Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3// Copyright (C) 2024 Google LLC.
  4
  5//! A linked list implementation.
  6
  7use crate::init::PinInit;
  8use crate::sync::ArcBorrow;
  9use crate::types::Opaque;
 10use core::iter::{DoubleEndedIterator, FusedIterator};
 11use core::marker::PhantomData;
 12use core::ptr;
 13
 14mod impl_list_item_mod;
 15pub use self::impl_list_item_mod::{
 16    impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
 17};
 18
 19mod arc;
 20pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
 21
 22mod arc_field;
 23pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
 24
 25/// A linked list.
 26///
 27/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
 28/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
 29/// prev/next pointers are not used for several linked lists.
 30///
 31/// # Invariants
 32///
 33/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
 34///   field of the first element in the list.
 35/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
 36/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
 37///   exclusive access to the `ListLinks` field.
 38pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
 39    first: *mut ListLinksFields,
 40    _ty: PhantomData<ListArc<T, ID>>,
 41}
 42
 43// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
 44// type of access to the `ListArc<T, ID>` elements.
 45unsafe impl<T, const ID: u64> Send for List<T, ID>
 46where
 47    ListArc<T, ID>: Send,
 48    T: ?Sized + ListItem<ID>,
 49{
 50}
 51// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
 52// type of access to the `ListArc<T, ID>` elements.
 53unsafe impl<T, const ID: u64> Sync for List<T, ID>
 54where
 55    ListArc<T, ID>: Sync,
 56    T: ?Sized + ListItem<ID>,
 57{
 58}
 59
 60/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
 61///
 62/// # Safety
 63///
 64/// Implementers must ensure that they provide the guarantees documented on methods provided by
 65/// this trait.
 66///
 67/// [`ListArc<Self>`]: ListArc
 68pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
 69    /// Views the [`ListLinks`] for this value.
 70    ///
 71    /// # Guarantees
 72    ///
 73    /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
 74    /// since the most recent such call, then this returns the same pointer as the one returned by
 75    /// the most recent call to `prepare_to_insert`.
 76    ///
 77    /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
 78    ///
 79    /// # Safety
 80    ///
 81    /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
 82    unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
 83
 84    /// View the full value given its [`ListLinks`] field.
 85    ///
 86    /// Can only be used when the value is in a list.
 87    ///
 88    /// # Guarantees
 89    ///
 90    /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
 91    /// * The returned pointer is valid until the next call to `post_remove`.
 92    ///
 93    /// # Safety
 94    ///
 95    /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
 96    ///   from a call to `view_links` that happened after the most recent call to
 97    ///   `prepare_to_insert`.
 98    /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
 99    ///   been called.
100    unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
101
102    /// This is called when an item is inserted into a [`List`].
103    ///
104    /// # Guarantees
105    ///
106    /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
107    /// called.
108    ///
109    /// # Safety
110    ///
111    /// * The provided pointer must point at a valid value in an [`Arc`].
112    /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
113    /// * The caller must own the [`ListArc`] for this value.
114    /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
115    ///   called after this call to `prepare_to_insert`.
116    ///
117    /// [`Arc`]: crate::sync::Arc
118    unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
119
120    /// This undoes a previous call to `prepare_to_insert`.
121    ///
122    /// # Guarantees
123    ///
124    /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
125    ///
126    /// # Safety
127    ///
128    /// The provided pointer must be the pointer returned by the most recent call to
129    /// `prepare_to_insert`.
130    unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
131}
132
133#[repr(C)]
134#[derive(Copy, Clone)]
135struct ListLinksFields {
136    next: *mut ListLinksFields,
137    prev: *mut ListLinksFields,
138}
139
140/// The prev/next pointers for an item in a linked list.
141///
142/// # Invariants
143///
144/// The fields are null if and only if this item is not in a list.
145#[repr(transparent)]
146pub struct ListLinks<const ID: u64 = 0> {
147    // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
148    // list.
149    inner: Opaque<ListLinksFields>,
150}
151
152// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
153// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
154// move this an instance of this type to a different thread if the pointees are `!Send`.
155unsafe impl<const ID: u64> Send for ListLinks<ID> {}
156// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
157// okay to have immutable access to a ListLinks from several threads at once.
158unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
159
160impl<const ID: u64> ListLinks<ID> {
161    /// Creates a new initializer for this type.
162    pub fn new() -> impl PinInit<Self> {
163        // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
164        // not be constructed in an `Arc` that already has a `ListArc`.
165        ListLinks {
166            inner: Opaque::new(ListLinksFields {
167                prev: ptr::null_mut(),
168                next: ptr::null_mut(),
169            }),
170        }
171    }
172
173    /// # Safety
174    ///
175    /// `me` must be dereferenceable.
176    #[inline]
177    unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
178        // SAFETY: The caller promises that the pointer is valid.
179        unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
180    }
181
182    /// # Safety
183    ///
184    /// `me` must be dereferenceable.
185    #[inline]
186    unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
187        me.cast()
188    }
189}
190
191/// Similar to [`ListLinks`], but also contains a pointer to the full value.
192///
193/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
194#[repr(C)]
195pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
196    /// The `ListLinks` field inside this value.
197    ///
198    /// This is public so that it can be used with `impl_has_list_links!`.
199    pub inner: ListLinks<ID>,
200    // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
201    // `ptr::null()` doesn't work for `T: ?Sized`.
202    self_ptr: Opaque<*const T>,
203}
204
205// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
206unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
207// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
208// it's okay to have immutable access to a ListLinks from several threads at once.
209//
210// Note that `inner` being a public field does not prevent this type from being opaque, since
211// `inner` is a opaque type.
212unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
213
214impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
215    /// The offset from the [`ListLinks`] to the self pointer field.
216    pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
217
218    /// Creates a new initializer for this type.
219    pub fn new() -> impl PinInit<Self> {
220        // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
221        // not be constructed in an `Arc` that already has a `ListArc`.
222        Self {
223            inner: ListLinks {
224                inner: Opaque::new(ListLinksFields {
225                    prev: ptr::null_mut(),
226                    next: ptr::null_mut(),
227                }),
228            },
229            self_ptr: Opaque::uninit(),
230        }
231    }
232}
233
234impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
235    /// Creates a new empty list.
236    pub const fn new() -> Self {
237        Self {
238            first: ptr::null_mut(),
239            _ty: PhantomData,
240        }
241    }
242
243    /// Returns whether this list is empty.
244    pub fn is_empty(&self) -> bool {
245        self.first.is_null()
246    }
247
248    /// Add the provided item to the back of the list.
249    pub fn push_back(&mut self, item: ListArc<T, ID>) {
250        let raw_item = ListArc::into_raw(item);
251        // SAFETY:
252        // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
253        // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
254        //   the most recent call to `prepare_to_insert`, if any.
255        // * We own the `ListArc`.
256        // * Removing items from this list is always done using `remove_internal_inner`, which
257        //   calls `post_remove` before giving up ownership.
258        let list_links = unsafe { T::prepare_to_insert(raw_item) };
259        // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
260        let item = unsafe { ListLinks::fields(list_links) };
261
262        if self.first.is_null() {
263            self.first = item;
264            // SAFETY: The caller just gave us ownership of these fields.
265            // INVARIANT: A linked list with one item should be cyclic.
266            unsafe {
267                (*item).next = item;
268                (*item).prev = item;
269            }
270        } else {
271            let next = self.first;
272            // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
273            // it's not null, so it must be valid.
274            let prev = unsafe { (*next).prev };
275            // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
276            // ownership of the fields on `item`.
277            // INVARIANT: This correctly inserts `item` between `prev` and `next`.
278            unsafe {
279                (*item).next = next;
280                (*item).prev = prev;
281                (*prev).next = item;
282                (*next).prev = item;
283            }
284        }
285    }
286
287    /// Add the provided item to the front of the list.
288    pub fn push_front(&mut self, item: ListArc<T, ID>) {
289        let raw_item = ListArc::into_raw(item);
290        // SAFETY:
291        // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
292        // * If this requirement is violated, then the previous caller of `prepare_to_insert`
293        //   violated the safety requirement that they can't give up ownership of the `ListArc`
294        //   until they call `post_remove`.
