Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1991, 1992  Linus Torvalds
  4 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  5 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
  6 *
  7 *  Pentium III FXSR, SSE support
  8 *	Gareth Hughes <gareth@valinux.com>, May 2000
  9 */
 10
 11/*
 12 * Handle hardware traps and faults.
 13 */
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/kdebug.h>
 17#include <linux/sched/debug.h>
 18#include <linux/nmi.h>
 19#include <linux/debugfs.h>
 20#include <linux/delay.h>
 21#include <linux/hardirq.h>
 22#include <linux/ratelimit.h>
 23#include <linux/slab.h>
 24#include <linux/export.h>
 25#include <linux/atomic.h>
 26#include <linux/sched/clock.h>
 27
 28#include <asm/cpu_entry_area.h>
 
 
 
 
 29#include <asm/traps.h>
 30#include <asm/mach_traps.h>
 31#include <asm/nmi.h>
 32#include <asm/x86_init.h>
 33#include <asm/reboot.h>
 34#include <asm/cache.h>
 35#include <asm/nospec-branch.h>
 36#include <asm/microcode.h>
 37#include <asm/sev.h>
 38#include <asm/fred.h>
 39
 40#define CREATE_TRACE_POINTS
 41#include <trace/events/nmi.h>
 42
 43struct nmi_desc {
 44	raw_spinlock_t lock;
 45	struct list_head head;
 46};
 47
 48static struct nmi_desc nmi_desc[NMI_MAX] = 
 49{
 50	{
 51		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 52		.head = LIST_HEAD_INIT(nmi_desc[0].head),
 53	},
 54	{
 55		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 56		.head = LIST_HEAD_INIT(nmi_desc[1].head),
 57	},
 58	{
 59		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 60		.head = LIST_HEAD_INIT(nmi_desc[2].head),
 61	},
 62	{
 63		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 64		.head = LIST_HEAD_INIT(nmi_desc[3].head),
 65	},
 66
 67};
 68
 69struct nmi_stats {
 70	unsigned int normal;
 71	unsigned int unknown;
 72	unsigned int external;
 73	unsigned int swallow;
 74	unsigned long recv_jiffies;
 75	unsigned long idt_seq;
 76	unsigned long idt_nmi_seq;
 77	unsigned long idt_ignored;
 78	atomic_long_t idt_calls;
 79	unsigned long idt_seq_snap;
 80	unsigned long idt_nmi_seq_snap;
 81	unsigned long idt_ignored_snap;
 82	long idt_calls_snap;
 83};
 84
 85static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 86
 87static int ignore_nmis __read_mostly;
 88
 89int unknown_nmi_panic;
 90/*
 91 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 92 * only be used in NMI handler.
 93 */
 94static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 95
 96static int __init setup_unknown_nmi_panic(char *str)
 97{
 98	unknown_nmi_panic = 1;
 99	return 1;
100}
101__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
102
103#define nmi_to_desc(type) (&nmi_desc[type])
104
105static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
106
107static int __init nmi_warning_debugfs(void)
108{
109	debugfs_create_u64("nmi_longest_ns", 0644,
110			arch_debugfs_dir, &nmi_longest_ns);
111	return 0;
112}
113fs_initcall(nmi_warning_debugfs);
114
115static void nmi_check_duration(struct nmiaction *action, u64 duration)
116{
 
117	int remainder_ns, decimal_msecs;
 
118
119	if (duration < nmi_longest_ns || duration < action->max_duration)
120		return;
121
122	action->max_duration = duration;
123
124	remainder_ns = do_div(duration, (1000 * 1000));
125	decimal_msecs = remainder_ns / 1000;
126
127	printk_ratelimited(KERN_INFO
128		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
129		action->handler, duration, decimal_msecs);
130}
131
132static int nmi_handle(unsigned int type, struct pt_regs *regs)
133{
134	struct nmi_desc *desc = nmi_to_desc(type);
135	struct nmiaction *a;
136	int handled=0;
137
138	rcu_read_lock();
139
140	/*
141	 * NMIs are edge-triggered, which means if you have enough
142	 * of them concurrently, you can lose some because only one
143	 * can be latched at any given time.  Walk the whole list
144	 * to handle those situations.
145	 */
146	list_for_each_entry_rcu(a, &desc->head, list) {
147		int thishandled;
148		u64 delta;
149
150		delta = sched_clock();
151		thishandled = a->handler(type, regs);
152		handled += thishandled;
153		delta = sched_clock() - delta;
154		trace_nmi_handler(a->handler, (int)delta, thishandled);
155
156		nmi_check_duration(a, delta);
 
 
 
 
157	}
158
159	rcu_read_unlock();
160
161	/* return total number of NMI events handled */
162	return handled;
163}
164NOKPROBE_SYMBOL(nmi_handle);
165
166int __register_nmi_handler(unsigned int type, struct nmiaction *action)
167{
168	struct nmi_desc *desc = nmi_to_desc(type);
169	unsigned long flags;
170
171	if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
172		return -EINVAL;
173
174	raw_spin_lock_irqsave(&desc->lock, flags);
 
 
175
176	/*
177	 * Indicate if there are multiple registrations on the
178	 * internal NMI handler call chains (SERR and IO_CHECK).
 
