Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v6.13.7.
   1/******************************************************************************
   2 *
   3 * Copyright(c) 2003 - 2011 Intel Corporation. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of version 2 of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc.,
  16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17 *
  18 * The full GNU General Public License is included in this distribution in the
  19 * file called LICENSE.
  20 *
  21 * Contact Information:
  22 *  Intel Linux Wireless <ilw@linux.intel.com>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 *****************************************************************************/
  26
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/init.h>
  30#include <linux/pci.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/delay.h>
  33#include <linux/sched.h>
  34#include <linux/skbuff.h>
  35#include <linux/netdevice.h>
  36#include <net/mac80211.h>
  37#include <linux/etherdevice.h>
  38#include <asm/unaligned.h>
  39
  40#include "common.h"
  41#include "4965.h"
  42
  43/**
  44 * il_verify_inst_sparse - verify runtime uCode image in card vs. host,
  45 *   using sample data 100 bytes apart.  If these sample points are good,
  46 *   it's a pretty good bet that everything between them is good, too.
  47 */
  48static int
  49il4965_verify_inst_sparse(struct il_priv *il, __le32 * image, u32 len)
  50{
  51	u32 val;
  52	int ret = 0;
  53	u32 errcnt = 0;
  54	u32 i;
  55
  56	D_INFO("ucode inst image size is %u\n", len);
  57
  58	for (i = 0; i < len; i += 100, image += 100 / sizeof(u32)) {
  59		/* read data comes through single port, auto-incr addr */
  60		/* NOTE: Use the debugless read so we don't flood kernel log
  61		 * if IL_DL_IO is set */
  62		il_wr(il, HBUS_TARG_MEM_RADDR, i + IL4965_RTC_INST_LOWER_BOUND);
  63		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
  64		if (val != le32_to_cpu(*image)) {
  65			ret = -EIO;
  66			errcnt++;
  67			if (errcnt >= 3)
  68				break;
  69		}
  70	}
  71
  72	return ret;
  73}
  74
  75/**
  76 * il4965_verify_inst_full - verify runtime uCode image in card vs. host,
  77 *     looking at all data.
  78 */
  79static int
  80il4965_verify_inst_full(struct il_priv *il, __le32 * image, u32 len)
  81{
  82	u32 val;
  83	u32 save_len = len;
  84	int ret = 0;
  85	u32 errcnt;
  86
  87	D_INFO("ucode inst image size is %u\n", len);
  88
  89	il_wr(il, HBUS_TARG_MEM_RADDR, IL4965_RTC_INST_LOWER_BOUND);
  90
  91	errcnt = 0;
  92	for (; len > 0; len -= sizeof(u32), image++) {
  93		/* read data comes through single port, auto-incr addr */
  94		/* NOTE: Use the debugless read so we don't flood kernel log
  95		 * if IL_DL_IO is set */
  96		val = _il_rd(il, HBUS_TARG_MEM_RDAT);
  97		if (val != le32_to_cpu(*image)) {
  98			IL_ERR("uCode INST section is invalid at "
  99			       "offset 0x%x, is 0x%x, s/b 0x%x\n",
 100			       save_len - len, val, le32_to_cpu(*image));
 101			ret = -EIO;
 102			errcnt++;
 103			if (errcnt >= 20)
 104				break;
 105		}
 106	}
 107
 108	if (!errcnt)
 109		D_INFO("ucode image in INSTRUCTION memory is good\n");
 110
 111	return ret;
 112}
 113
 114/**
 115 * il4965_verify_ucode - determine which instruction image is in SRAM,
 116 *    and verify its contents
 117 */
 118int
 119il4965_verify_ucode(struct il_priv *il)
 120{
 121	__le32 *image;
 122	u32 len;
 123	int ret;
 124
 125	/* Try bootstrap */
 126	image = (__le32 *) il->ucode_boot.v_addr;
 127	len = il->ucode_boot.len;
 128	ret = il4965_verify_inst_sparse(il, image, len);
 129	if (!ret) {
 130		D_INFO("Bootstrap uCode is good in inst SRAM\n");
 131		return 0;
 132	}
 133
 134	/* Try initialize */
 135	image = (__le32 *) il->ucode_init.v_addr;
 136	len = il->ucode_init.len;
 137	ret = il4965_verify_inst_sparse(il, image, len);
 138	if (!ret) {
 139		D_INFO("Initialize uCode is good in inst SRAM\n");
 140		return 0;
 141	}
 142
 143	/* Try runtime/protocol */
 144	image = (__le32 *) il->ucode_code.v_addr;
 145	len = il->ucode_code.len;
 146	ret = il4965_verify_inst_sparse(il, image, len);
 147	if (!ret) {
 148		D_INFO("Runtime uCode is good in inst SRAM\n");
 149		return 0;
 150	}
 151
 152	IL_ERR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n");
 153
 154	/* Since nothing seems to match, show first several data entries in
 155	 * instruction SRAM, so maybe visual inspection will give a clue.
 156	 * Selection of bootstrap image (vs. other images) is arbitrary. */
 157	image = (__le32 *) il->ucode_boot.v_addr;
 158	len = il->ucode_boot.len;
 159	ret = il4965_verify_inst_full(il, image, len);
 160
 161	return ret;
 162}
 163
 164/******************************************************************************
 165 *
 166 * EEPROM related functions
 167 *
 168******************************************************************************/
 169
 170/*
 171 * The device's EEPROM semaphore prevents conflicts between driver and uCode
 172 * when accessing the EEPROM; each access is a series of pulses to/from the
 173 * EEPROM chip, not a single event, so even reads could conflict if they
 174 * weren't arbitrated by the semaphore.
 175 */
 176int
 177il4965_eeprom_acquire_semaphore(struct il_priv *il)
 178{
 179	u16 count;
 180	int ret;
 181
 182	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
 183		/* Request semaphore */
 184		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
 185			   CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
 186
 187		/* See if we got it */
 188		ret =
 189		    _il_poll_bit(il, CSR_HW_IF_CONFIG_REG,
 190				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
 191				 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
 192				 EEPROM_SEM_TIMEOUT);
 193		if (ret >= 0)
 194			return ret;
 195	}
 196
 197	return ret;
 198}
 199
 200void
 201il4965_eeprom_release_semaphore(struct il_priv *il)
 202{
 203	il_clear_bit(il, CSR_HW_IF_CONFIG_REG,
 204		     CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
 205
 206}
 207
 208int
 209il4965_eeprom_check_version(struct il_priv *il)
 210{
 211	u16 eeprom_ver;
 212	u16 calib_ver;
 213
 214	eeprom_ver = il_eeprom_query16(il, EEPROM_VERSION);
 215	calib_ver = il_eeprom_query16(il, EEPROM_4965_CALIB_VERSION_OFFSET);
 216
 217	if (eeprom_ver < il->cfg->eeprom_ver ||
 218	    calib_ver < il->cfg->eeprom_calib_ver)
 219		goto err;
 220
 221	IL_INFO("device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver);
 222
 223	return 0;
 224err:
 225	IL_ERR("Unsupported (too old) EEPROM VER=0x%x < 0x%x "
 226	       "CALIB=0x%x < 0x%x\n", eeprom_ver, il->cfg->eeprom_ver,
 227	       calib_ver, il->cfg->eeprom_calib_ver);
 228	return -EINVAL;
 229
 230}
 231
 232void
 233il4965_eeprom_get_mac(const struct il_priv *il, u8 * mac)
 234{
 235	const u8 *addr = il_eeprom_query_addr(il,
 236					      EEPROM_MAC_ADDRESS);
 237	memcpy(mac, addr, ETH_ALEN);
 238}
 239
 240/* Send led command */
 241static int
 242il4965_send_led_cmd(struct il_priv *il, struct il_led_cmd *led_cmd)
 243{
 244	struct il_host_cmd cmd = {
 245		.id = C_LEDS,
 246		.len = sizeof(struct il_led_cmd),
 247		.data = led_cmd,
 248		.flags = CMD_ASYNC,
 249		.callback = NULL,
 250	};
 251	u32 reg;
 252
 253	reg = _il_rd(il, CSR_LED_REG);
 254	if (reg != (reg & CSR_LED_BSM_CTRL_MSK))
 255		_il_wr(il, CSR_LED_REG, reg & CSR_LED_BSM_CTRL_MSK);
 256
 257	return il_send_cmd(il, &cmd);
 258}
 259
 260/* Set led register off */
 261void
 262il4965_led_enable(struct il_priv *il)
 263{
 264	_il_wr(il, CSR_LED_REG, CSR_LED_REG_TRUN_ON);
 265}
 266
 267static int il4965_send_tx_power(struct il_priv *il);
 268static int il4965_hw_get_temperature(struct il_priv *il);
 269
 270/* Highest firmware API version supported */
 271#define IL4965_UCODE_API_MAX 2
 272
 273/* Lowest firmware API version supported */
 274#define IL4965_UCODE_API_MIN 2
 275
 276#define IL4965_FW_PRE "iwlwifi-4965-"
 277#define _IL4965_MODULE_FIRMWARE(api) IL4965_FW_PRE #api ".ucode"
 278#define IL4965_MODULE_FIRMWARE(api) _IL4965_MODULE_FIRMWARE(api)
 279
 280/* check contents of special bootstrap uCode SRAM */
 281static int
 282il4965_verify_bsm(struct il_priv *il)
 283{
 284	__le32 *image = il->ucode_boot.v_addr;
 285	u32 len = il->ucode_boot.len;
 286	u32 reg;
 287	u32 val;
 288
 289	D_INFO("Begin verify bsm\n");
 290
 291	/* verify BSM SRAM contents */
 292	val = il_rd_prph(il, BSM_WR_DWCOUNT_REG);
 293	for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len;
 294	     reg += sizeof(u32), image++) {
 295		val = il_rd_prph(il, reg);
 296		if (val != le32_to_cpu(*image)) {
 297			IL_ERR("BSM uCode verification failed at "
 298			       "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n",
 299			       BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND,
 300			       len, val, le32_to_cpu(*image));
 301			return -EIO;
 302		}
 303	}
 304
 305	D_INFO("BSM bootstrap uCode image OK\n");
 306
 307	return 0;
 308}
 309
 310/**
 311 * il4965_load_bsm - Load bootstrap instructions
 312 *
 313 * BSM operation:
 314 *
 315 * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program
 316 * in special SRAM that does not power down during RFKILL.  When powering back
 317 * up after power-saving sleeps (or during initial uCode load), the BSM loads
 318 * the bootstrap program into the on-board processor, and starts it.