295        // * We own the `ListArc`.
296        // * Removing items] from this list is always done using `remove_internal_inner`, which
297        //   calls `post_remove` before giving up ownership.
298        let list_links = unsafe { T::prepare_to_insert(raw_item) };
299        // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
300        let item = unsafe { ListLinks::fields(list_links) };
301
302        if self.first.is_null() {
303            // SAFETY: The caller just gave us ownership of these fields.
304            // INVARIANT: A linked list with one item should be cyclic.
305            unsafe {
306                (*item).next = item;
307                (*item).prev = item;
308            }
309        } else {
310            let next = self.first;
311            // SAFETY: We just checked that `next` is non-null.
312            let prev = unsafe { (*next).prev };
313            // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
314            // ownership of the fields on `item`.
315            // INVARIANT: This correctly inserts `item` between `prev` and `next`.
316            unsafe {
317                (*item).next = next;
318                (*item).prev = prev;
319                (*prev).next = item;
320                (*next).prev = item;
321            }
322        }
323        self.first = item;
324    }
325
326    /// Removes the last item from this list.
327    pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
328        if self.first.is_null() {
329            return None;
330        }
331
332        // SAFETY: We just checked that the list is not empty.
333        let last = unsafe { (*self.first).prev };
334        // SAFETY: The last item of this list is in this list.
335        Some(unsafe { self.remove_internal(last) })
336    }
337
338    /// Removes the first item from this list.
339    pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
340        if self.first.is_null() {
341            return None;
342        }
343
344        // SAFETY: The first item of this list is in this list.
345        Some(unsafe { self.remove_internal(self.first) })
346    }
347
348    /// Removes the provided item from this list and returns it.
349    ///
350    /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
351    /// this means that the item is not in any list.)
352    ///
353    /// # Safety
354    ///
355    /// `item` must not be in a different linked list (with the same id).
356    pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
357        // SAFETY: TODO.
358        let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
359        // SAFETY: The user provided a reference, and reference are never dangling.
360        //
361        // As for why this is not a data race, there are two cases:
362        //
363        //  * If `item` is not in any list, then these fields are read-only and null.
364        //  * If `item` is in this list, then we have exclusive access to these fields since we
365        //    have a mutable reference to the list.
366        //
367        // In either case, there's no race.
368        let ListLinksFields { next, prev } = unsafe { *item };
369
370        debug_assert_eq!(next.is_null(), prev.is_null());
371        if !next.is_null() {
372            // This is really a no-op, but this ensures that `item` is a raw pointer that was
373            // obtained without going through a pointer->reference->pointer conversion roundtrip.
374            // This ensures that the list is valid under the more restrictive strict provenance
375            // ruleset.
376            //
377            // SAFETY: We just checked that `next` is not null, and it's not dangling by the
378            // list invariants.
379            unsafe {
380                debug_assert_eq!(item, (*next).prev);
381                item = (*next).prev;
382            }
383
384            // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
385            // is in this list. The pointers are in the right order.
386            Some(unsafe { self.remove_internal_inner(item, next, prev) })
387        } else {
388            None
389        }
390    }
391
392    /// Removes the provided item from the list.
393    ///
394    /// # Safety
395    ///
396    /// `item` must point at an item in this list.
397    unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
398        // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
399        // since we have a mutable reference to the list containing `item`.
400        let ListLinksFields { next, prev } = unsafe { *item };
401        // SAFETY: The pointers are ok and in the right order.
402        unsafe { self.remove_internal_inner(item, next, prev) }
403    }
404
405    /// Removes the provided item from the list.
406    ///
407    /// # Safety
408    ///
409    /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
410    /// next` and `(*item).prev == prev`.
411    unsafe fn remove_internal_inner(
412        &mut self,
413        item: *mut ListLinksFields,
414        next: *mut ListLinksFields,
415        prev: *mut ListLinksFields,
416    ) -> ListArc<T, ID> {
417        // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
418        // pointers are always valid for items in a list.
419        //
420        // INVARIANT: There are three cases:
421        //  * If the list has at least three items, then after removing the item, `prev` and `next`
422        //    will be next to each other.
423        //  * If the list has two items, then the remaining item will point at itself.
