data.
1236	 */
1237	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1238	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1239	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1240	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1241
1242	return mmd_data;
1243}
1244
1245static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1246				   int mmd_reg, int mmd_data)
1247{
1248	unsigned int mmd_address;
1249	unsigned long flags;
1250
1251	if (mmd_reg & XGBE_ADDR_C45)
1252		mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1253	else
1254		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1255
1256	/* The PCS registers are accessed using mmio. The underlying APB3
1257	 * management interface uses indirect addressing to access the MMD
1258	 * register sets. This requires accessing of the PCS register in two
1259	 * phases, an address phase and a data phase.
1260	 *
1261	 * The mmio interface is based on 32-bit offsets and values. All
1262	 * register offsets must therefore be adjusted by left shifting the
1263	 * offset 2 bits and writing 32 bits of data.
1264	 */
1265	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1266	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1267	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1268	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1269}
1270
1271static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1272			      int mmd_reg)
1273{
1274	switch (pdata->vdata->xpcs_access) {
1275	case XGBE_XPCS_ACCESS_V1:
1276		return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1277
1278	case XGBE_XPCS_ACCESS_V2:
1279	default:
1280		return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1281	}
1282}
1283
1284static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1285				int mmd_reg, int mmd_data)
1286{
1287	switch (pdata->vdata->xpcs_access) {
1288	case XGBE_XPCS_ACCESS_V1:
1289		return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1290
1291	case XGBE_XPCS_ACCESS_V2:
1292	default:
1293		return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1294	}
1295}
1296
1297static unsigned int xgbe_create_mdio_sca_c22(int port, int reg)
1298{
1299	unsigned int mdio_sca;
1300
1301	mdio_sca = 0;
1302	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1303	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1304
1305	return mdio_sca;
1306}
1307
1308static unsigned int xgbe_create_mdio_sca_c45(int port, unsigned int da, int reg)
1309{
1310	unsigned int mdio_sca;
1311
1312	mdio_sca = 0;
1313	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1314	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1315	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1316
1317	return mdio_sca;
1318}
1319
1320static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata,
1321				   unsigned int mdio_sca, u16 val)
1322{
1323	unsigned int mdio_sccd;
1324
1325	reinit_completion(&pdata->mdio_complete);
1326
 
 
 
1327	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1328
1329	mdio_sccd = 0;
1330	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1331	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1332	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1333	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1334
1335	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1336		netdev_err(pdata->netdev, "mdio write operation timed out\n");
1337		return -ETIMEDOUT;
1338	}
1339
1340	return 0;
1341}
1342
1343static int xgbe_write_ext_mii_regs_c22(struct xgbe_prv_data *pdata, int addr,
1344				       int reg, u16 val)
1345{
1346	unsigned int mdio_sca;
1347
1348	mdio_sca = xgbe_create_mdio_sca_c22(addr, reg);
1349
1350	return xgbe_write_ext_mii_regs(pdata, mdio_sca, val);
1351}
1352
1353static int xgbe_write_ext_mii_regs_c45(struct xgbe_prv_data *pdata, int addr,
1354				       int devad, int reg, u16 val)
1355{
1356	unsigned int mdio_sca;
1357
1358	mdio_sca = xgbe_create_mdio_sca_c45(addr, devad, reg);
1359
1360	return xgbe_write_ext_mii_regs(pdata, mdio_sca, val);
1361}
1362
1363static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata,
1364				  unsigned int mdio_sca)
1365{
1366	unsigned int mdio_sccd;
1367
1368	reinit_completion(&pdata->mdio_complete);
1369
 
 
 
1370	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1371
1372	mdio_sccd = 0;
1373	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1374	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1375	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1376
1377	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1378		netdev_err(pdata->netdev, "mdio read operation timed out\n");
1379		return -ETIMEDOUT;
1380	}
1381
1382	return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1383}
1384
1385static int xgbe_read_ext_mii_regs_c22(struct xgbe_prv_data *pdata, int addr,
1386				      int reg)
1387{
1388	unsigned int mdio_sca;
1389
1390	mdio_sca = xgbe_create_mdio_sca_c22(addr, reg);
1391
1392	return xgbe_read_ext_mii_regs(pdata, mdio_sca);
1393}
1394
1395static int xgbe_read_ext_mii_regs_c45(struct xgbe_prv_data *pdata, int addr,
1396				      int devad, int reg)
1397{
1398	unsigned int mdio_sca;
1399
1400	mdio_sca = xgbe_create_mdio_sca_c45(addr, devad, reg);
1401
1402	return xgbe_read_ext_mii_regs(pdata, mdio_sca);
1403}
1404
1405static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1406				 enum xgbe_mdio_mode mode)
1407{
1408	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1409
1410	switch (mode) {
1411	case XGBE_MDIO_MODE_CL22:
1412		if (port > XGMAC_MAX_C22_PORT)
1413			return -EINVAL;
1414		reg_val |= (1 << port);
1415		break;
1416	case XGBE_MDIO_MODE_CL45:
1417		break;
1418	default:
1419		return -EINVAL;
1420	}
1421
1422	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1423
1424	return 0;
1425}
1426
1427static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1428{
1429	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1430}
1431
1432static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1433{
1434	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1435
1436	return 0;
1437}
1438
1439static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1440{
1441	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1442
1443	return 0;
1444}
1445
1446static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1447{
1448	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1449
1450	/* Reset the Tx descriptor
1451	 *   Set buffer 1 (lo) address to zero
1452	 *   Set buffer 1 (hi) address to zero
1453	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1454	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1455	 */
1456	rdesc->desc0 = 0;
1457	rdesc->desc1 = 0;
1458	rdesc->desc2 = 0;
1459	rdesc->desc3 = 0;
1460
1461	/* Make sure ownership is written to the descriptor */
1462	dma_wmb();
1463}
1464
1465static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1466{
1467	struct xgbe_ring *ring = channel->tx_ring;
1468	struct xgbe_ring_data *rdata;
1469	int i;
1470	int start_index = ring->cur;
1471
1472	DBGPR("-->tx_desc_init\n");
1473
1474	/* Initialze all descriptors */
1475	for (i = 0; i < ring->rdesc_count; i++) {
1476		rdata = XGBE_GET_DESC_DATA(ring, i);
1477
1478		/* Initialize Tx descriptor */
1479		xgbe_tx_desc_reset(rdata);
1480	}
1481
1482	/* Update the total number of Tx descriptors */
1483	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1484
1485	/* Update the starting address of descriptor ring */
1486	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1487	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1488			  upper_32_bits(rdata->rdesc_dma));
1489	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1490			  lower_32_bits(rdata->rdesc_dma));
1491
1492	DBGPR("<--tx_desc_init\n");
1493}
1494
1495static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1496			       struct xgbe_ring_data *rdata, unsigned int index)
1497{
1498	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1499	unsigned int rx_usecs = pdata->rx_usecs;
1500	unsigned int rx_frames = pdata->rx_frames;
1501	unsigned int inte;
1502	dma_addr_t hdr_dma, buf_dma;
1503
1504	if (!rx_usecs && !rx_frames) {
1505		/* No coalescing, interrupt for every descriptor */
1506		inte = 1;
1507	} else {
1508		/* Set interrupt based on Rx frame coalescing setting */
1509		if (rx_frames && !((index + 1) % rx_frames))
1510			inte = 1;
1511		else
1512			inte = 0;
1513	}
1514
1515	/* Reset the Rx descriptor
1516	 *   Set buffer 1 (lo) address to header dma address (lo)
1517	 *   Set buffer 1 (hi) address to header dma address (hi)
1518	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1519	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1520	 *     set control bits OWN and INTE
1521	 */
1522	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1523	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1524	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1525	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1526	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1527	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1528
1529	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1530
1531	/* Since the Rx DMA engine is likely running, make sure everything
1532	 * is written to the descriptor(s) before setting the OWN bit
1533	 * for the descriptor
1534	 */
1535	dma_wmb();
1536
1537	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1538
1539	/* Make sure ownership is written to the descriptor */
1540	dma_wmb();
1541}
1542
1543static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1544{
1545	struct xgbe_prv_data *pdata = channel->pdata;
1546	struct xgbe_ring *ring = channel->rx_ring;
1547	struct xgbe_ring_data *rdata;
1548	unsigned int start_index = ring->cur;
1549	unsigned int i;
1550
1551	DBGPR("-->rx_desc_init\n");
1552
1553	/* Initialize all descriptors */
1554	for (i = 0; i < ring->rdesc_count; i++) {
1555		rdata = XGBE_GET_DESC_DATA(ring, i);
1556
1557		/* Initialize Rx descriptor */
1558		xgbe_rx_desc_reset(pdata, rdata, i);
1559	}
1560
1561	/* Update the total number of Rx descriptors */
1562	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1563
1564	/* Update the starting address of descriptor ring */
1565	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1566	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1567			  upper_32_bits(rdata->rdesc_dma));
1568	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1569			  lower_32_bits(rdata->rdesc_dma));
1570
1571	/* Update the Rx Descriptor Tail Pointer */
1572	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1573	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1574			  lower_32_bits(rdata->rdesc_dma));
1575
1576	DBGPR("<--rx_desc_init\n");
1577}
1578
1579static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1580				      unsigned int addend)
1581{
1582	unsigned int count = 10000;
1583
1584	/* Set the addend register value and tell the device */
1585	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1586	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1587
1588	/* Wait for addend update to complete */
1589	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1590		udelay(5);
1591
1592	if (!count)
1593		netdev_err(pdata->netdev,
1594			   "timed out updating timestamp addend register\n");
1595}
1596
1597static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1598				 unsigned int nsec)
1599{
1600	unsigned int count = 10000;
1601
1602	/* Set the time values and tell the device */
1603	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1604	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1605	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1606
1607	/* Wait for time update to complete */
1608	while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1609		udelay(5);
1610
1611	if (!count)
1612		netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1613}
1614
1615static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1616{
1617	u64 nsec;
1618
1619	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1620	nsec *= NSEC_PER_SEC;
1621	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1622
1623	return nsec;
1624}
1625
1626static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1627{
1628	unsigned int tx_snr, tx_ssr;
1629	u64 nsec;
1630
1631	if (pdata->vdata->tx_tstamp_workaround) {
1632		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1633		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1634	} else {
1635		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1636		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1637	}
1638
1639	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1640		return 0;
1641
1642	nsec = tx_ssr;
1643	nsec *= NSEC_PER_SEC;
1644	nsec += tx_snr;
1645
1646	return nsec;
1647}
1648
1649static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1650			       struct xgbe_ring_desc *rdesc)
1651{
1652	u64 nsec;
1653
1654	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1655	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1656		nsec = le32_to_cpu(rdesc->desc1);
1657		nsec <<= 32;
1658		nsec |= le32_to_cpu(rdesc->desc0);
1659		if (nsec != 0xffffffffffffffffULL) {
1660			packet->rx_tstamp = nsec;
1661			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1662				       RX_TSTAMP, 1);
1663		}
1664	}
1665}
1666
1667static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1668			      unsigned int mac_tscr)
1669{
1670	/* Set one nano-second accuracy */
1671	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1672
1673	/* Set fine timestamp update */
1674	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1675
1676	/* Overwrite earlier timestamps */
1677	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1678
1679	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1680
1681	/* Exit if timestamping is not enabled */
1682	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1683		return 0;
1684
1685	/* Initialize time registers */
1686	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1687	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1688	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1689	xgbe_set_tstamp_time(pdata, 0, 0);
1690
1691	/* Initialize the timecounter */
1692	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1693			 ktime_to_ns(ktime_get_real()));
1694
1695	return 0;
1696}
1697
1698static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1699			       struct xgbe_ring *ring)
1700{
1701	struct xgbe_prv_data *pdata = channel->pdata;
1702	struct xgbe_ring_data *rdata;
1703
1704	/* Make sure everything is written before the register write */
1705	wmb();
1706
1707	/* Issue a poll command to Tx DMA by writing address
1708	 * of next immediate free descriptor */
1709	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1710	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1711			  lower_32_bits(rdata->rdesc_dma));
1712
1713	/* Start the Tx timer */
1714	if (pdata->tx_usecs && !channel->tx_timer_active) {
1715		channel->tx_timer_active = 1;
1716		mod_timer(&channel->tx_timer,
1717			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1718	}
1719
1720	ring->tx.xmit_more = 0;
1721}
1722
1723static void xgbe_dev_xmit(struct xgbe_channel *channel)
1724{
1725	struct xgbe_prv_data *pdata = channel->pdata;
1726	struct xgbe_ring *ring = channel->tx_ring;
1727	struct xgbe_ring_data *rdata;
1728	struct xgbe_ring_desc *rdesc;
1729	struct xgbe_packet_data *packet = &ring->packet_data;
1730	unsigned int tx_packets, tx_bytes;
1731	unsigned int csum, tso, vlan, vxlan;
1732	unsigned int tso_context, vlan_context;
1733	unsigned int tx_set_ic;
1734	int start_index = ring->cur;
1735	int cur_index = ring->cur;
1736	int i;
1737
1738	DBGPR("-->xgbe_dev_xmit\n");
1739
1740	tx_packets = packet->tx_packets;
1741	tx_bytes = packet->tx_bytes;
1742
1743	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1744			      CSUM_ENABLE);
1745	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1746			     TSO_ENABLE);
1747	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1748			      VLAN_CTAG);
1749	vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1750			       VXLAN);
1751
1752	if (tso && (packet->mss != ring->tx.cur_mss))
1753		tso_context = 1;
1754	else
1755		tso_context = 0;
1756
1757	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1758		vlan_context = 1;
1759	else
1760		vlan_context = 0;
1761
1762	/* Determine if an interrupt should be generated for this Tx:
1763	 *   Interrupt:
1764	 *     - Tx frame count exceeds the frame count setting
1765	 *     - Addition of Tx frame count to the frame count since the
1766	 *       last interrupt was set exceeds the frame count setting
1767	 *   No interrupt:
1768	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1769	 *     - Addition of Tx frame count to the frame count since the
1770	 *       last interrupt was set does not exceed the frame count setting
1771	 */
1772	ring->coalesce_count += tx_packets;
1773	if (!pdata->tx_frames)
1774		tx_set_ic = 0;
1775	else if (tx_packets > pdata->tx_frames)
1776		tx_set_ic = 1;
1777	else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
 
1778		tx_set_ic = 1;
1779	else
1780		tx_set_ic = 0;
1781
1782	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1783	rdesc = rdata->rdesc;
1784
1785	/* Create a context descriptor if this is a TSO packet */
1786	if (tso_context || vlan_context) {
1787		if (tso_context) {
1788			netif_dbg(pdata, tx_queued, pdata->netdev,
1789				  "TSO context descriptor, mss=%u\n",
1790				  packet->mss);
1791
1792			/* Set the MSS size */
1793			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1794					  MSS, packet->mss);
1795
1796			/* Mark it as a CONTEXT descriptor */
1797			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1798					  CTXT, 1);
1799
1800			/* Indicate this descriptor contains the MSS */
1801			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1802					  TCMSSV, 1);
1803
1804			ring->tx.cur_mss = packet->mss;
1805		}
1806
1807		if (vlan_context) {
1808			netif_dbg(pdata, tx_queued, pdata->netdev,
1809				  "VLAN context descriptor, ctag=%u\n",
1810				  packet->vlan_ctag);
1811
1812			/* Mark it as a CONTEXT descriptor */
1813			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1814					  CTXT, 1);
1815
1816			/* Set the VLAN tag */
1817			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1818					  VT, packet->vlan_ctag);
1819
1820			/* Indicate this descriptor contains the VLAN tag */
1821			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1822					  VLTV, 1);
1823
1824			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1825		}
1826
1827		cur_index++;
1828		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1829		rdesc = rdata->rdesc;
1830	}
1831
1832	/* Update buffer address (for TSO this is the header) */
1833	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1834	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1835
1836	/* Update the buffer length */
1837	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1838			  rdata->skb_dma_len);
1839
1840	/* VLAN tag insertion check */
1841	if (vlan)
1842		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1843				  TX_NORMAL_DESC2_VLAN_INSERT);
1844
1845	/* Timestamp enablement check */
1846	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1847		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1848
1849	/* Mark it as First Descriptor */
1850	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1851
1852	/* Mark it as a NORMAL descriptor */
1853	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1854
1855	/* Set OWN bit if not the first descriptor */
1856	if (cur_index != start_index)
1857		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1858
1859	if (tso) {
1860		/* Enable TSO */
1861		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1862		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1863				  packet->tcp_payload_len);
1864		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1865				  packet->tcp_header_len / 4);
1866
1867		pdata->ext_stats.tx_tso_packets += tx_packets;
1868	} else {
1869		/* Enable CRC and Pad Insertion */
1870		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1871
1872		/* Enable HW CSUM */
1873		if (csum)
1874			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1875					  CIC, 0x3);
1876
1877		/* Set the total length to be transmitted */
1878		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1879				  packet->length);
1880	}
1881
1882	if (vxlan) {
1883		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1884				  TX_NORMAL_DESC3_VXLAN_PACKET);
1885
1886		pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1887	}
1888
1889	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1890		cur_index++;
1891		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1892		rdesc = rdata->rdesc;
1893
1894		/* Update buffer address */
1895		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1896		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1897
1898		/* Update the buffer length */
1899		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1900				  rdata->skb_dma_len);
1901
1902		/* Set OWN bit */
1903		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1904
1905		/* Mark it as NORMAL descriptor */
1906		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1907
1908		/* Enable HW CSUM */
1909		if (csum)
1910			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1911					  CIC, 0x3);
1912	}
1913
1914	/* Set LAST bit for the last descriptor */
1915	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1916
1917	/* Set IC bit based on Tx coalescing settings */
1918	if (tx_set_ic)
1919		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1920
1921	/* Save the Tx info to report back during cleanup */
1922	rdata->tx.packets = tx_packets;
1923	rdata->tx.bytes = tx_bytes;
1924
1925	pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1926	pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1927
1928	/* In case the Tx DMA engine is running, make sure everything
1929	 * is written to the descriptor(s) before setting the OWN bit
1930	 * for the first descriptor
1931	 */
1932	dma_wmb();
1933
1934	/* Set OWN bit for the first descriptor */
1935	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1936	rdesc = rdata->rdesc;
1937	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1938
1939	if (netif_msg_tx_queued(pdata))
1940		xgbe_dump_tx_desc(pdata, ring, start_index,
1941				  packet->rdesc_count, 1);
1942
1943	/* Make sure ownership is written to the descriptor */
1944	smp_wmb();
1945
1946	ring->cur = cur_index + 1;
1947	if (!netdev_xmit_more() ||
1948	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1949						   channel->queue_index)))
1950		xgbe_tx_start_xmit(channel, ring);
1951	else
1952		ring->tx.xmit_more = 1;
1953
1954	DBGPR("  %s: descriptors %u to %u written\n",
1955	      channel->name, start_index & (ring->rdesc_count - 1),
1956	      (ring->cur - 1) & (ring->rdesc_count - 1));
1957
1958	DBGPR("<--xgbe_dev_xmit\n");
1959}
1960
1961static int xgbe_dev_read(struct xgbe_channel *channel)
1962{
1963	struct xgbe_prv_data *pdata = channel->pdata;
1964	struct xgbe_ring *ring = channel->rx_ring;
1965	struct xgbe_ring_data *rdata;
1966	struct xgbe_ring_desc *rdesc;
1967	struct xgbe_packet_data *packet = &ring->packet_data;
1968	struct net_device *netdev = pdata->netdev;
1969	unsigned int err, etlt, l34t;
1970
1971	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1972
1973	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1974	rdesc = rdata->rdesc;
1975
1976	/* Check for data availability */
1977	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1978		return 1;
1979
1980	/* Make sure descriptor fields are read after reading the OWN bit */
1981	dma_rmb();
1982
1983	if (netif_msg_rx_status(pdata))
1984		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1985
1986	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1987		/* Timestamp Context Descriptor */
1988		xgbe_get_rx_tstamp(packet, rdesc);
1989
1990		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1991			       CONTEXT, 1);
1992		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1993			       CONTEXT_NEXT, 0);
1994		return 0;
1995	}
1996
1997	/* Normal Descriptor, be sure Context Descriptor bit is off */
1998	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1999
2000	/* Indicate if a Context Descriptor is next */
2001	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
2002		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2003			       CONTEXT_NEXT, 1);
2004
2005	/* Get the header length */
2006	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
2007		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2008			       FIRST, 1);
2009		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
2010						      RX_NORMAL_DESC2, HL);
2011		if (rdata->rx.hdr_len)
2012			pdata->ext_stats.rx_split_header_packets++;
2013	} else {
2014		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2015			       FIRST, 0);
2016	}
2017
2018	/* Get the RSS hash */
2019	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
2020		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2021			       RSS_HASH, 1);
2022
2023		packet->rss_hash = le32_to_cpu(rdesc->desc1);
2024
2025		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2026		switch (l34t) {
2027		case RX_DESC3_L34T_IPV4_TCP:
2028		case RX_DESC3_L34T_IPV4_UDP:
2029		case RX_DESC3_L34T_IPV6_TCP:
2030		case RX_DESC3_L34T_IPV6_UDP:
2031			packet->rss_hash_type = PKT_HASH_TYPE_L4;
2032			break;
2033		default:
2034			packet->rss_hash_type = PKT_HASH_TYPE_L3;
2035		}
2036	}
2037
2038	/* Not all the data has been transferred for this packet */
2039	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
2040		return 0;
2041
2042	/* This is the last of the data for this packet */
2043	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2044		       LAST, 1);
2045
2046	/* Get the packet length */
2047	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
2048
2049	/* Set checksum done indicator as appropriate */
2050	if (netdev->features & NETIF_F_RXCSUM) {
2051		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2052			       CSUM_DONE, 1);
2053		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2054			       TNPCSUM_DONE, 1);
2055	}
2056
2057	/* Set the tunneled packet indicator */
2058	if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2059		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2060			       TNP, 1);
2061		pdata->ext_stats.rx_vxlan_packets++;
2062
2063		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2064		switch (l34t) {
2065		case RX_DESC3_L34T_IPV4_UNKNOWN:
2066		case RX_DESC3_L34T_IPV6_UNKNOWN:
2067			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2068				       TNPCSUM_DONE, 0);
2069			break;
2070		}
2071	}
2072
2073	/* Check for errors (only valid in last descriptor) */
2074	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2075	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2076	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2077
2078	if (!err || !etlt) {
2079		/* No error if err is 0 or etlt is 0 */
2080		if ((etlt == 0x09) &&
2081		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2082			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2083				       VLAN_CTAG, 1);
2084			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2085							      RX_NORMAL_DESC0,
2086							      OVT);
2087			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2088				  packet->vlan_ctag);
2089		}
2090	} else {
2091		unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2092						  RX_PACKET_ATTRIBUTES, TNP);
2093
2094		if ((etlt == 0x05) || (etlt == 0x06)) {
2095			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2096				       CSUM_DONE, 0);
2097			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2098				       TNPCSUM_DONE, 0);
2099			pdata->ext_stats.rx_csum_errors++;
2100		} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2101			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2102				       CSUM_DONE, 0);
2103			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2104				       TNPCSUM_DONE, 0);
2105			pdata->ext_stats.rx_vxlan_csum_errors++;
2106		} else {
2107			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2108				       FRAME, 1);
2109		}
2110	}
2111
2112	pdata->ext_stats.rxq_packets[channel->queue_index]++;
2113	pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2114
2115	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2116	      ring->cur & (ring->rdesc_count - 1), ring->cur);
2117
2118	return 0;
2119}
2120
2121static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2122{
2123	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2124	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2125}
2126
2127static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2128{
2129	/* Rx and Tx share LD bit, so check TDES3.LD bit */
2130	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2131}
2132
2133static int xgbe_enable_int(struct xgbe_channel *channel,
2134			   enum xgbe_int int_id)
2135{
 