 319 *
 320 * The bootstrap program loads (via DMA) instructions and data for a new
 321 * program from host DRAM locations indicated by the host driver in the
 322 * BSM_DRAM_* registers.  Once the new program is loaded, it starts
 323 * automatically.
 324 *
 325 * When initializing the NIC, the host driver points the BSM to the
 326 * "initialize" uCode image.  This uCode sets up some internal data, then
 327 * notifies host via "initialize alive" that it is complete.
 328 *
 329 * The host then replaces the BSM_DRAM_* pointer values to point to the
 330 * normal runtime uCode instructions and a backup uCode data cache buffer
 331 * (filled initially with starting data values for the on-board processor),
 332 * then triggers the "initialize" uCode to load and launch the runtime uCode,
 333 * which begins normal operation.
 334 *
 335 * When doing a power-save shutdown, runtime uCode saves data SRAM into
 336 * the backup data cache in DRAM before SRAM is powered down.
 337 *
 338 * When powering back up, the BSM loads the bootstrap program.  This reloads
 339 * the runtime uCode instructions and the backup data cache into SRAM,
 340 * and re-launches the runtime uCode from where it left off.
 341 */
 342static int
 343il4965_load_bsm(struct il_priv *il)
 344{
 345	__le32 *image = il->ucode_boot.v_addr;
 346	u32 len = il->ucode_boot.len;
 347	dma_addr_t pinst;
 348	dma_addr_t pdata;
 349	u32 inst_len;
 350	u32 data_len;
 351	int i;
 352	u32 done;
 353	u32 reg_offset;
 354	int ret;
 355
 356	D_INFO("Begin load bsm\n");
 357
 358	il->ucode_type = UCODE_RT;
 359
 360	/* make sure bootstrap program is no larger than BSM's SRAM size */
 361	if (len > IL49_MAX_BSM_SIZE)
 362		return -EINVAL;
 363
 364	/* Tell bootstrap uCode where to find the "Initialize" uCode
 365	 *   in host DRAM ... host DRAM physical address bits 35:4 for 4965.
 366	 * NOTE:  il_init_alive_start() will replace these values,
 367	 *        after the "initialize" uCode has run, to point to
 368	 *        runtime/protocol instructions and backup data cache.
 369	 */
 370	pinst = il->ucode_init.p_addr >> 4;
 371	pdata = il->ucode_init_data.p_addr >> 4;
 372	inst_len = il->ucode_init.len;
 373	data_len = il->ucode_init_data.len;
 374
 375	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
 376	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
 377	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG, inst_len);
 378	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, data_len);
 379
 380	/* Fill BSM memory with bootstrap instructions */
 381	for (reg_offset = BSM_SRAM_LOWER_BOUND;
 382	     reg_offset < BSM_SRAM_LOWER_BOUND + len;
 383	     reg_offset += sizeof(u32), image++)
 384		_il_wr_prph(il, reg_offset, le32_to_cpu(*image));
 385
 386	ret = il4965_verify_bsm(il);
 387	if (ret)
 388		return ret;
 389
 390	/* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */
 391	il_wr_prph(il, BSM_WR_MEM_SRC_REG, 0x0);
 392	il_wr_prph(il, BSM_WR_MEM_DST_REG, IL49_RTC_INST_LOWER_BOUND);
 393	il_wr_prph(il, BSM_WR_DWCOUNT_REG, len / sizeof(u32));
 394
 395	/* Load bootstrap code into instruction SRAM now,
 396	 *   to prepare to load "initialize" uCode */
 397	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START);
 398
 399	/* Wait for load of bootstrap uCode to finish */
 400	for (i = 0; i < 100; i++) {
 401		done = il_rd_prph(il, BSM_WR_CTRL_REG);
 402		if (!(done & BSM_WR_CTRL_REG_BIT_START))
 403			break;
 404		udelay(10);
 405	}
 406	if (i < 100)
 407		D_INFO("BSM write complete, poll %d iterations\n", i);
 408	else {
 409		IL_ERR("BSM write did not complete!\n");
 410		return -EIO;
 411	}
 412
 413	/* Enable future boot loads whenever power management unit triggers it
 414	 *   (e.g. when powering back up after power-save shutdown) */
 415	il_wr_prph(il, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN);
 416
 417	return 0;
 418}
 419
 420/**
 421 * il4965_set_ucode_ptrs - Set uCode address location
 422 *
 423 * Tell initialization uCode where to find runtime uCode.
 424 *
 425 * BSM registers initially contain pointers to initialization uCode.
 426 * We need to replace them to load runtime uCode inst and data,
 427 * and to save runtime data when powering down.
 428 */
 429static int
 430il4965_set_ucode_ptrs(struct il_priv *il)
 431{
 432	dma_addr_t pinst;
 433	dma_addr_t pdata;
 434	int ret = 0;
 435
 436	/* bits 35:4 for 4965 */
 437	pinst = il->ucode_code.p_addr >> 4;
 438	pdata = il->ucode_data_backup.p_addr >> 4;
 439
 440	/* Tell bootstrap uCode where to find image to load */
 441	il_wr_prph(il, BSM_DRAM_INST_PTR_REG, pinst);
 442	il_wr_prph(il, BSM_DRAM_DATA_PTR_REG, pdata);
 443	il_wr_prph(il, BSM_DRAM_DATA_BYTECOUNT_REG, il->ucode_data.len);
 444
 445	/* Inst byte count must be last to set up, bit 31 signals uCode
 446	 *   that all new ptr/size info is in place */
 447	il_wr_prph(il, BSM_DRAM_INST_BYTECOUNT_REG,
 448		   il->ucode_code.len | BSM_DRAM_INST_LOAD);
 449	D_INFO("Runtime uCode pointers are set.\n");
 450
 451	return ret;
 452}
 453
 454/**
 455 * il4965_init_alive_start - Called after N_ALIVE notification received
 456 *
 457 * Called after N_ALIVE notification received from "initialize" uCode.
 458 *
 459 * The 4965 "initialize" ALIVE reply contains calibration data for:
 460 *   Voltage, temperature, and MIMO tx gain correction, now stored in il
 461 *   (3945 does not contain this data).
 462 *
 463 * Tell "initialize" uCode to go ahead and load the runtime uCode.
 464*/
 465static void
 466il4965_init_alive_start(struct il_priv *il)
 467{
 468	/* Bootstrap uCode has loaded initialize uCode ... verify inst image.
 469	 * This is a paranoid check, because we would not have gotten the
 470	 * "initialize" alive if code weren't properly loaded.  */
 471	if (il4965_verify_ucode(il)) {
 472		/* Runtime instruction load was bad;
 473		 * take it all the way back down so we can try again */
 474		D_INFO("Bad \"initialize\" uCode load.\n");
 475		goto restart;
 476	}
 477
 478	/* Calculate temperature */
 479	il->temperature = il4965_hw_get_temperature(il);
 480
 481	/* Send pointers to protocol/runtime uCode image ... init code will
 482	 * load and launch runtime uCode, which will send us another "Alive"
 483	 * notification. */
 484	D_INFO("Initialization Alive received.\n");
 485	if (il4965_set_ucode_ptrs(il)) {
 486		/* Runtime instruction load won't happen;
 487		 * take it all the way back down so we can try again */
 488		D_INFO("Couldn't set up uCode pointers.\n");
 489		goto restart;
 490	}
 491	return;
 492
 493restart:
 494	queue_work(il->workqueue, &il->restart);
 495}
 496
 497static bool
 498iw4965_is_ht40_channel(__le32 rxon_flags)
 499{
 500	int chan_mod =
 501	    le32_to_cpu(rxon_flags & RXON_FLG_CHANNEL_MODE_MSK) >>
 502	    RXON_FLG_CHANNEL_MODE_POS;
 503	return (chan_mod == CHANNEL_MODE_PURE_40 ||
 504		chan_mod == CHANNEL_MODE_MIXED);
 505}
 506
 507void
 508il4965_nic_config(struct il_priv *il)
 509{
 510	unsigned long flags;
 511	u16 radio_cfg;
 512
 513	spin_lock_irqsave(&il->lock, flags);
 514
 515	radio_cfg = il_eeprom_query16(il, EEPROM_RADIO_CONFIG);
 516
 517	/* write radio config values to register */
 518	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) == EEPROM_4965_RF_CFG_TYPE_MAX)
 519		il_set_bit(il, CSR_HW_IF_CONFIG_REG,
 520			   EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
 521			   EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
 522			   EEPROM_RF_CFG_DASH_MSK(radio_cfg));
 523
 524	/* set CSR_HW_CONFIG_REG for uCode use */
 525	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
 526		   CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
 527		   CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
 528
 529	il->calib_info =
 530	    (struct il_eeprom_calib_info *)
 531	    il_eeprom_query_addr(il, EEPROM_4965_CALIB_TXPOWER_OFFSET);
 532
 533	spin_unlock_irqrestore(&il->lock, flags);
 534}
 535
 536/* Reset differential Rx gains in NIC to prepare for chain noise calibration.
