Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * at24.c - handle most I2C EEPROMs
  4 *
  5 * Copyright (C) 2005-2007 David Brownell
  6 * Copyright (C) 2008 Wolfram Sang, Pengutronix
 
 
 
 
 
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/bitops.h>
 11#include <linux/capability.h>
 12#include <linux/delay.h>
 13#include <linux/i2c.h>
 14#include <linux/init.h>
 15#include <linux/jiffies.h>
 16#include <linux/kernel.h>
 17#include <linux/mod_devicetable.h>
 18#include <linux/module.h>
 
 
 19#include <linux/mutex.h>
 20#include <linux/nvmem-provider.h>
 
 
 
 21#include <linux/of.h>
 22#include <linux/of_device.h>
 23#include <linux/pm_runtime.h>
 24#include <linux/property.h>
 25#include <linux/regmap.h>
 26#include <linux/regulator/consumer.h>
 27#include <linux/slab.h>
 28
 29/* Address pointer is 16 bit. */
 30#define AT24_FLAG_ADDR16	BIT(7)
 31/* sysfs-entry will be read-only. */
 32#define AT24_FLAG_READONLY	BIT(6)
 33/* sysfs-entry will be world-readable. */
 34#define AT24_FLAG_IRUGO		BIT(5)
 35/* Take always 8 addresses (24c00). */
 36#define AT24_FLAG_TAKE8ADDR	BIT(4)
 37/* Factory-programmed serial number. */
 38#define AT24_FLAG_SERIAL	BIT(3)
 39/* Factory-programmed mac address. */
 40#define AT24_FLAG_MAC		BIT(2)
 41/* Does not auto-rollover reads to the next slave address. */
 42#define AT24_FLAG_NO_RDROL	BIT(1)
 43
 44/*
 45 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 46 * Differences between different vendor product lines (like Atmel AT24C or
 47 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 48 * There are also I2C RAM chips, likewise interchangeable. One example
 49 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 50 *
 51 * However, misconfiguration can lose data. "Set 16-bit memory address"
 52 * to a part with 8-bit addressing will overwrite data. Writing with too
 53 * big a page size also loses data. And it's not safe to assume that the
 54 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 55 * uses 0x51, for just one example.
 56 *
 57 * Accordingly, explicit board-specific configuration data should be used
 58 * in almost all cases. (One partial exception is an SMBus used to access
 59 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 60 *
 61 * So this driver uses "new style" I2C driver binding, expecting to be
 62 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 63 * similar kernel-resident tables; or, configuration data coming from
 64 * a bootloader.
 65 *
 66 * Other than binding model, current differences from "eeprom" driver are
 67 * that this one handles write access and isn't restricted to 24c02 devices.
 68 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 69 * which won't work on pure SMBus systems.
 70 */
 71
 72struct at24_data {
 
 
 
 
 
 
 
 
 73	/*
 74	 * Lock protects against activities from other Linux tasks,
 75	 * but not from changes by other I2C masters.
 76	 */
 77	struct mutex lock;
 78
 79	unsigned int write_max;
 80	unsigned int num_addresses;
 81	unsigned int offset_adj;
 82
 83	u32 byte_len;
 84	u16 page_size;
 85	u8 flags;
 86
 
