Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of version 2 of the GNU General Public License as
  12 * published by the Free Software Foundation.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22 * USA
  23 *
  24 * The full GNU General Public License is included in this distribution
  25 * in the file called LICENSE.GPL.
  26 *
  27 * Contact Information:
  28 *  Intel Linux Wireless <ilw@linux.intel.com>
  29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30 *
  31 * BSD LICENSE
  32 *
  33 * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
  34 * All rights reserved.
  35 *
  36 * Redistribution and use in source and binary forms, with or without
  37 * modification, are permitted provided that the following conditions
  38 * are met:
  39 *
  40 *  * Redistributions of source code must retain the above copyright
  41 *    notice, this list of conditions and the following disclaimer.
  42 *  * Redistributions in binary form must reproduce the above copyright
  43 *    notice, this list of conditions and the following disclaimer in
  44 *    the documentation and/or other materials provided with the
  45 *    distribution.
  46 *  * Neither the name Intel Corporation nor the names of its
  47 *    contributors may be used to endorse or promote products derived
  48 *    from this software without specific prior written permission.
  49 *
  50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61 *
  62 *****************************************************************************/
  63/*
  64 * Please use this file (iwl-commands.h) only for uCode API definitions.
  65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
  66 * Please use iwl-dev.h for driver implementation definitions.
  67 */
  68
  69#ifndef __iwl_commands_h__
  70#define __iwl_commands_h__
  71
  72#include <linux/ieee80211.h>
  73#include <linux/types.h>
  74
  75
  76enum {
  77	REPLY_ALIVE = 0x1,
  78	REPLY_ERROR = 0x2,
  79	REPLY_ECHO = 0x3,		/* test command */
  80
  81	/* RXON and QOS commands */
  82	REPLY_RXON = 0x10,
  83	REPLY_RXON_ASSOC = 0x11,
  84	REPLY_QOS_PARAM = 0x13,
  85	REPLY_RXON_TIMING = 0x14,
  86
  87	/* Multi-Station support */
  88	REPLY_ADD_STA = 0x18,
  89	REPLY_REMOVE_STA = 0x19,
  90	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
  91	REPLY_TXFIFO_FLUSH = 0x1e,
  92
  93	/* Security */
  94	REPLY_WEPKEY = 0x20,
  95
  96	/* RX, TX, LEDs */
  97	REPLY_TX = 0x1c,
  98	REPLY_LEDS_CMD = 0x48,
  99	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
 100
 101	/* WiMAX coexistence */
 102	COEX_PRIORITY_TABLE_CMD = 0x5a,
 103	COEX_MEDIUM_NOTIFICATION = 0x5b,
 104	COEX_EVENT_CMD = 0x5c,
 105
 106	/* Calibration */
 107	TEMPERATURE_NOTIFICATION = 0x62,
 108	CALIBRATION_CFG_CMD = 0x65,
 109	CALIBRATION_RES_NOTIFICATION = 0x66,
 110	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
 111
 112	/* 802.11h related */
 113	REPLY_QUIET_CMD = 0x71,		/* not used */
 114	REPLY_CHANNEL_SWITCH = 0x72,
 115	CHANNEL_SWITCH_NOTIFICATION = 0x73,
 116	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
 117	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
 118
 119	/* Power Management */
 120	POWER_TABLE_CMD = 0x77,
 121	PM_SLEEP_NOTIFICATION = 0x7A,
 122	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
 123
 124	/* Scan commands and notifications */
 125	REPLY_SCAN_CMD = 0x80,
 126	REPLY_SCAN_ABORT_CMD = 0x81,
 127	SCAN_START_NOTIFICATION = 0x82,
 128	SCAN_RESULTS_NOTIFICATION = 0x83,
 129	SCAN_COMPLETE_NOTIFICATION = 0x84,
 130
 131	/* IBSS/AP commands */
 132	BEACON_NOTIFICATION = 0x90,
 133	REPLY_TX_BEACON = 0x91,
 134	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
 135
 136	/* Miscellaneous commands */
 137	REPLY_TX_POWER_DBM_CMD = 0x95,
 138	QUIET_NOTIFICATION = 0x96,		/* not used */
 139	REPLY_TX_PWR_TABLE_CMD = 0x97,
 140	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
 141	TX_ANT_CONFIGURATION_CMD = 0x98,
 142	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
 143
 144	/* Bluetooth device coexistence config command */
 145	REPLY_BT_CONFIG = 0x9b,
 146
 147	/* Statistics */
 148	REPLY_STATISTICS_CMD = 0x9c,
 149	STATISTICS_NOTIFICATION = 0x9d,
 150
 151	/* RF-KILL commands and notifications */
 152	REPLY_CARD_STATE_CMD = 0xa0,
 153	CARD_STATE_NOTIFICATION = 0xa1,
 154
 155	/* Missed beacons notification */
 156	MISSED_BEACONS_NOTIFICATION = 0xa2,
 157
 158	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
 159	SENSITIVITY_CMD = 0xa8,
 160	REPLY_PHY_CALIBRATION_CMD = 0xb0,
 161	REPLY_RX_PHY_CMD = 0xc0,
 162	REPLY_RX_MPDU_CMD = 0xc1,
 163	REPLY_RX = 0xc3,
 164	REPLY_COMPRESSED_BA = 0xc5,
 165
 166	/* BT Coex */
 167	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
 168	REPLY_BT_COEX_PROT_ENV = 0xcd,
 169	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
 170
 171	/* PAN commands */
 172	REPLY_WIPAN_PARAMS = 0xb2,
 173	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
 174	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
 175	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
 176	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
 177	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
 178	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
 179	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
 180	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
 181
 182	REPLY_WOWLAN_PATTERNS = 0xe0,
 183	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
 184	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
 185	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
 186	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
 187	REPLY_WOWLAN_GET_STATUS = 0xe5,
 188	REPLY_D3_CONFIG = 0xd3,
 189
 190	REPLY_MAX = 0xff
 191};
 192
 193/******************************************************************************
 194 * (0)
 195 * Commonly used structures and definitions:
 196 * Command header, rate_n_flags, txpower
 197 *
 198 *****************************************************************************/
 199
 200/* iwl_cmd_header flags value */
 201#define IWL_CMD_FAILED_MSK 0x40
 202
 203/**
 204 * iwlagn rate_n_flags bit fields
 205 *
 206 * rate_n_flags format is used in following iwlagn commands:
 207 *  REPLY_RX (response only)
 208 *  REPLY_RX_MPDU (response only)
 209 *  REPLY_TX (both command and response)
 210 *  REPLY_TX_LINK_QUALITY_CMD
 211 *
 212 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
 213 *  2-0:  0)   6 Mbps
 214 *        1)  12 Mbps
 215 *        2)  18 Mbps
 216 *        3)  24 Mbps
 217 *        4)  36 Mbps
 218 *        5)  48 Mbps
 219 *        6)  54 Mbps
 220 *        7)  60 Mbps
 221 *
 222 *  4-3:  0)  Single stream (SISO)
 223 *        1)  Dual stream (MIMO)
 224 *        2)  Triple stream (MIMO)
 225 *
 226 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
 227 *
 228 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
 229 *  3-0:  0xD)   6 Mbps
 230 *        0xF)   9 Mbps
 231 *        0x5)  12 Mbps
 232 *        0x7)  18 Mbps
 233 *        0x9)  24 Mbps
 234 *        0xB)  36 Mbps
 235 *        0x1)  48 Mbps
 236 *        0x3)  54 Mbps
 237 *
 238 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
 239 *  6-0:   10)  1 Mbps
 240 *         20)  2 Mbps
 241 *         55)  5.5 Mbps
 242 *        110)  11 Mbps
 243 */
 244#define RATE_MCS_CODE_MSK 0x7
 245#define RATE_MCS_SPATIAL_POS 3
 246#define RATE_MCS_SPATIAL_MSK 0x18
 247#define RATE_MCS_HT_DUP_POS 5
 248#define RATE_MCS_HT_DUP_MSK 0x20
 249/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
 250#define RATE_MCS_RATE_MSK 0xff
 251
 252/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
 253#define RATE_MCS_FLAGS_POS 8
 254#define RATE_MCS_HT_POS 8
 255#define RATE_MCS_HT_MSK 0x100
 256
 257/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
 258#define RATE_MCS_CCK_POS 9
 259#define RATE_MCS_CCK_MSK 0x200
 260
 261/* Bit 10: (1) Use Green Field preamble */
 262#define RATE_MCS_GF_POS 10
 263#define RATE_MCS_GF_MSK 0x400
 264
 265/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
 266#define RATE_MCS_HT40_POS 11
 267#define RATE_MCS_HT40_MSK 0x800
 268
 269/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
 270#define RATE_MCS_DUP_POS 12
 271#define RATE_MCS_DUP_MSK 0x1000
 272
 273/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
 274#define RATE_MCS_SGI_POS 13
 275#define RATE_MCS_SGI_MSK 0x2000
 276
 277/**
 278 * rate_n_flags Tx antenna masks
 279 * 4965 has 2 transmitters
 280 * 5100 has 1 transmitter B
 281 * 5150 has 1 transmitter A
 282 * 5300 has 3 transmitters
 283 * 5350 has 3 transmitters
 284 * bit14:16
 285 */
 286#define RATE_MCS_ANT_POS	14
 287#define RATE_MCS_ANT_A_MSK	0x04000
 288#define RATE_MCS_ANT_B_MSK	0x08000
 289#define RATE_MCS_ANT_C_MSK	0x10000
 290#define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
 291#define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
 292#define RATE_ANT_NUM 3
 293
 294#define POWER_TABLE_NUM_ENTRIES			33
 295#define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
 296#define POWER_TABLE_CCK_ENTRY			32
 297
 298#define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
 299#define IWL_PWR_CCK_ENTRIES			2
 300
 301/**
 302 * struct tx_power_dual_stream
 303 *
 304 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
 305 *
 306 * Same format as iwl_tx_power_dual_stream, but __le32
 307 */
 308struct tx_power_dual_stream {
 309	__le32 dw;
 310} __packed;
 311
 312/**
 313 * Command REPLY_TX_POWER_DBM_CMD = 0x98
 314 * struct iwlagn_tx_power_dbm_cmd
 315 */
 316#define IWLAGN_TX_POWER_AUTO 0x7f
 317#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
 318
 319struct iwlagn_tx_power_dbm_cmd {
 320	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 321	u8 flags;
 322	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
 323	u8 reserved;
 324} __packed;
 325
 326/**
 327 * Command TX_ANT_CONFIGURATION_CMD = 0x98
 328 * This command is used to configure valid Tx antenna.
 329 * By default uCode concludes the valid antenna according to the radio flavor.
 330 * This command enables the driver to override/modify this conclusion.
 331 */
 332struct iwl_tx_ant_config_cmd {
 333	__le32 valid;
 334} __packed;
 335
 336/******************************************************************************
 337 * (0a)
 338 * Alive and Error Commands & Responses:
 339 *
 340 *****************************************************************************/
 341
 342#define UCODE_VALID_OK	cpu_to_le32(0x1)
 343
 344/**
 345 * REPLY_ALIVE = 0x1 (response only, not a command)
 346 *
 347 * uCode issues this "alive" notification once the runtime image is ready
 348 * to receive commands from the driver.  This is the *second* "alive"
 349 * notification that the driver will receive after rebooting uCode;
 350 * this "alive" is indicated by subtype field != 9.
 351 *
 352 * See comments documenting "BSM" (bootstrap state machine).
 353 *
 354 * This response includes two pointers to structures within the device's
 355 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
 356 *
 357 * 1)  log_event_table_ptr indicates base of the event log.  This traces
 358 *     a 256-entry history of uCode execution within a circular buffer.
 359 *     Its header format is:
 360 *
 361 *	__le32 log_size;     log capacity (in number of entries)
 362 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
 363 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
 364 *      __le32 write_index;  next circular buffer entry that uCode would fill
 365 *
 366 *     The header is followed by the circular buffer of log entries.  Entries
 367 *     with timestamps have the following format:
 368 *
 369 *	__le32 event_id;     range 0 - 1500
 370 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
 371 *	__le32 data;         event_id-specific data value
 372 *
 373 *     Entries without timestamps contain only event_id and data.
 374 *
 375 *
 376 * 2)  error_event_table_ptr indicates base of the error log.  This contains
 377 *     information about any uCode error that occurs.  For agn, the format
 378 *     of the error log is defined by struct iwl_error_event_table.
 379 *
 380 * The Linux driver can print both logs to the system log when a uCode error
 381 * occurs.
 382 */
 383
 384/*
 385 * Note: This structure is read from the device with IO accesses,
 386 * and the reading already does the endian conversion. As it is
 387 * read with u32-sized accesses, any members with a different size
 388 * need to be ordered correctly though!
