Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Common capabilities, needed by capability.o.
 
 
 
 
 
 
   3 */
   4
   5#include <linux/capability.h>
   6#include <linux/audit.h>
 
   7#include <linux/init.h>
   8#include <linux/kernel.h>
   9#include <linux/lsm_hooks.h>
  10#include <linux/file.h>
  11#include <linux/mm.h>
  12#include <linux/mman.h>
  13#include <linux/pagemap.h>
  14#include <linux/swap.h>
  15#include <linux/skbuff.h>
  16#include <linux/netlink.h>
  17#include <linux/ptrace.h>
  18#include <linux/xattr.h>
  19#include <linux/hugetlb.h>
  20#include <linux/mount.h>
  21#include <linux/sched.h>
  22#include <linux/prctl.h>
  23#include <linux/securebits.h>
  24#include <linux/user_namespace.h>
  25#include <linux/binfmts.h>
  26#include <linux/personality.h>
  27#include <linux/mnt_idmapping.h>
  28#include <uapi/linux/lsm.h>
  29
  30/*
  31 * If a non-root user executes a setuid-root binary in
  32 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
  33 * However if fE is also set, then the intent is for only
  34 * the file capabilities to be applied, and the setuid-root
  35 * bit is left on either to change the uid (plausible) or
  36 * to get full privilege on a kernel without file capabilities
  37 * support.  So in that case we do not raise capabilities.
  38 *
  39 * Warn if that happens, once per boot.
  40 */
  41static void warn_setuid_and_fcaps_mixed(const char *fname)
  42{
  43	static int warned;
  44	if (!warned) {
  45		printk(KERN_INFO "warning: `%s' has both setuid-root and"
  46			" effective capabilities. Therefore not raising all"
  47			" capabilities.\n", fname);
  48		warned = 1;
  49	}
  50}
  51
 
 
 
 
 
  52/**
  53 * cap_capable - Determine whether a task has a particular effective capability
  54 * @cred: The credentials to use
  55 * @targ_ns:  The user namespace in which we need the capability
  56 * @cap: The capability to check for
  57 * @opts: Bitmask of options defined in include/linux/security.h
  58 *
  59 * Determine whether the nominated task has the specified capability amongst
  60 * its effective set, returning 0 if it does, -ve if it does not.
  61 *
  62 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
  63 * and has_capability() functions.  That is, it has the reverse semantics:
  64 * cap_has_capability() returns 0 when a task has a capability, but the
  65 * kernel's capable() and has_capability() returns 1 for this case.
  66 */
  67int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
  68		int cap, unsigned int opts)
  69{
  70	struct user_namespace *ns = targ_ns;
  71
  72	/* See if cred has the capability in the target user namespace
  73	 * by examining the target user namespace and all of the target
  74	 * user namespace's parents.
  75	 */
  76	for (;;) {
 
 
 
 
  77		/* Do we have the necessary capabilities? */
  78		if (ns == cred->user_ns)
  79			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
  80
  81		/*
  82		 * If we're already at a lower level than we're looking for,
  83		 * we're done searching.
  84		 */
  85		if (ns->level <= cred->user_ns->level)
  86			return -EPERM;
  87
  88		/* 
  89		 * The owner of the user namespace in the parent of the
  90		 * user namespace has all caps.
  91		 */
  92		if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
  93			return 0;
  94
  95		/*
  96		 * If you have a capability in a parent user ns, then you have
  97		 * it over all children user namespaces as well.
  98		 */
  99		ns = ns->parent;
 100	}
 101
 102	/* We never get here */
 103}
 104
 105/**
 106 * cap_settime - Determine whether the current process may set the system clock
 107 * @ts: The time to set
 108 * @tz: The timezone to set
 109 *
 110 * Determine whether the current process may set the system clock and timezone
 111 * information, returning 0 if permission granted, -ve if denied.
 112 */
 113int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
 114{
 115	if (!capable(CAP_SYS_TIME))
 116		return -EPERM;
 117	return 0;
 118}
 119
 120/**
 121 * cap_ptrace_access_check - Determine whether the current process may access
 122 *			   another
 123 * @child: The process to be accessed
 124 * @mode: The mode of attachment.
 125 *
 126 * If we are in the same or an ancestor user_ns and have all the target
 127 * task's capabilities, then ptrace access is allowed.
 128 * If we have the ptrace capability to the target user_ns, then ptrace
 129 * access is allowed.
 130 * Else denied.
 131 *
 132 * Determine whether a process may access another, returning 0 if permission
 133 * granted, -ve if denied.
 134 */
 135int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
 136{
 137	int ret = 0;
 138	const struct cred *cred, *child_cred;
 139	const kernel_cap_t *caller_caps;
 140
 141	rcu_read_lock();
 142	cred = current_cred();
 143	child_cred = __task_cred(child);
 144	if (mode & PTRACE_MODE_FSCREDS)
 145		caller_caps = &cred->cap_effective;
 146	else
 147		caller_caps = &cred->cap_permitted;
 148	if (cred->user_ns == child_cred->user_ns &&
 149	    cap_issubset(child_cred->cap_permitted, *caller_caps))
 150		goto out;
 151	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
 152		goto out;
 153	ret = -EPERM;
 154out:
 155	rcu_read_unlock();
 156	return ret;
 157}
 158
 159/**
 160 * cap_ptrace_traceme - Determine whether another process may trace the current
 161 * @parent: The task proposed to be the tracer
 162 *
 163 * If parent is in the same or an ancestor user_ns and has all current's
 164 * capabilities, then ptrace access is allowed.
 165 * If parent has the ptrace capability to current's user_ns, then ptrace
 166 * access is allowed.
 167 * Else denied.
 168 *
 169 * Determine whether the nominated task is permitted to trace the current
 170 * process, returning 0 if permission is granted, -ve if denied.
 171 */
 172int cap_ptrace_traceme(struct task_struct *parent)
 173{
 174	int ret = 0;
 175	const struct cred *cred, *child_cred;
 176
 177	rcu_read_lock();
 178	cred = __task_cred(parent);
 179	child_cred = current_cred();
 180	if (cred->user_ns == child_cred->user_ns &&
 181	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
 182		goto out;
 183	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
 184		goto out;
 185	ret = -EPERM;
 186out:
 187	rcu_read_unlock();
 188	return ret;
 189}
 190
 191/**
 192 * cap_capget - Retrieve a task's capability sets
 193 * @target: The task from which to retrieve the capability sets
 194 * @effective: The place to record the effective set
 195 * @inheritable: The place to record the inheritable set
 196 * @permitted: The place to record the permitted set
 197 *
 198 * This function retrieves the capabilities of the nominated task and returns
 199 * them to the caller.
 200 */
 201int cap_capget(const struct task_struct *target, kernel_cap_t *effective,
 202	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
 203{
 204	const struct cred *cred;
 205
 206	/* Derived from kernel/capability.c:sys_capget. */
 207	rcu_read_lock();
 208	cred = __task_cred(target);
 209	*effective   = cred->cap_effective;
 210	*inheritable = cred->cap_inheritable;
 211	*permitted   = cred->cap_permitted;
 212	rcu_read_unlock();
 213	return 0;
 214}
 215
 216/*
 217 * Determine whether the inheritable capabilities are limited to the old
 218 * permitted set.  Returns 1 if they are limited, 0 if they are not.
 219 */
 220static inline int cap_inh_is_capped(void)
 221{
 
 222	/* they are so limited unless the current task has the CAP_SETPCAP
 223	 * capability
 224	 */
 225	if (cap_capable(current_cred(), current_cred()->user_ns,
 226			CAP_SETPCAP, CAP_OPT_NONE) == 0)
 227		return 0;
 228	return 1;
 229}
 230
 231/**
 232 * cap_capset - Validate and apply proposed changes to current's capabilities
 233 * @new: The proposed new credentials; alterations should be made here
 234 * @old: The current task's current credentials
 235 * @effective: A pointer to the proposed new effective capabilities set
 236 * @inheritable: A pointer to the proposed new inheritable capabilities set
 237 * @permitted: A pointer to the proposed new permitted capabilities set
 238 *
 239 * This function validates and applies a proposed mass change to the current
 240 * process's capability sets.  The changes are made to the proposed new
 241 * credentials, and assuming no error, will be committed by the caller of LSM.
 242 */
 243int cap_capset(struct cred *new,
 244	       const struct cred *old,
 245	       const kernel_cap_t *effective,
 246	       const kernel_cap_t *inheritable,
 247	       const kernel_cap_t *permitted)
 248{
 249	if (cap_inh_is_capped() &&
 250	    !cap_issubset(*inheritable,
 251			  cap_combine(old->cap_inheritable,
 252				      old->cap_permitted)))
 253		/* incapable of using this inheritable set */
 254		return -EPERM;
 255
 256	if (!cap_issubset(*inheritable,
 257			  cap_combine(old->cap_inheritable,
 258				      old->cap_bset)))
 259		/* no new pI capabilities outside bounding set */
 260		return -EPERM;
 261
 262	/* verify restrictions on target's new Permitted set */
 263	if (!cap_issubset(*permitted, old->cap_permitted))
 264		return -EPERM;
 265
 266	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
 267	if (!cap_issubset(*effective, *permitted))
 268		return -EPERM;
 269
 270	new->cap_effective   = *effective;
 271	new->cap_inheritable = *inheritable;
 272	new->cap_permitted   = *permitted;
 273
 274	/*
 275	 * Mask off ambient bits that are no longer both permitted and
 276	 * inheritable.
 277	 */
 278	new->cap_ambient = cap_intersect(new->cap_ambient,
 279					 cap_intersect(*permitted,
 280						       *inheritable));
 281	if (WARN_ON(!cap_ambient_invariant_ok(new)))
 282		return -EINVAL;
 283	return 0;
 284}
 285
 
 
 
 
 
 
 
 
 
