Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 2003 Russell King, All Rights Reserved.
  4 *  Copyright 2006-2007 Pierre Ossman
 
 
 
 
 
  5 */
  6#include <linux/slab.h>
  7#include <linux/module.h>
  8#include <linux/blkdev.h>
  9#include <linux/freezer.h>
 
 10#include <linux/scatterlist.h>
 11#include <linux/dma-mapping.h>
 12#include <linux/backing-dev.h>
 13
 14#include <linux/mmc/card.h>
 15#include <linux/mmc/host.h>
 16
 17#include "queue.h"
 18#include "block.h"
 19#include "core.h"
 20#include "card.h"
 21#include "crypto.h"
 22#include "host.h"
 23
 24#define MMC_DMA_MAP_MERGE_SEGMENTS	512
 25
 26static inline bool mmc_cqe_dcmd_busy(struct mmc_queue *mq)
 27{
 28	/* Allow only 1 DCMD at a time */
 29	return mq->in_flight[MMC_ISSUE_DCMD];
 30}
 31
 32void mmc_cqe_check_busy(struct mmc_queue *mq)
 33{
 34	if ((mq->cqe_busy & MMC_CQE_DCMD_BUSY) && !mmc_cqe_dcmd_busy(mq))
 35		mq->cqe_busy &= ~MMC_CQE_DCMD_BUSY;
 36}
 37
 38static inline bool mmc_cqe_can_dcmd(struct mmc_host *host)
 
 
 
 39{
 40	return host->caps2 & MMC_CAP2_CQE_DCMD;
 41}
 42
 43static enum mmc_issue_type mmc_cqe_issue_type(struct mmc_host *host,
 44					      struct request *req)
 45{
 46	switch (req_op(req)) {
 47	case REQ_OP_DRV_IN:
 48	case REQ_OP_DRV_OUT:
 49	case REQ_OP_DISCARD:
 50	case REQ_OP_SECURE_ERASE:
 51	case REQ_OP_WRITE_ZEROES:
 52		return MMC_ISSUE_SYNC;
 53	case REQ_OP_FLUSH:
 54		return mmc_cqe_can_dcmd(host) ? MMC_ISSUE_DCMD : MMC_ISSUE_SYNC;
 55	default:
 56		return MMC_ISSUE_ASYNC;
 57	}
 58}
 59
 60enum mmc_issue_type mmc_issue_type(struct mmc_queue *mq, struct request *req)
 61{
 62	struct mmc_host *host = mq->card->host;
 63
 64	if (host->cqe_enabled && !host->hsq_enabled)
 65		return mmc_cqe_issue_type(host, req);
 66
 67	if (req_op(req) == REQ_OP_READ || req_op(req) == REQ_OP_WRITE)
 68		return MMC_ISSUE_ASYNC;
 69
 70	return MMC_ISSUE_SYNC;
 71}
 72
 73static void __mmc_cqe_recovery_notifier(struct mmc_queue *mq)
 74{
 75	if (!mq->recovery_needed) {
 76		mq->recovery_needed = true;
 77		schedule_work(&mq->recovery_work);
 78	}
 79}
 80
 81void mmc_cqe_recovery_notifier(struct mmc_request *mrq)
 82{
 83	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
 84						  brq.mrq);
 85	struct request *req = mmc_queue_req_to_req(mqrq);
 86	struct request_queue *q = req->q;
 87	struct mmc_queue *mq = q->queuedata;
 88	unsigned long flags;
 89
 90	spin_lock_irqsave(&mq->lock, flags);
 91	__mmc_cqe_recovery_notifier(mq);
 92	spin_unlock_irqrestore(&mq->lock, flags);
 93}
 94
 95static enum blk_eh_timer_return mmc_cqe_timed_out(struct request *req)
 96{
 97	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
 98	struct mmc_request *mrq = &mqrq->brq.mrq;
 99	struct mmc_queue *mq = req->q->queuedata;
100	struct mmc_host *host = mq->card->host;
101	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
102	bool recovery_needed = false;
103
104	switch (issue_type) {
105	case MMC_ISSUE_ASYNC:
106	case MMC_ISSUE_DCMD:
107		if (host->cqe_ops->cqe_timeout(host, mrq, &recovery_needed)) {
108			if (recovery_needed)
109				mmc_cqe_recovery_notifier(mrq);
110			return BLK_EH_RESET_TIMER;
111		}
112		/* The request has gone already */
113		return BLK_EH_DONE;
114	default:
115		/* Timeout is handled by mmc core */
116		return BLK_EH_RESET_TIMER;
117	}
118}
119
120static enum blk_eh_timer_return mmc_mq_timed_out(struct request *req)
121{
122	struct request_queue *q = req->q;
123	struct mmc_queue *mq = q->queuedata;
124	struct mmc_card *card = mq->card;
125	struct mmc_host *host = card->host;
126	unsigned long flags;
127	bool ignore_tout;
128
129	spin_lock_irqsave(&mq->lock, flags);
130	ignore_tout = mq->recovery_needed || !host->cqe_enabled || host->hsq_enabled;
131	spin_unlock_irqrestore(&mq->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
133	return ignore_tout ? BLK_EH_RESET_TIMER : mmc_cqe_timed_out(req);
134}
135
136static void mmc_mq_recovery_handler(struct work_struct *work)
 