 389 */
 390struct iwl_error_event_table {
 391	u32 valid;		/* (nonzero) valid, (0) log is empty */
 392	u32 error_id;		/* type of error */
 393	u32 pc;			/* program counter */
 394	u32 blink1;		/* branch link */
 395	u32 blink2;		/* branch link */
 396	u32 ilink1;		/* interrupt link */
 397	u32 ilink2;		/* interrupt link */
 398	u32 data1;		/* error-specific data */
 399	u32 data2;		/* error-specific data */
 400	u32 line;		/* source code line of error */
 401	u32 bcon_time;		/* beacon timer */
 402	u32 tsf_low;		/* network timestamp function timer */
 403	u32 tsf_hi;		/* network timestamp function timer */
 404	u32 gp1;		/* GP1 timer register */
 405	u32 gp2;		/* GP2 timer register */
 406	u32 gp3;		/* GP3 timer register */
 407	u32 ucode_ver;		/* uCode version */
 408	u32 hw_ver;		/* HW Silicon version */
 409	u32 brd_ver;		/* HW board version */
 410	u32 log_pc;		/* log program counter */
 411	u32 frame_ptr;		/* frame pointer */
 412	u32 stack_ptr;		/* stack pointer */
 413	u32 hcmd;		/* last host command header */
 414	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
 415				 * rxtx_flag */
 416	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
 417				 * host_flag */
 418	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
 419				 * enc_flag */
 420	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
 421				 * time_flag */
 422	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
 423				 * wico interrupt */
 424	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
 425	u32 wait_event;		/* wait event() caller address */
 426	u32 l2p_control;	/* L2pControlField */
 427	u32 l2p_duration;	/* L2pDurationField */
 428	u32 l2p_mhvalid;	/* L2pMhValidBits */
 429	u32 l2p_addr_match;	/* L2pAddrMatchStat */
 430	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
 431				 * (LMPM_PMG_SEL) */
 432	u32 u_timestamp;	/* indicate when the date and time of the
 433				 * compilation */
 434	u32 flow_handler;	/* FH read/write pointers, RX credit */
 435} __packed;
 436
 437struct iwl_alive_resp {
 438	u8 ucode_minor;
 439	u8 ucode_major;
 440	__le16 reserved1;
 441	u8 sw_rev[8];
 442	u8 ver_type;
 443	u8 ver_subtype;			/* not "9" for runtime alive */
 444	__le16 reserved2;
 445	__le32 log_event_table_ptr;	/* SRAM address for event log */
 446	__le32 error_event_table_ptr;	/* SRAM address for error log */
 447	__le32 timestamp;
 448	__le32 is_valid;
 449} __packed;
 450
 451/*
 452 * REPLY_ERROR = 0x2 (response only, not a command)
 453 */
 454struct iwl_error_resp {
 455	__le32 error_type;
 456	u8 cmd_id;
 457	u8 reserved1;
 458	__le16 bad_cmd_seq_num;
 459	__le32 error_info;
 460	__le64 timestamp;
 461} __packed;
 462
 463/******************************************************************************
 464 * (1)
 465 * RXON Commands & Responses:
 466 *
 467 *****************************************************************************/
 468
 469/*
 470 * Rx config defines & structure
 471 */
 472/* rx_config device types  */
 473enum {
 474	RXON_DEV_TYPE_AP = 1,
 475	RXON_DEV_TYPE_ESS = 3,
 476	RXON_DEV_TYPE_IBSS = 4,
 477	RXON_DEV_TYPE_SNIFFER = 6,
 478	RXON_DEV_TYPE_CP = 7,
 479	RXON_DEV_TYPE_2STA = 8,
 480	RXON_DEV_TYPE_P2P = 9,
 481};
 482
 483
 484#define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
 485#define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
 486#define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
 487#define RXON_RX_CHAIN_VALID_POS			(1)
 488#define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
 489#define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
 490#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
 491#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
 492#define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
 493#define RXON_RX_CHAIN_CNT_POS			(10)
 494#define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
 495#define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
 496#define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
 497#define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
 498
 499/* rx_config flags */
 500/* band & modulation selection */
 501#define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
 502#define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
 503/* auto detection enable */
 504#define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
 505/* TGg protection when tx */
 506#define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
 507/* cck short slot & preamble */
 508#define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
 509#define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
 510/* antenna selection */
 511#define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
 512#define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
 513#define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
 514#define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
 515/* radar detection enable */
 516#define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
 517#define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
 518/* rx response to host with 8-byte TSF
 519* (according to ON_AIR deassertion) */
 520#define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
 521
 522
 523/* HT flags */
 524#define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
 525#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
 526
 527#define RXON_FLG_HT_OPERATING_MODE_POS		(23)
 528
 529#define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
 530#define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
 531
 532#define RXON_FLG_CHANNEL_MODE_POS		(25)
 533#define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
 534
 535/* channel mode */
 536enum {
 537	CHANNEL_MODE_LEGACY = 0,
 538	CHANNEL_MODE_PURE_40 = 1,
 539	CHANNEL_MODE_MIXED = 2,
 540	CHANNEL_MODE_RESERVED = 3,
 541};
 542#define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
 543#define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
 544#define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
 545
 546/* CTS to self (if spec allows) flag */
 547#define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
 548
 549/* rx_config filter flags */
 550/* accept all data frames */
 551#define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
 552/* pass control & management to host */
 553#define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
 554/* accept multi-cast */
 555#define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
 556/* don't decrypt uni-cast frames */
 557#define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
 558/* don't decrypt multi-cast frames */
 559#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
 560/* STA is associated */
 561#define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
 562/* transfer to host non bssid beacons in associated state */
 563#define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
 564
 565/**
 566 * REPLY_RXON = 0x10 (command, has simple generic response)
 567 *
 568 * RXON tunes the radio tuner to a service channel, and sets up a number
 569 * of parameters that are used primarily for Rx, but also for Tx operations.
 570 *
 571 * NOTE:  When tuning to a new channel, driver must set the
 572 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
 573 *        info within the device, including the station tables, tx retry
 574 *        rate tables, and txpower tables.  Driver must build a new station
 575 *        table and txpower table before transmitting anything on the RXON
 576 *        channel.
 577 *
 578 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
 579 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
 580 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
 581 */
 582
 583struct iwl_rxon_cmd {
 584	u8 node_addr[6];
 585	__le16 reserved1;
 586	u8 bssid_addr[6];
 587	__le16 reserved2;
 588	u8 wlap_bssid_addr[6];
 589	__le16 reserved3;
 590	u8 dev_type;
 591	u8 air_propagation;
 592	__le16 rx_chain;
 593	u8 ofdm_basic_rates;
 594	u8 cck_basic_rates;
 595	__le16 assoc_id;
 596	__le32 flags;
 597	__le32 filter_flags;
 598	__le16 channel;
 599	u8 ofdm_ht_single_stream_basic_rates;
 600	u8 ofdm_ht_dual_stream_basic_rates;
 601	u8 ofdm_ht_triple_stream_basic_rates;
 602	u8 reserved5;
 603	__le16 acquisition_data;
 604	__le16 reserved6;
 605} __packed;
 606
 607/*
 608 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
 609 */
 610struct iwl_rxon_assoc_cmd {
 611	__le32 flags;
 612	__le32 filter_flags;
 613	u8 ofdm_basic_rates;
 614	u8 cck_basic_rates;
 615	__le16 reserved1;
 616	u8 ofdm_ht_single_stream_basic_rates;
 617	u8 ofdm_ht_dual_stream_basic_rates;
 618	u8 ofdm_ht_triple_stream_basic_rates;
 619	u8 reserved2;
 620	__le16 rx_chain_select_flags;
 621	__le16 acquisition_data;
 622	__le32 reserved3;
 623} __packed;
 624
 625#define IWL_CONN_MAX_LISTEN_INTERVAL	10
 626#define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
 627
 628/*
 629 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
 630 */
 631struct iwl_rxon_time_cmd {
 632	__le64 timestamp;
 633	__le16 beacon_interval;
 634	__le16 atim_window;
 635	__le32 beacon_init_val;
 636	__le16 listen_interval;
 637	u8 dtim_period;
 638	u8 delta_cp_bss_tbtts;
 639} __packed;
 640
 641/*
 642 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
 643 */
 644/**
 645 * struct iwl5000_channel_switch_cmd
 646 * @band: 0- 5.2GHz, 1- 2.4GHz
 647 * @expect_beacon: 0- resume transmits after channel switch
 648 *		   1- wait for beacon to resume transmits
 649 * @channel: new channel number
 650 * @rxon_flags: Rx on flags
 651 * @rxon_filter_flags: filtering parameters
 652 * @switch_time: switch time in extended beacon format
 653 * @reserved: reserved bytes
 654 */
 655struct iwl5000_channel_switch_cmd {
 656	u8 band;
 657	u8 expect_beacon;
 658	__le16 channel;
 659	__le32 rxon_flags;
 660	__le32 rxon_filter_flags;
 661	__le32 switch_time;
 662	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 663} __packed;
 664
 665/**
 666 * struct iwl6000_channel_switch_cmd
 667 * @band: 0- 5.2GHz, 1- 2.4GHz
 668 * @expect_beacon: 0- resume transmits after channel switch
 669 *		   1- wait for beacon to resume transmits
 670 * @channel: new channel number
 671 * @rxon_flags: Rx on flags
 672 * @rxon_filter_flags: filtering parameters
 673 * @switch_time: switch time in extended beacon format
 674 * @reserved: reserved bytes
 675 */
 676struct iwl6000_channel_switch_cmd {
 677	u8 band;
 678	u8 expect_beacon;
 679	__le16 channel;
 680	__le32 rxon_flags;
 681	__le32 rxon_filter_flags;
 682	__le32 switch_time;
 683	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
 684} __packed;
 685
 686/*
 687 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
 688 */
 689struct iwl_csa_notification {
 690	__le16 band;
 691	__le16 channel;
 692	__le32 status;		/* 0 - OK, 1 - fail */
 693} __packed;
 694
 695/******************************************************************************
 696 * (2)
 697 * Quality-of-Service (QOS) Commands & Responses:
 698 *
 699 *****************************************************************************/
 700
 701/**
 702 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
 703 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
 704 *
 705 * @cw_min: Contention window, start value in numbers of slots.
 706 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
 707 * @cw_max: Contention window, max value in numbers of slots.
 708 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
 709 * @aifsn:  Number of slots in Arbitration Interframe Space (before
 710 *          performing random backoff timing prior to Tx).  Device default 1.
 711 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
 712 *
 713 * Device will automatically increase contention window by (2*CW) + 1 for each
 714 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
 715 * value, to cap the CW value.
 716 */
 717struct iwl_ac_qos {
 718	__le16 cw_min;
 719	__le16 cw_max;
 720	u8 aifsn;
 721	u8 reserved1;
 722	__le16 edca_txop;
 723} __packed;
 724
 725/* QoS flags defines */
 726#define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
 727#define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
 728#define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
 729
 730/* Number of Access Categories (AC) (EDCA), queues 0..3 */
 731#define AC_NUM                4
 732
 733/*
 734 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
 735 *
 736 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
 737 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
 738 */
 739struct iwl_qosparam_cmd {
 740	__le32 qos_flags;
 741	struct iwl_ac_qos ac[AC_NUM];
 742} __packed;
 743
 744/******************************************************************************
 745 * (3)
 746 * Add/Modify Stations Commands & Responses:
 747 *
 748 *****************************************************************************/
 749/*
 750 * Multi station support
 751 */
 752
 753/* Special, dedicated locations within device's station table */
 754#define	IWL_AP_ID		0
 755#define	IWL_AP_ID_PAN		1
 756#define	IWL_STA_ID		2
 757#define IWLAGN_PAN_BCAST_ID	14
 758#define IWLAGN_BROADCAST_ID	15
 759#define	IWLAGN_STATION_COUNT	16
 760
 761#define	IWL_INVALID_STATION 	255
 762#define IWL_MAX_TID_COUNT	8
 763#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
 764
 765#define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
 766#define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
 767#define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
 768#define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
 769#define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
 770#define STA_FLG_MAX_AGG_SIZE_POS	(19)
 771#define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
 772#define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
 773#define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
 774#define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
 775#define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
 776
 777/* Use in mode field.  1: modify existing entry, 0: add new station entry */
 778#define STA_CONTROL_MODIFY_MSK		0x01
 779
 780/* key flags __le16*/
 781#define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
 782#define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
 783#define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
 784#define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
 785#define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
 786
 787#define STA_KEY_FLG_KEYID_POS	8
 788#define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
 789/* wep key is either from global key (0) or from station info array (1) */
 790#define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
 791
 792/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
 793#define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
 794#define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
 795#define STA_KEY_MAX_NUM		8
 796#define STA_KEY_MAX_NUM_PAN	16
 797/* must not match WEP_INVALID_OFFSET */
 798#define IWLAGN_HW_KEY_DEFAULT	0xfe
 799
 800/* Flags indicate whether to modify vs. don't change various station params */
 801#define	STA_MODIFY_KEY_MASK		0x01
 802#define	STA_MODIFY_TID_DISABLE_TX	0x02
 803#define	STA_MODIFY_TX_RATE_MSK		0x04
 804#define STA_MODIFY_ADDBA_TID_MSK	0x08
 805#define STA_MODIFY_DELBA_TID_MSK	0x10
 806#define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
 807
 808/* Receiver address (actually, Rx station's index into station table),
 809 * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
 810#define BUILD_RAxTID(sta_id, tid)	(((sta_id) << 4) + (tid))
 811
 812/* agn */
 813struct iwl_keyinfo {
 814	__le16 key_flags;
 815	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
 816	u8 reserved1;
 817	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
 818	u8 key_offset;
 819	u8 reserved2;
 820	u8 key[16];		/* 16-byte unicast decryption key */
 821	__le64 tx_secur_seq_cnt;
 822	__le64 hw_tkip_mic_rx_key;
 823	__le64 hw_tkip_mic_tx_key;
 824} __packed;
 825
 826/**
 827 * struct sta_id_modify
 828 * @addr[ETH_ALEN]: station's MAC address
 829 * @sta_id: index of station in uCode's station table
 830 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
 831 *
 832 * Driver selects unused table index when adding new station,
 833 * or the index to a pre-existing station entry when modifying that station.
 834 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
 835 *
 836 * modify_mask flags select which parameters to modify vs. leave alone.
 837 */
 838struct sta_id_modify {
 839	u8 addr[ETH_ALEN];
 840	__le16 reserved1;
 841	u8 sta_id;
 842	u8 modify_mask;
 843	__le16 reserved2;
 844} __packed;
 845
 846/*
 847 * REPLY_ADD_STA = 0x18 (command)
 848 *
 849 * The device contains an internal table of per-station information,
 850 * with info on security keys, aggregation parameters, and Tx rates for
 851 * initial Tx attempt and any retries (agn devices uses
 852 * REPLY_TX_LINK_QUALITY_CMD,
 853 *
 854 * REPLY_ADD_STA sets up the table entry for one station, either creating
 855 * a new entry, or modifying a pre-existing one.
 856 *
 857 * NOTE:  RXON command (without "associated" bit set) wipes the station table
 858 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
 859 *        new station table before transmitting anything on the RXON channel
 860 *        (except active scans or active measurements; those commands carry
 861 *        their own txpower/rate setup data).
 862 *
 863 *        When getting started on a new channel, driver must set up the
 864 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
 865 *        station in a BSS, once an AP is selected, driver sets up the AP STA
 866 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
 867 *        are all that are needed for a BSS client station.  If the device is
 868 *        used as AP, or in an IBSS network, driver must set up station table
 869 *        entries for all STAs in network, starting with index IWL_STA_ID.
 870 */
 871
 872struct iwl_addsta_cmd {
 873	u8 mode;		/* 1: modify existing, 0: add new station */
 874	u8 reserved[3];
 875	struct sta_id_modify sta;
 876	struct iwl_keyinfo key;
 877	__le32 station_flags;		/* STA_FLG_* */
 878	__le32 station_flags_msk;	/* STA_FLG_* */
 879
 880	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
 881	 * corresponding to bit (e.g. bit 5 controls TID 5).
 882	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
 883	__le16 tid_disable_tx;
 884	__le16 legacy_reserved;
 885
 886	/* TID for which to add block-ack support.
 887	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 888	u8 add_immediate_ba_tid;
 889
 890	/* TID for which to remove block-ack support.
 891	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
 892	u8 remove_immediate_ba_tid;
 893
 894	/* Starting Sequence Number for added block-ack support.
 895	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
 896	__le16 add_immediate_ba_ssn;
 897
 898	/*
 899	 * Number of packets OK to transmit to station even though
 900	 * it is asleep -- used to synchronise PS-poll and u-APSD
 901	 * responses while ucode keeps track of STA sleep state.
