Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! Implementation of [`Vec`].
  4
  5use super::{
  6    allocator::{KVmalloc, Kmalloc, Vmalloc},
  7    layout::ArrayLayout,
  8    AllocError, Allocator, Box, Flags,
  9};
 10use core::{
 11    fmt,
 12    marker::PhantomData,
 13    mem::{ManuallyDrop, MaybeUninit},
 14    ops::Deref,
 15    ops::DerefMut,
 16    ops::Index,
 17    ops::IndexMut,
 18    ptr,
 19    ptr::NonNull,
 20    slice,
 21    slice::SliceIndex,
 22};
 23
 24/// Create a [`KVec`] containing the arguments.
 25///
 26/// New memory is allocated with `GFP_KERNEL`.
 27///
 28/// # Examples
 29///
 30/// ```
 31/// let mut v = kernel::kvec![];
 32/// v.push(1, GFP_KERNEL)?;
 33/// assert_eq!(v, [1]);
 34///
 35/// let mut v = kernel::kvec![1; 3]?;
 36/// v.push(4, GFP_KERNEL)?;
 37/// assert_eq!(v, [1, 1, 1, 4]);
 38///
 39/// let mut v = kernel::kvec![1, 2, 3]?;
 40/// v.push(4, GFP_KERNEL)?;
 41/// assert_eq!(v, [1, 2, 3, 4]);
 42///
 43/// # Ok::<(), Error>(())
 44/// ```
 45#[macro_export]
 46macro_rules! kvec {
 47    () => (
 48        $crate::alloc::KVec::new()
 49    );
 50    ($elem:expr; $n:expr) => (
 51        $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
 52    );
 53    ($($x:expr),+ $(,)?) => (
 54        match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
 55            Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
 56            Err(e) => Err(e),
 57        }
 58    );
 59}
 60
 61/// The kernel's [`Vec`] type.
 62///
 63/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
 64/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
 65///
 66/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
 67/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
 68///
 69/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
 70///
 71/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
 72/// capacity of the vector (the number of elements that currently fit into the vector), its length
 73/// (the number of elements that are currently stored in the vector) and the `Allocator` type used
 74/// to allocate (and free) the backing buffer.
 75///
 76/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
 77/// and manually modified.
 78///
 79/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
 80/// are added to the vector.
 81///
 82/// # Invariants
 83///
 84/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
 85///   zero-sized types, is a dangling, well aligned pointer.
 86///
 87/// - `self.len` always represents the exact number of elements stored in the vector.
 88///
 89/// - `self.layout` represents the absolute number of elements that can be stored within the vector
 90///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
 91///   backing buffer to be larger than `layout`.
 92///
 93/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
 94///   was allocated with (and must be freed with).
 95pub struct Vec<T, A: Allocator> {
 96    ptr: NonNull<T>,
 97    /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
 98    ///
 99    /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
100    /// elements we can still store without reallocating.
101    layout: ArrayLayout<T>,
102    len: usize,
103    _p: PhantomData<A>,
104}
105
106/// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
107///
108/// # Examples
109///
110/// ```
111/// let mut v = KVec::new();
112/// v.push(1, GFP_KERNEL)?;
113/// assert_eq!(&v, &[1]);
114///
115/// # Ok::<(), Error>(())
116/// ```
117pub type KVec<T> = Vec<T, Kmalloc>;
118
119/// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
120///
121/// # Examples
122///
123/// ```
124/// let mut v = VVec::new();
125/// v.push(1, GFP_KERNEL)?;
126/// assert_eq!(&v, &[1]);
127///
128/// # Ok::<(), Error>(())
129/// ```
130pub type VVec<T> = Vec<T, Vmalloc>;
131
132/// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
133///
134/// # Examples
135///
136/// ```
137/// let mut v = KVVec::new();
138/// v.push(1, GFP_KERNEL)?;
139/// assert_eq!(&v, &[1]);
140///
141/// # Ok::<(), Error>(())
142/// ```
143pub type KVVec<T> = Vec<T, KVmalloc>;
144
145// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
146unsafe impl<T, A> Send for Vec<T, A>
147where
148    T: Send,
149    A: Allocator,
150{
151}
152
153// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
154unsafe impl<T, A> Sync for Vec<T, A>
155where
156    T: Sync,
157    A: Allocator,
158{
159}
160
161impl<T, A> Vec<T, A>
162where
163    A: Allocator,
164{
165    #[inline]
166    const fn is_zst() -> bool {
167        core::mem::size_of::<T>() == 0
168    }
169
170    /// Returns the number of elements that can be stored within the vector without allocating
171    /// additional memory.