179	 */
 
180	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
181	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
182
183	/*
184	 * some handlers need to be executed first otherwise a fake
185	 * event confuses some handlers (kdump uses this flag)
186	 */
187	if (action->flags & NMI_FLAG_FIRST)
188		list_add_rcu(&action->list, &desc->head);
189	else
190		list_add_tail_rcu(&action->list, &desc->head);
191
192	raw_spin_unlock_irqrestore(&desc->lock, flags);
193	return 0;
194}
195EXPORT_SYMBOL(__register_nmi_handler);
196
197void unregister_nmi_handler(unsigned int type, const char *name)
198{
199	struct nmi_desc *desc = nmi_to_desc(type);
200	struct nmiaction *n, *found = NULL;
201	unsigned long flags;
202
203	raw_spin_lock_irqsave(&desc->lock, flags);
204
205	list_for_each_entry_rcu(n, &desc->head, list) {
206		/*
207		 * the name passed in to describe the nmi handler
208		 * is used as the lookup key
209		 */
210		if (!strcmp(n->name, name)) {
211			WARN(in_nmi(),
212				"Trying to free NMI (%s) from NMI context!\n", n->name);
213			list_del_rcu(&n->list);
214			found = n;
215			break;
216		}
217	}
218
219	raw_spin_unlock_irqrestore(&desc->lock, flags);
220	if (found) {
221		synchronize_rcu();
222		INIT_LIST_HEAD(&found->list);
223	}
224}
225EXPORT_SYMBOL_GPL(unregister_nmi_handler);
226
227static void
228pci_serr_error(unsigned char reason, struct pt_regs *regs)
229{
230	/* check to see if anyone registered against these types of errors */
231	if (nmi_handle(NMI_SERR, regs))
232		return;
233
234	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
235		 reason, smp_processor_id());
236
 
 
 
 
 
 
 
 
 
 
 
237	if (panic_on_unrecovered_nmi)
238		nmi_panic(regs, "NMI: Not continuing");
239
240	pr_emerg("Dazed and confused, but trying to continue\n");
241
242	/* Clear and disable the PCI SERR error line. */
243	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
244	outb(reason, NMI_REASON_PORT);
245}
246NOKPROBE_SYMBOL(pci_serr_error);
247
248static void
249io_check_error(unsigned char reason, struct pt_regs *regs)
250{
251	unsigned long i;
252
253	/* check to see if anyone registered against these types of errors */
254	if (nmi_handle(NMI_IO_CHECK, regs))
255		return;
256
257	pr_emerg(
258	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
259		 reason, smp_processor_id());
260	show_regs(regs);
261
262	if (panic_on_io_nmi) {
263		nmi_panic(regs, "NMI IOCK error: Not continuing");
264
265		/*
266		 * If we end up here, it means we have received an NMI while
267		 * processing panic(). Simply return without delaying and
268		 * re-enabling NMIs.
269		 */
270		return;
271	}
272
273	/* Re-enable the IOCK line, wait for a few seconds */
274	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
275	outb(reason, NMI_REASON_PORT);
276
277	i = 20000;
278	while (--i) {
279		touch_nmi_watchdog();
280		udelay(100);
281	}
282
283	reason &= ~NMI_REASON_CLEAR_IOCHK;
284	outb(reason, NMI_REASON_PORT);
285}
286NOKPROBE_SYMBOL(io_check_error);
287
288static void
289unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
290{
291	int handled;
292
293	/*
294	 * Use 'false' as back-to-back NMIs are dealt with one level up.
295	 * Of course this makes having multiple 'unknown' handlers useless
296	 * as only the first one is ever run (unless it can actually determine
297	 * if it caused the NMI)
298	 */
299	handled = nmi_handle(NMI_UNKNOWN, regs);
300	if (handled) {
301		__this_cpu_add(nmi_stats.unknown, handled);
302		return;
303	}
304
305	__this_cpu_add(nmi_stats.unknown, 1);
306
307	pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
308			     reason, smp_processor_id());
309
 