 
 
 
2136	switch (int_id) {
2137	case XGMAC_INT_DMA_CH_SR_TI:
2138		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2139		break;
2140	case XGMAC_INT_DMA_CH_SR_TPS:
2141		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2142		break;
2143	case XGMAC_INT_DMA_CH_SR_TBU:
2144		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2145		break;
2146	case XGMAC_INT_DMA_CH_SR_RI:
2147		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2148		break;
2149	case XGMAC_INT_DMA_CH_SR_RBU:
2150		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2151		break;
2152	case XGMAC_INT_DMA_CH_SR_RPS:
2153		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2154		break;
2155	case XGMAC_INT_DMA_CH_SR_TI_RI:
2156		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2157		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2158		break;
2159	case XGMAC_INT_DMA_CH_SR_FBE:
2160		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2161		break;
2162	case XGMAC_INT_DMA_ALL:
2163		channel->curr_ier |= channel->saved_ier;
2164		break;
2165	default:
2166		return -1;
2167	}
2168
2169	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2170
2171	return 0;
2172}
2173
2174static int xgbe_disable_int(struct xgbe_channel *channel,
2175			    enum xgbe_int int_id)
2176{
 
 
 
 
2177	switch (int_id) {
2178	case XGMAC_INT_DMA_CH_SR_TI:
2179		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2180		break;
2181	case XGMAC_INT_DMA_CH_SR_TPS:
2182		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2183		break;
2184	case XGMAC_INT_DMA_CH_SR_TBU:
2185		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2186		break;
2187	case XGMAC_INT_DMA_CH_SR_RI:
2188		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2189		break;
2190	case XGMAC_INT_DMA_CH_SR_RBU:
2191		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2192		break;
2193	case XGMAC_INT_DMA_CH_SR_RPS:
2194		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2195		break;
2196	case XGMAC_INT_DMA_CH_SR_TI_RI:
2197		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2198		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2199		break;
2200	case XGMAC_INT_DMA_CH_SR_FBE:
2201		XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2202		break;
2203	case XGMAC_INT_DMA_ALL:
2204		channel->saved_ier = channel->curr_ier;
2205		channel->curr_ier = 0;
2206		break;
2207	default:
2208		return -1;
2209	}
2210
2211	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2212
2213	return 0;
2214}
2215
2216static int __xgbe_exit(struct xgbe_prv_data *pdata)
2217{
2218	unsigned int count = 2000;
2219
2220	DBGPR("-->xgbe_exit\n");
2221
2222	/* Issue a software reset */
2223	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2224	usleep_range(10, 15);
2225
2226	/* Poll Until Poll Condition */
2227	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2228		usleep_range(500, 600);
2229
2230	if (!count)
2231		return -EBUSY;
2232
2233	DBGPR("<--xgbe_exit\n");
2234
2235	return 0;
2236}
2237
2238static int xgbe_exit(struct xgbe_prv_data *pdata)
2239{
2240	int ret;
2241
2242	/* To guard against possible incorrectly generated interrupts,
2243	 * issue the software reset twice.
2244	 */
2245	ret = __xgbe_exit(pdata);
2246	if (ret)
2247		return ret;
2248
2249	return __xgbe_exit(pdata);
2250}
2251
2252static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2253{
2254	unsigned int i, count;
2255
2256	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2257		return 0;
2258
2259	for (i = 0; i < pdata->tx_q_count; i++)
2260		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2261
2262	/* Poll Until Poll Condition */
2263	for (i = 0; i < pdata->tx_q_count; i++) {
2264		count = 2000;
2265		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2266							MTL_Q_TQOMR, FTQ))
2267			usleep_range(500, 600);
2268
2269		if (!count)
2270			return -EBUSY;
2271	}
2272
2273	return 0;
2274}
2275
2276static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2277{
2278	unsigned int sbmr;
2279
2280	sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2281
2282	/* Set enhanced addressing mode */
2283	XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2284
2285	/* Set the System Bus mode */
2286	XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2287	XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2288	XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2289	XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2290	XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2291
2292	XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2293
2294	/* Set descriptor fetching threshold */
2295	if (pdata->vdata->tx_desc_prefetch)
2296		XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2297				   pdata->vdata->tx_desc_prefetch);
2298
2299	if (pdata->vdata->rx_desc_prefetch)
2300		XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2301				   pdata->vdata->rx_desc_prefetch);
2302}
2303
2304static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2305{
2306	XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2307	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2308	if (pdata->awarcr)
2309		XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310}
2311
2312static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2313{
2314	unsigned int i;
2315
2316	/* Set Tx to weighted round robin scheduling algorithm */
2317	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2318
2319	/* Set Tx traffic classes to use WRR algorithm with equal weights */
2320	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2321		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2322				       MTL_TSA_ETS);
2323		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2324	}
2325
2326	/* Set Rx to strict priority algorithm */
2327	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2328}
2329
2330static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2331					      unsigned int queue,
2332					      unsigned int q_fifo_size)
2333{
2334	unsigned int frame_fifo_size;
2335	unsigned int rfa, rfd;
2336
2337	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2338
2339	if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2340		/* PFC is active for this queue */
2341		rfa = pdata->pfc_rfa;
2342		rfd = rfa + frame_fifo_size;
2343		if (rfd > XGMAC_FLOW_CONTROL_MAX)
2344			rfd = XGMAC_FLOW_CONTROL_MAX;
2345		if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2346			rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2347	} else {
2348		/* This path deals with just maximum frame sizes which are
2349		 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2350		 * so we can never exceed the maximum allowable RFA/RFD
2351		 * values.
2352		 */
2353		if (q_fifo_size <= 2048) {
2354			/* rx_rfd to zero to signal no flow control */
2355			pdata->rx_rfa[queue] = 0;
2356			pdata->rx_rfd[queue] = 0;
2357			return;
2358		}
2359
2360		if (q_fifo_size <= 4096) {
2361			/* Between 2048 and 4096 */
2362			pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
2363			pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
2364			return;
2365		}
2366
2367		if (q_fifo_size <= frame_fifo_size) {
2368			/* Between 4096 and max-frame */
2369			pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
2370			pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
2371			return;
2372		}
2373
2374		if (q_fifo_size <= (frame_fifo_size * 3)) {
2375			/* Between max-frame and 3 max-frames,
2376			 * trigger if we get just over a frame of data and
2377			 * resume when we have just under half a frame left.
2378			 */
2379			rfa = q_fifo_size - frame_fifo_size;
2380			rfd = rfa + (frame_fifo_size / 2);
2381		} else {
2382			/* Above 3 max-frames - trigger when just over
2383			 * 2 frames of space available
2384			 */
2385			rfa = frame_fifo_size * 2;
2386			rfa += XGMAC_FLOW_CONTROL_UNIT;
2387			rfd = rfa + frame_fifo_size;
2388		}
2389	}
2390
2391	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2392	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2393}
2394
2395static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2396						  unsigned int *fifo)
2397{
2398	unsigned int q_fifo_size;
2399	unsigned int i;
2400
2401	for (i = 0; i < pdata->rx_q_count; i++) {
2402		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2403
2404		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2405	}
2406}
2407
2408static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2409{
2410	unsigned int i;
2411
2412	for (i = 0; i < pdata->rx_q_count; i++) {
2413		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2414				       pdata->rx_rfa[i]);
2415		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2416				       pdata->rx_rfd[i]);
2417	}
2418}
2419
2420static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2421{
2422	/* The configured value may not be the actual amount of fifo RAM */
2423	return min_t(unsigned int, pdata->tx_max_fifo_size,
2424		     pdata->hw_feat.tx_fifo_size);
2425}
2426
2427static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2428{
2429	/* The configured value may not be the actual amount of fifo RAM */
2430	return min_t(unsigned int, pdata->rx_max_fifo_size,
2431		     pdata->hw_feat.rx_fifo_size);
2432}
2433
2434static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2435				      unsigned int queue_count,
2436				      unsigned int *fifo)
2437{
2438	unsigned int q_fifo_size;
2439	unsigned int p_fifo;
2440	unsigned int i;
2441
2442	q_fifo_size = fifo_size / queue_count;
2443
2444	/* Calculate the fifo setting by dividing the queue's fifo size
2445	 * by the fifo allocation increment (with 0 representing the
2446	 * base allocation increment so decrement the result by 1).
2447	 */
2448	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2449	if (p_fifo)
2450		p_fifo--;
2451
2452	/* Distribute the fifo equally amongst the queues */
2453	for (i = 0; i < queue_count; i++)
2454		fifo[i] = p_fifo;
2455}
2456
2457static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2458					   unsigned int queue_count,
2459					   unsigned int *fifo)
2460{
2461	unsigned int i;
2462
2463	BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2464
2465	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2466		return fifo_size;
2467
2468	/* Rx queues 9 and up are for specialized packets,
2469	 * such as PTP or DCB control packets, etc. and
2470	 * don't require a large fifo
2471	 */
2472	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2473		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2474		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2475	}
2476
2477	return fifo_size;
2478}
2479
2480static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2481{
2482	unsigned int delay;
2483
2484	/* If a delay has been provided, use that */
2485	if (pdata->pfc->delay)
2486		return pdata->pfc->delay / 8;
2487
2488	/* Allow for two maximum size frames */
2489	delay = xgbe_get_max_frame(pdata);
2490	delay += XGMAC_ETH_PREAMBLE;
2491	delay *= 2;
2492
2493	/* Allow for PFC frame */
2494	delay += XGMAC_PFC_DATA_LEN;
2495	delay += ETH_HLEN + ETH_FCS_LEN;
2496	delay += XGMAC_ETH_PREAMBLE;
2497
2498	/* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2499	delay += XGMAC_PFC_DELAYS;
2500
2501	return delay;
2502}
2503
2504static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2505{
2506	unsigned int count, prio_queues;
2507	unsigned int i;
2508
2509	if (!pdata->pfc->pfc_en)
2510		return 0;
2511
2512	count = 0;
2513	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2514	for (i = 0; i < prio_queues; i++) {
2515		if (!xgbe_is_pfc_queue(pdata, i))
2516			continue;
2517
2518		pdata->pfcq[i] = 1;
2519		count++;
2520	}
2521
2522	return count;
2523}
2524
2525static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2526				    unsigned int fifo_size,
2527				    unsigned int *fifo)
2528{
2529	unsigned int q_fifo_size, rem_fifo, addn_fifo;
2530	unsigned int prio_queues;
2531	unsigned int pfc_count;
2532	unsigned int i;
2533
2534	q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2535	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2536	pfc_count = xgbe_get_pfc_queues(pdata);
2537
2538	if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2539		/* No traffic classes with PFC enabled or can't do lossless */
2540		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2541		return;
2542	}
2543
2544	/* Calculate how much fifo we have to play with */
2545	rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2546
2547	/* Calculate how much more than base fifo PFC needs, which also
2548	 * becomes the threshold activation point (RFA)
2549	 */
2550	pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2551	pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2552
2553	if (pdata->pfc_rfa > q_fifo_size) {
2554		addn_fifo = pdata->pfc_rfa - q_fifo_size;
2555		addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2556	} else {
2557		addn_fifo = 0;
2558	}
2559
2560	/* Calculate DCB fifo settings:
2561	 *   - distribute remaining fifo between the VLAN priority
2562	 *     queues based on traffic class PFC enablement and overall
2563	 *     priority (0 is lowest priority, so start at highest)
2564	 */
2565	i = prio_queues;
2566	while (i > 0) {
2567		i--;
2568
2569		fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2570
2571		if (!pdata->pfcq[i] || !addn_fifo)
2572			continue;
2573
2574		if (addn_fifo > rem_fifo) {
2575			netdev_warn(pdata->netdev,
2576				    "RXq%u cannot set needed fifo size\n", i);
2577			if (!rem_fifo)
2578				continue;
2579
2580			addn_fifo = rem_fifo;
2581		}
2582
2583		fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2584		rem_fifo -= addn_fifo;
2585	}
2586
2587	if (rem_fifo) {
2588		unsigned int inc_fifo = rem_fifo / prio_queues;
2589
2590		/* Distribute remaining fifo across queues */
2591		for (i = 0; i < prio_queues; i++)
2592			fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2593	}
2594}
2595
2596static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2597{
2598	unsigned int fifo_size;
2599	unsigned int fifo[XGBE_MAX_QUEUES];
2600	unsigned int i;
2601
2602	fifo_size = xgbe_get_tx_fifo_size(pdata);
2603
2604	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2605
2606	for (i = 0; i < pdata->tx_q_count; i++)
2607		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2608
2609	netif_info(pdata, drv, pdata->netdev,
2610		   "%d Tx hardware queues, %d byte fifo per queue\n",
2611		   pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2612}
2613
2614static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2615{
2616	unsigned int fifo_size;
2617	unsigned int fifo[XGBE_MAX_QUEUES];
2618	unsigned int prio_queues;
2619	unsigned int i;
2620
2621	/* Clear any DCB related fifo/queue information */
2622	memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2623	pdata->pfc_rfa = 0;
2624
2625	fifo_size = xgbe_get_rx_fifo_size(pdata);
2626	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2627
2628	/* Assign a minimum fifo to the non-VLAN priority queues */
2629	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2630
2631	if (pdata->pfc && pdata->ets)
2632		xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2633	else
2634		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2635
2636	for (i = 0; i < pdata->rx_q_count; i++)
2637		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2638
2639	xgbe_calculate_flow_control_threshold(pdata, fifo);
2640	xgbe_config_flow_control_threshold(pdata);
2641
2642	if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2643		netif_info(pdata, drv, pdata->netdev,
2644			   "%u Rx hardware queues\n", pdata->rx_q_count);
2645		for (i = 0; i < pdata->rx_q_count; i++)
2646			netif_info(pdata, drv, pdata->netdev,
2647				   "RxQ%u, %u byte fifo queue\n", i,
2648				   ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2649	} else {
2650		netif_info(pdata, drv, pdata->netdev,
2651			   "%u Rx hardware queues, %u byte fifo per queue\n",
2652			   pdata->rx_q_count,
2653			   ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2654	}
2655}
2656
2657static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2658{
2659	unsigned int qptc, qptc_extra, queue;
2660	unsigned int prio_queues;
2661	unsigned int ppq, ppq_extra, prio;
2662	unsigned int mask;
2663	unsigned int i, j, reg, reg_val;
2664
2665	/* Map the MTL Tx Queues to Traffic Classes
2666	 *   Note: Tx Queues >= Traffic Classes
2667	 */
2668	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2669	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2670
2671	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2672		for (j = 0; j < qptc; j++) {
2673			netif_dbg(pdata, drv, pdata->netdev,
2674				  "TXq%u mapped to TC%u\n", queue, i);
2675			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2676					       Q2TCMAP, i);
2677			pdata->q2tc_map[queue++] = i;
2678		}
2679
2680		if (i < qptc_extra) {
2681			netif_dbg(pdata, drv, pdata->netdev,
2682				  "TXq%u mapped to TC%u\n", queue, i);
2683			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2684					       Q2TCMAP, i);
2685			pdata->q2tc_map[queue++] = i;
2686		}
2687	}
2688
2689	/* Map the 8 VLAN priority values to available MTL Rx queues */
2690	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2691	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2692	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2693
2694	reg = MAC_RQC2R;
2695	reg_val = 0;
2696	for (i = 0, prio = 0; i < prio_queues;) {
2697		mask = 0;
2698		for (j = 0; j < ppq; j++) {
2699			netif_dbg(pdata, drv, pdata->netdev,
2700				  "PRIO%u mapped to RXq%u\n", prio, i);
2701			mask |= (1 << prio);
2702			pdata->prio2q_map[prio++] = i;
2703		}
2704
2705		if (i < ppq_extra) {
2706			netif_dbg(pdata, drv, pdata->netdev,
2707				  "PRIO%u mapped to RXq%u\n", prio, i);
2708			mask |= (1 << prio);
2709			pdata->prio2q_map[prio++] = i;
2710		}
2711
2712		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2713
2714		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2715			continue;
2716
2717		XGMAC_IOWRITE(pdata, reg, reg_val);
2718		reg += MAC_RQC2_INC;
2719		reg_val = 0;
2720	}
2721
2722	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2723	reg = MTL_RQDCM0R;
2724	reg_val = 0;
2725	for (i = 0; i < pdata->rx_q_count;) {
2726		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2727
2728		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2729			continue;
2730
2731		XGMAC_IOWRITE(pdata, reg, reg_val);
2732
2733		reg += MTL_RQDCM_INC;
2734		reg_val = 0;
2735	}
2736}
2737
2738static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2739{
2740	unsigned int offset, queue, prio;
2741	u8 i;
2742
2743	netdev_reset_tc(pdata->netdev);
2744	if (!pdata->num_tcs)
2745		return;
2746
2747	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2748
2749	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2750		while ((queue < pdata->tx_q_count) &&
2751		       (pdata->q2tc_map[queue] == i))
2752			queue++;
2753
2754		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2755			  i, offset, queue - 1);
2756		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2757		offset = queue;
2758	}
2759
2760	if (!pdata->ets)
2761		return;
2762
2763	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2764		netdev_set_prio_tc_map(pdata->netdev, prio,
2765				       pdata->ets->prio_tc[prio]);
2766}
2767
2768static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2769{
2770	struct ieee_ets *ets = pdata->ets;
2771	unsigned int total_weight, min_weight, weight;
2772	unsigned int mask, reg, reg_val;
2773	unsigned int i, prio;
2774
2775	if (!ets)
2776		return;
2777
2778	/* Set Tx to deficit weighted round robin scheduling algorithm (when
2779	 * traffic class is using ETS algorithm)
2780	 */
2781	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2782
2783	/* Set Traffic Class algorithms */
2784	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2785	min_weight = total_weight / 100;
2786	if (!min_weight)
2787		min_weight = 1;
2788
2789	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2790		/* Map the priorities to the traffic class */
2791		mask = 0;
2792		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2793			if (ets->prio_tc[prio] == i)
2794				mask |= (1 << prio);
2795		}
2796		mask &= 0xff;
2797
2798		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2799			  i, mask);
2800		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2801		reg_val = XGMAC_IOREAD(pdata, reg);
2802
2803		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2804		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2805
2806		XGMAC_IOWRITE(pdata, reg, reg_val);
2807
2808		/* Set the traffic class algorithm */
2809		switch (ets->tc_tsa[i]) {
2810		case IEEE_8021QAZ_TSA_STRICT:
2811			netif_dbg(pdata, drv, pdata->netdev,
2812				  "TC%u using SP\n", i);
2813			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2814					       MTL_TSA_SP);
2815			break;
2816		case IEEE_8021QAZ_TSA_ETS:
2817			weight = total_weight * ets->tc_tx_bw[i] / 100;
2818			weight = clamp(weight, min_weight, total_weight);
2819
2820			netif_dbg(pdata, drv, pdata->netdev,
2821				  "TC%u using DWRR (weight %u)\n", i, weight);
2822			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2823					       MTL_TSA_ETS);
2824			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2825					       weight);
2826			break;
2827		}
2828	}
2829
2830	xgbe_config_tc(pdata);
2831}
2832
2833static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2834{
2835	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2836		/* Just stop the Tx queues while Rx fifo is changed */
2837		netif_tx_stop_all_queues(pdata->netdev);
2838
2839		/* Suspend Rx so that fifo's can be adjusted */
2840		pdata->hw_if.disable_rx(pdata);
2841	}
2842
2843	xgbe_config_rx_fifo_size(pdata);
2844	xgbe_config_flow_control(pdata);
2845
2846	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2847		/* Resume Rx */
2848		pdata->hw_if.enable_rx(pdata);
2849
2850		/* Resume Tx queues */
2851		netif_tx_start_all_queues(pdata->netdev);
2852	}
2853}
2854
2855static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2856{
2857	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2858
2859	/* Filtering is done using perfect filtering and hash filtering */
2860	if (pdata->hw_feat.hash_table_size) {
2861		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2862		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2863		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2864	}
2865}
2866
2867static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2868{
2869	unsigned int val;
2870
2871	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2872
2873	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2874}
2875
2876static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2877{
2878	xgbe_set_speed(pdata, pdata->phy_speed);
2879}
2880
2881static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2882{
2883	if (pdata->netdev->features & NETIF_F_RXCSUM)
2884		xgbe_enable_rx_csum(pdata);
2885	else
2886		xgbe_disable_rx_csum(pdata);
2887}
2888
2889static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2890{
2891	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2892	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2893	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2894
2895	/* Set the current VLAN Hash Table register value */
2896	xgbe_update_vlan_hash_table(pdata);
2897
2898	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2899		xgbe_enable_rx_vlan_filtering(pdata);
2900	else
2901		xgbe_disable_rx_vlan_filtering(pdata);
2902
2903	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2904		xgbe_enable_rx_vlan_stripping(pdata);
2905	else
2906		xgbe_disable_rx_vlan_stripping(pdata);
2907}
2908
2909static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2910{
2911	bool read_hi;
2912	u64 val;
2913
2914	if (pdata->vdata->mmc_64bit) {
2915		switch (reg_lo) {
2916		/* These registers are always 32 bit */
2917		case MMC_RXRUNTERROR:
2918		case MMC_RXJABBERERROR:
2919		case MMC_RXUNDERSIZE_G:
2920		case MMC_RXOVERSIZE_G:
2921		case MMC_RXWATCHDOGERROR:
2922			read_hi = false;
2923			break;
2924
2925		default:
2926			read_hi = true;
2927		}
2928	} else {
2929		switch (reg_lo) {
2930		/* These registers are always 64 bit */
2931		case MMC_TXOCTETCOUNT_GB_LO:
2932		case MMC_TXOCTETCOUNT_G_LO:
2933		case MMC_RXOCTETCOUNT_GB_LO:
2934		case MMC_RXOCTETCOUNT_G_LO:
2935			read_hi = true;
2936			break;
2937
2938		default:
2939			read_hi = false;
2940		}
2941	}
2942
2943	val = XGMAC_IOREAD(pdata, reg_lo);
2944
2945	if (read_hi)
2946		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2947
2948	return val;
2949}
2950
2951static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2952{
2953	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2954	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2955
2956	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2957		stats->txoctetcount_gb +=
2958			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2959
2960	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2961		stats->txframecount_gb +=
2962			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2963
2964	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2965		stats->txbroadcastframes_g +=
2966			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2967
2968	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2969		stats->txmulticastframes_g +=
2970			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2971
2972	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2973		stats->tx64octets_gb +=
2974			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2975
2976	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2977		stats->tx65to127octets_gb +=
2978			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2979
2980	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2981		stats->tx128to255octets_gb +=
2982			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2983
2984	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2985		stats->tx256to511octets_gb +=
2986			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2987
2988	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2989		stats->tx512to1023octets_gb +=
2990			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2991
2992	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2993		stats->tx1024tomaxoctets_gb +=
2994			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2995
2996	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2997		stats->txunicastframes_gb +=
2998			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2999
3000	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
3001		stats->txmulticastframes_gb +=
3002			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3003
3004	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
3005		stats->txbroadcastframes_g +=
3006			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3007
3008	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
3009		stats->txunderflowerror +=
3010			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3011
3012	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
3013		stats->txoctetcount_g +=
3014			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3015
3016	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
3017		stats->txframecount_g +=
3018			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3019
3020	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
3021		stats->txpauseframes +=
3022			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3023
3024	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
3025		stats->txvlanframes_g +=
3026			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3027}
3028
3029static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
3030{
3031	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3032	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
3033
3034	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
3035		stats->rxframecount_gb +=
3036			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3037
3038	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
3039		stats->rxoctetcount_gb +=
3040			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3041
3042	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
3043		stats->rxoctetcount_g +=
3044			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3045
3046	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
3047		stats->rxbroadcastframes_g +=
3048			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3049
3050	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
3051		stats->rxmulticastframes_g +=
3052			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3053
3054	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
3055		stats->rxcrcerror +=
3056			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3057
3058	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3059		stats->rxrunterror +=
3060			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3061
3062	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3063		stats->rxjabbererror +=
3064			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3065
3066	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3067		stats->rxundersize_g +=
3068			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3069
3070	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3071		stats->rxoversize_g +=
3072			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3073
3074	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3075		stats->rx64octets_gb +=
3076			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3077
3078	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3079		stats->rx65to127octets_gb +=
3080			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3081
3082	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3083		stats->rx128to255octets_gb +=
3084			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3085
3086	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3087		stats->rx256to511octets_gb +=
3088			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3089
3090	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3091		stats->rx512to1023octets_gb +=
3092			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3093
3094	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3095		stats->rx1024tomaxoctets_gb +=
3096			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3097
3098	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3099		stats->rxunicastframes_g +=
3100			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3101
3102	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3103		stats->rxlengtherror +=
3104			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3105
3106	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3107		stats->rxoutofrangetype +=
3108			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3109
3110	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3111		stats->rxpauseframes +=
3112			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3113
3114	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3115		stats->rxfifooverflow +=
3116			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3117
3118	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3119		stats->rxvlanframes_gb +=
3120			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3121
3122	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3123		stats->rxwatchdogerror +=
3124			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3125}
3126
3127static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3128{
3129	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3130
3131	/* Freeze counters */
3132	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3133
3134	stats->txoctetcount_gb +=
3135		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3136
3137	stats->txframecount_gb +=
3138		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3139
3140	stats->txbroadcastframes_g +=
3141		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3142
3143	stats->txmulticastframes_g +=
3144		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3145
3146	stats->tx64octets_gb +=
3147		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3148
3149	stats->tx65to127octets_gb +=
3150		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3151
3152	stats->tx128to255octets_gb +=
3153		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3154
3155	stats->tx256to511octets_gb +=
3156		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3157
3158	stats->tx512to1023octets_gb +=
3159		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3160
3161	stats->tx1024tomaxoctets_gb +=
3162		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3163
3164	stats->txunicastframes_gb +=
3165		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3166
3167	stats->txmulticastframes_gb +=
3168		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3169
3170	stats->txbroadcastframes_g +=
3171		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3172
3173	stats->txunderflowerror +=
3174		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3175
3176	stats->txoctetcount_g +=
3177		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3178
3179	stats->txframecount_g +=
3180		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3181
3182	stats->txpauseframes +=
3183		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3184
3185	stats->txvlanframes_g +=
3186		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3187
3188	stats->rxframecount_gb +=
3189		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3190
3191	stats->rxoctetcount_gb +=
3192		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3193
3194	stats->rxoctetcount_g +=
3195		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3196
3197	stats->rxbroadcastframes_g +=
3198		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3199
3200	stats->rxmulticastframes_g +=
3201		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3202
3203	stats->rxcrcerror +=
3204		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3205
3206	stats->rxrunterror +=
3207		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3208
3209	stats->rxjabbererror +=
3210		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3211
3212	stats->rxundersize_g +=
3213		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3214
3215	stats->rxoversize_g +=
3216		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3217
3218	stats->rx64octets_gb +=
3219		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3220
3221	stats->rx65to127octets_gb +=
3222		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3223
3224	stats->rx128to255octets_gb +=
3225		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3226
3227	stats->rx256to511octets_gb +=
3228		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3229
3230	stats->rx512to1023octets_gb +=
3231		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3232
3233	stats->rx1024tomaxoctets_gb +=
3234		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3235
3236	stats->rxunicastframes_g +=
3237		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3238
3239	stats->rxlengtherror +=
3240		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3241
3242	stats->rxoutofrangetype +=
3243		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3244
3245	stats->rxpauseframes +=
3246		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3247
3248	stats->rxfifooverflow +=
3249		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3250
3251	stats->rxvlanframes_gb +=
3252		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3253
3254	stats->rxwatchdogerror +=
3255		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3256
3257	/* Un-freeze counters */
3258	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3259}
3260
3261static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3262{
3263	/* Set counters to reset on read */
3264	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3265
3266	/* Reset the counters */
3267	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3268}
3269
3270static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3271				     unsigned int queue)
3272{
3273	unsigned int tx_status;
3274	unsigned long tx_timeout;
3275
3276	/* The Tx engine cannot be stopped if it is actively processing
3277	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3278	 * wait forever though...
3279	 */
3280	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3281	while (time_before(jiffies, tx_timeout)) {
3282		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3283		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3284		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3285			break;
3286
3287		usleep_range(500, 1000);
3288	}
3289
3290	if (!time_before(jiffies, tx_timeout))
3291		netdev_info(pdata->netdev,
3292			    "timed out waiting for Tx queue %u to empty\n",
3293			    queue);
3294}
3295
3296static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3297				 unsigned int queue)
3298{
3299	unsigned int tx_dsr, tx_pos, tx_qidx;
3300	unsigned int tx_status;
3301	unsigned long tx_timeout;
3302
3303	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3304		return xgbe_txq_prepare_tx_stop(pdata, queue);
3305
3306	/* Calculate the status register to read and the position within */
3307	if (queue < DMA_DSRX_FIRST_QUEUE) {
3308		tx_dsr = DMA_DSR0;
3309		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3310	} else {
3311		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3312
3313		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3314		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3315			 DMA_DSRX_TPS_START;
3316	}
3317
3318	/* The Tx engine cannot be stopped if it is actively processing
3319	 * descriptors. Wait for the Tx engine to enter the stopped or
3320	 * suspended state.  Don't wait forever though...
3321	 */
3322	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3323	while (time_before(jiffies, tx_timeout)) {
3324		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3325		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3326		if ((tx_status == DMA_TPS_STOPPED) ||
3327		    (tx_status == DMA_TPS_SUSPENDED))
3328			break;
3329
3330		usleep_range(500, 1000);
3331	}
3332
3333	if (!time_before(jiffies, tx_timeout))
3334		netdev_info(pdata->netdev,
3335			    "timed out waiting for Tx DMA channel %u to stop\n",
3336			    queue);
3337}
3338
3339static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3340{
 
