Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/*
  2 * drivers/misc/logger.c
  3 *
  4 * A Logging Subsystem
  5 *
  6 * Copyright (C) 2007-2008 Google, Inc.
  7 *
  8 * Robert Love <rlove@google.com>
  9 *
 10 * This software is licensed under the terms of the GNU General Public
 11 * License version 2, as published by the Free Software Foundation, and
 12 * may be copied, distributed, and modified under those terms.
 13 *
 14 * This program is distributed in the hope that it will be useful,
 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17 * GNU General Public License for more details.
 18 */
 19
 20#include <linux/sched.h>
 21#include <linux/module.h>
 22#include <linux/fs.h>
 23#include <linux/miscdevice.h>
 24#include <linux/uaccess.h>
 25#include <linux/poll.h>
 26#include <linux/slab.h>
 27#include <linux/time.h>
 28#include <linux/vmalloc.h>
 29#include "logger.h"
 30
 31#include <asm/ioctls.h>
 32
 33/*
 34 * struct logger_log - represents a specific log, such as 'main' or 'radio'
 35 *
 36 * This structure lives from module insertion until module removal, so it does
 37 * not need additional reference counting. The structure is protected by the
 38 * mutex 'mutex'.
 39 */
 40struct logger_log {
 41	unsigned char		*buffer;/* the ring buffer itself */
 42	struct miscdevice	misc;	/* misc device representing the log */
 43	wait_queue_head_t	wq;	/* wait queue for readers */
 44	struct list_head	readers; /* this log's readers */
 45	struct mutex		mutex;	/* mutex protecting buffer */
 46	size_t			w_off;	/* current write head offset */
 47	size_t			head;	/* new readers start here */
 48	size_t			size;	/* size of the log */
 49	struct list_head	logs;	/* list of log channels (myself)*/
 50};
 51
 52static LIST_HEAD(log_list);
 53
 54
 55/*
 56 * struct logger_reader - a logging device open for reading
 57 *
 58 * This object lives from open to release, so we don't need additional
 59 * reference counting. The structure is protected by log->mutex.
 60 */
 61struct logger_reader {
 62	struct logger_log	*log;	/* associated log */
 63	struct list_head	list;	/* entry in logger_log's list */
 64	size_t			r_off;	/* current read head offset */
 65};
 66
 67/* logger_offset - returns index 'n' into the log via (optimized) modulus */
 68static size_t logger_offset(struct logger_log *log, size_t n)
 69{
 70	return n & (log->size - 1);
 71}
 72
 73
 74/*
 75 * file_get_log - Given a file structure, return the associated log
 76 *
 77 * This isn't aesthetic. We have several goals:
 78 *
 79 *	1) Need to quickly obtain the associated log during an I/O operation
 80 *	2) Readers need to maintain state (logger_reader)
 81 *	3) Writers need to be very fast (open() should be a near no-op)
 82 *
 83 * In the reader case, we can trivially go file->logger_reader->logger_log.
 84 * For a writer, we don't want to maintain a logger_reader, so we just go
 85 * file->logger_log. Thus what file->private_data points at depends on whether
 86 * or not the file was opened for reading. This function hides that dirtiness.
 87 */
 88static inline struct logger_log *file_get_log(struct file *file)
 89{
 90	if (file->f_mode & FMODE_READ) {
 91		struct logger_reader *reader = file->private_data;
 92		return reader->log;
 93	} else
 94		return file->private_data;
 95}
 96
 97/*
 98 * get_entry_len - Grabs the length of the payload of the next entry starting
 99 * from 'off'.
100 *
101 * An entry length is 2 bytes (16 bits) in host endian order.
102 * In the log, the length does not include the size of the log entry structure.
103 * This function returns the size including the log entry structure.
104 *
105 * Caller needs to hold log->mutex.
