Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Xilinx Axi Ethernet device driver
4 *
5 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
6 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
7 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9 * Copyright (c) 2010 - 2011 PetaLogix
10 * Copyright (c) 2019 - 2022 Calian Advanced Technologies
11 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12 *
13 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14 * and Spartan6.
15 *
16 * TODO:
17 * - Add Axi Fifo support.
18 * - Factor out Axi DMA code into separate driver.
19 * - Test and fix basic multicast filtering.
20 * - Add support for extended multicast filtering.
21 * - Test basic VLAN support.
22 * - Add support for extended VLAN support.
23 */
24
25#include <linux/clk.h>
26#include <linux/delay.h>
27#include <linux/etherdevice.h>
28#include <linux/module.h>
29#include <linux/netdevice.h>
30#include <linux/of.h>
31#include <linux/of_mdio.h>
32#include <linux/of_net.h>
33#include <linux/of_irq.h>
34#include <linux/of_address.h>
35#include <linux/platform_device.h>
36#include <linux/skbuff.h>
37#include <linux/math64.h>
38#include <linux/phy.h>
39#include <linux/mii.h>
40#include <linux/ethtool.h>
41#include <linux/dmaengine.h>
42#include <linux/dma-mapping.h>
43#include <linux/dma/xilinx_dma.h>
44#include <linux/circ_buf.h>
45#include <net/netdev_queues.h>
46
47#include "xilinx_axienet.h"
48
49/* Descriptors defines for Tx and Rx DMA */
50#define TX_BD_NUM_DEFAULT 128
51#define RX_BD_NUM_DEFAULT 1024
52#define TX_BD_NUM_MIN (MAX_SKB_FRAGS + 1)
53#define TX_BD_NUM_MAX 4096
54#define RX_BD_NUM_MAX 4096
55#define DMA_NUM_APP_WORDS 5
56#define LEN_APP 4
57#define RX_BUF_NUM_DEFAULT 128
58
59/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
60#define DRIVER_NAME "xaxienet"
61#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
62#define DRIVER_VERSION "1.00a"
63
64#define AXIENET_REGS_N 40
65
66static void axienet_rx_submit_desc(struct net_device *ndev);
67
68/* Match table for of_platform binding */
69static const struct of_device_id axienet_of_match[] = {
70 { .compatible = "xlnx,axi-ethernet-1.00.a", },
71 { .compatible = "xlnx,axi-ethernet-1.01.a", },
72 { .compatible = "xlnx,axi-ethernet-2.01.a", },
73 {},
74};
75
76MODULE_DEVICE_TABLE(of, axienet_of_match);
77
78/* Option table for setting up Axi Ethernet hardware options */
79static struct axienet_option axienet_options[] = {
80 /* Turn on jumbo packet support for both Rx and Tx */
81 {
82 .opt = XAE_OPTION_JUMBO,
83 .reg = XAE_TC_OFFSET,
84 .m_or = XAE_TC_JUM_MASK,
85 }, {
86 .opt = XAE_OPTION_JUMBO,
87 .reg = XAE_RCW1_OFFSET,
88 .m_or = XAE_RCW1_JUM_MASK,
89 }, { /* Turn on VLAN packet support for both Rx and Tx */
90 .opt = XAE_OPTION_VLAN,
91 .reg = XAE_TC_OFFSET,
92 .m_or = XAE_TC_VLAN_MASK,
93 }, {
94 .opt = XAE_OPTION_VLAN,
95 .reg = XAE_RCW1_OFFSET,
96 .m_or = XAE_RCW1_VLAN_MASK,
97 }, { /* Turn on FCS stripping on receive packets */
98 .opt = XAE_OPTION_FCS_STRIP,
99 .reg = XAE_RCW1_OFFSET,
100 .m_or = XAE_RCW1_FCS_MASK,
101 }, { /* Turn on FCS insertion on transmit packets */
102 .opt = XAE_OPTION_FCS_INSERT,
103 .reg = XAE_TC_OFFSET,
104 .m_or = XAE_TC_FCS_MASK,
105 }, { /* Turn off length/type field checking on receive packets */
106 .opt = XAE_OPTION_LENTYPE_ERR,
107 .reg = XAE_RCW1_OFFSET,
108 .m_or = XAE_RCW1_LT_DIS_MASK,
109 }, { /* Turn on Rx flow control */
110 .opt = XAE_OPTION_FLOW_CONTROL,
111 .reg = XAE_FCC_OFFSET,
112 .m_or = XAE_FCC_FCRX_MASK,
113 }, { /* Turn on Tx flow control */
114 .opt = XAE_OPTION_FLOW_CONTROL,
115 .reg = XAE_FCC_OFFSET,
116 .m_or = XAE_FCC_FCTX_MASK,
117 }, { /* Turn on promiscuous frame filtering */
118 .opt = XAE_OPTION_PROMISC,
119 .reg = XAE_FMI_OFFSET,
120 .m_or = XAE_FMI_PM_MASK,
121 }, { /* Enable transmitter */
122 .opt = XAE_OPTION_TXEN,
123 .reg = XAE_TC_OFFSET,
124 .m_or = XAE_TC_TX_MASK,
125 }, { /* Enable receiver */
126 .opt = XAE_OPTION_RXEN,
127 .reg = XAE_RCW1_OFFSET,
128 .m_or = XAE_RCW1_RX_MASK,
129 },
130 {}
131};
132
133static struct skbuf_dma_descriptor *axienet_get_rx_desc(struct axienet_local *lp, int i)
134{
135 return lp->rx_skb_ring[i & (RX_BUF_NUM_DEFAULT - 1)];
136}
137
138static struct skbuf_dma_descriptor *axienet_get_tx_desc(struct axienet_local *lp, int i)
139{
140 return lp->tx_skb_ring[i & (TX_BD_NUM_MAX - 1)];
141}
142
143/**
144 * axienet_dma_in32 - Memory mapped Axi DMA register read
145 * @lp: Pointer to axienet local structure
146 * @reg: Address offset from the base address of the Axi DMA core
147 *
148 * Return: The contents of the Axi DMA register
149 *
150 * This function returns the contents of the corresponding Axi DMA register.
151 */
152static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
153{
154 return ioread32(lp->dma_regs + reg);
155}
156
157static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
158 struct axidma_bd *desc)
159{
160 desc->phys = lower_32_bits(addr);
161 if (lp->features & XAE_FEATURE_DMA_64BIT)
162 desc->phys_msb = upper_32_bits(addr);
163}
164
165static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
166 struct axidma_bd *desc)
167{
168 dma_addr_t ret = desc->phys;
169
170 if (lp->features & XAE_FEATURE_DMA_64BIT)
171 ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
172
173 return ret;
174}
175
176/**
177 * axienet_dma_bd_release - Release buffer descriptor rings
178 * @ndev: Pointer to the net_device structure
179 *
180 * This function is used to release the descriptors allocated in
181 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
182 * driver stop api is called.
183 */
184static void axienet_dma_bd_release(struct net_device *ndev)
185{
186 int i;
187 struct axienet_local *lp = netdev_priv(ndev);
188
189 /* If we end up here, tx_bd_v must have been DMA allocated. */
190 dma_free_coherent(lp->dev,
191 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
192 lp->tx_bd_v,
193 lp->tx_bd_p);
194
195 if (!lp->rx_bd_v)
196 return;
197
198 for (i = 0; i < lp->rx_bd_num; i++) {
199 dma_addr_t phys;
200
201 /* A NULL skb means this descriptor has not been initialised
202 * at all.
203 */
204 if (!lp->rx_bd_v[i].skb)
205 break;
206
207 dev_kfree_skb(lp->rx_bd_v[i].skb);
208
209 /* For each descriptor, we programmed cntrl with the (non-zero)
210 * descriptor size, after it had been successfully allocated.
211 * So a non-zero value in there means we need to unmap it.
212 */
213 if (lp->rx_bd_v[i].cntrl) {
214 phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
215 dma_unmap_single(lp->dev, phys,
216 lp->max_frm_size, DMA_FROM_DEVICE);
217 }
218 }
219
220 dma_free_coherent(lp->dev,
221 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
222 lp->rx_bd_v,
223 lp->rx_bd_p);
224}
225
226/**
227 * axienet_usec_to_timer - Calculate IRQ delay timer value
228 * @lp: Pointer to the axienet_local structure
229 * @coalesce_usec: Microseconds to convert into timer value
230 */
231static u32 axienet_usec_to_timer(struct axienet_local *lp, u32 coalesce_usec)
232{
233 u32 result;
234 u64 clk_rate = 125000000; /* arbitrary guess if no clock rate set */
235
236 if (lp->axi_clk)
237 clk_rate = clk_get_rate(lp->axi_clk);
238
239 /* 1 Timeout Interval = 125 * (clock period of SG clock) */
240 result = DIV64_U64_ROUND_CLOSEST((u64)coalesce_usec * clk_rate,
241 (u64)125000000);
242 if (result > 255)
243 result = 255;
244
245 return result;
246}
247
248/**
249 * axienet_dma_start - Set up DMA registers and start DMA operation
250 * @lp: Pointer to the axienet_local structure
251 */
252static void axienet_dma_start(struct axienet_local *lp)
253{
254 /* Start updating the Rx channel control register */
255 lp->rx_dma_cr = (lp->coalesce_count_rx << XAXIDMA_COALESCE_SHIFT) |
256 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
257 /* Only set interrupt delay timer if not generating an interrupt on
258 * the first RX packet. Otherwise leave at 0 to disable delay interrupt.
259 */
260 if (lp->coalesce_count_rx > 1)
261 lp->rx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_rx)
262 << XAXIDMA_DELAY_SHIFT) |
263 XAXIDMA_IRQ_DELAY_MASK;
264 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
265
266 /* Start updating the Tx channel control register */
267 lp->tx_dma_cr = (lp->coalesce_count_tx << XAXIDMA_COALESCE_SHIFT) |
268 XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_ERROR_MASK;
269 /* Only set interrupt delay timer if not generating an interrupt on
270 * the first TX packet. Otherwise leave at 0 to disable delay interrupt.
271 */
272 if (lp->coalesce_count_tx > 1)
273 lp->tx_dma_cr |= (axienet_usec_to_timer(lp, lp->coalesce_usec_tx)
274 << XAXIDMA_DELAY_SHIFT) |
275 XAXIDMA_IRQ_DELAY_MASK;
276 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
277
278 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
279 * halted state. This will make the Rx side ready for reception.
280 */
281 axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
282 lp->rx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
283 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
284 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
285 (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
286
287 /* Write to the RS (Run-stop) bit in the Tx channel control register.
288 * Tx channel is now ready to run. But only after we write to the
289 * tail pointer register that the Tx channel will start transmitting.
290 */
291 axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
292 lp->tx_dma_cr |= XAXIDMA_CR_RUNSTOP_MASK;
293 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
294}
295
296/**
297 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
298 * @ndev: Pointer to the net_device structure
299 *
300 * Return: 0, on success -ENOMEM, on failure
301 *
302 * This function is called to initialize the Rx and Tx DMA descriptor
303 * rings. This initializes the descriptors with required default values
304 * and is called when Axi Ethernet driver reset is called.
305 */
306static int axienet_dma_bd_init(struct net_device *ndev)
307{
308 int i;
309 struct sk_buff *skb;
310 struct axienet_local *lp = netdev_priv(ndev);
311
312 /* Reset the indexes which are used for accessing the BDs */
313 lp->tx_bd_ci = 0;
314 lp->tx_bd_tail = 0;
315 lp->rx_bd_ci = 0;
316
317 /* Allocate the Tx and Rx buffer descriptors. */
318 lp->tx_bd_v = dma_alloc_coherent(lp->dev,
319 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
320 &lp->tx_bd_p, GFP_KERNEL);
321 if (!lp->tx_bd_v)
322 return -ENOMEM;
323
324 lp->rx_bd_v = dma_alloc_coherent(lp->dev,
325 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
326 &lp->rx_bd_p, GFP_KERNEL);
327 if (!lp->rx_bd_v)
328 goto out;
329
330 for (i = 0; i < lp->tx_bd_num; i++) {
331 dma_addr_t addr = lp->tx_bd_p +
332 sizeof(*lp->tx_bd_v) *
333 ((i + 1) % lp->tx_bd_num);
334
335 lp->tx_bd_v[i].next = lower_32_bits(addr);
336 if (lp->features & XAE_FEATURE_DMA_64BIT)
337 lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
338 }
339
340 for (i = 0; i < lp->rx_bd_num; i++) {
341 dma_addr_t addr;
342
343 addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
344 ((i + 1) % lp->rx_bd_num);
345 lp->rx_bd_v[i].next = lower_32_bits(addr);
346 if (lp->features & XAE_FEATURE_DMA_64BIT)
347 lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
348
349 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
350 if (!skb)
351 goto out;
352
353 lp->rx_bd_v[i].skb = skb;
354 addr = dma_map_single(lp->dev, skb->data,
355 lp->max_frm_size, DMA_FROM_DEVICE);
356 if (dma_mapping_error(lp->dev, addr)) {
357 netdev_err(ndev, "DMA mapping error\n");
358 goto out;
359 }
360 desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
361
362 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
363 }
364
365 axienet_dma_start(lp);
366
367 return 0;
368out:
369 axienet_dma_bd_release(ndev);
370 return -ENOMEM;
371}
372
373/**
374 * axienet_set_mac_address - Write the MAC address
375 * @ndev: Pointer to the net_device structure
376 * @address: 6 byte Address to be written as MAC address
377 *
378 * This function is called to initialize the MAC address of the Axi Ethernet
379 * core. It writes to the UAW0 and UAW1 registers of the core.