 537 * Called after every association, but this runs only once!
 538 *  ... once chain noise is calibrated the first time, it's good forever.  */
 539static void
 540il4965_chain_noise_reset(struct il_priv *il)
 541{
 542	struct il_chain_noise_data *data = &(il->chain_noise_data);
 543
 544	if (data->state == IL_CHAIN_NOISE_ALIVE && il_is_any_associated(il)) {
 545		struct il_calib_diff_gain_cmd cmd;
 546
 547		/* clear data for chain noise calibration algorithm */
 548		data->chain_noise_a = 0;
 549		data->chain_noise_b = 0;
 550		data->chain_noise_c = 0;
 551		data->chain_signal_a = 0;
 552		data->chain_signal_b = 0;
 553		data->chain_signal_c = 0;
 554		data->beacon_count = 0;
 555
 556		memset(&cmd, 0, sizeof(cmd));
 557		cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
 558		cmd.diff_gain_a = 0;
 559		cmd.diff_gain_b = 0;
 560		cmd.diff_gain_c = 0;
 561		if (il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd))
 562			IL_ERR("Could not send C_PHY_CALIBRATION\n");
 563		data->state = IL_CHAIN_NOISE_ACCUMULATE;
 564		D_CALIB("Run chain_noise_calibrate\n");
 565	}
 566}
 567
 568static s32
 569il4965_math_div_round(s32 num, s32 denom, s32 * res)
 570{
 571	s32 sign = 1;
 572
 573	if (num < 0) {
 574		sign = -sign;
 575		num = -num;
 576	}
 577	if (denom < 0) {
 578		sign = -sign;
 579		denom = -denom;
 580	}
 581	*res = 1;
 582	*res = ((num * 2 + denom) / (denom * 2)) * sign;
 583
 584	return 1;
 585}
 586
 587/**
 588 * il4965_get_voltage_compensation - Power supply voltage comp for txpower
 589 *
 590 * Determines power supply voltage compensation for txpower calculations.
 591 * Returns number of 1/2-dB steps to subtract from gain table idx,
 592 * to compensate for difference between power supply voltage during
 593 * factory measurements, vs. current power supply voltage.
 594 *
 595 * Voltage indication is higher for lower voltage.
 596 * Lower voltage requires more gain (lower gain table idx).
 597 */
 598static s32
 599il4965_get_voltage_compensation(s32 eeprom_voltage, s32 current_voltage)
 600{
 601	s32 comp = 0;
 602
 603	if (TX_POWER_IL_ILLEGAL_VOLTAGE == eeprom_voltage ||
 604	    TX_POWER_IL_ILLEGAL_VOLTAGE == current_voltage)
 605		return 0;
 606
 607	il4965_math_div_round(current_voltage - eeprom_voltage,
 608			      TX_POWER_IL_VOLTAGE_CODES_PER_03V, &comp);
 609
 610	if (current_voltage > eeprom_voltage)
 611		comp *= 2;
 612	if ((comp < -2) || (comp > 2))
 613		comp = 0;
 614
 615	return comp;
 616}
 617
 618static s32
 619il4965_get_tx_atten_grp(u16 channel)
 620{
 621	if (channel >= CALIB_IL_TX_ATTEN_GR5_FCH &&
 622	    channel <= CALIB_IL_TX_ATTEN_GR5_LCH)
 623		return CALIB_CH_GROUP_5;
 624
 625	if (channel >= CALIB_IL_TX_ATTEN_GR1_FCH &&
 626	    channel <= CALIB_IL_TX_ATTEN_GR1_LCH)
 627		return CALIB_CH_GROUP_1;
 628
 629	if (channel >= CALIB_IL_TX_ATTEN_GR2_FCH &&
 630	    channel <= CALIB_IL_TX_ATTEN_GR2_LCH)
 631		return CALIB_CH_GROUP_2;
 632
 633	if (channel >= CALIB_IL_TX_ATTEN_GR3_FCH &&
 634	    channel <= CALIB_IL_TX_ATTEN_GR3_LCH)
 635		return CALIB_CH_GROUP_3;
 636
 637	if (channel >= CALIB_IL_TX_ATTEN_GR4_FCH &&
 638	    channel <= CALIB_IL_TX_ATTEN_GR4_LCH)
 639		return CALIB_CH_GROUP_4;
 640
 641	return -EINVAL;
 642}
 643
 644static u32
 645il4965_get_sub_band(const struct il_priv *il, u32 channel)
 646{
 647	s32 b = -1;
 648
 649	for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
 650		if (il->calib_info->band_info[b].ch_from == 0)
 651			continue;
 652
 653		if (channel >= il->calib_info->band_info[b].ch_from &&
 654		    channel <= il->calib_info->band_info[b].ch_to)
 655			break;
 656	}
 657
 658	return b;
 659}
 660
 661static s32
 662il4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
 663{
 664	s32 val;
 665
 666	if (x2 == x1)
 667		return y1;
 668	else {
 669		il4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
 670		return val + y2;
 671	}
 672}
 673
 674/**
 675 * il4965_interpolate_chan - Interpolate factory measurements for one channel
 676 *
 677 * Interpolates factory measurements from the two sample channels within a
 678 * sub-band, to apply to channel of interest.  Interpolation is proportional to
 679 * differences in channel frequencies, which is proportional to differences
 680 * in channel number.
 681 */
 682static int
 683il4965_interpolate_chan(struct il_priv *il, u32 channel,
 684			struct il_eeprom_calib_ch_info *chan_info)
 685{
 686	s32 s = -1;
 687	u32 c;
 688	u32 m;
 689	const struct il_eeprom_calib_measure *m1;
 690	const struct il_eeprom_calib_measure *m2;
 691	struct il_eeprom_calib_measure *omeas;
 692	u32 ch_i1;
 693	u32 ch_i2;
 694
 695	s = il4965_get_sub_band(il, channel);
 696	if (s >= EEPROM_TX_POWER_BANDS) {
 697		IL_ERR("Tx Power can not find channel %d\n", channel);
 698		return -1;
 699	}
 700
 701	ch_i1 = il->calib_info->band_info[s].ch1.ch_num;
 702	ch_i2 = il->calib_info->band_info[s].ch2.ch_num;
 703	chan_info->ch_num = (u8) channel;
 704
 705	D_TXPOWER("channel %d subband %d factory cal ch %d & %d\n", channel, s,
 706		  ch_i1, ch_i2);
 707
 708	for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
 709		for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
 710			m1 = &(il->calib_info->band_info[s].ch1.
 711			       measurements[c][m]);
 712			m2 = &(il->calib_info->band_info[s].ch2.
 713			       measurements[c][m]);
 714			omeas = &(chan_info->measurements[c][m]);
 715
 716			omeas->actual_pow =
 717			    (u8) il4965_interpolate_value(channel, ch_i1,
 718							  m1->actual_pow, ch_i2,
 719							  m2->actual_pow);
 720			omeas->gain_idx =
 721			    (u8) il4965_interpolate_value(channel, ch_i1,
 722							  m1->gain_idx, ch_i2,
 723							  m2->gain_idx);
 724			omeas->temperature =
 725			    (u8) il4965_interpolate_value(channel, ch_i1,
 726							  m1->temperature,
 727							  ch_i2,
 728							  m2->temperature);
 729			omeas->pa_det =
 730			    (s8) il4965_interpolate_value(channel, ch_i1,
 731							  m1->pa_det, ch_i2,
 732							  m2->pa_det);
 733
 734			D_TXPOWER("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c,
 735				  m, m1->actual_pow, m2->actual_pow,
 736				  omeas->actual_pow);
 737			D_TXPOWER("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c,
 738				  m, m1->gain_idx, m2->gain_idx,
 739				  omeas->gain_idx);
 740			D_TXPOWER("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c,
 741				  m, m1->pa_det, m2->pa_det, omeas->pa_det);
 742			D_TXPOWER("chain %d meas %d  T1=%d  T2=%d  T=%d\n", c,
 743				  m, m1->temperature, m2->temperature,
 744				  omeas->temperature);
 745		}
 746	}
 747
 748	return 0;
 749}
 750
 751/* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
 752 * for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
 753static s32 back_off_table[] = {
 754	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 20 MHz */
 755	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 20 MHz */
 756	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM SISO 40 MHz */
 757	10, 10, 10, 10, 10, 15, 17, 20,	/* OFDM MIMO 40 MHz */
 758	10			/* CCK */
 759};
 760
 761/* Thermal compensation values for txpower for various frequency ranges ...