 
 
 
 
 
137{
138	struct mmc_queue *mq = container_of(work, struct mmc_queue,
139					    recovery_work);
140	struct request_queue *q = mq->queue;
141	struct mmc_host *host = mq->card->host;
142
143	mmc_get_card(mq->card, &mq->ctx);
144
145	mq->in_recovery = true;
146
147	if (host->cqe_enabled && !host->hsq_enabled)
148		mmc_blk_cqe_recovery(mq);
149	else
150		mmc_blk_mq_recovery(mq);
151
152	mq->in_recovery = false;
153
154	spin_lock_irq(&mq->lock);
155	mq->recovery_needed = false;
156	spin_unlock_irq(&mq->lock);
 
 
 
 
157
158	if (host->hsq_enabled)
159		host->cqe_ops->cqe_recovery_finish(host);
160
161	mmc_put_card(mq->card, &mq->ctx);
 
 
 
162
163	blk_mq_run_hw_queues(q, true);
 
164}
165
166static struct scatterlist *mmc_alloc_sg(unsigned short sg_len, gfp_t gfp)
167{
168	struct scatterlist *sg;
169
170	sg = kmalloc_array(sg_len, sizeof(*sg), gfp);
171	if (sg)
 
 
 
172		sg_init_table(sg, sg_len);
 
173
174	return sg;
175}
176
177static void mmc_queue_setup_discard(struct mmc_card *card,
178		struct queue_limits *lim)
179{
180	unsigned max_discard;
181
182	max_discard = mmc_calc_max_discard(card);
183	if (!max_discard)
184		return;
185
186	lim->max_hw_discard_sectors = max_discard;
187	if (mmc_can_secure_erase_trim(card))
188		lim->max_secure_erase_sectors = max_discard;
189	if (mmc_can_trim(card) && card->erased_byte == 0)
190		lim->max_write_zeroes_sectors = max_discard;
191
192	/* granularity must not be greater than max. discard */
193	if (card->pref_erase > max_discard)
194		lim->discard_granularity = SECTOR_SIZE;
195	else
196		lim->discard_granularity = card->pref_erase << 9;
197}
198
199static unsigned short mmc_get_max_segments(struct mmc_host *host)
 
 
200{
201	return host->can_dma_map_merge ? MMC_DMA_MAP_MERGE_SEGMENTS :
202					 host->max_segs;
203}
204
205static int mmc_mq_init_request(struct blk_mq_tag_set *set, struct request *req,
206			       unsigned int hctx_idx, unsigned int numa_node)
207{
208	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
209	struct mmc_queue *mq = set->driver_data;
210	struct mmc_card *card = mq->card;
211	struct mmc_host *host = card->host;
212
213	mq_rq->sg = mmc_alloc_sg(mmc_get_max_segments(host), GFP_KERNEL);
214	if (!mq_rq->sg)
215		return -ENOMEM;
216
217	return 0;
 
 
 
 
 
 
 
218}
219
220static void mmc_mq_exit_request(struct blk_mq_tag_set *set, struct request *req,
221				unsigned int hctx_idx)
222{
223	struct mmc_queue_req *mq_rq = req_to_mmc_queue_req(req);
224
225	kfree(mq_rq->sg);
226	mq_rq->sg = NULL;
 
 
 
 
 
 
 
 
 
227}
 
228
229static blk_status_t mmc_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
230				    const struct blk_mq_queue_data *bd)
231{
232	struct request *req = bd->rq;
233	struct request_queue *q = req->q;
234	struct mmc_queue *mq = q->queuedata;
235	struct mmc_card *card = mq->card;
236	struct mmc_host *host = card->host;
237	enum mmc_issue_type issue_type;
238	enum mmc_issued issued;
239	bool get_card, cqe_retune_ok;
240	blk_status_t ret;
241
242	if (mmc_card_removed(mq->card)) {
243		req->rq_flags |= RQF_QUIET;
244		return BLK_STS_IOERR;
 