380 */
381static void axienet_set_mac_address(struct net_device *ndev,
382 const void *address)
383{
384 struct axienet_local *lp = netdev_priv(ndev);
385
386 if (address)
387 eth_hw_addr_set(ndev, address);
388 if (!is_valid_ether_addr(ndev->dev_addr))
389 eth_hw_addr_random(ndev);
390
391 /* Set up unicast MAC address filter set its mac address */
392 axienet_iow(lp, XAE_UAW0_OFFSET,
393 (ndev->dev_addr[0]) |
394 (ndev->dev_addr[1] << 8) |
395 (ndev->dev_addr[2] << 16) |
396 (ndev->dev_addr[3] << 24));
397 axienet_iow(lp, XAE_UAW1_OFFSET,
398 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
399 ~XAE_UAW1_UNICASTADDR_MASK) |
400 (ndev->dev_addr[4] |
401 (ndev->dev_addr[5] << 8))));
402}
403
404/**
405 * netdev_set_mac_address - Write the MAC address (from outside the driver)
406 * @ndev: Pointer to the net_device structure
407 * @p: 6 byte Address to be written as MAC address
408 *
409 * Return: 0 for all conditions. Presently, there is no failure case.
410 *
411 * This function is called to initialize the MAC address of the Axi Ethernet
412 * core. It calls the core specific axienet_set_mac_address. This is the
413 * function that goes into net_device_ops structure entry ndo_set_mac_address.
414 */
415static int netdev_set_mac_address(struct net_device *ndev, void *p)
416{
417 struct sockaddr *addr = p;
418
419 axienet_set_mac_address(ndev, addr->sa_data);
420 return 0;
421}
422
423/**
424 * axienet_set_multicast_list - Prepare the multicast table
425 * @ndev: Pointer to the net_device structure
426 *
427 * This function is called to initialize the multicast table during
428 * initialization. The Axi Ethernet basic multicast support has a four-entry
429 * multicast table which is initialized here. Additionally this function
430 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
431 * means whenever the multicast table entries need to be updated this
432 * function gets called.
433 */
434static void axienet_set_multicast_list(struct net_device *ndev)
435{
436 int i = 0;
437 u32 reg, af0reg, af1reg;
438 struct axienet_local *lp = netdev_priv(ndev);
439
440 reg = axienet_ior(lp, XAE_FMI_OFFSET);
441 reg &= ~XAE_FMI_PM_MASK;
442 if (ndev->flags & IFF_PROMISC)
443 reg |= XAE_FMI_PM_MASK;
444 else
445 reg &= ~XAE_FMI_PM_MASK;
446 axienet_iow(lp, XAE_FMI_OFFSET, reg);
447
448 if (ndev->flags & IFF_ALLMULTI ||
449 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
450 reg &= 0xFFFFFF00;
451 axienet_iow(lp, XAE_FMI_OFFSET, reg);
452 axienet_iow(lp, XAE_AF0_OFFSET, 1); /* Multicast bit */
453 axienet_iow(lp, XAE_AF1_OFFSET, 0);
454 axienet_iow(lp, XAE_AM0_OFFSET, 1); /* ditto */
455 axienet_iow(lp, XAE_AM1_OFFSET, 0);
456 axienet_iow(lp, XAE_FFE_OFFSET, 1);
457 i = 1;
458 } else if (!netdev_mc_empty(ndev)) {
459 struct netdev_hw_addr *ha;
460
461 netdev_for_each_mc_addr(ha, ndev) {
462 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
463 break;
464
465 af0reg = (ha->addr[0]);
466 af0reg |= (ha->addr[1] << 8);
467 af0reg |= (ha->addr[2] << 16);
468 af0reg |= (ha->addr[3] << 24);
469
470 af1reg = (ha->addr[4]);
471 af1reg |= (ha->addr[5] << 8);
472
473 reg &= 0xFFFFFF00;
474 reg |= i;
475
476 axienet_iow(lp, XAE_FMI_OFFSET, reg);
477 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
478 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
479 axienet_iow(lp, XAE_AM0_OFFSET, 0xffffffff);
480 axienet_iow(lp, XAE_AM1_OFFSET, 0x0000ffff);
481 axienet_iow(lp, XAE_FFE_OFFSET, 1);
482 i++;
483 }
484 }
485
486 for (; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
487 reg &= 0xFFFFFF00;
488 reg |= i;
489 axienet_iow(lp, XAE_FMI_OFFSET, reg);
490 axienet_iow(lp, XAE_FFE_OFFSET, 0);
491 }
492}
493
494/**
495 * axienet_setoptions - Set an Axi Ethernet option
496 * @ndev: Pointer to the net_device structure
497 * @options: Option to be enabled/disabled
498 *
499 * The Axi Ethernet core has multiple features which can be selectively turned
500 * on or off. The typical options could be jumbo frame option, basic VLAN
501 * option, promiscuous mode option etc. This function is used to set or clear
502 * these options in the Axi Ethernet hardware. This is done through
503 * axienet_option structure .
504 */
505static void axienet_setoptions(struct net_device *ndev, u32 options)
506{
507 int reg;
508 struct axienet_local *lp = netdev_priv(ndev);
509 struct axienet_option *tp = &axienet_options[0];
510
511 while (tp->opt) {
512 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
513 if (options & tp->opt)
514 reg |= tp->m_or;
515 axienet_iow(lp, tp->reg, reg);
516 tp++;
517 }
518
519 lp->options |= options;
520}
521
522static u64 axienet_stat(struct axienet_local *lp, enum temac_stat stat)
523{
524 u32 counter;
525
526 if (lp->reset_in_progress)
527 return lp->hw_stat_base[stat];
528
529 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
530 return lp->hw_stat_base[stat] + (counter - lp->hw_last_counter[stat]);
531}
532
533static void axienet_stats_update(struct axienet_local *lp, bool reset)
534{
535 enum temac_stat stat;
536
537 write_seqcount_begin(&lp->hw_stats_seqcount);
538 lp->reset_in_progress = reset;
539 for (stat = 0; stat < STAT_COUNT; stat++) {
540 u32 counter = axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
541
542 lp->hw_stat_base[stat] += counter - lp->hw_last_counter[stat];
543 lp->hw_last_counter[stat] = counter;
544 }
545 write_seqcount_end(&lp->hw_stats_seqcount);
546}
547
548static void axienet_refresh_stats(struct work_struct *work)
549{
550 struct axienet_local *lp = container_of(work, struct axienet_local,
551 stats_work.work);
552
553 mutex_lock(&lp->stats_lock);
554 axienet_stats_update(lp, false);
555 mutex_unlock(&lp->stats_lock);
556
557 /* Just less than 2^32 bytes at 2.5 GBit/s */
558 schedule_delayed_work(&lp->stats_work, 13 * HZ);
559}
560
561static int __axienet_device_reset(struct axienet_local *lp)
562{
563 u32 value;
564 int ret;
565
566 /* Save statistics counters in case they will be reset */
567 mutex_lock(&lp->stats_lock);
568 if (lp->features & XAE_FEATURE_STATS)
569 axienet_stats_update(lp, true);
570
571 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
572 * process of Axi DMA takes a while to complete as all pending
573 * commands/transfers will be flushed or completed during this
574 * reset process.
575 * Note that even though both TX and RX have their own reset register,
576 * they both reset the entire DMA core, so only one needs to be used.
577 */
578 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
579 ret = read_poll_timeout(axienet_dma_in32, value,
580 !(value & XAXIDMA_CR_RESET_MASK),
581 DELAY_OF_ONE_MILLISEC, 50000, false, lp,
582 XAXIDMA_TX_CR_OFFSET);
583 if (ret) {
584 dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
585 goto out;
586 }
587
588 /* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
589 ret = read_poll_timeout(axienet_ior, value,
590 value & XAE_INT_PHYRSTCMPLT_MASK,
591 DELAY_OF_ONE_MILLISEC, 50000, false, lp,
592 XAE_IS_OFFSET);
593 if (ret) {
594 dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
595 goto out;
596 }
597
598 /* Update statistics counters with new values */
599 if (lp->features & XAE_FEATURE_STATS) {
600 enum temac_stat stat;
601
602 write_seqcount_begin(&lp->hw_stats_seqcount);
603 lp->reset_in_progress = false;
604 for (stat = 0; stat < STAT_COUNT; stat++) {
605 u32 counter =
606 axienet_ior(lp, XAE_STATS_OFFSET + stat * 8);
607
608 lp->hw_stat_base[stat] +=
609 lp->hw_last_counter[stat] - counter;
610 lp->hw_last_counter[stat] = counter;
611 }
612 write_seqcount_end(&lp->hw_stats_seqcount);
613 }
614
615out:
616 mutex_unlock(&lp->stats_lock);
617 return ret;
618}
619
620/**
621 * axienet_dma_stop - Stop DMA operation
622 * @lp: Pointer to the axienet_local structure
623 */
624static void axienet_dma_stop(struct axienet_local *lp)
625{
626 int count;
627 u32 cr, sr;
628
629 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
630 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
631 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
632 synchronize_irq(lp->rx_irq);
633
634 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
635 cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
636 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
637 synchronize_irq(lp->tx_irq);
638
639 /* Give DMAs a chance to halt gracefully */
640 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
641 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
642 msleep(20);
643 sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
644 }
645
646 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
647 for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
648 msleep(20);
649 sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
650 }
651
652 /* Do a reset to ensure DMA is really stopped */
653 axienet_lock_mii(lp);
654 __axienet_device_reset(lp);
655 axienet_unlock_mii(lp);
656}
657
658/**
659 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
660 * @ndev: Pointer to the net_device structure
661 *
662 * This function is called to reset and initialize the Axi Ethernet core. This
663 * is typically called during initialization. It does a reset of the Axi DMA
664 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
665 * are connected to Axi Ethernet reset lines, this in turn resets the Axi
666 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
667 * core.
668 * Returns 0 on success or a negative error number otherwise.
669 */
670static int axienet_device_reset(struct net_device *ndev)
671{
672 u32 axienet_status;
673 struct axienet_local *lp = netdev_priv(ndev);
674 int ret;
675
676 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
677 lp->options |= XAE_OPTION_VLAN;
678 lp->options &= (~XAE_OPTION_JUMBO);
679
680 if (ndev->mtu > XAE_MTU && ndev->mtu <= XAE_JUMBO_MTU) {
681 lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
682 XAE_TRL_SIZE;
683
684 if (lp->max_frm_size <= lp->rxmem)
685 lp->options |= XAE_OPTION_JUMBO;
686 }
687
688 if (!lp->use_dmaengine) {
689 ret = __axienet_device_reset(lp);
690 if (ret)
691 return ret;
692
693 ret = axienet_dma_bd_init(ndev);
694 if (ret) {
695 netdev_err(ndev, "%s: descriptor allocation failed\n",
696 __func__);
697 return ret;
698 }
699 }
700
701 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
702 axienet_status &= ~XAE_RCW1_RX_MASK;
703 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
704
705 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
706 if (axienet_status & XAE_INT_RXRJECT_MASK)
707 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
708 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
709 XAE_INT_RECV_ERROR_MASK : 0);
710
711 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
712
713 /* Sync default options with HW but leave receiver and
714 * transmitter disabled.
715 */
716 axienet_setoptions(ndev, lp->options &
717 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
718 axienet_set_mac_address(ndev, NULL);
719 axienet_set_multicast_list(ndev);
720 axienet_setoptions(ndev, lp->options);
721
722 netif_trans_update(ndev);
723
724 return 0;
725}
726
727/**
728 * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
729 * @lp: Pointer to the axienet_local structure
730 * @first_bd: Index of first descriptor to clean up
731 * @nr_bds: Max number of descriptors to clean up
732 * @force: Whether to clean descriptors even if not complete
733 * @sizep: Pointer to a u32 filled with the total sum of all bytes
734 * in all cleaned-up descriptors. Ignored if NULL.
735 * @budget: NAPI budget (use 0 when not called from NAPI poll)
736 *
737 * Would either be called after a successful transmit operation, or after
738 * there was an error when setting up the chain.
739 * Returns the number of packets handled.
740 */
741static int axienet_free_tx_chain(struct axienet_local *lp, u32 first_bd,
742 int nr_bds, bool force, u32 *sizep, int budget)
743{
744 struct axidma_bd *cur_p;
745 unsigned int status;
746 int i, packets = 0;
747 dma_addr_t phys;
748
749 for (i = 0; i < nr_bds; i++) {
750 cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
751 status = cur_p->status;
752
753 /* If force is not specified, clean up only descriptors
754 * that have been completed by the MAC.