 286/**
 287 * cap_inode_need_killpriv - Determine if inode change affects privileges
 288 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
 289 *
 290 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
 291 * affects the security markings on that inode, and if it is, should
 292 * inode_killpriv() be invoked or the change rejected.
 293 *
 294 * Return: 1 if security.capability has a value, meaning inode_killpriv()
 295 * is required, 0 otherwise, meaning inode_killpriv() is not required.
 296 */
 297int cap_inode_need_killpriv(struct dentry *dentry)
 298{
 299	struct inode *inode = d_backing_inode(dentry);
 300	int error;
 301
 302	error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
 303	return error > 0;
 
 
 
 
 
 304}
 305
 306/**
 307 * cap_inode_killpriv - Erase the security markings on an inode
 308 *
 309 * @idmap:	idmap of the mount the inode was found from
 310 * @dentry:	The inode/dentry to alter
 311 *
 312 * Erase the privilege-enhancing security markings on an inode.
 313 *
 314 * If the inode has been found through an idmapped mount the idmap of
 315 * the vfsmount must be passed through @idmap. This function will then
 316 * take care to map the inode according to @idmap before checking
 317 * permissions. On non-idmapped mounts or if permission checking is to be
 318 * performed on the raw inode simply pass @nop_mnt_idmap.
 319 *
 320 * Return: 0 if successful, -ve on error.
 321 */
 322int cap_inode_killpriv(struct mnt_idmap *idmap, struct dentry *dentry)
 323{
 324	int error;
 325
 326	error = __vfs_removexattr(idmap, dentry, XATTR_NAME_CAPS);
 327	if (error == -EOPNOTSUPP)
 328		error = 0;
 329	return error;
 330}
 331
 332static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
 333{
 334	struct user_namespace *ns;
 335	kuid_t kroot;
 336
 337	if (!vfsuid_valid(rootvfsuid))
 338		return false;
 339
 340	kroot = vfsuid_into_kuid(rootvfsuid);
 341	for (ns = current_user_ns();; ns = ns->parent) {
 342		if (from_kuid(ns, kroot) == 0)
 343			return true;
 344		if (ns == &init_user_ns)
 345			break;
 346	}
 347
 348	return false;
 349}
 350
 351static __u32 sansflags(__u32 m)
 352{
 353	return m & ~VFS_CAP_FLAGS_EFFECTIVE;
 354}
 355
 356static bool is_v2header(int size, const struct vfs_cap_data *cap)
 357{
 358	if (size != XATTR_CAPS_SZ_2)
 359		return false;
 360	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
 361}
 362
 363static bool is_v3header(int size, const struct vfs_cap_data *cap)
 364{
 365	if (size != XATTR_CAPS_SZ_3)
 366		return false;
 367	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
 368}
 369
 370/*
 371 * getsecurity: We are called for security.* before any attempt to read the
 372 * xattr from the inode itself.
 373 *
 374 * This gives us a chance to read the on-disk value and convert it.  If we
 375 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
 376 *
 377 * Note we are not called by vfs_getxattr_alloc(), but that is only called
 378 * by the integrity subsystem, which really wants the unconverted values -
 379 * so that's good.
 380 */
 381int cap_inode_getsecurity(struct mnt_idmap *idmap,
 382			  struct inode *inode, const char *name, void **buffer,
 383			  bool alloc)
 384{
 385	int size;
 386	kuid_t kroot;
 387	vfsuid_t vfsroot;
 388	u32 nsmagic, magic;
 389	uid_t root, mappedroot;
 390	char *tmpbuf = NULL;
 391	struct vfs_cap_data *cap;
 392	struct vfs_ns_cap_data *nscap = NULL;
 393	struct dentry *dentry;
 394	struct user_namespace *fs_ns;
 395
 396	if (strcmp(name, "capability") != 0)
 397		return -EOPNOTSUPP;
 398
 399	dentry = d_find_any_alias(inode);
 400	if (!dentry)
 401		return -EINVAL;
 402	size = vfs_getxattr_alloc(idmap, dentry, XATTR_NAME_CAPS, &tmpbuf,
 403				  sizeof(struct vfs_ns_cap_data), GFP_NOFS);
 404	dput(dentry);
 405	/* gcc11 complains if we don't check for !tmpbuf */
 406	if (size < 0 || !tmpbuf)
 407		goto out_free;
 408
 409	fs_ns = inode->i_sb->s_user_ns;
 410	cap = (struct vfs_cap_data *) tmpbuf;
 411	if (is_v2header(size, cap)) {
 412		root = 0;
 413	} else if (is_v3header(size, cap)) {
 414		nscap = (struct vfs_ns_cap_data *) tmpbuf;
 415		root = le32_to_cpu(nscap->rootid);
 416	} else {
 417		size = -EINVAL;
 418		goto out_free;
 419	}
 420
 421	kroot = make_kuid(fs_ns, root);
 422
 423	/* If this is an idmapped mount shift the kuid. */
 424	vfsroot = make_vfsuid(idmap, fs_ns, kroot);
 425
 426	/* If the root kuid maps to a valid uid in current ns, then return
 427	 * this as a nscap. */
 428	mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
 429	if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
 430		size = sizeof(struct vfs_ns_cap_data);
 431		if (alloc) {
 432			if (!nscap) {
 433				/* v2 -> v3 conversion */
 434				nscap = kzalloc(size, GFP_ATOMIC);
 435				if (!nscap) {
 436					size = -ENOMEM;
 437					goto out_free;
 438				}
 439				nsmagic = VFS_CAP_REVISION_3;
 440				magic = le32_to_cpu(cap->magic_etc);
 441				if (magic & VFS_CAP_FLAGS_EFFECTIVE)
 442					nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
 443				memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
 444				nscap->magic_etc = cpu_to_le32(nsmagic);
 445			} else {
 446				/* use allocated v3 buffer */
 447				tmpbuf = NULL;
 448			}
 449			nscap->rootid = cpu_to_le32(mappedroot);
 450			*buffer = nscap;
 451		}
 452		goto out_free;
 453	}
 454
 455	if (!rootid_owns_currentns(vfsroot)) {
 456		size = -EOVERFLOW;
 457		goto out_free;
 458	}
 459
 460	/* This comes from a parent namespace.  Return as a v2 capability */
 461	size = sizeof(struct vfs_cap_data);
 462	if (alloc) {
 463		if (nscap) {
 464			/* v3 -> v2 conversion */
 465			cap = kzalloc(size, GFP_ATOMIC);
 466			if (!cap) {
 467				size = -ENOMEM;
 468				goto out_free;
 469			}
 470			magic = VFS_CAP_REVISION_2;
 471			nsmagic = le32_to_cpu(nscap->magic_etc);
 472			if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
 473				magic |= VFS_CAP_FLAGS_EFFECTIVE;
 474			memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
 475			cap->magic_etc = cpu_to_le32(magic);
 476		} else {
 477			/* use unconverted v2 */
 478			tmpbuf = NULL;
 479		}
 480		*buffer = cap;
 481	}
 482out_free:
 483	kfree(tmpbuf);
 484	return size;
 485}
 486
 487/**
 488 * rootid_from_xattr - translate root uid of vfs caps
 489 *
 490 * @value:	vfs caps value which may be modified by this function
 491 * @size:	size of @ivalue
 492 * @task_ns:	user namespace of the caller
 493 */
 494static vfsuid_t rootid_from_xattr(const void *value, size_t size,
 495				  struct user_namespace *task_ns)
 496{
 497	const struct vfs_ns_cap_data *nscap = value;
 498	uid_t rootid = 0;
 499
 500	if (size == XATTR_CAPS_SZ_3)
 501		rootid = le32_to_cpu(nscap->rootid);
 502
 503	return VFSUIDT_INIT(make_kuid(task_ns, rootid));
 504}
 505
 506static bool validheader(size_t size, const struct vfs_cap_data *cap)
 507{
 508	return is_v2header(size, cap) || is_v3header(size, cap);
 509}
 510
 511/**
 512 * cap_convert_nscap - check vfs caps
 513 *
 514 * @idmap:	idmap of the mount the inode was found from
 515 * @dentry:	used to retrieve inode to check permissions on
 516 * @ivalue:	vfs caps value which may be modified by this function
 517 * @size:	size of @ivalue
 518 *
 519 * User requested a write of security.capability.  If needed, update the
 520 * xattr to change from v2 to v3, or to fixup the v3 rootid.
 521 *
 522 * If the inode has been found through an idmapped mount the idmap of
 523 * the vfsmount must be passed through @idmap. This function will then
 524 * take care to map the inode according to @idmap before checking
 525 * permissions. On non-idmapped mounts or if permission checking is to be
 526 * performed on the raw inode simply pass @nop_mnt_idmap.
 527 *
 528 * Return: On success, return the new size; on error, return < 0.
 529 */
 530int cap_convert_nscap(struct mnt_idmap *idmap, struct dentry *dentry,
 531		      const void **ivalue, size_t size)
 532{
 533	struct vfs_ns_cap_data *nscap;
 534	uid_t nsrootid;
 535	const struct vfs_cap_data *cap = *ivalue;
 536	__u32 magic, nsmagic;
 537	struct inode *inode = d_backing_inode(dentry);
 538	struct user_namespace *task_ns = current_user_ns(),
 539		*fs_ns = inode->i_sb->s_user_ns;
 540	kuid_t rootid;
 541	vfsuid_t vfsrootid;
 542	size_t newsize;
 543
 544	if (!*ivalue)
 545		return -EINVAL;
 546	if (!validheader(size, cap))
 547		return -EINVAL;
 548	if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
 549		return -EPERM;
 550	if (size == XATTR_CAPS_SZ_2 && (idmap == &nop_mnt_idmap))
 551		if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
 552			/* user is privileged, just write the v2 */
 553			return size;
 554
 555	vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
 556	if (!vfsuid_valid(vfsrootid))
 557		return -EINVAL;
 558
 559	rootid = from_vfsuid(idmap, fs_ns, vfsrootid);
 560	if (!uid_valid(rootid))
 561		return -EINVAL;
 562
 563	nsrootid = from_kuid(fs_ns, rootid);
 564	if (nsrootid == -1)
 565		return -EINVAL;
 566
 567	newsize = sizeof(struct vfs_ns_cap_data);
 568	nscap = kmalloc(newsize, GFP_ATOMIC);
 569	if (!nscap)
 570		return -ENOMEM;
 571	nscap->rootid = cpu_to_le32(nsrootid);
 572	nsmagic = VFS_CAP_REVISION_3;
 573	magic = le32_to_cpu(cap->magic_etc);
 574	if (magic & VFS_CAP_FLAGS_EFFECTIVE)
 575		nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
 576	nscap->magic_etc = cpu_to_le32(nsmagic);
 577	memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
 578
 579	*ivalue = nscap;
 580	return newsize;
 581}
 582
 583/*
 584 * Calculate the new process capability sets from the capability sets attached
 585 * to a file.
 586 */
 587static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
 588					  struct linux_binprm *bprm,
 589					  bool *effective,
 590					  bool *has_fcap)
 591{
 592	struct cred *new = bprm->cred;
 