3341	unsigned int i;
3342
3343	/* Enable each Tx DMA channel */
3344	for (i = 0; i < pdata->channel_count; i++) {
3345		if (!pdata->channel[i]->tx_ring)
 
3346			break;
3347
3348		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3349	}
3350
3351	/* Enable each Tx queue */
3352	for (i = 0; i < pdata->tx_q_count; i++)
3353		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3354				       MTL_Q_ENABLED);
3355
3356	/* Enable MAC Tx */
3357	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3358}
3359
3360static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3361{
 
3362	unsigned int i;
3363
3364	/* Prepare for Tx DMA channel stop */
3365	for (i = 0; i < pdata->tx_q_count; i++)
3366		xgbe_prepare_tx_stop(pdata, i);
3367
3368	/* Disable MAC Tx */
3369	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3370
3371	/* Disable each Tx queue */
3372	for (i = 0; i < pdata->tx_q_count; i++)
3373		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3374
3375	/* Disable each Tx DMA channel */
3376	for (i = 0; i < pdata->channel_count; i++) {
3377		if (!pdata->channel[i]->tx_ring)
 
3378			break;
3379
3380		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3381	}
3382}
3383
3384static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3385				 unsigned int queue)
3386{
3387	unsigned int rx_status;
3388	unsigned long rx_timeout;
3389
3390	/* The Rx engine cannot be stopped if it is actively processing
3391	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3392	 * wait forever though...
3393	 */
3394	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3395	while (time_before(jiffies, rx_timeout)) {
3396		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3397		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3398		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3399			break;
3400
3401		usleep_range(500, 1000);
3402	}
3403
3404	if (!time_before(jiffies, rx_timeout))
3405		netdev_info(pdata->netdev,
3406			    "timed out waiting for Rx queue %u to empty\n",
3407			    queue);
3408}
3409
3410static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3411{
 
3412	unsigned int reg_val, i;
3413
3414	/* Enable each Rx DMA channel */
3415	for (i = 0; i < pdata->channel_count; i++) {
3416		if (!pdata->channel[i]->rx_ring)
 
3417			break;
3418
3419		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3420	}
3421
3422	/* Enable each Rx queue */
3423	reg_val = 0;
3424	for (i = 0; i < pdata->rx_q_count; i++)
3425		reg_val |= (0x02 << (i << 1));
3426	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3427
3428	/* Enable MAC Rx */
3429	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3430	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3431	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3432	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3433}
3434
3435static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3436{
 
3437	unsigned int i;
3438
3439	/* Disable MAC Rx */
3440	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3441	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3442	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3443	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3444
3445	/* Prepare for Rx DMA channel stop */
3446	for (i = 0; i < pdata->rx_q_count; i++)
3447		xgbe_prepare_rx_stop(pdata, i);
3448
3449	/* Disable each Rx queue */
3450	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3451
3452	/* Disable each Rx DMA channel */
3453	for (i = 0; i < pdata->channel_count; i++) {
3454		if (!pdata->channel[i]->rx_ring)
 
3455			break;
3456
3457		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3458	}
3459}
3460
3461static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3462{
 
3463	unsigned int i;
3464
3465	/* Enable each Tx DMA channel */
3466	for (i = 0; i < pdata->channel_count; i++) {
3467		if (!pdata->channel[i]->tx_ring)
 
3468			break;
3469
3470		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3471	}
3472
3473	/* Enable MAC Tx */
3474	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3475}
3476
3477static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3478{
 
3479	unsigned int i;
3480
3481	/* Prepare for Tx DMA channel stop */
3482	for (i = 0; i < pdata->tx_q_count; i++)
3483		xgbe_prepare_tx_stop(pdata, i);
3484
3485	/* Disable MAC Tx */
3486	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3487
3488	/* Disable each Tx DMA channel */
3489	for (i = 0; i < pdata->channel_count; i++) {
3490		if (!pdata->channel[i]->tx_ring)
 
3491			break;
3492
3493		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3494	}
3495}
3496
3497static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3498{
 
3499	unsigned int i;
3500
3501	/* Enable each Rx DMA channel */
3502	for (i = 0; i < pdata->channel_count; i++) {
3503		if (!pdata->channel[i]->rx_ring)
 
3504			break;
3505
3506		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3507	}
3508}
3509
3510static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3511{
 
3512	unsigned int i;
3513
3514	/* Disable each Rx DMA channel */
3515	for (i = 0; i < pdata->channel_count; i++) {
3516		if (!pdata->channel[i]->rx_ring)
 
3517			break;
3518
3519		XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3520	}
3521}
3522
3523static int xgbe_init(struct xgbe_prv_data *pdata)
3524{
3525	struct xgbe_desc_if *desc_if = &pdata->desc_if;
3526	int ret;
3527
3528	DBGPR("-->xgbe_init\n");
3529
3530	/* Flush Tx queues */
3531	ret = xgbe_flush_tx_queues(pdata);
3532	if (ret) {
3533		netdev_err(pdata->netdev, "error flushing TX queues\n");
3534		return ret;
3535	}
3536
3537	/*
3538	 * Initialize DMA related features
3539	 */
3540	xgbe_config_dma_bus(pdata);
3541	xgbe_config_dma_cache(pdata);
3542	xgbe_config_osp_mode(pdata);
3543	xgbe_config_pbl_val(pdata);
 
