Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * ARC Cache Management
   4 *
   5 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
   6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
 
 
 
 
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/cache.h>
  13#include <linux/mmu_context.h>
  14#include <linux/syscalls.h>
  15#include <linux/uaccess.h>
  16#include <linux/pagemap.h>
  17#include <asm/cacheflush.h>
  18#include <asm/cachectl.h>
  19#include <asm/setup.h>
  20
  21#ifdef CONFIG_ISA_ARCV2
  22#define USE_RGN_FLSH	1
  23#endif
  24
  25static int l2_line_sz;
  26static int ioc_exists;
  27int slc_enable = 1, ioc_enable = 1;
  28unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
  29unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
  30
  31static struct cpuinfo_arc_cache {
  32	unsigned int sz_k, line_len, colors;
  33} ic_info, dc_info, slc_info;
  34
  35void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
  36			       unsigned long sz, const int op, const int full_page);
  37
  38void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
  39void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
  40void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
  41
  42static int read_decode_cache_bcr_arcv2(int c, char *buf, int len)
  43{
  44	struct cpuinfo_arc_cache *p_slc = &slc_info;
  45	struct bcr_identity ident;
  46	struct bcr_generic sbcr;
  47	struct bcr_clust_cfg cbcr;
  48	struct bcr_volatile vol;
  49	int n = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51	READ_BCR(ARC_REG_SLC_BCR, sbcr);
  52	if (sbcr.ver) {
  53		struct bcr_slc_cfg  slc_cfg;
  54		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
  55		p_slc->sz_k = 128 << slc_cfg.sz;
  56		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
  57		n += scnprintf(buf + n, len - n,
  58			       "SLC\t\t: %uK, %uB Line%s\n",
  59			       p_slc->sz_k, p_slc->line_len, IS_USED_RUN(slc_enable));
  60	}
  61
  62	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
  63	if (cbcr.c) {
  64		ioc_exists = 1;
  65
  66		/*
  67		 * As for today we don't support both IOC and ZONE_HIGHMEM enabled
  68		 * simultaneously. This happens because as of today IOC aperture covers
  69		 * only ZONE_NORMAL (low mem) and any dma transactions outside this
  70		 * region won't be HW coherent.
  71		 * If we want to use both IOC and ZONE_HIGHMEM we can use
  72		 * bounce_buffer to handle dma transactions to HIGHMEM.
  73		 * Also it is possible to modify dma_direct cache ops or increase IOC
  74		 * aperture size if we are planning to use HIGHMEM without PAE.
  75		 */
  76		if (IS_ENABLED(CONFIG_HIGHMEM) || is_pae40_enabled())
  77			ioc_enable = 0;
  78	} else {
  79		ioc_enable = 0;
  80	}
  81
  82	READ_BCR(AUX_IDENTITY, ident);
  83
  84	/* HS 2.0 didn't have AUX_VOL */
  85	if (ident.family > 0x51) {
  86		READ_BCR(AUX_VOL, vol);
  87		perip_base = vol.start << 28;
  88		/* HS 3.0 has limit and strict-ordering fields */
  89		if (ident.family > 0x52)
  90			perip_end = (vol.limit << 28) - 1;
  91	}
  92
  93	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
  94		       perip_base,
  95		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency (per-device) "));
  96
  97	return n;
  98}
  99
 100int arc_cache_mumbojumbo(int c, char *buf, int len)
 101{
 102	struct cpuinfo_arc_cache *p_ic = &ic_info, *p_dc = &dc_info;
 103	struct bcr_cache ibcr, dbcr;
 104	int vipt, assoc;
 105	int n = 0;
 
 
 
 
 
 106
 
 107	READ_BCR(ARC_REG_IC_BCR, ibcr);
 
 108	if (!ibcr.ver)
 109		goto dc_chk;
 110
 111	if (is_isa_arcompact() && (ibcr.ver <= 3)) {
 112		BUG_ON(ibcr.config != 3);
 113		assoc = 2;		/* Fixed to 2w set assoc */
 114	} else if (is_isa_arcv2() && (ibcr.ver >= 4)) {
 115		assoc = 1 << ibcr.config;	/* 1,2,4,8 */
 116	}
 117
 118	p_ic->line_len = 8 << ibcr.line_len;
 119	p_ic->sz_k = 1 << (ibcr.sz - 1);
 120	p_ic->colors = p_ic->sz_k/assoc/TO_KB(PAGE_SIZE);
 121
 122	n += scnprintf(buf + n, len - n,
 123			"I-Cache\t\t: %uK, %dway/set, %uB Line, VIPT%s%s\n",
 124			p_ic->sz_k, assoc, p_ic->line_len,
 125			p_ic->colors > 1 ? " aliasing" : "",
 126			IS_USED_CFG(CONFIG_ARC_HAS_ICACHE));
 127
 128dc_chk:
 
 129	READ_BCR(ARC_REG_DC_BCR, dbcr);
 
 130	if (!dbcr.ver)
 131		goto slc_chk;
 132
 133	if (is_isa_arcompact() && (dbcr.ver <= 3)) {
 134		BUG_ON(dbcr.config != 2);
 135		vipt = 1;
 136		assoc = 4;		/* Fixed to 4w set assoc */
 137		p_dc->colors = p_dc->sz_k/assoc/TO_KB(PAGE_SIZE);
 138	} else if (is_isa_arcv2() && (dbcr.ver >= 4)) {
 139		vipt = 0;
 140		assoc = 1 << dbcr.config;	/* 1,2,4,8 */
 141		p_dc->colors = 1;		/* PIPT so can't VIPT alias */
 142	}
 143
 144	p_dc->line_len = 16 << dbcr.line_len;
 145	p_dc->sz_k = 1 << (dbcr.sz - 1);
 146
 147	n += scnprintf(buf + n, len - n,
 148			"D-Cache\t\t: %uK, %dway/set, %uB Line, %s%s\n",
 149			p_dc->sz_k, assoc, p_dc->line_len,
 150			vipt ? "VIPT" : "PIPT",
 151			IS_USED_CFG(CONFIG_ARC_HAS_DCACHE));
 152
 153slc_chk:
 154	if (is_isa_arcv2())
 155		n += read_decode_cache_bcr_arcv2(c, buf + n, len - n);
 156
 157	return n;
 158}
 159
 160/*
 161 * Line Operation on {I,D}-Cache
 162 */
 163
 164#define OP_INV		0x1
 165#define OP_FLUSH	0x2
 166#define OP_FLUSH_N_INV	0x3
 167#define OP_INV_IC	0x4
 168
 169/*
 170 * Cache Flush programming model
 
 
 
 
 
 
 
 
 
 171 *
 172 * ARC700 MMUv3 I$ and D$ are both VIPT and can potentially alias.
 173 * Programming model requires both paddr and vaddr irrespecive of aliasing
 174 * considerations:
 175 *  - vaddr in {I,D}C_IV?L
 176 *  - paddr in {I,D}C_PTAG
 
 
 
 
 
 
 
 177 *
 178 * In HS38x (MMUv4), D$ is PIPT, I$ is VIPT and can still alias.
 179 * Programming model is different for aliasing vs. non-aliasing I$
 180 *  - D$ / Non-aliasing I$: only paddr in {I,D}C_IV?L
 181 *  - Aliasing I$: same as ARC700 above (so MMUv3 routine used for MMUv4 I$)
 182 *
 183 *  - If PAE40 is enabled, independent of aliasing considerations, the higher
 184 *    bits needs to be written into PTAG_HI
 
 
 
 
 
 
 
 
 185 */
 186
 187static inline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
 189			  unsigned long sz, const int op, const int full_page)
 190{
 191	unsigned int aux_cmd, aux_tag;
 192	int num_lines;
 