 593	int ret = 0;
 594
 595	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
 596		*effective = true;
 597
 598	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
 599		*has_fcap = true;
 600
 601	/*
 602	 * pP' = (X & fP) | (pI & fI)
 603	 * The addition of pA' is handled later.
 604	 */
 605	new->cap_permitted.val =
 606		(new->cap_bset.val & caps->permitted.val) |
 607		(new->cap_inheritable.val & caps->inheritable.val);
 608
 609	if (caps->permitted.val & ~new->cap_permitted.val)
 610		/* insufficient to execute correctly */
 611		ret = -EPERM;
 
 
 
 
 612
 613	/*
 614	 * For legacy apps, with no internal support for recognizing they
 615	 * do not have enough capabilities, we return an error if they are
 616	 * missing some "forced" (aka file-permitted) capabilities.
 617	 */
 618	return *effective ? ret : 0;
 619}
 620
 621/**
 622 * get_vfs_caps_from_disk - retrieve vfs caps from disk
 623 *
 624 * @idmap:	idmap of the mount the inode was found from
 625 * @dentry:	dentry from which @inode is retrieved
 626 * @cpu_caps:	vfs capabilities
 627 *
 628 * Extract the on-exec-apply capability sets for an executable file.
 629 *
 630 * If the inode has been found through an idmapped mount the idmap of
 631 * the vfsmount must be passed through @idmap. This function will then
 632 * take care to map the inode according to @idmap before checking
 633 * permissions. On non-idmapped mounts or if permission checking is to be
 634 * performed on the raw inode simply pass @nop_mnt_idmap.
 635 */
 636int get_vfs_caps_from_disk(struct mnt_idmap *idmap,
 637			   const struct dentry *dentry,
 638			   struct cpu_vfs_cap_data *cpu_caps)
 639{
 640	struct inode *inode = d_backing_inode(dentry);
 641	__u32 magic_etc;
 
 642	int size;
 643	struct vfs_ns_cap_data data, *nscaps = &data;
 644	struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
 645	kuid_t rootkuid;
 646	vfsuid_t rootvfsuid;
 647	struct user_namespace *fs_ns;
 648
 649	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
 650
 651	if (!inode)
 652		return -ENODATA;
 653
 654	fs_ns = inode->i_sb->s_user_ns;
 655	size = __vfs_getxattr((struct dentry *)dentry, inode,
 656			      XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
 657	if (size == -ENODATA || size == -EOPNOTSUPP)
 658		/* no data, that's ok */
 659		return -ENODATA;
 660
 661	if (size < 0)
 662		return size;
 663
 664	if (size < sizeof(magic_etc))
 665		return -EINVAL;
 666
 667	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
 668
 669	rootkuid = make_kuid(fs_ns, 0);
 670	switch (magic_etc & VFS_CAP_REVISION_MASK) {
 671	case VFS_CAP_REVISION_1:
 672		if (size != XATTR_CAPS_SZ_1)
 673			return -EINVAL;
 
 674		break;
 675	case VFS_CAP_REVISION_2:
 676		if (size != XATTR_CAPS_SZ_2)
 677			return -EINVAL;
 
 678		break;
 679	case VFS_CAP_REVISION_3:
 680		if (size != XATTR_CAPS_SZ_3)
 681			return -EINVAL;
 682		rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
 683		break;
 684
 685	default:
 686		return -EINVAL;
 687	}
 688
 689	rootvfsuid = make_vfsuid(idmap, fs_ns, rootkuid);
 690	if (!vfsuid_valid(rootvfsuid))
 691		return -ENODATA;
 692
 693	/* Limit the caps to the mounter of the filesystem
 694	 * or the more limited uid specified in the xattr.
 695	 */
 696	if (!rootid_owns_currentns(rootvfsuid))
 697		return -ENODATA;
 698
 699	cpu_caps->permitted.val = le32_to_cpu(caps->data[0].permitted);
 700	cpu_caps->inheritable.val = le32_to_cpu(caps->data[0].inheritable);
 701
 702	/*
 703	 * Rev1 had just a single 32-bit word, later expanded
 704	 * to a second one for the high bits
 705	 */
 706	if ((magic_etc & VFS_CAP_REVISION_MASK) != VFS_CAP_REVISION_1) {
 707		cpu_caps->permitted.val += (u64)le32_to_cpu(caps->data[1].permitted) << 32;
 708		cpu_caps->inheritable.val += (u64)le32_to_cpu(caps->data[1].inheritable) << 32;
 709	}
 710
 711	cpu_caps->permitted.val &= CAP_VALID_MASK;
 712	cpu_caps->inheritable.val &= CAP_VALID_MASK;
 713
 714	cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
 715
 716	return 0;
 717}
 718
 719/*
 720 * Attempt to get the on-exec apply capability sets for an executable file from
 721 * its xattrs and, if present, apply them to the proposed credentials being
 722 * constructed by execve().
 723 */
 724static int get_file_caps(struct linux_binprm *bprm, const struct file *file,
 725			 bool *effective, bool *has_fcap)
 726{
 
 727	int rc = 0;
 728	struct cpu_vfs_cap_data vcaps;
 729
 730	cap_clear(bprm->cred->cap_permitted);
 731
 732	if (!file_caps_enabled)
 733		return 0;
 734
 735	if (!mnt_may_suid(file->f_path.mnt))
 736		return 0;
 737
 738	/*
 739	 * This check is redundant with mnt_may_suid() but is kept to make
 740	 * explicit that capability bits are limited to s_user_ns and its
 741	 * descendants.
 742	 */
 743	if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
 744		return 0;
 745
 746	rc = get_vfs_caps_from_disk(file_mnt_idmap(file),
 747				    file->f_path.dentry, &vcaps);
 748	if (rc < 0) {
 749		if (rc == -EINVAL)
 750			printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
 751					bprm->filename);
 752		else if (rc == -ENODATA)
 753			rc = 0;
 754		goto out;
 755	}
 756
 757	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
 
 
 
 758
 759out:
 
 760	if (rc)
 761		cap_clear(bprm->cred->cap_permitted);
 762
 763	return rc;
 764}
 765
 766static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
 767
 768static inline bool __is_real(kuid_t uid, struct cred *cred)
 769{ return uid_eq(cred->uid, uid); }
 770
 771static inline bool __is_eff(kuid_t uid, struct cred *cred)
 772{ return uid_eq(cred->euid, uid); }
 773
 774static inline bool __is_suid(kuid_t uid, struct cred *cred)
 775{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
 776
 777/*
 778 * handle_privileged_root - Handle case of privileged root
 779 * @bprm: The execution parameters, including the proposed creds
 780 * @has_fcap: Are any file capabilities set?
 781 * @effective: Do we have effective root privilege?
 782 * @root_uid: This namespace' root UID WRT initial USER namespace
 783 *
 784 * Handle the case where root is privileged and hasn't been neutered by
 785 * SECURE_NOROOT.  If file capabilities are set, they won't be combined with
 786 * set UID root and nothing is changed.  If we are root, cap_permitted is
 787 * updated.  If we have become set UID root, the effective bit is set.
 788 */
 789static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
 790				   bool *effective, kuid_t root_uid)
 791{
 792	const struct cred *old = current_cred();
 793	struct cred *new = bprm->cred;
 794
 795	if (!root_privileged())
 796		return;
 797	/*
 798	 * If the legacy file capability is set, then don't set privs
 799	 * for a setuid root binary run by a non-root user.  Do set it
 800	 * for a root user just to cause least surprise to an admin.
 801	 */
 802	if (has_fcap && __is_suid(root_uid, new)) {
 803		warn_setuid_and_fcaps_mixed(bprm->filename);
 804		return;
 805	}
 806	/*
 807	 * To support inheritance of root-permissions and suid-root
 808	 * executables under compatibility mode, we override the
 809	 * capability sets for the file.
 810	 */
 811	if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
 812		/* pP' = (cap_bset & ~0) | (pI & ~0) */
 813		new->cap_permitted = cap_combine(old->cap_bset,
 814						 old->cap_inheritable);
 815	}
 816	/*
 817	 * If only the real uid is 0, we do not set the effective bit.
 818	 */
 819	if (__is_eff(root_uid, new))
 820		*effective = true;
 821}
 822
 823#define __cap_gained(field, target, source) \
 824	!cap_issubset(target->cap_##field, source->cap_##field)
 825#define __cap_grew(target, source, cred) \
 826	!cap_issubset(cred->cap_##target, cred->cap_##source)
 827#define __cap_full(field, cred) \
 828	cap_issubset(CAP_FULL_SET, cred->cap_##field)
 829
 830static inline bool __is_setuid(struct cred *new, const struct cred *old)
 831{ return !uid_eq(new->euid, old->uid); }
 832
 833static inline bool __is_setgid(struct cred *new, const struct cred *old)
 834{ return !gid_eq(new->egid, old->gid); }
 835
 836/*
 837 * 1) Audit candidate if current->cap_effective is set
 838 *
 839 * We do not bother to audit if 3 things are true:
 840 *   1) cap_effective has all caps
 841 *   2) we became root *OR* are were already root
 842 *   3) root is supposed to have all caps (SECURE_NOROOT)
 843 * Since this is just a normal root execing a process.
 844 *
 845 * Number 1 above might fail if you don't have a full bset, but I think
 846 * that is interesting information to audit.
 847 *
 848 * A number of other conditions require logging:
 849 * 2) something prevented setuid root getting all caps
 850 * 3) non-setuid root gets fcaps
 851 * 4) non-setuid root gets ambient
 852 */
 853static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
 854				     kuid_t root, bool has_fcap)
 855{
 856	bool ret = false;
 857
 858	if ((__cap_grew(effective, ambient, new) &&
 859	     !(__cap_full(effective, new) &&
 860	       (__is_eff(root, new) || __is_real(root, new)) &&
 861	       root_privileged())) ||
 862	    (root_privileged() &&
 863	     __is_suid(root, new) &&
 864	     !__cap_full(effective, new)) ||
 865	    (!__is_setuid(new, old) &&
 866	     ((has_fcap &&
 867	       __cap_gained(permitted, new, old)) ||
 868	      __cap_gained(ambient, new, old))))
 869
 870		ret = true;
 871
 872	return ret;
 873}
 874
 875/**
 876 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
 877 * @bprm: The execution parameters, including the proposed creds
 878 * @file: The file to pull the credentials from
 879 *
 880 * Set up the proposed credentials for a new execution context being
 881 * constructed by execve().  The proposed creds in @bprm->cred is altered,
 882 * which won't take effect immediately.
 883 *
 884 * Return: 0 if successful, -ve on error.
 885 */
 886int cap_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
 887{
 888	/* Process setpcap binaries and capabilities for uid 0 */
 889	const struct cred *old = current_cred();
 890	struct cred *new = bprm->cred;
 891	bool effective = false, has_fcap = false, is_setid;
 892	int ret;
 893	kuid_t root_uid;
 894
 895	if (WARN_ON(!cap_ambient_invariant_ok(old)))
 896		return -EPERM;
 897
 898	ret = get_file_caps(bprm, file, &effective, &has_fcap);
 899	if (ret < 0)
 900		return ret;
 901
 902	root_uid = make_kuid(new->user_ns, 0);
 903
 904	handle_privileged_root(bprm, has_fcap, &effective, root_uid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906	/* if we have fs caps, clear dangerous personality flags */
 907	if (__cap_gained(permitted, new, old))
 908		bprm->per_clear |= PER_CLEAR_ON_SETID;
 909
 