310	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
311		nmi_panic(regs, "NMI: Not continuing");
312
313	pr_emerg_ratelimited("Dazed and confused, but trying to continue\n");
314}
315NOKPROBE_SYMBOL(unknown_nmi_error);
316
317static DEFINE_PER_CPU(bool, swallow_nmi);
318static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
319
320static noinstr void default_do_nmi(struct pt_regs *regs)
321{
322	unsigned char reason = 0;
323	int handled;
324	bool b2b = false;
325
326	/*
327	 * CPU-specific NMI must be processed before non-CPU-specific
328	 * NMI, otherwise we may lose it, because the CPU-specific
329	 * NMI can not be detected/processed on other CPUs.
330	 */
331
332	/*
333	 * Back-to-back NMIs are interesting because they can either
334	 * be two NMI or more than two NMIs (any thing over two is dropped
335	 * due to NMI being edge-triggered).  If this is the second half
336	 * of the back-to-back NMI, assume we dropped things and process
337	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
338	 */
339	if (regs->ip == __this_cpu_read(last_nmi_rip))
340		b2b = true;
341	else
342		__this_cpu_write(swallow_nmi, false);
343
344	__this_cpu_write(last_nmi_rip, regs->ip);
345
346	instrumentation_begin();
347
348	if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
349		goto out;
350
351	handled = nmi_handle(NMI_LOCAL, regs);
352	__this_cpu_add(nmi_stats.normal, handled);
353	if (handled) {
354		/*
355		 * There are cases when a NMI handler handles multiple
356		 * events in the current NMI.  One of these events may
357		 * be queued for in the next NMI.  Because the event is
358		 * already handled, the next NMI will result in an unknown
359		 * NMI.  Instead lets flag this for a potential NMI to
360		 * swallow.
361		 */
362		if (handled > 1)
363			__this_cpu_write(swallow_nmi, true);
364		goto out;
365	}
366
367	/*
368	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
369	 *
370	 * Another CPU may be processing panic routines while holding
371	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
372	 * and if so, call its callback directly.  If there is no CPU preparing
373	 * crash dump, we simply loop here.
374	 */
375	while (!raw_spin_trylock(&nmi_reason_lock)) {
376		run_crash_ipi_callback(regs);
377		cpu_relax();
378	}
379
380	reason = x86_platform.get_nmi_reason();
381
382	if (reason & NMI_REASON_MASK) {
383		if (reason & NMI_REASON_SERR)
384			pci_serr_error(reason, regs);
385		else if (reason & NMI_REASON_IOCHK)
386			io_check_error(reason, regs);
387#ifdef CONFIG_X86_32
388		/*
389		 * Reassert NMI in case it became active
390		 * meanwhile as it's edge-triggered:
391		 */
392		reassert_nmi();
393#endif
394		__this_cpu_add(nmi_stats.external, 1);
395		raw_spin_unlock(&nmi_reason_lock);
396		goto out;
397	}
398	raw_spin_unlock(&nmi_reason_lock);
399
400	/*
401	 * Only one NMI can be latched at a time.  To handle
402	 * this we may process multiple nmi handlers at once to
403	 * cover the case where an NMI is dropped.  The downside
404	 * to this approach is we may process an NMI prematurely,
405	 * while its real NMI is sitting latched.  This will cause
406	 * an unknown NMI on the next run of the NMI processing.
407	 *
408	 * We tried to flag that condition above, by setting the
409	 * swallow_nmi flag when we process more than one event.
410	 * This condition is also only present on the second half
411	 * of a back-to-back NMI, so we flag that condition too.
412	 *
413	 * If both are true, we assume we already processed this
414	 * NMI previously and we swallow it.  Otherwise we reset
415	 * the logic.
416	 *
417	 * There are scenarios where we may accidentally swallow
418	 * a 'real' unknown NMI.  For example, while processing
419	 * a perf NMI another perf NMI comes in along with a
420	 * 'real' unknown NMI.  These two NMIs get combined into
421	 * one (as described above).  When the next NMI gets
422	 * processed, it will be flagged by perf as handled, but
423	 * no one will know that there was a 'real' unknown NMI sent
424	 * also.  As a result it gets swallowed.  Or if the first
425	 * perf NMI returns two events handled then the second
426	 * NMI will get eaten by the logic below, again losing a
427	 * 'real' unknown NMI.  But this is the best we can do
428	 * for now.
429	 */
430	if (b2b && __this_cpu_read(swallow_nmi))
431		__this_cpu_add(nmi_stats.swallow, 1);
432	else
433		unknown_nmi_error(reason, regs);
434
435out:
436	instrumentation_end();
437}
 
438
439/*
440 * NMIs can page fault or hit breakpoints which will cause it to lose
441 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
442 *
443 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
444 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
445 * if the outer NMI came from kernel mode, but we can still nest if the
446 * outer NMI came from user mode.
447 *
448 * To handle these nested NMIs, we have three states:
449 *
450 *  1) not running
451 *  2) executing
452 *  3) latched
453 *
454 * When no NMI is in progress, it is in the "not running" state.
455 * When an NMI comes in, it goes into the "executing" state.
456 * Normally, if another NMI is triggered, it does not interrupt
457 * the running NMI and the HW will simply latch it so that when
458 * the first NMI finishes, it will restart the second NMI.
459 * (Note, the latch is binary, thus multiple NMIs triggering,
460 *  when one is running, are ignored. Only one NMI is restarted.)
461 *
462 * If an NMI executes an iret, another NMI can preempt it. We do not
463 * want to allow this new NMI to run, but we want to execute it when the
464 * first one finishes.  We set the state to "latched", and the exit of
465 * the first NMI will perform a dec_return, if the result is zero
466 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
467 * dec_return would have set the state to NMI_EXECUTING (what we want it
468 * to be when we are running). In this case, we simply jump back to
469 * rerun the NMI handler again, and restart the 'latched' NMI.
470 *
471 * No trap (breakpoint or page fault) should be hit before nmi_restart,
472 * thus there is no race between the first check of state for NOT_RUNNING
473 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
474 * at this point.
475 *
476 * In case the NMI takes a page fault, we need to save off the CR2
477 * because the NMI could have preempted another page fault and corrupt
478 * the CR2 that is about to be read. As nested NMIs must be restarted
479 * and they can not take breakpoints or page faults, the update of the
480 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
481 * Otherwise, there would be a race of another nested NMI coming in
482 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
483 */
484enum nmi_states {
485	NMI_NOT_RUNNING = 0,
486	NMI_EXECUTING,
487	NMI_LATCHED,
488};
489static DEFINE_PER_CPU(enum nmi_states, nmi_state);
490static DEFINE_PER_CPU(unsigned long, nmi_cr2);
491static DEFINE_PER_CPU(unsigned long, nmi_dr7);
492
493DEFINE_IDTENTRY_RAW(exc_nmi)
494{
495	irqentry_state_t irq_state;
496	struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
497
498	/*
499	 * Re-enable NMIs right here when running as an SEV-ES guest. This might
500	 * cause nested NMIs, but those can be handled safely.
501	 */
502	sev_es_nmi_complete();
503	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
504		raw_atomic_long_inc(&nsp->idt_calls);
505
506	if (arch_cpu_is_offline(smp_processor_id())) {
507		if (microcode_nmi_handler_enabled())
508			microcode_offline_nmi_handler();
509		return;
510	}
 