245	}
246
247	issue_type = mmc_issue_type(mq, req);
248
249	spin_lock_irq(&mq->lock);
250
251	if (mq->recovery_needed || mq->busy) {
252		spin_unlock_irq(&mq->lock);
253		return BLK_STS_RESOURCE;
254	}
255
256	switch (issue_type) {
257	case MMC_ISSUE_DCMD:
258		if (mmc_cqe_dcmd_busy(mq)) {
259			mq->cqe_busy |= MMC_CQE_DCMD_BUSY;
260			spin_unlock_irq(&mq->lock);
261			return BLK_STS_RESOURCE;
262		}
263		break;
264	case MMC_ISSUE_ASYNC:
265		if (host->hsq_enabled && mq->in_flight[issue_type] > host->hsq_depth) {
266			spin_unlock_irq(&mq->lock);
267			return BLK_STS_RESOURCE;
268		}
269		break;
270	default:
271		/*
272		 * Timeouts are handled by mmc core, and we don't have a host
273		 * API to abort requests, so we can't handle the timeout anyway.
274		 * However, when the timeout happens, blk_mq_complete_request()
275		 * no longer works (to stop the request disappearing under us).
276		 * To avoid racing with that, set a large timeout.
277		 */
278		req->timeout = 600 * HZ;
279		break;
280	}
281
282	/* Parallel dispatch of requests is not supported at the moment */
283	mq->busy = true;
284
285	mq->in_flight[issue_type] += 1;
286	get_card = (mmc_tot_in_flight(mq) == 1);
287	cqe_retune_ok = (mmc_cqe_qcnt(mq) == 1);
288
289	spin_unlock_irq(&mq->lock);
290
291	if (!(req->rq_flags & RQF_DONTPREP)) {
292		req_to_mmc_queue_req(req)->retries = 0;
293		req->rq_flags |= RQF_DONTPREP;
294	}
295
296	if (get_card)
297		mmc_get_card(card, &mq->ctx);
298
299	if (host->cqe_enabled) {
300		host->retune_now = host->need_retune && cqe_retune_ok &&
301				   !host->hold_retune;
302	}
303
304	blk_mq_start_request(req);
305
306	issued = mmc_blk_mq_issue_rq(mq, req);
307
308	switch (issued) {
309	case MMC_REQ_BUSY:
310		ret = BLK_STS_RESOURCE;
311		break;
312	case MMC_REQ_FAILED_TO_START:
313		ret = BLK_STS_IOERR;
314		break;
315	default:
316		ret = BLK_STS_OK;
317		break;
318	}
319
320	if (issued != MMC_REQ_STARTED) {
321		bool put_card = false;
322
323		spin_lock_irq(&mq->lock);
324		mq->in_flight[issue_type] -= 1;
325		if (mmc_tot_in_flight(mq) == 0)
326			put_card = true;
327		mq->busy = false;
328		spin_unlock_irq(&mq->lock);
329		if (put_card)
330			mmc_put_card(card, &mq->ctx);
331	} else {
332		WRITE_ONCE(mq->busy, false);
333	}
334
335	return ret;
 
336}
337
338static const struct blk_mq_ops mmc_mq_ops = {
339	.queue_rq	= mmc_mq_queue_rq,
340	.init_request	= mmc_mq_init_request,
341	.exit_request	= mmc_mq_exit_request,
342	.complete	= mmc_blk_mq_complete,
343	.timeout	= mmc_mq_timed_out,
344};
345
346static struct gendisk *mmc_alloc_disk(struct mmc_queue *mq,
347		struct mmc_card *card, unsigned int features)
 
 
 
 
 
 
 
 
 
348{
349	struct mmc_host *host = card->host;
350	struct queue_limits lim = {
351		.features		= features,
352	};
353	struct gendisk *disk;
354
355	if (mmc_can_erase(card))
356		mmc_queue_setup_discard(card, &lim);
357
358	lim.max_hw_sectors = min(host->max_blk_count, host->max_req_size / 512);
 
359
360	if (mmc_card_mmc(card) && card->ext_csd.data_sector_size)
361		lim.logical_block_size = card->ext_csd.data_sector_size;
362	else
363		lim.logical_block_size = 512;
364
365	WARN_ON_ONCE(lim.logical_block_size != 512 &&
366		     lim.logical_block_size != 4096);
 
 
 
 
 
 
 
 
 
 
 