424        //  * If the list has one item, then `next == prev == item`, so these writes have no
425        //    effect. The list remains unchanged and `item` is still in the list for now.
426        unsafe {
427            (*next).prev = prev;
428            (*prev).next = next;
429        }
430        // SAFETY: We have exclusive access to items in the list.
431        // INVARIANT: `item` is being removed, so the pointers should be null.
432        unsafe {
433            (*item).prev = ptr::null_mut();
434            (*item).next = ptr::null_mut();
435        }
436        // INVARIANT: There are three cases:
437        //  * If `item` was not the first item, then `self.first` should remain unchanged.
438        //  * If `item` was the first item and there is another item, then we just updated
439        //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null
440        //    did not modify `prev->next`.
441        //  * If `item` was the only item in the list, then `prev == item`, and we just set
442        //    `item->next` to null, so this correctly sets `first` to null now that the list is
443        //    empty.
444        if self.first == item {
445            // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
446            // list, so it must be valid. There is no race since `prev` is still in the list and we
447            // still have exclusive access to the list.
448            self.first = unsafe { (*prev).next };
449        }
450
451        // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
452        // of `List`.
453        let list_links = unsafe { ListLinks::from_fields(item) };
454        // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
455        let raw_item = unsafe { T::post_remove(list_links) };
456        // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
457        unsafe { ListArc::from_raw(raw_item) }
458    }
459
460    /// Moves all items from `other` into `self`.
461    ///
462    /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
463    /// the last item of `self`.
464    pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
465        // First, we insert the elements into `self`. At the end, we make `other` empty.
466        if self.is_empty() {
467            // INVARIANT: All of the elements in `other` become elements of `self`.
468            self.first = other.first;
469        } else if !other.is_empty() {
470            let other_first = other.first;
471            // SAFETY: The other list is not empty, so this pointer is valid.
472            let other_last = unsafe { (*other_first).prev };
473            let self_first = self.first;
474            // SAFETY: The self list is not empty, so this pointer is valid.
475            let self_last = unsafe { (*self_first).prev };
476
477            // SAFETY: We have exclusive access to both lists, so we can update the pointers.
478            // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
479            // update `self.first` because the first element of `self` does not change.
480            unsafe {
481                (*self_first).prev = other_last;
482                (*other_last).next = self_first;
483                (*self_last).next = other_first;
484                (*other_first).prev = self_last;
485            }
486        }
487
488        // INVARIANT: The other list is now empty, so update its pointer.
489        other.first = ptr::null_mut();
490    }
491
492    /// Returns a cursor to the first element of the list.
493    ///
494    /// If the list is empty, this returns `None`.
495    pub fn cursor_front(&mut self) -> Option<Cursor<'_, T, ID>> {
496        if self.first.is_null() {
497            None
498        } else {
499            Some(Cursor {
500                current: self.first,
501                list: self,
502            })
503        }
504    }
505
506    /// Creates an iterator over the list.
507    pub fn iter(&self) -> Iter<'_, T, ID> {
508        // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
509        // at the first element of the same list.
510        Iter {
511            current: self.first,
512            stop: self.first,
513            _ty: PhantomData,
514        }
515    }
516}
517
518impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
519    fn default() -> Self {
520        List::new()
521    }
522}
523
524impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
525    fn drop(&mut self) {
526        while let Some(item) = self.pop_front() {
527            drop(item);
528        }
529    }
530}
531
532/// An iterator over a [`List`].
533///
534/// # Invariants
535///
536/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
537/// * The `current` pointer is null or points at a value in that [`List`].
538/// * The `stop` pointer is equal to the `first` field of that [`List`].
539#[derive(Clone)]
540pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
541    current: *mut ListLinksFields,
542    stop: *mut ListLinksFields,
543    _ty: PhantomData<&'a ListArc<T, ID>>,
544}
545
546impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
547    type Item = ArcBorrow<'a, T>;
548
549    fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
550        if self.current.is_null() {
551            return None;
552        }
553
554        let current = self.current;
555
556        // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
557        // dangling. There's no race because the iterator holds an immutable borrow to the list.