 
3544	xgbe_config_rx_coalesce(pdata);
3545	xgbe_config_tx_coalesce(pdata);
3546	xgbe_config_rx_buffer_size(pdata);
3547	xgbe_config_tso_mode(pdata);
3548	xgbe_config_sph_mode(pdata);
3549	xgbe_config_rss(pdata);
3550	desc_if->wrapper_tx_desc_init(pdata);
3551	desc_if->wrapper_rx_desc_init(pdata);
3552	xgbe_enable_dma_interrupts(pdata);
3553
3554	/*
3555	 * Initialize MTL related features
3556	 */
3557	xgbe_config_mtl_mode(pdata);
3558	xgbe_config_queue_mapping(pdata);
3559	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3560	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3561	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3562	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3563	xgbe_config_tx_fifo_size(pdata);
3564	xgbe_config_rx_fifo_size(pdata);
3565	/*TODO: Error Packet and undersized good Packet forwarding enable
3566		(FEP and FUP)
3567	 */
3568	xgbe_config_dcb_tc(pdata);
3569	xgbe_enable_mtl_interrupts(pdata);
3570
3571	/*
3572	 * Initialize MAC related features
3573	 */
3574	xgbe_config_mac_address(pdata);
3575	xgbe_config_rx_mode(pdata);
3576	xgbe_config_jumbo_enable(pdata);
3577	xgbe_config_flow_control(pdata);
3578	xgbe_config_mac_speed(pdata);
3579	xgbe_config_checksum_offload(pdata);
3580	xgbe_config_vlan_support(pdata);
3581	xgbe_config_mmc(pdata);
3582	xgbe_enable_mac_interrupts(pdata);
3583
3584	/*
3585	 * Initialize ECC related features
3586	 */
3587	xgbe_enable_ecc_interrupts(pdata);
3588
3589	DBGPR("<--xgbe_init\n");
3590
3591	return 0;
3592}
3593
3594void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3595{
3596	DBGPR("-->xgbe_init_function_ptrs\n");
3597
3598	hw_if->tx_complete = xgbe_tx_complete;
3599
3600	hw_if->set_mac_address = xgbe_set_mac_address;
3601	hw_if->config_rx_mode = xgbe_config_rx_mode;
3602
3603	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3604	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3605
3606	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3607	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3608	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3609	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3610	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3611
3612	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3613	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3614
3615	hw_if->set_speed = xgbe_set_speed;
3616
3617	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3618	hw_if->read_ext_mii_regs_c22 = xgbe_read_ext_mii_regs_c22;
3619	hw_if->write_ext_mii_regs_c22 = xgbe_write_ext_mii_regs_c22;
3620	hw_if->read_ext_mii_regs_c45 = xgbe_read_ext_mii_regs_c45;
3621	hw_if->write_ext_mii_regs_c45 = xgbe_write_ext_mii_regs_c45;
3622
3623	hw_if->set_gpio = xgbe_set_gpio;
3624	hw_if->clr_gpio = xgbe_clr_gpio;
3625
3626	hw_if->enable_tx = xgbe_enable_tx;
3627	hw_if->disable_tx = xgbe_disable_tx;
3628	hw_if->enable_rx = xgbe_enable_rx;
3629	hw_if->disable_rx = xgbe_disable_rx;
3630
3631	hw_if->powerup_tx = xgbe_powerup_tx;
3632	hw_if->powerdown_tx = xgbe_powerdown_tx;
3633	hw_if->powerup_rx = xgbe_powerup_rx;
3634	hw_if->powerdown_rx = xgbe_powerdown_rx;
3635
3636	hw_if->dev_xmit = xgbe_dev_xmit;
3637	hw_if->dev_read = xgbe_dev_read;
3638	hw_if->enable_int = xgbe_enable_int;
3639	hw_if->disable_int = xgbe_disable_int;
3640	hw_if->init = xgbe_init;
3641	hw_if->exit = xgbe_exit;
3642
3643	/* Descriptor related Sequences have to be initialized here */
3644	hw_if->tx_desc_init = xgbe_tx_desc_init;
3645	hw_if->rx_desc_init = xgbe_rx_desc_init;
3646	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3647	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3648	hw_if->is_last_desc = xgbe_is_last_desc;
3649	hw_if->is_context_desc = xgbe_is_context_desc;
3650	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3651
3652	/* For FLOW ctrl */
3653	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3654	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3655
3656	/* For RX coalescing */
3657	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3658	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3659	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3660	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3661
3662	/* For RX and TX threshold config */
3663	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3664	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3665
3666	/* For RX and TX Store and Forward Mode config */
3667	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3668	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3669
3670	/* For TX DMA Operating on Second Frame config */
3671	hw_if->config_osp_mode = xgbe_config_osp_mode;
3672
 
 
 
 
 
 
 
3673	/* For MMC statistics support */
3674	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3675	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3676	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3677
3678	/* For PTP config */
3679	hw_if->config_tstamp = xgbe_config_tstamp;
3680	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3681	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3682	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3683	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3684
3685	/* For Data Center Bridging config */
3686	hw_if->config_tc = xgbe_config_tc;
3687	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3688	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3689
3690	/* For Receive Side Scaling */
3691	hw_if->enable_rss = xgbe_enable_rss;
3692	hw_if->disable_rss = xgbe_disable_rss;
3693	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3694	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3695
3696	/* For ECC */
3697	hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3698	hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3699
3700	/* For VXLAN */
3701	hw_if->enable_vxlan = xgbe_enable_vxlan;
3702	hw_if->disable_vxlan = xgbe_disable_vxlan;
3703	hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3704
3705	DBGPR("<--xgbe_init_function_ptrs\n");
3706}
v4.10.11
   1/*
   2 * AMD 10Gb Ethernet driver
   3 *
   4 * This file is available to you under your choice of the following two
   5 * licenses:
   6 *
   7 * License 1: GPLv2
   8 *
   9 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
  10 *
  11 * This file is free software; you may copy, redistribute and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation, either version 2 of the License, or (at
  14 * your option) any later version.
  15 *
  16 * This file is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19 * General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  23 *
  24 * This file incorporates work covered by the following copyright and
  25 * permission notice:
  26 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
  27 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
  28 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
  29 *     and you.
  30 *
  31 *     The Software IS NOT an item of Licensed Software or Licensed Product
  32 *     under any End User Software License Agreement or Agreement for Licensed
  33 *     Product with Synopsys or any supplement thereto.  Permission is hereby
  34 *     granted, free of charge, to any person obtaining a copy of this software
  35 *     annotated with this license and the Software, to deal in the Software
  36 *     without restriction, including without limitation the rights to use,
  37 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
  38 *     of the Software, and to permit persons to whom the Software is furnished
  39 *     to do so, subject to the following conditions:
  40 *
  41 *     The above copyright notice and this permission notice shall be included
  42 *     in all copies or substantial portions of the Software.
  43 *
  44 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
  45 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
  46 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
  47 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
  48 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  49 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  50 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  51 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  52 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  53 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  54 *     THE POSSIBILITY OF SUCH DAMAGE.
  55 *
  56 *
  57 * License 2: Modified BSD
  58 *
  59 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
  60 * All rights reserved.
  61 *
  62 * Redistribution and use in source and binary forms, with or without
  63 * modification, are permitted provided that the following conditions are met:
  64 *     * Redistributions of source code must retain the above copyright
  65 *       notice, this list of conditions and the following disclaimer.
  66 *     * Redistributions in binary form must reproduce the above copyright
  67 *       notice, this list of conditions and the following disclaimer in the
  68 *       documentation and/or other materials provided with the distribution.
  69 *     * Neither the name of Advanced Micro Devices, Inc. nor the
  70 *       names of its contributors may be used to endorse or promote products
  71 *       derived from this software without specific prior written permission.
  72 *
  73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  83 *
  84 * This file incorporates work covered by the following copyright and
  85 * permission notice:
  86 *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
  87 *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
  88 *     Inc. unless otherwise expressly agreed to in writing between Synopsys
  89 *     and you.
  90 *
  91 *     The Software IS NOT an item of Licensed Software or Licensed Product
  92 *     under any End User Software License Agreement or Agreement for Licensed
  93 *     Product with Synopsys or any supplement thereto.  Permission is hereby
  94 *     granted, free of charge, to any person obtaining a copy of this software
  95 *     annotated with this license and the Software, to deal in the Software
  96 *     without restriction, including without limitation the rights to use,
  97 *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
  98 *     of the Software, and to permit persons to whom the Software is furnished
  99 *     to do so, subject to the following conditions:
 100 *
 101 *     The above copyright notice and this permission notice shall be included
 102 *     in all copies or substantial portions of the Software.
 103 *
 104 *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
 105 *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 106 *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 107 *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
 108 *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 109 *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 110 *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 111 *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 112 *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 113 *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 114 *     THE POSSIBILITY OF SUCH DAMAGE.
 115 */
 116
 117#include <linux/phy.h>
 118#include <linux/mdio.h>
 119#include <linux/clk.h>
 120#include <linux/bitrev.h>
 121#include <linux/crc32.h>
 
 122
 123#include "xgbe.h"
 124#include "xgbe-common.h"
 125
 126static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
 127{
 128	return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 129}
 130
 131static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
 132				      unsigned int usec)
 133{
 134	unsigned long rate;
 135	unsigned int ret;
 136
 137	DBGPR("-->xgbe_usec_to_riwt\n");
 138
 139	rate = pdata->sysclk_rate;
 140
 141	/*
 142	 * Convert the input usec value to the watchdog timer value. Each
 143	 * watchdog timer value is equivalent to 256 clock cycles.
 144	 * Calculate the required value as:
 145	 *   ( usec * ( system_clock_mhz / 10^6 ) / 256
 146	 */
 147	ret = (usec * (rate / 1000000)) / 256;
 148
 149	DBGPR("<--xgbe_usec_to_riwt\n");
 150
 151	return ret;
 152}
 153
 154static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
 155				      unsigned int riwt)
 156{
 157	unsigned long rate;
 158	unsigned int ret;
 159
 160	DBGPR("-->xgbe_riwt_to_usec\n");
 161
 162	rate = pdata->sysclk_rate;
 163
 164	/*
 165	 * Convert the input watchdog timer value to the usec value. Each
 166	 * watchdog timer value is equivalent to 256 clock cycles.
 167	 * Calculate the required value as:
 168	 *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
 169	 */
 170	ret = (riwt * 256) / (rate / 1000000);
 171
 172	DBGPR("<--xgbe_riwt_to_usec\n");
 173
 174	return ret;
 175}
 176
 177static int xgbe_config_pblx8(struct xgbe_prv_data *pdata)
 178{
 179	struct xgbe_channel *channel;
 180	unsigned int i;
 181
 182	channel = pdata->channel;
 183	for (i = 0; i < pdata->channel_count; i++, channel++)
 184		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, PBLX8,
 185				       pdata->pblx8);
 186
 187	return 0;
 188}
 189
 190static int xgbe_get_tx_pbl_val(struct xgbe_prv_data *pdata)
 191{
 192	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_TCR, PBL);
 193}
 194
 195static int xgbe_config_tx_pbl_val(struct xgbe_prv_data *pdata)
 196{
 197	struct xgbe_channel *channel;
 198	unsigned int i;
 199
 200	channel = pdata->channel;
 201	for (i = 0; i < pdata->channel_count; i++, channel++) {
 202		if (!channel->tx_ring)
 203			break;
 204
 205		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, PBL,
 206				       pdata->tx_pbl);
 
 207	}
 208
 209	return 0;
 210}
 211
 212static int xgbe_get_rx_pbl_val(struct xgbe_prv_data *pdata)
 213{
 214	return XGMAC_DMA_IOREAD_BITS(pdata->channel, DMA_CH_RCR, PBL);
 215}
 216
 217static int xgbe_config_rx_pbl_val(struct xgbe_prv_data *pdata)
 218{
 219	struct xgbe_channel *channel;
 220	unsigned int i;
 221
 222	channel = pdata->channel;
 223	for (i = 0; i < pdata->channel_count; i++, channel++) {
 224		if (!channel->rx_ring)
 225			break;
 226
 227		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, PBL,
 228				       pdata->rx_pbl);
 
 229	}
 230
 231	return 0;
 232}
 233
 234static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
 235{
 236	struct xgbe_channel *channel;
 237	unsigned int i;
 238
 239	channel = pdata->channel;
 240	for (i = 0; i < pdata->channel_count; i++, channel++) {
 241		if (!channel->tx_ring)
 242			break;
 243
 244		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, OSP,
 245				       pdata->tx_osp_mode);
 246	}
 247
 248	return 0;
 249}
 250
 251static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
 252{
 253	unsigned int i;
 254
 255	for (i = 0; i < pdata->rx_q_count; i++)
 256		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
 257
 258	return 0;
 259}
 260
 261static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
 262{
 263	unsigned int i;
 264
 265	for (i = 0; i < pdata->tx_q_count; i++)
 266		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
 267
 268	return 0;
 269}
 270
 271static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
 272				    unsigned int val)
 273{
 274	unsigned int i;
 275
 276	for (i = 0; i < pdata->rx_q_count; i++)
 277		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
 278
 279	return 0;
 280}
 281
 282static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
 283				    unsigned int val)
 284{
 285	unsigned int i;
 286
 287	for (i = 0; i < pdata->tx_q_count; i++)
 288		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
 289
 290	return 0;
 291}
 292
 293static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
 294{
 295	struct xgbe_channel *channel;
 296	unsigned int i;
 297
 298	channel = pdata->channel;
 299	for (i = 0; i < pdata->channel_count; i++, channel++) {
 300		if (!channel->rx_ring)
 301			break;
 302
 303		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RIWT, RWT,
 304				       pdata->rx_riwt);
 305	}
 306
 307	return 0;
 308}
 309
 310static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
 311{
 312	return 0;
 313}
 314
 315static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
 316{
 317	struct xgbe_channel *channel;
 318	unsigned int i;
 319
 320	channel = pdata->channel;
 321	for (i = 0; i < pdata->channel_count; i++, channel++) {
 322		if (!channel->rx_ring)
 323			break;
 324
 325		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, RBSZ,
 326				       pdata->rx_buf_size);
 327	}
 328}
 329
 330static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
 331{
 332	struct xgbe_channel *channel;
 333	unsigned int i;
 334
 335	channel = pdata->channel;
 336	for (i = 0; i < pdata->channel_count; i++, channel++) {
 337		if (!channel->tx_ring)
 338			break;
 339
 340		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, TSE, 1);
 341	}
 342}
 343
 344static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
 345{
 346	struct xgbe_channel *channel;
 347	unsigned int i;
 348
 349	channel = pdata->channel;
 350	for (i = 0; i < pdata->channel_count; i++, channel++) {
 351		if (!channel->rx_ring)
 352			break;
 353
 354		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_CR, SPH, 1);
 355	}
 356
 357	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
 358}
 359
 360static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
 361			      unsigned int index, unsigned int val)
 362{
 363	unsigned int wait;
 364	int ret = 0;
 365
 366	mutex_lock(&pdata->rss_mutex);
 367
 368	if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
 369		ret = -EBUSY;
 370		goto unlock;
 371	}
 372
 373	XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
 374
 375	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
 376	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
 377	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
 378	XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
 379
 380	wait = 1000;
 381	while (wait--) {
 382		if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
 383			goto unlock;
 384
 385		usleep_range(1000, 1500);
 386	}
 387
 388	ret = -EBUSY;
 389
 390unlock:
 391	mutex_unlock(&pdata->rss_mutex);
 392
 393	return ret;
 394}
 395
 396static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
 397{
 398	unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
 399	unsigned int *key = (unsigned int *)&pdata->rss_key;
 400	int ret;
 401
 402	while (key_regs--) {
 403		ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
 404					 key_regs, *key++);
 405		if (ret)
 406			return ret;
 407	}
 408
 409	return 0;
 410}
 411
 412static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
 413{
 414	unsigned int i;
 415	int ret;
 416
 417	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
 418		ret = xgbe_write_rss_reg(pdata,
 419					 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
 420					 pdata->rss_table[i]);
 421		if (ret)
 422			return ret;
 423	}
 424
 425	return 0;
 426}
 427
 428static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
 429{
 430	memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
 431
 432	return xgbe_write_rss_hash_key(pdata);
 433}
 434
 435static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
 436				     const u32 *table)
 437{
 438	unsigned int i;
 439
 440	for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
 441		XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
 442
 443	return xgbe_write_rss_lookup_table(pdata);
 444}
 445
 446static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
 447{
 448	int ret;
 449
 450	if (!pdata->hw_feat.rss)
 451		return -EOPNOTSUPP;
 452
 453	/* Program the hash key */
 454	ret = xgbe_write_rss_hash_key(pdata);
 455	if (ret)
 456		return ret;
 457
 458	/* Program the lookup table */
 459	ret = xgbe_write_rss_lookup_table(pdata);
 460	if (ret)
 461		return ret;
 462
 463	/* Set the RSS options */
 464	XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
 465
 466	/* Enable RSS */
 467	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
 468
 469	return 0;
 470}
 471
 472static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
 473{
 474	if (!pdata->hw_feat.rss)
 475		return -EOPNOTSUPP;
 476
 477	XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
 478
 479	return 0;
 480}
 481
 482static void xgbe_config_rss(struct xgbe_prv_data *pdata)
 483{
 484	int ret;
 485
 486	if (!pdata->hw_feat.rss)
 487		return;
 488
 489	if (pdata->netdev->features & NETIF_F_RXHASH)
 490		ret = xgbe_enable_rss(pdata);
 491	else
 492		ret = xgbe_disable_rss(pdata);
 493
 494	if (ret)
 495		netdev_err(pdata->netdev,
 496			   "error configuring RSS, RSS disabled\n");
 497}
 498
 499static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
 500			      unsigned int queue)
 501{
 502	unsigned int prio, tc;
 503
 504	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
 505		/* Does this queue handle the priority? */
 506		if (pdata->prio2q_map[prio] != queue)
 507			continue;
 508
 509		/* Get the Traffic Class for this priority */
 510		tc = pdata->ets->prio_tc[prio];
 511
 512		/* Check if PFC is enabled for this traffic class */
 513		if (pdata->pfc->pfc_en & (1 << tc))
 514			return true;
 515	}
 516
 517	return false;
 518}
 519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
 521{
 522	unsigned int max_q_count, q_count;
 523	unsigned int reg, reg_val;
 524	unsigned int i;
 525
 526	/* Clear MTL flow control */
 527	for (i = 0; i < pdata->rx_q_count; i++)
 528		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
 529
 530	/* Clear MAC flow control */
 531	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
 532	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
 533	reg = MAC_Q0TFCR;
 534	for (i = 0; i < q_count; i++) {
 535		reg_val = XGMAC_IOREAD(pdata, reg);
 536		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
 537		XGMAC_IOWRITE(pdata, reg, reg_val);
 538
 539		reg += MAC_QTFCR_INC;
 540	}
 541
 542	return 0;
 543}
 544
 545static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
 546{
 547	struct ieee_pfc *pfc = pdata->pfc;
 548	struct ieee_ets *ets = pdata->ets;
 549	unsigned int max_q_count, q_count;
 550	unsigned int reg, reg_val;
 551	unsigned int i;
 552
 553	/* Set MTL flow control */
 554	for (i = 0; i < pdata->rx_q_count; i++) {
 555		unsigned int ehfc = 0;
 556
 557		if (pdata->rx_rfd[i]) {
 558			/* Flow control thresholds are established */
 559			if (pfc && ets) {
 560				if (xgbe_is_pfc_queue(pdata, i))
 561					ehfc = 1;
 562			} else {
 563				ehfc = 1;
 564			}
 565		}
 566
 567		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
 568
 569		netif_dbg(pdata, drv, pdata->netdev,
 570			  "flow control %s for RXq%u\n",
 571			  ehfc ? "enabled" : "disabled", i);
 572	}
 573
 574	/* Set MAC flow control */
 575	max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
 576	q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
 577	reg = MAC_Q0TFCR;
 578	for (i = 0; i < q_count; i++) {
 579		reg_val = XGMAC_IOREAD(pdata, reg);
 580
 581		/* Enable transmit flow control */
 582		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
 583		/* Set pause time */
 584		XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
 585
 586		XGMAC_IOWRITE(pdata, reg, reg_val);
 587
 588		reg += MAC_QTFCR_INC;
 589	}
 590
 591	return 0;
 592}
 593
 594static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
 595{
 596	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
 597
 598	return 0;
 599}
 600
 601static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
 602{
 603	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
 604
 605	return 0;
 606}
 607
 608static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
 609{
 610	struct ieee_pfc *pfc = pdata->pfc;
 611
 612	if (pdata->tx_pause || (pfc && pfc->pfc_en))
 613		xgbe_enable_tx_flow_control(pdata);
 614	else
 615		xgbe_disable_tx_flow_control(pdata);
 616
 617	return 0;
 618}
 619
 620static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
 621{
 622	struct ieee_pfc *pfc = pdata->pfc;
 623
 624	if (pdata->rx_pause || (pfc && pfc->pfc_en))
 625		xgbe_enable_rx_flow_control(pdata);
 626	else
 627		xgbe_disable_rx_flow_control(pdata);
 628
 629	return 0;
 630}
 631
 632static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
 633{
 634	struct ieee_pfc *pfc = pdata->pfc;
 635
 636	xgbe_config_tx_flow_control(pdata);
 637	xgbe_config_rx_flow_control(pdata);
 638
 639	XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
 640			   (pfc && pfc->pfc_en) ? 1 : 0);
 641}
 642
 643static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
 644{
 645	struct xgbe_channel *channel;
 646	unsigned int dma_ch_isr, dma_ch_ier;
 647	unsigned int i;
 648
 649	/* Set the interrupt mode if supported */
 650	if (pdata->channel_irq_mode)
 651		XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
 652				   pdata->channel_irq_mode);
 653
 654	channel = pdata->channel;
 655	for (i = 0; i < pdata->channel_count; i++, channel++) {
 