 
367
368	/*
369	 * Setting a virt_boundary implicity sets a max_segment_size, so try
370	 * to set the hardware one here.
371	 */
372	if (host->can_dma_map_merge) {
373		lim.virt_boundary_mask = dma_get_merge_boundary(mmc_dev(host));
374		lim.max_segments = MMC_DMA_MAP_MERGE_SEGMENTS;
375	} else {
376		lim.max_segment_size =
377			round_down(host->max_seg_size, lim.logical_block_size);
378		lim.max_segments = host->max_segs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379	}
 
380
381	if (mmc_host_is_spi(host) && host->use_spi_crc)
382		lim.features |= BLK_FEAT_STABLE_WRITES;
383
384	disk = blk_mq_alloc_disk(&mq->tag_set, &lim, mq);
385	if (IS_ERR(disk))
386		return disk;
387	mq->queue = disk->queue;
388
389	blk_queue_rq_timeout(mq->queue, 60 * HZ);
 
 
 
390
391	if (mmc_dev(host)->dma_parms)
392		dma_set_max_seg_size(mmc_dev(host), queue_max_segment_size(mq->queue));
393
394	INIT_WORK(&mq->recovery_work, mmc_mq_recovery_handler);
395	INIT_WORK(&mq->complete_work, mmc_blk_mq_complete_work);
396
397	mutex_init(&mq->complete_lock);
 
 
 
398
399	init_waitqueue_head(&mq->wait);
400
401	mmc_crypto_setup_queue(mq->queue, host);
402	return disk;
 
 
 
 
 
403}
404
405static inline bool mmc_merge_capable(struct mmc_host *host)
406{
407	return host->caps2 & MMC_CAP2_MERGE_CAPABLE;
408}
 
 
 
 
 
 
409
410/* Set queue depth to get a reasonable value for q->nr_requests */
411#define MMC_QUEUE_DEPTH 64
 
 
 
 
 
 
 
 
 
 
 
412
413/**
414 * mmc_init_queue - initialise a queue structure.
415 * @mq: mmc queue
416 * @card: mmc card to attach this queue
417 * @features: block layer features (BLK_FEAT_*)
418 *
419 * Initialise a MMC card request queue.
 
 
420 */
421struct gendisk *mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
422		unsigned int features)
423{
424	struct mmc_host *host = card->host;
425	struct gendisk *disk;
426	int ret;
427
428	mq->card = card;
429	
430	spin_lock_init(&mq->lock);
431
432	memset(&mq->tag_set, 0, sizeof(mq->tag_set));
433	mq->tag_set.ops = &mmc_mq_ops;
434	/*
435	 * The queue depth for CQE must match the hardware because the request
436	 * tag is used to index the hardware queue.
437	 */
438	if (host->cqe_enabled && !host->hsq_enabled)
439		mq->tag_set.queue_depth =
440			min_t(int, card->ext_csd.cmdq_depth, host->cqe_qdepth);
441	else
442		mq->tag_set.queue_depth = MMC_QUEUE_DEPTH;
443	mq->tag_set.numa_node = NUMA_NO_NODE;
444	mq->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
445	mq->tag_set.nr_hw_queues = 1;
446	mq->tag_set.cmd_size = sizeof(struct mmc_queue_req);
447	mq->tag_set.driver_data = mq;
448
449	/*
450	 * Since blk_mq_alloc_tag_set() calls .init_request() of mmc_mq_ops,
451	 * the host->can_dma_map_merge should be set before to get max_segs
452	 * from mmc_get_max_segments().
453	 */
454	if (mmc_merge_capable(host) &&
455	    host->max_segs < MMC_DMA_MAP_MERGE_SEGMENTS &&
456	    dma_get_merge_boundary(mmc_dev(host)))
457		host->can_dma_map_merge = 1;
458	else
459		host->can_dma_map_merge = 0;
460
461	ret = blk_mq_alloc_tag_set(&mq->tag_set);
462	if (ret)
463		return ERR_PTR(ret);
464		
465
466	disk = mmc_alloc_disk(mq, card, features);
467	if (IS_ERR(disk))
468		blk_mq_free_tag_set(&mq->tag_set);
469	return disk;
470}
471
472void mmc_queue_suspend(struct mmc_queue *mq)
 
 
 
 
473{
474	blk_mq_quiesce_queue(mq->queue);
 
475
476	/*
477	 * The host remains claimed while there are outstanding requests, so
478	 * simply claiming and releasing here ensures there are none.
479	 */
480	mmc_claim_host(mq->card->host);
481	mmc_release_host(mq->card->host);
482}
483
484void mmc_queue_resume(struct mmc_queue *mq)
485{
486	blk_mq_unquiesce_queue(mq->queue);
 