 902	 */
 903	__le16 sleep_tx_count;
 904
 905	__le16 reserved2;
 906} __packed;
 907
 908
 909#define ADD_STA_SUCCESS_MSK		0x1
 910#define ADD_STA_NO_ROOM_IN_TABLE	0x2
 911#define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
 912#define ADD_STA_MODIFY_NON_EXIST_STA	0x8
 913/*
 914 * REPLY_ADD_STA = 0x18 (response)
 915 */
 916struct iwl_add_sta_resp {
 917	u8 status;	/* ADD_STA_* */
 918} __packed;
 919
 920#define REM_STA_SUCCESS_MSK              0x1
 921/*
 922 *  REPLY_REM_STA = 0x19 (response)
 923 */
 924struct iwl_rem_sta_resp {
 925	u8 status;
 926} __packed;
 927
 928/*
 929 *  REPLY_REM_STA = 0x19 (command)
 930 */
 931struct iwl_rem_sta_cmd {
 932	u8 num_sta;     /* number of removed stations */
 933	u8 reserved[3];
 934	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
 935	u8 reserved2[2];
 936} __packed;
 937
 938
 939/* WiFi queues mask */
 940#define IWL_SCD_BK_MSK			cpu_to_le32(BIT(0))
 941#define IWL_SCD_BE_MSK			cpu_to_le32(BIT(1))
 942#define IWL_SCD_VI_MSK			cpu_to_le32(BIT(2))
 943#define IWL_SCD_VO_MSK			cpu_to_le32(BIT(3))
 944#define IWL_SCD_MGMT_MSK		cpu_to_le32(BIT(3))
 945
 946/* PAN queues mask */
 947#define IWL_PAN_SCD_BK_MSK		cpu_to_le32(BIT(4))
 948#define IWL_PAN_SCD_BE_MSK		cpu_to_le32(BIT(5))
 949#define IWL_PAN_SCD_VI_MSK		cpu_to_le32(BIT(6))
 950#define IWL_PAN_SCD_VO_MSK		cpu_to_le32(BIT(7))
 951#define IWL_PAN_SCD_MGMT_MSK		cpu_to_le32(BIT(7))
 952#define IWL_PAN_SCD_MULTICAST_MSK	cpu_to_le32(BIT(8))
 953
 954#define IWL_AGG_TX_QUEUE_MSK		cpu_to_le32(0xffc00)
 955
 956#define IWL_DROP_SINGLE		0
 957#define IWL_DROP_ALL		(BIT(IWL_RXON_CTX_BSS) | BIT(IWL_RXON_CTX_PAN))
 958
 959/*
 960 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
 961 *
 962 * When using full FIFO flush this command checks the scheduler HW block WR/RD
 963 * pointers to check if all the frames were transferred by DMA into the
 964 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
 965 * empty the command can finish.
 966 * This command is used to flush the TXFIFO from transmit commands, it may
 967 * operate on single or multiple queues, the command queue can't be flushed by
 968 * this command. The command response is returned when all the queue flush
 969 * operations are done. Each TX command flushed return response with the FLUSH
 970 * status set in the TX response status. When FIFO flush operation is used,
 971 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
 972 * are set.
 973 *
 974 * @fifo_control: bit mask for which queues to flush
 975 * @flush_control: flush controls
 976 *	0: Dump single MSDU
 977 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
 978 *	2: Dump all FIFO
 979 */
 980struct iwl_txfifo_flush_cmd {
 981	__le32 fifo_control;
 982	__le16 flush_control;
 983	__le16 reserved;
 984} __packed;
 985
 986/*
 987 * REPLY_WEP_KEY = 0x20
 988 */
 989struct iwl_wep_key {
 990	u8 key_index;
 991	u8 key_offset;
 992	u8 reserved1[2];
 993	u8 key_size;
 994	u8 reserved2[3];
 995	u8 key[16];
 996} __packed;
 997
 998struct iwl_wep_cmd {
 999	u8 num_keys;
1000	u8 global_key_type;
1001	u8 flags;
1002	u8 reserved;
1003	struct iwl_wep_key key[0];
1004} __packed;
1005
1006#define WEP_KEY_WEP_TYPE 1
1007#define WEP_KEYS_MAX 4
1008#define WEP_INVALID_OFFSET 0xff
1009#define WEP_KEY_LEN_64 5
1010#define WEP_KEY_LEN_128 13
1011
1012/******************************************************************************
1013 * (4)
1014 * Rx Responses:
1015 *
1016 *****************************************************************************/
1017
1018#define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1019#define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1020
1021#define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1022#define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1023#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1024#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1025#define RX_RES_PHY_FLAGS_ANTENNA_MSK		0xf0
1026#define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1027
1028#define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1029#define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1030#define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1031#define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1032#define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1033#define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1034
1035#define RX_RES_STATUS_STATION_FOUND	(1<<6)
1036#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1037
1038#define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1039#define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1040#define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1041#define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1042#define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1043
1044#define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1045#define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1046#define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1047#define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1048
1049
1050#define IWLAGN_RX_RES_PHY_CNT 8
1051#define IWLAGN_RX_RES_AGC_IDX     1
1052#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1053#define IWLAGN_RX_RES_RSSI_C_IDX  3
1054#define IWLAGN_OFDM_AGC_MSK 0xfe00
1055#define IWLAGN_OFDM_AGC_BIT_POS 9
1056#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1057#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1058#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1059#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1060#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1061#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1062#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1063#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1064#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1065
1066struct iwlagn_non_cfg_phy {
1067	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1068} __packed;
1069
1070
1071/*
1072 * REPLY_RX = 0xc3 (response only, not a command)
1073 * Used only for legacy (non 11n) frames.
1074 */
1075struct iwl_rx_phy_res {
1076	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1077	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1078	u8 stat_id;		/* configurable DSP phy data set ID */
1079	u8 reserved1;
1080	__le64 timestamp;	/* TSF at on air rise */
1081	__le32 beacon_time_stamp; /* beacon at on-air rise */
1082	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1083	__le16 channel;		/* channel number */
1084	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1085	__le32 rate_n_flags;	/* RATE_MCS_* */
1086	__le16 byte_count;	/* frame's byte-count */
1087	__le16 frame_time;	/* frame's time on the air */
1088} __packed;
1089
1090struct iwl_rx_mpdu_res_start {
1091	__le16 byte_count;
1092	__le16 reserved;
1093} __packed;
1094
1095
1096/******************************************************************************
1097 * (5)
1098 * Tx Commands & Responses:
1099 *
1100 * Driver must place each REPLY_TX command into one of the prioritized Tx
1101 * queues in host DRAM, shared between driver and device (see comments for
1102 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1103 * are preparing to transmit, the device pulls the Tx command over the PCI
1104 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1105 * from which data will be transmitted.
1106 *
1107 * uCode handles all timing and protocol related to control frames
1108 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1109 * handle reception of block-acks; uCode updates the host driver via
1110 * REPLY_COMPRESSED_BA.
1111 *
1112 * uCode handles retrying Tx when an ACK is expected but not received.
1113 * This includes trying lower data rates than the one requested in the Tx
1114 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1115 *
1116 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1117 * This command must be executed after every RXON command, before Tx can occur.
1118 *****************************************************************************/
1119
1120/* REPLY_TX Tx flags field */
1121
1122/*
1123 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1124 * before this frame. if CTS-to-self required check
1125 * RXON_FLG_SELF_CTS_EN status.
1126 */
1127#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1128
1129/* 1: Expect ACK from receiving station
1130 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1131 * Set this for unicast frames, but not broadcast/multicast. */
1132#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1133
1134/* For agn devices:
1135 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1136 *    Tx command's initial_rate_index indicates first rate to try;
1137 *    uCode walks through table for additional Tx attempts.
1138 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1139 *    This rate will be used for all Tx attempts; it will not be scaled. */
1140#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1141
1142/* 1: Expect immediate block-ack.
1143 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1144#define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1145
1146/* Tx antenna selection field; reserved (0) for agn devices. */
1147#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1148
1149/* 1: Ignore Bluetooth priority for this frame.
1150 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1151#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1152
1153/* 1: uCode overrides sequence control field in MAC header.
1154 * 0: Driver provides sequence control field in MAC header.
1155 * Set this for management frames, non-QOS data frames, non-unicast frames,
1156 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1157#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1158
1159/* 1: This frame is non-last MPDU; more fragments are coming.
1160 * 0: Last fragment, or not using fragmentation. */
1161#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1162
1163/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1164 * 0: No TSF required in outgoing frame.
1165 * Set this for transmitting beacons and probe responses. */
1166#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1167
1168/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1169 *    alignment of frame's payload data field.
1170 * 0: No pad
1171 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1172 * field (but not both).  Driver must align frame data (i.e. data following
1173 * MAC header) to DWORD boundary. */
1174#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1175
1176/* accelerate aggregation support
1177 * 0 - no CCMP encryption; 1 - CCMP encryption */
1178#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1179
1180/* HCCA-AP - disable duration overwriting. */
1181#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1182
1183
1184/*
1185 * TX command security control
1186 */
1187#define TX_CMD_SEC_WEP  	0x01
1188#define TX_CMD_SEC_CCM  	0x02
1189#define TX_CMD_SEC_TKIP		0x03
1190#define TX_CMD_SEC_MSK		0x03
1191#define TX_CMD_SEC_SHIFT	6
1192#define TX_CMD_SEC_KEY128	0x08
1193
1194/*
1195 * security overhead sizes
1196 */
1197#define WEP_IV_LEN 4
1198#define WEP_ICV_LEN 4
1199#define CCMP_MIC_LEN 8
1200#define TKIP_ICV_LEN 4
1201
1202/*
1203 * REPLY_TX = 0x1c (command)
1204 */
1205
1206/*
1207 * 4965 uCode updates these Tx attempt count values in host DRAM.
1208 * Used for managing Tx retries when expecting block-acks.
1209 * Driver should set these fields to 0.
1210 */
1211struct iwl_dram_scratch {
1212	u8 try_cnt;		/* Tx attempts */
1213	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1214	__le16 reserved;
1215} __packed;
1216
1217struct iwl_tx_cmd {
1218	/*
1219	 * MPDU byte count:
1220	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1221	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1222	 * + Data payload
1223	 * + 8-byte MIC (not used for CCM/WEP)
1224	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1225	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1226	 * Range: 14-2342 bytes.
1227	 */
1228	__le16 len;
1229
1230	/*
1231	 * MPDU or MSDU byte count for next frame.
1232	 * Used for fragmentation and bursting, but not 11n aggregation.
1233	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1234	 */
1235	__le16 next_frame_len;
1236
1237	__le32 tx_flags;	/* TX_CMD_FLG_* */
1238
1239	/* uCode may modify this field of the Tx command (in host DRAM!).
1240	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1241	struct iwl_dram_scratch scratch;
1242
1243	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1244	__le32 rate_n_flags;	/* RATE_MCS_* */
1245
1246	/* Index of destination station in uCode's station table */
1247	u8 sta_id;
1248
1249	/* Type of security encryption:  CCM or TKIP */
1250	u8 sec_ctl;		/* TX_CMD_SEC_* */
1251
1252	/*
1253	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1254	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1255	 * data frames, this field may be used to selectively reduce initial
1256	 * rate (via non-0 value) for special frames (e.g. management), while
1257	 * still supporting rate scaling for all frames.
1258	 */
1259	u8 initial_rate_index;
1260	u8 reserved;
1261	u8 key[16];
1262	__le16 next_frame_flags;
1263	__le16 reserved2;
1264	union {
1265		__le32 life_time;
1266		__le32 attempt;
1267	} stop_time;
1268
1269	/* Host DRAM physical address pointer to "scratch" in this command.
1270	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1271	__le32 dram_lsb_ptr;
1272	u8 dram_msb_ptr;
1273
1274	u8 rts_retry_limit;	/*byte 50 */
1275	u8 data_retry_limit;	/*byte 51 */
1276	u8 tid_tspec;
1277	union {
1278		__le16 pm_frame_timeout;
1279		__le16 attempt_duration;
1280	} timeout;
1281
1282	/*
1283	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1284	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1285	 */
1286	__le16 driver_txop;
1287
1288	/*
1289	 * MAC header goes here, followed by 2 bytes padding if MAC header
1290	 * length is 26 or 30 bytes, followed by payload data
1291	 */
1292	u8 payload[0];
1293	struct ieee80211_hdr hdr[0];
1294} __packed;
1295
1296/*
1297 * TX command response is sent after *agn* transmission attempts.
1298 *
1299 * both postpone and abort status are expected behavior from uCode. there is
1300 * no special operation required from driver; except for RFKILL_FLUSH,
1301 * which required tx flush host command to flush all the tx frames in queues
1302 */
1303enum {
1304	TX_STATUS_SUCCESS = 0x01,
1305	TX_STATUS_DIRECT_DONE = 0x02,
1306	/* postpone TX */
1307	TX_STATUS_POSTPONE_DELAY = 0x40,
1308	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1309	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1310	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1311	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1312	/* abort TX */
1313	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1314	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1315	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1316	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1317	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1318	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1319	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1320	TX_STATUS_FAIL_DEST_PS = 0x88,
1321	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1322	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1323	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1324	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1325	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1326	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1327	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1328	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1329	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1330};
1331
1332#define	TX_PACKET_MODE_REGULAR		0x0000
1333#define	TX_PACKET_MODE_BURST_SEQ	0x0100
1334#define	TX_PACKET_MODE_BURST_FIRST	0x0200
1335
1336enum {
1337	TX_POWER_PA_NOT_ACTIVE = 0x0,
1338};
1339
1340enum {
1341	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1342	TX_STATUS_DELAY_MSK = 0x00000040,
1343	TX_STATUS_ABORT_MSK = 0x00000080,
1344	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1345	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1346	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1347	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1348	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1349};
1350
1351/* *******************************
1352 * TX aggregation status
1353 ******************************* */
1354
1355enum {
1356	AGG_TX_STATE_TRANSMITTED = 0x00,
1357	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1358	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1359	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1360	AGG_TX_STATE_ABORT_MSK = 0x08,
1361	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1362	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1363	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1364	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1365	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1366	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1367	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1368	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1369};
1370
1371#define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1372#define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1373
1374#define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1375				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1376				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1377
1378/* # tx attempts for first frame in aggregation */
1379#define AGG_TX_STATE_TRY_CNT_POS 12
1380#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1381
1382/* Command ID and sequence number of Tx command for this frame */
1383#define AGG_TX_STATE_SEQ_NUM_POS 16
1384#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1385
1386/*
1387 * REPLY_TX = 0x1c (response)
1388 *
1389 * This response may be in one of two slightly different formats, indicated
1390 * by the frame_count field:
1391 *
1392 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1393 *     a single frame.  Multiple attempts, at various bit rates, may have
1394 *     been made for this frame.
1395 *
1396 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1397 *     2 or more frames that used block-acknowledge.  All frames were
1398 *     transmitted at same rate.  Rate scaling may have been used if first
1399 *     frame in this new agg block failed in previous agg block(s).
1400 *
1401 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1402 *     block-ack has not been received by the time the agn device records
1403 *     this status.
1404 *     This status relates to reasons the tx might have been blocked or aborted
1405 *     within the sending station (this agn device), rather than whether it was
1406 *     received successfully by the destination station.
1407 */
1408struct agg_tx_status {
1409	__le16 status;
1410	__le16 sequence;
1411} __packed;
1412
1413/*
1414 * definitions for initial rate index field
1415 * bits [3:0] initial rate index
1416 * bits [6:4] rate table color, used for the initial rate
1417 * bit-7 invalid rate indication
1418 *   i.e. rate was not chosen from rate table
1419 *   or rate table color was changed during frame retries
1420 * refer tlc rate info
1421 */
1422
1423#define IWL50_TX_RES_INIT_RATE_INDEX_POS	0
1424#define IWL50_TX_RES_INIT_RATE_INDEX_MSK	0x0f
1425#define IWL50_TX_RES_RATE_TABLE_COLOR_POS	4
1426#define IWL50_TX_RES_RATE_TABLE_COLOR_MSK	0x70
1427#define IWL50_TX_RES_INV_RATE_INDEX_MSK	0x80
1428
1429/* refer to ra_tid */
1430#define IWLAGN_TX_RES_TID_POS	0
1431#define IWLAGN_TX_RES_TID_MSK	0x0f
1432#define IWLAGN_TX_RES_RA_POS	4
1433#define IWLAGN_TX_RES_RA_MSK	0xf0
1434
1435struct iwlagn_tx_resp {
1436	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1437	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1438	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1439	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1440
1441	/* For non-agg:  Rate at which frame was successful.