 
 
 656		/* Clear all the interrupts which are set */
 657		dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
 658		XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
 659
 660		/* Clear all interrupt enable bits */
 661		dma_ch_ier = 0;
 662
 663		/* Enable following interrupts
 664		 *   NIE  - Normal Interrupt Summary Enable
 665		 *   AIE  - Abnormal Interrupt Summary Enable
 666		 *   FBEE - Fatal Bus Error Enable
 667		 */
 668		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, NIE, 1);
 669		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, AIE, 1);
 670		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
 
 
 
 
 
 671
 672		if (channel->tx_ring) {
 673			/* Enable the following Tx interrupts
 674			 *   TIE  - Transmit Interrupt Enable (unless using
 675			 *          per channel interrupts in edge triggered
 676			 *          mode)
 677			 */
 678			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
 679				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
 
 680		}
 681		if (channel->rx_ring) {
 682			/* Enable following Rx interrupts
 683			 *   RBUE - Receive Buffer Unavailable Enable
 684			 *   RIE  - Receive Interrupt Enable (unless using
 685			 *          per channel interrupts in edge triggered
 686			 *          mode)
 687			 */
 688			XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
 689			if (!pdata->per_channel_irq || pdata->channel_irq_mode)
 690				XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
 
 691		}
 692
 693		XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
 694	}
 695}
 696
 697static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
 698{
 699	unsigned int mtl_q_isr;
 700	unsigned int q_count, i;
 701
 702	q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
 703	for (i = 0; i < q_count; i++) {
 704		/* Clear all the interrupts which are set */
 705		mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
 706		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
 707
 708		/* No MTL interrupts to be enabled */
 709		XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
 710	}
 711}
 712
 713static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
 714{
 715	unsigned int mac_ier = 0;
 716
 717	/* Enable Timestamp interrupt */
 718	XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
 719
 720	XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
 721
 722	/* Enable all counter interrupts */
 723	XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
 724	XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
 725
 726	/* Enable MDIO single command completion interrupt */
 727	XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
 728}
 729
 730static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
 731{
 732	unsigned int ecc_isr, ecc_ier = 0;
 733
 734	if (!pdata->vdata->ecc_support)
 735		return;
 736
 737	/* Clear all the interrupts which are set */
 738	ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
 739	XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
 740
 741	/* Enable ECC interrupts */
 742	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
 743	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
 744	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
 745	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
 746	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
 747	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
 748
 749	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 750}
 751
 752static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
 753{
 754	unsigned int ecc_ier;
 755
 756	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
 757
 758	/* Disable ECC DED interrupts */
 759	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
 760	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
 761	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
 762
 763	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 764}
 765
 766static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
 767				 enum xgbe_ecc_sec sec)
 768{
 769	unsigned int ecc_ier;
 770
 771	ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
 772
 773	/* Disable ECC SEC interrupt */
 774	switch (sec) {
 775	case XGBE_ECC_SEC_TX:
 776	XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
 777		break;
 778	case XGBE_ECC_SEC_RX:
 779	XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
 780		break;
 781	case XGBE_ECC_SEC_DESC:
 782	XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
 783		break;
 784	}
 785
 786	XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 787}
 788
 789static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
 790{
 791	unsigned int ss;
 792
 793	switch (speed) {
 
 
 
 794	case SPEED_1000:
 795		ss = 0x03;
 796		break;
 797	case SPEED_2500:
 798		ss = 0x02;
 799		break;
 800	case SPEED_10000:
 801		ss = 0x00;
 802		break;
 803	default:
 804		return -EINVAL;
 805	}
 806
 807	if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
 808		XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
 809
 810	return 0;
 811}
 812
 813static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
 814{
 815	/* Put the VLAN tag in the Rx descriptor */
 816	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
 817
 818	/* Don't check the VLAN type */
 819	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
 820
 821	/* Check only C-TAG (0x8100) packets */
 822	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
 823
 824	/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
 825	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
 826
 827	/* Enable VLAN tag stripping */
 828	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
 829
 830	return 0;
 831}
 832
 833static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
 834{
 835	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
 836
 837	return 0;
 838}
 839
 840static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
 841{
 842	/* Enable VLAN filtering */
 843	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
 844
 845	/* Enable VLAN Hash Table filtering */
 846	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
 847
 848	/* Disable VLAN tag inverse matching */
 849	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
 850
 851	/* Only filter on the lower 12-bits of the VLAN tag */
 852	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
 853
 854	/* In order for the VLAN Hash Table filtering to be effective,
 855	 * the VLAN tag identifier in the VLAN Tag Register must not
 856	 * be zero.  Set the VLAN tag identifier to "1" to enable the
 857	 * VLAN Hash Table filtering.  This implies that a VLAN tag of
 858	 * 1 will always pass filtering.
 859	 */
 860	XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
 861
 862	return 0;
 863}
 864
 865static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
 866{
 867	/* Disable VLAN filtering */
 868	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
 869
 870	return 0;
 871}
 872
 873static u32 xgbe_vid_crc32_le(__le16 vid_le)
 874{
 875	u32 poly = 0xedb88320;	/* CRCPOLY_LE */
 876	u32 crc = ~0;
 877	u32 temp = 0;
 878	unsigned char *data = (unsigned char *)&vid_le;
 879	unsigned char data_byte = 0;
 880	int i, bits;
 881
 882	bits = get_bitmask_order(VLAN_VID_MASK);
 883	for (i = 0; i < bits; i++) {
 884		if ((i % 8) == 0)
 885			data_byte = data[i / 8];
 886
 887		temp = ((crc & 1) ^ data_byte) & 1;
 888		crc >>= 1;
 889		data_byte >>= 1;
 890
 891		if (temp)
 892			crc ^= poly;
 893	}
 894
 895	return crc;
 896}
 897
 898static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
 899{
 900	u32 crc;
 901	u16 vid;
 902	__le16 vid_le;
 903	u16 vlan_hash_table = 0;
 904
 905	/* Generate the VLAN Hash Table value */
 906	for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
 907		/* Get the CRC32 value of the VLAN ID */
 908		vid_le = cpu_to_le16(vid);
 909		crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
 910
 911		vlan_hash_table |= (1 << crc);
 912	}
 913
 914	/* Set the VLAN Hash Table filtering register */
 915	XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
 916
 917	return 0;
 918}
 919
 920static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
 921				     unsigned int enable)
 922{
 923	unsigned int val = enable ? 1 : 0;
 924
 925	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
 926		return 0;
 927
 928	netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
 929		  enable ? "entering" : "leaving");
 930	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
 931
 932	/* Hardware will still perform VLAN filtering in promiscuous mode */
 933	if (enable) {
 934		xgbe_disable_rx_vlan_filtering(pdata);
 935	} else {
 936		if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
 937			xgbe_enable_rx_vlan_filtering(pdata);
 938	}
 939
 940	return 0;
 941}
 942
 943static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
 944				       unsigned int enable)
 945{
 946	unsigned int val = enable ? 1 : 0;
 947
 948	if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
 949		return 0;
 950
 951	netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
 952		  enable ? "entering" : "leaving");
 953	XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
 954
 955	return 0;
 956}
 957
 958static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
 959			     struct netdev_hw_addr *ha, unsigned int *mac_reg)
 960{
 961	unsigned int mac_addr_hi, mac_addr_lo;
 962	u8 *mac_addr;
 963
 964	mac_addr_lo = 0;
 965	mac_addr_hi = 0;
 966
 967	if (ha) {
 968		mac_addr = (u8 *)&mac_addr_lo;
 969		mac_addr[0] = ha->addr[0];
 970		mac_addr[1] = ha->addr[1];
 971		mac_addr[2] = ha->addr[2];
 972		mac_addr[3] = ha->addr[3];
 973		mac_addr = (u8 *)&mac_addr_hi;
 974		mac_addr[0] = ha->addr[4];
 975		mac_addr[1] = ha->addr[5];
 976
 977		netif_dbg(pdata, drv, pdata->netdev,
 978			  "adding mac address %pM at %#x\n",
 979			  ha->addr, *mac_reg);
 980
 981		XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
 982	}
 983
 984	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
 985	*mac_reg += MAC_MACA_INC;
 986	XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
 987	*mac_reg += MAC_MACA_INC;
 988}
 989
 990static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
 991{
 992	struct net_device *netdev = pdata->netdev;
 993	struct netdev_hw_addr *ha;
 994	unsigned int mac_reg;
 995	unsigned int addn_macs;
 996
 997	mac_reg = MAC_MACA1HR;
 998	addn_macs = pdata->hw_feat.addn_mac;
 999
1000	if (netdev_uc_count(netdev) > addn_macs) {
1001		xgbe_set_promiscuous_mode(pdata, 1);
1002	} else {
1003		netdev_for_each_uc_addr(ha, netdev) {
1004			xgbe_set_mac_reg(pdata, ha, &mac_reg);
1005			addn_macs--;
1006		}
1007
1008		if (netdev_mc_count(netdev) > addn_macs) {
1009			xgbe_set_all_multicast_mode(pdata, 1);
1010		} else {
1011			netdev_for_each_mc_addr(ha, netdev) {
1012				xgbe_set_mac_reg(pdata, ha, &mac_reg);
1013				addn_macs--;
1014			}
1015		}
1016	}
1017
1018	/* Clear remaining additional MAC address entries */
1019	while (addn_macs--)
1020		xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1021}
1022
1023static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1024{
1025	struct net_device *netdev = pdata->netdev;
1026	struct netdev_hw_addr *ha;
1027	unsigned int hash_reg;
1028	unsigned int hash_table_shift, hash_table_count;
1029	u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1030	u32 crc;
1031	unsigned int i;
1032
1033	hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1034	hash_table_count = pdata->hw_feat.hash_table_size / 32;
1035	memset(hash_table, 0, sizeof(hash_table));
1036
1037	/* Build the MAC Hash Table register values */
1038	netdev_for_each_uc_addr(ha, netdev) {
1039		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1040		crc >>= hash_table_shift;
1041		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1042	}
1043
1044	netdev_for_each_mc_addr(ha, netdev) {
1045		crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1046		crc >>= hash_table_shift;
1047		hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1048	}
1049
1050	/* Set the MAC Hash Table registers */
1051	hash_reg = MAC_HTR0;
1052	for (i = 0; i < hash_table_count; i++) {
1053		XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1054		hash_reg += MAC_HTR_INC;
1055	}
1056}
1057
1058static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1059{
1060	if (pdata->hw_feat.hash_table_size)
1061		xgbe_set_mac_hash_table(pdata);
1062	else
1063		xgbe_set_mac_addn_addrs(pdata);
1064
1065	return 0;
1066}
1067
1068static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
1069{
1070	unsigned int mac_addr_hi, mac_addr_lo;
1071
1072	mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1073	mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1074		      (addr[1] <<  8) | (addr[0] <<  0);
1075
1076	XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1077	XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1078
1079	return 0;
1080}
1081
1082static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1083{
1084	struct net_device *netdev = pdata->netdev;
1085	unsigned int pr_mode, am_mode;
1086
1087	pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1088	am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1089
1090	xgbe_set_promiscuous_mode(pdata, pr_mode);
1091	xgbe_set_all_multicast_mode(pdata, am_mode);
1092
1093	xgbe_add_mac_addresses(pdata);
1094
1095	return 0;
1096}
1097
1098static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1099{
1100	unsigned int reg;
1101
1102	if (gpio > 15)
1103		return -EINVAL;
1104
1105	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1106
1107	reg &= ~(1 << (gpio + 16));
1108	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1109
1110	return 0;
1111}
1112
1113static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1114{
1115	unsigned int reg;
1116
1117	if (gpio > 15)
1118		return -EINVAL;
1119
1120	reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1121
1122	reg |= (1 << (gpio + 16));
1123	XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1124
1125	return 0;
1126}
1127
1128static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1129				 int mmd_reg)
1130{
1131	unsigned long flags;
1132	unsigned int mmd_address, index, offset;
1133	int mmd_data;
1134
1135	if (mmd_reg & MII_ADDR_C45)
1136		mmd_address = mmd_reg & ~MII_ADDR_C45;
1137	else
1138		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1139
1140	/* The PCS registers are accessed using mmio. The underlying
1141	 * management interface uses indirect addressing to access the MMD
1142	 * register sets. This requires accessing of the PCS register in two
1143	 * phases, an address phase and a data phase.
1144	 *
1145	 * The mmio interface is based on 16-bit offsets and values. All
1146	 * register offsets must therefore be adjusted by left shifting the
1147	 * offset 1 bit and reading 16 bits of data.
1148	 */
1149	mmd_address <<= 1;
1150	index = mmd_address & ~pdata->xpcs_window_mask;
1151	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1152
1153	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1154	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1155	mmd_data = XPCS16_IOREAD(pdata, offset);
1156	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1157
1158	return mmd_data;
1159}
1160
1161static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1162				   int mmd_reg, int mmd_data)
1163{
1164	unsigned long flags;
1165	unsigned int mmd_address, index, offset;
1166
1167	if (mmd_reg & MII_ADDR_C45)
1168		mmd_address = mmd_reg & ~MII_ADDR_C45;
1169	else
1170		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1171
1172	/* The PCS registers are accessed using mmio. The underlying
1173	 * management interface uses indirect addressing to access the MMD
1174	 * register sets. This requires accessing of the PCS register in two
1175	 * phases, an address phase and a data phase.
1176	 *
1177	 * The mmio interface is based on 16-bit offsets and values. All
1178	 * register offsets must therefore be adjusted by left shifting the
1179	 * offset 1 bit and writing 16 bits of data.
1180	 */
1181	mmd_address <<= 1;
1182	index = mmd_address & ~pdata->xpcs_window_mask;
1183	offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1184
1185	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1186	XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1187	XPCS16_IOWRITE(pdata, offset, mmd_data);
1188	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1189}
1190
1191static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1192				 int mmd_reg)
1193{
1194	unsigned long flags;
1195	unsigned int mmd_address;
1196	int mmd_data;
1197
1198	if (mmd_reg & MII_ADDR_C45)
1199		mmd_address = mmd_reg & ~MII_ADDR_C45;
1200	else
1201		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1202
1203	/* The PCS registers are accessed using mmio. The underlying APB3
1204	 * management interface uses indirect addressing to access the MMD
1205	 * register sets. This requires accessing of the PCS register in two
1206	 * phases, an address phase and a data phase.
1207	 *
1208	 * The mmio interface is based on 32-bit offsets and values. All
1209	 * register offsets must therefore be adjusted by left shifting the
1210	 * offset 2 bits and reading 32 bits of data.
1211	 */
1212	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1213	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1214	mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1215	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1216
1217	return mmd_data;
1218}
1219
1220static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1221				   int mmd_reg, int mmd_data)
1222{
1223	unsigned int mmd_address;
1224	unsigned long flags;
1225
1226	if (mmd_reg & MII_ADDR_C45)
1227		mmd_address = mmd_reg & ~MII_ADDR_C45;
1228	else
1229		mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1230
1231	/* The PCS registers are accessed using mmio. The underlying APB3
1232	 * management interface uses indirect addressing to access the MMD
1233	 * register sets. This requires accessing of the PCS register in two
1234	 * phases, an address phase and a data phase.
1235	 *
1236	 * The mmio interface is based on 32-bit offsets and values. All
1237	 * register offsets must therefore be adjusted by left shifting the
1238	 * offset 2 bits and writing 32 bits of data.
1239	 */
1240	spin_lock_irqsave(&pdata->xpcs_lock, flags);
1241	XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1242	XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1243	spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1244}
1245
1246static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1247			      int mmd_reg)
1248{
1249	switch (pdata->vdata->xpcs_access) {
1250	case XGBE_XPCS_ACCESS_V1:
1251		return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1252
1253	case XGBE_XPCS_ACCESS_V2:
1254	default:
1255		return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1256	}
1257}
1258
1259static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1260				int mmd_reg, int mmd_data)
1261{
1262	switch (pdata->vdata->xpcs_access) {
1263	case XGBE_XPCS_ACCESS_V1:
1264		return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1265
1266	case XGBE_XPCS_ACCESS_V2:
1267	default:
1268		return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1269	}
1270}
1271
1272static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1273				   int reg, u16 val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1274{
1275	unsigned int mdio_sca, mdio_sccd;
1276
1277	reinit_completion(&pdata->mdio_complete);
1278
1279	mdio_sca = 0;
1280	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, REG, reg);
1281	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, addr);
1282	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1283
1284	mdio_sccd = 0;
1285	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1286	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1287	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1288	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1289
1290	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1291		netdev_err(pdata->netdev, "mdio write operation timed out\n");
1292		return -ETIMEDOUT;
1293	}
1294
1295	return 0;
1296}
1297
1298static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1299				  int reg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300{
1301	unsigned int mdio_sca, mdio_sccd;
1302
1303	reinit_completion(&pdata->mdio_complete);
1304
1305	mdio_sca = 0;
1306	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, REG, reg);
1307	XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, addr);
1308	XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1309
1310	mdio_sccd = 0;
1311	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1312	XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1313	XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1314
1315	if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1316		netdev_err(pdata->netdev, "mdio read operation timed out\n");
1317		return -ETIMEDOUT;
1318	}
1319
1320	return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1321}
1322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1324				 enum xgbe_mdio_mode mode)
1325{
1326	unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1327
1328	switch (mode) {
1329	case XGBE_MDIO_MODE_CL22:
1330		if (port > XGMAC_MAX_C22_PORT)
1331			return -EINVAL;
1332		reg_val |= (1 << port);
1333		break;
1334	case XGBE_MDIO_MODE_CL45:
1335		break;
1336	default:
1337		return -EINVAL;
1338	}
1339
1340	XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1341
1342	return 0;
1343}
1344
1345static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1346{
1347	return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1348}
1349
1350static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1351{
1352	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1353
1354	return 0;
1355}
1356
1357static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1358{
1359	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1360
1361	return 0;
1362}
1363
1364static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1365{
1366	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1367
1368	/* Reset the Tx descriptor
1369	 *   Set buffer 1 (lo) address to zero
1370	 *   Set buffer 1 (hi) address to zero
1371	 *   Reset all other control bits (IC, TTSE, B2L & B1L)
1372	 *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1373	 */
1374	rdesc->desc0 = 0;
1375	rdesc->desc1 = 0;
1376	rdesc->desc2 = 0;
1377	rdesc->desc3 = 0;
1378
1379	/* Make sure ownership is written to the descriptor */
1380	dma_wmb();
1381}
1382
1383static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1384{
1385	struct xgbe_ring *ring = channel->tx_ring;
1386	struct xgbe_ring_data *rdata;
1387	int i;
1388	int start_index = ring->cur;
1389
1390	DBGPR("-->tx_desc_init\n");
1391
1392	/* Initialze all descriptors */
1393	for (i = 0; i < ring->rdesc_count; i++) {
1394		rdata = XGBE_GET_DESC_DATA(ring, i);
1395
1396		/* Initialize Tx descriptor */
1397		xgbe_tx_desc_reset(rdata);
1398	}
1399
1400	/* Update the total number of Tx descriptors */
1401	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1402
1403	/* Update the starting address of descriptor ring */
1404	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1405	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1406			  upper_32_bits(rdata->rdesc_dma));
1407	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1408			  lower_32_bits(rdata->rdesc_dma));
1409
1410	DBGPR("<--tx_desc_init\n");
1411}
1412
1413static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1414			       struct xgbe_ring_data *rdata, unsigned int index)
1415{
1416	struct xgbe_ring_desc *rdesc = rdata->rdesc;
1417	unsigned int rx_usecs = pdata->rx_usecs;
1418	unsigned int rx_frames = pdata->rx_frames;
1419	unsigned int inte;
1420	dma_addr_t hdr_dma, buf_dma;
1421
1422	if (!rx_usecs && !rx_frames) {
1423		/* No coalescing, interrupt for every descriptor */
1424		inte = 1;
1425	} else {
1426		/* Set interrupt based on Rx frame coalescing setting */
1427		if (rx_frames && !((index + 1) % rx_frames))
1428			inte = 1;
1429		else
1430			inte = 0;
1431	}
1432
1433	/* Reset the Rx descriptor
1434	 *   Set buffer 1 (lo) address to header dma address (lo)
1435	 *   Set buffer 1 (hi) address to header dma address (hi)
1436	 *   Set buffer 2 (lo) address to buffer dma address (lo)
1437	 *   Set buffer 2 (hi) address to buffer dma address (hi) and
1438	 *     set control bits OWN and INTE
1439	 */
1440	hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1441	buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1442	rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1443	rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1444	rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1445	rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1446
1447	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1448
1449	/* Since the Rx DMA engine is likely running, make sure everything
1450	 * is written to the descriptor(s) before setting the OWN bit
1451	 * for the descriptor
1452	 */
1453	dma_wmb();
1454
1455	XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1456
1457	/* Make sure ownership is written to the descriptor */
1458	dma_wmb();
1459}
1460
1461static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1462{
1463	struct xgbe_prv_data *pdata = channel->pdata;
1464	struct xgbe_ring *ring = channel->rx_ring;
1465	struct xgbe_ring_data *rdata;
1466	unsigned int start_index = ring->cur;
1467	unsigned int i;
1468
1469	DBGPR("-->rx_desc_init\n");
1470
1471	/* Initialize all descriptors */
1472	for (i = 0; i < ring->rdesc_count; i++) {
1473		rdata = XGBE_GET_DESC_DATA(ring, i);
1474
1475		/* Initialize Rx descriptor */
1476		xgbe_rx_desc_reset(pdata, rdata, i);
1477	}
1478
1479	/* Update the total number of Rx descriptors */
1480	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1481
1482	/* Update the starting address of descriptor ring */
1483	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1484	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1485			  upper_32_bits(rdata->rdesc_dma));
1486	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1487			  lower_32_bits(rdata->rdesc_dma));
1488
1489	/* Update the Rx Descriptor Tail Pointer */
1490	rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1491	XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1492			  lower_32_bits(rdata->rdesc_dma));
1493
1494	DBGPR("<--rx_desc_init\n");
1495}
1496
1497static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1498				      unsigned int addend)
1499{
 