 
 
487}
488
489void mmc_cleanup_queue(struct mmc_queue *mq)
 
 
 
490{
491	struct request_queue *q = mq->queue;
 
 
 
492
493	/*
494	 * The legacy code handled the possibility of being suspended,
495	 * so do that here too.
496	 */
497	if (blk_queue_quiesced(q))
498		blk_mq_unquiesce_queue(q);
499
500	/*
501	 * If the recovery completes the last (and only remaining) request in
502	 * the queue, and the card has been removed, we could end up here with
503	 * the recovery not quite finished yet, so cancel it.
504	 */
505	cancel_work_sync(&mq->recovery_work);
506
507	blk_mq_free_tag_set(&mq->tag_set);
508
509	/*
510	 * A request can be completed before the next request, potentially
511	 * leaving a complete_work with nothing to do. Such a work item might
512	 * still be queued at this point. Flush it.
513	 */
514	flush_work(&mq->complete_work);
515
516	mq->card = NULL;
 
 
517}
518
519/*
520 * Prepare the sg list(s) to be handed of to the host driver
 
521 */
522unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
523{
524	struct request *req = mmc_queue_req_to_req(mqrq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525
526	return blk_rq_map_sg(mq->queue, req, mqrq->sg);
 
527}
v4.10.11
 
  1/*
  2 *  Copyright (C) 2003 Russell King, All Rights Reserved.
  3 *  Copyright 2006-2007 Pierre Ossman
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License version 2 as
  7 * published by the Free Software Foundation.
  8 *
  9 */
 10#include <linux/slab.h>
 11#include <linux/module.h>
 12#include <linux/blkdev.h>
 13#include <linux/freezer.h>
 14#include <linux/kthread.h>
 15#include <linux/scatterlist.h>
 16#include <linux/dma-mapping.h>
 
 17
 18#include <linux/mmc/card.h>
 19#include <linux/mmc/host.h>
 20
 21#include "queue.h"
 22#include "block.h"
 
 
 
 
 
 
 
 
 
 
 
 
 23
 24#define MMC_QUEUE_BOUNCESZ	65536
 
 
 
 
 25
 26/*
 27 * Prepare a MMC request. This just filters out odd stuff.
 28 */
 29static int mmc_prep_request(struct request_queue *q, struct request *req)
 30{
 31	struct mmc_queue *mq = q->queuedata;
 
 32
 33	/*
 34	 * We only like normal block requests and discards.
 35	 */
 36	if (req->cmd_type != REQ_TYPE_FS && req_op(req) != REQ_OP_DISCARD &&
 37	    req_op(req) != REQ_OP_SECURE_ERASE) {
 38		blk_dump_rq_flags(req, "MMC bad request");
 39		return BLKPREP_KILL;
 
 
 
 
 
 
 
 40	}
 
 
 
 
 
 41
 42	if (mq && (mmc_card_removed(mq->card) || mmc_access_rpmb(mq)))
 43		return BLKPREP_KILL;
 44
 45	req->rq_flags |= RQF_DONTPREP;
 
 46
 47	return BLKPREP_OK;
 48}
 49
 50static int mmc_queue_thread(void *d)
 51{
 52	struct mmc_queue *mq = d;
 53	struct request_queue *q = mq->queue;
 54	struct mmc_context_info *cntx = &mq->card->host->context_info;
 
 
 55
 56	current->flags |= PF_MEMALLOC;
 
 
 
 
 
 
 
 57
 58	down(&mq->thread_sem);
 59	do {
 60		struct request *req = NULL;
 61
 62		spin_lock_irq(q->queue_lock);
 63		set_current_state(TASK_INTERRUPTIBLE);
 64		req = blk_fetch_request(q);
 65		mq->asleep = false;
 66		cntx->is_waiting_last_req = false;
 67		cntx->is_new_req = false;
 68		if (!req) {
 69			/*
 70			 * Dispatch queue is empty so set flags for
 71			 * mmc_request_fn() to wake us up.
 72			 */
 73			if (mq->mqrq_prev->req)
 74				cntx->is_waiting_last_req = true;
 75			else
 76				mq->asleep = true;
 
 
 77		}
 78		mq->mqrq_cur->req = req;
 79		spin_unlock_irq(q->queue_lock);
 
 
 
 
 
 80
 81		if (req || mq->mqrq_prev->req) {
 82			bool req_is_special = mmc_req_is_special(req);
 
 
 
 
 