1442	 * For agg:  Rate at which all frames were transmitted. */
1443	__le32 rate_n_flags;	/* RATE_MCS_*  */
1444
1445	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1446	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1447	__le16 wireless_media_time;	/* uSecs */
1448
1449	u8 pa_status;		/* RF power amplifier measurement (not used) */
1450	u8 pa_integ_res_a[3];
1451	u8 pa_integ_res_b[3];
1452	u8 pa_integ_res_C[3];
1453
1454	__le32 tfd_info;
1455	__le16 seq_ctl;
1456	__le16 byte_cnt;
1457	u8 tlc_info;
1458	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1459	__le16 frame_ctrl;
1460	/*
1461	 * For non-agg:  frame status TX_STATUS_*
1462	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1463	 *           fields follow this one, up to frame_count.
1464	 *           Bit fields:
1465	 *           11- 0:  AGG_TX_STATE_* status code
1466	 *           15-12:  Retry count for 1st frame in aggregation (retries
1467	 *                   occur if tx failed for this frame when it was a
1468	 *                   member of a previous aggregation block).  If rate
1469	 *                   scaling is used, retry count indicates the rate
1470	 *                   table entry used for all frames in the new agg.
1471	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1472	 */
1473	struct agg_tx_status status;	/* TX status (in aggregation -
1474					 * status of 1st frame) */
1475} __packed;
1476/*
1477 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1478 *
1479 * Reports Block-Acknowledge from recipient station
1480 */
1481struct iwl_compressed_ba_resp {
1482	__le32 sta_addr_lo32;
1483	__le16 sta_addr_hi16;
1484	__le16 reserved;
1485
1486	/* Index of recipient (BA-sending) station in uCode's station table */
1487	u8 sta_id;
1488	u8 tid;
1489	__le16 seq_ctl;
1490	__le64 bitmap;
1491	__le16 scd_flow;
1492	__le16 scd_ssn;
1493	u8 txed;	/* number of frames sent */
1494	u8 txed_2_done; /* number of frames acked */
1495} __packed;
1496
1497/*
1498 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1499 *
1500 */
1501
1502/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1503#define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1504
1505/* # of EDCA prioritized tx fifos */
1506#define  LINK_QUAL_AC_NUM AC_NUM
1507
1508/* # entries in rate scale table to support Tx retries */
1509#define  LINK_QUAL_MAX_RETRY_NUM 16
1510
1511/* Tx antenna selection values */
1512#define  LINK_QUAL_ANT_A_MSK (1 << 0)
1513#define  LINK_QUAL_ANT_B_MSK (1 << 1)
1514#define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1515
1516
1517/**
1518 * struct iwl_link_qual_general_params
1519 *
1520 * Used in REPLY_TX_LINK_QUALITY_CMD
1521 */
1522struct iwl_link_qual_general_params {
1523	u8 flags;
1524
1525	/* No entries at or above this (driver chosen) index contain MIMO */
1526	u8 mimo_delimiter;
1527
1528	/* Best single antenna to use for single stream (legacy, SISO). */
1529	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1530
1531	/* Best antennas to use for MIMO (unused for 4965, assumes both). */
1532	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1533
1534	/*
1535	 * If driver needs to use different initial rates for different
1536	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1537	 * this table will set that up, by indicating the indexes in the
1538	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1539	 * Otherwise, driver should set all entries to 0.
1540	 *
1541	 * Entry usage:
1542	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1543	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1544	 */
1545	u8 start_rate_index[LINK_QUAL_AC_NUM];
1546} __packed;
1547
1548#define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1549#define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1550#define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1551
1552#define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1553#define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1554#define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1555
1556#define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1557#define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1558#define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1559
1560/**
1561 * struct iwl_link_qual_agg_params
1562 *
1563 * Used in REPLY_TX_LINK_QUALITY_CMD
1564 */
1565struct iwl_link_qual_agg_params {
1566
1567	/*
1568	 *Maximum number of uSec in aggregation.
1569	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1570	 */
1571	__le16 agg_time_limit;
1572
1573	/*
1574	 * Number of Tx retries allowed for a frame, before that frame will
1575	 * no longer be considered for the start of an aggregation sequence
1576	 * (scheduler will then try to tx it as single frame).
1577	 * Driver should set this to 3.
1578	 */
1579	u8 agg_dis_start_th;
1580
1581	/*
1582	 * Maximum number of frames in aggregation.
1583	 * 0 = no limit (default).  1 = no aggregation.
1584	 * Other values = max # frames in aggregation.
1585	 */
1586	u8 agg_frame_cnt_limit;
1587
1588	__le32 reserved;
1589} __packed;
1590
1591/*
1592 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1593 *
1594 * For agn devices
1595 *
1596 * Each station in the agn device's internal station table has its own table
1597 * of 16
1598 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1599 * an ACK is not received.  This command replaces the entire table for
1600 * one station.
1601 *
1602 * NOTE:  Station must already be in agn device's station table.
1603 *	  Use REPLY_ADD_STA.
1604 *
1605 * The rate scaling procedures described below work well.  Of course, other
1606 * procedures are possible, and may work better for particular environments.
1607 *
1608 *
1609 * FILLING THE RATE TABLE
1610 *
1611 * Given a particular initial rate and mode, as determined by the rate
1612 * scaling algorithm described below, the Linux driver uses the following
1613 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1614 * Link Quality command:
1615 *
1616 *
1617 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1618 *     a) Use this same initial rate for first 3 entries.
1619 *     b) Find next lower available rate using same mode (SISO or MIMO),
1620 *        use for next 3 entries.  If no lower rate available, switch to
1621 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1622 *     c) If using MIMO, set command's mimo_delimiter to number of entries
1623 *        using MIMO (3 or 6).
1624 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1625 *        no MIMO, no short guard interval), at the next lower bit rate
1626 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1627 *        legacy procedure for remaining table entries.
1628 *
1629 * 2)  If using legacy initial rate:
1630 *     a) Use the initial rate for only one entry.
1631 *     b) For each following entry, reduce the rate to next lower available
1632 *        rate, until reaching the lowest available rate.
1633 *     c) When reducing rate, also switch antenna selection.
1634 *     d) Once lowest available rate is reached, repeat this rate until
1635 *        rate table is filled (16 entries), switching antenna each entry.
1636 *
1637 *
1638 * ACCUMULATING HISTORY
1639 *
1640 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1641 * uses two sets of frame Tx success history:  One for the current/active
1642 * modulation mode, and one for a speculative/search mode that is being
1643 * attempted. If the speculative mode turns out to be more effective (i.e.
1644 * actual transfer rate is better), then the driver continues to use the
1645 * speculative mode as the new current active mode.
1646 *
1647 * Each history set contains, separately for each possible rate, data for a
1648 * sliding window of the 62 most recent tx attempts at that rate.  The data
1649 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1650 * and attempted frames, from which the driver can additionally calculate a
1651 * success ratio (success / attempted) and number of failures
1652 * (attempted - success), and control the size of the window (attempted).
1653 * The driver uses the bit map to remove successes from the success sum, as
1654 * the oldest tx attempts fall out of the window.
1655 *
1656 * When the agn device makes multiple tx attempts for a given frame, each
1657 * attempt might be at a different rate, and have different modulation
1658 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1659 * up in the rate scaling table in the Link Quality command.  The driver must
1660 * determine which rate table entry was used for each tx attempt, to determine
1661 * which rate-specific history to update, and record only those attempts that
1662 * match the modulation characteristics of the history set.
1663 *
1664 * When using block-ack (aggregation), all frames are transmitted at the same
1665 * rate, since there is no per-attempt acknowledgment from the destination
1666 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1667 * rate_n_flags field.  After receiving a block-ack, the driver can update
1668 * history for the entire block all at once.
1669 *
1670 *
1671 * FINDING BEST STARTING RATE:
1672 *
1673 * When working with a selected initial modulation mode (see below), the
1674 * driver attempts to find a best initial rate.  The initial rate is the
1675 * first entry in the Link Quality command's rate table.
1676 *
1677 * 1)  Calculate actual throughput (success ratio * expected throughput, see
1678 *     table below) for current initial rate.  Do this only if enough frames
1679 *     have been attempted to make the value meaningful:  at least 6 failed
1680 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1681 *     scaling yet.
1682 *
1683 * 2)  Find available rates adjacent to current initial rate.  Available means:
1684 *     a)  supported by hardware &&
1685 *     b)  supported by association &&
1686 *     c)  within any constraints selected by user
1687 *
1688 * 3)  Gather measured throughputs for adjacent rates.  These might not have
1689 *     enough history to calculate a throughput.  That's okay, we might try
1690 *     using one of them anyway!
1691 *
1692 * 4)  Try decreasing rate if, for current rate:
1693 *     a)  success ratio is < 15% ||
1694 *     b)  lower adjacent rate has better measured throughput ||
1695 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1696 *
1697 *     As a sanity check, if decrease was determined above, leave rate
1698 *     unchanged if:
1699 *     a)  lower rate unavailable
1700 *     b)  success ratio at current rate > 85% (very good)
1701 *     c)  current measured throughput is better than expected throughput
1702 *         of lower rate (under perfect 100% tx conditions, see table below)
1703 *
1704 * 5)  Try increasing rate if, for current rate:
1705 *     a)  success ratio is < 15% ||
1706 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1707 *     b)  higher adjacent rate has better measured throughput ||
1708 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1709 *
1710 *     As a sanity check, if increase was determined above, leave rate
1711 *     unchanged if:
1712 *     a)  success ratio at current rate < 70%.  This is not particularly
1713 *         good performance; higher rate is sure to have poorer success.
1714 *
1715 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1716 *     acknowledge, history and statistics may be calculated for the entire
1717 *     block (including prior history that fits within the history windows),
1718 *     before re-evaluation.
1719 *
1720 * FINDING BEST STARTING MODULATION MODE:
1721 *
1722 * After working with a modulation mode for a "while" (and doing rate scaling),
1723 * the driver searches for a new initial mode in an attempt to improve
1724 * throughput.  The "while" is measured by numbers of attempted frames:
1725 *
1726 * For legacy mode, search for new mode after:
1727 *   480 successful frames, or 160 failed frames
1728 * For high-throughput modes (SISO or MIMO), search for new mode after:
1729 *   4500 successful frames, or 400 failed frames
1730 *
1731 * Mode switch possibilities are (3 for each mode):
1732 *
1733 * For legacy:
1734 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1735 * For SISO:
1736 *   Change antenna, try MIMO, try shortened guard interval (SGI)
1737 * For MIMO:
1738 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1739 *
1740 * When trying a new mode, use the same bit rate as the old/current mode when
1741 * trying antenna switches and shortened guard interval.  When switching to
1742 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1743 * for which the expected throughput (under perfect conditions) is about the
1744 * same or slightly better than the actual measured throughput delivered by
1745 * the old/current mode.
1746 *
1747 * Actual throughput can be estimated by multiplying the expected throughput
1748 * by the success ratio (successful / attempted tx frames).  Frame size is
1749 * not considered in this calculation; it assumes that frame size will average
1750 * out to be fairly consistent over several samples.  The following are
1751 * metric values for expected throughput assuming 100% success ratio.
1752 * Only G band has support for CCK rates:
1753 *
1754 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1755 *
1756 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1757 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1758 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1759 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1760 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1761 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1762 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1763 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1764 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1765 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1766 *
1767 * After the new mode has been tried for a short while (minimum of 6 failed
1768 * frames or 8 successful frames), compare success ratio and actual throughput
1769 * estimate of the new mode with the old.  If either is better with the new
1770 * mode, continue to use the new mode.
1771 *
1772 * Continue comparing modes until all 3 possibilities have been tried.
1773 * If moving from legacy to HT, try all 3 possibilities from the new HT
1774 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1775 * for the longer "while" described above (e.g. 480 successful frames for
1776 * legacy), and then repeat the search process.
1777 *
1778 */
1779struct iwl_link_quality_cmd {
1780
1781	/* Index of destination/recipient station in uCode's station table */
1782	u8 sta_id;
1783	u8 reserved1;
1784	__le16 control;		/* not used */
1785	struct iwl_link_qual_general_params general_params;
1786	struct iwl_link_qual_agg_params agg_params;
1787
1788	/*
1789	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1790	 * specifies 1st Tx rate attempted, via index into this table.
1791	 * agn devices works its way through table when retrying Tx.
1792	 */
1793	struct {
1794		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1795	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1796	__le32 reserved2;
1797} __packed;
1798
1799/*
1800 * BT configuration enable flags:
1801 *   bit 0 - 1: BT channel announcement enabled
1802 *           0: disable
1803 *   bit 1 - 1: priority of BT device enabled
1804 *           0: disable
1805 *   bit 2 - 1: BT 2 wire support enabled
1806 *           0: disable
1807 */
1808#define BT_COEX_DISABLE (0x0)
1809#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1810#define BT_ENABLE_PRIORITY	   BIT(1)
1811#define BT_ENABLE_2_WIRE	   BIT(2)
1812
1813#define BT_COEX_DISABLE (0x0)
1814#define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1815
1816#define BT_LEAD_TIME_MIN (0x0)
1817#define BT_LEAD_TIME_DEF (0x1E)
1818#define BT_LEAD_TIME_MAX (0xFF)
1819
1820#define BT_MAX_KILL_MIN (0x1)
1821#define BT_MAX_KILL_DEF (0x5)
1822#define BT_MAX_KILL_MAX (0xFF)
1823
1824#define BT_DURATION_LIMIT_DEF	625
1825#define BT_DURATION_LIMIT_MAX	1250
1826#define BT_DURATION_LIMIT_MIN	625
1827
1828#define BT_ON_THRESHOLD_DEF	4
1829#define BT_ON_THRESHOLD_MAX	1000
1830#define BT_ON_THRESHOLD_MIN	1
1831
1832#define BT_FRAG_THRESHOLD_DEF	0
1833#define BT_FRAG_THRESHOLD_MAX	0
1834#define BT_FRAG_THRESHOLD_MIN	0
1835
1836#define BT_AGG_THRESHOLD_DEF	1200
1837#define BT_AGG_THRESHOLD_MAX	8000
1838#define BT_AGG_THRESHOLD_MIN	400
1839
1840/*
1841 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1842 *
1843 * agn devices support hardware handshake with Bluetooth device on
1844 * same platform.  Bluetooth device alerts wireless device when it will Tx;
1845 * wireless device can delay or kill its own Tx to accommodate.