 
 
 
511
 
 
 
512	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
513		this_cpu_write(nmi_state, NMI_LATCHED);
514		return;
515	}
516	this_cpu_write(nmi_state, NMI_EXECUTING);
517	this_cpu_write(nmi_cr2, read_cr2());
518
519nmi_restart:
520	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
521		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
522		WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
523		WRITE_ONCE(nsp->recv_jiffies, jiffies);
524	}
525
 
526	/*
527	 * Needs to happen before DR7 is accessed, because the hypervisor can
528	 * intercept DR7 reads/writes, turning those into #VC exceptions.
529	 */
530	sev_es_ist_enter(regs);
531
532	this_cpu_write(nmi_dr7, local_db_save());
533
534	irq_state = irqentry_nmi_enter(regs);
535
536	inc_irq_stat(__nmi_count);
537
538	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
539		WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
540	} else if (!ignore_nmis) {
541		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
542			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
543			WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
544		}
545		default_do_nmi(regs);
546		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
547			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
548			WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
549		}
550	}
551
552	irqentry_nmi_exit(regs, irq_state);
553
554	local_db_restore(this_cpu_read(nmi_dr7));
555
556	sev_es_ist_exit();
557
558	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
559		write_cr2(this_cpu_read(nmi_cr2));
560	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
561		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
562		WARN_ON_ONCE(nsp->idt_seq & 0x1);
563		WRITE_ONCE(nsp->recv_jiffies, jiffies);
564	}
565	if (this_cpu_dec_return(nmi_state))
566		goto nmi_restart;
567}
568
569#if IS_ENABLED(CONFIG_KVM_INTEL)
570DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
571{
572	exc_nmi(regs);
573}
574#if IS_MODULE(CONFIG_KVM_INTEL)
575EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
576#endif
577#endif
578
579#ifdef CONFIG_NMI_CHECK_CPU
580
581static char *nmi_check_stall_msg[] = {
582/*									*/
583/* +--------- nmi_seq & 0x1: CPU is currently in NMI handler.		*/
584/* | +------ cpu_is_offline(cpu)					*/
585/* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls):	*/
586/* | | |	NMI handler has been invoked.				*/
587/* | | |								*/
588/* V V V								*/
589/* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
590/* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
591/* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
592/* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
593/* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
594/* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
595/* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
596/* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
597};
598
599void nmi_backtrace_stall_snap(const struct cpumask *btp)
600{
601	int cpu;
602	struct nmi_stats *nsp;
603
604	for_each_cpu(cpu, btp) {
605		nsp = per_cpu_ptr(&nmi_stats, cpu);
606		nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
607		nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
608		nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
609		nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
610	}
611}
612
613void nmi_backtrace_stall_check(const struct cpumask *btp)
614{
615	int cpu;
616	int idx;
617	unsigned long nmi_seq;
618	unsigned long j = jiffies;
619	char *modp;
620	char *msgp;
621	char *msghp;
622	struct nmi_stats *nsp;
623
624	for_each_cpu(cpu, btp) {
625		nsp = per_cpu_ptr(&nmi_stats, cpu);
626		modp = "";
627		msghp = "";
628		nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
629		if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
630			msgp = "CPU entered NMI handler function, but has not exited";
631		} else if (nsp->idt_nmi_seq_snap == nmi_seq ||
632			   nsp->idt_nmi_seq_snap + 1 == nmi_seq) {
633			idx = ((nmi_seq & 0x1) << 2) |
634			      (cpu_is_offline(cpu) << 1) |
635			      (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
636			msgp = nmi_check_stall_msg[idx];
637			if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
638				modp = ", but OK because ignore_nmis was set";
639			if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
640				msghp = " (CPU exited one NMI handler function)";
641			else if (nmi_seq & 0x1)
642				msghp = " (CPU currently in NMI handler function)";
643			else
644				msghp = " (CPU was never in an NMI handler function)";
645		} else {
646			msgp = "CPU is handling NMIs";
647		}
648		pr_alert("%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp);
649		pr_alert("%s: last activity: %lu jiffies ago.\n",
650			 __func__, j - READ_ONCE(nsp->recv_jiffies));
651	}
652}
653
654#endif
655
656#ifdef CONFIG_X86_FRED
657/*
658 * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED
659 * event delivery, i.e., there is no problem of transient states.
660 * And NMI unblocking only happens when the stack frame indicates
661 * that so should happen.
662 *
663 * Thus, the NMI entry stub for FRED is really straightforward and
664 * as simple as most exception handlers. As such, #DB is allowed
665 * during NMI handling.
666 */
667DEFINE_FREDENTRY_NMI(exc_nmi)
668{
669	irqentry_state_t irq_state;
670
671	if (arch_cpu_is_offline(smp_processor_id())) {
672		if (microcode_nmi_handler_enabled())
673			microcode_offline_nmi_handler();
674		return;
675	}
676
677	/*
678	 * Save CR2 for eventual restore to cover the case where the NMI
679	 * hits the VMENTER/VMEXIT region where guest CR2 is life. This
680	 * prevents guest state corruption in case that the NMI handler
681	 * takes a page fault.
682	 */
683	this_cpu_write(nmi_cr2, read_cr2());
684
685	irq_state = irqentry_nmi_enter(regs);
686
687	inc_irq_stat(__nmi_count);
688	default_do_nmi(regs);
689
690	irqentry_nmi_exit(regs, irq_state);
691
692	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
693		write_cr2(this_cpu_read(nmi_cr2));
 