 193
 194	if (op == OP_INV_IC) {
 195		aux_cmd = ARC_REG_IC_IVIL;
 196		aux_tag = ARC_REG_IC_PTAG;
 197	} else {
 198		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 199		aux_tag = ARC_REG_DC_PTAG;
 200	}
 201
 202	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 203	 * and have @paddr - aligned to cache line and integral @num_lines.
 204	 * This however can be avoided for page sized since:
 205	 *  -@paddr will be cache-line aligned already (being page aligned)
 206	 *  -@sz will be integral multiple of line size (being page sized).
 207	 */
 208	if (!full_page) {
 209		sz += paddr & ~CACHE_LINE_MASK;
 210		paddr &= CACHE_LINE_MASK;
 211		vaddr &= CACHE_LINE_MASK;
 212	}
 213	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 214
 215	/*
 216	 * MMUv3, cache ops require paddr in PTAG reg
 217	 * if V-P const for loop, PTAG can be written once outside loop
 218	 */
 219	if (full_page)
 220		write_aux_reg(aux_tag, paddr);
 221
 222	/*
 223	 * This is technically for MMU v4, using the MMU v3 programming model
 224	 * Special work for HS38 aliasing I-cache configuration with PAE40
 225	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 226	 *   - (and needs to be written before the lower 32 bits)
 227	 * Note that PTAG_HI is hoisted outside the line loop
 228	 */
 229	if (is_pae40_enabled() && op == OP_INV_IC)
 230		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 231
 232	while (num_lines-- > 0) {
 233		if (!full_page) {
 234			write_aux_reg(aux_tag, paddr);
 235			paddr += L1_CACHE_BYTES;
 236		}
 237
 238		write_aux_reg(aux_cmd, vaddr);
 239		vaddr += L1_CACHE_BYTES;
 240	}
 241}
 242
 243#ifndef USE_RGN_FLSH
 244
 245/*
 
 
 
 
 
 
 
 
 
 
 
 246 */
 247static inline
 248void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 249			  unsigned long sz, const int op, const int full_page)
 250{
 251	unsigned int aux_cmd;
 252	int num_lines;
 
 253
 254	if (op == OP_INV_IC) {
 255		aux_cmd = ARC_REG_IC_IVIL;
 256	} else {
 257		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 258		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 259	}
 260
 261	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 262	 * and have @paddr - aligned to cache line and integral @num_lines.
 263	 * This however can be avoided for page sized since:
 264	 *  -@paddr will be cache-line aligned already (being page aligned)
 265	 *  -@sz will be integral multiple of line size (being page sized).
 266	 */
 267	if (!full_page) {
 268		sz += paddr & ~CACHE_LINE_MASK;
 269		paddr &= CACHE_LINE_MASK;
 270	}
 271
 272	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 273
 274	/*
 275	 * For HS38 PAE40 configuration
 276	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 277	 *   - (and needs to be written before the lower 32 bits)
 278	 */
 279	if (is_pae40_enabled()) {
 280		if (op == OP_INV_IC)
 281			/*
 282			 * Non aliasing I-cache in HS38,
 283			 * aliasing I-cache handled in __cache_line_loop_v3()
 284			 */
 285			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 286		else
 287			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 288	}
 289
 290	while (num_lines-- > 0) {
 291		write_aux_reg(aux_cmd, paddr);
 292		paddr += L1_CACHE_BYTES;
 293	}
 294}
 295
 296#else
 297
 298/*
 299 * optimized flush operation which takes a region as opposed to iterating per line
 300 */
 301static inline
 302void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 303			  unsigned long sz, const int op, const int full_page)
 304{
 305	unsigned int s, e;
 306
 307	/* Only for Non aliasing I-cache in HS38 */
 308	if (op == OP_INV_IC) {
 309		s = ARC_REG_IC_IVIR;
 310		e = ARC_REG_IC_ENDR;
 311	} else {
 312		s = ARC_REG_DC_STARTR;
 313		e = ARC_REG_DC_ENDR;
 314	}
 315
 316	if (!full_page) {
 317		/* for any leading gap between @paddr and start of cache line */
 318		sz += paddr & ~CACHE_LINE_MASK;
 319		paddr &= CACHE_LINE_MASK;
 320
 321		/*
 322		 *  account for any trailing gap to end of cache line
 323		 *  this is equivalent to DIV_ROUND_UP() in line ops above
 324		 */
 325		sz += L1_CACHE_BYTES - 1;
 326	}
 327
 328	if (is_pae40_enabled()) {
 329		/* TBD: check if crossing 4TB boundary */
 330		if (op == OP_INV_IC)
 331			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 332		else
 333			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 334	}
 335
 336	/* ENDR needs to be set ahead of START */
 337	write_aux_reg(e, paddr + sz);	/* ENDR is exclusive */
 338	write_aux_reg(s, paddr);
 339
 340	/* caller waits on DC_CTRL.FS */
 341}
 342
 343#endif
 344
 345#ifdef CONFIG_ARC_MMU_V3
 346#define __cache_line_loop	__cache_line_loop_v3
 347#else
 348#define __cache_line_loop	__cache_line_loop_v4
 349#endif
 350
 351#ifdef CONFIG_ARC_HAS_DCACHE
 352
 353/***************************************************************
 354 * Machine specific helpers for Entire D-Cache or Per Line ops
 355 */
 356
 357#ifndef USE_RGN_FLSH
 358/*
 359 * this version avoids extra read/write of DC_CTRL for flush or invalid ops
 360 * in the non region flush regime (such as for ARCompact)
 361 */
 362static inline void __before_dc_op(const int op)
 363{
 364	if (op == OP_FLUSH_N_INV) {
 365		/* Dcache provides 2 cmd: FLUSH or INV
 366		 * INV in turn has sub-modes: DISCARD or FLUSH-BEFORE
 367		 * flush-n-inv is achieved by INV cmd but with IM=1
 368		 * So toggle INV sub-mode depending on op request and default
 369		 */
 370		const unsigned int ctl = ARC_REG_DC_CTRL;
 371		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
 372	}
 373}
 374
 375#else
 376
 377static inline void __before_dc_op(const int op)
 378{
 379	const unsigned int ctl = ARC_REG_DC_CTRL;
 380	unsigned int val = read_aux_reg(ctl);
 381
 382	if (op == OP_FLUSH_N_INV) {
 383		val |= DC_CTRL_INV_MODE_FLUSH;
 384	}
 385
 386	if (op != OP_INV_IC) {
 387		/*
 388		 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
 389		 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
 390		 */
 391		val &= ~DC_CTRL_RGN_OP_MSK;
 392		if (op & OP_INV)
 393			val |= DC_CTRL_RGN_OP_INV;
 394	}
 395	write_aux_reg(ctl, val);
 396}
 397
 398#endif
 399
 400
 401static inline void __after_dc_op(const int op)
 402{
 403	if (op & OP_FLUSH) {
 404		const unsigned int ctl = ARC_REG_DC_CTRL;
 405		unsigned int reg;
 406
 407		/* flush / flush-n-inv both wait */
 408		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
 409			;
 410
 411		/* Switch back to default Invalidate mode */
 412		if (op == OP_FLUSH_N_INV)
 413			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
 414	}
 415}
 416
 417/*
 418 * Operation on Entire D-Cache
 419 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
 420 * Note that constant propagation ensures all the checks are gone
 421 * in generated code
 422 */
 423static inline void __dc_entire_op(const int op)
 424{
 425	int aux;
 426
 427	__before_dc_op(op);
 428
 429	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 430		aux = ARC_REG_DC_IVDC;
 431	else
 432		aux = ARC_REG_DC_FLSH;
 433
 434	write_aux_reg(aux, 0x1);
 435
 436	__after_dc_op(op);
 437}
 438
 439static inline void __dc_disable(void)
 440{
 441	const int r = ARC_REG_DC_CTRL;
 442
 443	__dc_entire_op(OP_FLUSH_N_INV);
 444	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
 445}
 446
 447static void __dc_enable(void)
 448{