1846 */
1847struct iwl_bt_cmd {
1848	u8 flags;
1849	u8 lead_time;
1850	u8 max_kill;
1851	u8 reserved;
1852	__le32 kill_ack_mask;
1853	__le32 kill_cts_mask;
1854} __packed;
1855
1856#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1857
1858#define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1859#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1860#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1861#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1862#define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1863#define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1864
1865#define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1866/* Disable Sync PSPoll on SCO/eSCO */
1867#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1868
1869#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1870#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1871
1872#define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1873#define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1874#define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1875
1876#define IWLAGN_BT_MAX_KILL_DEFAULT	5
1877
1878#define IWLAGN_BT3_T7_DEFAULT		1
1879
1880enum iwl_bt_kill_idx {
1881	IWL_BT_KILL_DEFAULT = 0,
1882	IWL_BT_KILL_OVERRIDE = 1,
1883	IWL_BT_KILL_REDUCE = 2,
1884};
1885
1886#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1887#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1888#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1889#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1890
1891#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1892
1893#define IWLAGN_BT3_T2_DEFAULT		0xc
1894
1895#define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1896#define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1897#define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1898#define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1899#define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1900#define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1901#define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1902#define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1903
1904#define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1905					IWLAGN_BT_VALID_BOOST | \
1906					IWLAGN_BT_VALID_MAX_KILL | \
1907					IWLAGN_BT_VALID_3W_TIMERS | \
1908					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1909					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1910					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1911					IWLAGN_BT_VALID_3W_LUT)
1912
1913#define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1914
1915#define IWLAGN_BT_DECISION_LUT_SIZE	12
1916
1917struct iwl_basic_bt_cmd {
1918	u8 flags;
1919	u8 ledtime; /* unused */
1920	u8 max_kill;
1921	u8 bt3_timer_t7_value;
1922	__le32 kill_ack_mask;
1923	__le32 kill_cts_mask;
1924	u8 bt3_prio_sample_time;
1925	u8 bt3_timer_t2_value;
1926	__le16 bt4_reaction_time; /* unused */
1927	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1928	/*
1929	 * bit 0: use reduced tx power for control frame
1930	 * bit 1 - 7: reserved
1931	 */
1932	u8 reduce_txpower;
1933	u8 reserved;
1934	__le16 valid;
1935};
1936
1937struct iwl_bt_cmd_v1 {
1938	struct iwl_basic_bt_cmd basic;
1939	u8 prio_boost;
1940	/*
1941	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1942	 * if configure the following patterns
1943	 */
1944	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1945	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1946};
1947
1948struct iwl_bt_cmd_v2 {
1949	struct iwl_basic_bt_cmd basic;
1950	__le32 prio_boost;
1951	/*
1952	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1953	 * if configure the following patterns
1954	 */
1955	u8 reserved;
1956	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1957	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1958};
1959
1960#define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1961
1962struct iwlagn_bt_sco_cmd {
1963	__le32 flags;
1964};
1965
1966/******************************************************************************
1967 * (6)
1968 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1969 *
1970 *****************************************************************************/
1971
1972/*
1973 * Spectrum Management
1974 */
1975#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
1976				 RXON_FILTER_CTL2HOST_MSK        | \
1977				 RXON_FILTER_ACCEPT_GRP_MSK      | \
1978				 RXON_FILTER_DIS_DECRYPT_MSK     | \
1979				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
1980				 RXON_FILTER_ASSOC_MSK           | \
1981				 RXON_FILTER_BCON_AWARE_MSK)
1982
1983struct iwl_measure_channel {
1984	__le32 duration;	/* measurement duration in extended beacon
1985				 * format */
1986	u8 channel;		/* channel to measure */
1987	u8 type;		/* see enum iwl_measure_type */
1988	__le16 reserved;
1989} __packed;
1990
1991/*
1992 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
1993 */
1994struct iwl_spectrum_cmd {
1995	__le16 len;		/* number of bytes starting from token */
1996	u8 token;		/* token id */
1997	u8 id;			/* measurement id -- 0 or 1 */
1998	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
1999	u8 periodic;		/* 1 = periodic */
2000	__le16 path_loss_timeout;
2001	__le32 start_time;	/* start time in extended beacon format */
2002	__le32 reserved2;
2003	__le32 flags;		/* rxon flags */
2004	__le32 filter_flags;	/* rxon filter flags */
2005	__le16 channel_count;	/* minimum 1, maximum 10 */
2006	__le16 reserved3;
2007	struct iwl_measure_channel channels[10];
2008} __packed;
2009
2010/*
2011 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2012 */
2013struct iwl_spectrum_resp {
2014	u8 token;
2015	u8 id;			/* id of the prior command replaced, or 0xff */
2016	__le16 status;		/* 0 - command will be handled
2017				 * 1 - cannot handle (conflicts with another
2018				 *     measurement) */
2019} __packed;
2020
2021enum iwl_measurement_state {
2022	IWL_MEASUREMENT_START = 0,
2023	IWL_MEASUREMENT_STOP = 1,
2024};
2025
2026enum iwl_measurement_status {
2027	IWL_MEASUREMENT_OK = 0,
2028	IWL_MEASUREMENT_CONCURRENT = 1,
2029	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2030	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2031	/* 4-5 reserved */
2032	IWL_MEASUREMENT_STOPPED = 6,
2033	IWL_MEASUREMENT_TIMEOUT = 7,
2034	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2035};
2036
2037#define NUM_ELEMENTS_IN_HISTOGRAM 8
2038
2039struct iwl_measurement_histogram {
2040	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2041	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2042} __packed;
2043
2044/* clear channel availability counters */
2045struct iwl_measurement_cca_counters {
2046	__le32 ofdm;
2047	__le32 cck;
2048} __packed;
2049
2050enum iwl_measure_type {
2051	IWL_MEASURE_BASIC = (1 << 0),
2052	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2053	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2054	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2055	IWL_MEASURE_FRAME = (1 << 4),
2056	/* bits 5:6 are reserved */
2057	IWL_MEASURE_IDLE = (1 << 7),
2058};
2059
2060/*
2061 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2062 */
2063struct iwl_spectrum_notification {
2064	u8 id;			/* measurement id -- 0 or 1 */
2065	u8 token;
2066	u8 channel_index;	/* index in measurement channel list */
2067	u8 state;		/* 0 - start, 1 - stop */
2068	__le32 start_time;	/* lower 32-bits of TSF */
2069	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2070	u8 channel;
2071	u8 type;		/* see enum iwl_measurement_type */
2072	u8 reserved1;
2073	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2074	 * valid if applicable for measurement type requested. */
2075	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2076	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2077	__le32 cca_time;	/* channel load time in usecs */
2078	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2079				 * unidentified */
2080	u8 reserved2[3];
2081	struct iwl_measurement_histogram histogram;
2082	__le32 stop_time;	/* lower 32-bits of TSF */
2083	__le32 status;		/* see iwl_measurement_status */
2084} __packed;
2085
2086/******************************************************************************
2087 * (7)
2088 * Power Management Commands, Responses, Notifications:
2089 *
2090 *****************************************************************************/
2091
2092/**
2093 * struct iwl_powertable_cmd - Power Table Command
2094 * @flags: See below:
2095 *
2096 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2097 *
2098 * PM allow:
2099 *   bit 0 - '0' Driver not allow power management
2100 *           '1' Driver allow PM (use rest of parameters)
2101 *
2102 * uCode send sleep notifications:
2103 *   bit 1 - '0' Don't send sleep notification
2104 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2105 *
2106 * Sleep over DTIM
2107 *   bit 2 - '0' PM have to walk up every DTIM
2108 *           '1' PM could sleep over DTIM till listen Interval.
2109 *
2110 * PCI power managed
2111 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2112 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2113 *
2114 * Fast PD
2115 *   bit 4 - '1' Put radio to sleep when receiving frame for others
2116 *
2117 * Force sleep Modes
2118 *   bit 31/30- '00' use both mac/xtal sleeps
2119 *              '01' force Mac sleep
2120 *              '10' force xtal sleep
2121 *              '11' Illegal set
2122 *
2123 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2124 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2125 * for every DTIM.
2126 */
2127#define IWL_POWER_VEC_SIZE 5
2128
2129#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2130#define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2131#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2132#define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2133#define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2134#define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2135#define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2136#define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2137#define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2138#define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2139#define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2140
2141struct iwl_powertable_cmd {
2142	__le16 flags;
2143	u8 keep_alive_seconds;
2144	u8 debug_flags;
2145	__le32 rx_data_timeout;
2146	__le32 tx_data_timeout;
2147	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2148	__le32 keep_alive_beacons;
2149} __packed;
2150
2151/*
2152 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2153 * all devices identical.
2154 */
2155struct iwl_sleep_notification {
2156	u8 pm_sleep_mode;
2157	u8 pm_wakeup_src;
2158	__le16 reserved;
2159	__le32 sleep_time;
2160	__le32 tsf_low;
2161	__le32 bcon_timer;
2162} __packed;
2163
2164/* Sleep states.  all devices identical. */
2165enum {
2166	IWL_PM_NO_SLEEP = 0,
2167	IWL_PM_SLP_MAC = 1,
2168	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2169	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2170	IWL_PM_SLP_PHY = 4,
2171	IWL_PM_SLP_REPENT = 5,
2172	IWL_PM_WAKEUP_BY_TIMER = 6,
2173	IWL_PM_WAKEUP_BY_DRIVER = 7,
2174	IWL_PM_WAKEUP_BY_RFKILL = 8,
2175	/* 3 reserved */
2176	IWL_PM_NUM_OF_MODES = 12,
2177};
2178
2179/*
2180 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2181 */
2182#define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2183#define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2184#define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2185struct iwl_card_state_cmd {
2186	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2187} __packed;
2188
2189/*
2190 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2191 */
2192struct iwl_card_state_notif {
2193	__le32 flags;
2194} __packed;
2195
2196#define HW_CARD_DISABLED   0x01
2197#define SW_CARD_DISABLED   0x02
2198#define CT_CARD_DISABLED   0x04
2199#define RXON_CARD_DISABLED 0x10
2200
2201struct iwl_ct_kill_config {
2202	__le32   reserved;
2203	__le32   critical_temperature_M;
2204	__le32   critical_temperature_R;
2205}  __packed;
2206
2207/* 1000, and 6x00 */
2208struct iwl_ct_kill_throttling_config {
2209	__le32   critical_temperature_exit;
2210	__le32   reserved;
2211	__le32   critical_temperature_enter;
2212}  __packed;
2213
2214/******************************************************************************
2215 * (8)
2216 * Scan Commands, Responses, Notifications:
2217 *
2218 *****************************************************************************/
2219
2220#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2221#define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2222
2223/**
2224 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2225 *
2226 * One for each channel in the scan list.
2227 * Each channel can independently select:
2228 * 1)  SSID for directed active scans
2229 * 2)  Txpower setting (for rate specified within Tx command)
2230 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2231 *     quiet_plcp_th, good_CRC_th)
2232 *
2233 * To avoid uCode errors, make sure the following are true (see comments
2234 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2235 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2236 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2237 * 2)  quiet_time <= active_dwell
2238 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2239 *     passive_dwell < max_out_time
2240 *     active_dwell < max_out_time
2241 */
2242
2243struct iwl_scan_channel {
2244	/*
2245	 * type is defined as:
2246	 * 0:0 1 = active, 0 = passive
2247	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2248	 *     SSID IE is transmitted in probe request.
2249	 * 21:31 reserved
2250	 */
2251	__le32 type;
2252	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2253	u8 tx_gain;		/* gain for analog radio */
2254	u8 dsp_atten;		/* gain for DSP */
2255	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2256	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2257} __packed;
2258
2259/* set number of direct probes __le32 type */
2260#define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2261
2262/**
2263 * struct iwl_ssid_ie - directed scan network information element
2264 *
2265 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2266 * selected by "type" bit field in struct iwl_scan_channel;
2267 * each channel may select different ssids from among the 20 entries.
2268 * SSID IEs get transmitted in reverse order of entry.
2269 */
2270struct iwl_ssid_ie {
2271	u8 id;
2272	u8 len;
2273	u8 ssid[32];
2274} __packed;
2275
2276#define PROBE_OPTION_MAX		20
2277#define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2278#define IWL_GOOD_CRC_TH_DISABLED	0
2279#define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2280#define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2281#define IWL_MAX_CMD_SIZE 4096
2282
2283/*
2284 * REPLY_SCAN_CMD = 0x80 (command)
2285 *
2286 * The hardware scan command is very powerful; the driver can set it up to
2287 * maintain (relatively) normal network traffic while doing a scan in the
2288 * background.  The max_out_time and suspend_time control the ratio of how
2289 * long the device stays on an associated network channel ("service channel")
2290 * vs. how long it's away from the service channel, i.e. tuned to other channels
2291 * for scanning.
2292 *
2293 * max_out_time is the max time off-channel (in usec), and suspend_time
2294 * is how long (in "extended beacon" format) that the scan is "suspended"
2295 * after returning to the service channel.  That is, suspend_time is the
2296 * time that we stay on the service channel, doing normal work, between
2297 * scan segments.  The driver may set these parameters differently to support
2298 * scanning when associated vs. not associated, and light vs. heavy traffic
2299 * loads when associated.
2300 *
2301 * After receiving this command, the device's scan engine does the following;
2302 *
2303 * 1)  Sends SCAN_START notification to driver
2304 * 2)  Checks to see if it has time to do scan for one channel
2305 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2306 *     to tell AP that we're going off-channel
2307 * 4)  Tunes to first channel in scan list, does active or passive scan
2308 * 5)  Sends SCAN_RESULT notification to driver
2309 * 6)  Checks to see if it has time to do scan on *next* channel in list
2310 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2311 *     before max_out_time expires
2312 * 8)  Returns to service channel
2313 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2314 * 10) Stays on service channel until suspend_time expires
2315 * 11) Repeats entire process 2-10 until list is complete
2316 * 12) Sends SCAN_COMPLETE notification
2317 *
2318 * For fast, efficient scans, the scan command also has support for staying on
2319 * a channel for just a short time, if doing active scanning and getting no
2320 * responses to the transmitted probe request.  This time is controlled by
2321 * quiet_time, and the number of received packets below which a channel is
2322 * considered "quiet" is controlled by quiet_plcp_threshold.
2323 *
2324 * For active scanning on channels that have regulatory restrictions against
2325 * blindly transmitting, the scan can listen before transmitting, to make sure
2326 * that there is already legitimate activity on the channel.  If enough
2327 * packets are cleanly received on the channel (controlled by good_CRC_th,
2328 * typical value 1), the scan engine starts transmitting probe requests.
2329 *
2330 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2331 *
2332 * To avoid uCode errors, see timing restrictions described under
2333 * struct iwl_scan_channel.
2334 */
2335
2336enum iwl_scan_flags {
2337	/* BIT(0) currently unused */
2338	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2339	/* bits 2-7 reserved */
2340};
2341
2342struct iwl_scan_cmd {
2343	__le16 len;
2344	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2345	u8 channel_count;	/* # channels in channel list */
2346	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2347				 * (only for active scan) */
2348	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2349	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2350	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2351	__le32 max_out_time;	/* max usec to be away from associated (service)
2352				 * channel */
2353	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2354				 * format") when returning to service chnl:
2355				 */
2356	__le32 flags;		/* RXON_FLG_* */
2357	__le32 filter_flags;	/* RXON_FILTER_* */
2358
2359	/* For active scans (set to all-0s for passive scans).