172    pub fn capacity(&self) -> usize {
173        if const { Self::is_zst() } {
174            usize::MAX
175        } else {
176            self.layout.len()
177        }
178    }
179
180    /// Returns the number of elements stored within the vector.
181    #[inline]
182    pub fn len(&self) -> usize {
183        self.len
184    }
185
186    /// Forcefully sets `self.len` to `new_len`.
187    ///
188    /// # Safety
189    ///
190    /// - `new_len` must be less than or equal to [`Self::capacity`].
191    /// - If `new_len` is greater than `self.len`, all elements within the interval
192    ///   [`self.len`,`new_len`) must be initialized.
193    #[inline]
194    pub unsafe fn set_len(&mut self, new_len: usize) {
195        debug_assert!(new_len <= self.capacity());
196        self.len = new_len;
197    }
198
199    /// Returns a slice of the entire vector.
200    #[inline]
201    pub fn as_slice(&self) -> &[T] {
202        self
203    }
204
205    /// Returns a mutable slice of the entire vector.
206    #[inline]
207    pub fn as_mut_slice(&mut self) -> &mut [T] {
208        self
209    }
210
211    /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
212    /// dangling raw pointer.
213    #[inline]
214    pub fn as_mut_ptr(&mut self) -> *mut T {
215        self.ptr.as_ptr()
216    }
217
218    /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
219    /// pointer.
220    #[inline]
221    pub fn as_ptr(&self) -> *const T {
222        self.ptr.as_ptr()
223    }
224
225    /// Returns `true` if the vector contains no elements, `false` otherwise.
226    ///
227    /// # Examples
228    ///
229    /// ```
230    /// let mut v = KVec::new();
231    /// assert!(v.is_empty());
232    ///
233    /// v.push(1, GFP_KERNEL);
234    /// assert!(!v.is_empty());
235    /// ```
236    #[inline]
237    pub fn is_empty(&self) -> bool {
238        self.len() == 0
239    }
240
241    /// Creates a new, empty `Vec<T, A>`.
242    ///
243    /// This method does not allocate by itself.
244    #[inline]
245    pub const fn new() -> Self {
246        // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
247        // - `ptr` is a properly aligned dangling pointer for type `T`,
248        // - `layout` is an empty `ArrayLayout` (zero capacity)
249        // - `len` is zero, since no elements can be or have been stored,
250        // - `A` is always valid.
251        Self {
252            ptr: NonNull::dangling(),
253            layout: ArrayLayout::empty(),
254            len: 0,
255            _p: PhantomData::<A>,
256        }
257    }
258
259    /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
260    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
261        // SAFETY:
262        // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
263        //   guaranteed to be part of the same allocated object.
264        // - `self.len` can not overflow `isize`.
265        let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
266
267        // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
268        // and valid, but uninitialized.
269        unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
270    }
271
272    /// Appends an element to the back of the [`Vec`] instance.
273    ///
274    /// # Examples
275    ///
276    /// ```
277    /// let mut v = KVec::new();
278    /// v.push(1, GFP_KERNEL)?;
279    /// assert_eq!(&v, &[1]);
280    ///
281    /// v.push(2, GFP_KERNEL)?;
282    /// assert_eq!(&v, &[1, 2]);
283    /// # Ok::<(), Error>(())
284    /// ```
285    pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
286        self.reserve(1, flags)?;
287
288        // SAFETY:
289        // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
290        //   guaranteed to be part of the same allocated object.
291        // - `self.len` can not overflow `isize`.