 910	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
 911	 * credentials unless they have the appropriate permit.
 912	 *
 913	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
 914	 */
 915	is_setid = __is_setuid(new, old) || __is_setgid(new, old);
 916
 917	if ((is_setid || __cap_gained(permitted, new, old)) &&
 918	    ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
 919	     !ptracer_capable(current, new->user_ns))) {
 920		/* downgrade; they get no more than they had, and maybe less */
 921		if (!ns_capable(new->user_ns, CAP_SETUID) ||
 922		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
 923			new->euid = new->uid;
 924			new->egid = new->gid;
 925		}
 926		new->cap_permitted = cap_intersect(new->cap_permitted,
 927						   old->cap_permitted);
 928	}
 929
 930	new->suid = new->fsuid = new->euid;
 931	new->sgid = new->fsgid = new->egid;
 932
 933	/* File caps or setid cancels ambient. */
 934	if (has_fcap || is_setid)
 935		cap_clear(new->cap_ambient);
 936
 937	/*
 938	 * Now that we've computed pA', update pP' to give:
 939	 *   pP' = (X & fP) | (pI & fI) | pA'
 940	 */
 941	new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
 942
 943	/*
 944	 * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
 945	 * this is the same as pE' = (fE ? pP' : 0) | pA'.
 946	 */
 947	if (effective)
 948		new->cap_effective = new->cap_permitted;
 949	else
 950		new->cap_effective = new->cap_ambient;
 951
 952	if (WARN_ON(!cap_ambient_invariant_ok(new)))
 953		return -EPERM;
 954
 955	if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
 956		ret = audit_log_bprm_fcaps(bprm, new, old);
 957		if (ret < 0)
 958			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959	}
 960
 961	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 
 
 962
 963	if (WARN_ON(!cap_ambient_invariant_ok(new)))
 964		return -EPERM;
 
 
 
 
 
 
 
 
 
 
 
 
 965
 966	/* Check for privilege-elevated exec. */
 967	if (is_setid ||
 968	    (!__is_real(root_uid, new) &&
 969	     (effective ||
 970	      __cap_grew(permitted, ambient, new))))
 971		bprm->secureexec = 1;
 972
 973	return 0;
 
 974}
 975
 976/**
 977 * cap_inode_setxattr - Determine whether an xattr may be altered
 978 * @dentry: The inode/dentry being altered
 979 * @name: The name of the xattr to be changed
 980 * @value: The value that the xattr will be changed to
 981 * @size: The size of value
 982 * @flags: The replacement flag
 983 *
 984 * Determine whether an xattr may be altered or set on an inode, returning 0 if
 985 * permission is granted, -ve if denied.
 986 *
 987 * This is used to make sure security xattrs don't get updated or set by those
 988 * who aren't privileged to do so.
 989 */
 990int cap_inode_setxattr(struct dentry *dentry, const char *name,
 991		       const void *value, size_t size, int flags)
 992{
 993	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
 994
 995	/* Ignore non-security xattrs */
 996	if (strncmp(name, XATTR_SECURITY_PREFIX,
 997			XATTR_SECURITY_PREFIX_LEN) != 0)
 998		return 0;
 999
1000	/*
1001	 * For XATTR_NAME_CAPS the check will be done in
1002	 * cap_convert_nscap(), called by setxattr()
1003	 */
1004	if (strcmp(name, XATTR_NAME_CAPS) == 0)
1005		return 0;
 
1006
1007	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
 
 
1008		return -EPERM;
1009	return 0;
1010}
1011
1012/**
1013 * cap_inode_removexattr - Determine whether an xattr may be removed
1014 *
1015 * @idmap:	idmap of the mount the inode was found from
1016 * @dentry:	The inode/dentry being altered
1017 * @name:	The name of the xattr to be changed
1018 *
1019 * Determine whether an xattr may be removed from an inode, returning 0 if
1020 * permission is granted, -ve if denied.
1021 *
1022 * If the inode has been found through an idmapped mount the idmap of
1023 * the vfsmount must be passed through @idmap. This function will then
1024 * take care to map the inode according to @idmap before checking
1025 * permissions. On non-idmapped mounts or if permission checking is to be
1026 * performed on the raw inode simply pass @nop_mnt_idmap.
1027 *
1028 * This is used to make sure security xattrs don't get removed by those who
1029 * aren't privileged to remove them.
1030 */
1031int cap_inode_removexattr(struct mnt_idmap *idmap,
1032			  struct dentry *dentry, const char *name)
1033{
1034	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
1035
1036	/* Ignore non-security xattrs */
1037	if (strncmp(name, XATTR_SECURITY_PREFIX,
1038			XATTR_SECURITY_PREFIX_LEN) != 0)
1039		return 0;
1040
1041	if (strcmp(name, XATTR_NAME_CAPS) == 0) {
1042		/* security.capability gets namespaced */
1043		struct inode *inode = d_backing_inode(dentry);
1044		if (!inode)
1045			return -EINVAL;
1046		if (!capable_wrt_inode_uidgid(idmap, inode, CAP_SETFCAP))
1047			return -EPERM;
1048		return 0;
1049	}
1050
1051	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
 
 
1052		return -EPERM;
1053	return 0;
1054}
1055
1056/*
1057 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
1058 * a process after a call to setuid, setreuid, or setresuid.
1059 *
1060 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
1061 *  {r,e,s}uid != 0, the permitted and effective capabilities are
1062 *  cleared.
1063 *
1064 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1065 *  capabilities of the process are cleared.
1066 *
1067 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1068 *  capabilities are set to the permitted capabilities.
1069 *
1070 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1071 *  never happen.
1072 *
1073 *  -astor
1074 *
1075 * cevans - New behaviour, Oct '99
1076 * A process may, via prctl(), elect to keep its capabilities when it
1077 * calls setuid() and switches away from uid==0. Both permitted and
1078 * effective sets will be retained.
1079 * Without this change, it was impossible for a daemon to drop only some
1080 * of its privilege. The call to setuid(!=0) would drop all privileges!
1081 * Keeping uid 0 is not an option because uid 0 owns too many vital
1082 * files..
1083 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1084 */
1085static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1086{
1087	kuid_t root_uid = make_kuid(old->user_ns, 0);
1088
1089	if ((uid_eq(old->uid, root_uid) ||
1090	     uid_eq(old->euid, root_uid) ||
1091	     uid_eq(old->suid, root_uid)) &&
1092	    (!uid_eq(new->uid, root_uid) &&
1093	     !uid_eq(new->euid, root_uid) &&
1094	     !uid_eq(new->suid, root_uid))) {
1095		if (!issecure(SECURE_KEEP_CAPS)) {
1096			cap_clear(new->cap_permitted);
1097			cap_clear(new->cap_effective);
1098		}
1099
1100		/*
1101		 * Pre-ambient programs expect setresuid to nonroot followed
1102		 * by exec to drop capabilities.  We should make sure that
1103		 * this remains the case.
1104		 */
1105		cap_clear(new->cap_ambient);
1106	}
1107	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1108		cap_clear(new->cap_effective);
1109	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1110		new->cap_effective = new->cap_permitted;
1111}
1112
1113/**
1114 * cap_task_fix_setuid - Fix up the results of setuid() call
1115 * @new: The proposed credentials
1116 * @old: The current task's current credentials
1117 * @flags: Indications of what has changed
1118 *
1119 * Fix up the results of setuid() call before the credential changes are
1120 * actually applied.
1121 *
1122 * Return: 0 to grant the changes, -ve to deny them.
1123 */
1124int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1125{
1126	switch (flags) {
1127	case LSM_SETID_RE:
1128	case LSM_SETID_ID:
1129	case LSM_SETID_RES:
1130		/* juggle the capabilities to follow [RES]UID changes unless
1131		 * otherwise suppressed */
1132		if (!issecure(SECURE_NO_SETUID_FIXUP))
1133			cap_emulate_setxuid(new, old);
1134		break;
1135
1136	case LSM_SETID_FS:
1137		/* juggle the capabilities to follow FSUID changes, unless
1138		 * otherwise suppressed
1139		 *
1140		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1141		 *          if not, we might be a bit too harsh here.
1142		 */
1143		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1144			kuid_t root_uid = make_kuid(old->user_ns, 0);
1145			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1146				new->cap_effective =
1147					cap_drop_fs_set(new->cap_effective);
1148
1149			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1150				new->cap_effective =
1151					cap_raise_fs_set(new->cap_effective,
1152							 new->cap_permitted);
1153		}
1154		break;
1155
1156	default:
1157		return -EINVAL;
1158	}
1159
1160	return 0;
1161}
1162
1163/*
1164 * Rationale: code calling task_setscheduler, task_setioprio, and
1165 * task_setnice, assumes that
1166 *   . if capable(cap_sys_nice), then those actions should be allowed
1167 *   . if not capable(cap_sys_nice), but acting on your own processes,
1168 *   	then those actions should be allowed
1169 * This is insufficient now since you can call code without suid, but
1170 * yet with increased caps.
1171 * So we check for increased caps on the target process.
1172 */
1173static int cap_safe_nice(struct task_struct *p)
1174{
1175	int is_subset, ret = 0;
1176
1177	rcu_read_lock();
1178	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1179				 current_cred()->cap_permitted);
1180	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1181		ret = -EPERM;
1182	rcu_read_unlock();
1183
1184	return ret;
 