2360	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2361	struct iwl_tx_cmd tx_cmd;
2362
2363	/* For directed active scans (set to all-0s otherwise) */
2364	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2365
2366	/*
2367	 * Probe request frame, followed by channel list.
2368	 *
2369	 * Size of probe request frame is specified by byte count in tx_cmd.
2370	 * Channel list follows immediately after probe request frame.
2371	 * Number of channels in list is specified by channel_count.
2372	 * Each channel in list is of type:
2373	 *
2374	 * struct iwl_scan_channel channels[0];
2375	 *
2376	 * NOTE:  Only one band of channels can be scanned per pass.  You
2377	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2378	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2379	 * before requesting another scan.
2380	 */
2381	u8 data[0];
2382} __packed;
2383
2384/* Can abort will notify by complete notification with abort status. */
2385#define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2386/* complete notification statuses */
2387#define ABORT_STATUS            0x2
2388
2389/*
2390 * REPLY_SCAN_CMD = 0x80 (response)
2391 */
2392struct iwl_scanreq_notification {
2393	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2394} __packed;
2395
2396/*
2397 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2398 */
2399struct iwl_scanstart_notification {
2400	__le32 tsf_low;
2401	__le32 tsf_high;
2402	__le32 beacon_timer;
2403	u8 channel;
2404	u8 band;
2405	u8 reserved[2];
2406	__le32 status;
2407} __packed;
2408
2409#define  SCAN_OWNER_STATUS 0x1
2410#define  MEASURE_OWNER_STATUS 0x2
2411
2412#define IWL_PROBE_STATUS_OK		0
2413#define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2414/* error statuses combined with TX_FAILED */
2415#define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2416#define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2417
2418#define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2419/*
2420 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2421 */
2422struct iwl_scanresults_notification {
2423	u8 channel;
2424	u8 band;
2425	u8 probe_status;
2426	u8 num_probe_not_sent; /* not enough time to send */
2427	__le32 tsf_low;
2428	__le32 tsf_high;
2429	__le32 statistics[NUMBER_OF_STATISTICS];
2430} __packed;
2431
2432/*
2433 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2434 */
2435struct iwl_scancomplete_notification {
2436	u8 scanned_channels;
2437	u8 status;
2438	u8 bt_status;	/* BT On/Off status */
2439	u8 last_channel;
2440	__le32 tsf_low;
2441	__le32 tsf_high;
2442} __packed;
2443
2444
2445/******************************************************************************
2446 * (9)
2447 * IBSS/AP Commands and Notifications:
2448 *
2449 *****************************************************************************/
2450
2451enum iwl_ibss_manager {
2452	IWL_NOT_IBSS_MANAGER = 0,
2453	IWL_IBSS_MANAGER = 1,
2454};
2455
2456/*
2457 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2458 */
2459
2460struct iwlagn_beacon_notif {
2461	struct iwlagn_tx_resp beacon_notify_hdr;
2462	__le32 low_tsf;
2463	__le32 high_tsf;
2464	__le32 ibss_mgr_status;
2465} __packed;
2466
2467/*
2468 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2469 */
2470
2471struct iwl_tx_beacon_cmd {
2472	struct iwl_tx_cmd tx;
2473	__le16 tim_idx;
2474	u8 tim_size;
2475	u8 reserved1;
2476	struct ieee80211_hdr frame[0];	/* beacon frame */
2477} __packed;
2478
2479/******************************************************************************
2480 * (10)
2481 * Statistics Commands and Notifications:
2482 *
2483 *****************************************************************************/
2484
2485#define IWL_TEMP_CONVERT 260
2486
2487#define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2488#define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2489#define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2490
2491/* Used for passing to driver number of successes and failures per rate */
2492struct rate_histogram {
2493	union {
2494		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2495		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2496		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2497	} success;
2498	union {
2499		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2500		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2501		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2502	} failed;
2503} __packed;
2504
2505/* statistics command response */
2506
2507struct statistics_dbg {
2508	__le32 burst_check;
2509	__le32 burst_count;
2510	__le32 wait_for_silence_timeout_cnt;
2511	__le32 reserved[3];
2512} __packed;
2513
2514struct statistics_rx_phy {
2515	__le32 ina_cnt;
2516	__le32 fina_cnt;
2517	__le32 plcp_err;
2518	__le32 crc32_err;
2519	__le32 overrun_err;
2520	__le32 early_overrun_err;
2521	__le32 crc32_good;
2522	__le32 false_alarm_cnt;
2523	__le32 fina_sync_err_cnt;
2524	__le32 sfd_timeout;
2525	__le32 fina_timeout;
2526	__le32 unresponded_rts;
2527	__le32 rxe_frame_limit_overrun;
2528	__le32 sent_ack_cnt;
2529	__le32 sent_cts_cnt;
2530	__le32 sent_ba_rsp_cnt;
2531	__le32 dsp_self_kill;
2532	__le32 mh_format_err;
2533	__le32 re_acq_main_rssi_sum;
2534	__le32 reserved3;
2535} __packed;
2536
2537struct statistics_rx_ht_phy {
2538	__le32 plcp_err;
2539	__le32 overrun_err;
2540	__le32 early_overrun_err;
2541	__le32 crc32_good;
2542	__le32 crc32_err;
2543	__le32 mh_format_err;
2544	__le32 agg_crc32_good;
2545	__le32 agg_mpdu_cnt;
2546	__le32 agg_cnt;
2547	__le32 unsupport_mcs;
2548} __packed;
2549
2550#define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2551
2552struct statistics_rx_non_phy {
2553	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2554	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2555	__le32 non_bssid_frames;	/* number of frames with BSSID that
2556					 * doesn't belong to the STA BSSID */
2557	__le32 filtered_frames;	/* count frames that were dumped in the
2558				 * filtering process */
2559	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2560					 * our serving channel */
2561	__le32 channel_beacons;	/* beacons with our bss id and in our
2562				 * serving channel */
2563	__le32 num_missed_bcon;	/* number of missed beacons */
2564	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2565					 * ADC was in saturation */
2566	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2567					  * for INA */
2568	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2569	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2570	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2571	__le32 interference_data_flag;	/* flag for interference data
2572					 * availability. 1 when data is
2573					 * available. */
2574	__le32 channel_load;		/* counts RX Enable time in uSec */
2575	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2576					 * and CCK) counter */
2577	__le32 beacon_rssi_a;
2578	__le32 beacon_rssi_b;
2579	__le32 beacon_rssi_c;
2580	__le32 beacon_energy_a;
2581	__le32 beacon_energy_b;
2582	__le32 beacon_energy_c;
2583} __packed;
2584
2585struct statistics_rx_non_phy_bt {
2586	struct statistics_rx_non_phy common;
2587	/* additional stats for bt */
2588	__le32 num_bt_kills;
2589	__le32 reserved[2];
2590} __packed;
2591
2592struct statistics_rx {
2593	struct statistics_rx_phy ofdm;
2594	struct statistics_rx_phy cck;
2595	struct statistics_rx_non_phy general;
2596	struct statistics_rx_ht_phy ofdm_ht;
2597} __packed;
2598
2599struct statistics_rx_bt {
2600	struct statistics_rx_phy ofdm;
2601	struct statistics_rx_phy cck;
2602	struct statistics_rx_non_phy_bt general;
2603	struct statistics_rx_ht_phy ofdm_ht;
2604} __packed;
2605
2606/**
2607 * struct statistics_tx_power - current tx power
2608 *
2609 * @ant_a: current tx power on chain a in 1/2 dB step
2610 * @ant_b: current tx power on chain b in 1/2 dB step
2611 * @ant_c: current tx power on chain c in 1/2 dB step
2612 */
2613struct statistics_tx_power {
2614	u8 ant_a;
2615	u8 ant_b;
2616	u8 ant_c;
2617	u8 reserved;
2618} __packed;
2619
2620struct statistics_tx_non_phy_agg {
2621	__le32 ba_timeout;
2622	__le32 ba_reschedule_frames;
2623	__le32 scd_query_agg_frame_cnt;
2624	__le32 scd_query_no_agg;
2625	__le32 scd_query_agg;
2626	__le32 scd_query_mismatch;
2627	__le32 frame_not_ready;
2628	__le32 underrun;
2629	__le32 bt_prio_kill;
2630	__le32 rx_ba_rsp_cnt;
2631} __packed;
2632
2633struct statistics_tx {
2634	__le32 preamble_cnt;
2635	__le32 rx_detected_cnt;
2636	__le32 bt_prio_defer_cnt;
2637	__le32 bt_prio_kill_cnt;
2638	__le32 few_bytes_cnt;
2639	__le32 cts_timeout;
2640	__le32 ack_timeout;
2641	__le32 expected_ack_cnt;
2642	__le32 actual_ack_cnt;
2643	__le32 dump_msdu_cnt;
2644	__le32 burst_abort_next_frame_mismatch_cnt;
2645	__le32 burst_abort_missing_next_frame_cnt;
2646	__le32 cts_timeout_collision;
2647	__le32 ack_or_ba_timeout_collision;
2648	struct statistics_tx_non_phy_agg agg;
2649	/*
2650	 * "tx_power" are optional parameters provided by uCode,
2651	 * 6000 series is the only device provide the information,
2652	 * Those are reserved fields for all the other devices
2653	 */
2654	struct statistics_tx_power tx_power;
2655	__le32 reserved1;
2656} __packed;
2657
2658
2659struct statistics_div {
2660	__le32 tx_on_a;
2661	__le32 tx_on_b;
2662	__le32 exec_time;
2663	__le32 probe_time;
2664	__le32 reserved1;
2665	__le32 reserved2;
2666} __packed;
2667
2668struct statistics_general_common {
2669	__le32 temperature;   /* radio temperature */
2670	__le32 temperature_m; /* radio voltage */
2671	struct statistics_dbg dbg;
2672	__le32 sleep_time;
2673	__le32 slots_out;
2674	__le32 slots_idle;
2675	__le32 ttl_timestamp;
2676	struct statistics_div div;
2677	__le32 rx_enable_counter;
2678	/*
2679	 * num_of_sos_states:
2680	 *  count the number of times we have to re-tune
2681	 *  in order to get out of bad PHY status
2682	 */
2683	__le32 num_of_sos_states;
2684} __packed;
2685
2686struct statistics_bt_activity {
2687	/* Tx statistics */
2688	__le32 hi_priority_tx_req_cnt;
2689	__le32 hi_priority_tx_denied_cnt;
2690	__le32 lo_priority_tx_req_cnt;
2691	__le32 lo_priority_tx_denied_cnt;
2692	/* Rx statistics */
2693	__le32 hi_priority_rx_req_cnt;
2694	__le32 hi_priority_rx_denied_cnt;
2695	__le32 lo_priority_rx_req_cnt;
2696	__le32 lo_priority_rx_denied_cnt;
2697} __packed;
2698
2699struct statistics_general {
2700	struct statistics_general_common common;
2701	__le32 reserved2;
2702	__le32 reserved3;
2703} __packed;
2704
2705struct statistics_general_bt {
2706	struct statistics_general_common common;
2707	struct statistics_bt_activity activity;
2708	__le32 reserved2;
2709	__le32 reserved3;
2710} __packed;
2711
2712#define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2713#define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2714#define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2715
2716/*
2717 * REPLY_STATISTICS_CMD = 0x9c,
2718 * all devices identical.
2719 *
2720 * This command triggers an immediate response containing uCode statistics.
2721 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2722 *
2723 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2724 * internal copy of the statistics (counters) after issuing the response.
2725 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2726 *
2727 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2728 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2729 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2730 */
2731#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2732#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2733struct iwl_statistics_cmd {
2734	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2735} __packed;
2736
2737/*
2738 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2739 *
2740 * By default, uCode issues this notification after receiving a beacon
2741 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2742 * REPLY_STATISTICS_CMD 0x9c, above.
2743 *
2744 * Statistics counters continue to increment beacon after beacon, but are
2745 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2746 * 0x9c with CLEAR_STATS bit set (see above).
2747 *
2748 * uCode also issues this notification during scans.  uCode clears statistics
2749 * appropriately so that each notification contains statistics for only the
2750 * one channel that has just been scanned.
2751 */
2752#define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2753#define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2754
2755struct iwl_notif_statistics {
2756	__le32 flag;
2757	struct statistics_rx rx;
2758	struct statistics_tx tx;
2759	struct statistics_general general;
2760} __packed;
2761
2762struct iwl_bt_notif_statistics {
2763	__le32 flag;
2764	struct statistics_rx_bt rx;
2765	struct statistics_tx tx;
2766	struct statistics_general_bt general;
2767} __packed;
2768
2769/*
2770 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2771 *
2772 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2773 * in regardless of how many missed beacons, which mean when driver receive the
2774 * notification, inside the command, it can find all the beacons information
2775 * which include number of total missed beacons, number of consecutive missed
2776 * beacons, number of beacons received and number of beacons expected to
2777 * receive.
2778 *
2779 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2780 * in order to bring the radio/PHY back to working state; which has no relation
2781 * to when driver will perform sensitivity calibration.
2782 *
2783 * Driver should set it own missed_beacon_threshold to decide when to perform
2784 * sensitivity calibration based on number of consecutive missed beacons in
2785 * order to improve overall performance, especially in noisy environment.
2786 *
2787 */
2788
2789#define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2790#define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2791#define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2792
2793struct iwl_missed_beacon_notif {
2794	__le32 consecutive_missed_beacons;
2795	__le32 total_missed_becons;
2796	__le32 num_expected_beacons;
2797	__le32 num_recvd_beacons;
2798} __packed;
2799
2800
2801/******************************************************************************
2802 * (11)
2803 * Rx Calibration Commands:
2804 *
2805 * With the uCode used for open source drivers, most Tx calibration (except
2806 * for Tx Power) and most Rx calibration is done by uCode during the
2807 * "initialize" phase of uCode boot.  Driver must calibrate only:
2808 *
2809 * 1)  Tx power (depends on temperature), described elsewhere
2810 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2811 * 3)  Receiver sensitivity (to optimize signal detection)
2812 *
2813 *****************************************************************************/
2814
2815/**
2816 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2817 *
2818 * This command sets up the Rx signal detector for a sensitivity level that
2819 * is high enough to lock onto all signals within the associated network,
2820 * but low enough to ignore signals that are below a certain threshold, so as
2821 * not to have too many "false alarms".  False alarms are signals that the
2822 * Rx DSP tries to lock onto, but then discards after determining that they
2823 * are noise.
2824 *
2825 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2826 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2827 * time listening, not transmitting).  Driver must adjust sensitivity so that
2828 * the ratio of actual false alarms to actual Rx time falls within this range.
2829 *
2830 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2831 * received beacon.  These provide information to the driver to analyze the
2832 * sensitivity.  Don't analyze statistics that come in from scanning, or any
2833 * other non-associated-network source.  Pertinent statistics include:
2834 *
2835 * From "general" statistics (struct statistics_rx_non_phy):
2836 *
2837 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2838 *   Measure of energy of desired signal.  Used for establishing a level
2839 *   below which the device does not detect signals.
2840 *
2841 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2842 *   Measure of background noise in silent period after beacon.