 87	struct nvmem_device *nvmem;
 88	struct regulator *vcc_reg;
 89	void (*read_post)(unsigned int off, char *buf, size_t count);
 90
 91	/*
 92	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 93	 * them for us.
 94	 */
 95	u8 bank_addr_shift;
 96	struct regmap *client_regmaps[] __counted_by(num_addresses);
 97};
 98
 99/*
100 * This parameter is to help this driver avoid blocking other drivers out
101 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
102 * clock, one 256 byte read takes about 1/43 second which is excessive;
103 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
104 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
105 *
106 * This value is forced to be a power of two so that writes align on pages.
107 */
108static unsigned int at24_io_limit = 128;
109module_param_named(io_limit, at24_io_limit, uint, 0);
110MODULE_PARM_DESC(at24_io_limit, "Maximum bytes per I/O (default 128)");
111
112/*
113 * Specs often allow 5 msec for a page write, sometimes 20 msec;
114 * it's important to recover from write timeouts.
115 */
116static unsigned int at24_write_timeout = 25;
117module_param_named(write_timeout, at24_write_timeout, uint, 0);
118MODULE_PARM_DESC(at24_write_timeout, "Time (in ms) to try writes (default 25)");
119
120struct at24_chip_data {
121	u32 byte_len;
122	u8 flags;
123	u8 bank_addr_shift;
124	void (*read_post)(unsigned int off, char *buf, size_t count);
125};
126
127#define AT24_CHIP_DATA(_name, _len, _flags)				\
128	static const struct at24_chip_data _name = {			\
129		.byte_len = _len, .flags = _flags,			\
130	}
131
132#define AT24_CHIP_DATA_CB(_name, _len, _flags, _read_post)		\
133	static const struct at24_chip_data _name = {			\
134		.byte_len = _len, .flags = _flags,			\
135		.read_post = _read_post,				\
136	}
137
138#define AT24_CHIP_DATA_BS(_name, _len, _flags, _bank_addr_shift)	\
139	static const struct at24_chip_data _name = {			\
140		.byte_len = _len, .flags = _flags,			\
141		.bank_addr_shift = _bank_addr_shift			\
142	}
143
144static void at24_read_post_vaio(unsigned int off, char *buf, size_t count)
145{
146	int i;
147
148	if (capable(CAP_SYS_ADMIN))
149		return;
150
151	/*
152	 * Hide VAIO private settings to regular users:
153	 * - BIOS passwords: bytes 0x00 to 0x0f
154	 * - UUID: bytes 0x10 to 0x1f
155	 * - Serial number: 0xc0 to 0xdf
156	 */
157	for (i = 0; i < count; i++) {
158		if ((off + i <= 0x1f) ||
159		    (off + i >= 0xc0 && off + i <= 0xdf))
160			buf[i] = 0;
161	}
162}
163
164/* needs 8 addresses as A0-A2 are ignored */
165AT24_CHIP_DATA(at24_data_24c00, 128 / 8, AT24_FLAG_TAKE8ADDR);
166/* old variants can't be handled with this generic entry! */
167AT24_CHIP_DATA(at24_data_24c01, 1024 / 8, 0);
168AT24_CHIP_DATA(at24_data_24cs01, 16,
169	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
170AT24_CHIP_DATA(at24_data_24c02, 2048 / 8, 0);
171AT24_CHIP_DATA(at24_data_24cs02, 16,
172	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
173AT24_CHIP_DATA(at24_data_24mac402, 48 / 8,
174	AT24_FLAG_MAC | AT24_FLAG_READONLY);
175AT24_CHIP_DATA(at24_data_24mac602, 64 / 8,
176	AT24_FLAG_MAC | AT24_FLAG_READONLY);
177AT24_CHIP_DATA(at24_data_24aa025e48, 48 / 8,
178	AT24_FLAG_READONLY);
179AT24_CHIP_DATA(at24_data_24aa025e64, 64 / 8,
180	AT24_FLAG_READONLY);
181/* spd is a 24c02 in memory DIMMs */
182AT24_CHIP_DATA(at24_data_spd, 2048 / 8,
183	AT24_FLAG_READONLY | AT24_FLAG_IRUGO);
184/* 24c02_vaio is a 24c02 on some Sony laptops */
185AT24_CHIP_DATA_CB(at24_data_24c02_vaio, 2048 / 8,
186	AT24_FLAG_READONLY | AT24_FLAG_IRUGO,
187	at24_read_post_vaio);
188AT24_CHIP_DATA(at24_data_24c04, 4096 / 8, 0);
189AT24_CHIP_DATA(at24_data_24cs04, 16,
190	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
191/* 24rf08 quirk is handled at i2c-core */
192AT24_CHIP_DATA(at24_data_24c08, 8192 / 8, 0);
193AT24_CHIP_DATA(at24_data_24cs08, 16,
194	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
195AT24_CHIP_DATA(at24_data_24c16, 16384 / 8, 0);
196AT24_CHIP_DATA(at24_data_24cs16, 16,
197	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
198AT24_CHIP_DATA(at24_data_24c32, 32768 / 8, AT24_FLAG_ADDR16);
199/* M24C32-D Additional Write lockable page (M24C32-D order codes) */
200AT24_CHIP_DATA(at24_data_24c32d_wlp, 32, AT24_FLAG_ADDR16);
201AT24_CHIP_DATA(at24_data_24cs32, 16,
202	AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
203AT24_CHIP_DATA(at24_data_24c64, 65536 / 8, AT24_FLAG_ADDR16);
204/* M24C64-D Additional Write lockable page (M24C64-D order codes) */
205AT24_CHIP_DATA(at24_data_24c64d_wlp, 32, AT24_FLAG_ADDR16);
206AT24_CHIP_DATA(at24_data_24cs64, 16,
207	AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
208AT24_CHIP_DATA(at24_data_24c128, 131072 / 8, AT24_FLAG_ADDR16);
209AT24_CHIP_DATA(at24_data_24c256, 262144 / 8, AT24_FLAG_ADDR16);
210/* M24256E Additional Write lockable page (M24256E-F order codes) */
211AT24_CHIP_DATA(at24_data_24256e_wlp, 64, AT24_FLAG_ADDR16);
212AT24_CHIP_DATA(at24_data_24c512, 524288 / 8, AT24_FLAG_ADDR16);
213AT24_CHIP_DATA(at24_data_24c1024, 1048576 / 8, AT24_FLAG_ADDR16);
214AT24_CHIP_DATA_BS(at24_data_24c1025, 1048576 / 8, AT24_FLAG_ADDR16, 2);
215AT24_CHIP_DATA(at24_data_24c2048, 2097152 / 8, AT24_FLAG_ADDR16);
216/* identical to 24c08 ? */
217AT24_CHIP_DATA(at24_data_INT3499, 8192 / 8, 0);
218
219static const struct i2c_device_id at24_ids[] = {
220	{ "24c00",	(kernel_ulong_t)&at24_data_24c00 },
221	{ "24c01",	(kernel_ulong_t)&at24_data_24c01 },
222	{ "24cs01",	(kernel_ulong_t)&at24_data_24cs01 },
223	{ "24c02",	(kernel_ulong_t)&at24_data_24c02 },
224	{ "24cs02",	(kernel_ulong_t)&at24_data_24cs02 },
225	{ "24mac402",	(kernel_ulong_t)&at24_data_24mac402 },
226	{ "24mac602",	(kernel_ulong_t)&at24_data_24mac602 },
227	{ "24aa025e48",	(kernel_ulong_t)&at24_data_24aa025e48 },
228	{ "24aa025e64",	(kernel_ulong_t)&at24_data_24aa025e64 },
229	{ "spd",	(kernel_ulong_t)&at24_data_spd },
230	{ "24c02-vaio",	(kernel_ulong_t)&at24_data_24c02_vaio },
231	{ "24c04",	(kernel_ulong_t)&at24_data_24c04 },
232	{ "24cs04",	(kernel_ulong_t)&at24_data_24cs04 },
233	{ "24c08",	(kernel_ulong_t)&at24_data_24c08 },
234	{ "24cs08",	(kernel_ulong_t)&at24_data_24cs08 },
235	{ "24c16",	(kernel_ulong_t)&at24_data_24c16 },
236	{ "24cs16",	(kernel_ulong_t)&at24_data_24cs16 },
237	{ "24c32",	(kernel_ulong_t)&at24_data_24c32 },
238	{ "24c32d-wl",	(kernel_ulong_t)&at24_data_24c32d_wlp },
239	{ "24cs32",	(kernel_ulong_t)&at24_data_24cs32 },
240	{ "24c64",	(kernel_ulong_t)&at24_data_24c64 },
241	{ "24c64-wl",	(kernel_ulong_t)&at24_data_24c64d_wlp },
242	{ "24cs64",	(kernel_ulong_t)&at24_data_24cs64 },
243	{ "24c128",	(kernel_ulong_t)&at24_data_24c128 },
244	{ "24c256",	(kernel_ulong_t)&at24_data_24c256 },
245	{ "24256e-wl",	(kernel_ulong_t)&at24_data_24256e_wlp },
246	{ "24c512",	(kernel_ulong_t)&at24_data_24c512 },
247	{ "24c1024",	(kernel_ulong_t)&at24_data_24c1024 },
248	{ "24c1025",	(kernel_ulong_t)&at24_data_24c1025 },
249	{ "24c2048",    (kernel_ulong_t)&at24_data_24c2048 },
250	{ "at24",	0 },
 
 
 
 
 
 
 
 
 
 
251	{ /* END OF LIST */ }
252};
253MODULE_DEVICE_TABLE(i2c, at24_ids);
254
255static const struct of_device_id __maybe_unused at24_of_match[] = {
256	{ .compatible = "atmel,24c00",		.data = &at24_data_24c00 },
257	{ .compatible = "atmel,24c01",		.data = &at24_data_24c01 },
258	{ .compatible = "atmel,24cs01",		.data = &at24_data_24cs01 },
259	{ .compatible = "atmel,24c02",		.data = &at24_data_24c02 },
260	{ .compatible = "atmel,24cs02",		.data = &at24_data_24cs02 },
261	{ .compatible = "atmel,24mac402",	.data = &at24_data_24mac402 },
262	{ .compatible = "atmel,24mac602",	.data = &at24_data_24mac602 },
263	{ .compatible = "atmel,spd",		.data = &at24_data_spd },
264	{ .compatible = "atmel,24c04",		.data = &at24_data_24c04 },
265	{ .compatible = "atmel,24cs04",		.data = &at24_data_24cs04 },
266	{ .compatible = "atmel,24c08",		.data = &at24_data_24c08 },
267	{ .compatible = "atmel,24cs08",		.data = &at24_data_24cs08 },
268	{ .compatible = "atmel,24c16",		.data = &at24_data_24c16 },
269	{ .compatible = "atmel,24cs16",		.data = &at24_data_24cs16 },
270	{ .compatible = "atmel,24c32",		.data = &at24_data_24c32 },
271	{ .compatible = "atmel,24c32d-wl",	.data = &at24_data_24c32d_wlp },
272	{ .compatible = "atmel,24cs32",		.data = &at24_data_24cs32 },
273	{ .compatible = "atmel,24c64",		.data = &at24_data_24c64 },
274	{ .compatible = "atmel,24c64d-wl",	.data = &at24_data_24c64d_wlp },
275	{ .compatible = "atmel,24cs64",		.data = &at24_data_24cs64 },
276	{ .compatible = "atmel,24c128",		.data = &at24_data_24c128 },
277	{ .compatible = "atmel,24c256",		.data = &at24_data_24c256 },
278	{ .compatible = "atmel,24c512",		.data = &at24_data_24c512 },
279	{ .compatible = "atmel,24c1024",	.data = &at24_data_24c1024 },
280	{ .compatible = "atmel,24c1025",	.data = &at24_data_24c1025 },
281	{ .compatible = "atmel,24c2048",	.data = &at24_data_24c2048 },
282	{ .compatible = "microchip,24aa025e48",	.data = &at24_data_24aa025e48 },
283	{ .compatible = "microchip,24aa025e64",	.data = &at24_data_24aa025e64 },
284	{ .compatible = "st,24256e-wl",		.data = &at24_data_24256e_wlp },
285	{ /* END OF LIST */ },
286};
287MODULE_DEVICE_TABLE(of, at24_of_match);
288
289static const struct acpi_device_id __maybe_unused at24_acpi_ids[] = {
290	{ "INT3499",	(kernel_ulong_t)&at24_data_INT3499 },
291	{ "TPF0001",	(kernel_ulong_t)&at24_data_24c1024 },
292	{ /* END OF LIST */ }
293};
294MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
295
 
 
296/*
297 * This routine supports chips which consume multiple I2C addresses. It
298 * computes the addressing information to be used for a given r/w request.
299 * Assumes that sanity checks for offset happened at sysfs-layer.
300 *
301 * Slave address and byte offset derive from the offset. Always
302 * set the byte address; on a multi-master board, another master
303 * may have changed the chip's "current" address pointer.
 