292        let ptr = unsafe { self.as_mut_ptr().add(self.len) };
293
294        // SAFETY:
295        // - `ptr` is properly aligned and valid for writes.
296        unsafe { core::ptr::write(ptr, v) };
297
298        // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
299        // by 1. We also know that the new length is <= capacity because of the previous call to
300        // `reserve` above.
301        unsafe { self.set_len(self.len() + 1) };
302        Ok(())
303    }
304
305    /// Creates a new [`Vec`] instance with at least the given capacity.
306    ///
307    /// # Examples
308    ///
309    /// ```
310    /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
311    ///
312    /// assert!(v.capacity() >= 20);
313    /// # Ok::<(), Error>(())
314    /// ```
315    pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
316        let mut v = Vec::new();
317
318        v.reserve(capacity, flags)?;
319
320        Ok(v)
321    }
322
323    /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
324    ///
325    /// # Examples
326    ///
327    /// ```
328    /// let mut v = kernel::kvec![1, 2, 3]?;
329    /// v.reserve(1, GFP_KERNEL)?;
330    ///
331    /// let (mut ptr, mut len, cap) = v.into_raw_parts();
332    ///
333    /// // SAFETY: We've just reserved memory for another element.
334    /// unsafe { ptr.add(len).write(4) };
335    /// len += 1;
336    ///
337    /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
338    /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
339    /// // from the exact same raw parts.
340    /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
341    ///
342    /// assert_eq!(v, [1, 2, 3, 4]);
343    ///
344    /// # Ok::<(), Error>(())
345    /// ```
346    ///
347    /// # Safety
348    ///
349    /// If `T` is a ZST:
350    ///
351    /// - `ptr` must be a dangling, well aligned pointer.
352    ///
353    /// Otherwise:
354    ///
355    /// - `ptr` must have been allocated with the allocator `A`.
356    /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
357    /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
358    /// - The allocated size in bytes must not be larger than `isize::MAX`.
359    /// - `length` must be less than or equal to `capacity`.
360    /// - The first `length` elements must be initialized values of type `T`.
361    ///
362    /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
363    /// `cap` and `len`.
364    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
365        let layout = if Self::is_zst() {
366            ArrayLayout::empty()
367        } else {
368            // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
369            // smaller than `isize::MAX`.
370            unsafe { ArrayLayout::new_unchecked(capacity) }
371        };
372
373        // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
374        // covered by the safety requirements of this function.
375        Self {
376            // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
377            // memory allocation, allocated with `A`.
378            ptr: unsafe { NonNull::new_unchecked(ptr) },
379            layout,
380            len: length,
381            _p: PhantomData::<A>,
382        }
383    }
384
385    /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
386    ///
387    /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
388    /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
389    /// elements and free the allocation, if any.
390    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
391        let mut me = ManuallyDrop::new(self);
392        let len = me.len();
393        let capacity = me.capacity();
394        let ptr = me.as_mut_ptr();
395        (ptr, len, capacity)
396    }
397
398    /// Ensures that the capacity exceeds the length by at least `additional` elements.
399    ///
400    /// # Examples
401    ///
402    /// ```
403    /// let mut v = KVec::new();
404    /// v.push(1, GFP_KERNEL)?;
405    ///
406    /// v.reserve(10, GFP_KERNEL)?;
407    /// let cap = v.capacity();
408    /// assert!(cap >= 10);
409    ///
410    /// v.reserve(10, GFP_KERNEL)?;
411    /// let new_cap = v.capacity();
412    /// assert_eq!(new_cap, cap);
413    ///
414    /// # Ok::<(), Error>(())
415    /// ```
416    pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
417        let len = self.len();
418        let cap = self.capacity();
419
420        if cap - len >= additional {
421            return Ok(());
422        }
423
424        if Self::is_zst() {
425            // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
426            return Err(AllocError);
427        }
428
429        // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
430        // multiplication by two won't overflow.
431        let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
432        let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
433
434        // SAFETY:
435        // - `ptr` is valid because it's either `None` or comes from a previous call to
436        //   `A::realloc`.