2843 *
2844 * channel_load
2845 *   uSecs of actual Rx time during beacon period (varies according to
2846 *   how much time was spent transmitting).
2847 *
2848 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2849 *
2850 * false_alarm_cnt
2851 *   Signal locks abandoned early (before phy-level header).
2852 *
2853 * plcp_err
2854 *   Signal locks abandoned late (during phy-level header).
2855 *
2856 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2857 *        beacon to beacon, i.e. each value is an accumulation of all errors
2858 *        before and including the latest beacon.  Values will wrap around to 0
2859 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2860 *        previous beacon's values to determine # false alarms in the current
2861 *        beacon period.
2862 *
2863 * Total number of false alarms = false_alarms + plcp_errs
2864 *
2865 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2866 * (notice that the start points for OFDM are at or close to settings for
2867 * maximum sensitivity):
2868 *
2869 *                                             START  /  MIN  /  MAX
2870 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2871 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2872 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2873 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2874 *
2875 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2876 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2877 *   by *adding* 1 to all 4 of the table entries above, up to the max for
2878 *   each entry.  Conversely, if false alarm rate is too low (less than 5
2879 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2880 *   increase sensitivity.
2881 *
2882 * For CCK sensitivity, keep track of the following:
2883 *
2884 *   1).  20-beacon history of maximum background noise, indicated by
2885 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2886 *        3 receivers.  For any given beacon, the "silence reference" is
2887 *        the maximum of last 60 samples (20 beacons * 3 receivers).
2888 *
2889 *   2).  10-beacon history of strongest signal level, as indicated
2890 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2891 *        i.e. the strength of the signal through the best receiver at the
2892 *        moment.  These measurements are "upside down", with lower values
2893 *        for stronger signals, so max energy will be *minimum* value.
2894 *
2895 *        Then for any given beacon, the driver must determine the *weakest*
2896 *        of the strongest signals; this is the minimum level that needs to be
2897 *        successfully detected, when using the best receiver at the moment.
2898 *        "Max cck energy" is the maximum (higher value means lower energy!)
2899 *        of the last 10 minima.  Once this is determined, driver must add
2900 *        a little margin by adding "6" to it.
2901 *
2902 *   3).  Number of consecutive beacon periods with too few false alarms.
2903 *        Reset this to 0 at the first beacon period that falls within the
2904 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2905 *
2906 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2907 * (notice that the start points for CCK are at maximum sensitivity):
2908 *
2909 *                                             START  /  MIN  /  MAX
2910 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2911 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2912 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2913 *
2914 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2915 *   (greater than 50 for each 204.8 msecs listening), method for reducing
2916 *   sensitivity is:
2917 *
2918 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2919 *       up to max 400.
2920 *
2921 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2922 *       sensitivity has been reduced a significant amount; bring it up to
2923 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2924 *
2925 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2926 *       sensitivity has been reduced only a moderate or small amount;
2927 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2928 *       down to min 0.  Otherwise (if gain has been significantly reduced),
2929 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2930 *
2931 *       b)  Save a snapshot of the "silence reference".
2932 *
2933 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2934 *   (less than 5 for each 204.8 msecs listening), method for increasing
2935 *   sensitivity is used only if:
2936 *
2937 *   1a)  Previous beacon did not have too many false alarms
2938 *   1b)  AND difference between previous "silence reference" and current
2939 *        "silence reference" (prev - current) is 2 or more,
2940 *   OR 2)  100 or more consecutive beacon periods have had rate of
2941 *          less than 5 false alarms per 204.8 milliseconds rx time.
2942 *
2943 *   Method for increasing sensitivity:
2944 *
2945 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2946 *       down to min 125.
2947 *
2948 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2949 *       down to min 200.
2950 *
2951 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2952 *
2953 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2954 *   (between 5 and 50 for each 204.8 msecs listening):
2955 *
2956 *   1)  Save a snapshot of the silence reference.
2957 *
2958 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2959 *       give some extra margin to energy threshold by *subtracting* 8
2960 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2961 *
2962 *   For all cases (too few, too many, good range), make sure that the CCK
2963 *   detection threshold (energy) is below the energy level for robust
2964 *   detection over the past 10 beacon periods, the "Max cck energy".
2965 *   Lower values mean higher energy; this means making sure that the value
2966 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2967 *
2968 */
2969
2970/*
2971 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2972 */
2973#define HD_TABLE_SIZE  (11)	/* number of entries */
2974#define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
2975#define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
2976#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
2977#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
2978#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
2979#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
2980#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
2981#define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
2982#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
2983#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
2984#define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
2985
2986/*
2987 * Additional table entries in enhance SENSITIVITY_CMD
2988 */
2989#define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
2990#define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
2991#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
2992#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
2993#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
2994#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
2995#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
2996#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
2997#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
2998#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
2999#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3000#define HD_RESERVED					(22)
3001
3002/* number of entries for enhanced tbl */
3003#define ENHANCE_HD_TABLE_SIZE  (23)
3004
3005/* number of additional entries for enhanced tbl */
3006#define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3007
3008#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3009#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3010#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3011#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3012#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3013#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3014#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3015#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3016#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3017#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3018#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3019
3020#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3021#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3022#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3023#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3024#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3025#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3026#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3027#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3028#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3029#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3030#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3031
3032
3033/* Control field in struct iwl_sensitivity_cmd */
3034#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3035#define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3036
3037/**
3038 * struct iwl_sensitivity_cmd
3039 * @control:  (1) updates working table, (0) updates default table
3040 * @table:  energy threshold values, use HD_* as index into table
3041 *
3042 * Always use "1" in "control" to update uCode's working table and DSP.
3043 */
3044struct iwl_sensitivity_cmd {
3045	__le16 control;			/* always use "1" */
3046	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3047} __packed;
3048
3049/*
3050 *
3051 */
3052struct iwl_enhance_sensitivity_cmd {
3053	__le16 control;			/* always use "1" */
3054	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3055} __packed;
3056
3057
3058/**
3059 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3060 *
3061 * This command sets the relative gains of agn device's 3 radio receiver chains.
3062 *
3063 * After the first association, driver should accumulate signal and noise
3064 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3065 * beacons from the associated network (don't collect statistics that come
3066 * in from scanning, or any other non-network source).
3067 *
3068 * DISCONNECTED ANTENNA:
3069 *
3070 * Driver should determine which antennas are actually connected, by comparing
3071 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3072 * following values over 20 beacons, one accumulator for each of the chains
3073 * a/b/c, from struct statistics_rx_non_phy:
3074 *
3075 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3076 *
3077 * Find the strongest signal from among a/b/c.  Compare the other two to the
3078 * strongest.  If any signal is more than 15 dB (times 20, unless you
3079 * divide the accumulated values by 20) below the strongest, the driver
3080 * considers that antenna to be disconnected, and should not try to use that
3081 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3082 * driver should declare the stronger one as connected, and attempt to use it
3083 * (A and B are the only 2 Tx chains!).
3084 *
3085 *
3086 * RX BALANCE:
3087 *
3088 * Driver should balance the 3 receivers (but just the ones that are connected
3089 * to antennas, see above) for gain, by comparing the average signal levels
3090 * detected during the silence after each beacon (background noise).
3091 * Accumulate (add) the following values over 20 beacons, one accumulator for
3092 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3093 *
3094 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3095 *
3096 * Find the weakest background noise level from among a/b/c.  This Rx chain
3097 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3098 * finding noise difference:
3099 *
3100 * (accum_noise[i] - accum_noise[reference]) / 30
3101 *
3102 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3103 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3104 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3105 * and set bit 2 to indicate "reduce gain".  The value for the reference
3106 * (weakest) chain should be "0".
3107 *
3108 * diff_gain_[abc] bit fields:
3109 *   2: (1) reduce gain, (0) increase gain
3110 * 1-0: amount of gain, units of 1.5 dB
3111 */
3112
3113/* Phy calibration command for series */
3114enum {
3115	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3116	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3117	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3118	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3119	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3120	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3121	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3122};
3123
3124/* This enum defines the bitmap of various calibrations to enable in both
3125 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3126 */
3127enum iwl_ucode_calib_cfg {
3128	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3129	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3130	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3131	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3132	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3133	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3134	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3135	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3136	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3137	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3138	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3139};
3140
3141#define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3142					IWL_CALIB_CFG_DC_IDX |		\
3143					IWL_CALIB_CFG_LO_IDX |		\
3144					IWL_CALIB_CFG_TX_IQ_IDX |	\
3145					IWL_CALIB_CFG_RX_IQ_IDX |	\
3146					IWL_CALIB_CFG_CRYSTAL_IDX)
3147
3148#define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3149					IWL_CALIB_CFG_DC_IDX |		\
3150					IWL_CALIB_CFG_LO_IDX |		\
3151					IWL_CALIB_CFG_TX_IQ_IDX |	\
3152					IWL_CALIB_CFG_RX_IQ_IDX |	\
3153					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3154					IWL_CALIB_CFG_PAPD_IDX |	\
3155					IWL_CALIB_CFG_TX_PWR_IDX |	\
3156					IWL_CALIB_CFG_CRYSTAL_IDX)
3157
3158#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3159
3160struct iwl_calib_cfg_elmnt_s {
3161	__le32 is_enable;
3162	__le32 start;
3163	__le32 send_res;
3164	__le32 apply_res;
3165	__le32 reserved;
3166} __packed;
3167
3168struct iwl_calib_cfg_status_s {
3169	struct iwl_calib_cfg_elmnt_s once;
3170	struct iwl_calib_cfg_elmnt_s perd;
3171	__le32 flags;
3172} __packed;
3173
3174struct iwl_calib_cfg_cmd {
3175	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3176	struct iwl_calib_cfg_status_s drv_calib_cfg;
3177	__le32 reserved1;
3178} __packed;
3179
3180struct iwl_calib_hdr {
3181	u8 op_code;
3182	u8 first_group;
3183	u8 groups_num;
3184	u8 data_valid;
3185} __packed;
3186
3187struct iwl_calib_cmd {
3188	struct iwl_calib_hdr hdr;
3189	u8 data[0];
3190} __packed;
3191
3192struct iwl_calib_xtal_freq_cmd {
3193	struct iwl_calib_hdr hdr;
3194	u8 cap_pin1;
3195	u8 cap_pin2;
3196	u8 pad[2];
3197} __packed;
3198
3199#define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3200struct iwl_calib_temperature_offset_cmd {
3201	struct iwl_calib_hdr hdr;
3202	__le16 radio_sensor_offset;
3203	__le16 reserved;
3204} __packed;
3205
3206struct iwl_calib_temperature_offset_v2_cmd {
3207	struct iwl_calib_hdr hdr;
3208	__le16 radio_sensor_offset_high;
3209	__le16 radio_sensor_offset_low;
3210	__le16 burntVoltageRef;
3211	__le16 reserved;
3212} __packed;
3213
3214/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3215struct iwl_calib_chain_noise_reset_cmd {
3216	struct iwl_calib_hdr hdr;
3217	u8 data[0];
3218};
3219
3220/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3221struct iwl_calib_chain_noise_gain_cmd {
3222	struct iwl_calib_hdr hdr;
3223	u8 delta_gain_1;
3224	u8 delta_gain_2;
3225	u8 pad[2];
3226} __packed;
3227
3228/******************************************************************************
3229 * (12)
3230 * Miscellaneous Commands:
3231 *
3232 *****************************************************************************/
3233
3234/*
3235 * LEDs Command & Response
3236 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3237 *
3238 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3239 * this command turns it on or off, or sets up a periodic blinking cycle.
3240 */
3241struct iwl_led_cmd {
3242	__le32 interval;	/* "interval" in uSec */
3243	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3244	u8 off;			/* # intervals off while blinking;
3245				 * "0", with >0 "on" value, turns LED on */
3246	u8 on;			/* # intervals on while blinking;
3247				 * "0", regardless of "off", turns LED off */
3248	u8 reserved;
3249} __packed;
3250
3251/*
3252 * station priority table entries
3253 * also used as potential "events" value for both
3254 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3255 */
3256
3257/*
3258 * COEX events entry flag masks
3259 * RP - Requested Priority
3260 * WP - Win Medium Priority: priority assigned when the contention has been won
3261 */
3262#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3263#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3264#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3265
3266#define COEX_CU_UNASSOC_IDLE_RP               4
3267#define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3268#define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3269#define COEX_CU_CALIBRATION_RP                4
3270#define COEX_CU_PERIODIC_CALIBRATION_RP       4
3271#define COEX_CU_CONNECTION_ESTAB_RP           4
3272#define COEX_CU_ASSOCIATED_IDLE_RP            4
3273#define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3274#define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3275#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3276#define COEX_CU_RF_ON_RP                      6
3277#define COEX_CU_RF_OFF_RP                     4
3278#define COEX_CU_STAND_ALONE_DEBUG_RP          6
3279#define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3280#define COEX_CU_RSRVD1_RP                     4
3281#define COEX_CU_RSRVD2_RP                     4
3282
3283#define COEX_CU_UNASSOC_IDLE_WP               3
3284#define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3285#define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3286#define COEX_CU_CALIBRATION_WP                3
3287#define COEX_CU_PERIODIC_CALIBRATION_WP       3
3288#define COEX_CU_CONNECTION_ESTAB_WP           3
3289#define COEX_CU_ASSOCIATED_IDLE_WP            3
3290#define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3291#define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3292#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3293#define COEX_CU_RF_ON_WP                      3
3294#define COEX_CU_RF_OFF_WP                     3
3295#define COEX_CU_STAND_ALONE_DEBUG_WP          6
3296#define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3297#define COEX_CU_RSRVD1_WP                     3
3298#define COEX_CU_RSRVD2_WP                     3
3299
3300#define COEX_UNASSOC_IDLE_FLAGS                     0
3301#define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3302	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3303	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3304#define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3305	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3306	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3307#define COEX_CALIBRATION_FLAGS			\
3308	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3309	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3310#define COEX_PERIODIC_CALIBRATION_FLAGS             0
3311/*
3312 * COEX_CONNECTION_ESTAB:
3313 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3314 */
3315#define COEX_CONNECTION_ESTAB_FLAGS		\
3316	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3317	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3318	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3319#define COEX_ASSOCIATED_IDLE_FLAGS                  0
3320#define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3321	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3322	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3323#define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3324	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3325	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3326#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3327#define COEX_RF_ON_FLAGS                            0
3328#define COEX_RF_OFF_FLAGS                           0
3329#define COEX_STAND_ALONE_DEBUG_FLAGS		\
3330	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3331	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3332#define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3333	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3334	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3335	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3336#define COEX_RSRVD1_FLAGS                           0
3337#define COEX_RSRVD2_FLAGS                           0
3338/*
3339 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3340 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3341 */
3342#define COEX_CU_RF_ON_FLAGS			\
3343	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3344	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3345	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3346
3347
3348enum {
3349	/* un-association part */
3350	COEX_UNASSOC_IDLE		= 0,
3351	COEX_UNASSOC_MANUAL_SCAN	= 1,
3352	COEX_UNASSOC_AUTO_SCAN		= 2,
3353	/* calibration */
3354	COEX_CALIBRATION		= 3,
3355	COEX_PERIODIC_CALIBRATION	= 4,
3356	/* connection */
3357	COEX_CONNECTION_ESTAB		= 5,
3358	/* association part */
3359	COEX_ASSOCIATED_IDLE		= 6,
3360	COEX_ASSOC_MANUAL_SCAN		= 7,
3361	COEX_ASSOC_AUTO_SCAN		= 8,
3362	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3363	/* RF ON/OFF */
3364	COEX_RF_ON			= 10,
3365	COEX_RF_OFF			= 11,
3366	COEX_STAND_ALONE_DEBUG		= 12,
3367	/* IPAN */
3368	COEX_IPAN_ASSOC_LEVEL		= 13,
3369	/* reserved */
3370	COEX_RSRVD1			= 14,
3371	COEX_RSRVD2			= 15,
3372	COEX_NUM_OF_EVENTS		= 16
3373};
3374
3375/*
3376 * Coexistence WIFI/WIMAX  Command
3377 * COEX_PRIORITY_TABLE_CMD = 0x5a
3378 *
3379 */
3380struct iwl_wimax_coex_event_entry {
3381	u8 request_prio;
3382	u8 win_medium_prio;
3383	u8 reserved;
3384	u8 flags;
3385} __packed;
3386
3387/* COEX flag masks */
3388
3389/* Station table is valid */
3390#define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3391/* UnMask wake up src at unassociated sleep */
3392#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3393/* UnMask wake up src at associated sleep */
3394#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3395/* Enable CoEx feature. */
3396#define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3397
3398struct iwl_wimax_coex_cmd {
3399	u8 flags;
3400	u8 reserved[3];
3401	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3402} __packed;
3403
3404/*
3405 * Coexistence MEDIUM NOTIFICATION
3406 * COEX_MEDIUM_NOTIFICATION = 0x5b
3407 *
3408 * notification from uCode to host to indicate medium changes
3409 *
3410 */
3411/*
3412 * status field
3413 * bit 0 - 2: medium status
3414 * bit 3: medium change indication
3415 * bit 4 - 31: reserved
3416 */
3417/* status option values, (0 - 2 bits) */
3418#define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3419#define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3420#define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3421#define COEX_MEDIUM_MSK		(0x7)
3422
3423/* send notification status (1 bit) */
3424#define COEX_MEDIUM_CHANGED	(0x8)
3425#define COEX_MEDIUM_CHANGED_MSK	(0x8)
3426#define COEX_MEDIUM_SHIFT	(3)
3427
3428struct iwl_coex_medium_notification {
3429	__le32 status;
3430	__le32 events;
3431} __packed;
3432
3433/*
3434 * Coexistence EVENT  Command
3435 * COEX_EVENT_CMD = 0x5c
3436 *
3437 * send from host to uCode for coex event request.