106 */
107static __u32 get_entry_len(struct logger_log *log, size_t off)
108{
109	__u16 val;
110
111	/* copy 2 bytes from buffer, in memcpy order, */
112	/* handling possible wrap at end of buffer */
113
114	((__u8 *)&val)[0] = log->buffer[off];
115	if (likely(off+1 < log->size))
116		((__u8 *)&val)[1] = log->buffer[off+1];
117	else
118		((__u8 *)&val)[1] = log->buffer[0];
119
120	return sizeof(struct logger_entry) + val;
121}
122
123/*
124 * do_read_log_to_user - reads exactly 'count' bytes from 'log' into the
125 * user-space buffer 'buf'. Returns 'count' on success.
126 *
127 * Caller must hold log->mutex.
128 */
129static ssize_t do_read_log_to_user(struct logger_log *log,
130				   struct logger_reader *reader,
131				   char __user *buf,
132				   size_t count)
133{
134	size_t len;
135
136	/*
137	 * We read from the log in two disjoint operations. First, we read from
138	 * the current read head offset up to 'count' bytes or to the end of
139	 * the log, whichever comes first.
140	 */
141	len = min(count, log->size - reader->r_off);
142	if (copy_to_user(buf, log->buffer + reader->r_off, len))
143		return -EFAULT;
144
145	/*
146	 * Second, we read any remaining bytes, starting back at the head of
147	 * the log.
148	 */
149	if (count != len)
150		if (copy_to_user(buf + len, log->buffer, count - len))
151			return -EFAULT;
152
153	reader->r_off = logger_offset(log, reader->r_off + count);
154
155	return count;
156}
157
158/*
159 * logger_read - our log's read() method
160 *
161 * Behavior:
162 *
163 *	- O_NONBLOCK works
164 *	- If there are no log entries to read, blocks until log is written to
165 *	- Atomically reads exactly one log entry
166 *
167 * Optimal read size is LOGGER_ENTRY_MAX_LEN. Will set errno to EINVAL if read
168 * buffer is insufficient to hold next entry.
169 */
170static ssize_t logger_read(struct file *file, char __user *buf,
171			   size_t count, loff_t *pos)
172{
173	struct logger_reader *reader = file->private_data;
174	struct logger_log *log = reader->log;
175	ssize_t ret;
176	DEFINE_WAIT(wait);
177
178start:
179	while (1) {
180		mutex_lock(&log->mutex);
181
182		prepare_to_wait(&log->wq, &wait, TASK_INTERRUPTIBLE);
183
184		ret = (log->w_off == reader->r_off);
185		mutex_unlock(&log->mutex);
186		if (!ret)
187			break;
188
189		if (file->f_flags & O_NONBLOCK) {
190			ret = -EAGAIN;
191			break;
192		}
193
194		if (signal_pending(current)) {
195			ret = -EINTR;
196			break;
197		}
198
199		schedule();
200	}
201
202	finish_wait(&log->wq, &wait);
203	if (ret)
204		return ret;
205
206	mutex_lock(&log->mutex);
207
208	/* is there still something to read or did we race? */
209	if (unlikely(log->w_off == reader->r_off)) {
210		mutex_unlock(&log->mutex);
211		goto start;
212	}
213
214	/* get the size of the next entry */
215	ret = get_entry_len(log, reader->r_off);
216	if (count < ret) {
217		ret = -EINVAL;
218		goto out;
219	}
220
221	/* get exactly one entry from the log */
222	ret = do_read_log_to_user(log, reader, buf, ret);
223
224out:
225	mutex_unlock(&log->mutex);
226
227	return ret;
228}
229
230/*
231 * get_next_entry - return the offset of the first valid entry at least 'len'
232 * bytes after 'off'.
233 *
234 * Caller must hold log->mutex.
235 */
236static size_t get_next_entry(struct logger_log *log, size_t off, size_t len)
237{
238	size_t count = 0;
239
240	do {
241		size_t nr = get_entry_len(log, off);
242		off = logger_offset(log, off + nr);
243		count += nr;
244	} while (count < len);
245
246	return off;
247}
248
249/*
250 * is_between - is a < c < b, accounting for wrapping of a, b, and c
251 *    positions in the buffer
252 *
253 * That is, if a<b, check for c between a and b
254 * and if a>b, check for c outside (not between) a and b
255 *
256 * |------- a xxxxxxxx b --------|
257 *               c^
258 *
259 * |xxxxx b --------- a xxxxxxxxx|
260 *    c^
261 *  or                    c^
262 */
263static inline int is_between(size_t a, size_t b, size_t c)
264{
265	if (a < b) {
266		/* is c between a and b? */
267		if (a < c && c <= b)
268			return 1;
269	} else {
270		/* is c outside of b through a? */
271		if (c <= b || a < c)
272			return 1;
273	}
274
275	return 0;
276}
277
278/*
279 * fix_up_readers - walk the list of all readers and "fix up" any who were
280 * lapped by the writer; also do the same for the default "start head".