 
 
 
 
 
 
 
 
304 */
305static struct regmap *at24_translate_offset(struct at24_data *at24,
306					    unsigned int *offset)
307{
308	unsigned int i;
309
310	if (at24->flags & AT24_FLAG_ADDR16) {
311		i = *offset >> 16;
312		*offset &= 0xffff;
313	} else {
314		i = *offset >> 8;
315		*offset &= 0xff;
316	}
317
318	return at24->client_regmaps[i];
319}
320
321static struct device *at24_base_client_dev(struct at24_data *at24)
 
322{
323	return regmap_get_device(at24->client_regmaps[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324}
325
326static size_t at24_adjust_read_count(struct at24_data *at24,
327				      unsigned int offset, size_t count)
328{
329	unsigned int bits;
330	size_t remainder;
 
 
 
 
 
 
 
 
 
331
332	/*
333	 * In case of multi-address chips that don't rollover reads to
334	 * the next slave address: truncate the count to the slave boundary,
335	 * so that the read never straddles slaves.
 
336	 */
337	if (at24->flags & AT24_FLAG_NO_RDROL) {
338		bits = (at24->flags & AT24_FLAG_ADDR16) ? 16 : 8;
339		remainder = BIT(bits) - offset;
340		if (count > remainder)
341			count = remainder;
342	}
 
 
 
 
 
 
 
 
 
 
 
 
343
344	if (count > at24_io_limit)
345		count = at24_io_limit;
346
347	return count;
 
 
 
 
348}
349
350static ssize_t at24_regmap_read(struct at24_data *at24, char *buf,
351				unsigned int offset, size_t count)
352{
353	unsigned long timeout, read_time;
354	struct regmap *regmap;
355	int ret;
 
 
 
 
 
 
 
 
356
357	regmap = at24_translate_offset(at24, &offset);
358	count = at24_adjust_read_count(at24, offset, count);
359
360	/* adjust offset for mac and serial read ops */
361	offset += at24->offset_adj;
362
363	timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
364	do {
 
 
 
 
 
 
 
 
365		/*
366		 * The timestamp shall be taken before the actual operation
367		 * to avoid a premature timeout in case of high CPU load.
368		 */
369		read_time = jiffies;
 
 
370
371		ret = regmap_bulk_read(regmap, offset, buf, count);
372		dev_dbg(regmap_get_device(regmap), "read %zu@%d --> %d (%ld)\n",
373			count, offset, ret, jiffies);
374		if (!ret)
 
 
 
 
375			return count;
 
376
377		usleep_range(1000, 1500);
378	} while (time_before(read_time, timeout));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
380	return -ETIMEDOUT;
381}
382
383/*
384 * Note that if the hardware write-protect pin is pulled high, the whole
385 * chip is normally write protected. But there are plenty of product
386 * variants here, including OTP fuses and partial chip protect.
387 *
388 * We only use page mode writes; the alternative is sloooow. These routines
389 * write at most one page.
390 */
391
392static size_t at24_adjust_write_count(struct at24_data *at24,
393				      unsigned int offset, size_t count)
394{
395	unsigned int next_page;
396
397	/* write_max is at most a page */
398	if (count > at24->write_max)
399		count = at24->write_max;
400
401	/* Never roll over backwards, to the start of this page */
402	next_page = roundup(offset + 1, at24->page_size);
403	if (offset + count > next_page)
404		count = next_page - offset;
405
406	return count;
407}
408
409static ssize_t at24_regmap_write(struct at24_data *at24, const char *buf,
410				 unsigned int offset, size_t count)
 
411{
412	unsigned long timeout, write_time;
413	struct regmap *regmap;
414	int ret;
415
416	regmap = at24_translate_offset(at24, &offset);
417	count = at24_adjust_write_count(at24, offset, count);
418	timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
419
420	do {
421		/*
422		 * The timestamp shall be taken before the actual operation
423		 * to avoid a premature timeout in case of high CPU load.
424		 */
425		write_time = jiffies;
426
427		ret = regmap_bulk_write(regmap, offset, buf, count);
428		dev_dbg(regmap_get_device(regmap), "write %zu@%d --> %d (%ld)\n",
429			count, offset, ret, jiffies);
430		if (!ret)
431			return count;
 
432
433		usleep_range(1000, 1500);
434	} while (time_before(write_time, timeout));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435
436	return -ETIMEDOUT;
437}
438
439static int at24_read(void *priv, unsigned int off, void *val, size_t count)
440{
441	struct at24_data *at24;
442	struct device *dev;
443	char *buf = val;
444	int i, ret;
445
446	at24 = priv;
447	dev = at24_base_client_dev(at24);
448
449	if (unlikely(!count))
450		return count;
451
452	if (off + count > at24->byte_len)
453		return -EINVAL;
454
455	ret = pm_runtime_resume_and_get(dev);
456	if (ret)
457		return ret;
458	/*
459	 * Read data from chip, protecting against concurrent updates
460	 * from this host, but not from other I2C masters.
461	 */
462	mutex_lock(&at24->lock);
463
464	for (i = 0; count; i += ret, count -= ret) {
465		ret = at24_regmap_read(at24, buf + i, off + i, count);
466		if (ret < 0) {
 
 
467			mutex_unlock(&at24->lock);
468			pm_runtime_put(dev);
469			return ret;
470		}
 
 
 
471	}
472
473	mutex_unlock(&at24->lock);
474
475	pm_runtime_put(dev);
476
477	if (unlikely(at24->read_post))
478		at24->read_post(off, buf, i);
479
480	return 0;
481}
482
483static int at24_write(void *priv, unsigned int off, void *val, size_t count)
484{
485	struct at24_data *at24;
486	struct device *dev;
487	char *buf = val;
488	int ret;
489
490	at24 = priv;
491	dev = at24_base_client_dev(at24);
492
493	if (unlikely(!count))
494		return -EINVAL;
495
496	if (off + count > at24->byte_len)
497		return -EINVAL;
498
499	ret = pm_runtime_resume_and_get(dev);
500	if (ret)
501		return ret;
502	/*
503	 * Write data to chip, protecting against concurrent updates
504	 * from this host, but not from other I2C masters.
505	 */
506	mutex_lock(&at24->lock);
507
508	while (count) {
509		ret = at24_regmap_write(at24, buf, off, count);
510		if (ret < 0) {
 
 
511			mutex_unlock(&at24->lock);
512			pm_runtime_put(dev);
513			return ret;
514		}
515		buf += ret;
516		off += ret;
517		count -= ret;
518	}
519
520	mutex_unlock(&at24->lock);
521
522	pm_runtime_put(dev);
523
524	return 0;
525}
526
527static int at24_make_dummy_client(struct at24_data *at24, unsigned int index,
528				  struct i2c_client *base_client,
529				  struct regmap_config *regmap_config)
530{
531	struct i2c_client *dummy_client;
532	struct regmap *regmap;
533
534	dummy_client = devm_i2c_new_dummy_device(&base_client->dev,
535						 base_client->adapter,
536						 base_client->addr +
537						 (index << at24->bank_addr_shift));
538	if (IS_ERR(dummy_client))
539		return PTR_ERR(dummy_client);
540
541	regmap = devm_regmap_init_i2c(dummy_client, regmap_config);
542	if (IS_ERR(regmap))
543		return PTR_ERR(regmap);
 