3438 */
3439/* flags options */
3440#define COEX_EVENT_REQUEST_MSK	(0x1)
3441
3442struct iwl_coex_event_cmd {
3443	u8 flags;
3444	u8 event;
3445	__le16 reserved;
3446} __packed;
3447
3448struct iwl_coex_event_resp {
3449	__le32 status;
3450} __packed;
3451
3452
3453/******************************************************************************
3454 * Bluetooth Coexistence commands
3455 *
3456 *****************************************************************************/
3457
3458/*
3459 * BT Status notification
3460 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3461 */
3462enum iwl_bt_coex_profile_traffic_load {
3463	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3464	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3465	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3466	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3467/*
3468 * There are no more even though below is a u8, the
3469 * indication from the BT device only has two bits.
3470 */
3471};
3472
3473#define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3474#define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3475
3476/* BT UART message - Share Part (BT -> WiFi) */
3477#define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3478#define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3479		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3480#define BT_UART_MSG_FRAME1SSN_POS		(3)
3481#define BT_UART_MSG_FRAME1SSN_MSK		\
3482		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3483#define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3484#define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3485		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3486#define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3487#define BT_UART_MSG_FRAME1RESERVED_MSK		\
3488		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3489
3490#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3491#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3492		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3493#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3494#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3495		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3496#define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3497#define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3498		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3499#define BT_UART_MSG_FRAME2INBAND_POS		(5)
3500#define BT_UART_MSG_FRAME2INBAND_MSK		\
3501		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3502#define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3503#define BT_UART_MSG_FRAME2RESERVED_MSK		\
3504		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3505
3506#define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3507#define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3508		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3509#define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3510#define BT_UART_MSG_FRAME3SNIFF_MSK		\
3511		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3512#define BT_UART_MSG_FRAME3A2DP_POS		(2)
3513#define BT_UART_MSG_FRAME3A2DP_MSK		\
3514		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3515#define BT_UART_MSG_FRAME3ACL_POS		(3)
3516#define BT_UART_MSG_FRAME3ACL_MSK		\
3517		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3518#define BT_UART_MSG_FRAME3MASTER_POS		(4)
3519#define BT_UART_MSG_FRAME3MASTER_MSK		\
3520		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3521#define BT_UART_MSG_FRAME3OBEX_POS		(5)
3522#define BT_UART_MSG_FRAME3OBEX_MSK		\
3523		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3524#define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3525#define BT_UART_MSG_FRAME3RESERVED_MSK		\
3526		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3527
3528#define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3529#define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3530		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3531#define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3532#define BT_UART_MSG_FRAME4RESERVED_MSK		\
3533		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3534
3535#define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3536#define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3537		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3538#define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3539#define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3540		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3541#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3542#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3543		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3544#define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3545#define BT_UART_MSG_FRAME5RESERVED_MSK		\
3546		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3547
3548#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3549#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3550		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3551#define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3552#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3553		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3554#define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3555#define BT_UART_MSG_FRAME6RESERVED_MSK		\
3556		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3557
3558#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3559#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3560		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3561#define BT_UART_MSG_FRAME7PAGE_POS		(3)
3562#define BT_UART_MSG_FRAME7PAGE_MSK		\
3563		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3564#define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3565#define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3566		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3567#define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3568#define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3569		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3570#define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3571#define BT_UART_MSG_FRAME7RESERVED_MSK		\
3572		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3573
3574/* BT Session Activity 2 UART message (BT -> WiFi) */
3575#define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3576#define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3577		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3578#define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3579#define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3580		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3581
3582#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3583#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3584		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3585#define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3586#define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3587		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3588
3589#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3590#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3591		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3592#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3593#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3594		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3595#define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3596#define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3597		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3598#define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3599#define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3600		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3601
3602#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3603#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3604		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3605#define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3606#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3607		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3608#define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3609#define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3610		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3611
3612#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3613#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3614		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3615#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3616#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3617		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3618#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3619#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3620		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3621#define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3622#define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3623		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3624
3625#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3626#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3627		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3628#define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3629#define BT_UART_MSG_2_FRAME6RFU_MSK		\
3630		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3631#define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3632#define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3633		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3634
3635#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3636#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3637		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3638#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3639#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3640		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3641#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3642#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3643		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3644#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3645#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3646		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3647#define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3648#define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3649		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3650
3651
3652#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3653#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3654
3655struct iwl_bt_uart_msg {
3656	u8 header;
3657	u8 frame1;
3658	u8 frame2;
3659	u8 frame3;
3660	u8 frame4;
3661	u8 frame5;
3662	u8 frame6;
3663	u8 frame7;
3664} __attribute__((packed));
3665
3666struct iwl_bt_coex_profile_notif {
3667	struct iwl_bt_uart_msg last_bt_uart_msg;
3668	u8 bt_status; /* 0 - off, 1 - on */
3669	u8 bt_traffic_load; /* 0 .. 3? */
3670	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3671	u8 reserved;
3672} __attribute__((packed));
3673
3674#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3675#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3676#define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3677#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3678#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3679#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3680#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3681
3682/*
3683 * BT Coexistence Priority table
3684 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3685 */
3686enum bt_coex_prio_table_events {
3687	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3688	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3689	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3690	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3691	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3692	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3693	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3694	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3695	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3696	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3697	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3698	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3699	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3700	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3701	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3702	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3703	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3704	BT_COEX_PRIO_TBL_EVT_MAX,
3705};
3706
3707enum bt_coex_prio_table_priorities {
3708	BT_COEX_PRIO_TBL_DISABLED = 0,
3709	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3710	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3711	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3712	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3713	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3714	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3715	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3716	BT_COEX_PRIO_TBL_MAX,
3717};
3718
3719struct iwl_bt_coex_prio_table_cmd {
3720	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3721} __attribute__((packed));
3722
3723#define IWL_BT_COEX_ENV_CLOSE	0
3724#define IWL_BT_COEX_ENV_OPEN	1
3725/*
3726 * BT Protection Envelope
3727 * REPLY_BT_COEX_PROT_ENV = 0xcd
3728 */
3729struct iwl_bt_coex_prot_env_cmd {
3730	u8 action; /* 0 = closed, 1 = open */
3731	u8 type; /* 0 .. 15 */
3732	u8 reserved[2];
3733} __attribute__((packed));
3734
3735/*
3736 * REPLY_D3_CONFIG
3737 */
3738enum iwlagn_d3_wakeup_filters {
3739	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3740	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3741};
3742
3743struct iwlagn_d3_config_cmd {
3744	__le32 min_sleep_time;
3745	__le32 wakeup_flags;
3746} __packed;
3747
3748/*
3749 * REPLY_WOWLAN_PATTERNS
3750 */
3751#define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3752#define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3753
3754struct iwlagn_wowlan_pattern {
3755	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3756	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3757	u8 mask_size;
3758	u8 pattern_size;
3759	__le16 reserved;
3760} __packed;
3761
3762#define IWLAGN_WOWLAN_MAX_PATTERNS	20
3763
3764struct iwlagn_wowlan_patterns_cmd {
3765	__le32 n_patterns;
3766	struct iwlagn_wowlan_pattern patterns[];
3767} __packed;
3768
3769/*
3770 * REPLY_WOWLAN_WAKEUP_FILTER
3771 */
3772enum iwlagn_wowlan_wakeup_filters {
3773	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3774	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3775	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3776	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3777	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3778	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3779	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3780	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3781	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3782};
3783
3784struct iwlagn_wowlan_wakeup_filter_cmd {
3785	__le32 enabled;
3786	__le16 non_qos_seq;
3787	__le16 reserved;
3788	__le16 qos_seq[8];
3789};
3790
3791/*
3792 * REPLY_WOWLAN_TSC_RSC_PARAMS
3793 */
3794#define IWLAGN_NUM_RSC	16
3795
3796struct tkip_sc {
3797	__le16 iv16;
3798	__le16 pad;
3799	__le32 iv32;
3800} __packed;
3801
3802struct iwlagn_tkip_rsc_tsc {
3803	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3804	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3805	struct tkip_sc tsc;
3806} __packed;
3807
3808struct aes_sc {
3809	__le64 pn;
3810} __packed;
3811
3812struct iwlagn_aes_rsc_tsc {
3813	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3814	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3815	struct aes_sc tsc;
3816} __packed;
3817
3818union iwlagn_all_tsc_rsc {
3819	struct iwlagn_tkip_rsc_tsc tkip;
3820	struct iwlagn_aes_rsc_tsc aes;
3821};
3822
3823struct iwlagn_wowlan_rsc_tsc_params_cmd {
3824	union iwlagn_all_tsc_rsc all_tsc_rsc;
3825} __packed;
3826
3827/*
3828 * REPLY_WOWLAN_TKIP_PARAMS
3829 */
3830#define IWLAGN_MIC_KEY_SIZE	8
3831#define IWLAGN_P1K_SIZE		5
3832struct iwlagn_mic_keys {
3833	u8 tx[IWLAGN_MIC_KEY_SIZE];
3834	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3835	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3836} __packed;
3837
3838struct iwlagn_p1k_cache {
3839	__le16 p1k[IWLAGN_P1K_SIZE];
3840} __packed;
3841
3842#define IWLAGN_NUM_RX_P1K_CACHE	2
3843
3844struct iwlagn_wowlan_tkip_params_cmd {
3845	struct iwlagn_mic_keys mic_keys;
3846	struct iwlagn_p1k_cache tx;
3847	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3848	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3849} __packed;
3850
3851/*
3852 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3853 */
3854
3855#define IWLAGN_KCK_MAX_SIZE	32
3856#define IWLAGN_KEK_MAX_SIZE	32
3857
3858struct iwlagn_wowlan_kek_kck_material_cmd {
3859	u8	kck[IWLAGN_KCK_MAX_SIZE];
3860	u8	kek[IWLAGN_KEK_MAX_SIZE];
3861	__le16	kck_len;
3862	__le16	kek_len;
3863	__le64	replay_ctr;
3864} __packed;
3865
3866/*
3867 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3868 */
3869
3870/*
3871 * Minimum slot time in TU
3872 */
3873#define IWL_MIN_SLOT_TIME	20
3874
3875/**
3876 * struct iwl_wipan_slot
3877 * @width: Time in TU
3878 * @type:
3879 *   0 - BSS
3880 *   1 - PAN
3881 */
3882struct iwl_wipan_slot {
3883	__le16 width;
3884	u8 type;
3885	u8 reserved;
3886} __packed;
3887
3888#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3889#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3890#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3891#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3892#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3893
3894/**
3895 * struct iwl_wipan_params_cmd
3896 * @flags:
3897 *   bit0: reserved
3898 *   bit1: CP leave channel with CTS
3899 *   bit2: CP leave channel qith Quiet
3900 *   bit3: slotted mode
3901 *     1 - work in slotted mode
3902 *     0 - work in non slotted mode
3903 *   bit4: filter beacon notification
3904 *   bit5: full tx slotted mode. if this flag is set,
3905 *         uCode will perform leaving channel methods in context switch
3906 *         also when working in same channel mode
3907 * @num_slots: 1 - 10
3908 */
3909struct iwl_wipan_params_cmd {
3910	__le16 flags;
3911	u8 reserved;
3912	u8 num_slots;
3913	struct iwl_wipan_slot slots[10];
3914} __packed;
3915
3916/*
3917 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3918 *
3919 * TODO: Figure out what this is used for,
3920 *	 it can only switch between 2.4 GHz
3921 *	 channels!!
3922 */
3923
3924struct iwl_wipan_p2p_channel_switch_cmd {
3925	__le16 channel;
3926	__le16 reserved;
3927};
3928
3929/*
3930 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3931 *
3932 * This is used by the device to notify us of the
3933 * NoA schedule it determined so we can forward it
3934 * to userspace for inclusion in probe responses.
3935 *
3936 * In beacons, the NoA schedule is simply appended
3937 * to the frame we give the device.
3938 */
3939
3940struct iwl_wipan_noa_descriptor {
3941	u8 count;
3942	__le32 duration;
3943	__le32 interval;
3944	__le32 starttime;
3945} __packed;
3946
3947struct iwl_wipan_noa_attribute {
3948	u8 id;
3949	__le16 length;
3950	u8 index;
3951	u8 ct_window;
3952	struct iwl_wipan_noa_descriptor descr0, descr1;
3953	u8 reserved;
3954} __packed;
3955
3956struct iwl_wipan_noa_notification {
3957	u32 noa_active;
3958	struct iwl_wipan_noa_attribute noa_attribute;
3959} __packed;
3960
3961#endif				/* __iwl_commands_h__ */