437        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
438        let ptr = unsafe {
439            A::realloc(
440                Some(self.ptr.cast()),
441                layout.into(),
442                self.layout.into(),
443                flags,
444            )?
445        };
446
447        // INVARIANT:
448        // - `layout` is some `ArrayLayout::<T>`,
449        // - `ptr` has been created by `A::realloc` from `layout`.
450        self.ptr = ptr.cast();
451        self.layout = layout;
452
453        Ok(())
454    }
455}
456
457impl<T: Clone, A: Allocator> Vec<T, A> {
458    /// Extend the vector by `n` clones of `value`.
459    pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
460        if n == 0 {
461            return Ok(());
462        }
463
464        self.reserve(n, flags)?;
465
466        let spare = self.spare_capacity_mut();
467
468        for item in spare.iter_mut().take(n - 1) {
469            item.write(value.clone());
470        }
471
472        // We can write the last element directly without cloning needlessly.
473        spare[n - 1].write(value);
474
475        // SAFETY:
476        // - `self.len() + n < self.capacity()` due to the call to reserve above,
477        // - the loop and the line above initialized the next `n` elements.
478        unsafe { self.set_len(self.len() + n) };
479
480        Ok(())
481    }
482
483    /// Pushes clones of the elements of slice into the [`Vec`] instance.
484    ///
485    /// # Examples
486    ///
487    /// ```
488    /// let mut v = KVec::new();
489    /// v.push(1, GFP_KERNEL)?;
490    ///
491    /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
492    /// assert_eq!(&v, &[1, 20, 30, 40]);
493    ///
494    /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
495    /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
496    /// # Ok::<(), Error>(())
497    /// ```
498    pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
499        self.reserve(other.len(), flags)?;
500        for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
501            slot.write(item.clone());
502        }
503
504        // SAFETY:
505        // - `other.len()` spare entries have just been initialized, so it is safe to increase
506        //   the length by the same number.
507        // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
508        //   call.
509        unsafe { self.set_len(self.len() + other.len()) };
510        Ok(())
511    }
512
513    /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
514    pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
515        let mut v = Self::with_capacity(n, flags)?;
516
517        v.extend_with(n, value, flags)?;
518
519        Ok(v)
520    }
521}
522
523impl<T, A> Drop for Vec<T, A>
524where
525    A: Allocator,
526{
527    fn drop(&mut self) {
528        // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
529        unsafe {
530            ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
531                self.as_mut_ptr(),
532                self.len,
533            ))
534        };
535
536        // SAFETY:
537        // - `self.ptr` was previously allocated with `A`.
538        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
539        unsafe { A::free(self.ptr.cast(), self.layout.into()) };
540    }
541}
542
543impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
544where
545    A: Allocator,
546{
547    fn from(b: Box<[T; N], A>) -> Vec<T, A> {
548        let len = b.len();
549        let ptr = Box::into_raw(b);
550
551        // SAFETY:
552        // - `b` has been allocated with `A`,
553        // - `ptr` fulfills the alignment requirements for `T`,
554        // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
555        // - all elements within `b` are initialized values of `T`,
556        // - `len` does not exceed `isize::MAX`.
557        unsafe { Vec::from_raw_parts(ptr as _, len, len) }
558    }
559}
560
561impl<T> Default for KVec<T> {
562    #[inline]
563    fn default() -> Self {
564        Self::new()
565    }
566}
567
568impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
569    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
570        fmt::Debug::fmt(&**self, f)
571    }
572}
573
574impl<T, A> Deref for Vec<T, A>
575where
576    A: Allocator,
577{
578    type Target = [T];
579
580    #[inline]
581    fn deref(&self) -> &[T] {
582        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
583        // initialized elements of type `T`.
584        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
585    }
586}
587
588impl<T, A> DerefMut for Vec<T, A>
589where
590    A: Allocator,
591{
592    #[inline]
593    fn deref_mut(&mut self) -> &mut [T] {
594        // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
595        // initialized elements of type `T`.