755 */
756 if (!force && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
757 break;
758
759 /* Ensure we see complete descriptor update */
760 dma_rmb();
761 phys = desc_get_phys_addr(lp, cur_p);
762 dma_unmap_single(lp->dev, phys,
763 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
764 DMA_TO_DEVICE);
765
766 if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
767 napi_consume_skb(cur_p->skb, budget);
768 packets++;
769 }
770
771 cur_p->app0 = 0;
772 cur_p->app1 = 0;
773 cur_p->app2 = 0;
774 cur_p->app4 = 0;
775 cur_p->skb = NULL;
776 /* ensure our transmit path and device don't prematurely see status cleared */
777 wmb();
778 cur_p->cntrl = 0;
779 cur_p->status = 0;
780
781 if (sizep)
782 *sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
783 }
784
785 if (!force) {
786 lp->tx_bd_ci += i;
787 if (lp->tx_bd_ci >= lp->tx_bd_num)
788 lp->tx_bd_ci %= lp->tx_bd_num;
789 }
790
791 return packets;
792}
793
794/**
795 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
796 * @lp: Pointer to the axienet_local structure
797 * @num_frag: The number of BDs to check for
798 *
799 * Return: 0, on success
800 * NETDEV_TX_BUSY, if any of the descriptors are not free
801 *
802 * This function is invoked before BDs are allocated and transmission starts.
803 * This function returns 0 if a BD or group of BDs can be allocated for
804 * transmission. If the BD or any of the BDs are not free the function
805 * returns a busy status.
806 */
807static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
808 int num_frag)
809{
810 struct axidma_bd *cur_p;
811
812 /* Ensure we see all descriptor updates from device or TX polling */
813 rmb();
814 cur_p = &lp->tx_bd_v[(READ_ONCE(lp->tx_bd_tail) + num_frag) %
815 lp->tx_bd_num];
816 if (cur_p->cntrl)
817 return NETDEV_TX_BUSY;
818 return 0;
819}
820
821/**
822 * axienet_dma_tx_cb - DMA engine callback for TX channel.
823 * @data: Pointer to the axienet_local structure.
824 * @result: error reporting through dmaengine_result.
825 * This function is called by dmaengine driver for TX channel to notify
826 * that the transmit is done.
827 */
828static void axienet_dma_tx_cb(void *data, const struct dmaengine_result *result)
829{
830 struct skbuf_dma_descriptor *skbuf_dma;
831 struct axienet_local *lp = data;
832 struct netdev_queue *txq;
833 int len;
834
835 skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_tail++);
836 len = skbuf_dma->skb->len;
837 txq = skb_get_tx_queue(lp->ndev, skbuf_dma->skb);
838 u64_stats_update_begin(&lp->tx_stat_sync);
839 u64_stats_add(&lp->tx_bytes, len);
840 u64_stats_add(&lp->tx_packets, 1);
841 u64_stats_update_end(&lp->tx_stat_sync);
842 dma_unmap_sg(lp->dev, skbuf_dma->sgl, skbuf_dma->sg_len, DMA_TO_DEVICE);
843 dev_consume_skb_any(skbuf_dma->skb);
844 netif_txq_completed_wake(txq, 1, len,
845 CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
846 2 * MAX_SKB_FRAGS);
847}
848
849/**
850 * axienet_start_xmit_dmaengine - Starts the transmission.
851 * @skb: sk_buff pointer that contains data to be Txed.
852 * @ndev: Pointer to net_device structure.
853 *
854 * Return: NETDEV_TX_OK on success or any non space errors.
855 * NETDEV_TX_BUSY when free element in TX skb ring buffer
856 * is not available.
857 *
858 * This function is invoked to initiate transmission. The
859 * function sets the skbs, register dma callback API and submit
860 * the dma transaction.
861 * Additionally if checksum offloading is supported,
862 * it populates AXI Stream Control fields with appropriate values.
863 */
864static netdev_tx_t
865axienet_start_xmit_dmaengine(struct sk_buff *skb, struct net_device *ndev)
866{
867 struct dma_async_tx_descriptor *dma_tx_desc = NULL;
868 struct axienet_local *lp = netdev_priv(ndev);
869 u32 app_metadata[DMA_NUM_APP_WORDS] = {0};
870 struct skbuf_dma_descriptor *skbuf_dma;
871 struct dma_device *dma_dev;
872 struct netdev_queue *txq;
873 u32 csum_start_off;
874 u32 csum_index_off;
875 int sg_len;
876 int ret;
877
878 dma_dev = lp->tx_chan->device;
879 sg_len = skb_shinfo(skb)->nr_frags + 1;
880 if (CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX) <= sg_len) {
881 netif_stop_queue(ndev);
882 if (net_ratelimit())
883 netdev_warn(ndev, "TX ring unexpectedly full\n");
884 return NETDEV_TX_BUSY;
885 }
886
887 skbuf_dma = axienet_get_tx_desc(lp, lp->tx_ring_head);
888 if (!skbuf_dma)
889 goto xmit_error_drop_skb;
890
891 lp->tx_ring_head++;
892 sg_init_table(skbuf_dma->sgl, sg_len);
893 ret = skb_to_sgvec(skb, skbuf_dma->sgl, 0, skb->len);
894 if (ret < 0)
895 goto xmit_error_drop_skb;
896
897 ret = dma_map_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
898 if (!ret)
899 goto xmit_error_drop_skb;
900
901 /* Fill up app fields for checksum */
902 if (skb->ip_summed == CHECKSUM_PARTIAL) {
903 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
904 /* Tx Full Checksum Offload Enabled */
905 app_metadata[0] |= 2;
906 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
907 csum_start_off = skb_transport_offset(skb);
908 csum_index_off = csum_start_off + skb->csum_offset;
909 /* Tx Partial Checksum Offload Enabled */
910 app_metadata[0] |= 1;
911 app_metadata[1] = (csum_start_off << 16) | csum_index_off;
912 }
913 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
914 app_metadata[0] |= 2; /* Tx Full Checksum Offload Enabled */
915 }
916
917 dma_tx_desc = dma_dev->device_prep_slave_sg(lp->tx_chan, skbuf_dma->sgl,
918 sg_len, DMA_MEM_TO_DEV,
919 DMA_PREP_INTERRUPT, (void *)app_metadata);
920 if (!dma_tx_desc)
921 goto xmit_error_unmap_sg;
922
923 skbuf_dma->skb = skb;
924 skbuf_dma->sg_len = sg_len;
925 dma_tx_desc->callback_param = lp;
926 dma_tx_desc->callback_result = axienet_dma_tx_cb;
927 txq = skb_get_tx_queue(lp->ndev, skb);
928 netdev_tx_sent_queue(txq, skb->len);
929 netif_txq_maybe_stop(txq, CIRC_SPACE(lp->tx_ring_head, lp->tx_ring_tail, TX_BD_NUM_MAX),
930 MAX_SKB_FRAGS + 1, 2 * MAX_SKB_FRAGS);
931
932 dmaengine_submit(dma_tx_desc);
933 dma_async_issue_pending(lp->tx_chan);
934 return NETDEV_TX_OK;
935
936xmit_error_unmap_sg:
937 dma_unmap_sg(lp->dev, skbuf_dma->sgl, sg_len, DMA_TO_DEVICE);
938xmit_error_drop_skb:
939 dev_kfree_skb_any(skb);
940 return NETDEV_TX_OK;
941}
942
943/**
944 * axienet_tx_poll - Invoked once a transmit is completed by the
945 * Axi DMA Tx channel.
946 * @napi: Pointer to NAPI structure.
947 * @budget: Max number of TX packets to process.
948 *
949 * Return: Number of TX packets processed.
950 *
951 * This function is invoked from the NAPI processing to notify the completion
952 * of transmit operation. It clears fields in the corresponding Tx BDs and
953 * unmaps the corresponding buffer so that CPU can regain ownership of the
954 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
955 * required.
956 */
957static int axienet_tx_poll(struct napi_struct *napi, int budget)
958{
959 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_tx);
960 struct net_device *ndev = lp->ndev;
961 u32 size = 0;
962 int packets;
963
964 packets = axienet_free_tx_chain(lp, lp->tx_bd_ci, lp->tx_bd_num, false,
965 &size, budget);
966
967 if (packets) {
968 u64_stats_update_begin(&lp->tx_stat_sync);
969 u64_stats_add(&lp->tx_packets, packets);
970 u64_stats_add(&lp->tx_bytes, size);
971 u64_stats_update_end(&lp->tx_stat_sync);
972
973 /* Matches barrier in axienet_start_xmit */
974 smp_mb();
975
976 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
977 netif_wake_queue(ndev);
978 }
979
980 if (packets < budget && napi_complete_done(napi, packets)) {
981 /* Re-enable TX completion interrupts. This should
982 * cause an immediate interrupt if any TX packets are
983 * already pending.
984 */
985 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, lp->tx_dma_cr);
986 }
987 return packets;
988}
989
990/**
991 * axienet_start_xmit - Starts the transmission.
992 * @skb: sk_buff pointer that contains data to be Txed.
993 * @ndev: Pointer to net_device structure.
994 *
995 * Return: NETDEV_TX_OK, on success
996 * NETDEV_TX_BUSY, if any of the descriptors are not free
997 *
998 * This function is invoked from upper layers to initiate transmission. The
999 * function uses the next available free BDs and populates their fields to
1000 * start the transmission. Additionally if checksum offloading is supported,
1001 * it populates AXI Stream Control fields with appropriate values.
1002 */
1003static netdev_tx_t
1004axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1005{
1006 u32 ii;
1007 u32 num_frag;
1008 u32 csum_start_off;
1009 u32 csum_index_off;
1010 skb_frag_t *frag;
1011 dma_addr_t tail_p, phys;
1012 u32 orig_tail_ptr, new_tail_ptr;
1013 struct axienet_local *lp = netdev_priv(ndev);
1014 struct axidma_bd *cur_p;
1015
1016 orig_tail_ptr = lp->tx_bd_tail;
1017 new_tail_ptr = orig_tail_ptr;
1018
1019 num_frag = skb_shinfo(skb)->nr_frags;
1020 cur_p = &lp->tx_bd_v[orig_tail_ptr];
1021
1022 if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
1023 /* Should not happen as last start_xmit call should have
1024 * checked for sufficient space and queue should only be
1025 * woken when sufficient space is available.
1026 */
1027 netif_stop_queue(ndev);
1028 if (net_ratelimit())
1029 netdev_warn(ndev, "TX ring unexpectedly full\n");
1030 return NETDEV_TX_BUSY;
1031 }
1032
1033 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1034 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
1035 /* Tx Full Checksum Offload Enabled */
1036 cur_p->app0 |= 2;
1037 } else if (lp->features & XAE_FEATURE_PARTIAL_TX_CSUM) {
1038 csum_start_off = skb_transport_offset(skb);
1039 csum_index_off = csum_start_off + skb->csum_offset;
1040 /* Tx Partial Checksum Offload Enabled */
1041 cur_p->app0 |= 1;
1042 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
1043 }
1044 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1045 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
1046 }
1047
1048 phys = dma_map_single(lp->dev, skb->data,
1049 skb_headlen(skb), DMA_TO_DEVICE);
1050 if (unlikely(dma_mapping_error(lp->dev, phys))) {
1051 if (net_ratelimit())
1052 netdev_err(ndev, "TX DMA mapping error\n");
1053 ndev->stats.tx_dropped++;
1054 dev_kfree_skb_any(skb);
1055 return NETDEV_TX_OK;
1056 }
1057 desc_set_phys_addr(lp, phys, cur_p);
1058 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
1059
1060 for (ii = 0; ii < num_frag; ii++) {
1061 if (++new_tail_ptr >= lp->tx_bd_num)
1062 new_tail_ptr = 0;
1063 cur_p = &lp->tx_bd_v[new_tail_ptr];
1064 frag = &skb_shinfo(skb)->frags[ii];
1065 phys = dma_map_single(lp->dev,
1066 skb_frag_address(frag),
1067 skb_frag_size(frag),
1068 DMA_TO_DEVICE);
1069 if (unlikely(dma_mapping_error(lp->dev, phys))) {
1070 if (net_ratelimit())
1071 netdev_err(ndev, "TX DMA mapping error\n");
1072 ndev->stats.tx_dropped++;
1073 axienet_free_tx_chain(lp, orig_tail_ptr, ii + 1,
1074 true, NULL, 0);
1075 dev_kfree_skb_any(skb);
1076 return NETDEV_TX_OK;
1077 }
1078 desc_set_phys_addr(lp, phys, cur_p);
1079 cur_p->cntrl = skb_frag_size(frag);
1080 }
1081
1082 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
1083 cur_p->skb = skb;
1084
1085 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * new_tail_ptr;
1086 if (++new_tail_ptr >= lp->tx_bd_num)
1087 new_tail_ptr = 0;
1088 WRITE_ONCE(lp->tx_bd_tail, new_tail_ptr);
1089
1090 /* Start the transfer */
1091 axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
1092
1093 /* Stop queue if next transmit may not have space */
1094 if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
1095 netif_stop_queue(ndev);
1096
1097 /* Matches barrier in axienet_tx_poll */
1098 smp_mb();
1099
1100 /* Space might have just been freed - check again */
1101 if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
1102 netif_wake_queue(ndev);
1103 }
1104
1105 return NETDEV_TX_OK;
1106}
1107
1108/**
1109 * axienet_dma_rx_cb - DMA engine callback for RX channel.