 762 *   ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
 763static struct il4965_txpower_comp_entry {
 764	s32 degrees_per_05db_a;
 765	s32 degrees_per_05db_a_denom;
 766} tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
 767	{
 768	9, 2},			/* group 0 5.2, ch  34-43 */
 769	{
 770	4, 1},			/* group 1 5.2, ch  44-70 */
 771	{
 772	4, 1},			/* group 2 5.2, ch  71-124 */
 773	{
 774	4, 1},			/* group 3 5.2, ch 125-200 */
 775	{
 776	3, 1}			/* group 4 2.4, ch   all */
 777};
 778
 779static s32
 780get_min_power_idx(s32 rate_power_idx, u32 band)
 781{
 782	if (!band) {
 783		if ((rate_power_idx & 7) <= 4)
 784			return MIN_TX_GAIN_IDX_52GHZ_EXT;
 785	}
 786	return MIN_TX_GAIN_IDX;
 787}
 788
 789struct gain_entry {
 790	u8 dsp;
 791	u8 radio;
 792};
 793
 794static const struct gain_entry gain_table[2][108] = {
 795	/* 5.2GHz power gain idx table */
 796	{
 797	 {123, 0x3F},		/* highest txpower */
 798	 {117, 0x3F},
 799	 {110, 0x3F},
 800	 {104, 0x3F},
 801	 {98, 0x3F},
 802	 {110, 0x3E},
 803	 {104, 0x3E},
 804	 {98, 0x3E},
 805	 {110, 0x3D},
 806	 {104, 0x3D},
 807	 {98, 0x3D},
 808	 {110, 0x3C},
 809	 {104, 0x3C},
 810	 {98, 0x3C},
 811	 {110, 0x3B},
 812	 {104, 0x3B},
 813	 {98, 0x3B},
 814	 {110, 0x3A},
 815	 {104, 0x3A},
 816	 {98, 0x3A},
 817	 {110, 0x39},
 818	 {104, 0x39},
 819	 {98, 0x39},
 820	 {110, 0x38},
 821	 {104, 0x38},
 822	 {98, 0x38},
 823	 {110, 0x37},
 824	 {104, 0x37},
 825	 {98, 0x37},
 826	 {110, 0x36},
 827	 {104, 0x36},
 828	 {98, 0x36},
 829	 {110, 0x35},
 830	 {104, 0x35},
 831	 {98, 0x35},
 832	 {110, 0x34},
 833	 {104, 0x34},
 834	 {98, 0x34},
 835	 {110, 0x33},
 836	 {104, 0x33},
 837	 {98, 0x33},
 838	 {110, 0x32},
 839	 {104, 0x32},
 840	 {98, 0x32},
 841	 {110, 0x31},
 842	 {104, 0x31},
 843	 {98, 0x31},
 844	 {110, 0x30},
 845	 {104, 0x30},
 846	 {98, 0x30},
 847	 {110, 0x25},
 848	 {104, 0x25},
 849	 {98, 0x25},
 850	 {110, 0x24},
 851	 {104, 0x24},
 852	 {98, 0x24},
 853	 {110, 0x23},
 854	 {104, 0x23},
 855	 {98, 0x23},
 856	 {110, 0x22},
 857	 {104, 0x18},
 858	 {98, 0x18},
 859	 {110, 0x17},
 860	 {104, 0x17},
 861	 {98, 0x17},
 862	 {110, 0x16},
 863	 {104, 0x16},
 864	 {98, 0x16},
 865	 {110, 0x15},
 866	 {104, 0x15},
 867	 {98, 0x15},
 868	 {110, 0x14},
 869	 {104, 0x14},
 870	 {98, 0x14},
 871	 {110, 0x13},
 872	 {104, 0x13},
 873	 {98, 0x13},
 874	 {110, 0x12},
 875	 {104, 0x08},
 876	 {98, 0x08},
 877	 {110, 0x07},
 878	 {104, 0x07},
 879	 {98, 0x07},
 880	 {110, 0x06},
 881	 {104, 0x06},
 882	 {98, 0x06},
 883	 {110, 0x05},
 884	 {104, 0x05},
 885	 {98, 0x05},
 886	 {110, 0x04},
 887	 {104, 0x04},
 888	 {98, 0x04},
 889	 {110, 0x03},
 890	 {104, 0x03},
 891	 {98, 0x03},
 892	 {110, 0x02},
 893	 {104, 0x02},
 894	 {98, 0x02},
 895	 {110, 0x01},
 896	 {104, 0x01},
 897	 {98, 0x01},
 898	 {110, 0x00},
 899	 {104, 0x00},
 900	 {98, 0x00},
 901	 {93, 0x00},
 902	 {88, 0x00},
 903	 {83, 0x00},
 904	 {78, 0x00},
 905	 },
 906	/* 2.4GHz power gain idx table */
 907	{
 908	 {110, 0x3f},		/* highest txpower */
 909	 {104, 0x3f},
 910	 {98, 0x3f},
 911	 {110, 0x3e},
 912	 {104, 0x3e},
 913	 {98, 0x3e},
 914	 {110, 0x3d},
 915	 {104, 0x3d},
 916	 {98, 0x3d},
 917	 {110, 0x3c},
 918	 {104, 0x3c},
 919	 {98, 0x3c},
 920	 {110, 0x3b},
 921	 {104, 0x3b},
 922	 {98, 0x3b},
 923	 {110, 0x3a},
 924	 {104, 0x3a},
 925	 {98, 0x3a},
 926	 {110, 0x39},
 927	 {104, 0x39},
 928	 {98, 0x39},
 929	 {110, 0x38},
 930	 {104, 0x38},
 931	 {98, 0x38},
 932	 {110, 0x37},
 933	 {104, 0x37},
 934	 {98, 0x37},
 935	 {110, 0x36},
 936	 {104, 0x36},
 937	 {98, 0x36},
 938	 {110, 0x35},
 939	 {104, 0x35},
 940	 {98, 0x35},
 941	 {110, 0x34},
 942	 {104, 0x34},
 943	 {98, 0x34},
 944	 {110, 0x33},
 945	 {104, 0x33},
 946	 {98, 0x33},
 947	 {110, 0x32},
 948	 {104, 0x32},
 949	 {98, 0x32},
 950	 {110, 0x31},
 951	 {104, 0x31},
 952	 {98, 0x31},
 953	 {110, 0x30},
 954	 {104, 0x30},
 955	 {98, 0x30},
 956	 {110, 0x6},
 957	 {104, 0x6},
 958	 {98, 0x6},
 959	 {110, 0x5},
 960	 {104, 0x5},
 961	 {98, 0x5},
 962	 {110, 0x4},
 963	 {104, 0x4},
 964	 {98, 0x4},
 965	 {110, 0x3},
 966	 {104, 0x3},
 967	 {98, 0x3},
 968	 {110, 0x2},
 969	 {104, 0x2},
 970	 {98, 0x2},
 971	 {110, 0x1},
 972	 {104, 0x1},
 973	 {98, 0x1},
 974	 {110, 0x0},
 975	 {104, 0x0},
 976	 {98, 0x0},
 977	 {97, 0},
 978	 {96, 0},
 979	 {95, 0},
 980	 {94, 0},
 981	 {93, 0},
 982	 {92, 0},
 983	 {91, 0},
 984	 {90, 0},
 985	 {89, 0},
 986	 {88, 0},
 987	 {87, 0},
 988	 {86, 0},
 989	 {85, 0},
 990	 {84, 0},
 991	 {83, 0},
 992	 {82, 0},
 993	 {81, 0},
 994	 {80, 0},
 995	 {79, 0},
 996	 {78, 0},
 997	 {77, 0},
 998	 {76, 0},
 999	 {75, 0},
1000	 {74, 0},
1001	 {73, 0},
1002	 {72, 0},
1003	 {71, 0},
1004	 {70, 0},
1005	 {69, 0},
1006	 {68, 0},
1007	 {67, 0},
1008	 {66, 0},
1009	 {65, 0},
1010	 {64, 0},
1011	 {63, 0},
1012	 {62, 0},
1013	 {61, 0},
1014	 {60, 0},
1015	 {59, 0},
1016	 }
1017};
1018
1019static int
1020il4965_fill_txpower_tbl(struct il_priv *il, u8 band, u16 channel, u8 is_ht40,
1021			u8 ctrl_chan_high,
1022			struct il4965_tx_power_db *tx_power_tbl)
1023{
1024	u8 saturation_power;
1025	s32 target_power;
1026	s32 user_target_power;
1027	s32 power_limit;
1028	s32 current_temp;
1029	s32 reg_limit;
1030	s32 current_regulatory;
1031	s32 txatten_grp = CALIB_CH_GROUP_MAX;
1032	int i;
1033	int c;
1034	const struct il_channel_info *ch_info = NULL;
1035	struct il_eeprom_calib_ch_info ch_eeprom_info;
1036	const struct il_eeprom_calib_measure *measurement;
1037	s16 voltage;
1038	s32 init_voltage;
1039	s32 voltage_compensation;
1040	s32 degrees_per_05db_num;
1041	s32 degrees_per_05db_denom;
1042	s32 factory_temp;
1043	s32 temperature_comp[2];
1044	s32 factory_gain_idx[2];
1045	s32 factory_actual_pwr[2];
1046	s32 power_idx;
1047
1048	/* tx_power_user_lmt is in dBm, convert to half-dBm (half-dB units
1049	 *   are used for idxing into txpower table) */
1050	user_target_power = 2 * il->tx_power_user_lmt;
1051
1052	/* Get current (RXON) channel, band, width */
1053	D_TXPOWER("chan %d band %d is_ht40 %d\n", channel, band, is_ht40);
1054
1055	ch_info = il_get_channel_info(il, il->band, channel);
1056
1057	if (!il_is_channel_valid(ch_info))
1058		return -EINVAL;
1059
1060	/* get txatten group, used to select 1) thermal txpower adjustment
1061	 *   and 2) mimo txpower balance between Tx chains. */
1062	txatten_grp = il4965_get_tx_atten_grp(channel);
1063	if (txatten_grp < 0) {
1064		IL_ERR("Can't find txatten group for channel %d.\n", channel);
1065		return txatten_grp;
1066	}
1067
1068	D_TXPOWER("channel %d belongs to txatten group %d\n", channel,
1069		  txatten_grp);
1070
1071	if (is_ht40) {
1072		if (ctrl_chan_high)
1073			channel -= 2;
1074		else
1075			channel += 2;
1076	}
1077
1078	/* hardware txpower limits ...