 449	const int r = ARC_REG_DC_CTRL;
 450
 451	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
 452}
 453
 454/* For kernel mappings cache operation: index is same as paddr */
 455#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
 456
 457/*
 458 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
 459 */
 460static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
 461				unsigned long sz, const int op)
 462{
 463	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 464	unsigned long flags;
 465
 466	local_irq_save(flags);
 467
 468	__before_dc_op(op);
 469
 470	__cache_line_loop(paddr, vaddr, sz, op, full_page);
 471
 472	__after_dc_op(op);
 473
 474	local_irq_restore(flags);
 475}
 476
 477#else
 478
 479#define __dc_entire_op(op)
 480#define __dc_disable()
 481#define __dc_enable()
 482#define __dc_line_op(paddr, vaddr, sz, op)
 483#define __dc_line_op_k(paddr, sz, op)
 484
 485#endif /* CONFIG_ARC_HAS_DCACHE */
 486
 487#ifdef CONFIG_ARC_HAS_ICACHE
 488
 489static inline void __ic_entire_inv(void)
 490{
 491	write_aux_reg(ARC_REG_IC_IVIC, 1);
 492	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
 493}
 494
 495static inline void
 496__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
 497			  unsigned long sz)
 498{
 499	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 500	unsigned long flags;
 501
 502	local_irq_save(flags);
 503	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
 504	local_irq_restore(flags);
 505}
 506
 507#ifndef CONFIG_SMP
 508
 509#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
 510
 511#else
 512
 513struct ic_inv_args {
 514	phys_addr_t paddr, vaddr;
 515	int sz;
 516};
 517
 518static void __ic_line_inv_vaddr_helper(void *info)
 519{
 520        struct ic_inv_args *ic_inv = info;
 521
 522        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
 523}
 524
 525static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
 526				unsigned long sz)
 527{
 528	struct ic_inv_args ic_inv = {
 529		.paddr = paddr,
 530		.vaddr = vaddr,
 531		.sz    = sz
 532	};
 533
 534	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
 535}
 536
 537#endif	/* CONFIG_SMP */
 538
 539#else	/* !CONFIG_ARC_HAS_ICACHE */
 540
 541#define __ic_entire_inv()
 542#define __ic_line_inv_vaddr(pstart, vstart, sz)
 543
 544#endif /* CONFIG_ARC_HAS_ICACHE */
 545
 546static noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
 547{
 548#ifdef CONFIG_ISA_ARCV2
 549	/*
 550	 * SLC is shared between all cores and concurrent aux operations from
 551	 * multiple cores need to be serialized using a spinlock
 552	 * A concurrent operation can be silently ignored and/or the old/new
 553	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 554	 * below)
 555	 */
 556	static DEFINE_SPINLOCK(lock);
 557	unsigned long flags;
 558	unsigned int ctrl;
 559	phys_addr_t end;
 560
 561	spin_lock_irqsave(&lock, flags);
 562
 563	/*
 564	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
 565	 *  - b'000 (default) is Flush,
 566	 *  - b'001 is Invalidate if CTRL.IM == 0
 567	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
 568	 */
 569	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 570
 571	/* Don't rely on default value of IM bit */
 572	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 573		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 574	else
 575		ctrl |= SLC_CTRL_IM;
 576
 577	if (op & OP_INV)
 578		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
 579	else
 580		ctrl &= ~SLC_CTRL_RGN_OP_INV;
 581
 582	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 583
 584	/*
 585	 * Lower bits are ignored, no need to clip
 586	 * END needs to be setup before START (latter triggers the operation)
 587	 * END can't be same as START, so add (l2_line_sz - 1) to sz
 588	 */
 589	end = paddr + sz + l2_line_sz - 1;
 590	if (is_pae40_enabled())
 591		write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
 592
 593	write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
 594
 595	if (is_pae40_enabled())
 596		write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
 597
 598	write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
 599
 600	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 601	read_aux_reg(ARC_REG_SLC_CTRL);
 602
 603	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 604
 605	spin_unlock_irqrestore(&lock, flags);
 606#endif
 607}
 608
 609static __maybe_unused noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
 610{
 611#ifdef CONFIG_ISA_ARCV2
 612	/*
 613	 * SLC is shared between all cores and concurrent aux operations from
 614	 * multiple cores need to be serialized using a spinlock
 615	 * A concurrent operation can be silently ignored and/or the old/new
 616	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 617	 * below)
 618	 */
 619	static DEFINE_SPINLOCK(lock);
 620
 621	const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
 622	unsigned int ctrl, cmd;
 623	unsigned long flags;
 624	int num_lines;
 625
 626	spin_lock_irqsave(&lock, flags);
 627
 628	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 629
 630	/* Don't rely on default value of IM bit */
 631	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 632		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 633	else
 634		ctrl |= SLC_CTRL_IM;
 635
 636	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 637
 638	cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
 639
 640	sz += paddr & ~SLC_LINE_MASK;
 641	paddr &= SLC_LINE_MASK;
 642
 643	num_lines = DIV_ROUND_UP(sz, l2_line_sz);
 644
 645	while (num_lines-- > 0) {
 646		write_aux_reg(cmd, paddr);
 647		paddr += l2_line_sz;
 648	}
 649
 650	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 651	read_aux_reg(ARC_REG_SLC_CTRL);
 652
 653	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 654
 655	spin_unlock_irqrestore(&lock, flags);
 656#endif
 657}
 658
 659#define slc_op(paddr, sz, op)	slc_op_rgn(paddr, sz, op)
 660
 661noinline static void slc_entire_op(const int op)
 662{
 663	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
 664
 665	ctrl = read_aux_reg(r);
 666
 667	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 668		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 669	else
 670		ctrl |= SLC_CTRL_IM;
 671
 672	write_aux_reg(r, ctrl);
 673
 674	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 675		write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
 676	else
 677		write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
 678
 679	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 680	read_aux_reg(r);
 681
 682	/* Important to wait for flush to complete */
 683	while (read_aux_reg(r) & SLC_CTRL_BUSY);
 684}
 685
 686static inline void arc_slc_disable(void)
 687{
 688	const int r = ARC_REG_SLC_CTRL;
 689
 690	slc_entire_op(OP_FLUSH_N_INV);
 691	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
 692}
 693
 694static inline void arc_slc_enable(void)
 695{
 696	const int r = ARC_REG_SLC_CTRL;
 697
 698	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
 699}
 700
 701/***********************************************************
 702 * Exported APIs
 703 */
 704
 705void flush_dcache_folio(struct folio *folio)
 706{
 707	clear_bit(PG_dc_clean, &folio->flags);
 708	return;
 709}
 710EXPORT_SYMBOL(flush_dcache_folio);
 711
 