 
 
544
545	at24->client_regmaps[index] = regmap;
546
547	return 0;
548}
549
550static unsigned int at24_get_offset_adj(u8 flags, unsigned int byte_len)
551{
552	if (flags & AT24_FLAG_MAC) {
553		/* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
554		return 0xa0 - byte_len;
555	} else if (flags & AT24_FLAG_SERIAL && flags & AT24_FLAG_ADDR16) {
556		/*
557		 * For 16 bit address pointers, the word address must contain
558		 * a '10' sequence in bits 11 and 10 regardless of the
559		 * intended position of the address pointer.
560		 */
561		return 0x0800;
562	} else if (flags & AT24_FLAG_SERIAL) {
563		/*
564		 * Otherwise the word address must begin with a '10' sequence,
565		 * regardless of the intended address.
566		 */
567		return 0x0080;
568	} else {
569		return 0;
570	}
571}
572
573static void at24_probe_temp_sensor(struct i2c_client *client)
574{
575	struct at24_data *at24 = i2c_get_clientdata(client);
576	struct i2c_board_info info = { .type = "jc42" };
577	int ret;
578	u8 val;
579
580	/*
581	 * Byte 2 has value 11 for DDR3, earlier versions don't
582	 * support the thermal sensor present flag
583	 */
584	ret = at24_read(at24, 2, &val, 1);
585	if (ret || val != 11)
586		return;
587
588	/* Byte 32, bit 7 is set if temp sensor is present */
589	ret = at24_read(at24, 32, &val, 1);
590	if (ret || !(val & BIT(7)))
591		return;
592
593	info.addr = 0x18 | (client->addr & 7);
594
595	i2c_new_client_device(client->adapter, &info);
596}
597
598static int at24_probe(struct i2c_client *client)
599{
600	struct regmap_config regmap_config = { };
601	struct nvmem_config nvmem_config = { };
602	u32 byte_len, page_size, flags, addrw;
603	const struct at24_chip_data *cdata;
604	struct device *dev = &client->dev;
605	bool i2c_fn_i2c, i2c_fn_block;
606	unsigned int i, num_addresses;
607	struct at24_data *at24;
608	bool full_power;
609	struct regmap *regmap;
610	bool writable;
611	u8 test_byte;
 
 
612	int err;
 
 
613
614	i2c_fn_i2c = i2c_check_functionality(client->adapter, I2C_FUNC_I2C);
615	i2c_fn_block = i2c_check_functionality(client->adapter,
616					       I2C_FUNC_SMBUS_WRITE_I2C_BLOCK);
617
618	cdata = i2c_get_match_data(client);
619	if (!cdata)
620		return -ENODEV;
 
 
 
 
 
 
 
621
622	err = device_property_read_u32(dev, "pagesize", &page_size);
623	if (err)
 
624		/*
625		 * This is slow, but we can't know all eeproms, so we better
626		 * play safe. Specifying custom eeprom-types via device tree
627		 * or properties is recommended anyhow.
628		 */
629		page_size = 1;
630
631	flags = cdata->flags;
632	if (device_property_present(dev, "read-only"))
633		flags |= AT24_FLAG_READONLY;
634	if (device_property_present(dev, "no-read-rollover"))
635		flags |= AT24_FLAG_NO_RDROL;
636
637	err = device_property_read_u32(dev, "address-width", &addrw);
638	if (!err) {
639		switch (addrw) {
640		case 8:
641			if (flags & AT24_FLAG_ADDR16)
642				dev_warn(dev,
643					 "Override address width to be 8, while default is 16\n");
644			flags &= ~AT24_FLAG_ADDR16;
645			break;
646		case 16:
647			flags |= AT24_FLAG_ADDR16;
648			break;
649		default:
650			dev_warn(dev, "Bad \"address-width\" property: %u\n",
651				 addrw);
652		}
653	}
654
655	err = device_property_read_u32(dev, "size", &byte_len);
656	if (err)
657		byte_len = cdata->byte_len;
658
659	if (!i2c_fn_i2c && !i2c_fn_block)
660		page_size = 1;
661
662	if (!page_size) {
663		dev_err(dev, "page_size must not be 0!\n");
664		return -EINVAL;
665	}
666
667	if (!is_power_of_2(page_size))
668		dev_warn(dev, "page_size looks suspicious (no power of 2)!\n");
669
670	err = device_property_read_u32(dev, "num-addresses", &num_addresses);
671	if (err) {
672		if (flags & AT24_FLAG_TAKE8ADDR)
673			num_addresses = 8;
674		else
675			num_addresses =	DIV_ROUND_UP(byte_len,
676				(flags & AT24_FLAG_ADDR16) ? 65536 : 256);
677	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
678
679	if ((flags & AT24_FLAG_SERIAL) && (flags & AT24_FLAG_MAC)) {
680		dev_err(dev,
681			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
682		return -EINVAL;
 
 
 
 
683	}
684
685	regmap_config.val_bits = 8;
686	regmap_config.reg_bits = (flags & AT24_FLAG_ADDR16) ? 16 : 8;
687	regmap_config.disable_locking = true;
688
689	regmap = devm_regmap_init_i2c(client, &regmap_config);
690	if (IS_ERR(regmap))
691		return PTR_ERR(regmap);
692
693	at24 = devm_kzalloc(dev, struct_size(at24, client_regmaps, num_addresses),
694			    GFP_KERNEL);
695	if (!at24)
696		return -ENOMEM;
697
698	mutex_init(&at24->lock);
699	at24->byte_len = byte_len;
700	at24->page_size = page_size;
701	at24->flags = flags;
702	at24->read_post = cdata->read_post;
703	at24->bank_addr_shift = cdata->bank_addr_shift;
704	at24->num_addresses = num_addresses;
705	at24->offset_adj = at24_get_offset_adj(flags, byte_len);
706	at24->client_regmaps[0] = regmap;
707
708	at24->vcc_reg = devm_regulator_get(dev, "vcc");
709	if (IS_ERR(at24->vcc_reg))
710		return PTR_ERR(at24->vcc_reg);
711
712	writable = !(flags & AT24_FLAG_READONLY);
713	if (writable) {
714		at24->write_max = min_t(unsigned int,
715					page_size, at24_io_limit);
716		if (!i2c_fn_i2c && at24->write_max > I2C_SMBUS_BLOCK_MAX)
717			at24->write_max = I2C_SMBUS_BLOCK_MAX;
718	}
719
720	/* use dummy devices for multiple-address chips */
721	for (i = 1; i < num_addresses; i++) {
722		err = at24_make_dummy_client(at24, i, client, &regmap_config);
723		if (err)
724			return err;
 
 
725	}
726
727	/*
728	 * We initialize nvmem_config.id to NVMEM_DEVID_AUTO even if the
729	 * label property is set as some platform can have multiple eeproms
730	 * with same label and we can not register each of those with same
731	 * label. Failing to register those eeproms trigger cascade failure
732	 * on such platform.
733	 */
734	nvmem_config.id = NVMEM_DEVID_AUTO;
735
736	if (device_property_present(dev, "label")) {
737		err = device_property_read_string(dev, "label",
738						  &nvmem_config.name);
739		if (err)
740			return err;
741	} else {
742		nvmem_config.name = dev_name(dev);
743	}
744
745	nvmem_config.type = NVMEM_TYPE_EEPROM;
746	nvmem_config.dev = dev;
747	nvmem_config.read_only = !writable;
748	nvmem_config.root_only = !(flags & AT24_FLAG_IRUGO);
749	nvmem_config.owner = THIS_MODULE;
750	nvmem_config.compat = true;
751	nvmem_config.base_dev = dev;
752	nvmem_config.reg_read = at24_read;
753	nvmem_config.reg_write = at24_write;
754	nvmem_config.priv = at24;
755	nvmem_config.stride = 1;
756	nvmem_config.word_size = 1;
757	nvmem_config.size = byte_len;
758
759	i2c_set_clientdata(client, at24);
760
761	full_power = acpi_dev_state_d0(&client->dev);
762	if (full_power) {
763		err = regulator_enable(at24->vcc_reg);
764		if (err) {
765			dev_err(dev, "Failed to enable vcc regulator\n");
766			return err;
 