 
1185}
1186
1187/**
1188 * cap_task_setscheduler - Determine if scheduler policy change is permitted
1189 * @p: The task to affect
1190 *
1191 * Determine if the requested scheduler policy change is permitted for the
1192 * specified task.
1193 *
1194 * Return: 0 if permission is granted, -ve if denied.
1195 */
1196int cap_task_setscheduler(struct task_struct *p)
1197{
1198	return cap_safe_nice(p);
1199}
1200
1201/**
1202 * cap_task_setioprio - Determine if I/O priority change is permitted
1203 * @p: The task to affect
1204 * @ioprio: The I/O priority to set
1205 *
1206 * Determine if the requested I/O priority change is permitted for the specified
1207 * task.
1208 *
1209 * Return: 0 if permission is granted, -ve if denied.
1210 */
1211int cap_task_setioprio(struct task_struct *p, int ioprio)
1212{
1213	return cap_safe_nice(p);
1214}
1215
1216/**
1217 * cap_task_setnice - Determine if task priority change is permitted
1218 * @p: The task to affect
1219 * @nice: The nice value to set
1220 *
1221 * Determine if the requested task priority change is permitted for the
1222 * specified task.
1223 *
1224 * Return: 0 if permission is granted, -ve if denied.
1225 */
1226int cap_task_setnice(struct task_struct *p, int nice)
1227{
1228	return cap_safe_nice(p);
1229}
1230
1231/*
1232 * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
1233 * the current task's bounding set.  Returns 0 on success, -ve on error.
1234 */
1235static int cap_prctl_drop(unsigned long cap)
1236{
1237	struct cred *new;
1238
1239	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1240		return -EPERM;
1241	if (!cap_valid(cap))
1242		return -EINVAL;
1243
1244	new = prepare_creds();
1245	if (!new)
1246		return -ENOMEM;
1247	cap_lower(new->cap_bset, cap);
1248	return commit_creds(new);
1249}
1250
1251/**
1252 * cap_task_prctl - Implement process control functions for this security module
1253 * @option: The process control function requested
1254 * @arg2: The argument data for this function
1255 * @arg3: The argument data for this function
1256 * @arg4: The argument data for this function
1257 * @arg5: The argument data for this function
1258 *
1259 * Allow process control functions (sys_prctl()) to alter capabilities; may
1260 * also deny access to other functions not otherwise implemented here.
1261 *
1262 * Return: 0 or +ve on success, -ENOSYS if this function is not implemented
1263 * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
1264 * modules will consider performing the function.
1265 */
1266int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1267		   unsigned long arg4, unsigned long arg5)
1268{
1269	const struct cred *old = current_cred();
1270	struct cred *new;
 
 
 
 
 
1271
1272	switch (option) {
1273	case PR_CAPBSET_READ:
 
1274		if (!cap_valid(arg2))
1275			return -EINVAL;
1276		return !!cap_raised(old->cap_bset, arg2);
 
1277
1278	case PR_CAPBSET_DROP:
1279		return cap_prctl_drop(arg2);
 
 
 
1280
1281	/*
1282	 * The next four prctl's remain to assist with transitioning a
1283	 * system from legacy UID=0 based privilege (when filesystem
1284	 * capabilities are not in use) to a system using filesystem
1285	 * capabilities only - as the POSIX.1e draft intended.
1286	 *
1287	 * Note:
1288	 *
1289	 *  PR_SET_SECUREBITS =
1290	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1291	 *    | issecure_mask(SECURE_NOROOT)
1292	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
1293	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
1294	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1295	 *
1296	 * will ensure that the current process and all of its
1297	 * children will be locked into a pure
1298	 * capability-based-privilege environment.
1299	 */
1300	case PR_SET_SECUREBITS:
1301		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1302		     & (old->securebits ^ arg2))			/*[1]*/
1303		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
 
1304		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
1305		    || (cap_capable(current_cred(),
1306				    current_cred()->user_ns,
1307				    CAP_SETPCAP,
1308				    CAP_OPT_NONE) != 0)			/*[4]*/
1309			/*
1310			 * [1] no changing of bits that are locked
1311			 * [2] no unlocking of locks
1312			 * [3] no setting of unsupported bits
1313			 * [4] doing anything requires privilege (go read about
1314			 *     the "sendmail capabilities bug")
1315			 */
1316		    )
1317			/* cannot change a locked bit */
1318			return -EPERM;
1319
1320		new = prepare_creds();
1321		if (!new)
1322			return -ENOMEM;
1323		new->securebits = arg2;
1324		return commit_creds(new);
1325
1326	case PR_GET_SECUREBITS:
1327		return old->securebits;
 
1328
1329	case PR_GET_KEEPCAPS:
1330		return !!issecure(SECURE_KEEP_CAPS);
 
 
1331
1332	case PR_SET_KEEPCAPS:
 
1333		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1334			return -EINVAL;
 
1335		if (issecure(SECURE_KEEP_CAPS_LOCKED))
1336			return -EPERM;
1337
1338		new = prepare_creds();
1339		if (!new)
1340			return -ENOMEM;
1341		if (arg2)
1342			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1343		else
1344			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1345		return commit_creds(new);
1346
1347	case PR_CAP_AMBIENT:
1348		if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1349			if (arg3 | arg4 | arg5)
1350				return -EINVAL;
1351
1352			new = prepare_creds();
1353			if (!new)
1354				return -ENOMEM;
1355			cap_clear(new->cap_ambient);
1356			return commit_creds(new);
1357		}
1358
1359		if (((!cap_valid(arg3)) | arg4 | arg5))
1360			return -EINVAL;
1361
1362		if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1363			return !!cap_raised(current_cred()->cap_ambient, arg3);
1364		} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1365			   arg2 != PR_CAP_AMBIENT_LOWER) {
1366			return -EINVAL;
1367		} else {
1368			if (arg2 == PR_CAP_AMBIENT_RAISE &&
1369			    (!cap_raised(current_cred()->cap_permitted, arg3) ||
1370			     !cap_raised(current_cred()->cap_inheritable,
1371					 arg3) ||
1372			     issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1373				return -EPERM;
1374
1375			new = prepare_creds();
1376			if (!new)
1377				return -ENOMEM;
1378			if (arg2 == PR_CAP_AMBIENT_RAISE)
1379				cap_raise(new->cap_ambient, arg3);
1380			else
1381				cap_lower(new->cap_ambient, arg3);
1382			return commit_creds(new);
1383		}
1384
1385	default:
1386		/* No functionality available - continue with default */
1387		return -ENOSYS;
 
1388	}
 
 
 
 
 
 
 
 
 
1389}
1390
1391/**
1392 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1393 * @mm: The VM space in which the new mapping is to be made
1394 * @pages: The size of the mapping
1395 *
1396 * Determine whether the allocation of a new virtual mapping by the current
1397 * task is permitted.
1398 *
1399 * Return: 0 if permission granted, negative error code if not.
1400 */
1401int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1402{
1403	return cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1404			   CAP_OPT_NOAUDIT);
 
 
 
 
1405}
1406
1407/**
1408 * cap_mmap_addr - check if able to map given addr
1409 * @addr: address attempting to be mapped
1410 *
1411 * If the process is attempting to map memory below dac_mmap_min_addr they need
1412 * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
1413 * capability security module.
1414 *
1415 * Return: 0 if this mapping should be allowed or -EPERM if not.
1416 */
1417int cap_mmap_addr(unsigned long addr)
1418{
1419	int ret = 0;
1420
1421	if (addr < dac_mmap_min_addr) {
1422		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1423				  CAP_OPT_NONE);
1424		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
1425		if (ret == 0)
1426			current->flags |= PF_SUPERPRIV;
1427	}
1428	return ret;
1429}
1430
1431int cap_mmap_file(struct file *file, unsigned long reqprot,
1432		  unsigned long prot, unsigned long flags)
1433{
1434	return 0;
1435}
1436
1437#ifdef CONFIG_SECURITY
1438
1439static const struct lsm_id capability_lsmid = {
1440	.name = "capability",
1441	.id = LSM_ID_CAPABILITY,
1442};
1443
1444static struct security_hook_list capability_hooks[] __ro_after_init = {
1445	LSM_HOOK_INIT(capable, cap_capable),
1446	LSM_HOOK_INIT(settime, cap_settime),
1447	LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1448	LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1449	LSM_HOOK_INIT(capget, cap_capget),
1450	LSM_HOOK_INIT(capset, cap_capset),
1451	LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1452	LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1453	LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1454	LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1455	LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1456	LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1457	LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1458	LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1459	LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1460	LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1461	LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1462	LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1463};
1464
1465static int __init capability_init(void)
1466{
1467	security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1468			   &capability_lsmid);
1469	return 0;
1470}
1471
1472DEFINE_LSM(capability) = {
1473	.name = "capability",
1474	.order = LSM_ORDER_FIRST,
1475	.init = capability_init,
1476};
1477
1478#endif /* CONFIG_SECURITY */
v3.5.6
 