1079	 * saturation (clipping distortion) txpowers are in half-dBm */
1080	if (band)
1081		saturation_power = il->calib_info->saturation_power24;
1082	else
1083		saturation_power = il->calib_info->saturation_power52;
1084
1085	if (saturation_power < IL_TX_POWER_SATURATION_MIN ||
1086	    saturation_power > IL_TX_POWER_SATURATION_MAX) {
1087		if (band)
1088			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_24;
1089		else
1090			saturation_power = IL_TX_POWER_DEFAULT_SATURATION_52;
1091	}
1092
1093	/* regulatory txpower limits ... reg_limit values are in half-dBm,
1094	 *   max_power_avg values are in dBm, convert * 2 */
1095	if (is_ht40)
1096		reg_limit = ch_info->ht40_max_power_avg * 2;
1097	else
1098		reg_limit = ch_info->max_power_avg * 2;
1099
1100	if ((reg_limit < IL_TX_POWER_REGULATORY_MIN) ||
1101	    (reg_limit > IL_TX_POWER_REGULATORY_MAX)) {
1102		if (band)
1103			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_24;
1104		else
1105			reg_limit = IL_TX_POWER_DEFAULT_REGULATORY_52;
1106	}
1107
1108	/* Interpolate txpower calibration values for this channel,
1109	 *   based on factory calibration tests on spaced channels. */
1110	il4965_interpolate_chan(il, channel, &ch_eeprom_info);
1111
1112	/* calculate tx gain adjustment based on power supply voltage */
1113	voltage = le16_to_cpu(il->calib_info->voltage);
1114	init_voltage = (s32) le32_to_cpu(il->card_alive_init.voltage);
1115	voltage_compensation =
1116	    il4965_get_voltage_compensation(voltage, init_voltage);
1117
1118	D_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n", init_voltage,
1119		  voltage, voltage_compensation);
1120
1121	/* get current temperature (Celsius) */
1122	current_temp = max(il->temperature, IL_TX_POWER_TEMPERATURE_MIN);
1123	current_temp = min(il->temperature, IL_TX_POWER_TEMPERATURE_MAX);
1124	current_temp = KELVIN_TO_CELSIUS(current_temp);
1125
1126	/* select thermal txpower adjustment params, based on channel group
1127	 *   (same frequency group used for mimo txatten adjustment) */
1128	degrees_per_05db_num =
1129	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
1130	degrees_per_05db_denom =
1131	    tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
1132
1133	/* get per-chain txpower values from factory measurements */
1134	for (c = 0; c < 2; c++) {
1135		measurement = &ch_eeprom_info.measurements[c][1];
1136
1137		/* txgain adjustment (in half-dB steps) based on difference
1138		 *   between factory and current temperature */
1139		factory_temp = measurement->temperature;
1140		il4965_math_div_round((current_temp -
1141				       factory_temp) * degrees_per_05db_denom,
1142				      degrees_per_05db_num,
1143				      &temperature_comp[c]);
1144
1145		factory_gain_idx[c] = measurement->gain_idx;
1146		factory_actual_pwr[c] = measurement->actual_pow;
1147
1148		D_TXPOWER("chain = %d\n", c);
1149		D_TXPOWER("fctry tmp %d, " "curr tmp %d, comp %d steps\n",
1150			  factory_temp, current_temp, temperature_comp[c]);
1151
1152		D_TXPOWER("fctry idx %d, fctry pwr %d\n", factory_gain_idx[c],
1153			  factory_actual_pwr[c]);
1154	}
1155
1156	/* for each of 33 bit-rates (including 1 for CCK) */
1157	for (i = 0; i < POWER_TBL_NUM_ENTRIES; i++) {
1158		u8 is_mimo_rate;
1159		union il4965_tx_power_dual_stream tx_power;
1160
1161		/* for mimo, reduce each chain's txpower by half
1162		 * (3dB, 6 steps), so total output power is regulatory
1163		 * compliant. */
1164		if (i & 0x8) {
1165			current_regulatory =
1166			    reg_limit -
1167			    IL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
1168			is_mimo_rate = 1;
1169		} else {
1170			current_regulatory = reg_limit;
1171			is_mimo_rate = 0;
1172		}
1173
1174		/* find txpower limit, either hardware or regulatory */
1175		power_limit = saturation_power - back_off_table[i];
1176		if (power_limit > current_regulatory)
1177			power_limit = current_regulatory;
1178
1179		/* reduce user's txpower request if necessary
1180		 * for this rate on this channel */
1181		target_power = user_target_power;
1182		if (target_power > power_limit)
1183			target_power = power_limit;
1184
1185		D_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n", i,
1186			  saturation_power - back_off_table[i],
1187			  current_regulatory, user_target_power, target_power);
1188
1189		/* for each of 2 Tx chains (radio transmitters) */
1190		for (c = 0; c < 2; c++) {
1191			s32 atten_value;
1192
1193			if (is_mimo_rate)
1194				atten_value =
1195				    (s32) le32_to_cpu(il->card_alive_init.
1196						      tx_atten[txatten_grp][c]);
1197			else
1198				atten_value = 0;
1199
1200			/* calculate idx; higher idx means lower txpower */
1201			power_idx =
1202			    (u8) (factory_gain_idx[c] -
1203				  (target_power - factory_actual_pwr[c]) -
1204				  temperature_comp[c] - voltage_compensation +
1205				  atten_value);
1206
1207/*			D_TXPOWER("calculated txpower idx %d\n",
1208						power_idx); */
1209
1210			if (power_idx < get_min_power_idx(i, band))
1211				power_idx = get_min_power_idx(i, band);
1212
1213			/* adjust 5 GHz idx to support negative idxes */
1214			if (!band)
1215				power_idx += 9;
1216
1217			/* CCK, rate 32, reduce txpower for CCK */
1218			if (i == POWER_TBL_CCK_ENTRY)
1219				power_idx +=
1220				    IL_TX_POWER_CCK_COMPENSATION_C_STEP;
1221
1222			/* stay within the table! */
1223			if (power_idx > 107) {
1224				IL_WARN("txpower idx %d > 107\n", power_idx);
1225				power_idx = 107;
1226			}
1227			if (power_idx < 0) {
1228				IL_WARN("txpower idx %d < 0\n", power_idx);
1229				power_idx = 0;
1230			}
1231
1232			/* fill txpower command for this rate/chain */
1233			tx_power.s.radio_tx_gain[c] =
1234			    gain_table[band][power_idx].radio;
1235			tx_power.s.dsp_predis_atten[c] =
1236			    gain_table[band][power_idx].dsp;
1237
1238			D_TXPOWER("chain %d mimo %d idx %d "
1239				  "gain 0x%02x dsp %d\n", c, atten_value,
1240				  power_idx, tx_power.s.radio_tx_gain[c],
1241				  tx_power.s.dsp_predis_atten[c]);
1242		}		/* for each chain */
1243
1244		tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
1245
1246	}			/* for each rate */
1247
1248	return 0;
1249}
1250
1251/**
1252 * il4965_send_tx_power - Configure the TXPOWER level user limit
1253 *
1254 * Uses the active RXON for channel, band, and characteristics (ht40, high)
1255 * The power limit is taken from il->tx_power_user_lmt.