 
 
 
 
 712void flush_dcache_page(struct page *page)
 713{
 714	return flush_dcache_folio(page_folio(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715}
 716EXPORT_SYMBOL(flush_dcache_page);
 717
 718/*
 719 * DMA ops for systems with L1 cache only
 720 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
 721 */
 722static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
 723{
 724	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 725}
 726
 727static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
 728{
 729	__dc_line_op_k(start, sz, OP_INV);
 730}
 731
 732static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
 733{
 734	__dc_line_op_k(start, sz, OP_FLUSH);
 735}
 736
 737/*
 738 * DMA ops for systems with both L1 and L2 caches, but without IOC
 739 * Both L1 and L2 lines need to be explicitly flushed/invalidated
 740 */
 741static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
 742{
 743	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 744	slc_op(start, sz, OP_FLUSH_N_INV);
 745}
 746
 747static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
 748{
 749	__dc_line_op_k(start, sz, OP_INV);
 750	slc_op(start, sz, OP_INV);
 751}
 752
 753static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
 754{
 755	__dc_line_op_k(start, sz, OP_FLUSH);
 756	slc_op(start, sz, OP_FLUSH);
 757}
 758
 759/*
 
 
 
 
 
 
 
 
 
 760 * Exported DMA API
 761 */
 762void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
 763{
 764	__dma_cache_wback_inv(start, sz);
 765}
 766EXPORT_SYMBOL(dma_cache_wback_inv);
 767
 768void dma_cache_inv(phys_addr_t start, unsigned long sz)
 769{
 770	__dma_cache_inv(start, sz);
 771}
 772EXPORT_SYMBOL(dma_cache_inv);
 773
 774void dma_cache_wback(phys_addr_t start, unsigned long sz)
 775{
 776	__dma_cache_wback(start, sz);
 777}
 778EXPORT_SYMBOL(dma_cache_wback);
 779
 780/*
 781 * This is API for making I/D Caches consistent when modifying
 782 * kernel code (loadable modules, kprobes, kgdb...)
 783 * This is called on insmod, with kernel virtual address for CODE of
 784 * the module. ARC cache maintenance ops require PHY address thus we
 785 * need to convert vmalloc addr to PHY addr
 786 */
 787void flush_icache_range(unsigned long kstart, unsigned long kend)
 788{
 789	unsigned int tot_sz;
 790
 791	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
 792
 793	/* Shortcut for bigger flush ranges.
 794	 * Here we don't care if this was kernel virtual or phy addr
 795	 */
 796	tot_sz = kend - kstart;
 797	if (tot_sz > PAGE_SIZE) {
 798		flush_cache_all();
 799		return;
 800	}
 801
 802	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
 803	if (likely(kstart > PAGE_OFFSET)) {
 804		/*
 805		 * The 2nd arg despite being paddr will be used to index icache
 806		 * This is OK since no alternate virtual mappings will exist
 807		 * given the callers for this case: kprobe/kgdb in built-in
 808		 * kernel code only.
 809		 */
 810		__sync_icache_dcache(kstart, kstart, kend - kstart);
 811		return;
 812	}
 813
 814	/*
 815	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
 816	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
 817	 *     handling of kernel vaddr.
 818	 *
 819	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
 820	 *     it still needs to handle  a 2 page scenario, where the range
 821	 *     straddles across 2 virtual pages and hence need for loop
 822	 */
 823	while (tot_sz > 0) {
 824		unsigned int off, sz;
 825		unsigned long phy, pfn;
 826
 827		off = kstart % PAGE_SIZE;
 828		pfn = vmalloc_to_pfn((void *)kstart);
 829		phy = (pfn << PAGE_SHIFT) + off;
 830		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
 831		__sync_icache_dcache(phy, kstart, sz);
 832		kstart += sz;
 833		tot_sz -= sz;
 834	}
 835}
 836EXPORT_SYMBOL(flush_icache_range);
 837
 838/*
 839 * General purpose helper to make I and D cache lines consistent.
 840 * @paddr is phy addr of region
 841 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
 842 *    However in one instance, when called by kprobe (for a breakpt in
 843 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
 844 *    use a paddr to index the cache (despite VIPT). This is fine since a
 845 *    builtin kernel page will not have any virtual mappings.
 846 *    kprobe on loadable module will be kernel vaddr.
 847 */
 848void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
 849{
 850	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
 851	__ic_line_inv_vaddr(paddr, vaddr, len);
 852}
 853
 854/* wrapper to compile time eliminate alignment checks in flush loop */
 855void __inv_icache_pages(phys_addr_t paddr, unsigned long vaddr, unsigned nr)
 856{
 857	__ic_line_inv_vaddr(paddr, vaddr, nr * PAGE_SIZE);
 858}
 859
 860/*
 861 * wrapper to clearout kernel or userspace mappings of a page
 862 * For kernel mappings @vaddr == @paddr
 863 */
 864void __flush_dcache_pages(phys_addr_t paddr, unsigned long vaddr, unsigned nr)
 865{
 866	__dc_line_op(paddr, vaddr & PAGE_MASK, nr * PAGE_SIZE, OP_FLUSH_N_INV);
 867}
 868
 869noinline void flush_cache_all(void)
 870{
 871	unsigned long flags;
 872
 873	local_irq_save(flags);
 874
 875	__ic_entire_inv();
 876	__dc_entire_op(OP_FLUSH_N_INV);
 877
 878	local_irq_restore(flags);
 879
 880}
 881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882void copy_user_highpage(struct page *to, struct page *from,
 883	unsigned long u_vaddr, struct vm_area_struct *vma)
 884{
 885	struct folio *src = page_folio(from);
 886	struct folio *dst = page_folio(to);
 887	void *kfrom = kmap_atomic(from);
 888	void *kto = kmap_atomic(to);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889
 890	copy_page(kto, kfrom);
 891
 892	clear_bit(PG_dc_clean, &dst->flags);
 893	clear_bit(PG_dc_clean, &src->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894
 895	kunmap_atomic(kto);
 896	kunmap_atomic(kfrom);
 897}
 898
 899void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
 900{
 901	struct folio *folio = page_folio(page);
 902	clear_page(to);
 903	clear_bit(PG_dc_clean, &folio->flags);
 904}
 905EXPORT_SYMBOL(clear_user_page);
 906
 907/**********************************************************************
 908 * Explicit Cache flush request from user space via syscall
 909 * Needed for JITs which generate code on the fly
 910 */
 911SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
 912{
 913	/* TBD: optimize this */
 914	flush_cache_all();
 915	return 0;
 916}
 917
 918/*
 919 * IO-Coherency (IOC) setup rules:
 920 *
 921 * 1. Needs to be at system level, so only once by Master core
 922 *    Non-Masters need not be accessing caches at that time
 923 *    - They are either HALT_ON_RESET and kick started much later or
 924 *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
 925 *      doesn't perturb caches or coherency unit
 926 *
 927 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
 928 *    otherwise any straggler data might behave strangely post IOC enabling
 929 *
 930 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
 931 *    Coherency transactions
 932 */
 933static noinline void __init arc_ioc_setup(void)
 934{
 935	unsigned int ioc_base, mem_sz;
 936
 937	/*
 938	 * If IOC was already enabled (due to bootloader) it technically needs to
 939	 * be reconfigured with aperture base,size corresponding to Linux memory map
 940	 * which will certainly be different than uboot's. But disabling and
 941	 * reenabling IOC when DMA might be potentially active is tricky business.
 942	 * To avoid random memory issues later, just panic here and ask user to
 943	 * upgrade bootloader to one which doesn't enable IOC
 944	 */
 945	if (read_aux_reg(ARC_REG_IO_COH_ENABLE) & ARC_IO_COH_ENABLE_BIT)
 946		panic("IOC already enabled, please upgrade bootloader!\n");
 947
 948	if (!ioc_enable)
 949		return;
 950
 951	/* Flush + invalidate + disable L1 dcache */
 952	__dc_disable();
 953
 954	/* Flush + invalidate SLC */
 955	if (read_aux_reg(ARC_REG_SLC_BCR))
 956		slc_entire_op(OP_FLUSH_N_INV);
 957
 
 
 
 958	/*
 959	 * currently IOC Aperture covers entire DDR
 
 960	 * TBD: fix for PGU + 1GB of low mem
 961	 * TBD: fix for PAE
 962	 */
 963	mem_sz = arc_get_mem_sz();
 964
 965	if (!is_power_of_2(mem_sz) || mem_sz < 4096)
 966		panic("IOC Aperture size must be power of 2 larger than 4KB");
 967
 968	/*
 969	 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
 970	 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
 971	 */
 972	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
 973
 974	/* for now assume kernel base is start of IOC aperture */
 975	ioc_base = CONFIG_LINUX_RAM_BASE;
 976
 977	if (ioc_base % mem_sz != 0)
 978		panic("IOC Aperture start must be aligned to the size of the aperture");
 979
 980	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
 981	write_aux_reg(ARC_REG_IO_COH_PARTIAL, ARC_IO_COH_PARTIAL_BIT);
 982	write_aux_reg(ARC_REG_IO_COH_ENABLE, ARC_IO_COH_ENABLE_BIT);
 983
 984	/* Re-enable L1 dcache */
 985	__dc_enable();
 986}
 987
 988/*
 989 * Cache related boot time checks/setups only needed on master CPU:
 990 *  - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
 991 *    Assume SMP only, so all cores will have same cache config. A check on
 992 *    one core suffices for all
 993 *  - IOC setup / dma callbacks only need to be done once
 994 */
 995static noinline void __init arc_cache_init_master(void)
 996{
 
 
 997	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
 998		struct cpuinfo_arc_cache *ic = &ic_info;
 999
1000		if (!ic->line_len)
1001			panic("cache support enabled but non-existent cache\n");
1002
1003		if (ic->line_len != L1_CACHE_BYTES)
1004			panic("ICache line [%d] != kernel Config [%d]",
1005			      ic->line_len, L1_CACHE_BYTES);
1006
1007		/*
1008		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1009		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1010		 */
1011		if (is_isa_arcv2() && ic->colors > 1)
1012			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1013		else
1014			_cache_line_loop_ic_fn = __cache_line_loop;
1015	}
1016
1017	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1018		struct cpuinfo_arc_cache *dc = &dc_info;
1019
1020		if (!dc->line_len)
1021			panic("cache support enabled but non-existent cache\n");
1022
1023		if (dc->line_len != L1_CACHE_BYTES)
1024			panic("DCache line [%d] != kernel Config [%d]",
1025			      dc->line_len, L1_CACHE_BYTES);
1026
1027		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1028		if (is_isa_arcompact() && dc->colors > 1) {
1029			panic("Aliasing VIPT cache not supported\n");
 
 
 
 
 
 
 
 
 
 
1030		}
1031	}
1032
1033	/*
1034	 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1035	 * or equal to any cache line length.
1036	 */
1037	BUILD_BUG_ON_MSG(L1_CACHE_BYTES > SMP_CACHE_BYTES,
1038			 "SMP_CACHE_BYTES must be >= any cache line length");
1039	if (is_isa_arcv2() && (l2_line_sz > SMP_CACHE_BYTES))
1040		panic("L2 Cache line [%d] > kernel Config [%d]\n",
1041		      l2_line_sz, SMP_CACHE_BYTES);
1042
1043	/* Note that SLC disable not formally supported till HS 3.0 */
1044	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1045		arc_slc_disable();
1046
1047	if (is_isa_arcv2() && ioc_exists)
1048		arc_ioc_setup();
1049
1050	if (is_isa_arcv2() && l2_line_sz && slc_enable) {
 
 
 
 
1051		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1052		__dma_cache_inv = __dma_cache_inv_slc;
1053		__dma_cache_wback = __dma_cache_wback_slc;
1054	} else {
1055		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1056		__dma_cache_inv = __dma_cache_inv_l1;
1057		__dma_cache_wback = __dma_cache_wback_l1;
1058	}
1059	/*
1060	 * In case of IOC (say IOC+SLC case), pointers above could still be set
1061	 * but end up not being relevant as the first function in chain is not
1062	 * called at all for devices using coherent DMA.
1063	 *     arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*()
1064	 */
1065}
1066
1067void __ref arc_cache_init(void)
1068{
1069	unsigned int __maybe_unused cpu = smp_processor_id();
 