 
1500	/* Set the addend register value and tell the device */
1501	XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1502	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1503
1504	/* Wait for addend update to complete */
1505	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1506		udelay(5);
 
 
 
 
1507}
1508
1509static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1510				 unsigned int nsec)
1511{
 
 
1512	/* Set the time values and tell the device */
1513	XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1514	XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1515	XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1516
1517	/* Wait for time update to complete */
1518	while (XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1519		udelay(5);
 
 
 
1520}
1521
1522static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1523{
1524	u64 nsec;
1525
1526	nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1527	nsec *= NSEC_PER_SEC;
1528	nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1529
1530	return nsec;
1531}
1532
1533static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1534{
1535	unsigned int tx_snr, tx_ssr;
1536	u64 nsec;
1537
1538	if (pdata->vdata->tx_tstamp_workaround) {
1539		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1540		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1541	} else {
1542		tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1543		tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1544	}
1545
1546	if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1547		return 0;
1548
1549	nsec = tx_ssr;
1550	nsec *= NSEC_PER_SEC;
1551	nsec += tx_snr;
1552
1553	return nsec;
1554}
1555
1556static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1557			       struct xgbe_ring_desc *rdesc)
1558{
1559	u64 nsec;
1560
1561	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1562	    !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1563		nsec = le32_to_cpu(rdesc->desc1);
1564		nsec <<= 32;
1565		nsec |= le32_to_cpu(rdesc->desc0);
1566		if (nsec != 0xffffffffffffffffULL) {
1567			packet->rx_tstamp = nsec;
1568			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1569				       RX_TSTAMP, 1);
1570		}
1571	}
1572}
1573
1574static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1575			      unsigned int mac_tscr)
1576{
1577	/* Set one nano-second accuracy */
1578	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1579
1580	/* Set fine timestamp update */
1581	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1582
1583	/* Overwrite earlier timestamps */
1584	XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1585
1586	XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1587
1588	/* Exit if timestamping is not enabled */
1589	if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1590		return 0;
1591
1592	/* Initialize time registers */
1593	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1594	XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1595	xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1596	xgbe_set_tstamp_time(pdata, 0, 0);
1597
1598	/* Initialize the timecounter */
1599	timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1600			 ktime_to_ns(ktime_get_real()));
1601
1602	return 0;
1603}
1604
1605static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1606			       struct xgbe_ring *ring)
1607{
1608	struct xgbe_prv_data *pdata = channel->pdata;
1609	struct xgbe_ring_data *rdata;
1610
1611	/* Make sure everything is written before the register write */
1612	wmb();
1613
1614	/* Issue a poll command to Tx DMA by writing address
1615	 * of next immediate free descriptor */
1616	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1617	XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1618			  lower_32_bits(rdata->rdesc_dma));
1619
1620	/* Start the Tx timer */
1621	if (pdata->tx_usecs && !channel->tx_timer_active) {
1622		channel->tx_timer_active = 1;
1623		mod_timer(&channel->tx_timer,
1624			  jiffies + usecs_to_jiffies(pdata->tx_usecs));
1625	}
1626
1627	ring->tx.xmit_more = 0;
1628}
1629
1630static void xgbe_dev_xmit(struct xgbe_channel *channel)
1631{
1632	struct xgbe_prv_data *pdata = channel->pdata;
1633	struct xgbe_ring *ring = channel->tx_ring;
1634	struct xgbe_ring_data *rdata;
1635	struct xgbe_ring_desc *rdesc;
1636	struct xgbe_packet_data *packet = &ring->packet_data;
1637	unsigned int csum, tso, vlan;
 
1638	unsigned int tso_context, vlan_context;
1639	unsigned int tx_set_ic;
1640	int start_index = ring->cur;
1641	int cur_index = ring->cur;
1642	int i;
1643
1644	DBGPR("-->xgbe_dev_xmit\n");
1645
 
 
 
1646	csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1647			      CSUM_ENABLE);
1648	tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1649			     TSO_ENABLE);
1650	vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1651			      VLAN_CTAG);
 
 
1652
1653	if (tso && (packet->mss != ring->tx.cur_mss))
1654		tso_context = 1;
1655	else
1656		tso_context = 0;
1657
1658	if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1659		vlan_context = 1;
1660	else
1661		vlan_context = 0;
1662
1663	/* Determine if an interrupt should be generated for this Tx:
1664	 *   Interrupt:
1665	 *     - Tx frame count exceeds the frame count setting
1666	 *     - Addition of Tx frame count to the frame count since the
1667	 *       last interrupt was set exceeds the frame count setting
1668	 *   No interrupt:
1669	 *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1670	 *     - Addition of Tx frame count to the frame count since the
1671	 *       last interrupt was set does not exceed the frame count setting
1672	 */
1673	ring->coalesce_count += packet->tx_packets;
1674	if (!pdata->tx_frames)
1675		tx_set_ic = 0;
1676	else if (packet->tx_packets > pdata->tx_frames)
1677		tx_set_ic = 1;
1678	else if ((ring->coalesce_count % pdata->tx_frames) <
1679		 packet->tx_packets)
1680		tx_set_ic = 1;
1681	else
1682		tx_set_ic = 0;
1683
1684	rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1685	rdesc = rdata->rdesc;
1686
1687	/* Create a context descriptor if this is a TSO packet */
1688	if (tso_context || vlan_context) {
1689		if (tso_context) {
1690			netif_dbg(pdata, tx_queued, pdata->netdev,
1691				  "TSO context descriptor, mss=%u\n",
1692				  packet->mss);
1693
1694			/* Set the MSS size */
1695			XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1696					  MSS, packet->mss);
1697
1698			/* Mark it as a CONTEXT descriptor */
1699			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1700					  CTXT, 1);
1701
1702			/* Indicate this descriptor contains the MSS */
1703			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1704					  TCMSSV, 1);
1705
1706			ring->tx.cur_mss = packet->mss;
1707		}
1708
1709		if (vlan_context) {
1710			netif_dbg(pdata, tx_queued, pdata->netdev,
1711				  "VLAN context descriptor, ctag=%u\n",
1712				  packet->vlan_ctag);
1713
1714			/* Mark it as a CONTEXT descriptor */
1715			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1716					  CTXT, 1);
1717
1718			/* Set the VLAN tag */
1719			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1720					  VT, packet->vlan_ctag);
1721
1722			/* Indicate this descriptor contains the VLAN tag */
1723			XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1724					  VLTV, 1);
1725
1726			ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1727		}
1728
1729		cur_index++;
1730		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1731		rdesc = rdata->rdesc;
1732	}
1733
1734	/* Update buffer address (for TSO this is the header) */
1735	rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1736	rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1737
1738	/* Update the buffer length */
1739	XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1740			  rdata->skb_dma_len);
1741
1742	/* VLAN tag insertion check */
1743	if (vlan)
1744		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1745				  TX_NORMAL_DESC2_VLAN_INSERT);
1746
1747	/* Timestamp enablement check */
1748	if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1749		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1750
1751	/* Mark it as First Descriptor */
1752	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1753
1754	/* Mark it as a NORMAL descriptor */
1755	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1756
1757	/* Set OWN bit if not the first descriptor */
1758	if (cur_index != start_index)
1759		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1760
1761	if (tso) {
1762		/* Enable TSO */
1763		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1764		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1765				  packet->tcp_payload_len);
1766		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1767				  packet->tcp_header_len / 4);
1768
1769		pdata->ext_stats.tx_tso_packets++;
1770	} else {
1771		/* Enable CRC and Pad Insertion */
1772		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1773
1774		/* Enable HW CSUM */
1775		if (csum)
1776			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1777					  CIC, 0x3);
1778
1779		/* Set the total length to be transmitted */
1780		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1781				  packet->length);
1782	}
1783
 
 
 
 
 
 
 
1784	for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1785		cur_index++;
1786		rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1787		rdesc = rdata->rdesc;
1788
1789		/* Update buffer address */
1790		rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1791		rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1792
1793		/* Update the buffer length */
1794		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1795				  rdata->skb_dma_len);
1796
1797		/* Set OWN bit */
1798		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1799
1800		/* Mark it as NORMAL descriptor */
1801		XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1802
1803		/* Enable HW CSUM */
1804		if (csum)
1805			XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1806					  CIC, 0x3);
1807	}
1808
1809	/* Set LAST bit for the last descriptor */
1810	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1811
1812	/* Set IC bit based on Tx coalescing settings */
1813	if (tx_set_ic)
1814		XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1815
1816	/* Save the Tx info to report back during cleanup */
1817	rdata->tx.packets = packet->tx_packets;
1818	rdata->tx.bytes = packet->tx_bytes;
 
 
 
1819
1820	/* In case the Tx DMA engine is running, make sure everything
1821	 * is written to the descriptor(s) before setting the OWN bit
1822	 * for the first descriptor
1823	 */
1824	dma_wmb();
1825
1826	/* Set OWN bit for the first descriptor */
1827	rdata = XGBE_GET_DESC_DATA(ring, start_index);
1828	rdesc = rdata->rdesc;
1829	XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1830
1831	if (netif_msg_tx_queued(pdata))
1832		xgbe_dump_tx_desc(pdata, ring, start_index,
1833				  packet->rdesc_count, 1);
1834
1835	/* Make sure ownership is written to the descriptor */
1836	smp_wmb();
1837
1838	ring->cur = cur_index + 1;
1839	if (!packet->skb->xmit_more ||
1840	    netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1841						   channel->queue_index)))
1842		xgbe_tx_start_xmit(channel, ring);
1843	else
1844		ring->tx.xmit_more = 1;
1845
1846	DBGPR("  %s: descriptors %u to %u written\n",
1847	      channel->name, start_index & (ring->rdesc_count - 1),
1848	      (ring->cur - 1) & (ring->rdesc_count - 1));
1849
1850	DBGPR("<--xgbe_dev_xmit\n");
1851}
1852
1853static int xgbe_dev_read(struct xgbe_channel *channel)
1854{
1855	struct xgbe_prv_data *pdata = channel->pdata;
1856	struct xgbe_ring *ring = channel->rx_ring;
1857	struct xgbe_ring_data *rdata;
1858	struct xgbe_ring_desc *rdesc;
1859	struct xgbe_packet_data *packet = &ring->packet_data;
1860	struct net_device *netdev = pdata->netdev;
1861	unsigned int err, etlt, l34t;
1862
1863	DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1864
1865	rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1866	rdesc = rdata->rdesc;
1867
1868	/* Check for data availability */
1869	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1870		return 1;
1871
1872	/* Make sure descriptor fields are read after reading the OWN bit */
1873	dma_rmb();
1874
1875	if (netif_msg_rx_status(pdata))
1876		xgbe_dump_rx_desc(pdata, ring, ring->cur);
1877
1878	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1879		/* Timestamp Context Descriptor */
1880		xgbe_get_rx_tstamp(packet, rdesc);
1881
1882		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1883			       CONTEXT, 1);
1884		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1885			       CONTEXT_NEXT, 0);
1886		return 0;
1887	}
1888
1889	/* Normal Descriptor, be sure Context Descriptor bit is off */
1890	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1891
1892	/* Indicate if a Context Descriptor is next */
1893	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1894		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1895			       CONTEXT_NEXT, 1);
1896
1897	/* Get the header length */
1898	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1899		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1900			       FIRST, 1);
1901		rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1902						      RX_NORMAL_DESC2, HL);
1903		if (rdata->rx.hdr_len)
1904			pdata->ext_stats.rx_split_header_packets++;
1905	} else {
1906		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1907			       FIRST, 0);
1908	}
1909
1910	/* Get the RSS hash */
1911	if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1912		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1913			       RSS_HASH, 1);
1914
1915		packet->rss_hash = le32_to_cpu(rdesc->desc1);
1916
1917		l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1918		switch (l34t) {
1919		case RX_DESC3_L34T_IPV4_TCP:
1920		case RX_DESC3_L34T_IPV4_UDP:
1921		case RX_DESC3_L34T_IPV6_TCP:
1922		case RX_DESC3_L34T_IPV6_UDP:
1923			packet->rss_hash_type = PKT_HASH_TYPE_L4;
1924			break;
1925		default:
1926			packet->rss_hash_type = PKT_HASH_TYPE_L3;
1927		}
1928	}
1929
1930	/* Not all the data has been transferred for this packet */
1931	if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
1932		return 0;
1933
1934	/* This is the last of the data for this packet */
1935	XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1936		       LAST, 1);
1937
1938	/* Get the packet length */
1939	rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1940
1941	/* Set checksum done indicator as appropriate */
1942	if (netdev->features & NETIF_F_RXCSUM)
1943		XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1944			       CSUM_DONE, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945
1946	/* Check for errors (only valid in last descriptor) */
1947	err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1948	etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1949	netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
1950
1951	if (!err || !etlt) {
1952		/* No error if err is 0 or etlt is 0 */
1953		if ((etlt == 0x09) &&
1954		    (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1955			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1956				       VLAN_CTAG, 1);
1957			packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1958							      RX_NORMAL_DESC0,
1959							      OVT);
1960			netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
1961				  packet->vlan_ctag);
1962		}
1963	} else {
1964		if ((etlt == 0x05) || (etlt == 0x06))
 
 
 
 
 
 
 
 
 
1965			XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1966				       CSUM_DONE, 0);
1967		else
 
 
 
1968			XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1969				       FRAME, 1);
 
1970	}
1971
 
 
 
1972	DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
1973	      ring->cur & (ring->rdesc_count - 1), ring->cur);
1974
1975	return 0;
1976}
1977
1978static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1979{
1980	/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1981	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
1982}
1983
1984static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1985{
1986	/* Rx and Tx share LD bit, so check TDES3.LD bit */
1987	return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
1988}
1989
1990static int xgbe_enable_int(struct xgbe_channel *channel,
1991			   enum xgbe_int int_id)
1992{
1993	unsigned int dma_ch_ier;
1994
1995	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
1996
1997	switch (int_id) {
1998	case XGMAC_INT_DMA_CH_SR_TI:
1999		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
2000		break;
2001	case XGMAC_INT_DMA_CH_SR_TPS:
2002		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 1);
2003		break;
2004	case XGMAC_INT_DMA_CH_SR_TBU:
2005		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 1);
2006		break;
2007	case XGMAC_INT_DMA_CH_SR_RI:
2008		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
2009		break;
2010	case XGMAC_INT_DMA_CH_SR_RBU:
2011		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 1);
2012		break;
2013	case XGMAC_INT_DMA_CH_SR_RPS:
2014		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 1);
2015		break;
2016	case XGMAC_INT_DMA_CH_SR_TI_RI:
2017		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 1);
2018		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 1);
2019		break;
2020	case XGMAC_INT_DMA_CH_SR_FBE:
2021		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 1);
2022		break;
2023	case XGMAC_INT_DMA_ALL:
2024		dma_ch_ier |= channel->saved_ier;
2025		break;
2026	default:
2027		return -1;
2028	}
2029
2030	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
2031
2032	return 0;
2033}
2034
2035static int xgbe_disable_int(struct xgbe_channel *channel,
2036			    enum xgbe_int int_id)
2037{
2038	unsigned int dma_ch_ier;
2039
2040	dma_ch_ier = XGMAC_DMA_IOREAD(channel, DMA_CH_IER);
2041
2042	switch (int_id) {
2043	case XGMAC_INT_DMA_CH_SR_TI:
2044		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
2045		break;
2046	case XGMAC_INT_DMA_CH_SR_TPS:
2047		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TXSE, 0);
2048		break;
2049	case XGMAC_INT_DMA_CH_SR_TBU:
2050		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TBUE, 0);
2051		break;
2052	case XGMAC_INT_DMA_CH_SR_RI:
2053		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
2054		break;
2055	case XGMAC_INT_DMA_CH_SR_RBU:
2056		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RBUE, 0);
2057		break;
2058	case XGMAC_INT_DMA_CH_SR_RPS:
2059		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RSE, 0);
2060		break;
2061	case XGMAC_INT_DMA_CH_SR_TI_RI:
2062		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, TIE, 0);
2063		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, RIE, 0);
2064		break;
2065	case XGMAC_INT_DMA_CH_SR_FBE:
2066		XGMAC_SET_BITS(dma_ch_ier, DMA_CH_IER, FBEE, 0);
2067		break;
2068	case XGMAC_INT_DMA_ALL:
2069		channel->saved_ier = dma_ch_ier & XGBE_DMA_INTERRUPT_MASK;
2070		dma_ch_ier &= ~XGBE_DMA_INTERRUPT_MASK;
2071		break;
2072	default:
2073		return -1;
2074	}
2075
2076	XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, dma_ch_ier);
2077
2078	return 0;
2079}
2080
2081static int __xgbe_exit(struct xgbe_prv_data *pdata)
2082{
2083	unsigned int count = 2000;
2084
2085	DBGPR("-->xgbe_exit\n");
2086
2087	/* Issue a software reset */
2088	XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2089	usleep_range(10, 15);
2090
2091	/* Poll Until Poll Condition */
2092	while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2093		usleep_range(500, 600);
2094
2095	if (!count)
2096		return -EBUSY;
2097
2098	DBGPR("<--xgbe_exit\n");
2099
2100	return 0;
2101}
2102
2103static int xgbe_exit(struct xgbe_prv_data *pdata)
2104{
2105	int ret;
2106
2107	/* To guard against possible incorrectly generated interrupts,
2108	 * issue the software reset twice.
2109	 */
2110	ret = __xgbe_exit(pdata);
2111	if (ret)
2112		return ret;
2113
2114	return __xgbe_exit(pdata);
2115}
2116
2117static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2118{
2119	unsigned int i, count;
2120
2121	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2122		return 0;
2123
2124	for (i = 0; i < pdata->tx_q_count; i++)
2125		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2126
2127	/* Poll Until Poll Condition */
2128	for (i = 0; i < pdata->tx_q_count; i++) {
2129		count = 2000;
2130		while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2131							MTL_Q_TQOMR, FTQ))
2132			usleep_range(500, 600);
2133
2134		if (!count)
2135			return -EBUSY;
2136	}
2137
2138	return 0;
2139}
2140
2141static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2142{
 