 
694}
695#endif
696
697void stop_nmi(void)
698{
699	ignore_nmis++;
700}
701
702void restart_nmi(void)
703{
704	ignore_nmis--;
705}
706
707/* reset the back-to-back NMI logic */
708void local_touch_nmi(void)
709{
710	__this_cpu_write(last_nmi_rip, 0);
711}
712EXPORT_SYMBOL_GPL(local_touch_nmi);
v4.10.11
 
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
  5 *
  6 *  Pentium III FXSR, SSE support
  7 *	Gareth Hughes <gareth@valinux.com>, May 2000
  8 */
  9
 10/*
 11 * Handle hardware traps and faults.
 12 */
 13#include <linux/spinlock.h>
 14#include <linux/kprobes.h>
 15#include <linux/kdebug.h>
 
 16#include <linux/nmi.h>
 17#include <linux/debugfs.h>
 18#include <linux/delay.h>
 19#include <linux/hardirq.h>
 20#include <linux/ratelimit.h>
 21#include <linux/slab.h>
 22#include <linux/export.h>
 
 
 23
 24#if defined(CONFIG_EDAC)
 25#include <linux/edac.h>
 26#endif
 27
 28#include <linux/atomic.h>
 29#include <asm/traps.h>
 30#include <asm/mach_traps.h>
 31#include <asm/nmi.h>
 32#include <asm/x86_init.h>
 33#include <asm/reboot.h>
 34#include <asm/cache.h>
 
 
 
 
 35
 36#define CREATE_TRACE_POINTS
 37#include <trace/events/nmi.h>
 38
 39struct nmi_desc {
 40	spinlock_t lock;
 41	struct list_head head;
 42};
 43
 44static struct nmi_desc nmi_desc[NMI_MAX] = 
 45{
 46	{
 47		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
 48		.head = LIST_HEAD_INIT(nmi_desc[0].head),
 49	},
 50	{
 51		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
 52		.head = LIST_HEAD_INIT(nmi_desc[1].head),
 53	},
 54	{
 55		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
 56		.head = LIST_HEAD_INIT(nmi_desc[2].head),
 57	},
 58	{
 59		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
 60		.head = LIST_HEAD_INIT(nmi_desc[3].head),
 61	},
 62
 63};
 64
 65struct nmi_stats {
 66	unsigned int normal;
 67	unsigned int unknown;
 68	unsigned int external;
 69	unsigned int swallow;
 
 
 
 
 
 
 
 
 
 70};
 71
 72static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
 73
 74static int ignore_nmis __read_mostly;
 75
 76int unknown_nmi_panic;
 77/*
 78 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 79 * only be used in NMI handler.
 80 */
 81static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
 82
 83static int __init setup_unknown_nmi_panic(char *str)
 84{
 85	unknown_nmi_panic = 1;
 86	return 1;
 87}
 88__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
 89
 90#define nmi_to_desc(type) (&nmi_desc[type])
 91
 92static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
 93
 94static int __init nmi_warning_debugfs(void)
 95{
 96	debugfs_create_u64("nmi_longest_ns", 0644,
 97			arch_debugfs_dir, &nmi_longest_ns);
 98	return 0;
 99}
100fs_initcall(nmi_warning_debugfs);
101
102static void nmi_max_handler(struct irq_work *w)
103{
104	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
105	int remainder_ns, decimal_msecs;
106	u64 whole_msecs = ACCESS_ONCE(a->max_duration);
107
108	remainder_ns = do_div(whole_msecs, (1000 * 1000));
 
 
 
 
 