 
 
 
 
 
 
 
767		}
 
 
 
768
769		pm_runtime_set_active(dev);
 
 
 
 
 
 
 
 
 
770	}
771	pm_runtime_enable(dev);
 
772
773	/*
774	 * Perform a one-byte test read to verify that the chip is functional,
775	 * unless powering on the device is to be avoided during probe (i.e.
776	 * it's powered off right now).
777	 */
778	if (full_power) {
779		err = at24_read(at24, 0, &test_byte, 1);
780		if (err) {
781			pm_runtime_disable(dev);
782			if (!pm_runtime_status_suspended(dev))
783				regulator_disable(at24->vcc_reg);
784			return -ENODEV;
785		}
786	}
787
788	at24->nvmem = devm_nvmem_register(dev, &nvmem_config);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789	if (IS_ERR(at24->nvmem)) {
790		pm_runtime_disable(dev);
791		if (!pm_runtime_status_suspended(dev))
792			regulator_disable(at24->vcc_reg);
793		return dev_err_probe(dev, PTR_ERR(at24->nvmem),
794				     "failed to register nvmem\n");
795	}
796
797	/* If this a SPD EEPROM, probe for DDR3 thermal sensor */
798	if (cdata == &at24_data_spd)
799		at24_probe_temp_sensor(client);
800
801	pm_runtime_idle(dev);
802
803	if (writable)
804		dev_info(dev, "%u byte %s EEPROM, writable, %u bytes/write\n",
805			 byte_len, client->name, at24->write_max);
806	else
807		dev_info(dev, "%u byte %s EEPROM, read-only\n",
808			 byte_len, client->name);
809
810	return 0;
811}
812
813static void at24_remove(struct i2c_client *client)
814{
815	struct at24_data *at24 = i2c_get_clientdata(client);
 
816
817	pm_runtime_disable(&client->dev);
818	if (acpi_dev_state_d0(&client->dev)) {
819		if (!pm_runtime_status_suspended(&client->dev))
820			regulator_disable(at24->vcc_reg);
821		pm_runtime_set_suspended(&client->dev);
822	}
823}
824
825static int __maybe_unused at24_suspend(struct device *dev)
826{
827	struct i2c_client *client = to_i2c_client(dev);
828	struct at24_data *at24 = i2c_get_clientdata(client);
829
830	return regulator_disable(at24->vcc_reg);
831}
832
833static int __maybe_unused at24_resume(struct device *dev)
834{
835	struct i2c_client *client = to_i2c_client(dev);
836	struct at24_data *at24 = i2c_get_clientdata(client);
837
838	return regulator_enable(at24->vcc_reg);
 
 
 
839}
840
841static const struct dev_pm_ops at24_pm_ops = {
842	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
843				pm_runtime_force_resume)
844	SET_RUNTIME_PM_OPS(at24_suspend, at24_resume, NULL)
845};
846
847static struct i2c_driver at24_driver = {
848	.driver = {
849		.name = "at24",
850		.pm = &at24_pm_ops,
851		.of_match_table = of_match_ptr(at24_of_match),
852		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
853	},
854	.probe = at24_probe,
855	.remove = at24_remove,
856	.id_table = at24_ids,
857	.flags = I2C_DRV_ACPI_WAIVE_D0_PROBE,
858};
859
860static int __init at24_init(void)
861{
862	if (!at24_io_limit) {
863		pr_err("at24: at24_io_limit must not be 0!\n");
864		return -EINVAL;
865	}
866
867	at24_io_limit = rounddown_pow_of_two(at24_io_limit);
868	return i2c_add_driver(&at24_driver);
869}
870module_init(at24_init);
871
872static void __exit at24_exit(void)
873{
874	i2c_del_driver(&at24_driver);
875}
876module_exit(at24_exit);
877
878MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
879MODULE_AUTHOR("David Brownell and Wolfram Sang");
880MODULE_LICENSE("GPL");
v4.10.11
 
  1/*
  2 * at24.c - handle most I2C EEPROMs
  3 *
  4 * Copyright (C) 2005-2007 David Brownell
  5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 */
 
 
 
 
 
 
 
 
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/delay.h>
 17#include <linux/mutex.h>
 18#include <linux/mod_devicetable.h>
 19#include <linux/log2.h>
 20#include <linux/bitops.h>
 21#include <linux/jiffies.h>
 22#include <linux/of.h>
 23#include <linux/acpi.h>
 24#include <linux/i2c.h>
 25#include <linux/nvmem-provider.h>
 26#include <linux/platform_data/at24.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27
 28/*
 29 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 30 * Differences between different vendor product lines (like Atmel AT24C or
 31 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 32 * There are also I2C RAM chips, likewise interchangeable. One example
 33 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 34 *
 35 * However, misconfiguration can lose data. "Set 16-bit memory address"
 36 * to a part with 8-bit addressing will overwrite data. Writing with too
 37 * big a page size also loses data. And it's not safe to assume that the
 38 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 39 * uses 0x51, for just one example.
 40 *
 41 * Accordingly, explicit board-specific configuration data should be used
 42 * in almost all cases. (One partial exception is an SMBus used to access
 43 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 44 *
 45 * So this driver uses "new style" I2C driver binding, expecting to be
 46 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 47 * similar kernel-resident tables; or, configuration data coming from
 48 * a bootloader.
 49 *
 50 * Other than binding model, current differences from "eeprom" driver are
 51 * that this one handles write access and isn't restricted to 24c02 devices.
 52 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 53 * which won't work on pure SMBus systems.
 54 */
 55
 56struct at24_data {
 57	struct at24_platform_data chip;
 58	int use_smbus;
 59	int use_smbus_write;
 60
 61	ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
 62	ssize_t (*write_func)(struct at24_data *,
 63			      const char *, unsigned int, size_t);
 64
 65	/*
 66	 * Lock protects against activities from other Linux tasks,
 67	 * but not from changes by other I2C masters.
 68	 */
 69	struct mutex lock;
 70
 71	u8 *writebuf;
 72	unsigned write_max;
 73	unsigned num_addresses;
 
 
 
 
 74
 75	struct nvmem_config nvmem_config;
 76	struct nvmem_device *nvmem;
 
 
 77
 78	/*
 79	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 80	 * them for us, and we'll use them with SMBus calls.
 81	 */
 82	struct i2c_client *client[];
 
 83};
 84
 85/*
 86 * This parameter is to help this driver avoid blocking other drivers out
 87 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 88 * clock, one 256 byte read takes about 1/43 second which is excessive;
 89 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 90 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 91 *
 92 * This value is forced to be a power of two so that writes align on pages.
 93 */
 94static unsigned io_limit = 128;
 95module_param(io_limit, uint, 0);
 96MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
 97
 98/*
 99 * Specs often allow 5 msec for a page write, sometimes 20 msec;
100 * it's important to recover from write timeouts.
101 */
102static unsigned write_timeout = 25;
103module_param(write_timeout, uint, 0);
104MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
105
106#define AT24_SIZE_BYTELEN 5
107#define AT24_SIZE_FLAGS 8
108
109#define AT24_BITMASK(x) (BIT(x) - 1)
110
111/* create non-zero magic value for given eeprom parameters */
112#define AT24_DEVICE_MAGIC(_len, _flags) 		\
113	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
114	    << AT24_SIZE_BYTELEN | ilog2(_len))
 