1070
1071	if (!cpu)
1072		arc_cache_init_master();
1073
1074	/*
1075	 * In PAE regime, TLB and cache maintenance ops take wider addresses
1076	 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1077	 * to be zeroed to keep the ops sane.
1078	 * As an optimization for more common !PAE enabled case, zero them out
1079	 * once at init, rather than checking/setting to 0 for every runtime op
1080	 */
1081	if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1082
1083		if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1084			write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1085
1086		if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1087			write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1088
1089		if (l2_line_sz) {
1090			write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1091			write_aux_reg(ARC_REG_SLC_RGN_START1, 0);
1092		}
1093	}
1094}
v4.10.11
 
   1/*
   2 * ARC Cache Management
   3 *
   4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
   5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/sched.h>
  15#include <linux/cache.h>
  16#include <linux/mmu_context.h>
  17#include <linux/syscalls.h>
  18#include <linux/uaccess.h>
  19#include <linux/pagemap.h>
  20#include <asm/cacheflush.h>
  21#include <asm/cachectl.h>
  22#include <asm/setup.h>
  23
 
 
 
 
  24static int l2_line_sz;
  25static int ioc_exists;
  26int slc_enable = 1, ioc_enable = 1;
  27unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
  28unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
  29
 
 
 
 
  30void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
  31			       unsigned long sz, const int cacheop);
  32
  33void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
  34void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
  35void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
  36
  37char *arc_cache_mumbojumbo(int c, char *buf, int len)
  38{
 
 
 
 
 
  39	int n = 0;
  40	struct cpuinfo_arc_cache *p;
  41
  42#define PR_CACHE(p, cfg, str)						\
  43	if (!(p)->line_len)						\
  44		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
  45	else								\
  46		n += scnprintf(buf + n, len - n,			\
  47			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
  48			(p)->sz_k, (p)->assoc, (p)->line_len,		\
  49			(p)->vipt ? "VIPT" : "PIPT",			\
  50			(p)->alias ? " aliasing" : "",			\
  51			IS_USED_CFG(cfg));
  52
  53	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
  54	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
  55
  56	p = &cpuinfo_arc700[c].slc;
  57	if (p->line_len)
  58		n += scnprintf(buf + n, len - n,
  59			       "SLC\t\t: %uK, %uB Line%s\n",
  60			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
  61
  62	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
  63		       perip_base,
  64		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency "));
  65
  66	return buf;
  67}
  68
  69/*
  70 * Read the Cache Build Confuration Registers, Decode them and save into
  71 * the cpuinfo structure for later use.
  72 * No Validation done here, simply read/convert the BCRs
  73 */
  74static void read_decode_cache_bcr_arcv2(int cpu)
  75{
  76	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
  77	struct bcr_generic sbcr;
  78
  79	struct bcr_slc_cfg {
  80#ifdef CONFIG_CPU_BIG_ENDIAN
  81		unsigned int pad:24, way:2, lsz:2, sz:4;
  82#else
  83		unsigned int sz:4, lsz:2, way:2, pad:24;
  84#endif
  85	} slc_cfg;
  86
  87	struct bcr_clust_cfg {
  88#ifdef CONFIG_CPU_BIG_ENDIAN
  89		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
  90#else
  91		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
  92#endif
  93	} cbcr;
  94
  95	struct bcr_volatile {
  96#ifdef CONFIG_CPU_BIG_ENDIAN
  97		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
  98#else
  99		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
 100#endif
 101	} vol;
 102
 103
 104	READ_BCR(ARC_REG_SLC_BCR, sbcr);
 105	if (sbcr.ver) {
 
 106		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
 107		p_slc->sz_k = 128 << slc_cfg.sz;
 108		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
 
 
 
 109	}
 110
 111	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
 112	if (cbcr.c)
 113		ioc_exists = 1;
 114	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 115		ioc_enable = 0;
 
 
 
 116
 117	/* HS 2.0 didn't have AUX_VOL */
 118	if (cpuinfo_arc700[cpu].core.family > 0x51) {
 119		READ_BCR(AUX_VOL, vol);
 120		perip_base = vol.start << 28;
 121		/* HS 3.0 has limit and strict-ordering fields */
 122		if (cpuinfo_arc700[cpu].core.family > 0x52)
 123			perip_end = (vol.limit << 28) - 1;
 124	}
 
 
 
 
 
 
 125}
 126
 127void read_decode_cache_bcr(void)
 128{
 129	struct cpuinfo_arc_cache *p_ic, *p_dc;
 130	unsigned int cpu = smp_processor_id();
 131	struct bcr_cache {
 132#ifdef CONFIG_CPU_BIG_ENDIAN
 133		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
 134#else
 135		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
 136#endif
 137	} ibcr, dbcr;
 138
 139	p_ic = &cpuinfo_arc700[cpu].icache;
 140	READ_BCR(ARC_REG_IC_BCR, ibcr);
 141
 142	if (!ibcr.ver)
 143		goto dc_chk;
 144
 145	if (ibcr.ver <= 3) {
 146		BUG_ON(ibcr.config != 3);
 147		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
 148	} else if (ibcr.ver >= 4) {
 149		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
 150	}
 151
 152	p_ic->line_len = 8 << ibcr.line_len;
 153	p_ic->sz_k = 1 << (ibcr.sz - 1);
 154	p_ic->vipt = 1;
 155	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
 
 
 
 
 
 156
 157dc_chk:
 158	p_dc = &cpuinfo_arc700[cpu].dcache;
 159	READ_BCR(ARC_REG_DC_BCR, dbcr);
 160
 161	if (!dbcr.ver)
 162		goto slc_chk;
 163
 164	if (dbcr.ver <= 3) {
 165		BUG_ON(dbcr.config != 2);
 166		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
 167		p_dc->vipt = 1;
 168		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
 169	} else if (dbcr.ver >= 4) {
 170		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
 171		p_dc->vipt = 0;
 172		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
 173	}
 174
 175	p_dc->line_len = 16 << dbcr.line_len;
 176	p_dc->sz_k = 1 << (dbcr.sz - 1);
 177
 
 
 
 
 
 
 178slc_chk:
 179	if (is_isa_arcv2())
 180                read_decode_cache_bcr_arcv2(cpu);
 