1110 * @data: Pointer to the skbuf_dma_descriptor structure.
1111 * @result: error reporting through dmaengine_result.
1112 * This function is called by dmaengine driver for RX channel to notify
1113 * that the packet is received.
1114 */
1115static void axienet_dma_rx_cb(void *data, const struct dmaengine_result *result)
1116{
1117 struct skbuf_dma_descriptor *skbuf_dma;
1118 size_t meta_len, meta_max_len, rx_len;
1119 struct axienet_local *lp = data;
1120 struct sk_buff *skb;
1121 u32 *app_metadata;
1122
1123 skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_tail++);
1124 skb = skbuf_dma->skb;
1125 app_metadata = dmaengine_desc_get_metadata_ptr(skbuf_dma->desc, &meta_len,
1126 &meta_max_len);
1127 dma_unmap_single(lp->dev, skbuf_dma->dma_address, lp->max_frm_size,
1128 DMA_FROM_DEVICE);
1129 /* TODO: Derive app word index programmatically */
1130 rx_len = (app_metadata[LEN_APP] & 0xFFFF);
1131 skb_put(skb, rx_len);
1132 skb->protocol = eth_type_trans(skb, lp->ndev);
1133 skb->ip_summed = CHECKSUM_NONE;
1134
1135 __netif_rx(skb);
1136 u64_stats_update_begin(&lp->rx_stat_sync);
1137 u64_stats_add(&lp->rx_packets, 1);
1138 u64_stats_add(&lp->rx_bytes, rx_len);
1139 u64_stats_update_end(&lp->rx_stat_sync);
1140 axienet_rx_submit_desc(lp->ndev);
1141 dma_async_issue_pending(lp->rx_chan);
1142}
1143
1144/**
1145 * axienet_rx_poll - Triggered by RX ISR to complete the BD processing.
1146 * @napi: Pointer to NAPI structure.
1147 * @budget: Max number of RX packets to process.
1148 *
1149 * Return: Number of RX packets processed.
1150 */
1151static int axienet_rx_poll(struct napi_struct *napi, int budget)
1152{
1153 u32 length;
1154 u32 csumstatus;
1155 u32 size = 0;
1156 int packets = 0;
1157 dma_addr_t tail_p = 0;
1158 struct axidma_bd *cur_p;
1159 struct sk_buff *skb, *new_skb;
1160 struct axienet_local *lp = container_of(napi, struct axienet_local, napi_rx);
1161
1162 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1163
1164 while (packets < budget && (cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
1165 dma_addr_t phys;
1166
1167 /* Ensure we see complete descriptor update */
1168 dma_rmb();
1169
1170 skb = cur_p->skb;
1171 cur_p->skb = NULL;
1172
1173 /* skb could be NULL if a previous pass already received the
1174 * packet for this slot in the ring, but failed to refill it
1175 * with a newly allocated buffer. In this case, don't try to
1176 * receive it again.
1177 */
1178 if (likely(skb)) {
1179 length = cur_p->app4 & 0x0000FFFF;
1180
1181 phys = desc_get_phys_addr(lp, cur_p);
1182 dma_unmap_single(lp->dev, phys, lp->max_frm_size,
1183 DMA_FROM_DEVICE);
1184
1185 skb_put(skb, length);
1186 skb->protocol = eth_type_trans(skb, lp->ndev);
1187 /*skb_checksum_none_assert(skb);*/
1188 skb->ip_summed = CHECKSUM_NONE;
1189
1190 /* if we're doing Rx csum offload, set it up */
1191 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
1192 csumstatus = (cur_p->app2 &
1193 XAE_FULL_CSUM_STATUS_MASK) >> 3;
1194 if (csumstatus == XAE_IP_TCP_CSUM_VALIDATED ||
1195 csumstatus == XAE_IP_UDP_CSUM_VALIDATED) {
1196 skb->ip_summed = CHECKSUM_UNNECESSARY;
1197 }
1198 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
1199 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
1200 skb->ip_summed = CHECKSUM_COMPLETE;
1201 }
1202
1203 napi_gro_receive(napi, skb);
1204
1205 size += length;
1206 packets++;
1207 }
1208
1209 new_skb = napi_alloc_skb(napi, lp->max_frm_size);
1210 if (!new_skb)
1211 break;
1212
1213 phys = dma_map_single(lp->dev, new_skb->data,
1214 lp->max_frm_size,
1215 DMA_FROM_DEVICE);
1216 if (unlikely(dma_mapping_error(lp->dev, phys))) {
1217 if (net_ratelimit())
1218 netdev_err(lp->ndev, "RX DMA mapping error\n");
1219 dev_kfree_skb(new_skb);
1220 break;
1221 }
1222 desc_set_phys_addr(lp, phys, cur_p);
1223
1224 cur_p->cntrl = lp->max_frm_size;
1225 cur_p->status = 0;
1226 cur_p->skb = new_skb;
1227
1228 /* Only update tail_p to mark this slot as usable after it has
1229 * been successfully refilled.
1230 */
1231 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
1232
1233 if (++lp->rx_bd_ci >= lp->rx_bd_num)
1234 lp->rx_bd_ci = 0;
1235 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
1236 }
1237
1238 u64_stats_update_begin(&lp->rx_stat_sync);
1239 u64_stats_add(&lp->rx_packets, packets);
1240 u64_stats_add(&lp->rx_bytes, size);
1241 u64_stats_update_end(&lp->rx_stat_sync);
1242
1243 if (tail_p)
1244 axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
1245
1246 if (packets < budget && napi_complete_done(napi, packets)) {
1247 /* Re-enable RX completion interrupts. This should
1248 * cause an immediate interrupt if any RX packets are
1249 * already pending.
1250 */
1251 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, lp->rx_dma_cr);
1252 }
1253 return packets;
1254}
1255
1256/**
1257 * axienet_tx_irq - Tx Done Isr.
1258 * @irq: irq number
1259 * @_ndev: net_device pointer
1260 *
1261 * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
1262 *
1263 * This is the Axi DMA Tx done Isr. It invokes NAPI polling to complete the
1264 * TX BD processing.
1265 */
1266static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
1267{
1268 unsigned int status;
1269 struct net_device *ndev = _ndev;
1270 struct axienet_local *lp = netdev_priv(ndev);
1271
1272 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1273
1274 if (!(status & XAXIDMA_IRQ_ALL_MASK))
1275 return IRQ_NONE;
1276
1277 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
1278
1279 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1280 netdev_err(ndev, "DMA Tx error 0x%x\n", status);
1281 netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1282 (lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
1283 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
1284 schedule_work(&lp->dma_err_task);
1285 } else {
1286 /* Disable further TX completion interrupts and schedule
1287 * NAPI to handle the completions.
1288 */
1289 u32 cr = lp->tx_dma_cr;
1290
1291 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1292 if (napi_schedule_prep(&lp->napi_tx)) {
1293 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1294 __napi_schedule(&lp->napi_tx);
1295 }
1296 }
1297
1298 return IRQ_HANDLED;
1299}
1300
1301/**
1302 * axienet_rx_irq - Rx Isr.
1303 * @irq: irq number
1304 * @_ndev: net_device pointer
1305 *
1306 * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
1307 *
1308 * This is the Axi DMA Rx Isr. It invokes NAPI polling to complete the RX BD
1309 * processing.
1310 */
1311static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
1312{
1313 unsigned int status;
1314 struct net_device *ndev = _ndev;
1315 struct axienet_local *lp = netdev_priv(ndev);
1316
1317 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1318
1319 if (!(status & XAXIDMA_IRQ_ALL_MASK))
1320 return IRQ_NONE;
1321
1322 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1323
1324 if (unlikely(status & XAXIDMA_IRQ_ERROR_MASK)) {
1325 netdev_err(ndev, "DMA Rx error 0x%x\n", status);
1326 netdev_err(ndev, "Current BD is at: 0x%x%08x\n",
1327 (lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1328 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
1329 schedule_work(&lp->dma_err_task);
1330 } else {
1331 /* Disable further RX completion interrupts and schedule
1332 * NAPI receive.
1333 */
1334 u32 cr = lp->rx_dma_cr;
1335
1336 cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK);
1337 if (napi_schedule_prep(&lp->napi_rx)) {
1338 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1339 __napi_schedule(&lp->napi_rx);
1340 }
1341 }
1342
1343 return IRQ_HANDLED;
1344}
1345
1346/**
1347 * axienet_eth_irq - Ethernet core Isr.
1348 * @irq: irq number
1349 * @_ndev: net_device pointer
1350 *
1351 * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1352 *
1353 * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1354 */
1355static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1356{
1357 struct net_device *ndev = _ndev;
1358 struct axienet_local *lp = netdev_priv(ndev);
1359 unsigned int pending;
1360
1361 pending = axienet_ior(lp, XAE_IP_OFFSET);
1362 if (!pending)
1363 return IRQ_NONE;
1364
1365 if (pending & XAE_INT_RXFIFOOVR_MASK)
1366 ndev->stats.rx_missed_errors++;
1367
1368 if (pending & XAE_INT_RXRJECT_MASK)
1369 ndev->stats.rx_dropped++;
1370
1371 axienet_iow(lp, XAE_IS_OFFSET, pending);
1372 return IRQ_HANDLED;
1373}
1374
1375static void axienet_dma_err_handler(struct work_struct *work);
1376
1377/**
1378 * axienet_rx_submit_desc - Submit the rx descriptors to dmaengine.
1379 * allocate skbuff, map the scatterlist and obtain a descriptor
1380 * and then add the callback information and submit descriptor.
1381 *
1382 * @ndev: net_device pointer
1383 *
1384 */
1385static void axienet_rx_submit_desc(struct net_device *ndev)
1386{
1387 struct dma_async_tx_descriptor *dma_rx_desc = NULL;
1388 struct axienet_local *lp = netdev_priv(ndev);
1389 struct skbuf_dma_descriptor *skbuf_dma;
1390 struct sk_buff *skb;
1391 dma_addr_t addr;
1392
1393 skbuf_dma = axienet_get_rx_desc(lp, lp->rx_ring_head);
1394 if (!skbuf_dma)
1395 return;
1396
1397 lp->rx_ring_head++;
1398 skb = netdev_alloc_skb(ndev, lp->max_frm_size);
1399 if (!skb)
1400 return;
1401
1402 sg_init_table(skbuf_dma->sgl, 1);
1403 addr = dma_map_single(lp->dev, skb->data, lp->max_frm_size, DMA_FROM_DEVICE);
1404 if (unlikely(dma_mapping_error(lp->dev, addr))) {
1405 if (net_ratelimit())
1406 netdev_err(ndev, "DMA mapping error\n");
1407 goto rx_submit_err_free_skb;
1408 }
1409 sg_dma_address(skbuf_dma->sgl) = addr;
1410 sg_dma_len(skbuf_dma->sgl) = lp->max_frm_size;
1411 dma_rx_desc = dmaengine_prep_slave_sg(lp->rx_chan, skbuf_dma->sgl,
1412 1, DMA_DEV_TO_MEM,
1413 DMA_PREP_INTERRUPT);
1414 if (!dma_rx_desc)
1415 goto rx_submit_err_unmap_skb;
1416
1417 skbuf_dma->skb = skb;
1418 skbuf_dma->dma_address = sg_dma_address(skbuf_dma->sgl);
1419 skbuf_dma->desc = dma_rx_desc;
1420 dma_rx_desc->callback_param = lp;
1421 dma_rx_desc->callback_result = axienet_dma_rx_cb;
1422 dmaengine_submit(dma_rx_desc);
1423
1424 return;
1425
1426rx_submit_err_unmap_skb:
1427 dma_unmap_single(lp->dev, addr, lp->max_frm_size, DMA_FROM_DEVICE);
1428rx_submit_err_free_skb:
1429 dev_kfree_skb(skb);
1430}
1431
1432/**
1433 * axienet_init_dmaengine - init the dmaengine code.
1434 * @ndev: Pointer to net_device structure
1435 *
1436 * Return: 0, on success.
1437 * non-zero error value on failure
1438 *
1439 * This is the dmaengine initialization code.