  1/* Common capabilities, needed by capability.o.
  2 *
  3 *	This program is free software; you can redistribute it and/or modify
  4 *	it under the terms of the GNU General Public License as published by
  5 *	the Free Software Foundation; either version 2 of the License, or
  6 *	(at your option) any later version.
  7 *
  8 */
  9
 10#include <linux/capability.h>
 11#include <linux/audit.h>
 12#include <linux/module.h>
 13#include <linux/init.h>
 14#include <linux/kernel.h>
 15#include <linux/security.h>
 16#include <linux/file.h>
 17#include <linux/mm.h>
 18#include <linux/mman.h>
 19#include <linux/pagemap.h>
 20#include <linux/swap.h>
 21#include <linux/skbuff.h>
 22#include <linux/netlink.h>
 23#include <linux/ptrace.h>
 24#include <linux/xattr.h>
 25#include <linux/hugetlb.h>
 26#include <linux/mount.h>
 27#include <linux/sched.h>
 28#include <linux/prctl.h>
 29#include <linux/securebits.h>
 30#include <linux/user_namespace.h>
 31#include <linux/binfmts.h>
 32#include <linux/personality.h>
 
 
 33
 34/*
 35 * If a non-root user executes a setuid-root binary in
 36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
 37 * However if fE is also set, then the intent is for only
 38 * the file capabilities to be applied, and the setuid-root
 39 * bit is left on either to change the uid (plausible) or
 40 * to get full privilege on a kernel without file capabilities
 41 * support.  So in that case we do not raise capabilities.
 42 *
 43 * Warn if that happens, once per boot.
 44 */
 45static void warn_setuid_and_fcaps_mixed(const char *fname)
 46{
 47	static int warned;
 48	if (!warned) {
 49		printk(KERN_INFO "warning: `%s' has both setuid-root and"
 50			" effective capabilities. Therefore not raising all"
 51			" capabilities.\n", fname);
 52		warned = 1;
 53	}
 54}
 55
 56int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
 57{
 58	return 0;
 59}
 60
 61/**
 62 * cap_capable - Determine whether a task has a particular effective capability
 63 * @cred: The credentials to use
 64 * @ns:  The user namespace in which we need the capability
 65 * @cap: The capability to check for
 66 * @audit: Whether to write an audit message or not
 67 *
 68 * Determine whether the nominated task has the specified capability amongst
 69 * its effective set, returning 0 if it does, -ve if it does not.
 70 *
 71 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
 72 * and has_capability() functions.  That is, it has the reverse semantics:
 73 * cap_has_capability() returns 0 when a task has a capability, but the
 74 * kernel's capable() and has_capability() returns 1 for this case.
 75 */
 76int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
 77		int cap, int audit)
 78{
 
 
 
 
 
 
 79	for (;;) {
 80		/* The owner of the user namespace has all caps. */
 81		if (targ_ns != &init_user_ns && uid_eq(targ_ns->owner, cred->euid))
 82			return 0;
 83
 84		/* Do we have the necessary capabilities? */
 85		if (targ_ns == cred->user_ns)
 86			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
 87
 88		/* Have we tried all of the parent namespaces? */
 89		if (targ_ns == &init_user_ns)
 
 
 
 90			return -EPERM;
 91
 
 
 
 
 
 
 
 92		/*
 93		 *If you have a capability in a parent user ns, then you have
 94		 * it over all children user namespaces as well.
 95		 */
 96		targ_ns = targ_ns->parent;
 97	}
 98
 99	/* We never get here */
100}
101
102/**
103 * cap_settime - Determine whether the current process may set the system clock
104 * @ts: The time to set
105 * @tz: The timezone to set
106 *
107 * Determine whether the current process may set the system clock and timezone
108 * information, returning 0 if permission granted, -ve if denied.
109 */
110int cap_settime(const struct timespec *ts, const struct timezone *tz)
111{
112	if (!capable(CAP_SYS_TIME))
113		return -EPERM;
114	return 0;
115}
116
117/**
118 * cap_ptrace_access_check - Determine whether the current process may access
119 *			   another
120 * @child: The process to be accessed
121 * @mode: The mode of attachment.
122 *
123 * If we are in the same or an ancestor user_ns and have all the target
124 * task's capabilities, then ptrace access is allowed.
125 * If we have the ptrace capability to the target user_ns, then ptrace
126 * access is allowed.
127 * Else denied.
128 *
129 * Determine whether a process may access another, returning 0 if permission
130 * granted, -ve if denied.
131 */
132int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
133{
134	int ret = 0;
135	const struct cred *cred, *child_cred;
 
136
137	rcu_read_lock();
138	cred = current_cred();
139	child_cred = __task_cred(child);
 
 
 
 
140	if (cred->user_ns == child_cred->user_ns &&
141	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
142		goto out;
143	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
144		goto out;
145	ret = -EPERM;
146out:
147	rcu_read_unlock();
148	return ret;
149}
150
151/**
152 * cap_ptrace_traceme - Determine whether another process may trace the current
153 * @parent: The task proposed to be the tracer
154 *
155 * If parent is in the same or an ancestor user_ns and has all current's
156 * capabilities, then ptrace access is allowed.
157 * If parent has the ptrace capability to current's user_ns, then ptrace
158 * access is allowed.
159 * Else denied.
160 *
161 * Determine whether the nominated task is permitted to trace the current
162 * process, returning 0 if permission is granted, -ve if denied.
163 */
164int cap_ptrace_traceme(struct task_struct *parent)
165{
166	int ret = 0;
167	const struct cred *cred, *child_cred;
168
169	rcu_read_lock();
170	cred = __task_cred(parent);
171	child_cred = current_cred();
172	if (cred->user_ns == child_cred->user_ns &&
173	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
174		goto out;
175	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
176		goto out;
177	ret = -EPERM;
178out:
179	rcu_read_unlock();
180	return ret;
181}
182
183/**
184 * cap_capget - Retrieve a task's capability sets
185 * @target: The task from which to retrieve the capability sets
186 * @effective: The place to record the effective set
187 * @inheritable: The place to record the inheritable set
188 * @permitted: The place to record the permitted set
189 *
190 * This function retrieves the capabilities of the nominated task and returns
191 * them to the caller.
192 */
193int cap_capget(struct task_struct *target, kernel_cap_t *effective,
194	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
195{
196	const struct cred *cred;
197
198	/* Derived from kernel/capability.c:sys_capget. */
199	rcu_read_lock();
200	cred = __task_cred(target);
201	*effective   = cred->cap_effective;
202	*inheritable = cred->cap_inheritable;
203	*permitted   = cred->cap_permitted;
204	rcu_read_unlock();
205	return 0;
206}
207
208/*
209 * Determine whether the inheritable capabilities are limited to the old
210 * permitted set.  Returns 1 if they are limited, 0 if they are not.
211 */
212static inline int cap_inh_is_capped(void)
213{
214
215	/* they are so limited unless the current task has the CAP_SETPCAP
216	 * capability
217	 */
218	if (cap_capable(current_cred(), current_cred()->user_ns,
219			CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
220		return 0;
221	return 1;
222}
223
224/**
225 * cap_capset - Validate and apply proposed changes to current's capabilities
226 * @new: The proposed new credentials; alterations should be made here
227 * @old: The current task's current credentials
228 * @effective: A pointer to the proposed new effective capabilities set
229 * @inheritable: A pointer to the proposed new inheritable capabilities set
230 * @permitted: A pointer to the proposed new permitted capabilities set
231 *
232 * This function validates and applies a proposed mass change to the current
233 * process's capability sets.  The changes are made to the proposed new
234 * credentials, and assuming no error, will be committed by the caller of LSM.
235 */
236int cap_capset(struct cred *new,
237	       const struct cred *old,
238	       const kernel_cap_t *effective,
239	       const kernel_cap_t *inheritable,
240	       const kernel_cap_t *permitted)
241{
242	if (cap_inh_is_capped() &&
243	    !cap_issubset(*inheritable,
244			  cap_combine(old->cap_inheritable,
245				      old->cap_permitted)))
246		/* incapable of using this inheritable set */
247		return -EPERM;
248
249	if (!cap_issubset(*inheritable,
250			  cap_combine(old->cap_inheritable,
251				      old->cap_bset)))
252		/* no new pI capabilities outside bounding set */
253		return -EPERM;
254
255	/* verify restrictions on target's new Permitted set */
256	if (!cap_issubset(*permitted, old->cap_permitted))
257		return -EPERM;
258
259	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
260	if (!cap_issubset(*effective, *permitted))
261		return -EPERM;
262
263	new->cap_effective   = *effective;
264	new->cap_inheritable = *inheritable;
265	new->cap_permitted   = *permitted;
 
 
 
 
 
 
 
 
 
 
266	return 0;
267}
268
269/*
270 * Clear proposed capability sets for execve().
271 */
272static inline void bprm_clear_caps(struct linux_binprm *bprm)
273{
274	cap_clear(bprm->cred->cap_permitted);
275	bprm->cap_effective = false;
276}
277
278/**
279 * cap_inode_need_killpriv - Determine if inode change affects privileges
280 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
281 *
282 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
283 * affects the security markings on that inode, and if it is, should
284 * inode_killpriv() be invoked or the change rejected?
285 *
286 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
287 * -ve to deny the change.
288 */
289int cap_inode_need_killpriv(struct dentry *dentry)
290{
291	struct inode *inode = dentry->d_inode;
292	int error;
293
294	if (!inode->i_op->getxattr)
295	       return 0;
296
297	error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
298	if (error <= 0)
299		return 0;
300	return 1;
301}
302
303/**
304 * cap_inode_killpriv - Erase the security markings on an inode
305 * @dentry: The inode/dentry to alter
 
 
306 *
307 * Erase the privilege-enhancing security markings on an inode.
308 *
309 * Returns 0 if successful, -ve on error.
 