 
115
116/*
117 * Both reads and writes fail if the previous write didn't complete yet. This
118 * macro loops a few times waiting at least long enough for one entire page
119 * write to work while making sure that at least one iteration is run before
120 * checking the break condition.
121 *
122 * It takes two parameters: a variable in which the future timeout in jiffies
123 * will be stored and a temporary variable holding the time of the last
124 * iteration of processing the request. Both should be unsigned integers
125 * holding at least 32 bits.
126 */
127#define loop_until_timeout(tout, op_time)				\
128	for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
129	     op_time ? time_before(op_time, tout) : true;		\
130	     usleep_range(1000, 1500), op_time = jiffies)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
132static const struct i2c_device_id at24_ids[] = {
133	/* needs 8 addresses as A0-A2 are ignored */
134	{ "24c00",	AT24_DEVICE_MAGIC(128 / 8,	AT24_FLAG_TAKE8ADDR) },
135	/* old variants can't be handled with this generic entry! */
136	{ "24c01",	AT24_DEVICE_MAGIC(1024 / 8,	0) },
137	{ "24cs01",	AT24_DEVICE_MAGIC(16,
138				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
139	{ "24c02",	AT24_DEVICE_MAGIC(2048 / 8,	0) },
140	{ "24cs02",	AT24_DEVICE_MAGIC(16,
141				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
142	{ "24mac402",	AT24_DEVICE_MAGIC(48 / 8,
143				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
144	{ "24mac602",	AT24_DEVICE_MAGIC(64 / 8,
145				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
146	/* spd is a 24c02 in memory DIMMs */
147	{ "spd",	AT24_DEVICE_MAGIC(2048 / 8,
148				AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
149	{ "24c04",	AT24_DEVICE_MAGIC(4096 / 8,	0) },
150	{ "24cs04",	AT24_DEVICE_MAGIC(16,
151				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
152	/* 24rf08 quirk is handled at i2c-core */
153	{ "24c08",	AT24_DEVICE_MAGIC(8192 / 8,	0) },
154	{ "24cs08",	AT24_DEVICE_MAGIC(16,
155				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
156	{ "24c16",	AT24_DEVICE_MAGIC(16384 / 8,	0) },
157	{ "24cs16",	AT24_DEVICE_MAGIC(16,
158				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
159	{ "24c32",	AT24_DEVICE_MAGIC(32768 / 8,	AT24_FLAG_ADDR16) },
160	{ "24cs32",	AT24_DEVICE_MAGIC(16,
161				AT24_FLAG_ADDR16 |
162				AT24_FLAG_SERIAL |
163				AT24_FLAG_READONLY) },
164	{ "24c64",	AT24_DEVICE_MAGIC(65536 / 8,	AT24_FLAG_ADDR16) },
165	{ "24cs64",	AT24_DEVICE_MAGIC(16,
166				AT24_FLAG_ADDR16 |
167				AT24_FLAG_SERIAL |
168				AT24_FLAG_READONLY) },
169	{ "24c128",	AT24_DEVICE_MAGIC(131072 / 8,	AT24_FLAG_ADDR16) },
170	{ "24c256",	AT24_DEVICE_MAGIC(262144 / 8,	AT24_FLAG_ADDR16) },
171	{ "24c512",	AT24_DEVICE_MAGIC(524288 / 8,	AT24_FLAG_ADDR16) },
172	{ "24c1024",	AT24_DEVICE_MAGIC(1048576 / 8,	AT24_FLAG_ADDR16) },
173	{ "at24", 0 },
174	{ /* END OF LIST */ }
175};
176MODULE_DEVICE_TABLE(i2c, at24_ids);
177
178static const struct acpi_device_id at24_acpi_ids[] = {
179	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
180	{ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181};
182MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
183
184/*-------------------------------------------------------------------------*/
185
186/*
187 * This routine supports chips which consume multiple I2C addresses. It
188 * computes the addressing information to be used for a given r/w request.
189 * Assumes that sanity checks for offset happened at sysfs-layer.
190 *
191 * Slave address and byte offset derive from the offset. Always
192 * set the byte address; on a multi-master board, another master
193 * may have changed the chip's "current" address pointer.
194 *
195 * REVISIT some multi-address chips don't rollover page reads to
196 * the next slave address, so we may need to truncate the count.
197 * Those chips might need another quirk flag.
198 *
199 * If the real hardware used four adjacent 24c02 chips and that
200 * were misconfigured as one 24c08, that would be a similar effect:
201 * one "eeprom" file not four, but larger reads would fail when
202 * they crossed certain pages.
203 */
204static struct i2c_client *at24_translate_offset(struct at24_data *at24,
205						unsigned int *offset)
206{
207	unsigned i;
208
209	if (at24->chip.flags & AT24_FLAG_ADDR16) {
210		i = *offset >> 16;
211		*offset &= 0xffff;
212	} else {
213		i = *offset >> 8;
214		*offset &= 0xff;
215	}
216
217	return at24->client[i];
218}
219
220static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
221				      unsigned int offset, size_t count)
222{
223	unsigned long timeout, read_time;
224	struct i2c_client *client;
225	int status;
226
227	client = at24_translate_offset(at24, &offset);
228
229	if (count > io_limit)
230		count = io_limit;
231
232	/* Smaller eeproms can work given some SMBus extension calls */
233	if (count > I2C_SMBUS_BLOCK_MAX)
234		count = I2C_SMBUS_BLOCK_MAX;
235
236	loop_until_timeout(timeout, read_time) {
237		status = i2c_smbus_read_i2c_block_data_or_emulated(client,
238								   offset,
239								   count, buf);
240
241		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
242				count, offset, status, jiffies);
243
244		if (status == count)
245			return count;
246	}
247
248	return -ETIMEDOUT;
249}
250
251static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
252				    unsigned int offset, size_t count)
253{
254	unsigned long timeout, read_time;
255	struct i2c_client *client;
256	struct i2c_msg msg[2];
257	int status, i;
258	u8 msgbuf[2];
259
260	memset(msg, 0, sizeof(msg));
261	client = at24_translate_offset(at24, &offset);
262
263	if (count > io_limit)
264		count = io_limit;
265
266	/*
267	 * When we have a better choice than SMBus calls, use a combined I2C
268	 * message. Write address; then read up to io_limit data bytes. Note
269	 * that read page rollover helps us here (unlike writes). msgbuf is
270	 * u8 and will cast to our needs.
271	 */
272	i = 0;
273	if (at24->chip.flags & AT24_FLAG_ADDR16)
274		msgbuf[i++] = offset >> 8;
275	msgbuf[i++] = offset;
276
277	msg[0].addr = client->addr;
278	msg[0].buf = msgbuf;
279	msg[0].len = i;
280
281	msg[1].addr = client->addr;
282	msg[1].flags = I2C_M_RD;
283	msg[1].buf = buf;
284	msg[1].len = count;
285
286	loop_until_timeout(timeout, read_time) {
287		status = i2c_transfer(client->adapter, msg, 2);
288		if (status == 2)
289			status = count;
290
291		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
292				count, offset, status, jiffies);
293
294		if (status == count)
295			return count;
296	}
297
298	return -ETIMEDOUT;
299}
300
301static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
302				       unsigned int offset, size_t count)
303{
304	unsigned long timeout, read_time;
305	struct i2c_client *client;
306	struct i2c_msg msg[2];
307	u8 addrbuf[2];
308	int status;
309
310	client = at24_translate_offset(at24, &offset);
311
312	memset(msg, 0, sizeof(msg));
313	msg[0].addr = client->addr;
314	msg[0].buf = addrbuf;
315
316	/*
317	 * The address pointer of the device is shared between the regular
318	 * EEPROM array and the serial number block. The dummy write (part of
319	 * the sequential read protocol) ensures the address pointer is reset
320	 * to the desired position.
321	 */
322	if (at24->chip.flags & AT24_FLAG_ADDR16) {
323		/*
324		 * For 16 bit address pointers, the word address must contain
325		 * a '10' sequence in bits 11 and 10 regardless of the
326		 * intended position of the address pointer.
327		 */
328		addrbuf[0] = 0x08;
329		addrbuf[1] = offset;
330		msg[0].len = 2;
331	} else {
332		/*
333		 * Otherwise the word address must begin with a '10' sequence,
334		 * regardless of the intended address.
335		 */
336		addrbuf[0] = 0x80 + offset;
337		msg[0].len = 1;
338	}
339
340	msg[1].addr = client->addr;
341	msg[1].flags = I2C_M_RD;
342	msg[1].buf = buf;
343	msg[1].len = count;
344
345	loop_until_timeout(timeout, read_time) {
346		status = i2c_transfer(client->adapter, msg, 2);
347		if (status == 2)
348			return count;
349	}
350
351	return -ETIMEDOUT;
352}
353
354static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
355				    unsigned int offset, size_t count)
356{
357	unsigned long timeout, read_time;
358	struct i2c_client *client;
359	struct i2c_msg msg[2];
360	u8 addrbuf[2];
361	int status;
362
363	client = at24_translate_offset(at24, &offset);
364
365	memset(msg, 0, sizeof(msg));
366	msg[0].addr = client->addr;
367	msg[0].buf = addrbuf;
368	addrbuf[0] = 0x90 + offset;
369	msg[0].len = 1;
370	msg[1].addr = client->addr;
371	msg[1].flags = I2C_M_RD;
372	msg[1].buf = buf;
373	msg[1].len = count;
374
375	loop_until_timeout(timeout, read_time) {
376		status = i2c_transfer(client->adapter, msg, 2);
377		if (status == 2)
378			return count;
379	}
380
381	return -ETIMEDOUT;
382}
383
384/*
385 * Note that if the hardware write-protect pin is pulled high, the whole
386 * chip is normally write protected. But there are plenty of product
387 * variants here, including OTP fuses and partial chip protect.
388 *
389 * We only use page mode writes; the alternative is sloooow. These routines
390 * write at most one page.
391 */
392
393static size_t at24_adjust_write_count(struct at24_data *at24,
394				      unsigned int offset, size_t count)
395{
396	unsigned next_page;
397
398	/* write_max is at most a page */
399	if (count > at24->write_max)
400		count = at24->write_max;
401
402	/* Never roll over backwards, to the start of this page */
403	next_page = roundup(offset + 1, at24->chip.page_size);
404	if (offset + count > next_page)
405		count = next_page - offset;
406
407	return count;
408}
409
410static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
411					     const char *buf,
412					     unsigned int offset, size_t count)
413{
414	unsigned long timeout, write_time;
415	struct i2c_client *client;
416	ssize_t status = 0;
417
418	client = at24_translate_offset(at24, &offset);
419	count = at24_adjust_write_count(at24, offset, count);
 