1440 */
1441static int axienet_init_dmaengine(struct net_device *ndev)
1442{
1443 struct axienet_local *lp = netdev_priv(ndev);
1444 struct skbuf_dma_descriptor *skbuf_dma;
1445 int i, ret;
1446
1447 lp->tx_chan = dma_request_chan(lp->dev, "tx_chan0");
1448 if (IS_ERR(lp->tx_chan)) {
1449 dev_err(lp->dev, "No Ethernet DMA (TX) channel found\n");
1450 return PTR_ERR(lp->tx_chan);
1451 }
1452
1453 lp->rx_chan = dma_request_chan(lp->dev, "rx_chan0");
1454 if (IS_ERR(lp->rx_chan)) {
1455 ret = PTR_ERR(lp->rx_chan);
1456 dev_err(lp->dev, "No Ethernet DMA (RX) channel found\n");
1457 goto err_dma_release_tx;
1458 }
1459
1460 lp->tx_ring_tail = 0;
1461 lp->tx_ring_head = 0;
1462 lp->rx_ring_tail = 0;
1463 lp->rx_ring_head = 0;
1464 lp->tx_skb_ring = kcalloc(TX_BD_NUM_MAX, sizeof(*lp->tx_skb_ring),
1465 GFP_KERNEL);
1466 if (!lp->tx_skb_ring) {
1467 ret = -ENOMEM;
1468 goto err_dma_release_rx;
1469 }
1470 for (i = 0; i < TX_BD_NUM_MAX; i++) {
1471 skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1472 if (!skbuf_dma) {
1473 ret = -ENOMEM;
1474 goto err_free_tx_skb_ring;
1475 }
1476 lp->tx_skb_ring[i] = skbuf_dma;
1477 }
1478
1479 lp->rx_skb_ring = kcalloc(RX_BUF_NUM_DEFAULT, sizeof(*lp->rx_skb_ring),
1480 GFP_KERNEL);
1481 if (!lp->rx_skb_ring) {
1482 ret = -ENOMEM;
1483 goto err_free_tx_skb_ring;
1484 }
1485 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++) {
1486 skbuf_dma = kzalloc(sizeof(*skbuf_dma), GFP_KERNEL);
1487 if (!skbuf_dma) {
1488 ret = -ENOMEM;
1489 goto err_free_rx_skb_ring;
1490 }
1491 lp->rx_skb_ring[i] = skbuf_dma;
1492 }
1493 /* TODO: Instead of BD_NUM_DEFAULT use runtime support */
1494 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1495 axienet_rx_submit_desc(ndev);
1496 dma_async_issue_pending(lp->rx_chan);
1497
1498 return 0;
1499
1500err_free_rx_skb_ring:
1501 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1502 kfree(lp->rx_skb_ring[i]);
1503 kfree(lp->rx_skb_ring);
1504err_free_tx_skb_ring:
1505 for (i = 0; i < TX_BD_NUM_MAX; i++)
1506 kfree(lp->tx_skb_ring[i]);
1507 kfree(lp->tx_skb_ring);
1508err_dma_release_rx:
1509 dma_release_channel(lp->rx_chan);
1510err_dma_release_tx:
1511 dma_release_channel(lp->tx_chan);
1512 return ret;
1513}
1514
1515/**
1516 * axienet_init_legacy_dma - init the dma legacy code.
1517 * @ndev: Pointer to net_device structure
1518 *
1519 * Return: 0, on success.
1520 * non-zero error value on failure
1521 *
1522 * This is the dma initialization code. It also allocates interrupt
1523 * service routines, enables the interrupt lines and ISR handling.
1524 *
1525 */
1526static int axienet_init_legacy_dma(struct net_device *ndev)
1527{
1528 int ret;
1529 struct axienet_local *lp = netdev_priv(ndev);
1530
1531 /* Enable worker thread for Axi DMA error handling */
1532 lp->stopping = false;
1533 INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1534
1535 napi_enable(&lp->napi_rx);
1536 napi_enable(&lp->napi_tx);
1537
1538 /* Enable interrupts for Axi DMA Tx */
1539 ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1540 ndev->name, ndev);
1541 if (ret)
1542 goto err_tx_irq;
1543 /* Enable interrupts for Axi DMA Rx */
1544 ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1545 ndev->name, ndev);
1546 if (ret)
1547 goto err_rx_irq;
1548 /* Enable interrupts for Axi Ethernet core (if defined) */
1549 if (lp->eth_irq > 0) {
1550 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1551 ndev->name, ndev);
1552 if (ret)
1553 goto err_eth_irq;
1554 }
1555
1556 return 0;
1557
1558err_eth_irq:
1559 free_irq(lp->rx_irq, ndev);
1560err_rx_irq:
1561 free_irq(lp->tx_irq, ndev);
1562err_tx_irq:
1563 napi_disable(&lp->napi_tx);
1564 napi_disable(&lp->napi_rx);
1565 cancel_work_sync(&lp->dma_err_task);
1566 dev_err(lp->dev, "request_irq() failed\n");
1567 return ret;
1568}
1569
1570/**
1571 * axienet_open - Driver open routine.
1572 * @ndev: Pointer to net_device structure
1573 *
1574 * Return: 0, on success.
1575 * non-zero error value on failure
1576 *
1577 * This is the driver open routine. It calls phylink_start to start the
1578 * PHY device.
1579 * It also allocates interrupt service routines, enables the interrupt lines
1580 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1581 * descriptors are initialized.
1582 */
1583static int axienet_open(struct net_device *ndev)
1584{
1585 int ret;
1586 struct axienet_local *lp = netdev_priv(ndev);
1587
1588 /* When we do an Axi Ethernet reset, it resets the complete core
1589 * including the MDIO. MDIO must be disabled before resetting.
1590 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1591 */
1592 axienet_lock_mii(lp);
1593 ret = axienet_device_reset(ndev);
1594 axienet_unlock_mii(lp);
1595
1596 ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1597 if (ret) {
1598 dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1599 return ret;
1600 }
1601
1602 phylink_start(lp->phylink);
1603
1604 /* Start the statistics refresh work */
1605 schedule_delayed_work(&lp->stats_work, 0);
1606
1607 if (lp->use_dmaengine) {
1608 /* Enable interrupts for Axi Ethernet core (if defined) */
1609 if (lp->eth_irq > 0) {
1610 ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1611 ndev->name, ndev);
1612 if (ret)
1613 goto err_phy;
1614 }
1615
1616 ret = axienet_init_dmaengine(ndev);
1617 if (ret < 0)
1618 goto err_free_eth_irq;
1619 } else {
1620 ret = axienet_init_legacy_dma(ndev);
1621 if (ret)
1622 goto err_phy;
1623 }
1624
1625 return 0;
1626
1627err_free_eth_irq:
1628 if (lp->eth_irq > 0)
1629 free_irq(lp->eth_irq, ndev);
1630err_phy:
1631 cancel_delayed_work_sync(&lp->stats_work);
1632 phylink_stop(lp->phylink);
1633 phylink_disconnect_phy(lp->phylink);
1634 return ret;
1635}
1636
1637/**
1638 * axienet_stop - Driver stop routine.
1639 * @ndev: Pointer to net_device structure
1640 *
1641 * Return: 0, on success.
1642 *
1643 * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1644 * device. It also removes the interrupt handlers and disables the interrupts.
1645 * The Axi DMA Tx/Rx BDs are released.
1646 */
1647static int axienet_stop(struct net_device *ndev)
1648{
1649 struct axienet_local *lp = netdev_priv(ndev);
1650 int i;
1651
1652 if (!lp->use_dmaengine) {
1653 WRITE_ONCE(lp->stopping, true);
1654 flush_work(&lp->dma_err_task);
1655
1656 napi_disable(&lp->napi_tx);
1657 napi_disable(&lp->napi_rx);
1658 }
1659
1660 cancel_delayed_work_sync(&lp->stats_work);
1661
1662 phylink_stop(lp->phylink);
1663 phylink_disconnect_phy(lp->phylink);
1664
1665 axienet_setoptions(ndev, lp->options &
1666 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1667
1668 if (!lp->use_dmaengine) {
1669 axienet_dma_stop(lp);
1670 cancel_work_sync(&lp->dma_err_task);
1671 free_irq(lp->tx_irq, ndev);
1672 free_irq(lp->rx_irq, ndev);
1673 axienet_dma_bd_release(ndev);
1674 } else {
1675 dmaengine_terminate_sync(lp->tx_chan);
1676 dmaengine_synchronize(lp->tx_chan);
1677 dmaengine_terminate_sync(lp->rx_chan);
1678 dmaengine_synchronize(lp->rx_chan);
1679
1680 for (i = 0; i < TX_BD_NUM_MAX; i++)
1681 kfree(lp->tx_skb_ring[i]);
1682 kfree(lp->tx_skb_ring);
1683 for (i = 0; i < RX_BUF_NUM_DEFAULT; i++)
1684 kfree(lp->rx_skb_ring[i]);
1685 kfree(lp->rx_skb_ring);
1686
1687 dma_release_channel(lp->rx_chan);
1688 dma_release_channel(lp->tx_chan);
1689 }
1690
1691 axienet_iow(lp, XAE_IE_OFFSET, 0);
1692
1693 if (lp->eth_irq > 0)
1694 free_irq(lp->eth_irq, ndev);
1695 return 0;
1696}
1697
1698/**
1699 * axienet_change_mtu - Driver change mtu routine.
1700 * @ndev: Pointer to net_device structure
1701 * @new_mtu: New mtu value to be applied
1702 *
1703 * Return: Always returns 0 (success).
1704 *
1705 * This is the change mtu driver routine. It checks if the Axi Ethernet
1706 * hardware supports jumbo frames before changing the mtu. This can be
1707 * called only when the device is not up.
1708 */
1709static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1710{
1711 struct axienet_local *lp = netdev_priv(ndev);
1712
1713 if (netif_running(ndev))
1714 return -EBUSY;
1715
1716 if ((new_mtu + VLAN_ETH_HLEN +
1717 XAE_TRL_SIZE) > lp->rxmem)
1718 return -EINVAL;
1719
1720 WRITE_ONCE(ndev->mtu, new_mtu);
1721
1722 return 0;
1723}
1724
1725#ifdef CONFIG_NET_POLL_CONTROLLER
1726/**
1727 * axienet_poll_controller - Axi Ethernet poll mechanism.
1728 * @ndev: Pointer to net_device structure
1729 *
1730 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1731 * to polling the ISRs and are enabled back after the polling is done.
1732 */
1733static void axienet_poll_controller(struct net_device *ndev)
1734{
1735 struct axienet_local *lp = netdev_priv(ndev);
1736
1737 disable_irq(lp->tx_irq);
1738 disable_irq(lp->rx_irq);
1739 axienet_rx_irq(lp->tx_irq, ndev);
1740 axienet_tx_irq(lp->rx_irq, ndev);
1741 enable_irq(lp->tx_irq);
1742 enable_irq(lp->rx_irq);
1743}
1744#endif
1745
1746static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1747{
1748 struct axienet_local *lp = netdev_priv(dev);
1749
1750 if (!netif_running(dev))
1751 return -EINVAL;
1752
1753 return phylink_mii_ioctl(lp->phylink, rq, cmd);
1754}
1755
1756static void
1757axienet_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
1758{
1759 struct axienet_local *lp = netdev_priv(dev);
1760 unsigned int start;
1761
1762 netdev_stats_to_stats64(stats, &dev->stats);
1763
1764 do {
1765 start = u64_stats_fetch_begin(&lp->rx_stat_sync);
1766 stats->rx_packets = u64_stats_read(&lp->rx_packets);
1767 stats->rx_bytes = u64_stats_read(&lp->rx_bytes);
1768 } while (u64_stats_fetch_retry(&lp->rx_stat_sync, start));
1769
1770 do {
1771 start = u64_stats_fetch_begin(&lp->tx_stat_sync);
1772 stats->tx_packets = u64_stats_read(&lp->tx_packets);
1773 stats->tx_bytes = u64_stats_read(&lp->tx_bytes);
1774 } while (u64_stats_fetch_retry(&lp->tx_stat_sync, start));
1775
1776 if (!(lp->features & XAE_FEATURE_STATS))
1777 return;
1778
1779 do {
1780 start = read_seqcount_begin(&lp->hw_stats_seqcount);
1781 stats->rx_length_errors =
1782 axienet_stat(lp, STAT_RX_LENGTH_ERRORS);
1783 stats->rx_crc_errors = axienet_stat(lp, STAT_RX_FCS_ERRORS);
1784 stats->rx_frame_errors =
1785 axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS);
1786 stats->rx_errors = axienet_stat(lp, STAT_UNDERSIZE_FRAMES) +
1787 axienet_stat(lp, STAT_FRAGMENT_FRAMES) +
1788 stats->rx_length_errors +
1789 stats->rx_crc_errors +
1790 stats->rx_frame_errors;
1791 stats->multicast = axienet_stat(lp, STAT_RX_MULTICAST_FRAMES);
1792
1793 stats->tx_aborted_errors =
1794 axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS);
1795 stats->tx_fifo_errors =
1796 axienet_stat(lp, STAT_TX_UNDERRUN_ERRORS);
1797 stats->tx_window_errors =
1798 axienet_stat(lp, STAT_TX_LATE_COLLISIONS);
1799 stats->tx_errors = axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL) +
1800 stats->tx_aborted_errors +
1801 stats->tx_fifo_errors +
1802 stats->tx_window_errors;
1803 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
1804}
1805
1806static const struct net_device_ops axienet_netdev_ops = {
1807 .ndo_open = axienet_open,
1808 .ndo_stop = axienet_stop,
1809 .ndo_start_xmit = axienet_start_xmit,
1810 .ndo_get_stats64 = axienet_get_stats64,
1811 .ndo_change_mtu = axienet_change_mtu,
1812 .ndo_set_mac_address = netdev_set_mac_address,
1813 .ndo_validate_addr = eth_validate_addr,
1814 .ndo_eth_ioctl = axienet_ioctl,
1815 .ndo_set_rx_mode = axienet_set_multicast_list,
1816#ifdef CONFIG_NET_POLL_CONTROLLER
1817 .ndo_poll_controller = axienet_poll_controller,
1818#endif
1819};
1820
1821static const struct net_device_ops axienet_netdev_dmaengine_ops = {
1822 .ndo_open = axienet_open,
1823 .ndo_stop = axienet_stop,
1824 .ndo_start_xmit = axienet_start_xmit_dmaengine,
1825 .ndo_get_stats64 = axienet_get_stats64,
1826 .ndo_change_mtu = axienet_change_mtu,
1827 .ndo_set_mac_address = netdev_set_mac_address,
1828 .ndo_validate_addr = eth_validate_addr,
1829 .ndo_eth_ioctl = axienet_ioctl,
1830 .ndo_set_rx_mode = axienet_set_multicast_list,
1831};
1832
1833/**
1834 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1835 * @ndev: Pointer to net_device structure
1836 * @ed: Pointer to ethtool_drvinfo structure
1837 *
1838 * This implements ethtool command for getting the driver information.