 
 
 
2143	/* Set enhanced addressing mode */
2144	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, EAME, 1);
2145
2146	/* Set the System Bus mode */
2147	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, UNDEF, 1);
2148	XGMAC_IOWRITE_BITS(pdata, DMA_SBMR, BLEN_256, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149}
2150
2151static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2152{
2153	unsigned int arcache, awcache;
2154
2155	arcache = 0;
2156	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRC, pdata->arcache);
2157	XGMAC_SET_BITS(arcache, DMA_AXIARCR, DRD, pdata->axdomain);
2158	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TEC, pdata->arcache);
2159	XGMAC_SET_BITS(arcache, DMA_AXIARCR, TED, pdata->axdomain);
2160	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THC, pdata->arcache);
2161	XGMAC_SET_BITS(arcache, DMA_AXIARCR, THD, pdata->axdomain);
2162	XGMAC_IOWRITE(pdata, DMA_AXIARCR, arcache);
2163
2164	awcache = 0;
2165	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWC, pdata->awcache);
2166	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, DWD, pdata->axdomain);
2167	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPC, pdata->awcache);
2168	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RPD, pdata->axdomain);
2169	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHC, pdata->awcache);
2170	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, RHD, pdata->axdomain);
2171	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDC, pdata->awcache);
2172	XGMAC_SET_BITS(awcache, DMA_AXIAWCR, TDD, pdata->axdomain);
2173	XGMAC_IOWRITE(pdata, DMA_AXIAWCR, awcache);
2174}
2175
2176static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2177{
2178	unsigned int i;
2179
2180	/* Set Tx to weighted round robin scheduling algorithm */
2181	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2182
2183	/* Set Tx traffic classes to use WRR algorithm with equal weights */
2184	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2185		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2186				       MTL_TSA_ETS);
2187		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2188	}
2189
2190	/* Set Rx to strict priority algorithm */
2191	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2192}
2193
2194static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2195					      unsigned int queue,
2196					      unsigned int q_fifo_size)
2197{
2198	unsigned int frame_fifo_size;
2199	unsigned int rfa, rfd;
2200
2201	frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2202
2203	if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2204		/* PFC is active for this queue */
2205		rfa = pdata->pfc_rfa;
2206		rfd = rfa + frame_fifo_size;
2207		if (rfd > XGMAC_FLOW_CONTROL_MAX)
2208			rfd = XGMAC_FLOW_CONTROL_MAX;
2209		if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2210			rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2211	} else {
2212		/* This path deals with just maximum frame sizes which are
2213		 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2214		 * so we can never exceed the maximum allowable RFA/RFD
2215		 * values.
2216		 */
2217		if (q_fifo_size <= 2048) {
2218			/* rx_rfd to zero to signal no flow control */
2219			pdata->rx_rfa[queue] = 0;
2220			pdata->rx_rfd[queue] = 0;
2221			return;
2222		}
2223
2224		if (q_fifo_size <= 4096) {
2225			/* Between 2048 and 4096 */
2226			pdata->rx_rfa[queue] = 0;	/* Full - 1024 bytes */
2227			pdata->rx_rfd[queue] = 1;	/* Full - 1536 bytes */
2228			return;
2229		}
2230
2231		if (q_fifo_size <= frame_fifo_size) {
2232			/* Between 4096 and max-frame */
2233			pdata->rx_rfa[queue] = 2;	/* Full - 2048 bytes */
2234			pdata->rx_rfd[queue] = 5;	/* Full - 3584 bytes */
2235			return;
2236		}
2237
2238		if (q_fifo_size <= (frame_fifo_size * 3)) {
2239			/* Between max-frame and 3 max-frames,
2240			 * trigger if we get just over a frame of data and
2241			 * resume when we have just under half a frame left.
2242			 */
2243			rfa = q_fifo_size - frame_fifo_size;
2244			rfd = rfa + (frame_fifo_size / 2);
2245		} else {
2246			/* Above 3 max-frames - trigger when just over
2247			 * 2 frames of space available
2248			 */
2249			rfa = frame_fifo_size * 2;
2250			rfa += XGMAC_FLOW_CONTROL_UNIT;
2251			rfd = rfa + frame_fifo_size;
2252		}
2253	}
2254
2255	pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2256	pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2257}
2258
2259static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2260						  unsigned int *fifo)
2261{
2262	unsigned int q_fifo_size;
2263	unsigned int i;
2264
2265	for (i = 0; i < pdata->rx_q_count; i++) {
2266		q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2267
2268		xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2269	}
2270}
2271
2272static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2273{
2274	unsigned int i;
2275
2276	for (i = 0; i < pdata->rx_q_count; i++) {
2277		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2278				       pdata->rx_rfa[i]);
2279		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2280				       pdata->rx_rfd[i]);
2281	}
2282}
2283
2284static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2285{
2286	/* The configured value may not be the actual amount of fifo RAM */
2287	return min_t(unsigned int, pdata->tx_max_fifo_size,
2288		     pdata->hw_feat.tx_fifo_size);
2289}
2290
2291static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2292{
2293	/* The configured value may not be the actual amount of fifo RAM */
2294	return min_t(unsigned int, pdata->rx_max_fifo_size,
2295		     pdata->hw_feat.rx_fifo_size);
2296}
2297
2298static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2299				      unsigned int queue_count,
2300				      unsigned int *fifo)
2301{
2302	unsigned int q_fifo_size;
2303	unsigned int p_fifo;
2304	unsigned int i;
2305
2306	q_fifo_size = fifo_size / queue_count;
2307
2308	/* Calculate the fifo setting by dividing the queue's fifo size
2309	 * by the fifo allocation increment (with 0 representing the
2310	 * base allocation increment so decrement the result by 1).
2311	 */
2312	p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2313	if (p_fifo)
2314		p_fifo--;
2315
2316	/* Distribute the fifo equally amongst the queues */
2317	for (i = 0; i < queue_count; i++)
2318		fifo[i] = p_fifo;
2319}
2320
2321static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2322					   unsigned int queue_count,
2323					   unsigned int *fifo)
2324{
2325	unsigned int i;
2326
2327	BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2328
2329	if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2330		return fifo_size;
2331
2332	/* Rx queues 9 and up are for specialized packets,
2333	 * such as PTP or DCB control packets, etc. and
2334	 * don't require a large fifo
2335	 */
2336	for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2337		fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2338		fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2339	}
2340
2341	return fifo_size;
2342}
2343
2344static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2345{
2346	unsigned int delay;
2347
2348	/* If a delay has been provided, use that */
2349	if (pdata->pfc->delay)
2350		return pdata->pfc->delay / 8;
2351
2352	/* Allow for two maximum size frames */
2353	delay = xgbe_get_max_frame(pdata);
2354	delay += XGMAC_ETH_PREAMBLE;
2355	delay *= 2;
2356
2357	/* Allow for PFC frame */
2358	delay += XGMAC_PFC_DATA_LEN;
2359	delay += ETH_HLEN + ETH_FCS_LEN;
2360	delay += XGMAC_ETH_PREAMBLE;
2361
2362	/* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2363	delay += XGMAC_PFC_DELAYS;
2364
2365	return delay;
2366}
2367
2368static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2369{
2370	unsigned int count, prio_queues;
2371	unsigned int i;
2372
2373	if (!pdata->pfc->pfc_en)
2374		return 0;
2375
2376	count = 0;
2377	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2378	for (i = 0; i < prio_queues; i++) {
2379		if (!xgbe_is_pfc_queue(pdata, i))
2380			continue;
2381
2382		pdata->pfcq[i] = 1;
2383		count++;
2384	}
2385
2386	return count;
2387}
2388
2389static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2390				    unsigned int fifo_size,
2391				    unsigned int *fifo)
2392{
2393	unsigned int q_fifo_size, rem_fifo, addn_fifo;
2394	unsigned int prio_queues;
2395	unsigned int pfc_count;
2396	unsigned int i;
2397
2398	q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2399	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2400	pfc_count = xgbe_get_pfc_queues(pdata);
2401
2402	if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2403		/* No traffic classes with PFC enabled or can't do lossless */
2404		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2405		return;
2406	}
2407
2408	/* Calculate how much fifo we have to play with */
2409	rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2410
2411	/* Calculate how much more than base fifo PFC needs, which also
2412	 * becomes the threshold activation point (RFA)
2413	 */
2414	pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2415	pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2416
2417	if (pdata->pfc_rfa > q_fifo_size) {
2418		addn_fifo = pdata->pfc_rfa - q_fifo_size;
2419		addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2420	} else {
2421		addn_fifo = 0;
2422	}
2423
2424	/* Calculate DCB fifo settings:
2425	 *   - distribute remaining fifo between the VLAN priority
2426	 *     queues based on traffic class PFC enablement and overall
2427	 *     priority (0 is lowest priority, so start at highest)
2428	 */
2429	i = prio_queues;
2430	while (i > 0) {
2431		i--;
2432
2433		fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2434
2435		if (!pdata->pfcq[i] || !addn_fifo)
2436			continue;
2437
2438		if (addn_fifo > rem_fifo) {
2439			netdev_warn(pdata->netdev,
2440				    "RXq%u cannot set needed fifo size\n", i);
2441			if (!rem_fifo)
2442				continue;
2443
2444			addn_fifo = rem_fifo;
2445		}
2446
2447		fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2448		rem_fifo -= addn_fifo;
2449	}
2450
2451	if (rem_fifo) {
2452		unsigned int inc_fifo = rem_fifo / prio_queues;
2453
2454		/* Distribute remaining fifo across queues */
2455		for (i = 0; i < prio_queues; i++)
2456			fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2457	}
2458}
2459
2460static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2461{
2462	unsigned int fifo_size;
2463	unsigned int fifo[XGBE_MAX_QUEUES];
2464	unsigned int i;
2465
2466	fifo_size = xgbe_get_tx_fifo_size(pdata);
2467
2468	xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2469
2470	for (i = 0; i < pdata->tx_q_count; i++)
2471		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2472
2473	netif_info(pdata, drv, pdata->netdev,
2474		   "%d Tx hardware queues, %d byte fifo per queue\n",
2475		   pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2476}
2477
2478static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2479{
2480	unsigned int fifo_size;
2481	unsigned int fifo[XGBE_MAX_QUEUES];
2482	unsigned int prio_queues;
2483	unsigned int i;
2484
2485	/* Clear any DCB related fifo/queue information */
2486	memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2487	pdata->pfc_rfa = 0;
2488
2489	fifo_size = xgbe_get_rx_fifo_size(pdata);
2490	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2491
2492	/* Assign a minimum fifo to the non-VLAN priority queues */
2493	fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2494
2495	if (pdata->pfc && pdata->ets)
2496		xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2497	else
2498		xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2499
2500	for (i = 0; i < pdata->rx_q_count; i++)
2501		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2502
2503	xgbe_calculate_flow_control_threshold(pdata, fifo);
2504	xgbe_config_flow_control_threshold(pdata);
2505
2506	if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2507		netif_info(pdata, drv, pdata->netdev,
2508			   "%u Rx hardware queues\n", pdata->rx_q_count);
2509		for (i = 0; i < pdata->rx_q_count; i++)
2510			netif_info(pdata, drv, pdata->netdev,
2511				   "RxQ%u, %u byte fifo queue\n", i,
2512				   ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2513	} else {
2514		netif_info(pdata, drv, pdata->netdev,
2515			   "%u Rx hardware queues, %u byte fifo per queue\n",
2516			   pdata->rx_q_count,
2517			   ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2518	}
2519}
2520
2521static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2522{
2523	unsigned int qptc, qptc_extra, queue;
2524	unsigned int prio_queues;
2525	unsigned int ppq, ppq_extra, prio;
2526	unsigned int mask;
2527	unsigned int i, j, reg, reg_val;
2528
2529	/* Map the MTL Tx Queues to Traffic Classes
2530	 *   Note: Tx Queues >= Traffic Classes
2531	 */
2532	qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2533	qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2534
2535	for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2536		for (j = 0; j < qptc; j++) {
2537			netif_dbg(pdata, drv, pdata->netdev,
2538				  "TXq%u mapped to TC%u\n", queue, i);
2539			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2540					       Q2TCMAP, i);
2541			pdata->q2tc_map[queue++] = i;
2542		}
2543
2544		if (i < qptc_extra) {
2545			netif_dbg(pdata, drv, pdata->netdev,
2546				  "TXq%u mapped to TC%u\n", queue, i);
2547			XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2548					       Q2TCMAP, i);
2549			pdata->q2tc_map[queue++] = i;
2550		}
2551	}
2552
2553	/* Map the 8 VLAN priority values to available MTL Rx queues */
2554	prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2555	ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2556	ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2557
2558	reg = MAC_RQC2R;
2559	reg_val = 0;
2560	for (i = 0, prio = 0; i < prio_queues;) {
2561		mask = 0;
2562		for (j = 0; j < ppq; j++) {
2563			netif_dbg(pdata, drv, pdata->netdev,
2564				  "PRIO%u mapped to RXq%u\n", prio, i);
2565			mask |= (1 << prio);
2566			pdata->prio2q_map[prio++] = i;
2567		}
2568
2569		if (i < ppq_extra) {
2570			netif_dbg(pdata, drv, pdata->netdev,
2571				  "PRIO%u mapped to RXq%u\n", prio, i);
2572			mask |= (1 << prio);
2573			pdata->prio2q_map[prio++] = i;
2574		}
2575
2576		reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2577
2578		if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2579			continue;
2580
2581		XGMAC_IOWRITE(pdata, reg, reg_val);
2582		reg += MAC_RQC2_INC;
2583		reg_val = 0;
2584	}
2585
2586	/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2587	reg = MTL_RQDCM0R;
2588	reg_val = 0;
2589	for (i = 0; i < pdata->rx_q_count;) {
2590		reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2591
2592		if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2593			continue;
2594
2595		XGMAC_IOWRITE(pdata, reg, reg_val);
2596
2597		reg += MTL_RQDCM_INC;
2598		reg_val = 0;
2599	}
2600}
2601
2602static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2603{
2604	unsigned int offset, queue, prio;
2605	u8 i;
2606
2607	netdev_reset_tc(pdata->netdev);
2608	if (!pdata->num_tcs)
2609		return;
2610
2611	netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2612
2613	for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2614		while ((queue < pdata->tx_q_count) &&
2615		       (pdata->q2tc_map[queue] == i))
2616			queue++;
2617
2618		netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2619			  i, offset, queue - 1);
2620		netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2621		offset = queue;
2622	}
2623
2624	if (!pdata->ets)
2625		return;
2626
2627	for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2628		netdev_set_prio_tc_map(pdata->netdev, prio,
2629				       pdata->ets->prio_tc[prio]);
2630}
2631
2632static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2633{
2634	struct ieee_ets *ets = pdata->ets;
2635	unsigned int total_weight, min_weight, weight;
2636	unsigned int mask, reg, reg_val;
2637	unsigned int i, prio;
2638
2639	if (!ets)
2640		return;
2641
2642	/* Set Tx to deficit weighted round robin scheduling algorithm (when
2643	 * traffic class is using ETS algorithm)
2644	 */
2645	XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2646
2647	/* Set Traffic Class algorithms */
2648	total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2649	min_weight = total_weight / 100;
2650	if (!min_weight)
2651		min_weight = 1;
2652
2653	for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2654		/* Map the priorities to the traffic class */
2655		mask = 0;
2656		for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2657			if (ets->prio_tc[prio] == i)
2658				mask |= (1 << prio);
2659		}
2660		mask &= 0xff;
2661
2662		netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2663			  i, mask);
2664		reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2665		reg_val = XGMAC_IOREAD(pdata, reg);
2666
2667		reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2668		reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2669
2670		XGMAC_IOWRITE(pdata, reg, reg_val);
2671
2672		/* Set the traffic class algorithm */
2673		switch (ets->tc_tsa[i]) {
2674		case IEEE_8021QAZ_TSA_STRICT:
2675			netif_dbg(pdata, drv, pdata->netdev,
2676				  "TC%u using SP\n", i);
2677			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2678					       MTL_TSA_SP);
2679			break;
2680		case IEEE_8021QAZ_TSA_ETS:
2681			weight = total_weight * ets->tc_tx_bw[i] / 100;
2682			weight = clamp(weight, min_weight, total_weight);
2683
2684			netif_dbg(pdata, drv, pdata->netdev,
2685				  "TC%u using DWRR (weight %u)\n", i, weight);
2686			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2687					       MTL_TSA_ETS);
2688			XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2689					       weight);
2690			break;
2691		}
2692	}
2693
2694	xgbe_config_tc(pdata);
2695}
2696
2697static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2698{
2699	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2700		/* Just stop the Tx queues while Rx fifo is changed */
2701		netif_tx_stop_all_queues(pdata->netdev);
2702
2703		/* Suspend Rx so that fifo's can be adjusted */
2704		pdata->hw_if.disable_rx(pdata);
2705	}
2706
2707	xgbe_config_rx_fifo_size(pdata);
2708	xgbe_config_flow_control(pdata);
2709
2710	if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2711		/* Resume Rx */
2712		pdata->hw_if.enable_rx(pdata);
2713
2714		/* Resume Tx queues */
2715		netif_tx_start_all_queues(pdata->netdev);
2716	}
2717}
2718
2719static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2720{
2721	xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2722
2723	/* Filtering is done using perfect filtering and hash filtering */
2724	if (pdata->hw_feat.hash_table_size) {
2725		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2726		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2727		XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2728	}
2729}
2730
2731static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2732{
2733	unsigned int val;
2734
2735	val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2736
2737	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2738}
2739
2740static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2741{
2742	xgbe_set_speed(pdata, pdata->phy_speed);
2743}
2744
2745static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2746{
2747	if (pdata->netdev->features & NETIF_F_RXCSUM)
2748		xgbe_enable_rx_csum(pdata);
2749	else
2750		xgbe_disable_rx_csum(pdata);
2751}
2752
2753static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2754{
2755	/* Indicate that VLAN Tx CTAGs come from context descriptors */
2756	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2757	XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2758
2759	/* Set the current VLAN Hash Table register value */
2760	xgbe_update_vlan_hash_table(pdata);
2761
2762	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2763		xgbe_enable_rx_vlan_filtering(pdata);
2764	else
2765		xgbe_disable_rx_vlan_filtering(pdata);
2766
2767	if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2768		xgbe_enable_rx_vlan_stripping(pdata);
2769	else
2770		xgbe_disable_rx_vlan_stripping(pdata);
2771}
2772
2773static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2774{
2775	bool read_hi;
2776	u64 val;
2777
2778	if (pdata->vdata->mmc_64bit) {
2779		switch (reg_lo) {
2780		/* These registers are always 32 bit */
2781		case MMC_RXRUNTERROR:
2782		case MMC_RXJABBERERROR:
2783		case MMC_RXUNDERSIZE_G:
2784		case MMC_RXOVERSIZE_G:
2785		case MMC_RXWATCHDOGERROR:
2786			read_hi = false;
2787			break;
2788
2789		default:
2790			read_hi = true;
2791		}
2792	} else {
2793		switch (reg_lo) {
2794		/* These registers are always 64 bit */
2795		case MMC_TXOCTETCOUNT_GB_LO:
2796		case MMC_TXOCTETCOUNT_G_LO:
2797		case MMC_RXOCTETCOUNT_GB_LO:
2798		case MMC_RXOCTETCOUNT_G_LO:
2799			read_hi = true;
2800			break;
2801
2802		default:
2803			read_hi = false;
2804		}
2805	}
2806
2807	val = XGMAC_IOREAD(pdata, reg_lo);
2808
2809	if (read_hi)
2810		val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2811
2812	return val;
2813}
2814
2815static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2816{
2817	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2818	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2819
2820	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2821		stats->txoctetcount_gb +=
2822			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2823
2824	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2825		stats->txframecount_gb +=
2826			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2827
2828	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2829		stats->txbroadcastframes_g +=
2830			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2831
2832	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2833		stats->txmulticastframes_g +=
2834			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2835
2836	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2837		stats->tx64octets_gb +=
2838			xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2839
2840	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2841		stats->tx65to127octets_gb +=
2842			xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2843
2844	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2845		stats->tx128to255octets_gb +=
2846			xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2847
2848	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2849		stats->tx256to511octets_gb +=
2850			xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2851
2852	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2853		stats->tx512to1023octets_gb +=
2854			xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2855
2856	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2857		stats->tx1024tomaxoctets_gb +=
2858			xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2859
2860	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2861		stats->txunicastframes_gb +=
2862			xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2863
2864	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2865		stats->txmulticastframes_gb +=
2866			xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2867
2868	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2869		stats->txbroadcastframes_g +=
2870			xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2871
2872	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2873		stats->txunderflowerror +=
2874			xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2875
2876	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2877		stats->txoctetcount_g +=
2878			xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2879
2880	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2881		stats->txframecount_g +=
2882			xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2883
2884	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2885		stats->txpauseframes +=
2886			xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2887
2888	if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2889		stats->txvlanframes_g +=
2890			xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2891}
2892
2893static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2894{
2895	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2896	unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2897
2898	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2899		stats->rxframecount_gb +=
2900			xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2901
2902	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2903		stats->rxoctetcount_gb +=
2904			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2905
2906	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2907		stats->rxoctetcount_g +=
2908			xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2909
2910	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2911		stats->rxbroadcastframes_g +=
2912			xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2913
2914	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2915		stats->rxmulticastframes_g +=
2916			xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2917
2918	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2919		stats->rxcrcerror +=
2920			xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2921
2922	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2923		stats->rxrunterror +=
2924			xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2925
2926	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2927		stats->rxjabbererror +=
2928			xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2929
2930	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2931		stats->rxundersize_g +=
2932			xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2933
2934	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2935		stats->rxoversize_g +=
2936			xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2937
2938	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2939		stats->rx64octets_gb +=
2940			xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2941
2942	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2943		stats->rx65to127octets_gb +=
2944			xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2945
2946	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2947		stats->rx128to255octets_gb +=
2948			xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2949
2950	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2951		stats->rx256to511octets_gb +=
2952			xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2953
2954	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2955		stats->rx512to1023octets_gb +=
2956			xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2957
2958	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2959		stats->rx1024tomaxoctets_gb +=
2960			xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2961
2962	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2963		stats->rxunicastframes_g +=
2964			xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2965
2966	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2967		stats->rxlengtherror +=
2968			xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2969
2970	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2971		stats->rxoutofrangetype +=
2972			xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2973
2974	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2975		stats->rxpauseframes +=
2976			xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2977
2978	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2979		stats->rxfifooverflow +=
2980			xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2981
2982	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2983		stats->rxvlanframes_gb +=
2984			xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2985
2986	if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2987		stats->rxwatchdogerror +=
2988			xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2989}
2990
2991static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2992{
2993	struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2994
2995	/* Freeze counters */
2996	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2997
2998	stats->txoctetcount_gb +=
2999		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3000
3001	stats->txframecount_gb +=
3002		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3003
3004	stats->txbroadcastframes_g +=
3005		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3006
3007	stats->txmulticastframes_g +=
3008		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3009
3010	stats->tx64octets_gb +=
3011		xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3012
3013	stats->tx65to127octets_gb +=
3014		xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3015
3016	stats->tx128to255octets_gb +=
3017		xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3018
3019	stats->tx256to511octets_gb +=
3020		xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3021
3022	stats->tx512to1023octets_gb +=
3023		xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3024
3025	stats->tx1024tomaxoctets_gb +=
3026		xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3027
3028	stats->txunicastframes_gb +=
3029		xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3030
3031	stats->txmulticastframes_gb +=
3032		xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3033
3034	stats->txbroadcastframes_g +=
3035		xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3036
3037	stats->txunderflowerror +=
3038		xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3039
3040	stats->txoctetcount_g +=
3041		xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3042
3043	stats->txframecount_g +=
3044		xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3045
3046	stats->txpauseframes +=
3047		xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3048
3049	stats->txvlanframes_g +=
3050		xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3051
3052	stats->rxframecount_gb +=
3053		xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3054
3055	stats->rxoctetcount_gb +=
3056		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3057
3058	stats->rxoctetcount_g +=
3059		xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3060
3061	stats->rxbroadcastframes_g +=
3062		xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3063
3064	stats->rxmulticastframes_g +=
3065		xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3066
3067	stats->rxcrcerror +=
3068		xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3069
3070	stats->rxrunterror +=
3071		xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3072
3073	stats->rxjabbererror +=
3074		xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3075
3076	stats->rxundersize_g +=
3077		xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3078
3079	stats->rxoversize_g +=
3080		xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3081
3082	stats->rx64octets_gb +=
3083		xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3084
3085	stats->rx65to127octets_gb +=
3086		xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3087
3088	stats->rx128to255octets_gb +=
3089		xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3090
3091	stats->rx256to511octets_gb +=
3092		xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3093
3094	stats->rx512to1023octets_gb +=
3095		xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3096
3097	stats->rx1024tomaxoctets_gb +=
3098		xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3099
3100	stats->rxunicastframes_g +=
3101		xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3102
3103	stats->rxlengtherror +=
3104		xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3105
3106	stats->rxoutofrangetype +=
3107		xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3108
3109	stats->rxpauseframes +=
3110		xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3111
3112	stats->rxfifooverflow +=
3113		xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3114
3115	stats->rxvlanframes_gb +=
3116		xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3117
3118	stats->rxwatchdogerror +=
3119		xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3120
3121	/* Un-freeze counters */
3122	XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3123}
3124
3125static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3126{
3127	/* Set counters to reset on read */
3128	XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3129
3130	/* Reset the counters */
3131	XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3132}
3133
3134static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3135				     unsigned int queue)
3136{
3137	unsigned int tx_status;
3138	unsigned long tx_timeout;
3139
3140	/* The Tx engine cannot be stopped if it is actively processing
3141	 * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3142	 * wait forever though...
3143	 */
3144	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3145	while (time_before(jiffies, tx_timeout)) {
3146		tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3147		if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3148		    (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3149			break;
3150
3151		usleep_range(500, 1000);
3152	}
3153
3154	if (!time_before(jiffies, tx_timeout))
3155		netdev_info(pdata->netdev,
3156			    "timed out waiting for Tx queue %u to empty\n",
3157			    queue);
3158}
3159
3160static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3161				 unsigned int queue)
3162{
3163	unsigned int tx_dsr, tx_pos, tx_qidx;
3164	unsigned int tx_status;
3165	unsigned long tx_timeout;
3166
3167	if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3168		return xgbe_txq_prepare_tx_stop(pdata, queue);
3169
3170	/* Calculate the status register to read and the position within */
3171	if (queue < DMA_DSRX_FIRST_QUEUE) {
3172		tx_dsr = DMA_DSR0;
3173		tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3174	} else {
3175		tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3176
3177		tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3178		tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3179			 DMA_DSRX_TPS_START;
3180	}
3181
3182	/* The Tx engine cannot be stopped if it is actively processing
3183	 * descriptors. Wait for the Tx engine to enter the stopped or
3184	 * suspended state.  Don't wait forever though...
3185	 */
3186	tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3187	while (time_before(jiffies, tx_timeout)) {
3188		tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3189		tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3190		if ((tx_status == DMA_TPS_STOPPED) ||
3191		    (tx_status == DMA_TPS_SUSPENDED))
3192			break;
3193
3194		usleep_range(500, 1000);
3195	}
3196
3197	if (!time_before(jiffies, tx_timeout))
3198		netdev_info(pdata->netdev,
3199			    "timed out waiting for Tx DMA channel %u to stop\n",
3200			    queue);
3201}
3202
3203static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3204{
3205	struct xgbe_channel *channel;
3206	unsigned int i;
3207
3208	/* Enable each Tx DMA channel */
3209	channel = pdata->channel;
3210	for (i = 0; i < pdata->channel_count; i++, channel++) {
3211		if (!channel->tx_ring)
3212			break;
3213
3214		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
3215	}
3216
3217	/* Enable each Tx queue */
3218	for (i = 0; i < pdata->tx_q_count; i++)
3219		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3220				       MTL_Q_ENABLED);
3221
3222	/* Enable MAC Tx */
3223	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3224}
3225
3226static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3227{
3228	struct xgbe_channel *channel;
3229	unsigned int i;
3230
3231	/* Prepare for Tx DMA channel stop */
3232	for (i = 0; i < pdata->tx_q_count; i++)
3233		xgbe_prepare_tx_stop(pdata, i);
3234
3235	/* Disable MAC Tx */
3236	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3237
3238	/* Disable each Tx queue */
3239	for (i = 0; i < pdata->tx_q_count; i++)
3240		XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3241
3242	/* Disable each Tx DMA channel */
3243	channel = pdata->channel;
3244	for (i = 0; i < pdata->channel_count; i++, channel++) {
3245		if (!channel->tx_ring)
3246			break;
3247
3248		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
3249	}
3250}
3251
3252static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3253				 unsigned int queue)
3254{
3255	unsigned int rx_status;
3256	unsigned long rx_timeout;
3257
3258	/* The Rx engine cannot be stopped if it is actively processing
3259	 * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3260	 * wait forever though...
3261	 */
3262	rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3263	while (time_before(jiffies, rx_timeout)) {
3264		rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3265		if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3266		    (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3267			break;
3268
3269		usleep_range(500, 1000);
3270	}
3271
3272	if (!time_before(jiffies, rx_timeout))
3273		netdev_info(pdata->netdev,
3274			    "timed out waiting for Rx queue %u to empty\n",
3275			    queue);
3276}
3277
3278static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3279{
3280	struct xgbe_channel *channel;
3281	unsigned int reg_val, i;
3282
3283	/* Enable each Rx DMA channel */
3284	channel = pdata->channel;
3285	for (i = 0; i < pdata->channel_count; i++, channel++) {
3286		if (!channel->rx_ring)
3287			break;
3288
3289		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
3290	}
3291
3292	/* Enable each Rx queue */
3293	reg_val = 0;
3294	for (i = 0; i < pdata->rx_q_count; i++)
3295		reg_val |= (0x02 << (i << 1));
3296	XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3297
3298	/* Enable MAC Rx */
3299	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3300	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3301	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3302	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3303}
3304
3305static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3306{
3307	struct xgbe_channel *channel;
3308	unsigned int i;
3309
3310	/* Disable MAC Rx */
3311	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3312	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3313	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3314	XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3315
3316	/* Prepare for Rx DMA channel stop */
3317	for (i = 0; i < pdata->rx_q_count; i++)
3318		xgbe_prepare_rx_stop(pdata, i);
3319
3320	/* Disable each Rx queue */
3321	XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3322
3323	/* Disable each Rx DMA channel */
3324	channel = pdata->channel;
3325	for (i = 0; i < pdata->channel_count; i++, channel++) {
3326		if (!channel->rx_ring)
3327			break;
3328
3329		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
3330	}
3331}
3332
3333static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3334{
3335	struct xgbe_channel *channel;
3336	unsigned int i;
3337
3338	/* Enable each Tx DMA channel */
3339	channel = pdata->channel;
3340	for (i = 0; i < pdata->channel_count; i++, channel++) {
3341		if (!channel->tx_ring)
3342			break;
3343
3344		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 1);
3345	}
3346
3347	/* Enable MAC Tx */
3348	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3349}
3350
3351static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3352{
3353	struct xgbe_channel *channel;
3354	unsigned int i;
3355
3356	/* Prepare for Tx DMA channel stop */
3357	for (i = 0; i < pdata->tx_q_count; i++)
3358		xgbe_prepare_tx_stop(pdata, i);
3359
3360	/* Disable MAC Tx */
3361	XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3362
3363	/* Disable each Tx DMA channel */
3364	channel = pdata->channel;
3365	for (i = 0; i < pdata->channel_count; i++, channel++) {
3366		if (!channel->tx_ring)
3367			break;
3368
3369		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_TCR, ST, 0);
3370	}
3371}
3372
3373static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3374{
3375	struct xgbe_channel *channel;
3376	unsigned int i;
3377
3378	/* Enable each Rx DMA channel */
3379	channel = pdata->channel;
3380	for (i = 0; i < pdata->channel_count; i++, channel++) {
3381		if (!channel->rx_ring)
3382			break;
3383
3384		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 1);
3385	}
3386}
3387
3388static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3389{
3390	struct xgbe_channel *channel;
3391	unsigned int i;
3392
3393	/* Disable each Rx DMA channel */
3394	channel = pdata->channel;
3395	for (i = 0; i < pdata->channel_count; i++, channel++) {
3396		if (!channel->rx_ring)
3397			break;
3398
3399		XGMAC_DMA_IOWRITE_BITS(channel, DMA_CH_RCR, SR, 0);
3400	}
3401}
3402
3403static int xgbe_init(struct xgbe_prv_data *pdata)
3404{
3405	struct xgbe_desc_if *desc_if = &pdata->desc_if;
3406	int ret;
3407
3408	DBGPR("-->xgbe_init\n");
3409
3410	/* Flush Tx queues */
3411	ret = xgbe_flush_tx_queues(pdata);
3412	if (ret) {
3413		netdev_err(pdata->netdev, "error flushing TX queues\n");
3414		return ret;
3415	}
3416
3417	/*
3418	 * Initialize DMA related features
3419	 */
3420	xgbe_config_dma_bus(pdata);
3421	xgbe_config_dma_cache(pdata);
3422	xgbe_config_osp_mode(pdata);
3423	xgbe_config_pblx8(pdata);
3424	xgbe_config_tx_pbl_val(pdata);
3425	xgbe_config_rx_pbl_val(pdata);
3426	xgbe_config_rx_coalesce(pdata);
3427	xgbe_config_tx_coalesce(pdata);
3428	xgbe_config_rx_buffer_size(pdata);
3429	xgbe_config_tso_mode(pdata);
3430	xgbe_config_sph_mode(pdata);
3431	xgbe_config_rss(pdata);
3432	desc_if->wrapper_tx_desc_init(pdata);
3433	desc_if->wrapper_rx_desc_init(pdata);
3434	xgbe_enable_dma_interrupts(pdata);
3435
3436	/*
3437	 * Initialize MTL related features
3438	 */
3439	xgbe_config_mtl_mode(pdata);
3440	xgbe_config_queue_mapping(pdata);
3441	xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3442	xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3443	xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3444	xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3445	xgbe_config_tx_fifo_size(pdata);
3446	xgbe_config_rx_fifo_size(pdata);
3447	/*TODO: Error Packet and undersized good Packet forwarding enable
3448		(FEP and FUP)
3449	 */
3450	xgbe_config_dcb_tc(pdata);
3451	xgbe_enable_mtl_interrupts(pdata);
3452
3453	/*
3454	 * Initialize MAC related features
3455	 */
3456	xgbe_config_mac_address(pdata);
3457	xgbe_config_rx_mode(pdata);
3458	xgbe_config_jumbo_enable(pdata);
3459	xgbe_config_flow_control(pdata);
3460	xgbe_config_mac_speed(pdata);
3461	xgbe_config_checksum_offload(pdata);
3462	xgbe_config_vlan_support(pdata);
3463	xgbe_config_mmc(pdata);
3464	xgbe_enable_mac_interrupts(pdata);
3465
3466	/*
3467	 * Initialize ECC related features
3468	 */
3469	xgbe_enable_ecc_interrupts(pdata);
3470
3471	DBGPR("<--xgbe_init\n");
3472
3473	return 0;
3474}
3475
3476void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3477{
3478	DBGPR("-->xgbe_init_function_ptrs\n");
3479
3480	hw_if->tx_complete = xgbe_tx_complete;
3481
3482	hw_if->set_mac_address = xgbe_set_mac_address;
3483	hw_if->config_rx_mode = xgbe_config_rx_mode;
3484
3485	hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3486	hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3487
3488	hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3489	hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3490	hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3491	hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3492	hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3493
3494	hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3495	hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3496
3497	hw_if->set_speed = xgbe_set_speed;
3498
3499	hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3500	hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
3501	hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
 