1256 */
1257static int
1258il4965_send_tx_power(struct il_priv *il)
1259{
1260	struct il4965_txpowertable_cmd cmd = { 0 };
1261	int ret;
1262	u8 band = 0;
1263	bool is_ht40 = false;
1264	u8 ctrl_chan_high = 0;
1265
1266	if (WARN_ONCE
1267	    (test_bit(S_SCAN_HW, &il->status),
1268	     "TX Power requested while scanning!\n"))
1269		return -EAGAIN;
1270
1271	band = il->band == IEEE80211_BAND_2GHZ;
1272
1273	is_ht40 = iw4965_is_ht40_channel(il->active.flags);
1274
1275	if (is_ht40 && (il->active.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1276		ctrl_chan_high = 1;
1277
1278	cmd.band = band;
1279	cmd.channel = il->active.channel;
1280
1281	ret =
1282	    il4965_fill_txpower_tbl(il, band, le16_to_cpu(il->active.channel),
1283				    is_ht40, ctrl_chan_high, &cmd.tx_power);
1284	if (ret)
1285		goto out;
1286
1287	ret = il_send_cmd_pdu(il, C_TX_PWR_TBL, sizeof(cmd), &cmd);
1288
1289out:
1290	return ret;
1291}
1292
1293static int
1294il4965_send_rxon_assoc(struct il_priv *il)
1295{
1296	int ret = 0;
1297	struct il4965_rxon_assoc_cmd rxon_assoc;
1298	const struct il_rxon_cmd *rxon1 = &il->staging;
1299	const struct il_rxon_cmd *rxon2 = &il->active;
1300
1301	if (rxon1->flags == rxon2->flags &&
1302	    rxon1->filter_flags == rxon2->filter_flags &&
1303	    rxon1->cck_basic_rates == rxon2->cck_basic_rates &&
1304	    rxon1->ofdm_ht_single_stream_basic_rates ==
1305	    rxon2->ofdm_ht_single_stream_basic_rates &&
1306	    rxon1->ofdm_ht_dual_stream_basic_rates ==
1307	    rxon2->ofdm_ht_dual_stream_basic_rates &&
1308	    rxon1->rx_chain == rxon2->rx_chain &&
1309	    rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates) {
1310		D_INFO("Using current RXON_ASSOC.  Not resending.\n");
1311		return 0;
1312	}
1313
1314	rxon_assoc.flags = il->staging.flags;
1315	rxon_assoc.filter_flags = il->staging.filter_flags;
1316	rxon_assoc.ofdm_basic_rates = il->staging.ofdm_basic_rates;
1317	rxon_assoc.cck_basic_rates = il->staging.cck_basic_rates;
1318	rxon_assoc.reserved = 0;
1319	rxon_assoc.ofdm_ht_single_stream_basic_rates =
1320	    il->staging.ofdm_ht_single_stream_basic_rates;
1321	rxon_assoc.ofdm_ht_dual_stream_basic_rates =
1322	    il->staging.ofdm_ht_dual_stream_basic_rates;
1323	rxon_assoc.rx_chain_select_flags = il->staging.rx_chain;
1324
1325	ret =
1326	    il_send_cmd_pdu_async(il, C_RXON_ASSOC, sizeof(rxon_assoc),
1327				  &rxon_assoc, NULL);
1328
1329	return ret;
1330}
1331
1332static int
1333il4965_commit_rxon(struct il_priv *il)
1334{
1335	/* cast away the const for active_rxon in this function */
1336	struct il_rxon_cmd *active_rxon = (void *)&il->active;
1337	int ret;
1338	bool new_assoc = !!(il->staging.filter_flags & RXON_FILTER_ASSOC_MSK);
1339
1340	if (!il_is_alive(il))
1341		return -EBUSY;
1342
1343	/* always get timestamp with Rx frame */
1344	il->staging.flags |= RXON_FLG_TSF2HOST_MSK;
1345
1346	ret = il_check_rxon_cmd(il);
1347	if (ret) {
1348		IL_ERR("Invalid RXON configuration.  Not committing.\n");
1349		return -EINVAL;
1350	}
1351
1352	/*
1353	 * receive commit_rxon request
1354	 * abort any previous channel switch if still in process
1355	 */
1356	if (test_bit(S_CHANNEL_SWITCH_PENDING, &il->status) &&
1357	    il->switch_channel != il->staging.channel) {
1358		D_11H("abort channel switch on %d\n",
1359		      le16_to_cpu(il->switch_channel));
1360		il_chswitch_done(il, false);
1361	}
1362
1363	/* If we don't need to send a full RXON, we can use
1364	 * il_rxon_assoc_cmd which is used to reconfigure filter
1365	 * and other flags for the current radio configuration. */
1366	if (!il_full_rxon_required(il)) {
1367		ret = il_send_rxon_assoc(il);
1368		if (ret) {
1369			IL_ERR("Error setting RXON_ASSOC (%d)\n", ret);
1370			return ret;
1371		}
1372
1373		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1374		il_print_rx_config_cmd(il);
1375		/*
1376		 * We do not commit tx power settings while channel changing,
1377		 * do it now if tx power changed.
1378		 */
1379		il_set_tx_power(il, il->tx_power_next, false);
1380		return 0;
1381	}
1382
1383	/* If we are currently associated and the new config requires
1384	 * an RXON_ASSOC and the new config wants the associated mask enabled,
1385	 * we must clear the associated from the active configuration
1386	 * before we apply the new config */
1387	if (il_is_associated(il) && new_assoc) {
1388		D_INFO("Toggling associated bit on current RXON\n");
1389		active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1390
1391		ret =
1392		    il_send_cmd_pdu(il, C_RXON,
1393				    sizeof(struct il_rxon_cmd), active_rxon);
1394
1395		/* If the mask clearing failed then we set
1396		 * active_rxon back to what it was previously */
1397		if (ret) {
1398			active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK;
1399			IL_ERR("Error clearing ASSOC_MSK (%d)\n", ret);
1400			return ret;
1401		}
1402		il_clear_ucode_stations(il);
1403		il_restore_stations(il);
1404		ret = il4965_restore_default_wep_keys(il);
1405		if (ret) {
1406			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1407			return ret;
1408		}
1409	}
1410
1411	D_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n"
1412	       "* channel = %d\n" "* bssid = %pM\n", (new_assoc ? "" : "out"),
1413	       le16_to_cpu(il->staging.channel), il->staging.bssid_addr);
1414
1415	il_set_rxon_hwcrypto(il, !il->cfg->mod_params->sw_crypto);
1416
1417	/* Apply the new configuration
1418	 * RXON unassoc clears the station table in uCode so restoration of
1419	 * stations is needed after it (the RXON command) completes
1420	 */
1421	if (!new_assoc) {
1422		ret =
1423		    il_send_cmd_pdu(il, C_RXON,
1424				    sizeof(struct il_rxon_cmd), &il->staging);
1425		if (ret) {
1426			IL_ERR("Error setting new RXON (%d)\n", ret);
1427			return ret;
1428		}
1429		D_INFO("Return from !new_assoc RXON.\n");
1430		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1431		il_clear_ucode_stations(il);
1432		il_restore_stations(il);
1433		ret = il4965_restore_default_wep_keys(il);
1434		if (ret) {
1435			IL_ERR("Failed to restore WEP keys (%d)\n", ret);
1436			return ret;
1437		}
1438	}
1439	if (new_assoc) {
1440		il->start_calib = 0;
1441		/* Apply the new configuration
1442		 * RXON assoc doesn't clear the station table in uCode,
1443		 */
1444		ret =
1445		    il_send_cmd_pdu(il, C_RXON,
1446				    sizeof(struct il_rxon_cmd), &il->staging);
1447		if (ret) {
1448			IL_ERR("Error setting new RXON (%d)\n", ret);
1449			return ret;
1450		}
1451		memcpy(active_rxon, &il->staging, sizeof(*active_rxon));
1452	}
1453	il_print_rx_config_cmd(il);
1454
1455	il4965_init_sensitivity(il);
1456
1457	/* If we issue a new RXON command which required a tune then we must
1458	 * send a new TXPOWER command or we won't be able to Tx any frames */
1459	ret = il_set_tx_power(il, il->tx_power_next, true);
1460	if (ret) {
1461		IL_ERR("Error sending TX power (%d)\n", ret);
1462		return ret;
1463	}
1464
1465	return 0;
1466}
1467
1468static int
1469il4965_hw_channel_switch(struct il_priv *il,
1470			 struct ieee80211_channel_switch *ch_switch)
1471{
1472	int rc;
1473	u8 band = 0;
1474	bool is_ht40 = false;
1475	u8 ctrl_chan_high = 0;
1476	struct il4965_channel_switch_cmd cmd;
1477	const struct il_channel_info *ch_info;
1478	u32 switch_time_in_usec, ucode_switch_time;
1479	u16 ch;
1480	u32 tsf_low;
1481	u8 switch_count;
1482	u16 beacon_interval = le16_to_cpu(il->timing.beacon_interval);
1483	struct ieee80211_vif *vif = il->vif;
1484	band = (il->band == IEEE80211_BAND_2GHZ);
1485
1486	if (WARN_ON_ONCE(vif == NULL))
1487		return -EIO;
1488
1489	is_ht40 = iw4965_is_ht40_channel(il->staging.flags);