281 * We do this by "pulling forward" the readers and start head to the first
282 * entry after the new write head.
283 *
284 * The caller needs to hold log->mutex.
285 */
286static void fix_up_readers(struct logger_log *log, size_t len)
287{
288	size_t old = log->w_off;
289	size_t new = logger_offset(log, old + len);
290	struct logger_reader *reader;
291
292	if (is_between(old, new, log->head))
293		log->head = get_next_entry(log, log->head, len);
294
295	list_for_each_entry(reader, &log->readers, list)
296		if (is_between(old, new, reader->r_off))
297			reader->r_off = get_next_entry(log, reader->r_off, len);
298}
299
300/*
301 * do_write_log - writes 'len' bytes from 'buf' to 'log'
302 *
303 * The caller needs to hold log->mutex.
304 */
305static void do_write_log(struct logger_log *log, const void *buf, size_t count)
306{
307	size_t len;
308
309	len = min(count, log->size - log->w_off);
310	memcpy(log->buffer + log->w_off, buf, len);
311
312	if (count != len)
313		memcpy(log->buffer, buf + len, count - len);
314
315	log->w_off = logger_offset(log, log->w_off + count);
316
317}
318
319/*
320 * do_write_log_user - writes 'len' bytes from the user-space buffer 'buf' to
321 * the log 'log'
322 *
323 * The caller needs to hold log->mutex.
324 *
325 * Returns 'count' on success, negative error code on failure.
326 */
327static ssize_t do_write_log_from_user(struct logger_log *log,
328				      const void __user *buf, size_t count)
329{
330	size_t len;
331
332	len = min(count, log->size - log->w_off);
333	if (len && copy_from_user(log->buffer + log->w_off, buf, len))
334		return -EFAULT;
335
336	if (count != len)
337		if (copy_from_user(log->buffer, buf + len, count - len))
338			/*
339			 * Note that by not updating w_off, this abandons the
340			 * portion of the new entry that *was* successfully
341			 * copied, just above.  This is intentional to avoid
342			 * message corruption from missing fragments.
343			 */
344			return -EFAULT;
345
346	log->w_off = logger_offset(log, log->w_off + count);
347
348	return count;
349}
350
351/*
352 * logger_aio_write - our write method, implementing support for write(),
353 * writev(), and aio_write(). Writes are our fast path, and we try to optimize
354 * them above all else.
355 */
356static ssize_t logger_aio_write(struct kiocb *iocb, const struct iovec *iov,
357			 unsigned long nr_segs, loff_t ppos)
358{
359	struct logger_log *log = file_get_log(iocb->ki_filp);
360	size_t orig = log->w_off;
361	struct logger_entry header;
362	struct timespec now;
363	ssize_t ret = 0;
364
365	now = current_kernel_time();
366
367	header.pid = current->tgid;
368	header.tid = current->pid;
369	header.sec = now.tv_sec;
370	header.nsec = now.tv_nsec;
371	header.len = min_t(size_t, iocb->ki_left, LOGGER_ENTRY_MAX_PAYLOAD);
372
373	/* null writes succeed, return zero */
374	if (unlikely(!header.len))
375		return 0;
376
377	mutex_lock(&log->mutex);
378
379	/*
380	 * Fix up any readers, pulling them forward to the first readable
381	 * entry after (what will be) the new write offset. We do this now
382	 * because if we partially fail, we can end up with clobbered log
383	 * entries that encroach on readable buffer.