109	decimal_msecs = remainder_ns / 1000;
110
111	printk_ratelimited(KERN_INFO
112		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
113		a->handler, whole_msecs, decimal_msecs);
114}
115
116static int nmi_handle(unsigned int type, struct pt_regs *regs)
117{
118	struct nmi_desc *desc = nmi_to_desc(type);
119	struct nmiaction *a;
120	int handled=0;
121
122	rcu_read_lock();
123
124	/*
125	 * NMIs are edge-triggered, which means if you have enough
126	 * of them concurrently, you can lose some because only one
127	 * can be latched at any given time.  Walk the whole list
128	 * to handle those situations.
129	 */
130	list_for_each_entry_rcu(a, &desc->head, list) {
131		int thishandled;
132		u64 delta;
133
134		delta = sched_clock();
135		thishandled = a->handler(type, regs);
136		handled += thishandled;
137		delta = sched_clock() - delta;
138		trace_nmi_handler(a->handler, (int)delta, thishandled);
139
140		if (delta < nmi_longest_ns || delta < a->max_duration)
141			continue;
142
143		a->max_duration = delta;
144		irq_work_queue(&a->irq_work);
145	}
146
147	rcu_read_unlock();
148
149	/* return total number of NMI events handled */
150	return handled;
151}
152NOKPROBE_SYMBOL(nmi_handle);
153
154int __register_nmi_handler(unsigned int type, struct nmiaction *action)
155{
156	struct nmi_desc *desc = nmi_to_desc(type);
157	unsigned long flags;
158
159	if (!action->handler)
160		return -EINVAL;
161
162	init_irq_work(&action->irq_work, nmi_max_handler);
163
164	spin_lock_irqsave(&desc->lock, flags);
165
166	/*
167	 * most handlers of type NMI_UNKNOWN never return because
168	 * they just assume the NMI is theirs.  Just a sanity check
169	 * to manage expectations
170	 */
171	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
172	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
173	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
174
175	/*
176	 * some handlers need to be executed first otherwise a fake
177	 * event confuses some handlers (kdump uses this flag)
178	 */
179	if (action->flags & NMI_FLAG_FIRST)
180		list_add_rcu(&action->list, &desc->head);
181	else
182		list_add_tail_rcu(&action->list, &desc->head);
183	
184	spin_unlock_irqrestore(&desc->lock, flags);
185	return 0;
186}
187EXPORT_SYMBOL(__register_nmi_handler);
188
189void unregister_nmi_handler(unsigned int type, const char *name)
190{
191	struct nmi_desc *desc = nmi_to_desc(type);
192	struct nmiaction *n;
193	unsigned long flags;
194
195	spin_lock_irqsave(&desc->lock, flags);
196
197	list_for_each_entry_rcu(n, &desc->head, list) {
198		/*
199		 * the name passed in to describe the nmi handler
200		 * is used as the lookup key
201		 */
202		if (!strcmp(n->name, name)) {
203			WARN(in_nmi(),
204				"Trying to free NMI (%s) from NMI context!\n", n->name);
205			list_del_rcu(&n->list);
 
206			break;
207		}
208	}
209
210	spin_unlock_irqrestore(&desc->lock, flags);
211	synchronize_rcu();
 
 
 