1490
1491	if (is_ht40 && (il->staging.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
1492		ctrl_chan_high = 1;
1493
1494	cmd.band = band;
1495	cmd.expect_beacon = 0;
1496	ch = ch_switch->channel->hw_value;
1497	cmd.channel = cpu_to_le16(ch);
1498	cmd.rxon_flags = il->staging.flags;
1499	cmd.rxon_filter_flags = il->staging.filter_flags;
1500	switch_count = ch_switch->count;
1501	tsf_low = ch_switch->timestamp & 0x0ffffffff;
1502	/*
1503	 * calculate the ucode channel switch time
1504	 * adding TSF as one of the factor for when to switch
1505	 */
1506	if (il->ucode_beacon_time > tsf_low && beacon_interval) {
1507		if (switch_count >
1508		    ((il->ucode_beacon_time - tsf_low) / beacon_interval)) {
1509			switch_count -=
1510			    (il->ucode_beacon_time - tsf_low) / beacon_interval;
1511		} else
1512			switch_count = 0;
1513	}
1514	if (switch_count <= 1)
1515		cmd.switch_time = cpu_to_le32(il->ucode_beacon_time);
1516	else {
1517		switch_time_in_usec =
1518		    vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
1519		ucode_switch_time =
1520		    il_usecs_to_beacons(il, switch_time_in_usec,
1521					beacon_interval);
1522		cmd.switch_time =
1523		    il_add_beacon_time(il, il->ucode_beacon_time,
1524				       ucode_switch_time, beacon_interval);
1525	}
1526	D_11H("uCode time for the switch is 0x%x\n", cmd.switch_time);
1527	ch_info = il_get_channel_info(il, il->band, ch);
1528	if (ch_info)
1529		cmd.expect_beacon = il_is_channel_radar(ch_info);
1530	else {
1531		IL_ERR("invalid channel switch from %u to %u\n",
1532		       il->active.channel, ch);
1533		return -EFAULT;
1534	}
1535
1536	rc = il4965_fill_txpower_tbl(il, band, ch, is_ht40, ctrl_chan_high,
1537				     &cmd.tx_power);
1538	if (rc) {
1539		D_11H("error:%d  fill txpower_tbl\n", rc);
1540		return rc;
1541	}
1542
1543	return il_send_cmd_pdu(il, C_CHANNEL_SWITCH, sizeof(cmd), &cmd);
1544}
1545
1546/**
1547 * il4965_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
1548 */
1549static void
1550il4965_txq_update_byte_cnt_tbl(struct il_priv *il, struct il_tx_queue *txq,
1551			       u16 byte_cnt)
1552{
1553	struct il4965_scd_bc_tbl *scd_bc_tbl = il->scd_bc_tbls.addr;
1554	int txq_id = txq->q.id;
1555	int write_ptr = txq->q.write_ptr;
1556	int len = byte_cnt + IL_TX_CRC_SIZE + IL_TX_DELIMITER_SIZE;
1557	__le16 bc_ent;
1558
1559	WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX);
1560
1561	bc_ent = cpu_to_le16(len & 0xFFF);
1562	/* Set up byte count within first 256 entries */
1563	scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
1564
1565	/* If within first 64 entries, duplicate at end */
1566	if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
1567		scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
1568		    bc_ent;
1569}
1570
1571/**
1572 * il4965_hw_get_temperature - return the calibrated temperature (in Kelvin)
1573 * @stats: Provides the temperature reading from the uCode
1574 *
1575 * A return of <0 indicates bogus data in the stats
1576 */
1577static int
1578il4965_hw_get_temperature(struct il_priv *il)
1579{
1580	s32 temperature;
1581	s32 vt;
1582	s32 R1, R2, R3;
1583	u32 R4;
1584
1585	if (test_bit(S_TEMPERATURE, &il->status) &&
1586	    (il->_4965.stats.flag & STATS_REPLY_FLG_HT40_MODE_MSK)) {
1587		D_TEMP("Running HT40 temperature calibration\n");
1588		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[1]);
1589		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[1]);
1590		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[1]);
1591		R4 = le32_to_cpu(il->card_alive_init.therm_r4[1]);
1592	} else {
1593		D_TEMP("Running temperature calibration\n");
1594		R1 = (s32) le32_to_cpu(il->card_alive_init.therm_r1[0]);
1595		R2 = (s32) le32_to_cpu(il->card_alive_init.therm_r2[0]);
1596		R3 = (s32) le32_to_cpu(il->card_alive_init.therm_r3[0]);
1597		R4 = le32_to_cpu(il->card_alive_init.therm_r4[0]);
1598	}
1599
1600	/*
1601	 * Temperature is only 23 bits, so sign extend out to 32.
1602	 *
1603	 * NOTE If we haven't received a stats notification yet
1604	 * with an updated temperature, use R4 provided to us in the
1605	 * "initialize" ALIVE response.
1606	 */
1607	if (!test_bit(S_TEMPERATURE, &il->status))
1608		vt = sign_extend32(R4, 23);
1609	else
1610		vt = sign_extend32(le32_to_cpu
1611				   (il->_4965.stats.general.common.temperature),
1612				   23);
1613
1614	D_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n", R1, R2, R3, vt);
1615
1616	if (R3 == R1) {
1617		IL_ERR("Calibration conflict R1 == R3\n");
1618		return -1;
1619	}
1620
1621	/* Calculate temperature in degrees Kelvin, adjust by 97%.
1622	 * Add offset to center the adjustment around 0 degrees Centigrade. */
1623	temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
1624	temperature /= (R3 - R1);
1625	temperature =
1626	    (temperature * 97) / 100 + TEMPERATURE_CALIB_KELVIN_OFFSET;
1627
1628	D_TEMP("Calibrated temperature: %dK, %dC\n", temperature,
1629	       KELVIN_TO_CELSIUS(temperature));
1630
1631	return temperature;
1632}
1633
1634/* Adjust Txpower only if temperature variance is greater than threshold. */
1635#define IL_TEMPERATURE_THRESHOLD   3
1636
1637/**
1638 * il4965_is_temp_calib_needed - determines if new calibration is needed
1639 *
1640 * If the temperature changed has changed sufficiently, then a recalibration
1641 * is needed.
1642 *
1643 * Assumes caller will replace il->last_temperature once calibration
1644 * executed.
1645 */
1646static int
1647il4965_is_temp_calib_needed(struct il_priv *il)
1648{
1649	int temp_diff;
1650
1651	if (!test_bit(S_STATS, &il->status)) {
1652		D_TEMP("Temperature not updated -- no stats.\n");
1653		return 0;
1654	}
1655
1656	temp_diff = il->temperature - il->last_temperature;
1657
1658	/* get absolute value */
1659	if (temp_diff < 0) {
1660		D_POWER("Getting cooler, delta %d\n", temp_diff);
1661		temp_diff = -temp_diff;
1662	} else if (temp_diff == 0)
1663		D_POWER("Temperature unchanged\n");
1664	else
1665		D_POWER("Getting warmer, delta %d\n", temp_diff);
1666
1667	if (temp_diff < IL_TEMPERATURE_THRESHOLD) {
1668		D_POWER(" => thermal txpower calib not needed\n");
1669		return 0;
1670	}
1671
1672	D_POWER(" => thermal txpower calib needed\n");
1673
1674	return 1;
1675}
1676
1677void
1678il4965_temperature_calib(struct il_priv *il)
1679{
1680	s32 temp;
1681
1682	temp = il4965_hw_get_temperature(il);
1683	if (IL_TX_POWER_TEMPERATURE_OUT_OF_RANGE(temp))
1684		return;
1685
1686	if (il->temperature != temp) {
1687		if (il->temperature)
1688			D_TEMP("Temperature changed " "from %dC to %dC\n",
1689			       KELVIN_TO_CELSIUS(il->temperature),
1690			       KELVIN_TO_CELSIUS(temp));
1691		else
1692			D_TEMP("Temperature " "initialized to %dC\n",
1693			       KELVIN_TO_CELSIUS(temp));
1694	}
1695
1696	il->temperature = temp;
1697	set_bit(S_TEMPERATURE, &il->status);
1698
1699	if (!il->disable_tx_power_cal &&
1700	    unlikely(!test_bit(S_SCANNING, &il->status)) &&
1701	    il4965_is_temp_calib_needed(il))
1702		queue_work(il->workqueue, &il->txpower_work);
1703}
1704
1705static u16
1706il4965_get_hcmd_size(u8 cmd_id, u16 len)
1707{
1708	switch (cmd_id) {
1709	case C_RXON:
1710		return (u16) sizeof(struct il4965_rxon_cmd);
1711	default:
1712		return len;
1713	}
1714}
1715
1716static u16
1717il4965_build_addsta_hcmd(const struct il_addsta_cmd *cmd, u8 * data)
1718{
1719	struct il4965_addsta_cmd *addsta = (struct il4965_addsta_cmd *)data;
1720	addsta->mode = cmd->mode;
1721	memcpy(&addsta->sta, &cmd->sta, sizeof(struct sta_id_modify));
1722	memcpy(&addsta->key, &cmd->key, sizeof(struct il4965_keyinfo));