 
 83
 84			set_current_state(TASK_RUNNING);
 85			mmc_blk_issue_rq(mq, req);
 86			cond_resched();
 87			if (mq->flags & MMC_QUEUE_NEW_REQUEST) {
 88				mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
 89				continue; /* fetch again */
 90			}
 91
 92			/*
 93			 * Current request becomes previous request
 94			 * and vice versa.
 95			 * In case of special requests, current request
 96			 * has been finished. Do not assign it to previous
 97			 * request.
 98			 */
 99			if (req_is_special)
100				mq->mqrq_cur->req = NULL;
101
102			mq->mqrq_prev->brq.mrq.data = NULL;
103			mq->mqrq_prev->req = NULL;
104			swap(mq->mqrq_prev, mq->mqrq_cur);
105		} else {
106			if (kthread_should_stop()) {
107				set_current_state(TASK_RUNNING);
108				break;
109			}
110			up(&mq->thread_sem);
111			schedule();
112			down(&mq->thread_sem);
113		}
114	} while (1);
115	up(&mq->thread_sem);
116
117	return 0;
118}
119
120/*
121 * Generic MMC request handler.  This is called for any queue on a
122 * particular host.  When the host is not busy, we look for a request
123 * on any queue on this host, and attempt to issue it.  This may
124 * not be the queue we were asked to process.
125 */
126static void mmc_request_fn(struct request_queue *q)
127{
128	struct mmc_queue *mq = q->queuedata;
129	struct request *req;
130	struct mmc_context_info *cntx;
 
 
 
 
 
 
 
 
 
 
 
 
131
132	if (!mq) {
133		while ((req = blk_fetch_request(q)) != NULL) {
134			req->rq_flags |= RQF_QUIET;
135			__blk_end_request_all(req, -EIO);
136		}
137		return;
138	}
139
140	cntx = &mq->card->host->context_info;
 
141
142	if (cntx->is_waiting_last_req) {
143		cntx->is_new_req = true;
144		wake_up_interruptible(&cntx->wait);
145	}
146
147	if (mq->asleep)
148		wake_up_process(mq->thread);
149}
150
151static struct scatterlist *mmc_alloc_sg(int sg_len, int *err)
152{
153	struct scatterlist *sg;
154
155	sg = kmalloc(sizeof(struct scatterlist)*sg_len, GFP_KERNEL);
156	if (!sg)
157		*err = -ENOMEM;
158	else {
159		*err = 0;
160		sg_init_table(sg, sg_len);
161	}
162
163	return sg;
164}
165
166static void mmc_queue_setup_discard(struct request_queue *q,
167				    struct mmc_card *card)
168{
169	unsigned max_discard;
170
171	max_discard = mmc_calc_max_discard(card);
172	if (!max_discard)
173		return;
174
175	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
176	blk_queue_max_discard_sectors(q, max_discard);
177	if (card->erased_byte == 0 && !mmc_can_discard(card))
178		q->limits.discard_zeroes_data = 1;
179	q->limits.discard_granularity = card->pref_erase << 9;
 
180	/* granularity must not be greater than max. discard */
181	if (card->pref_erase > max_discard)
182		q->limits.discard_granularity = 0;
183	if (mmc_can_secure_erase_trim(card))
184		queue_flag_set_unlocked(QUEUE_FLAG_SECERASE, q);
185}
186
187#ifdef CONFIG_MMC_BLOCK_BOUNCE
188static bool mmc_queue_alloc_bounce_bufs(struct mmc_queue *mq,
189					unsigned int bouncesz)
190{
191	int i;
 
 
192
193	for (i = 0; i < mq->qdepth; i++) {
194		mq->mqrq[i].bounce_buf = kmalloc(bouncesz, GFP_KERNEL);
195		if (!mq->mqrq[i].bounce_buf)
196			goto out_err;
197	}
 
 
198
199	return true;
 
 
200
201out_err:
202	while (--i >= 0) {
203		kfree(mq->mqrq[i].bounce_buf);
204		mq->mqrq[i].bounce_buf = NULL;
205	}
206	pr_warn("%s: unable to allocate bounce buffers\n",
207		mmc_card_name(mq->card));
208	return false;
209}
210
211static int mmc_queue_alloc_bounce_sgs(struct mmc_queue *mq,
212				      unsigned int bouncesz)
213{
214	int i, ret;
215
216	for (i = 0; i < mq->qdepth; i++) {
217		mq->mqrq[i].sg = mmc_alloc_sg(1, &ret);
218		if (ret)
219			return ret;
220
221		mq->mqrq[i].bounce_sg = mmc_alloc_sg(bouncesz / 512, &ret);
222		if (ret)
223			return ret;
224	}
225
226	return 0;
227}
228#endif
229
230static int mmc_queue_alloc_sgs(struct mmc_queue *mq, int max_segs)
 