596        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
597    }
598}
599
600impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
601
602impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
603where
604    A: Allocator,
605{
606    type Output = I::Output;
607
608    #[inline]
609    fn index(&self, index: I) -> &Self::Output {
610        Index::index(&**self, index)
611    }
612}
613
614impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
615where
616    A: Allocator,
617{
618    #[inline]
619    fn index_mut(&mut self, index: I) -> &mut Self::Output {
620        IndexMut::index_mut(&mut **self, index)
621    }
622}
623
624macro_rules! impl_slice_eq {
625    ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
626        $(
627            impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
628            where
629                T: PartialEq<U>,
630            {
631                #[inline]
632                fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
633            }
634        )*
635    }
636}
637
638impl_slice_eq! {
639    [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
640    [A: Allocator] Vec<T, A>, &[U],
641    [A: Allocator] Vec<T, A>, &mut [U],
642    [A: Allocator] &[T], Vec<U, A>,
643    [A: Allocator] &mut [T], Vec<U, A>,
644    [A: Allocator] Vec<T, A>, [U],
645    [A: Allocator] [T], Vec<U, A>,
646    [A: Allocator, const N: usize] Vec<T, A>, [U; N],
647    [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
648}
649
650impl<'a, T, A> IntoIterator for &'a Vec<T, A>
651where
652    A: Allocator,
653{
654    type Item = &'a T;
655    type IntoIter = slice::Iter<'a, T>;
656
657    fn into_iter(self) -> Self::IntoIter {
658        self.iter()
659    }
660}
661
662impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
663where
664    A: Allocator,
665{
666    type Item = &'a mut T;
667    type IntoIter = slice::IterMut<'a, T>;
668
669    fn into_iter(self) -> Self::IntoIter {
670        self.iter_mut()
671    }
672}
673
674/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
675///
676/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
677/// [`IntoIterator`] trait).
678///
679/// # Examples
680///
681/// ```
682/// let v = kernel::kvec![0, 1, 2]?;
683/// let iter = v.into_iter();
684///
685/// # Ok::<(), Error>(())
686/// ```
687pub struct IntoIter<T, A: Allocator> {
688    ptr: *mut T,
689    buf: NonNull<T>,
690    len: usize,
691    layout: ArrayLayout<T>,
692    _p: PhantomData<A>,
693}
694
695impl<T, A> IntoIter<T, A>
696where
697    A: Allocator,
698{
699    fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
700        let me = ManuallyDrop::new(self);
701        let ptr = me.ptr;
702        let buf = me.buf;
703        let len = me.len;
704        let cap = me.layout.len();
705        (ptr, buf, len, cap)
706    }
707
708    /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
709    ///
710    /// # Examples
711    ///
712    /// ```
713    /// let v = kernel::kvec![1, 2, 3]?;
714    /// let mut it = v.into_iter();
715    ///
716    /// assert_eq!(it.next(), Some(1));
717    ///
718    /// let v = it.collect(GFP_KERNEL);
719    /// assert_eq!(v, [2, 3]);
720    ///
721    /// # Ok::<(), Error>(())
722    /// ```
723    ///
724    /// # Implementation details
725    ///
726    /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
727    /// in the kernel, namely:
728    ///
729    /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
730    ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
731    /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
732    ///   doesn't require this type to be `'static`.
733    /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
734    ///   we can't properly handle allocation failures.
735    /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
736    ///   flags.
737    ///
738    /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
739    /// `Vec` again.
740    ///
741    /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
742    /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
743    pub fn collect(self, flags: Flags) -> Vec<T, A> {
744        let old_layout = self.layout;
745        let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
746        let has_advanced = ptr != buf.as_ptr();
747
748        if has_advanced {
749            // Copy the contents we have advanced to at the beginning of the buffer.
750            //
751            // SAFETY:
752            // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
753            // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
754            // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
755            //   each other,
756            // - both `ptr` and `buf.ptr()` are properly aligned.
757            unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
758            ptr = buf.as_ptr();
759
760            // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()`.
761            let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
762
763            // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed to be
764            // smaller than `cap`. Depending on `alloc` this operation may shrink the buffer or leaves
765            // it as it is.