420
421	loop_until_timeout(timeout, write_time) {
422		status = i2c_smbus_write_i2c_block_data(client,
423							offset, count, buf);
424		if (status == 0)
425			status = count;
 
426
427		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
428				count, offset, status, jiffies);
429
430		if (status == count)
431			return count;
432	}
433
434	return -ETIMEDOUT;
435}
436
437static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
438					    const char *buf,
439					    unsigned int offset, size_t count)
440{
441	unsigned long timeout, write_time;
442	struct i2c_client *client;
443	ssize_t status = 0;
444
445	client = at24_translate_offset(at24, &offset);
446
447	loop_until_timeout(timeout, write_time) {
448		status = i2c_smbus_write_byte_data(client, offset, buf[0]);
449		if (status == 0)
450			status = count;
451
452		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
453				count, offset, status, jiffies);
454
455		if (status == count)
456			return count;
457	}
458
459	return -ETIMEDOUT;
460}
461
462static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
463				     unsigned int offset, size_t count)
464{
465	unsigned long timeout, write_time;
466	struct i2c_client *client;
467	struct i2c_msg msg;
468	ssize_t status = 0;
469	int i = 0;
470
471	client = at24_translate_offset(at24, &offset);
472	count = at24_adjust_write_count(at24, offset, count);
473
474	msg.addr = client->addr;
475	msg.flags = 0;
476
477	/* msg.buf is u8 and casts will mask the values */
478	msg.buf = at24->writebuf;
479	if (at24->chip.flags & AT24_FLAG_ADDR16)
480		msg.buf[i++] = offset >> 8;
481
482	msg.buf[i++] = offset;
483	memcpy(&msg.buf[i], buf, count);
484	msg.len = i + count;
485
486	loop_until_timeout(timeout, write_time) {
487		status = i2c_transfer(client->adapter, &msg, 1);
488		if (status == 1)
489			status = count;
490
491		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
492				count, offset, status, jiffies);
493
494		if (status == count)
495			return count;
496	}
497
498	return -ETIMEDOUT;
499}
500
501static int at24_read(void *priv, unsigned int off, void *val, size_t count)
502{
503	struct at24_data *at24 = priv;
 
504	char *buf = val;
 
 
 
 
505
506	if (unlikely(!count))
507		return count;
508
 
 
 
 
 
 
509	/*
510	 * Read data from chip, protecting against concurrent updates
511	 * from this host, but not from other I2C masters.
512	 */
513	mutex_lock(&at24->lock);
514
515	while (count) {
516		int	status;
517
518		status = at24->read_func(at24, buf, off, count);
519		if (status < 0) {
520			mutex_unlock(&at24->lock);
521			return status;
 
522		}
523		buf += status;
524		off += status;
525		count -= status;
526	}
527
528	mutex_unlock(&at24->lock);
529
 
 
 
 
 
530	return 0;
531}
532
533static int at24_write(void *priv, unsigned int off, void *val, size_t count)
534{
535	struct at24_data *at24 = priv;
 
536	char *buf = val;
 
 
 
 
537
538	if (unlikely(!count))
539		return -EINVAL;
540
 
 
 
 
 
 
541	/*
542	 * Write data to chip, protecting against concurrent updates
543	 * from this host, but not from other I2C masters.
544	 */
545	mutex_lock(&at24->lock);
546
547	while (count) {
548		int status;
549
550		status = at24->write_func(at24, buf, off, count);
551		if (status < 0) {
552			mutex_unlock(&at24->lock);
553			return status;
 
554		}
555		buf += status;
556		off += status;
557		count -= status;
558	}
559
560	mutex_unlock(&at24->lock);
561
 
 
562	return 0;
563}
564
565#ifdef CONFIG_OF
566static void at24_get_ofdata(struct i2c_client *client,
567			    struct at24_platform_data *chip)
568{
569	const __be32 *val;
570	struct device_node *node = client->dev.of_node;
571
572	if (node) {
573		if (of_get_property(node, "read-only", NULL))
574			chip->flags |= AT24_FLAG_READONLY;
575		val = of_get_property(node, "pagesize", NULL);
576		if (val)
577			chip->page_size = be32_to_cpup(val);
578	}
579}
580#else
581static void at24_get_ofdata(struct i2c_client *client,
582			    struct at24_platform_data *chip)
583{ }
584#endif /* CONFIG_OF */
585
586static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
 
 
 
 
 
587{
588	struct at24_platform_data chip;
589	kernel_ulong_t magic = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590	bool writable;
591	int use_smbus = 0;
592	int use_smbus_write = 0;
593	struct at24_data *at24;
594	int err;
595	unsigned i, num_addresses;
596	u8 test_byte;
597
598	if (client->dev.platform_data) {
599		chip = *(struct at24_platform_data *)client->dev.platform_data;
600	} else {
601		if (id) {
602			magic = id->driver_data;
603		} else {
604			const struct acpi_device_id *aid;
605
606			aid = acpi_match_device(at24_acpi_ids, &client->dev);
607			if (aid)
608				magic = aid->driver_data;
609		}
610		if (!magic)
611			return -ENODEV;
612
613		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
614		magic >>= AT24_SIZE_BYTELEN;
615		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
616		/*
617		 * This is slow, but we can't know all eeproms, so we better
618		 * play safe. Specifying custom eeprom-types via platform_data
619		 * is recommended anyhow.
620		 */
621		chip.page_size = 1;
622
623		/* update chipdata if OF is present */
624		at24_get_ofdata(client, &chip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625
626		chip.setup = NULL;
627		chip.context = NULL;
 