231{
232	int i, ret;
 
 
 
 
 
 
 
 
233
234	for (i = 0; i < mq->qdepth; i++) {
235		mq->mqrq[i].sg = mmc_alloc_sg(max_segs, &ret);
236		if (ret)
237			return ret;
238	}
239
240	return 0;
241}
 
242
243static void mmc_queue_req_free_bufs(struct mmc_queue_req *mqrq)
244{
245	kfree(mqrq->bounce_sg);
246	mqrq->bounce_sg = NULL;
247
248	kfree(mqrq->sg);
249	mqrq->sg = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250
251	kfree(mqrq->bounce_buf);
252	mqrq->bounce_buf = NULL;
253}
254
255static void mmc_queue_reqs_free_bufs(struct mmc_queue *mq)
256{
257	int i;
258
259	for (i = 0; i < mq->qdepth; i++)
260		mmc_queue_req_free_bufs(&mq->mqrq[i]);
261}
262
263/**
264 * mmc_init_queue - initialise a queue structure.
265 * @mq: mmc queue
266 * @card: mmc card to attach this queue
267 * @lock: queue lock
268 * @subname: partition subname
269 *
270 * Initialise a MMC card request queue.
271 */
272int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card,
273		   spinlock_t *lock, const char *subname)
274{
275	struct mmc_host *host = card->host;
276	u64 limit = BLK_BOUNCE_HIGH;
277	bool bounce = false;
278	int ret = -ENOMEM;
 
 
 
 
279
280	if (mmc_dev(host)->dma_mask && *mmc_dev(host)->dma_mask)
281		limit = (u64)dma_max_pfn(mmc_dev(host)) << PAGE_SHIFT;
282
283	mq->card = card;
284	mq->queue = blk_init_queue(mmc_request_fn, lock);
285	if (!mq->queue)
286		return -ENOMEM;
287
288	mq->qdepth = 2;
289	mq->mqrq = kcalloc(mq->qdepth, sizeof(struct mmc_queue_req),
290			   GFP_KERNEL);
291	if (!mq->mqrq)
292		goto blk_cleanup;
293	mq->mqrq_cur = &mq->mqrq[0];
294	mq->mqrq_prev = &mq->mqrq[1];
295	mq->queue->queuedata = mq;
296
297	blk_queue_prep_rq(mq->queue, mmc_prep_request);
298	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mq->queue);
299	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, mq->queue);
300	if (mmc_can_erase(card))
301		mmc_queue_setup_discard(mq->queue, card);
302
303#ifdef CONFIG_MMC_BLOCK_BOUNCE
304	if (host->max_segs == 1) {
305		unsigned int bouncesz;
306
307		bouncesz = MMC_QUEUE_BOUNCESZ;
308
309		if (bouncesz > host->max_req_size)
310			bouncesz = host->max_req_size;
311		if (bouncesz > host->max_seg_size)
312			bouncesz = host->max_seg_size;
313		if (bouncesz > (host->max_blk_count * 512))
314			bouncesz = host->max_blk_count * 512;
315
316		if (bouncesz > 512 &&
317		    mmc_queue_alloc_bounce_bufs(mq, bouncesz)) {
318			blk_queue_bounce_limit(mq->queue, BLK_BOUNCE_ANY);
319			blk_queue_max_hw_sectors(mq->queue, bouncesz / 512);
320			blk_queue_max_segments(mq->queue, bouncesz / 512);
321			blk_queue_max_segment_size(mq->queue, bouncesz);
322
323			ret = mmc_queue_alloc_bounce_sgs(mq, bouncesz);
324			if (ret)
325				goto cleanup_queue;
326			bounce = true;
327		}
328	}
329#endif
330
331	if (!bounce) {
332		blk_queue_bounce_limit(mq->queue, limit);
333		blk_queue_max_hw_sectors(mq->queue,
334			min(host->max_blk_count, host->max_req_size / 512));
335		blk_queue_max_segments(mq->queue, host->max_segs);
336		blk_queue_max_segment_size(mq->queue, host->max_seg_size);
 
337
338		ret = mmc_queue_alloc_sgs(mq, host->max_segs);
339		if (ret)
340			goto cleanup_queue;
341	}
342
343	sema_init(&mq->thread_sem, 1);
 