212}
213EXPORT_SYMBOL_GPL(unregister_nmi_handler);
214
215static void
216pci_serr_error(unsigned char reason, struct pt_regs *regs)
217{
218	/* check to see if anyone registered against these types of errors */
219	if (nmi_handle(NMI_SERR, regs))
220		return;
221
222	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
223		 reason, smp_processor_id());
224
225	/*
226	 * On some machines, PCI SERR line is used to report memory
227	 * errors. EDAC makes use of it.
228	 */
229#if defined(CONFIG_EDAC)
230	if (edac_handler_set()) {
231		edac_atomic_assert_error();
232		return;
233	}
234#endif
235
236	if (panic_on_unrecovered_nmi)
237		nmi_panic(regs, "NMI: Not continuing");
238
239	pr_emerg("Dazed and confused, but trying to continue\n");
240
241	/* Clear and disable the PCI SERR error line. */
242	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
243	outb(reason, NMI_REASON_PORT);
244}
245NOKPROBE_SYMBOL(pci_serr_error);
246
247static void
248io_check_error(unsigned char reason, struct pt_regs *regs)
249{
250	unsigned long i;
251
252	/* check to see if anyone registered against these types of errors */
253	if (nmi_handle(NMI_IO_CHECK, regs))
254		return;
255
256	pr_emerg(
257	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
258		 reason, smp_processor_id());
259	show_regs(regs);
260
261	if (panic_on_io_nmi) {
262		nmi_panic(regs, "NMI IOCK error: Not continuing");
263
264		/*
265		 * If we end up here, it means we have received an NMI while
266		 * processing panic(). Simply return without delaying and
267		 * re-enabling NMIs.
268		 */
269		return;
270	}
271
272	/* Re-enable the IOCK line, wait for a few seconds */
273	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
274	outb(reason, NMI_REASON_PORT);
275
276	i = 20000;
277	while (--i) {
278		touch_nmi_watchdog();
279		udelay(100);
280	}
281
282	reason &= ~NMI_REASON_CLEAR_IOCHK;
283	outb(reason, NMI_REASON_PORT);
284}
285NOKPROBE_SYMBOL(io_check_error);
286
287static void
288unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
289{
290	int handled;
291
292	/*
293	 * Use 'false' as back-to-back NMIs are dealt with one level up.
294	 * Of course this makes having multiple 'unknown' handlers useless
295	 * as only the first one is ever run (unless it can actually determine
296	 * if it caused the NMI)
297	 */
298	handled = nmi_handle(NMI_UNKNOWN, regs);
299	if (handled) {
300		__this_cpu_add(nmi_stats.unknown, handled);
301		return;
302	}
303
304	__this_cpu_add(nmi_stats.unknown, 1);
305
306	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
307		 reason, smp_processor_id());
308
309	pr_emerg("Do you have a strange power saving mode enabled?\n");
310	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
311		nmi_panic(regs, "NMI: Not continuing");
312
313	pr_emerg("Dazed and confused, but trying to continue\n");
314}
315NOKPROBE_SYMBOL(unknown_nmi_error);
316
317static DEFINE_PER_CPU(bool, swallow_nmi);
318static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
319
320static void default_do_nmi(struct pt_regs *regs)
321{
322	unsigned char reason = 0;
323	int handled;
324	bool b2b = false;
325
326	/*
327	 * CPU-specific NMI must be processed before non-CPU-specific
328	 * NMI, otherwise we may lose it, because the CPU-specific
329	 * NMI can not be detected/processed on other CPUs.
330	 */
331
332	/*
333	 * Back-to-back NMIs are interesting because they can either
334	 * be two NMI or more than two NMIs (any thing over two is dropped
335	 * due to NMI being edge-triggered).  If this is the second half
336	 * of the back-to-back NMI, assume we dropped things and process
337	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
338	 */
339	if (regs->ip == __this_cpu_read(last_nmi_rip))
340		b2b = true;
341	else
342		__this_cpu_write(swallow_nmi, false);
343
344	__this_cpu_write(last_nmi_rip, regs->ip);
345
 
 
 
 
 
346	handled = nmi_handle(NMI_LOCAL, regs);
347	__this_cpu_add(nmi_stats.normal, handled);
348	if (handled) {
349		/*
350		 * There are cases when a NMI handler handles multiple
351		 * events in the current NMI.  One of these events may
352		 * be queued for in the next NMI.  Because the event is
353		 * already handled, the next NMI will result in an unknown
354		 * NMI.  Instead lets flag this for a potential NMI to
355		 * swallow.
356		 */
357		if (handled > 1)
358			__this_cpu_write(swallow_nmi, true);
359		return;
360	}
361
362	/*
363	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
364	 *
365	 * Another CPU may be processing panic routines while holding
366	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
367	 * and if so, call its callback directly.  If there is no CPU preparing
368	 * crash dump, we simply loop here.
369	 */
370	while (!raw_spin_trylock(&nmi_reason_lock)) {
371		run_crash_ipi_callback(regs);
372		cpu_relax();
373	}
374
375	reason = x86_platform.get_nmi_reason();
376
377	if (reason & NMI_REASON_MASK) {
378		if (reason & NMI_REASON_SERR)
379			pci_serr_error(reason, regs);
380		else if (reason & NMI_REASON_IOCHK)
381			io_check_error(reason, regs);
382#ifdef CONFIG_X86_32
383		/*
384		 * Reassert NMI in case it became active
385		 * meanwhile as it's edge-triggered:
386		 */
387		reassert_nmi();
388#endif
389		__this_cpu_add(nmi_stats.external, 1);
390		raw_spin_unlock(&nmi_reason_lock);
391		return;
392	}
393	raw_spin_unlock(&nmi_reason_lock);
394
395	/*
396	 * Only one NMI can be latched at a time.  To handle
397	 * this we may process multiple nmi handlers at once to
398	 * cover the case where an NMI is dropped.  The downside
399	 * to this approach is we may process an NMI prematurely,
400	 * while its real NMI is sitting latched.  This will cause
401	 * an unknown NMI on the next run of the NMI processing.
402	 *
403	 * We tried to flag that condition above, by setting the
404	 * swallow_nmi flag when we process more than one event.
405	 * This condition is also only present on the second half
406	 * of a back-to-back NMI, so we flag that condition too.
407	 *
408	 * If both are true, we assume we already processed this
409	 * NMI previously and we swallow it.  Otherwise we reset
410	 * the logic.
411	 *
412	 * There are scenarios where we may accidentally swallow
413	 * a 'real' unknown NMI.  For example, while processing
414	 * a perf NMI another perf NMI comes in along with a
415	 * 'real' unknown NMI.  These two NMIs get combined into
416	 * one (as descibed above).  When the next NMI gets
417	 * processed, it will be flagged by perf as handled, but
418	 * noone will know that there was a 'real' unknown NMI sent
419	 * also.  As a result it gets swallowed.  Or if the first
420	 * perf NMI returns two events handled then the second
421	 * NMI will get eaten by the logic below, again losing a
422	 * 'real' unknown NMI.  But this is the best we can do
423	 * for now.
424	 */
425	if (b2b && __this_cpu_read(swallow_nmi))
426		__this_cpu_add(nmi_stats.swallow, 1);
427	else
428		unknown_nmi_error(reason, regs);
 