 
 
 
 
 
 
 
628	}
629
630	if (!is_power_of_2(chip.byte_len))
631		dev_warn(&client->dev,
632			"byte_len looks suspicious (no power of 2)!\n");
633	if (!chip.page_size) {
634		dev_err(&client->dev, "page_size must not be 0!\n");
635		return -EINVAL;
 
 
 
 
636	}
637	if (!is_power_of_2(chip.page_size))
638		dev_warn(&client->dev,
639			"page_size looks suspicious (no power of 2)!\n");
640
641	/* Use I2C operations unless we're stuck with SMBus extensions. */
642	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
643		if (chip.flags & AT24_FLAG_ADDR16)
644			return -EPFNOSUPPORT;
645
646		if (i2c_check_functionality(client->adapter,
647				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
648			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
649		} else if (i2c_check_functionality(client->adapter,
650				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
651			use_smbus = I2C_SMBUS_WORD_DATA;
652		} else if (i2c_check_functionality(client->adapter,
653				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
654			use_smbus = I2C_SMBUS_BYTE_DATA;
655		} else {
656			return -EPFNOSUPPORT;
657		}
658
659		if (i2c_check_functionality(client->adapter,
660				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
661			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
662		} else if (i2c_check_functionality(client->adapter,
663				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
664			use_smbus_write = I2C_SMBUS_BYTE_DATA;
665			chip.page_size = 1;
666		}
667	}
668
669	if (chip.flags & AT24_FLAG_TAKE8ADDR)
670		num_addresses = 8;
671	else
672		num_addresses =	DIV_ROUND_UP(chip.byte_len,
673			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
 
 
674
675	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
676		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
677	if (!at24)
678		return -ENOMEM;
679
680	mutex_init(&at24->lock);
681	at24->use_smbus = use_smbus;
682	at24->use_smbus_write = use_smbus_write;
683	at24->chip = chip;
 
 
684	at24->num_addresses = num_addresses;
 
 
685
686	if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
687		dev_err(&client->dev,
688			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
689		return -EINVAL;
 
 
 
 
 
 
690	}
691
692	if (chip.flags & AT24_FLAG_SERIAL) {
693		at24->read_func = at24_eeprom_read_serial;
694	} else if (chip.flags & AT24_FLAG_MAC) {
695		at24->read_func = at24_eeprom_read_mac;
696	} else {
697		at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
698						  : at24_eeprom_read_i2c;
699	}
700
701	if (at24->use_smbus) {
702		if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
703			at24->write_func = at24_eeprom_write_smbus_block;
704		else
705			at24->write_func = at24_eeprom_write_smbus_byte;
 
 
 
 
 
 
 
 
 
706	} else {
707		at24->write_func = at24_eeprom_write_i2c;
708	}
709
710	writable = !(chip.flags & AT24_FLAG_READONLY);
711	if (writable) {
712		if (!use_smbus || use_smbus_write) {
 
 
 
 
 
 
 
 
 
 
713
714			unsigned write_max = chip.page_size;
715
716			if (write_max > io_limit)
717				write_max = io_limit;
718			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
719				write_max = I2C_SMBUS_BLOCK_MAX;
720			at24->write_max = write_max;
721
722			/* buffer (data + address at the beginning) */
723			at24->writebuf = devm_kzalloc(&client->dev,
724				write_max + 2, GFP_KERNEL);
725			if (!at24->writebuf)
726				return -ENOMEM;
727		} else {
728			dev_warn(&client->dev,
729				"cannot write due to controller restrictions.");
730		}
731	}
732
733	at24->client[0] = client;
734
735	/* use dummy devices for multiple-address chips */
736	for (i = 1; i < num_addresses; i++) {
737		at24->client[i] = i2c_new_dummy(client->adapter,
738					client->addr + i);
739		if (!at24->client[i]) {
740			dev_err(&client->dev, "address 0x%02x unavailable\n",
741					client->addr + i);
742			err = -EADDRINUSE;
743			goto err_clients;
744		}
745	}
746
747	i2c_set_clientdata(client, at24);
748
749	/*
750	 * Perform a one-byte test read to verify that the
751	 * chip is functional.
 
752	 */
753	err = at24_read(at24, 0, &test_byte, 1);
754	if (err) {
755		err = -ENODEV;
756		goto err_clients;
 
 
 
 
757	}
758
759	at24->nvmem_config.name = dev_name(&client->dev);
760	at24->nvmem_config.dev = &client->dev;
761	at24->nvmem_config.read_only = !writable;
762	at24->nvmem_config.root_only = true;
763	at24->nvmem_config.owner = THIS_MODULE;
764	at24->nvmem_config.compat = true;
765	at24->nvmem_config.base_dev = &client->dev;
766	at24->nvmem_config.reg_read = at24_read;
767	at24->nvmem_config.reg_write = at24_write;
768	at24->nvmem_config.priv = at24;
769	at24->nvmem_config.stride = 4;
770	at24->nvmem_config.word_size = 1;
771	at24->nvmem_config.size = chip.byte_len;
772
773	at24->nvmem = nvmem_register(&at24->nvmem_config);
774
775	if (IS_ERR(at24->nvmem)) {
776		err = PTR_ERR(at24->nvmem);
777		goto err_clients;
778	}
779
780	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
781		chip.byte_len, client->name,
782		writable ? "writable" : "read-only", at24->write_max);
783	if (use_smbus == I2C_SMBUS_WORD_DATA ||
784	    use_smbus == I2C_SMBUS_BYTE_DATA) {
785		dev_notice(&client->dev, "Falling back to %s reads, "
786			   "performance will suffer\n", use_smbus ==
787			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
788	}
789
790	/* export data to kernel code */
791	if (chip.setup)
792		chip.setup(at24->nvmem, chip.context);
 
 
793
794	return 0;
 
795
796err_clients:
797	for (i = 1; i < num_addresses; i++)
798		if (at24->client[i])
799			i2c_unregister_device(at24->client[i]);
800
801	return err;
 
 
 
 
 
802}
803
804static int at24_remove(struct i2c_client *client)
805{
806	struct at24_data *at24;
807	int i;
808
809	at24 = i2c_get_clientdata(client);
 
810
811	nvmem_unregister(at24->nvmem);
 
 
 
812
813	for (i = 1; i < at24->num_addresses; i++)
814		i2c_unregister_device(at24->client[i]);
815
816	return 0;
817}
818
819/*-------------------------------------------------------------------------*/
 
 
 
 
820
821static struct i2c_driver at24_driver = {
822	.driver = {
823		.name = "at24",
 
 
824		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
825	},
826	.probe = at24_probe,
827	.remove = at24_remove,
828	.id_table = at24_ids,
 
829};
830
831static int __init at24_init(void)
832{
833	if (!io_limit) {
834		pr_err("at24: io_limit must not be 0!\n");
835		return -EINVAL;
836	}
837
838	io_limit = rounddown_pow_of_two(io_limit);
839	return i2c_add_driver(&at24_driver);
840}
841module_init(at24_init);
842
843static void __exit at24_exit(void)
844{
845	i2c_del_driver(&at24_driver);
846}
847module_exit(at24_exit);
848
849MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
850MODULE_AUTHOR("David Brownell and Wolfram Sang");
851MODULE_LICENSE("GPL");