1839 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1840 */
1841static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1842 struct ethtool_drvinfo *ed)
1843{
1844 strscpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1845 strscpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1846}
1847
1848/**
1849 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1850 * AxiEthernet core.
1851 * @ndev: Pointer to net_device structure
1852 *
1853 * This implements ethtool command for getting the total register length
1854 * information.
1855 *
1856 * Return: the total regs length
1857 */
1858static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1859{
1860 return sizeof(u32) * AXIENET_REGS_N;
1861}
1862
1863/**
1864 * axienet_ethtools_get_regs - Dump the contents of all registers present
1865 * in AxiEthernet core.
1866 * @ndev: Pointer to net_device structure
1867 * @regs: Pointer to ethtool_regs structure
1868 * @ret: Void pointer used to return the contents of the registers.
1869 *
1870 * This implements ethtool command for getting the Axi Ethernet register dump.
1871 * Issue "ethtool -d ethX" to execute this function.
1872 */
1873static void axienet_ethtools_get_regs(struct net_device *ndev,
1874 struct ethtool_regs *regs, void *ret)
1875{
1876 u32 *data = (u32 *)ret;
1877 size_t len = sizeof(u32) * AXIENET_REGS_N;
1878 struct axienet_local *lp = netdev_priv(ndev);
1879
1880 regs->version = 0;
1881 regs->len = len;
1882
1883 memset(data, 0, len);
1884 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1885 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1886 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1887 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1888 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1889 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1890 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1891 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1892 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1893 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1894 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1895 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1896 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1897 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1898 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1899 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1900 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1901 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1902 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1903 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1904 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1905 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1906 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1907 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1908 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1909 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1910 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1911 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1912 if (!lp->use_dmaengine) {
1913 data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1914 data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1915 data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1916 data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1917 data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1918 data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1919 data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1920 data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1921 }
1922}
1923
1924static void
1925axienet_ethtools_get_ringparam(struct net_device *ndev,
1926 struct ethtool_ringparam *ering,
1927 struct kernel_ethtool_ringparam *kernel_ering,
1928 struct netlink_ext_ack *extack)
1929{
1930 struct axienet_local *lp = netdev_priv(ndev);
1931
1932 ering->rx_max_pending = RX_BD_NUM_MAX;
1933 ering->rx_mini_max_pending = 0;
1934 ering->rx_jumbo_max_pending = 0;
1935 ering->tx_max_pending = TX_BD_NUM_MAX;
1936 ering->rx_pending = lp->rx_bd_num;
1937 ering->rx_mini_pending = 0;
1938 ering->rx_jumbo_pending = 0;
1939 ering->tx_pending = lp->tx_bd_num;
1940}
1941
1942static int
1943axienet_ethtools_set_ringparam(struct net_device *ndev,
1944 struct ethtool_ringparam *ering,
1945 struct kernel_ethtool_ringparam *kernel_ering,
1946 struct netlink_ext_ack *extack)
1947{
1948 struct axienet_local *lp = netdev_priv(ndev);
1949
1950 if (ering->rx_pending > RX_BD_NUM_MAX ||
1951 ering->rx_mini_pending ||
1952 ering->rx_jumbo_pending ||
1953 ering->tx_pending < TX_BD_NUM_MIN ||
1954 ering->tx_pending > TX_BD_NUM_MAX)
1955 return -EINVAL;
1956
1957 if (netif_running(ndev))
1958 return -EBUSY;
1959
1960 lp->rx_bd_num = ering->rx_pending;
1961 lp->tx_bd_num = ering->tx_pending;
1962 return 0;
1963}
1964
1965/**
1966 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1967 * Tx and Rx paths.
1968 * @ndev: Pointer to net_device structure
1969 * @epauseparm: Pointer to ethtool_pauseparam structure.
1970 *
1971 * This implements ethtool command for getting axi ethernet pause frame
1972 * setting. Issue "ethtool -a ethX" to execute this function.
1973 */
1974static void
1975axienet_ethtools_get_pauseparam(struct net_device *ndev,
1976 struct ethtool_pauseparam *epauseparm)
1977{
1978 struct axienet_local *lp = netdev_priv(ndev);
1979
1980 phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1981}
1982
1983/**
1984 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1985 * settings.
1986 * @ndev: Pointer to net_device structure
1987 * @epauseparm:Pointer to ethtool_pauseparam structure
1988 *
1989 * This implements ethtool command for enabling flow control on Rx and Tx
1990 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1991 * function.
1992 *
1993 * Return: 0 on success, -EFAULT if device is running
1994 */
1995static int
1996axienet_ethtools_set_pauseparam(struct net_device *ndev,
1997 struct ethtool_pauseparam *epauseparm)
1998{
1999 struct axienet_local *lp = netdev_priv(ndev);
2000
2001 return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
2002}
2003
2004/**
2005 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
2006 * @ndev: Pointer to net_device structure
2007 * @ecoalesce: Pointer to ethtool_coalesce structure
2008 * @kernel_coal: ethtool CQE mode setting structure
2009 * @extack: extack for reporting error messages
2010 *
2011 * This implements ethtool command for getting the DMA interrupt coalescing
2012 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
2013 * execute this function.
2014 *
2015 * Return: 0 always
2016 */
2017static int
2018axienet_ethtools_get_coalesce(struct net_device *ndev,
2019 struct ethtool_coalesce *ecoalesce,
2020 struct kernel_ethtool_coalesce *kernel_coal,
2021 struct netlink_ext_ack *extack)
2022{
2023 struct axienet_local *lp = netdev_priv(ndev);
2024
2025 ecoalesce->rx_max_coalesced_frames = lp->coalesce_count_rx;
2026 ecoalesce->rx_coalesce_usecs = lp->coalesce_usec_rx;
2027 ecoalesce->tx_max_coalesced_frames = lp->coalesce_count_tx;
2028 ecoalesce->tx_coalesce_usecs = lp->coalesce_usec_tx;
2029 return 0;
2030}
2031
2032/**
2033 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
2034 * @ndev: Pointer to net_device structure
2035 * @ecoalesce: Pointer to ethtool_coalesce structure
2036 * @kernel_coal: ethtool CQE mode setting structure
2037 * @extack: extack for reporting error messages
2038 *
2039 * This implements ethtool command for setting the DMA interrupt coalescing
2040 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
2041 * prompt to execute this function.
2042 *
2043 * Return: 0, on success, Non-zero error value on failure.
2044 */
2045static int
2046axienet_ethtools_set_coalesce(struct net_device *ndev,
2047 struct ethtool_coalesce *ecoalesce,
2048 struct kernel_ethtool_coalesce *kernel_coal,
2049 struct netlink_ext_ack *extack)
2050{
2051 struct axienet_local *lp = netdev_priv(ndev);
2052
2053 if (netif_running(ndev)) {
2054 NL_SET_ERR_MSG(extack,
2055 "Please stop netif before applying configuration");
2056 return -EBUSY;
2057 }
2058
2059 if (ecoalesce->rx_max_coalesced_frames > 255 ||
2060 ecoalesce->tx_max_coalesced_frames > 255) {
2061 NL_SET_ERR_MSG(extack, "frames must be less than 256");
2062 return -EINVAL;
2063 }
2064
2065 if (ecoalesce->rx_max_coalesced_frames)
2066 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
2067 if (ecoalesce->rx_coalesce_usecs)
2068 lp->coalesce_usec_rx = ecoalesce->rx_coalesce_usecs;
2069 if (ecoalesce->tx_max_coalesced_frames)
2070 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
2071 if (ecoalesce->tx_coalesce_usecs)
2072 lp->coalesce_usec_tx = ecoalesce->tx_coalesce_usecs;
2073
2074 return 0;
2075}
2076
2077static int
2078axienet_ethtools_get_link_ksettings(struct net_device *ndev,
2079 struct ethtool_link_ksettings *cmd)
2080{
2081 struct axienet_local *lp = netdev_priv(ndev);
2082
2083 return phylink_ethtool_ksettings_get(lp->phylink, cmd);
2084}
2085
2086static int
2087axienet_ethtools_set_link_ksettings(struct net_device *ndev,
2088 const struct ethtool_link_ksettings *cmd)
2089{
2090 struct axienet_local *lp = netdev_priv(ndev);
2091
2092 return phylink_ethtool_ksettings_set(lp->phylink, cmd);
2093}
2094
2095static int axienet_ethtools_nway_reset(struct net_device *dev)
2096{
2097 struct axienet_local *lp = netdev_priv(dev);
2098
2099 return phylink_ethtool_nway_reset(lp->phylink);
2100}
2101
2102static void axienet_ethtools_get_ethtool_stats(struct net_device *dev,
2103 struct ethtool_stats *stats,
2104 u64 *data)
2105{
2106 struct axienet_local *lp = netdev_priv(dev);
2107 unsigned int start;
2108
2109 do {
2110 start = read_seqcount_begin(&lp->hw_stats_seqcount);
2111 data[0] = axienet_stat(lp, STAT_RX_BYTES);
2112 data[1] = axienet_stat(lp, STAT_TX_BYTES);
2113 data[2] = axienet_stat(lp, STAT_RX_VLAN_FRAMES);
2114 data[3] = axienet_stat(lp, STAT_TX_VLAN_FRAMES);
2115 data[6] = axienet_stat(lp, STAT_TX_PFC_FRAMES);
2116 data[7] = axienet_stat(lp, STAT_RX_PFC_FRAMES);
2117 data[8] = axienet_stat(lp, STAT_USER_DEFINED0);
2118 data[9] = axienet_stat(lp, STAT_USER_DEFINED1);
2119 data[10] = axienet_stat(lp, STAT_USER_DEFINED2);
2120 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2121}
2122
2123static const char axienet_ethtool_stats_strings[][ETH_GSTRING_LEN] = {
2124 "Received bytes",
2125 "Transmitted bytes",
2126 "RX Good VLAN Tagged Frames",
2127 "TX Good VLAN Tagged Frames",
2128 "TX Good PFC Frames",
2129 "RX Good PFC Frames",
2130 "User Defined Counter 0",
2131 "User Defined Counter 1",
2132 "User Defined Counter 2",
2133};
2134
2135static void axienet_ethtools_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2136{
2137 switch (stringset) {
2138 case ETH_SS_STATS:
2139 memcpy(data, axienet_ethtool_stats_strings,