766            ptr = match unsafe {
767                A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
768            } {
769                // If we fail to shrink, which likely can't even happen, continue with the existing
770                // buffer.
771                Err(_) => ptr,
772                Ok(ptr) => {
773                    cap = len;
774                    ptr.as_ptr().cast()
775                }
776            };
777        }
778
779        // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
780        // the beginning of the buffer and `len` has been adjusted accordingly.
781        //
782        // - `ptr` is guaranteed to point to the start of the backing buffer.
783        // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
784        // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
785        //   `Vec`.
786        unsafe { Vec::from_raw_parts(ptr, len, cap) }
787    }
788}
789
790impl<T, A> Iterator for IntoIter<T, A>
791where
792    A: Allocator,
793{
794    type Item = T;
795
796    /// # Examples
797    ///
798    /// ```
799    /// let v = kernel::kvec![1, 2, 3]?;
800    /// let mut it = v.into_iter();
801    ///
802    /// assert_eq!(it.next(), Some(1));
803    /// assert_eq!(it.next(), Some(2));
804    /// assert_eq!(it.next(), Some(3));
805    /// assert_eq!(it.next(), None);
806    ///
807    /// # Ok::<(), Error>(())
808    /// ```
809    fn next(&mut self) -> Option<T> {
810        if self.len == 0 {
811            return None;
812        }
813
814        let current = self.ptr;
815
816        // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
817        // by one guarantees that.
818        unsafe { self.ptr = self.ptr.add(1) };
819
820        self.len -= 1;
821
822        // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
823        Some(unsafe { current.read() })
824    }
825
826    /// # Examples
827    ///
828    /// ```
829    /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
830    /// let mut iter = v.into_iter();
831    /// let size = iter.size_hint().0;
832    ///
833    /// iter.next();
834    /// assert_eq!(iter.size_hint().0, size - 1);
835    ///
836    /// iter.next();
837    /// assert_eq!(iter.size_hint().0, size - 2);
838    ///
839    /// iter.next();
840    /// assert_eq!(iter.size_hint().0, size - 3);
841    ///
842    /// # Ok::<(), Error>(())
843    /// ```
844    fn size_hint(&self) -> (usize, Option<usize>) {
845        (self.len, Some(self.len))
846    }
847}
848
849impl<T, A> Drop for IntoIter<T, A>
850where
851    A: Allocator,
852{
853    fn drop(&mut self) {
854        // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
855        unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
856
857        // SAFETY:
858        // - `self.buf` was previously allocated with `A`.
859        // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
860        unsafe { A::free(self.buf.cast(), self.layout.into()) };
861    }
862}
863
864impl<T, A> IntoIterator for Vec<T, A>
865where
866    A: Allocator,
867{
868    type Item = T;
869    type IntoIter = IntoIter<T, A>;
870
871    /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
872    /// vector (from start to end).
873    ///
874    /// # Examples
875    ///
876    /// ```
877    /// let v = kernel::kvec![1, 2]?;
878    /// let mut v_iter = v.into_iter();
879    ///
880    /// let first_element: Option<u32> = v_iter.next();
881    ///
882    /// assert_eq!(first_element, Some(1));
883    /// assert_eq!(v_iter.next(), Some(2));
884    /// assert_eq!(v_iter.next(), None);
885    ///
886    /// # Ok::<(), Error>(())
887    /// ```
888    ///
889    /// ```
890    /// let v = kernel::kvec![];
891    /// let mut v_iter = v.into_iter();
892    ///
893    /// let first_element: Option<u32> = v_iter.next();
894    ///
895    /// assert_eq!(first_element, None);
896    ///
897    /// # Ok::<(), Error>(())
898    /// ```
899    #[inline]
900    fn into_iter(self) -> Self::IntoIter {
901        let buf = self.ptr;
902        let layout = self.layout;
903        let (ptr, len, _) = self.into_raw_parts();
904
905        IntoIter {
906            ptr,
907            buf,
908            len,
909            layout,
910            _p: PhantomData::<A>,
911        }
912    }
913}