 
 
429}
430NOKPROBE_SYMBOL(default_do_nmi);
431
432/*
433 * NMIs can page fault or hit breakpoints which will cause it to lose
434 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
435 *
436 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
437 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
438 * if the outer NMI came from kernel mode, but we can still nest if the
439 * outer NMI came from user mode.
440 *
441 * To handle these nested NMIs, we have three states:
442 *
443 *  1) not running
444 *  2) executing
445 *  3) latched
446 *
447 * When no NMI is in progress, it is in the "not running" state.
448 * When an NMI comes in, it goes into the "executing" state.
449 * Normally, if another NMI is triggered, it does not interrupt
450 * the running NMI and the HW will simply latch it so that when
451 * the first NMI finishes, it will restart the second NMI.
452 * (Note, the latch is binary, thus multiple NMIs triggering,
453 *  when one is running, are ignored. Only one NMI is restarted.)
454 *
455 * If an NMI executes an iret, another NMI can preempt it. We do not
456 * want to allow this new NMI to run, but we want to execute it when the
457 * first one finishes.  We set the state to "latched", and the exit of
458 * the first NMI will perform a dec_return, if the result is zero
459 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
460 * dec_return would have set the state to NMI_EXECUTING (what we want it
461 * to be when we are running). In this case, we simply jump back to
462 * rerun the NMI handler again, and restart the 'latched' NMI.
463 *
464 * No trap (breakpoint or page fault) should be hit before nmi_restart,
465 * thus there is no race between the first check of state for NOT_RUNNING
466 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
467 * at this point.
468 *
469 * In case the NMI takes a page fault, we need to save off the CR2
470 * because the NMI could have preempted another page fault and corrupt
471 * the CR2 that is about to be read. As nested NMIs must be restarted
472 * and they can not take breakpoints or page faults, the update of the
473 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
474 * Otherwise, there would be a race of another nested NMI coming in
475 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
476 */
477enum nmi_states {
478	NMI_NOT_RUNNING = 0,
479	NMI_EXECUTING,
480	NMI_LATCHED,
481};
482static DEFINE_PER_CPU(enum nmi_states, nmi_state);
483static DEFINE_PER_CPU(unsigned long, nmi_cr2);
 
 
 
 
 
 
484
485#ifdef CONFIG_X86_64
486/*
487 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
488 * some care, the inner breakpoint will clobber the outer breakpoint's
489 * stack.
490 *
491 * If a breakpoint is being processed, and the debug stack is being
492 * used, if an NMI comes in and also hits a breakpoint, the stack
493 * pointer will be set to the same fixed address as the breakpoint that
494 * was interrupted, causing that stack to be corrupted. To handle this
495 * case, check if the stack that was interrupted is the debug stack, and
496 * if so, change the IDT so that new breakpoints will use the current
497 * stack and not switch to the fixed address. On return of the NMI,
498 * switch back to the original IDT.
499 */
500static DEFINE_PER_CPU(int, update_debug_stack);
501#endif
502
503dotraplinkage notrace void
504do_nmi(struct pt_regs *regs, long error_code)
505{
506	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
507		this_cpu_write(nmi_state, NMI_LATCHED);
508		return;
509	}
510	this_cpu_write(nmi_state, NMI_EXECUTING);
511	this_cpu_write(nmi_cr2, read_cr2());
 
512nmi_restart:
 
 
 
 
 
513
514#ifdef CONFIG_X86_64
515	/*
516	 * If we interrupted a breakpoint, it is possible that
517	 * the nmi handler will have breakpoints too. We need to
518	 * change the IDT such that breakpoints that happen here
519	 * continue to use the NMI stack.
520	 */
521	if (unlikely(is_debug_stack(regs->sp))) {
522		debug_stack_set_zero();
523		this_cpu_write(update_debug_stack, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525#endif
526
527	nmi_enter();
528
529	inc_irq_stat(__nmi_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530
531	if (!ignore_nmis)
532		default_do_nmi(regs);
 
 
533
534	nmi_exit();
 
 
 
 
 
 
 
535
536#ifdef CONFIG_X86_64
537	if (unlikely(this_cpu_read(update_debug_stack))) {
538		debug_stack_reset();
539		this_cpu_write(update_debug_stack, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540	}
 
 
541#endif
542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
544		write_cr2(this_cpu_read(nmi_cr2));
545	if (this_cpu_dec_return(nmi_state))
546		goto nmi_restart;
547}
548NOKPROBE_SYMBOL(do_nmi);
549
550void stop_nmi(void)
551{
552	ignore_nmis++;
553}
554
555void restart_nmi(void)
556{
557	ignore_nmis--;
558}
559
560/* reset the back-to-back NMI logic */
561void local_touch_nmi(void)
562{
563	__this_cpu_write(last_nmi_rip, 0);
564}
565EXPORT_SYMBOL_GPL(local_touch_nmi);