2140 sizeof(axienet_ethtool_stats_strings));
2141 break;
2142 }
2143}
2144
2145static int axienet_ethtools_get_sset_count(struct net_device *dev, int sset)
2146{
2147 struct axienet_local *lp = netdev_priv(dev);
2148
2149 switch (sset) {
2150 case ETH_SS_STATS:
2151 if (lp->features & XAE_FEATURE_STATS)
2152 return ARRAY_SIZE(axienet_ethtool_stats_strings);
2153 fallthrough;
2154 default:
2155 return -EOPNOTSUPP;
2156 }
2157}
2158
2159static void
2160axienet_ethtools_get_pause_stats(struct net_device *dev,
2161 struct ethtool_pause_stats *pause_stats)
2162{
2163 struct axienet_local *lp = netdev_priv(dev);
2164 unsigned int start;
2165
2166 if (!(lp->features & XAE_FEATURE_STATS))
2167 return;
2168
2169 do {
2170 start = read_seqcount_begin(&lp->hw_stats_seqcount);
2171 pause_stats->tx_pause_frames =
2172 axienet_stat(lp, STAT_TX_PAUSE_FRAMES);
2173 pause_stats->rx_pause_frames =
2174 axienet_stat(lp, STAT_RX_PAUSE_FRAMES);
2175 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2176}
2177
2178static void
2179axienet_ethtool_get_eth_mac_stats(struct net_device *dev,
2180 struct ethtool_eth_mac_stats *mac_stats)
2181{
2182 struct axienet_local *lp = netdev_priv(dev);
2183 unsigned int start;
2184
2185 if (!(lp->features & XAE_FEATURE_STATS))
2186 return;
2187
2188 do {
2189 start = read_seqcount_begin(&lp->hw_stats_seqcount);
2190 mac_stats->FramesTransmittedOK =
2191 axienet_stat(lp, STAT_TX_GOOD_FRAMES);
2192 mac_stats->SingleCollisionFrames =
2193 axienet_stat(lp, STAT_TX_SINGLE_COLLISION_FRAMES);
2194 mac_stats->MultipleCollisionFrames =
2195 axienet_stat(lp, STAT_TX_MULTIPLE_COLLISION_FRAMES);
2196 mac_stats->FramesReceivedOK =
2197 axienet_stat(lp, STAT_RX_GOOD_FRAMES);
2198 mac_stats->FrameCheckSequenceErrors =
2199 axienet_stat(lp, STAT_RX_FCS_ERRORS);
2200 mac_stats->AlignmentErrors =
2201 axienet_stat(lp, STAT_RX_ALIGNMENT_ERRORS);
2202 mac_stats->FramesWithDeferredXmissions =
2203 axienet_stat(lp, STAT_TX_DEFERRED_FRAMES);
2204 mac_stats->LateCollisions =
2205 axienet_stat(lp, STAT_TX_LATE_COLLISIONS);
2206 mac_stats->FramesAbortedDueToXSColls =
2207 axienet_stat(lp, STAT_TX_EXCESS_COLLISIONS);
2208 mac_stats->MulticastFramesXmittedOK =
2209 axienet_stat(lp, STAT_TX_MULTICAST_FRAMES);
2210 mac_stats->BroadcastFramesXmittedOK =
2211 axienet_stat(lp, STAT_TX_BROADCAST_FRAMES);
2212 mac_stats->FramesWithExcessiveDeferral =
2213 axienet_stat(lp, STAT_TX_EXCESS_DEFERRAL);
2214 mac_stats->MulticastFramesReceivedOK =
2215 axienet_stat(lp, STAT_RX_MULTICAST_FRAMES);
2216 mac_stats->BroadcastFramesReceivedOK =
2217 axienet_stat(lp, STAT_RX_BROADCAST_FRAMES);
2218 mac_stats->InRangeLengthErrors =
2219 axienet_stat(lp, STAT_RX_LENGTH_ERRORS);
2220 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2221}
2222
2223static void
2224axienet_ethtool_get_eth_ctrl_stats(struct net_device *dev,
2225 struct ethtool_eth_ctrl_stats *ctrl_stats)
2226{
2227 struct axienet_local *lp = netdev_priv(dev);
2228 unsigned int start;
2229
2230 if (!(lp->features & XAE_FEATURE_STATS))
2231 return;
2232
2233 do {
2234 start = read_seqcount_begin(&lp->hw_stats_seqcount);
2235 ctrl_stats->MACControlFramesTransmitted =
2236 axienet_stat(lp, STAT_TX_CONTROL_FRAMES);
2237 ctrl_stats->MACControlFramesReceived =
2238 axienet_stat(lp, STAT_RX_CONTROL_FRAMES);
2239 ctrl_stats->UnsupportedOpcodesReceived =
2240 axienet_stat(lp, STAT_RX_CONTROL_OPCODE_ERRORS);
2241 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2242}
2243
2244static const struct ethtool_rmon_hist_range axienet_rmon_ranges[] = {
2245 { 64, 64 },
2246 { 65, 127 },
2247 { 128, 255 },
2248 { 256, 511 },
2249 { 512, 1023 },
2250 { 1024, 1518 },
2251 { 1519, 16384 },
2252 { },
2253};
2254
2255static void
2256axienet_ethtool_get_rmon_stats(struct net_device *dev,
2257 struct ethtool_rmon_stats *rmon_stats,
2258 const struct ethtool_rmon_hist_range **ranges)
2259{
2260 struct axienet_local *lp = netdev_priv(dev);
2261 unsigned int start;
2262
2263 if (!(lp->features & XAE_FEATURE_STATS))
2264 return;
2265
2266 do {
2267 start = read_seqcount_begin(&lp->hw_stats_seqcount);
2268 rmon_stats->undersize_pkts =
2269 axienet_stat(lp, STAT_UNDERSIZE_FRAMES);
2270 rmon_stats->oversize_pkts =
2271 axienet_stat(lp, STAT_RX_OVERSIZE_FRAMES);
2272 rmon_stats->fragments =
2273 axienet_stat(lp, STAT_FRAGMENT_FRAMES);
2274
2275 rmon_stats->hist[0] =
2276 axienet_stat(lp, STAT_RX_64_BYTE_FRAMES);
2277 rmon_stats->hist[1] =
2278 axienet_stat(lp, STAT_RX_65_127_BYTE_FRAMES);
2279 rmon_stats->hist[2] =
2280 axienet_stat(lp, STAT_RX_128_255_BYTE_FRAMES);
2281 rmon_stats->hist[3] =
2282 axienet_stat(lp, STAT_RX_256_511_BYTE_FRAMES);
2283 rmon_stats->hist[4] =
2284 axienet_stat(lp, STAT_RX_512_1023_BYTE_FRAMES);
2285 rmon_stats->hist[5] =
2286 axienet_stat(lp, STAT_RX_1024_MAX_BYTE_FRAMES);
2287 rmon_stats->hist[6] =
2288 rmon_stats->oversize_pkts;
2289
2290 rmon_stats->hist_tx[0] =
2291 axienet_stat(lp, STAT_TX_64_BYTE_FRAMES);
2292 rmon_stats->hist_tx[1] =
2293 axienet_stat(lp, STAT_TX_65_127_BYTE_FRAMES);
2294 rmon_stats->hist_tx[2] =
2295 axienet_stat(lp, STAT_TX_128_255_BYTE_FRAMES);
2296 rmon_stats->hist_tx[3] =
2297 axienet_stat(lp, STAT_TX_256_511_BYTE_FRAMES);
2298 rmon_stats->hist_tx[4] =
2299 axienet_stat(lp, STAT_TX_512_1023_BYTE_FRAMES);
2300 rmon_stats->hist_tx[5] =
2301 axienet_stat(lp, STAT_TX_1024_MAX_BYTE_FRAMES);
2302 rmon_stats->hist_tx[6] =
2303 axienet_stat(lp, STAT_TX_OVERSIZE_FRAMES);
2304 } while (read_seqcount_retry(&lp->hw_stats_seqcount, start));
2305
2306 *ranges = axienet_rmon_ranges;
2307}
2308
2309static const struct ethtool_ops axienet_ethtool_ops = {
2310 .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES |
2311 ETHTOOL_COALESCE_USECS,
2312 .get_drvinfo = axienet_ethtools_get_drvinfo,
2313 .get_regs_len = axienet_ethtools_get_regs_len,
2314 .get_regs = axienet_ethtools_get_regs,
2315 .get_link = ethtool_op_get_link,
2316 .get_ringparam = axienet_ethtools_get_ringparam,
2317 .set_ringparam = axienet_ethtools_set_ringparam,
2318 .get_pauseparam = axienet_ethtools_get_pauseparam,
2319 .set_pauseparam = axienet_ethtools_set_pauseparam,
2320 .get_coalesce = axienet_ethtools_get_coalesce,
2321 .set_coalesce = axienet_ethtools_set_coalesce,
2322 .get_link_ksettings = axienet_ethtools_get_link_ksettings,
2323 .set_link_ksettings = axienet_ethtools_set_link_ksettings,
2324 .nway_reset = axienet_ethtools_nway_reset,
2325 .get_ethtool_stats = axienet_ethtools_get_ethtool_stats,
2326 .get_strings = axienet_ethtools_get_strings,
2327 .get_sset_count = axienet_ethtools_get_sset_count,
2328 .get_pause_stats = axienet_ethtools_get_pause_stats,
2329 .get_eth_mac_stats = axienet_ethtool_get_eth_mac_stats,
2330 .get_eth_ctrl_stats = axienet_ethtool_get_eth_ctrl_stats,
2331 .get_rmon_stats = axienet_ethtool_get_rmon_stats,
2332};
2333
2334static struct axienet_local *pcs_to_axienet_local(struct phylink_pcs *pcs)
2335{
2336 return container_of(pcs, struct axienet_local, pcs);
2337}
2338
2339static void axienet_pcs_get_state(struct phylink_pcs *pcs,
2340 struct phylink_link_state *state)
2341{
2342 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2343
2344 phylink_mii_c22_pcs_get_state(pcs_phy, state);
2345}
2346
2347static void axienet_pcs_an_restart(struct phylink_pcs *pcs)
2348{
2349 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2350
2351 phylink_mii_c22_pcs_an_restart(pcs_phy);
2352}
2353
2354static int axienet_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
2355 phy_interface_t interface,
2356 const unsigned long *advertising,
2357 bool permit_pause_to_mac)
2358{
2359 struct mdio_device *pcs_phy = pcs_to_axienet_local(pcs)->pcs_phy;
2360 struct net_device *ndev = pcs_to_axienet_local(pcs)->ndev;
2361 struct axienet_local *lp = netdev_priv(ndev);
2362 int ret;
2363
2364 if (lp->switch_x_sgmii) {
2365 ret = mdiodev_write(pcs_phy, XLNX_MII_STD_SELECT_REG,
2366 interface == PHY_INTERFACE_MODE_SGMII ?
2367 XLNX_MII_STD_SELECT_SGMII : 0);
2368 if (ret < 0) {
2369 netdev_warn(ndev,
2370 "Failed to switch PHY interface: %d\n",
2371 ret);
2372 return ret;
2373 }
2374 }
2375
2376 ret = phylink_mii_c22_pcs_config(pcs_phy, interface, advertising,
2377 neg_mode);
2378 if (ret < 0)
2379 netdev_warn(ndev, "Failed to configure PCS: %d\n", ret);
2380
2381 return ret;
2382}
2383
2384static const struct phylink_pcs_ops axienet_pcs_ops = {
2385 .pcs_get_state = axienet_pcs_get_state,
2386 .pcs_config = axienet_pcs_config,
2387 .pcs_an_restart = axienet_pcs_an_restart,
2388};
2389
2390static struct phylink_pcs *axienet_mac_select_pcs(struct phylink_config *config,
2391 phy_interface_t interface)
2392{
2393 struct net_device *ndev = to_net_dev(config->dev);
2394 struct axienet_local *lp = netdev_priv(ndev);
2395
2396 if (interface == PHY_INTERFACE_MODE_1000BASEX ||
2397 interface == PHY_INTERFACE_MODE_SGMII)
2398 return &lp->pcs;
2399
2400 return NULL;
2401}
2402
2403static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
2404 const struct phylink_link_state *state)
2405{
2406 /* nothing meaningful to do */
2407}
2408
2409static void axienet_mac_link_down(struct phylink_config *config,
2410 unsigned int mode,
2411 phy_interface_t interface)
2412{
2413 /* nothing meaningful to do */
2414}
2415
2416static void axienet_mac_link_up(struct phylink_config *config,
2417 struct phy_device *phy,
2418 unsigned int mode, phy_interface_t interface,
2419 int speed, int duplex,
2420 bool tx_pause, bool rx_pause)
2421{
2422 struct net_device *ndev = to_net_dev(config->dev);
2423 struct axienet_local *lp = netdev_priv(ndev);
2424 u32 emmc_reg, fcc_reg;
2425
2426 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
2427 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
2428
2429 switch (speed) {
2430 case SPEED_1000:
2431 emmc_reg |= XAE_EMMC_LINKSPD_1000;
2432 break;
2433 case SPEED_100:
2434 emmc_reg |= XAE_EMMC_LINKSPD_100;
2435 break;
2436 case SPEED_10:
2437 emmc_reg |= XAE_EMMC_LINKSPD_10;
2438 break;
2439 default:
2440 dev_err(&ndev->dev,
2441 "Speed other than 10, 100 or 1Gbps is not supported\n");
2442 break;
2443 }
2444
2445 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
2446
2447 fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
2448 if (tx_pause)
2449 fcc_reg |= XAE_FCC_FCTX_MASK;
2450 else
2451 fcc_reg &= ~XAE_FCC_FCTX_MASK;
2452 if (rx_pause)
2453 fcc_reg |= XAE_FCC_FCRX_MASK;
2454 else
2455 fcc_reg &= ~XAE_FCC_FCRX_MASK;
2456 axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
2457}
2458
2459static const struct phylink_mac_ops axienet_phylink_ops = {
2460 .mac_select_pcs = axienet_mac_select_pcs,
2461 .mac_config = axienet_mac_config,
2462 .mac_link_down = axienet_mac_link_down,
2463 .mac_link_up = axienet_mac_link_up,
2464};
2465
2466/**
2467 * axienet_dma_err_handler - Work queue task for Axi DMA Error
2468 * @work: pointer to work_struct
2469 *
2470 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
2471 * Tx/Rx BDs.