1723	addsta->station_flags = cmd->station_flags;
1724	addsta->station_flags_msk = cmd->station_flags_msk;
1725	addsta->tid_disable_tx = cmd->tid_disable_tx;
1726	addsta->add_immediate_ba_tid = cmd->add_immediate_ba_tid;
1727	addsta->remove_immediate_ba_tid = cmd->remove_immediate_ba_tid;
1728	addsta->add_immediate_ba_ssn = cmd->add_immediate_ba_ssn;
1729	addsta->sleep_tx_count = cmd->sleep_tx_count;
1730	addsta->reserved1 = cpu_to_le16(0);
1731	addsta->reserved2 = cpu_to_le16(0);
1732
1733	return (u16) sizeof(struct il4965_addsta_cmd);
1734}
1735
1736static void
1737il4965_post_scan(struct il_priv *il)
1738{
1739	/*
1740	 * Since setting the RXON may have been deferred while
1741	 * performing the scan, fire one off if needed
1742	 */
1743	if (memcmp(&il->staging, &il->active, sizeof(il->staging)))
1744		il_commit_rxon(il);
1745}
1746
1747static void
1748il4965_post_associate(struct il_priv *il)
1749{
1750	struct ieee80211_vif *vif = il->vif;
1751	struct ieee80211_conf *conf = NULL;
1752	int ret = 0;
1753
1754	if (!vif || !il->is_open)
1755		return;
1756
1757	if (test_bit(S_EXIT_PENDING, &il->status))
1758		return;
1759
1760	il_scan_cancel_timeout(il, 200);
1761
1762	conf = &il->hw->conf;
1763
1764	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1765	il_commit_rxon(il);
1766
1767	ret = il_send_rxon_timing(il);
1768	if (ret)
1769		IL_WARN("RXON timing - " "Attempting to continue.\n");
1770
1771	il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1772
1773	il_set_rxon_ht(il, &il->current_ht_config);
1774
1775	if (il->ops->set_rxon_chain)
1776		il->ops->set_rxon_chain(il);
1777
1778	il->staging.assoc_id = cpu_to_le16(vif->bss_conf.aid);
1779
1780	D_ASSOC("assoc id %d beacon interval %d\n", vif->bss_conf.aid,
1781		vif->bss_conf.beacon_int);
1782
1783	if (vif->bss_conf.use_short_preamble)
1784		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1785	else
1786		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1787
1788	if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1789		if (vif->bss_conf.use_short_slot)
1790			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1791		else
1792			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1793	}
1794
1795	il_commit_rxon(il);
1796
1797	D_ASSOC("Associated as %d to: %pM\n", vif->bss_conf.aid,
1798		il->active.bssid_addr);
1799
1800	switch (vif->type) {
1801	case NL80211_IFTYPE_STATION:
1802		break;
1803	case NL80211_IFTYPE_ADHOC:
1804		il4965_send_beacon_cmd(il);
1805		break;
1806	default:
1807		IL_ERR("%s Should not be called in %d mode\n", __func__,
1808		       vif->type);
1809		break;
1810	}
1811
1812	/* the chain noise calibration will enabled PM upon completion
1813	 * If chain noise has already been run, then we need to enable
1814	 * power management here */
1815	if (il->chain_noise_data.state == IL_CHAIN_NOISE_DONE)
1816		il_power_update_mode(il, false);
1817
1818	/* Enable Rx differential gain and sensitivity calibrations */
1819	il4965_chain_noise_reset(il);
1820	il->start_calib = 1;
1821}
1822
1823static void
1824il4965_config_ap(struct il_priv *il)
1825{
1826	struct ieee80211_vif *vif = il->vif;
1827	int ret = 0;
1828
1829	lockdep_assert_held(&il->mutex);
1830
1831	if (test_bit(S_EXIT_PENDING, &il->status))
1832		return;
1833
1834	/* The following should be done only at AP bring up */
1835	if (!il_is_associated(il)) {
1836
1837		/* RXON - unassoc (to set timing command) */
1838		il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
1839		il_commit_rxon(il);
1840
1841		/* RXON Timing */
1842		ret = il_send_rxon_timing(il);
1843		if (ret)
1844			IL_WARN("RXON timing failed - "
1845				"Attempting to continue.\n");
1846
1847		/* AP has all antennas */
1848		il->chain_noise_data.active_chains = il->hw_params.valid_rx_ant;
1849		il_set_rxon_ht(il, &il->current_ht_config);
1850		if (il->ops->set_rxon_chain)
1851			il->ops->set_rxon_chain(il);
1852
1853		il->staging.assoc_id = 0;
1854
1855		if (vif->bss_conf.use_short_preamble)
1856			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
1857		else
1858			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
1859
1860		if (il->staging.flags & RXON_FLG_BAND_24G_MSK) {
1861			if (vif->bss_conf.use_short_slot)
1862				il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
1863			else
1864				il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
1865		}
1866		/* need to send beacon cmd before committing assoc RXON! */
1867		il4965_send_beacon_cmd(il);
1868		/* restore RXON assoc */
1869		il->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
1870		il_commit_rxon(il);
1871	}
1872	il4965_send_beacon_cmd(il);
1873}
1874
1875const struct il_ops il4965_ops = {
1876	.txq_update_byte_cnt_tbl = il4965_txq_update_byte_cnt_tbl,
1877	.txq_attach_buf_to_tfd = il4965_hw_txq_attach_buf_to_tfd,
1878	.txq_free_tfd = il4965_hw_txq_free_tfd,
1879	.txq_init = il4965_hw_tx_queue_init,
1880	.is_valid_rtc_data_addr = il4965_hw_valid_rtc_data_addr,
1881	.init_alive_start = il4965_init_alive_start,
1882	.load_ucode = il4965_load_bsm,
1883	.dump_nic_error_log = il4965_dump_nic_error_log,
1884	.dump_fh = il4965_dump_fh,
1885	.set_channel_switch = il4965_hw_channel_switch,
1886	.apm_init = il_apm_init,
1887	.send_tx_power = il4965_send_tx_power,
1888	.update_chain_flags = il4965_update_chain_flags,
1889	.eeprom_acquire_semaphore = il4965_eeprom_acquire_semaphore,
1890	.eeprom_release_semaphore = il4965_eeprom_release_semaphore,
1891
1892	.rxon_assoc = il4965_send_rxon_assoc,
1893	.commit_rxon = il4965_commit_rxon,
1894	.set_rxon_chain = il4965_set_rxon_chain,
1895
1896	.get_hcmd_size = il4965_get_hcmd_size,
1897	.build_addsta_hcmd = il4965_build_addsta_hcmd,
1898	.request_scan = il4965_request_scan,
1899	.post_scan = il4965_post_scan,
1900
1901	.post_associate = il4965_post_associate,
1902	.config_ap = il4965_config_ap,
1903	.manage_ibss_station = il4965_manage_ibss_station,
1904	.update_bcast_stations = il4965_update_bcast_stations,
1905
1906	.send_led_cmd = il4965_send_led_cmd,
1907};
1908
1909struct il_cfg il4965_cfg = {
1910	.name = "Intel(R) Wireless WiFi Link 4965AGN",
1911	.fw_name_pre = IL4965_FW_PRE,
1912	.ucode_api_max = IL4965_UCODE_API_MAX,
1913	.ucode_api_min = IL4965_UCODE_API_MIN,
1914	.sku = IL_SKU_A | IL_SKU_G | IL_SKU_N,
1915	.valid_tx_ant = ANT_AB,
1916	.valid_rx_ant = ANT_ABC,
1917	.eeprom_ver = EEPROM_4965_EEPROM_VERSION,
1918	.eeprom_calib_ver = EEPROM_4965_TX_POWER_VERSION,
1919	.mod_params = &il4965_mod_params,
1920	.led_mode = IL_LED_BLINK,
1921	/*
1922	 * Force use of chains B and C for scan RX on 5 GHz band
1923	 * because the device has off-channel reception on chain A.
1924	 */
1925	.scan_rx_antennas[IEEE80211_BAND_5GHZ] = ANT_BC,
1926
1927	.eeprom_size = IL4965_EEPROM_IMG_SIZE,
1928	.num_of_queues = IL49_NUM_QUEUES,
1929	.num_of_ampdu_queues = IL49_NUM_AMPDU_QUEUES,
1930	.pll_cfg_val = 0,
1931	.set_l0s = true,
1932	.use_bsm = true,
1933	.led_compensation = 61,
1934	.chain_noise_num_beacons = IL4965_CAL_NUM_BEACONS,
1935	.wd_timeout = IL_DEF_WD_TIMEOUT,
1936	.temperature_kelvin = true,
1937	.ucode_tracing = true,
1938	.sensitivity_calib_by_driver = true,
1939	.chain_noise_calib_by_driver = true,
1940
1941	.regulatory_bands = {
1942		EEPROM_REGULATORY_BAND_1_CHANNELS,
1943		EEPROM_REGULATORY_BAND_2_CHANNELS,
1944		EEPROM_REGULATORY_BAND_3_CHANNELS,
1945		EEPROM_REGULATORY_BAND_4_CHANNELS,
1946		EEPROM_REGULATORY_BAND_5_CHANNELS,
1947		EEPROM_4965_REGULATORY_BAND_24_HT40_CHANNELS,
1948		EEPROM_4965_REGULATORY_BAND_52_HT40_CHANNELS
1949	},
1950
1951};
1952
1953/* Module firmware */
1954MODULE_FIRMWARE(IL4965_MODULE_FIRMWARE(IL4965_UCODE_API_MAX));