 
 
 
 
 
310 */
311int cap_inode_killpriv(struct dentry *dentry)
312{
313	struct inode *inode = dentry->d_inode;
314
315	if (!inode->i_op->removexattr)
316	       return 0;
 
 
 
 
 
 
 
 
317
318	return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319}
320
321/*
322 * Calculate the new process capability sets from the capability sets attached
323 * to a file.
324 */
325static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
326					  struct linux_binprm *bprm,
327					  bool *effective,
328					  bool *has_cap)
329{
330	struct cred *new = bprm->cred;
331	unsigned i;
332	int ret = 0;
333
334	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
335		*effective = true;
336
337	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
338		*has_cap = true;
339
340	CAP_FOR_EACH_U32(i) {
341		__u32 permitted = caps->permitted.cap[i];
342		__u32 inheritable = caps->inheritable.cap[i];
343
344		/*
345		 * pP' = (X & fP) | (pI & fI)
346		 */
347		new->cap_permitted.cap[i] =
348			(new->cap_bset.cap[i] & permitted) |
349			(new->cap_inheritable.cap[i] & inheritable);
350
351		if (permitted & ~new->cap_permitted.cap[i])
352			/* insufficient to execute correctly */
353			ret = -EPERM;
354	}
355
356	/*
357	 * For legacy apps, with no internal support for recognizing they
358	 * do not have enough capabilities, we return an error if they are
359	 * missing some "forced" (aka file-permitted) capabilities.
360	 */
361	return *effective ? ret : 0;
362}
363
364/*
 
 
 
 
 
 
365 * Extract the on-exec-apply capability sets for an executable file.
366 */
367int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
 
 
 
 
 
 
 
 
368{
369	struct inode *inode = dentry->d_inode;
370	__u32 magic_etc;
371	unsigned tocopy, i;
372	int size;
373	struct vfs_cap_data caps;
 
 
 
 
374
375	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
376
377	if (!inode || !inode->i_op->getxattr)
378		return -ENODATA;
379
380	size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
381				   XATTR_CAPS_SZ);
 
382	if (size == -ENODATA || size == -EOPNOTSUPP)
383		/* no data, that's ok */
384		return -ENODATA;
 
385	if (size < 0)
386		return size;
387
388	if (size < sizeof(magic_etc))
389		return -EINVAL;
390
391	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
392
 
393	switch (magic_etc & VFS_CAP_REVISION_MASK) {
394	case VFS_CAP_REVISION_1:
395		if (size != XATTR_CAPS_SZ_1)
396			return -EINVAL;
397		tocopy = VFS_CAP_U32_1;
398		break;
399	case VFS_CAP_REVISION_2:
400		if (size != XATTR_CAPS_SZ_2)
401			return -EINVAL;
402		tocopy = VFS_CAP_U32_2;
403		break;
 
 
 
 
 
 
404	default:
405		return -EINVAL;
406	}
407
408	CAP_FOR_EACH_U32(i) {
409		if (i >= tocopy)
410			break;
411		cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
412		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413	}
414
 
 
 
 
 
415	return 0;
416}
417
418/*
419 * Attempt to get the on-exec apply capability sets for an executable file from
420 * its xattrs and, if present, apply them to the proposed credentials being
421 * constructed by execve().
422 */
423static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
 
424{
425	struct dentry *dentry;
426	int rc = 0;
427	struct cpu_vfs_cap_data vcaps;
428
429	bprm_clear_caps(bprm);
430
431	if (!file_caps_enabled)
432		return 0;
433
434	if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
435		return 0;
436
437	dentry = dget(bprm->file->f_dentry);
 
 
 
 
 
 
438
439	rc = get_vfs_caps_from_disk(dentry, &vcaps);
 
440	if (rc < 0) {
441		if (rc == -EINVAL)
442			printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
443				__func__, rc, bprm->filename);
444		else if (rc == -ENODATA)
445			rc = 0;
446		goto out;
447	}
448
449	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
450	if (rc == -EINVAL)
451		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
452		       __func__, rc, bprm->filename);
453
454out:
455	dput(dentry);
456	if (rc)
457		bprm_clear_caps(bprm);
458
459	return rc;
460}
461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462/**
463 * cap_bprm_set_creds - Set up the proposed credentials for execve().
464 * @bprm: The execution parameters, including the proposed creds
 
465 *
466 * Set up the proposed credentials for a new execution context being
467 * constructed by execve().  The proposed creds in @bprm->cred is altered,
468 * which won't take effect immediately.  Returns 0 if successful, -ve on error.
 
 
469 */
470int cap_bprm_set_creds(struct linux_binprm *bprm)
471{
 
472	const struct cred *old = current_cred();
473	struct cred *new = bprm->cred;
474	bool effective, has_cap = false;
475	int ret;
476	kuid_t root_uid;
477
478	effective = false;
479	ret = get_file_caps(bprm, &effective, &has_cap);
 
 
480	if (ret < 0)
481		return ret;
482
483	root_uid = make_kuid(new->user_ns, 0);
484
485	if (!issecure(SECURE_NOROOT)) {
486		/*
487		 * If the legacy file capability is set, then don't set privs
488		 * for a setuid root binary run by a non-root user.  Do set it
489		 * for a root user just to cause least surprise to an admin.
490		 */
491		if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
492			warn_setuid_and_fcaps_mixed(bprm->filename);
493			goto skip;
494		}
495		/*
496		 * To support inheritance of root-permissions and suid-root
497		 * executables under compatibility mode, we override the
498		 * capability sets for the file.
499		 *
500		 * If only the real uid is 0, we do not set the effective bit.
501		 */
502		if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
503			/* pP' = (cap_bset & ~0) | (pI & ~0) */
504			new->cap_permitted = cap_combine(old->cap_bset,
505							 old->cap_inheritable);
506		}
507		if (uid_eq(new->euid, root_uid))
508			effective = true;
509	}
510skip:
511
512	/* if we have fs caps, clear dangerous personality flags */
513	if (!cap_issubset(new->cap_permitted, old->cap_permitted))
514		bprm->per_clear |= PER_CLEAR_ON_SETID;
515
516
517	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
518	 * credentials unless they have the appropriate permit.
519	 *
520	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
521	 */
522	if ((!uid_eq(new->euid, old->uid) ||
523	     !gid_eq(new->egid, old->gid) ||
524	     !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
525	    bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
 
526		/* downgrade; they get no more than they had, and maybe less */
527		if (!capable(CAP_SETUID) ||
528		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
529			new->euid = new->uid;
530			new->egid = new->gid;
531		}
532		new->cap_permitted = cap_intersect(new->cap_permitted,
533						   old->cap_permitted);
534	}
535
536	new->suid = new->fsuid = new->euid;
537	new->sgid = new->fsgid = new->egid;
538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539	if (effective)
540		new->cap_effective = new->cap_permitted;
541	else
542		cap_clear(new->cap_effective);
543	bprm->cap_effective = effective;
 
 
544
545	/*
546	 * Audit candidate if current->cap_effective is set
547	 *
548	 * We do not bother to audit if 3 things are true:
549	 *   1) cap_effective has all caps
550	 *   2) we are root
551	 *   3) root is supposed to have all caps (SECURE_NOROOT)
552	 * Since this is just a normal root execing a process.
553	 *
554	 * Number 1 above might fail if you don't have a full bset, but I think
555	 * that is interesting information to audit.
556	 */
557	if (!cap_isclear(new->cap_effective)) {
558		if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
559		    !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
560		    issecure(SECURE_NOROOT)) {
561			ret = audit_log_bprm_fcaps(bprm, new, old);
562			if (ret < 0)
563				return ret;
564		}
565	}
566
567	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
568	return 0;
569}
570
571/**
572 * cap_bprm_secureexec - Determine whether a secure execution is required
573 * @bprm: The execution parameters
574 *
575 * Determine whether a secure execution is required, return 1 if it is, and 0
576 * if it is not.
577 *
578 * The credentials have been committed by this point, and so are no longer
579 * available through @bprm->cred.
580 */
581int cap_bprm_secureexec(struct linux_binprm *bprm)
582{
583	const struct cred *cred = current_cred();
584	kuid_t root_uid = make_kuid(cred->user_ns, 0);
585
586	if (!uid_eq(cred->uid, root_uid)) {
587		if (bprm->cap_effective)
588			return 1;
589		if (!cap_isclear(cred->cap_permitted))
590			return 1;
591	}
592
593	return (!uid_eq(cred->euid, cred->uid) ||
594		!gid_eq(cred->egid, cred->gid));
595}
596
597/**
598 * cap_inode_setxattr - Determine whether an xattr may be altered
599 * @dentry: The inode/dentry being altered
600 * @name: The name of the xattr to be changed
601 * @value: The value that the xattr will be changed to
602 * @size: The size of value
603 * @flags: The replacement flag
604 *
605 * Determine whether an xattr may be altered or set on an inode, returning 0 if
606 * permission is granted, -ve if denied.
607 *
608 * This is used to make sure security xattrs don't get updated or set by those
609 * who aren't privileged to do so.
610 */
611int cap_inode_setxattr(struct dentry *dentry, const char *name,
612		       const void *value, size_t size, int flags)
613{
614	if (!strcmp(name, XATTR_NAME_CAPS)) {
615		if (!capable(CAP_SETFCAP))
616			return -EPERM;
 
 
 
 
 
 
 
 
 
617		return 0;
618	}
619
620	if (!strncmp(name, XATTR_SECURITY_PREFIX,
621		     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
622	    !capable(CAP_SYS_ADMIN))
623		return -EPERM;
624	return 0;
625}
626
627/**
628 * cap_inode_removexattr - Determine whether an xattr may be removed
629 * @dentry: The inode/dentry being altered
630 * @name: The name of the xattr to be changed
 
 
631 *
632 * Determine whether an xattr may be removed from an inode, returning 0 if
633 * permission is granted, -ve if denied.
634 *
 
 
 
 
 
 
635 * This is used to make sure security xattrs don't get removed by those who
636 * aren't privileged to remove them.
637 */
638int cap_inode_removexattr(struct dentry *dentry, const char *name)
 
639{
640	if (!strcmp(name, XATTR_NAME_CAPS)) {
641		if (!capable(CAP_SETFCAP))
 
 
 
 
 
 
 
 
 
 
 