384	 */
385	fix_up_readers(log, sizeof(struct logger_entry) + header.len);
386
387	do_write_log(log, &header, sizeof(struct logger_entry));
388
389	while (nr_segs-- > 0) {
390		size_t len;
391		ssize_t nr;
392
393		/* figure out how much of this vector we can keep */
394		len = min_t(size_t, iov->iov_len, header.len - ret);
395
396		/* write out this segment's payload */
397		nr = do_write_log_from_user(log, iov->iov_base, len);
398		if (unlikely(nr < 0)) {
399			log->w_off = orig;
400			mutex_unlock(&log->mutex);
401			return nr;
402		}
403
404		iov++;
405		ret += nr;
406	}
407
408	mutex_unlock(&log->mutex);
409
410	/* wake up any blocked readers */
411	wake_up_interruptible(&log->wq);
412
413	return ret;
414}
415
416static struct logger_log *get_log_from_minor(int minor)
417{
418	struct logger_log *log;
419
420	list_for_each_entry(log, &log_list, logs)
421		if (log->misc.minor == minor)
422			return log;
423	return NULL;
424}
425
426/*
427 * logger_open - the log's open() file operation
428 *
429 * Note how near a no-op this is in the write-only case. Keep it that way!
430 */
431static int logger_open(struct inode *inode, struct file *file)
432{
433	struct logger_log *log;
434	int ret;
435
436	ret = nonseekable_open(inode, file);
437	if (ret)
438		return ret;
439
440	log = get_log_from_minor(MINOR(inode->i_rdev));
441	if (!log)
442		return -ENODEV;
443
444	if (file->f_mode & FMODE_READ) {
445		struct logger_reader *reader;
446
447		reader = kmalloc(sizeof(struct logger_reader), GFP_KERNEL);
448		if (!reader)
449			return -ENOMEM;
450
451		reader->log = log;
452		INIT_LIST_HEAD(&reader->list);
453
454		mutex_lock(&log->mutex);
455		reader->r_off = log->head;
456		list_add_tail(&reader->list, &log->readers);
457		mutex_unlock(&log->mutex);
458
459		file->private_data = reader;
460	} else
461		file->private_data = log;
462
463	return 0;
464}
465
466/*
467 * logger_release - the log's release file operation
468 *
469 * Note this is a total no-op in the write-only case. Keep it that way!
470 */
471static int logger_release(struct inode *ignored, struct file *file)
472{
473	if (file->f_mode & FMODE_READ) {
474		struct logger_reader *reader = file->private_data;
475		struct logger_log *log = reader->log;
476
477		mutex_lock(&log->mutex);
478		list_del(&reader->list);
479		mutex_unlock(&log->mutex);
480
481		kfree(reader);
482	}
483
484	return 0;
485}
486
487/*
488 * logger_poll - the log's poll file operation, for poll/select/epoll
489 *
490 * Note we always return POLLOUT, because you can always write() to the log.
491 * Note also that, strictly speaking, a return value of POLLIN does not
492 * guarantee that the log is readable without blocking, as there is a small
493 * chance that the writer can lap the reader in the interim between poll()
494 * returning and the read() request.