 
 181}
 182
 183/*
 184 * Line Operation on {I,D}-Cache
 185 */
 186
 187#define OP_INV		0x1
 188#define OP_FLUSH	0x2
 189#define OP_FLUSH_N_INV	0x3
 190#define OP_INV_IC	0x4
 191
 192/*
 193 *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
 194 *
 195 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
 196 * The orig Cache Management Module "CDU" only required paddr to invalidate a
 197 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
 198 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
 199 * the exact same line.
 200 *
 201 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
 202 * paddr alone could not be used to correctly index the cache.
 203 *
 204 * ------------------
 205 * MMU v1/v2 (Fixed Page Size 8k)
 206 * ------------------
 207 * The solution was to provide CDU with these additonal vaddr bits. These
 208 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
 209 * standard page size of 8k.
 210 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
 211 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
 212 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
 213 * represent the offset within cache-line. The adv of using this "clumsy"
 214 * interface for additional info was no new reg was needed in CDU programming
 215 * model.
 216 *
 217 * 17:13 represented the max num of bits passable, actual bits needed were
 218 * fewer, based on the num-of-aliases possible.
 219 * -for 2 alias possibility, only bit 13 needed (32K cache)
 220 * -for 4 alias possibility, bits 14:13 needed (64K cache)
 221 *
 222 * ------------------
 223 * MMU v3
 224 * ------------------
 225 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
 226 * only support 8k (default), 16k and 4k.
 227 * However from hardware perspective, smaller page sizes aggravate aliasing
 228 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
 229 * the existing scheme of piggybacking won't work for certain configurations.
 230 * Two new registers IC_PTAG and DC_PTAG inttoduced.
 231 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
 232 */
 233
 234static inline
 235void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
 236			  unsigned long sz, const int op)
 237{
 238	unsigned int aux_cmd;
 239	int num_lines;
 240	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 241
 242	if (op == OP_INV_IC) {
 243		aux_cmd = ARC_REG_IC_IVIL;
 244	} else {
 245		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 246		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 247	}
 248
 249	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 250	 * and have @paddr - aligned to cache line and integral @num_lines.
 251	 * This however can be avoided for page sized since:
 252	 *  -@paddr will be cache-line aligned already (being page aligned)
 253	 *  -@sz will be integral multiple of line size (being page sized).
 254	 */
 255	if (!full_page) {
 256		sz += paddr & ~CACHE_LINE_MASK;
 257		paddr &= CACHE_LINE_MASK;
 258		vaddr &= CACHE_LINE_MASK;
 259	}
 260
 261	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 262
 263	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
 264	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
 265
 266	while (num_lines-- > 0) {
 267		write_aux_reg(aux_cmd, paddr);
 268		paddr += L1_CACHE_BYTES;
 269	}
 270}
 271
 272/*
 273 * For ARC700 MMUv3 I-cache and D-cache flushes
 274 *  - ARC700 programming model requires paddr and vaddr be passed in seperate
 275 *    AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
 276 *    caches actually alias or not.
 277 * -  For HS38, only the aliasing I-cache configuration uses the PTAG reg
 278 *    (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
 279 */
 280static inline
 281void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
 282			  unsigned long sz, const int op)
 283{
 284	unsigned int aux_cmd, aux_tag;
 285	int num_lines;
 286	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 287
 288	if (op == OP_INV_IC) {
 289		aux_cmd = ARC_REG_IC_IVIL;
 290		aux_tag = ARC_REG_IC_PTAG;
 291	} else {
 292		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 293		aux_tag = ARC_REG_DC_PTAG;
 294	}
 295
 296	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 297	 * and have @paddr - aligned to cache line and integral @num_lines.
 298	 * This however can be avoided for page sized since:
 299	 *  -@paddr will be cache-line aligned already (being page aligned)
 300	 *  -@sz will be integral multiple of line size (being page sized).
 301	 */
 302	if (!full_page) {
 303		sz += paddr & ~CACHE_LINE_MASK;
 304		paddr &= CACHE_LINE_MASK;
 305		vaddr &= CACHE_LINE_MASK;
 306	}
 307	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 308
 309	/*
 310	 * MMUv3, cache ops require paddr in PTAG reg
 311	 * if V-P const for loop, PTAG can be written once outside loop
 312	 */
 313	if (full_page)
 314		write_aux_reg(aux_tag, paddr);
 315
 316	/*
 317	 * This is technically for MMU v4, using the MMU v3 programming model
 318	 * Special work for HS38 aliasing I-cache configuration with PAE40
 319	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 320	 *   - (and needs to be written before the lower 32 bits)
 321	 * Note that PTAG_HI is hoisted outside the line loop
 322	 */
 323	if (is_pae40_enabled() && op == OP_INV_IC)
 324		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 325
 326	while (num_lines-- > 0) {
 327		if (!full_page) {
 328			write_aux_reg(aux_tag, paddr);
 329			paddr += L1_CACHE_BYTES;
 330		}
 331
 332		write_aux_reg(aux_cmd, vaddr);
 333		vaddr += L1_CACHE_BYTES;
 334	}
 335}
 336
 
 
 337/*
 338 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
 339 * Here's how cache ops are implemented
 340 *
 341 *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
 342 *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
 343 *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
 344 *    respectively, similar to MMU v3 programming model, hence
 345 *    __cache_line_loop_v3() is used)
 346 *
 347 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
 348 * needs to be written into PTAG_HI
 349 */
 350static inline
 351void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 352			  unsigned long sz, const int cacheop)
 353{
 354	unsigned int aux_cmd;
 355	int num_lines;
 356	const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 357
 358	if (cacheop == OP_INV_IC) {
 359		aux_cmd = ARC_REG_IC_IVIL;
 360	} else {
 361		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 362		aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 363	}
 364
 365	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 366	 * and have @paddr - aligned to cache line and integral @num_lines.
 367	 * This however can be avoided for page sized since:
 368	 *  -@paddr will be cache-line aligned already (being page aligned)
 369	 *  -@sz will be integral multiple of line size (being page sized).
 370	 */
 371	if (!full_page_op) {
 372		sz += paddr & ~CACHE_LINE_MASK;
 373		paddr &= CACHE_LINE_MASK;
 374	}
 375
 376	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 377
 378	/*
 379	 * For HS38 PAE40 configuration
 380	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 381	 *   - (and needs to be written before the lower 32 bits)
 382	 */
 383	if (is_pae40_enabled()) {
 384		if (cacheop == OP_INV_IC)
 385			/*
 386			 * Non aliasing I-cache in HS38,
 387			 * aliasing I-cache handled in __cache_line_loop_v3()
 388			 */
 389			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 390		else
 391			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 392	}
 393
 394	while (num_lines-- > 0) {
 395		write_aux_reg(aux_cmd, paddr);
 396		paddr += L1_CACHE_BYTES;
 397	}
 398}
 399
 400#if (CONFIG_ARC_MMU_VER < 3)
 401#define __cache_line_loop	__cache_line_loop_v2
 402#elif (CONFIG_ARC_MMU_VER == 3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403#define __cache_line_loop	__cache_line_loop_v3
 404#elif (CONFIG_ARC_MMU_VER > 3)
 405#define __cache_line_loop	__cache_line_loop_v4
 406#endif
 407
 408#ifdef CONFIG_ARC_HAS_DCACHE
 409
 410/***************************************************************
 411 * Machine specific helpers for Entire D-Cache or Per Line ops
 412 */
 413
 
 
 
 
 
 414static inline void __before_dc_op(const int op)
 415{
 416	if (op == OP_FLUSH_N_INV) {
 417		/* Dcache provides 2 cmd: FLUSH or INV
 418		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
 419		 * flush-n-inv is achieved by INV cmd but with IM=1
 420		 * So toggle INV sub-mode depending on op request and default
 421		 */
 422		const unsigned int ctl = ARC_REG_DC_CTRL;
 423		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
 424	}
 425}
 426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427static inline void __after_dc_op(const int op)
 428{
 429	if (op & OP_FLUSH) {
 430		const unsigned int ctl = ARC_REG_DC_CTRL;
 431		unsigned int reg;
 432
 433		/* flush / flush-n-inv both wait */
 434		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
 435			;
 436
 437		/* Switch back to default Invalidate mode */
 438		if (op == OP_FLUSH_N_INV)
 439			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
 440	}
 441}
 442
 443/*
 444 * Operation on Entire D-Cache
 445 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
 446 * Note that constant propagation ensures all the checks are gone
 447 * in generated code
 448 */
 449static inline void __dc_entire_op(const int op)
 450{
 451	int aux;
 452
 453	__before_dc_op(op);
 454
 455	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 456		aux = ARC_REG_DC_IVDC;
 457	else
 458		aux = ARC_REG_DC_FLSH;
 459
 460	write_aux_reg(aux, 0x1);
 461
 462	__after_dc_op(op);
 463}
 464
 465static inline void __dc_disable(void)
 466{
 467	const int r = ARC_REG_DC_CTRL;
 468
 469	__dc_entire_op(OP_FLUSH_N_INV);
 470	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
 471}
 472
 473static void __dc_enable(void)
 474{
 475	const int r = ARC_REG_DC_CTRL;
 476
 477	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
 478}
 479
 480/* For kernel mappings cache operation: index is same as paddr */
 481#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
 482
 483/*
 484 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
 485 */
 486static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
 487				unsigned long sz, const int op)
 488{
 
 489	unsigned long flags;
 490
 491	local_irq_save(flags);
 492
 493	__before_dc_op(op);
 494
 495	__cache_line_loop(paddr, vaddr, sz, op);
 496
 497	__after_dc_op(op);
 498
 499	local_irq_restore(flags);
 500}
 501
 502#else
 503
 504#define __dc_entire_op(op)
 505#define __dc_disable()
 506#define __dc_enable()
 507#define __dc_line_op(paddr, vaddr, sz, op)
 508#define __dc_line_op_k(paddr, sz, op)
 509
 510#endif /* CONFIG_ARC_HAS_DCACHE */
 511
 512#ifdef CONFIG_ARC_HAS_ICACHE
 513
 514static inline void __ic_entire_inv(void)
 515{
 516	write_aux_reg(ARC_REG_IC_IVIC, 1);
 517	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
 518}
 519
 520static inline void
 521__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
 522			  unsigned long sz)
 523{
 