642			return -EPERM;
643		return 0;
644	}
645
646	if (!strncmp(name, XATTR_SECURITY_PREFIX,
647		     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
648	    !capable(CAP_SYS_ADMIN))
649		return -EPERM;
650	return 0;
651}
652
653/*
654 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
655 * a process after a call to setuid, setreuid, or setresuid.
656 *
657 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
658 *  {r,e,s}uid != 0, the permitted and effective capabilities are
659 *  cleared.
660 *
661 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
662 *  capabilities of the process are cleared.
663 *
664 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
665 *  capabilities are set to the permitted capabilities.
666 *
667 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
668 *  never happen.
669 *
670 *  -astor
671 *
672 * cevans - New behaviour, Oct '99
673 * A process may, via prctl(), elect to keep its capabilities when it
674 * calls setuid() and switches away from uid==0. Both permitted and
675 * effective sets will be retained.
676 * Without this change, it was impossible for a daemon to drop only some
677 * of its privilege. The call to setuid(!=0) would drop all privileges!
678 * Keeping uid 0 is not an option because uid 0 owns too many vital
679 * files..
680 * Thanks to Olaf Kirch and Peter Benie for spotting this.
681 */
682static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
683{
684	kuid_t root_uid = make_kuid(old->user_ns, 0);
685
686	if ((uid_eq(old->uid, root_uid) ||
687	     uid_eq(old->euid, root_uid) ||
688	     uid_eq(old->suid, root_uid)) &&
689	    (!uid_eq(new->uid, root_uid) &&
690	     !uid_eq(new->euid, root_uid) &&
691	     !uid_eq(new->suid, root_uid)) &&
692	    !issecure(SECURE_KEEP_CAPS)) {
693		cap_clear(new->cap_permitted);
694		cap_clear(new->cap_effective);
 
 
 
 
 
 
 
 
695	}
696	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
697		cap_clear(new->cap_effective);
698	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
699		new->cap_effective = new->cap_permitted;
700}
701
702/**
703 * cap_task_fix_setuid - Fix up the results of setuid() call
704 * @new: The proposed credentials
705 * @old: The current task's current credentials
706 * @flags: Indications of what has changed
707 *
708 * Fix up the results of setuid() call before the credential changes are
709 * actually applied, returning 0 to grant the changes, -ve to deny them.
 
 
710 */
711int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
712{
713	switch (flags) {
714	case LSM_SETID_RE:
715	case LSM_SETID_ID:
716	case LSM_SETID_RES:
717		/* juggle the capabilities to follow [RES]UID changes unless
718		 * otherwise suppressed */
719		if (!issecure(SECURE_NO_SETUID_FIXUP))
720			cap_emulate_setxuid(new, old);
721		break;
722
723	case LSM_SETID_FS:
724		/* juggle the capabilties to follow FSUID changes, unless
725		 * otherwise suppressed
726		 *
727		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
728		 *          if not, we might be a bit too harsh here.
729		 */
730		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
731			kuid_t root_uid = make_kuid(old->user_ns, 0);
732			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
733				new->cap_effective =
734					cap_drop_fs_set(new->cap_effective);
735
736			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
737				new->cap_effective =
738					cap_raise_fs_set(new->cap_effective,
739							 new->cap_permitted);
740		}
741		break;
742
743	default:
744		return -EINVAL;
745	}
746
747	return 0;
748}
749
750/*
751 * Rationale: code calling task_setscheduler, task_setioprio, and
752 * task_setnice, assumes that
753 *   . if capable(cap_sys_nice), then those actions should be allowed
754 *   . if not capable(cap_sys_nice), but acting on your own processes,
755 *   	then those actions should be allowed
756 * This is insufficient now since you can call code without suid, but
757 * yet with increased caps.
758 * So we check for increased caps on the target process.
759 */
760static int cap_safe_nice(struct task_struct *p)
761{
762	int is_subset;
763
764	rcu_read_lock();
765	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
766				 current_cred()->cap_permitted);
 
 
767	rcu_read_unlock();
768
769	if (!is_subset && !capable(CAP_SYS_NICE))
770		return -EPERM;
771	return 0;
772}
773
774/**
775 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
776 * @p: The task to affect
777 *
778 * Detemine if the requested scheduler policy change is permitted for the
779 * specified task, returning 0 if permission is granted, -ve if denied.
 
 
780 */
781int cap_task_setscheduler(struct task_struct *p)
782{
783	return cap_safe_nice(p);
784}
785
786/**
787 * cap_task_ioprio - Detemine if I/O priority change is permitted
788 * @p: The task to affect
789 * @ioprio: The I/O priority to set
790 *
791 * Detemine if the requested I/O priority change is permitted for the specified
792 * task, returning 0 if permission is granted, -ve if denied.
 
 
793 */
794int cap_task_setioprio(struct task_struct *p, int ioprio)
795{
796	return cap_safe_nice(p);
797}
798
799/**
800 * cap_task_ioprio - Detemine if task priority change is permitted
801 * @p: The task to affect
802 * @nice: The nice value to set
803 *
804 * Detemine if the requested task priority change is permitted for the
805 * specified task, returning 0 if permission is granted, -ve if denied.
 
 
806 */
807int cap_task_setnice(struct task_struct *p, int nice)
808{
809	return cap_safe_nice(p);
810}
811
812/*
813 * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
814 * the current task's bounding set.  Returns 0 on success, -ve on error.
815 */
816static long cap_prctl_drop(struct cred *new, unsigned long cap)
817{
818	if (!capable(CAP_SETPCAP))
 
 
819		return -EPERM;
820	if (!cap_valid(cap))
821		return -EINVAL;
822
 
 
 
823	cap_lower(new->cap_bset, cap);
824	return 0;
825}
826
827/**
828 * cap_task_prctl - Implement process control functions for this security module
829 * @option: The process control function requested
830 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
 
 
 
831 *
832 * Allow process control functions (sys_prctl()) to alter capabilities; may
833 * also deny access to other functions not otherwise implemented here.
834 *
835 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
836 * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
837 * modules will consider performing the function.
838 */
839int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
840		   unsigned long arg4, unsigned long arg5)
841{
 
842	struct cred *new;
843	long error = 0;
844
845	new = prepare_creds();
846	if (!new)
847		return -ENOMEM;
848
849	switch (option) {
850	case PR_CAPBSET_READ:
851		error = -EINVAL;
852		if (!cap_valid(arg2))
853			goto error;
854		error = !!cap_raised(new->cap_bset, arg2);
855		goto no_change;
856
857	case PR_CAPBSET_DROP:
858		error = cap_prctl_drop(new, arg2);
859		if (error < 0)
860			goto error;
861		goto changed;
862
863	/*
864	 * The next four prctl's remain to assist with transitioning a
865	 * system from legacy UID=0 based privilege (when filesystem
866	 * capabilities are not in use) to a system using filesystem
867	 * capabilities only - as the POSIX.1e draft intended.
868	 *
869	 * Note:
870	 *
871	 *  PR_SET_SECUREBITS =
872	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
873	 *    | issecure_mask(SECURE_NOROOT)
874	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
875	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
876	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
877	 *
878	 * will ensure that the current process and all of its
879	 * children will be locked into a pure
880	 * capability-based-privilege environment.
881	 */
882	case PR_SET_SECUREBITS:
883		error = -EPERM;
884		if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
885		     & (new->securebits ^ arg2))			/*[1]*/
886		    || ((new->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
887		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
888		    || (cap_capable(current_cred(),
889				    current_cred()->user_ns, CAP_SETPCAP,
890				    SECURITY_CAP_AUDIT) != 0)		/*[4]*/
 
891			/*
892			 * [1] no changing of bits that are locked
893			 * [2] no unlocking of locks
894			 * [3] no setting of unsupported bits
895			 * [4] doing anything requires privilege (go read about
896			 *     the "sendmail capabilities bug")
897			 */
898		    )
899			/* cannot change a locked bit */
900			goto error;
 
 
 
 
901		new->securebits = arg2;
902		goto changed;
903
904	case PR_GET_SECUREBITS:
905		error = new->securebits;
906		goto no_change;
907
908	case PR_GET_KEEPCAPS:
909		if (issecure(SECURE_KEEP_CAPS))
910			error = 1;
911		goto no_change;
912
913	case PR_SET_KEEPCAPS:
914		error = -EINVAL;
915		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
916			goto error;
917		error = -EPERM;
918		if (issecure(SECURE_KEEP_CAPS_LOCKED))
919			goto error;
 
 
 
 
920		if (arg2)
921			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
922		else
923			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
924		goto changed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925
926	default:
927		/* No functionality available - continue with default */
928		error = -ENOSYS;
929		goto error;
930	}
931
932	/* Functionality provided */
933changed:
934	return commit_creds(new);
935
936no_change:
937error:
938	abort_creds(new);
939	return error;
940}
941
942/**
943 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
944 * @mm: The VM space in which the new mapping is to be made
945 * @pages: The size of the mapping
946 *
947 * Determine whether the allocation of a new virtual mapping by the current
948 * task is permitted, returning 0 if permission is granted, -ve if not.
 
 
949 */
950int cap_vm_enough_memory(struct mm_struct *mm, long pages)
951{
952	int cap_sys_admin = 0;
953
954	if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
955			SECURITY_CAP_NOAUDIT) == 0)
956		cap_sys_admin = 1;
957	return __vm_enough_memory(mm, pages, cap_sys_admin);
958}
959
960/*
961 * cap_mmap_addr - check if able to map given addr
962 * @addr: address attempting to be mapped
963 *
964 * If the process is attempting to map memory below dac_mmap_min_addr they need
965 * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
966 * capability security module.  Returns 0 if this mapping should be allowed
967 * -EPERM if not.
 
968 */
969int cap_mmap_addr(unsigned long addr)
970{
971	int ret = 0;
972
973	if (addr < dac_mmap_min_addr) {
974		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
975				  SECURITY_CAP_AUDIT);
976		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
977		if (ret == 0)
978			current->flags |= PF_SUPERPRIV;
979	}
980	return ret;
981}
982
983int cap_mmap_file(struct file *file, unsigned long reqprot,
984		  unsigned long prot, unsigned long flags)
985{
986	return 0;
987}