495 */
496static unsigned int logger_poll(struct file *file, poll_table *wait)
497{
498	struct logger_reader *reader;
499	struct logger_log *log;
500	unsigned int ret = POLLOUT | POLLWRNORM;
501
502	if (!(file->f_mode & FMODE_READ))
503		return ret;
504
505	reader = file->private_data;
506	log = reader->log;
507
508	poll_wait(file, &log->wq, wait);
509
510	mutex_lock(&log->mutex);
511	if (log->w_off != reader->r_off)
512		ret |= POLLIN | POLLRDNORM;
513	mutex_unlock(&log->mutex);
514
515	return ret;
516}
517
518static long logger_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
519{
520	struct logger_log *log = file_get_log(file);
521	struct logger_reader *reader;
522	long ret = -ENOTTY;
523
524	mutex_lock(&log->mutex);
525
526	switch (cmd) {
527	case LOGGER_GET_LOG_BUF_SIZE:
528		ret = log->size;
529		break;
530	case LOGGER_GET_LOG_LEN:
531		if (!(file->f_mode & FMODE_READ)) {
532			ret = -EBADF;
533			break;
534		}
535		reader = file->private_data;
536		if (log->w_off >= reader->r_off)
537			ret = log->w_off - reader->r_off;
538		else
539			ret = (log->size - reader->r_off) + log->w_off;
540		break;
541	case LOGGER_GET_NEXT_ENTRY_LEN:
542		if (!(file->f_mode & FMODE_READ)) {
543			ret = -EBADF;
544			break;
545		}
546		reader = file->private_data;
547		if (log->w_off != reader->r_off)
548			ret = get_entry_len(log, reader->r_off);
549		else
550			ret = 0;
551		break;
552	case LOGGER_FLUSH_LOG:
553		if (!(file->f_mode & FMODE_WRITE)) {
554			ret = -EBADF;
555			break;
556		}
557		list_for_each_entry(reader, &log->readers, list)
558			reader->r_off = log->w_off;
559		log->head = log->w_off;
560		ret = 0;
561		break;
562	}
563
564	mutex_unlock(&log->mutex);
565
566	return ret;
567}
568
569static const struct file_operations logger_fops = {
570	.owner = THIS_MODULE,
571	.read = logger_read,
572	.aio_write = logger_aio_write,
573	.poll = logger_poll,
574	.unlocked_ioctl = logger_ioctl,
575	.compat_ioctl = logger_ioctl,
576	.open = logger_open,
577	.release = logger_release,
578};
579
580/*
581 * Log size must be a power of two, greater than LOGGER_ENTRY_MAX_LEN,
582 * and less than LONG_MAX minus LOGGER_ENTRY_MAX_LEN.
583 */
584static int __init create_log(char *log_name, int size)
585{
586	int ret = 0;
587	struct logger_log *log;
588	unsigned char *buffer;
589
590	buffer = vmalloc(size);
591	if (buffer == NULL)
592		return -ENOMEM;
593
594	log = kzalloc(sizeof(struct logger_log), GFP_KERNEL);
595	if (log == NULL) {
596		ret = -ENOMEM;
597		goto out_free_buffer;
598	}
599	log->buffer = buffer;
600
601	log->misc.minor = MISC_DYNAMIC_MINOR;
602	log->misc.name = kstrdup(log_name, GFP_KERNEL);
603	if (log->misc.name == NULL) {
604		ret = -ENOMEM;
605		goto out_free_log;
606	}
607
608	log->misc.fops = &logger_fops;
609	log->misc.parent = NULL;
610
611	init_waitqueue_head(&log->wq);
612	INIT_LIST_HEAD(&log->readers);
613	mutex_init(&log->mutex);
614	log->w_off = 0;
615	log->head = 0;
616	log->size = size;
617
618	INIT_LIST_HEAD(&log->logs);
619	list_add_tail(&log->logs, &log_list);
620
621	/* finally, initialize the misc device for this log */
622	ret = misc_register(&log->misc);
623	if (unlikely(ret)) {
624		printk(KERN_ERR "logger: failed to register misc "
625		       "device for log '%s'!\n", log->misc.name);
626		goto out_free_log;
627	}
628
629	printk(KERN_INFO "logger: created %luK log '%s'\n",
630	       (unsigned long) log->size >> 10, log->misc.name);
631
632	return 0;
633
634out_free_log:
635	kfree(log);
636
637out_free_buffer:
638	vfree(buffer);
639	return ret;
640}
641
642static int __init logger_init(void)
643{
644	int ret;
645
646	ret = create_log(LOGGER_LOG_MAIN, 256*1024);
647	if (unlikely(ret))
648		goto out;
649
650	ret = create_log(LOGGER_LOG_EVENTS, 256*1024);
651	if (unlikely(ret))
652		goto out;
653
654	ret = create_log(LOGGER_LOG_RADIO, 256*1024);
655	if (unlikely(ret))
656		goto out;
657
658	ret = create_log(LOGGER_LOG_SYSTEM, 256*1024);
659	if (unlikely(ret))
660		goto out;
661
662out:
663	return ret;
664}
665device_initcall(logger_init);