558        let next = unsafe { (*current).next };
559        // INVARIANT: If `current` was the last element of the list, then this updates it to null.
560        // Otherwise, we update it to the next element.
561        self.current = if next != self.stop {
562            next
563        } else {
564            ptr::null_mut()
565        };
566
567        // SAFETY: The `current` pointer points at a value in the list.
568        let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
569        // SAFETY:
570        // * All values in a list are stored in an `Arc`.
571        // * The value cannot be removed from the list for the duration of the lifetime annotated
572        //   on the returned `ArcBorrow`, because removing it from the list would require mutable
573        //   access to the list. However, the `ArcBorrow` is annotated with the iterator's
574        //   lifetime, and the list is immutably borrowed for that lifetime.
575        // * Values in a list never have a `UniqueArc` reference.
576        Some(unsafe { ArcBorrow::from_raw(item) })
577    }
578}
579
580/// A cursor into a [`List`].
581///
582/// # Invariants
583///
584/// The `current` pointer points a value in `list`.
585pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
586    current: *mut ListLinksFields,
587    list: &'a mut List<T, ID>,
588}
589
590impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
591    /// Access the current element of this cursor.
592    pub fn current(&self) -> ArcBorrow<'_, T> {
593        // SAFETY: The `current` pointer points a value in the list.
594        let me = unsafe { T::view_value(ListLinks::from_fields(self.current)) };
595        // SAFETY:
596        // * All values in a list are stored in an `Arc`.
597        // * The value cannot be removed from the list for the duration of the lifetime annotated
598        //   on the returned `ArcBorrow`, because removing it from the list would require mutable
599        //   access to the cursor or the list. However, the `ArcBorrow` holds an immutable borrow
600        //   on the cursor, which in turn holds a mutable borrow on the list, so any such
601        //   mutable access requires first releasing the immutable borrow on the cursor.
602        // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
603        //   reference, and `UniqueArc` references must be unique.
604        unsafe { ArcBorrow::from_raw(me) }
605    }
606
607    /// Move the cursor to the next element.
608    pub fn next(self) -> Option<Cursor<'a, T, ID>> {
609        // SAFETY: The `current` field is always in a list.
610        let next = unsafe { (*self.current).next };
611
612        if next == self.list.first {
613            None
614        } else {
615            // INVARIANT: Since `self.current` is in the `list`, its `next` pointer is also in the
616            // `list`.
617            Some(Cursor {
618                current: next,
619                list: self.list,
620            })
621        }
622    }
623
624    /// Move the cursor to the previous element.
625    pub fn prev(self) -> Option<Cursor<'a, T, ID>> {
626        // SAFETY: The `current` field is always in a list.
627        let prev = unsafe { (*self.current).prev };
628
629        if self.current == self.list.first {
630            None
631        } else {
632            // INVARIANT: Since `self.current` is in the `list`, its `prev` pointer is also in the
633            // `list`.
634            Some(Cursor {
635                current: prev,
636                list: self.list,
637            })
638        }
639    }
640
641    /// Remove the current element from the list.
642    pub fn remove(self) -> ListArc<T, ID> {
643        // SAFETY: The `current` pointer always points at a member of the list.
644        unsafe { self.list.remove_internal(self.current) }
645    }
646}
647
648impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
649
650impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
651    type IntoIter = Iter<'a, T, ID>;
652    type Item = ArcBorrow<'a, T>;
653
654    fn into_iter(self) -> Iter<'a, T, ID> {
655        self.iter()
656    }
657}
658
659/// An owning iterator into a [`List`].
660pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
661    list: List<T, ID>,
662}
663
664impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
665    type Item = ListArc<T, ID>;
666
667    fn next(&mut self) -> Option<ListArc<T, ID>> {
668        self.list.pop_front()
669    }
670}
671
672impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
673
674impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
675    fn next_back(&mut self) -> Option<ListArc<T, ID>> {
676        self.list.pop_back()
677    }
678}
679
680impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
681    type IntoIter = IntoIter<T, ID>;
682    type Item = ListArc<T, ID>;
683
684    fn into_iter(self) -> IntoIter<T, ID> {
685        IntoIter { list: self }
686    }
687}