 524	unsigned long flags;
 525
 526	local_irq_save(flags);
 527	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
 528	local_irq_restore(flags);
 529}
 530
 531#ifndef CONFIG_SMP
 532
 533#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
 534
 535#else
 536
 537struct ic_inv_args {
 538	phys_addr_t paddr, vaddr;
 539	int sz;
 540};
 541
 542static void __ic_line_inv_vaddr_helper(void *info)
 543{
 544        struct ic_inv_args *ic_inv = info;
 545
 546        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
 547}
 548
 549static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
 550				unsigned long sz)
 551{
 552	struct ic_inv_args ic_inv = {
 553		.paddr = paddr,
 554		.vaddr = vaddr,
 555		.sz    = sz
 556	};
 557
 558	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
 559}
 560
 561#endif	/* CONFIG_SMP */
 562
 563#else	/* !CONFIG_ARC_HAS_ICACHE */
 564
 565#define __ic_entire_inv()
 566#define __ic_line_inv_vaddr(pstart, vstart, sz)
 567
 568#endif /* CONFIG_ARC_HAS_ICACHE */
 569
 570noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
 571{
 572#ifdef CONFIG_ISA_ARCV2
 573	/*
 574	 * SLC is shared between all cores and concurrent aux operations from
 575	 * multiple cores need to be serialized using a spinlock
 576	 * A concurrent operation can be silently ignored and/or the old/new
 577	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 578	 * below)
 579	 */
 580	static DEFINE_SPINLOCK(lock);
 581	unsigned long flags;
 582	unsigned int ctrl;
 
 583
 584	spin_lock_irqsave(&lock, flags);
 585
 586	/*
 587	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
 588	 *  - b'000 (default) is Flush,
 589	 *  - b'001 is Invalidate if CTRL.IM == 0
 590	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
 591	 */
 592	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 593
 594	/* Don't rely on default value of IM bit */
 595	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 596		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 597	else
 598		ctrl |= SLC_CTRL_IM;
 599
 600	if (op & OP_INV)
 601		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
 602	else
 603		ctrl &= ~SLC_CTRL_RGN_OP_INV;
 604
 605	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 606
 607	/*
 608	 * Lower bits are ignored, no need to clip
 609	 * END needs to be setup before START (latter triggers the operation)
 610	 * END can't be same as START, so add (l2_line_sz - 1) to sz
 611	 */
 612	write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
 613	write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
 
 
 
 
 
 
 
 
 
 
 
 614
 615	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 616
 617	spin_unlock_irqrestore(&lock, flags);
 618#endif
 619}
 620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621noinline static void slc_entire_op(const int op)
 622{
 623	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
 624
 625	ctrl = read_aux_reg(r);
 626
 627	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 628		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 629	else
 630		ctrl |= SLC_CTRL_IM;
 631
 632	write_aux_reg(r, ctrl);
 633
 634	write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
 
 
 
 635
 636	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 637	read_aux_reg(r);
 638
 639	/* Important to wait for flush to complete */
 640	while (read_aux_reg(r) & SLC_CTRL_BUSY);
 641}
 642
 643static inline void arc_slc_disable(void)
 644{
 645	const int r = ARC_REG_SLC_CTRL;
 646
 647	slc_entire_op(OP_FLUSH_N_INV);
 648	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
 649}
 650
 651static inline void arc_slc_enable(void)
 652{
 653	const int r = ARC_REG_SLC_CTRL;
 654
 655	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
 656}
 657
 658/***********************************************************
 659 * Exported APIs
 660 */
 661
 662/*
 663 * Handle cache congruency of kernel and userspace mappings of page when kernel
 664 * writes-to/reads-from
 665 *
 666 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
 667 *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
 668 *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
 669 *  -In SMP, if hardware caches are coherent
 670 *
 671 * There's a corollary case, where kernel READs from a userspace mapped page.
 672 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
 673 */
 674void flush_dcache_page(struct page *page)
 675{
 676	struct address_space *mapping;
 677
 678	if (!cache_is_vipt_aliasing()) {
 679		clear_bit(PG_dc_clean, &page->flags);
 680		return;
 681	}
 682
 683	/* don't handle anon pages here */
 684	mapping = page_mapping(page);
 685	if (!mapping)
 686		return;
 687
 688	/*
 689	 * pagecache page, file not yet mapped to userspace
 690	 * Make a note that K-mapping is dirty
 691	 */
 692	if (!mapping_mapped(mapping)) {
 693		clear_bit(PG_dc_clean, &page->flags);
 694	} else if (page_mapcount(page)) {
 695
 696		/* kernel reading from page with U-mapping */
 697		phys_addr_t paddr = (unsigned long)page_address(page);
 698		unsigned long vaddr = page->index << PAGE_SHIFT;
 699
 700		if (addr_not_cache_congruent(paddr, vaddr))
 701			__flush_dcache_page(paddr, vaddr);
 702	}
 703}
 704EXPORT_SYMBOL(flush_dcache_page);
 705
 706/*
 707 * DMA ops for systems with L1 cache only
 708 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
 709 */
 710static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
 711{
 712	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 713}
 714
 715static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
 716{
 717	__dc_line_op_k(start, sz, OP_INV);
 718}
 719
 720static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
 721{
 722	__dc_line_op_k(start, sz, OP_FLUSH);
 723}
 724
 725/*
 726 * DMA ops for systems with both L1 and L2 caches, but without IOC
 727 * Both L1 and L2 lines need to be explicitly flushed/invalidated
 728 */
 729static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
 730{
 731	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 732	slc_op(start, sz, OP_FLUSH_N_INV);
 733}
 734
 735static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
 736{
 737	__dc_line_op_k(start, sz, OP_INV);
 738	slc_op(start, sz, OP_INV);
 739}
 740
 741static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
 742{
 743	__dc_line_op_k(start, sz, OP_FLUSH);
 744	slc_op(start, sz, OP_FLUSH);
 745}
 746
 747/*
 748 * DMA ops for systems with IOC
 749 * IOC hardware snoops all DMA traffic keeping the caches consistent with
 750 * memory - eliding need for any explicit cache maintenance of DMA buffers
 751 */
 752static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
 753static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
 754static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
 755
 756/*
 757 * Exported DMA API
 758 */
 759void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
 760{
 761	__dma_cache_wback_inv(start, sz);
 762}
 763EXPORT_SYMBOL(dma_cache_wback_inv);
 764
 765void dma_cache_inv(phys_addr_t start, unsigned long sz)
 766{
 767	__dma_cache_inv(start, sz);
 768}
 769EXPORT_SYMBOL(dma_cache_inv);
 770
 771void dma_cache_wback(phys_addr_t start, unsigned long sz)
 772{
 773	__dma_cache_wback(start, sz);
 774}
 775EXPORT_SYMBOL(dma_cache_wback);
 776
 777/*
 778 * This is API for making I/D Caches consistent when modifying
 779 * kernel code (loadable modules, kprobes, kgdb...)
 780 * This is called on insmod, with kernel virtual address for CODE of
 781 * the module. ARC cache maintenance ops require PHY address thus we
 782 * need to convert vmalloc addr to PHY addr
 783 */
 784void flush_icache_range(unsigned long kstart, unsigned long kend)
 785{
 786	unsigned int tot_sz;
 787
 788	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
 789
 790	/* Shortcut for bigger flush ranges.
 791	 * Here we don't care if this was kernel virtual or phy addr
 792	 */
 793	tot_sz = kend - kstart;
 794	if (tot_sz > PAGE_SIZE) {
 795		flush_cache_all();
 796		return;
 797	}
 798
 799	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
 800	if (likely(kstart > PAGE_OFFSET)) {
 801		/*
 802		 * The 2nd arg despite being paddr will be used to index icache
 803		 * This is OK since no alternate virtual mappings will exist
 804		 * given the callers for this case: kprobe/kgdb in built-in
 805		 * kernel code only.
 806		 */
 807		__sync_icache_dcache(kstart, kstart, kend - kstart);
 808		return;
 809	}
 810
 811	/*
 812	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
 813	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
 814	 *     handling of kernel vaddr.
 815	 *
 816	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
 817	 *     it still needs to handle  a 2 page scenario, where the range
 818	 *     straddles across 2 virtual pages and hence need for loop
 819	 */
 820	while (tot_sz > 0) {
 821		unsigned int off, sz;
 822		unsigned long phy, pfn;
 823
 824		off = kstart % PAGE_SIZE;
 825		pfn = vmalloc_to_pfn((void *)kstart);
 826		phy = (pfn << PAGE_SHIFT) + off;
 827		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
 828		__sync_icache_dcache(phy, kstart, sz);
 829		kstart += sz;
 830		tot_sz -= sz;
 831	}
 832}
 833EXPORT_SYMBOL(flush_icache_range);
 834
 835/*
 836 * General purpose helper to make I and D cache lines consistent.
 837 * @paddr is phy addr of region
 838 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
 839 *    However in one instance, when called by kprobe (for a breakpt in
 840 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
 841 *    use a paddr to index the cache (despite VIPT). This is fine since since a
 842 *    builtin kernel page will not have any virtual mappings.
 843 *    kprobe on loadable module will be kernel vaddr.
 844 */
 845void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
 846{
 847	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
 848	__ic_line_inv_vaddr(paddr, vaddr, len);
 849}
 850
 851/* wrapper to compile time eliminate alignment checks in flush loop */
 852void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
 853{
 854	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
 855}
 856
 857/*
 858 * wrapper to clearout kernel or userspace mappings of a page
 859 * For kernel mappings @vaddr == @paddr
 860 */
 861void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
 862{
 863	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
 864}
 865
 866noinline void flush_cache_all(void)
 867{
 868	unsigned long flags;
 869
 870	local_irq_save(flags);
 871
 872	__ic_entire_inv();
 873	__dc_entire_op(OP_FLUSH_N_INV);
 874
 875	local_irq_restore(flags);
 876
 877}
 878
 879#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
 880
 881void flush_cache_mm(struct mm_struct *mm)
 882{
 883	flush_cache_all();
 884}
 885
 886void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
 887		      unsigned long pfn)
 888{
 889	unsigned int paddr = pfn << PAGE_SHIFT;
 890
 891	u_vaddr &= PAGE_MASK;
 892
 893	__flush_dcache_page(paddr, u_vaddr);
 894
 895	if (vma->vm_flags & VM_EXEC)
 896		__inv_icache_page(paddr, u_vaddr);
 897}
 898
 899void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 900		       unsigned long end)
 901{
 902	flush_cache_all();
 903}
 904
 905void flush_anon_page(struct vm_area_struct *vma, struct page *page,
 906		     unsigned long u_vaddr)
 907{
 908	/* TBD: do we really need to clear the kernel mapping */
 909	__flush_dcache_page(page_address(page), u_vaddr);
 910	__flush_dcache_page(page_address(page), page_address(page));
 911
 912}
 913
 914#endif
 915
 916void copy_user_highpage(struct page *to, struct page *from,
 917	unsigned long u_vaddr, struct vm_area_struct *vma)
 918{
 