344
345	mq->thread = kthread_run(mmc_queue_thread, mq, "mmcqd/%d%s",
346		host->index, subname ? subname : "");
347
348	if (IS_ERR(mq->thread)) {
349		ret = PTR_ERR(mq->thread);
350		goto cleanup_queue;
351	}
352
353	return 0;
354
355 cleanup_queue:
356	mmc_queue_reqs_free_bufs(mq);
357	kfree(mq->mqrq);
358	mq->mqrq = NULL;
359blk_cleanup:
360	blk_cleanup_queue(mq->queue);
361	return ret;
362}
363
364void mmc_cleanup_queue(struct mmc_queue *mq)
365{
366	struct request_queue *q = mq->queue;
367	unsigned long flags;
368
369	/* Make sure the queue isn't suspended, as that will deadlock */
370	mmc_queue_resume(mq);
371
372	/* Then terminate our worker thread */
373	kthread_stop(mq->thread);
374
375	/* Empty the queue */
376	spin_lock_irqsave(q->queue_lock, flags);
377	q->queuedata = NULL;
378	blk_start_queue(q);
379	spin_unlock_irqrestore(q->queue_lock, flags);
380
381	mmc_queue_reqs_free_bufs(mq);
382	kfree(mq->mqrq);
383	mq->mqrq = NULL;
384
385	mq->card = NULL;
386}
387EXPORT_SYMBOL(mmc_cleanup_queue);
388
389/**
390 * mmc_queue_suspend - suspend a MMC request queue
391 * @mq: MMC queue to suspend
 
 
392 *
393 * Stop the block request queue, and wait for our thread to
394 * complete any outstanding requests.  This ensures that we
395 * won't suspend while a request is being processed.
396 */
397void mmc_queue_suspend(struct mmc_queue *mq)
 
398{
399	struct request_queue *q = mq->queue;
400	unsigned long flags;
 
401
402	if (!(mq->flags & MMC_QUEUE_SUSPENDED)) {
403		mq->flags |= MMC_QUEUE_SUSPENDED;
 
404
405		spin_lock_irqsave(q->queue_lock, flags);
406		blk_stop_queue(q);
407		spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
408
409		down(&mq->thread_sem);
410	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411}
412
413/**
414 * mmc_queue_resume - resume a previously suspended MMC request queue
415 * @mq: MMC queue to resume
416 */
417void mmc_queue_resume(struct mmc_queue *mq)
418{
419	struct request_queue *q = mq->queue;
420	unsigned long flags;
421
422	if (mq->flags & MMC_QUEUE_SUSPENDED) {
423		mq->flags &= ~MMC_QUEUE_SUSPENDED;
 
 
 
 
 
424
425		up(&mq->thread_sem);
426
427		spin_lock_irqsave(q->queue_lock, flags);
428		blk_start_queue(q);
429		spin_unlock_irqrestore(q->queue_lock, flags);
430	}
431}
432
433/*
434 * Prepare the sg list(s) to be handed of to the host driver
435 */
436unsigned int mmc_queue_map_sg(struct mmc_queue *mq, struct mmc_queue_req *mqrq)
437{
438	unsigned int sg_len;
439	size_t buflen;
440	struct scatterlist *sg;
441	int i;
442
443	if (!mqrq->bounce_buf)
444		return blk_rq_map_sg(mq->queue, mqrq->req, mqrq->sg);
 
 
 
 
445
446	sg_len = blk_rq_map_sg(mq->queue, mqrq->req, mqrq->bounce_sg);
 
 
 
 
 
447
448	mqrq->bounce_sg_len = sg_len;
449
450	buflen = 0;
451	for_each_sg(mqrq->bounce_sg, sg, sg_len, i)
452		buflen += sg->length;
 
 
 
453
454	sg_init_one(mqrq->sg, mqrq->bounce_buf, buflen);
455
456	return 1;
457}
458
459/*
460 * If writing, bounce the data to the buffer before the request
461 * is sent to the host driver
462 */
463void mmc_queue_bounce_pre(struct mmc_queue_req *mqrq)
464{
465	if (!mqrq->bounce_buf)
466		return;
467
468	if (rq_data_dir(mqrq->req) != WRITE)
469		return;
470
471	sg_copy_to_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
472		mqrq->bounce_buf, mqrq->sg[0].length);
473}
474
475/*
476 * If reading, bounce the data from the buffer after the request
477 * has been handled by the host driver
478 */
479void mmc_queue_bounce_post(struct mmc_queue_req *mqrq)
480{
481	if (!mqrq->bounce_buf)
482		return;
483
484	if (rq_data_dir(mqrq->req) != READ)
485		return;
486
487	sg_copy_from_buffer(mqrq->bounce_sg, mqrq->bounce_sg_len,
488		mqrq->bounce_buf, mqrq->sg[0].length);
489}