 
3502
3503	hw_if->set_gpio = xgbe_set_gpio;
3504	hw_if->clr_gpio = xgbe_clr_gpio;
3505
3506	hw_if->enable_tx = xgbe_enable_tx;
3507	hw_if->disable_tx = xgbe_disable_tx;
3508	hw_if->enable_rx = xgbe_enable_rx;
3509	hw_if->disable_rx = xgbe_disable_rx;
3510
3511	hw_if->powerup_tx = xgbe_powerup_tx;
3512	hw_if->powerdown_tx = xgbe_powerdown_tx;
3513	hw_if->powerup_rx = xgbe_powerup_rx;
3514	hw_if->powerdown_rx = xgbe_powerdown_rx;
3515
3516	hw_if->dev_xmit = xgbe_dev_xmit;
3517	hw_if->dev_read = xgbe_dev_read;
3518	hw_if->enable_int = xgbe_enable_int;
3519	hw_if->disable_int = xgbe_disable_int;
3520	hw_if->init = xgbe_init;
3521	hw_if->exit = xgbe_exit;
3522
3523	/* Descriptor related Sequences have to be initialized here */
3524	hw_if->tx_desc_init = xgbe_tx_desc_init;
3525	hw_if->rx_desc_init = xgbe_rx_desc_init;
3526	hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3527	hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3528	hw_if->is_last_desc = xgbe_is_last_desc;
3529	hw_if->is_context_desc = xgbe_is_context_desc;
3530	hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3531
3532	/* For FLOW ctrl */
3533	hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3534	hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3535
3536	/* For RX coalescing */
3537	hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3538	hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3539	hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3540	hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3541
3542	/* For RX and TX threshold config */
3543	hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3544	hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3545
3546	/* For RX and TX Store and Forward Mode config */
3547	hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3548	hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3549
3550	/* For TX DMA Operating on Second Frame config */
3551	hw_if->config_osp_mode = xgbe_config_osp_mode;
3552
3553	/* For RX and TX PBL config */
3554	hw_if->config_rx_pbl_val = xgbe_config_rx_pbl_val;
3555	hw_if->get_rx_pbl_val = xgbe_get_rx_pbl_val;
3556	hw_if->config_tx_pbl_val = xgbe_config_tx_pbl_val;
3557	hw_if->get_tx_pbl_val = xgbe_get_tx_pbl_val;
3558	hw_if->config_pblx8 = xgbe_config_pblx8;
3559
3560	/* For MMC statistics support */
3561	hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3562	hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3563	hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3564
3565	/* For PTP config */
3566	hw_if->config_tstamp = xgbe_config_tstamp;
3567	hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3568	hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3569	hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3570	hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3571
3572	/* For Data Center Bridging config */
3573	hw_if->config_tc = xgbe_config_tc;
3574	hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3575	hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3576
3577	/* For Receive Side Scaling */
3578	hw_if->enable_rss = xgbe_enable_rss;
3579	hw_if->disable_rss = xgbe_disable_rss;
3580	hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3581	hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3582
3583	/* For ECC */
3584	hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3585	hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
 
 
 
 
 
3586
3587	DBGPR("<--xgbe_init_function_ptrs\n");
3588}