 
 919	void *kfrom = kmap_atomic(from);
 920	void *kto = kmap_atomic(to);
 921	int clean_src_k_mappings = 0;
 922
 923	/*
 924	 * If SRC page was already mapped in userspace AND it's U-mapping is
 925	 * not congruent with K-mapping, sync former to physical page so that
 926	 * K-mapping in memcpy below, sees the right data
 927	 *
 928	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
 929	 * equally valid for SRC page as well
 930	 *
 931	 * For !VIPT cache, all of this gets compiled out as
 932	 * addr_not_cache_congruent() is 0
 933	 */
 934	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
 935		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
 936		clean_src_k_mappings = 1;
 937	}
 938
 939	copy_page(kto, kfrom);
 940
 941	/*
 942	 * Mark DST page K-mapping as dirty for a later finalization by
 943	 * update_mmu_cache(). Although the finalization could have been done
 944	 * here as well (given that both vaddr/paddr are available).
 945	 * But update_mmu_cache() already has code to do that for other
 946	 * non copied user pages (e.g. read faults which wire in pagecache page
 947	 * directly).
 948	 */
 949	clear_bit(PG_dc_clean, &to->flags);
 950
 951	/*
 952	 * if SRC was already usermapped and non-congruent to kernel mapping
 953	 * sync the kernel mapping back to physical page
 954	 */
 955	if (clean_src_k_mappings) {
 956		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
 957		set_bit(PG_dc_clean, &from->flags);
 958	} else {
 959		clear_bit(PG_dc_clean, &from->flags);
 960	}
 961
 962	kunmap_atomic(kto);
 963	kunmap_atomic(kfrom);
 964}
 965
 966void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
 967{
 
 968	clear_page(to);
 969	clear_bit(PG_dc_clean, &page->flags);
 970}
 971
 972
 973/**********************************************************************
 974 * Explicit Cache flush request from user space via syscall
 975 * Needed for JITs which generate code on the fly
 976 */
 977SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
 978{
 979	/* TBD: optimize this */
 980	flush_cache_all();
 981	return 0;
 982}
 983
 984/*
 985 * IO-Coherency (IOC) setup rules:
 986 *
 987 * 1. Needs to be at system level, so only once by Master core
 988 *    Non-Masters need not be accessing caches at that time
 989 *    - They are either HALT_ON_RESET and kick started much later or
 990 *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
 991 *      doesn't perturb caches or coherency unit
 992 *
 993 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
 994 *    otherwise any straggler data might behave strangely post IOC enabling
 995 *
 996 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
 997 *    Coherency transactions
 998 */
 999noinline void __init arc_ioc_setup(void)
1000{
1001	unsigned int ap_sz;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003	/* Flush + invalidate + disable L1 dcache */
1004	__dc_disable();
1005
1006	/* Flush + invalidate SLC */
1007	if (read_aux_reg(ARC_REG_SLC_BCR))
1008		slc_entire_op(OP_FLUSH_N_INV);
1009
1010	/* IOC Aperture start: TDB: handle non default CONFIG_LINUX_LINK_BASE */
1011	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
1012
1013	/*
1014	 * IOC Aperture size:
1015	 *   decoded as 2 ^ (SIZE + 2) KB: so setting 0x11 implies 512M
1016	 * TBD: fix for PGU + 1GB of low mem
1017	 * TBD: fix for PAE
1018	 */
1019	ap_sz = order_base_2(arc_get_mem_sz()/1024) - 2;
1020	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, ap_sz);
 
 
1021
1022	write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
1023	write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
1024
1025	/* Re-enable L1 dcache */
1026	__dc_enable();
1027}
1028
1029void __init arc_cache_init_master(void)
 
 
 
 
 
 
 
1030{
1031	unsigned int __maybe_unused cpu = smp_processor_id();
1032
1033	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1034		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1035
1036		if (!ic->line_len)
1037			panic("cache support enabled but non-existent cache\n");
1038
1039		if (ic->line_len != L1_CACHE_BYTES)
1040			panic("ICache line [%d] != kernel Config [%d]",
1041			      ic->line_len, L1_CACHE_BYTES);
1042
1043		/*
1044		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1045		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1046		 */
1047		if (is_isa_arcv2() && ic->alias)
1048			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1049		else
1050			_cache_line_loop_ic_fn = __cache_line_loop;
1051	}
1052
1053	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1054		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1055
1056		if (!dc->line_len)
1057			panic("cache support enabled but non-existent cache\n");
1058
1059		if (dc->line_len != L1_CACHE_BYTES)
1060			panic("DCache line [%d] != kernel Config [%d]",
1061			      dc->line_len, L1_CACHE_BYTES);
1062
1063		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1064		if (is_isa_arcompact()) {
1065			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1066			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1067
1068			if (dc->alias) {
1069				if (!handled)
1070					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1071				if (CACHE_COLORS_NUM != num_colors)
1072					panic("CACHE_COLORS_NUM not optimized for config\n");
1073			} else if (!dc->alias && handled) {
1074				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1075			}
1076		}
1077	}
1078
 
 
 
 
 
 
 
 
 
 
1079	/* Note that SLC disable not formally supported till HS 3.0 */
1080	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1081		arc_slc_disable();
1082
1083	if (is_isa_arcv2() && ioc_enable)
1084		arc_ioc_setup();
1085
1086	if (is_isa_arcv2() && ioc_enable) {
1087		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
1088		__dma_cache_inv = __dma_cache_inv_ioc;
1089		__dma_cache_wback = __dma_cache_wback_ioc;
1090	} else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1091		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1092		__dma_cache_inv = __dma_cache_inv_slc;
1093		__dma_cache_wback = __dma_cache_wback_slc;
1094	} else {
1095		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1096		__dma_cache_inv = __dma_cache_inv_l1;
1097		__dma_cache_wback = __dma_cache_wback_l1;
1098	}
 
 
 
 
 
 
1099}
1100
1101void __ref arc_cache_init(void)
1102{
1103	unsigned int __maybe_unused cpu = smp_processor_id();
1104	char str[256];
1105
1106	printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
 
1107
1108	/*
1109	 * Only master CPU needs to execute rest of function:
1110	 *  - Assume SMP so all cores will have same cache config so
1111	 *    any geomtry checks will be same for all
1112	 *  - IOC setup / dma callbacks only need to be setup once
 
1113	 */
1114	if (!cpu)
1115		arc_cache_init_master();
 
 
 
 
 
 
 
 
 
 
 
1116}