2472 */
2473static void axienet_dma_err_handler(struct work_struct *work)
2474{
2475 u32 i;
2476 u32 axienet_status;
2477 struct axidma_bd *cur_p;
2478 struct axienet_local *lp = container_of(work, struct axienet_local,
2479 dma_err_task);
2480 struct net_device *ndev = lp->ndev;
2481
2482 /* Don't bother if we are going to stop anyway */
2483 if (READ_ONCE(lp->stopping))
2484 return;
2485
2486 napi_disable(&lp->napi_tx);
2487 napi_disable(&lp->napi_rx);
2488
2489 axienet_setoptions(ndev, lp->options &
2490 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2491
2492 axienet_dma_stop(lp);
2493
2494 for (i = 0; i < lp->tx_bd_num; i++) {
2495 cur_p = &lp->tx_bd_v[i];
2496 if (cur_p->cntrl) {
2497 dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
2498
2499 dma_unmap_single(lp->dev, addr,
2500 (cur_p->cntrl &
2501 XAXIDMA_BD_CTRL_LENGTH_MASK),
2502 DMA_TO_DEVICE);
2503 }
2504 if (cur_p->skb)
2505 dev_kfree_skb_irq(cur_p->skb);
2506 cur_p->phys = 0;
2507 cur_p->phys_msb = 0;
2508 cur_p->cntrl = 0;
2509 cur_p->status = 0;
2510 cur_p->app0 = 0;
2511 cur_p->app1 = 0;
2512 cur_p->app2 = 0;
2513 cur_p->app3 = 0;
2514 cur_p->app4 = 0;
2515 cur_p->skb = NULL;
2516 }
2517
2518 for (i = 0; i < lp->rx_bd_num; i++) {
2519 cur_p = &lp->rx_bd_v[i];
2520 cur_p->status = 0;
2521 cur_p->app0 = 0;
2522 cur_p->app1 = 0;
2523 cur_p->app2 = 0;
2524 cur_p->app3 = 0;
2525 cur_p->app4 = 0;
2526 }
2527
2528 lp->tx_bd_ci = 0;
2529 lp->tx_bd_tail = 0;
2530 lp->rx_bd_ci = 0;
2531
2532 axienet_dma_start(lp);
2533
2534 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
2535 axienet_status &= ~XAE_RCW1_RX_MASK;
2536 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
2537
2538 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
2539 if (axienet_status & XAE_INT_RXRJECT_MASK)
2540 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
2541 axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
2542 XAE_INT_RECV_ERROR_MASK : 0);
2543 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
2544
2545 /* Sync default options with HW but leave receiver and
2546 * transmitter disabled.
2547 */
2548 axienet_setoptions(ndev, lp->options &
2549 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
2550 axienet_set_mac_address(ndev, NULL);
2551 axienet_set_multicast_list(ndev);
2552 napi_enable(&lp->napi_rx);
2553 napi_enable(&lp->napi_tx);
2554 axienet_setoptions(ndev, lp->options);
2555}
2556
2557/**
2558 * axienet_probe - Axi Ethernet probe function.
2559 * @pdev: Pointer to platform device structure.
2560 *
2561 * Return: 0, on success
2562 * Non-zero error value on failure.
2563 *
2564 * This is the probe routine for Axi Ethernet driver. This is called before
2565 * any other driver routines are invoked. It allocates and sets up the Ethernet
2566 * device. Parses through device tree and populates fields of
2567 * axienet_local. It registers the Ethernet device.
2568 */
2569static int axienet_probe(struct platform_device *pdev)
2570{
2571 int ret;
2572 struct device_node *np;
2573 struct axienet_local *lp;
2574 struct net_device *ndev;
2575 struct resource *ethres;
2576 u8 mac_addr[ETH_ALEN];
2577 int addr_width = 32;
2578 u32 value;
2579
2580 ndev = alloc_etherdev(sizeof(*lp));
2581 if (!ndev)
2582 return -ENOMEM;
2583
2584 platform_set_drvdata(pdev, ndev);
2585
2586 SET_NETDEV_DEV(ndev, &pdev->dev);
2587 ndev->features = NETIF_F_SG;
2588 ndev->ethtool_ops = &axienet_ethtool_ops;
2589
2590 /* MTU range: 64 - 9000 */
2591 ndev->min_mtu = 64;
2592 ndev->max_mtu = XAE_JUMBO_MTU;
2593
2594 lp = netdev_priv(ndev);
2595 lp->ndev = ndev;
2596 lp->dev = &pdev->dev;
2597 lp->options = XAE_OPTION_DEFAULTS;
2598 lp->rx_bd_num = RX_BD_NUM_DEFAULT;
2599 lp->tx_bd_num = TX_BD_NUM_DEFAULT;
2600
2601 u64_stats_init(&lp->rx_stat_sync);
2602 u64_stats_init(&lp->tx_stat_sync);
2603
2604 mutex_init(&lp->stats_lock);
2605 seqcount_mutex_init(&lp->hw_stats_seqcount, &lp->stats_lock);
2606 INIT_DEFERRABLE_WORK(&lp->stats_work, axienet_refresh_stats);
2607
2608 lp->axi_clk = devm_clk_get_optional(&pdev->dev, "s_axi_lite_clk");
2609 if (!lp->axi_clk) {
2610 /* For backward compatibility, if named AXI clock is not present,
2611 * treat the first clock specified as the AXI clock.
2612 */
2613 lp->axi_clk = devm_clk_get_optional(&pdev->dev, NULL);
2614 }
2615 if (IS_ERR(lp->axi_clk)) {
2616 ret = PTR_ERR(lp->axi_clk);
2617 goto free_netdev;
2618 }
2619 ret = clk_prepare_enable(lp->axi_clk);
2620 if (ret) {
2621 dev_err(&pdev->dev, "Unable to enable AXI clock: %d\n", ret);
2622 goto free_netdev;
2623 }
2624
2625 lp->misc_clks[0].id = "axis_clk";
2626 lp->misc_clks[1].id = "ref_clk";
2627 lp->misc_clks[2].id = "mgt_clk";
2628
2629 ret = devm_clk_bulk_get_optional(&pdev->dev, XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2630 if (ret)
2631 goto cleanup_clk;
2632
2633 ret = clk_bulk_prepare_enable(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2634 if (ret)
2635 goto cleanup_clk;
2636
2637 /* Map device registers */
2638 lp->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ðres);
2639 if (IS_ERR(lp->regs)) {
2640 ret = PTR_ERR(lp->regs);
2641 goto cleanup_clk;
2642 }
2643 lp->regs_start = ethres->start;
2644
2645 /* Setup checksum offload, but default to off if not specified */
2646 lp->features = 0;
2647
2648 if (axienet_ior(lp, XAE_ABILITY_OFFSET) & XAE_ABILITY_STATS)
2649 lp->features |= XAE_FEATURE_STATS;
2650
2651 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
2652 if (!ret) {
2653 switch (value) {
2654 case 1:
2655 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
2656 /* Can checksum any contiguous range */
2657 ndev->features |= NETIF_F_HW_CSUM;
2658 break;
2659 case 2:
2660 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
2661 /* Can checksum TCP/UDP over IPv4. */
2662 ndev->features |= NETIF_F_IP_CSUM;
2663 break;
2664 }
2665 }
2666 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
2667 if (!ret) {
2668 switch (value) {
2669 case 1:
2670 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
2671 ndev->features |= NETIF_F_RXCSUM;
2672 break;
2673 case 2:
2674 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
2675 ndev->features |= NETIF_F_RXCSUM;
2676 break;
2677 }
2678 }
2679 /* For supporting jumbo frames, the Axi Ethernet hardware must have
2680 * a larger Rx/Tx Memory. Typically, the size must be large so that
2681 * we can enable jumbo option and start supporting jumbo frames.
2682 * Here we check for memory allocated for Rx/Tx in the hardware from
2683 * the device-tree and accordingly set flags.
2684 */
2685 of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
2686
2687 lp->switch_x_sgmii = of_property_read_bool(pdev->dev.of_node,
2688 "xlnx,switch-x-sgmii");
2689
2690 /* Start with the proprietary, and broken phy_type */
2691 ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
2692 if (!ret) {
2693 netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
2694 switch (value) {
2695 case XAE_PHY_TYPE_MII:
2696 lp->phy_mode = PHY_INTERFACE_MODE_MII;
2697 break;
2698 case XAE_PHY_TYPE_GMII:
2699 lp->phy_mode = PHY_INTERFACE_MODE_GMII;
2700 break;
2701 case XAE_PHY_TYPE_RGMII_2_0:
2702 lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
2703 break;
2704 case XAE_PHY_TYPE_SGMII:
2705 lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
2706 break;
2707 case XAE_PHY_TYPE_1000BASE_X:
2708 lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
2709 break;
2710 default:
2711 ret = -EINVAL;
2712 goto cleanup_clk;
2713 }
2714 } else {
2715 ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
2716 if (ret)
2717 goto cleanup_clk;
2718 }
2719 if (lp->switch_x_sgmii && lp->phy_mode != PHY_INTERFACE_MODE_SGMII &&
2720 lp->phy_mode != PHY_INTERFACE_MODE_1000BASEX) {
2721 dev_err(&pdev->dev, "xlnx,switch-x-sgmii only supported with SGMII or 1000BaseX\n");
2722 ret = -EINVAL;
2723 goto cleanup_clk;
2724 }
2725
2726 if (!of_property_present(pdev->dev.of_node, "dmas")) {
2727 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
2728 np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
2729
2730 if (np) {
2731 struct resource dmares;
2732
2733 ret = of_address_to_resource(np, 0, &dmares);
2734 if (ret) {
2735 dev_err(&pdev->dev,
2736 "unable to get DMA resource\n");
2737 of_node_put(np);
2738 goto cleanup_clk;
2739 }
2740 lp->dma_regs = devm_ioremap_resource(&pdev->dev,
2741 &dmares);
2742 lp->rx_irq = irq_of_parse_and_map(np, 1);
2743 lp->tx_irq = irq_of_parse_and_map(np, 0);
2744 of_node_put(np);
2745 lp->eth_irq = platform_get_irq_optional(pdev, 0);
2746 } else {
2747 /* Check for these resources directly on the Ethernet node. */
2748 lp->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 1, NULL);
2749 lp->rx_irq = platform_get_irq(pdev, 1);
2750 lp->tx_irq = platform_get_irq(pdev, 0);
2751 lp->eth_irq = platform_get_irq_optional(pdev, 2);
2752 }
2753 if (IS_ERR(lp->dma_regs)) {
2754 dev_err(&pdev->dev, "could not map DMA regs\n");
2755 ret = PTR_ERR(lp->dma_regs);
2756 goto cleanup_clk;
2757 }
2758 if (lp->rx_irq <= 0 || lp->tx_irq <= 0) {
2759 dev_err(&pdev->dev, "could not determine irqs\n");
2760 ret = -ENOMEM;
2761 goto cleanup_clk;
2762 }
2763
2764 /* Reset core now that clocks are enabled, prior to accessing MDIO */
2765 ret = __axienet_device_reset(lp);
2766 if (ret)
2767 goto cleanup_clk;
2768
2769 /* Autodetect the need for 64-bit DMA pointers.
2770 * When the IP is configured for a bus width bigger than 32 bits,
2771 * writing the MSB registers is mandatory, even if they are all 0.
2772 * We can detect this case by writing all 1's to one such register
2773 * and see if that sticks: when the IP is configured for 32 bits
2774 * only, those registers are RES0.
2775 * Those MSB registers were introduced in IP v7.1, which we check first.
2776 */
2777 if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2778 void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2779
2780 iowrite32(0x0, desc);
2781 if (ioread32(desc) == 0) { /* sanity check */
2782 iowrite32(0xffffffff, desc);
2783 if (ioread32(desc) > 0) {
2784 lp->features |= XAE_FEATURE_DMA_64BIT;
2785 addr_width = 64;
2786 dev_info(&pdev->dev,
2787 "autodetected 64-bit DMA range\n");
2788 }
2789 iowrite32(0x0, desc);
2790 }
2791 }
2792 if (!IS_ENABLED(CONFIG_64BIT) && lp->features & XAE_FEATURE_DMA_64BIT) {
2793 dev_err(&pdev->dev, "64-bit addressable DMA is not compatible with 32-bit archecture\n");
2794 ret = -EINVAL;
2795 goto cleanup_clk;
2796 }
2797
2798 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2799 if (ret) {
2800 dev_err(&pdev->dev, "No suitable DMA available\n");
2801 goto cleanup_clk;
2802 }
2803 netif_napi_add(ndev, &lp->napi_rx, axienet_rx_poll);
2804 netif_napi_add(ndev, &lp->napi_tx, axienet_tx_poll);
2805 } else {
2806 struct xilinx_vdma_config cfg;
2807 struct dma_chan *tx_chan;
2808
2809 lp->eth_irq = platform_get_irq_optional(pdev, 0);
2810 if (lp->eth_irq < 0 && lp->eth_irq != -ENXIO) {
2811 ret = lp->eth_irq;
2812 goto cleanup_clk;
2813 }
2814 tx_chan = dma_request_chan(lp->dev, "tx_chan0");
2815 if (IS_ERR(tx_chan)) {
2816 ret = PTR_ERR(tx_chan);
2817 dev_err_probe(lp->dev, ret, "No Ethernet DMA (TX) channel found\n");
2818 goto cleanup_clk;
2819 }
2820
2821 cfg.reset = 1;
2822 /* As name says VDMA but it has support for DMA channel reset */
2823 ret = xilinx_vdma_channel_set_config(tx_chan, &cfg);
2824 if (ret < 0) {
2825 dev_err(&pdev->dev, "Reset channel failed\n");
2826 dma_release_channel(tx_chan);
2827 goto cleanup_clk;
2828 }
2829
2830 dma_release_channel(tx_chan);
2831 lp->use_dmaengine = 1;
2832 }
2833
2834 if (lp->use_dmaengine)
2835 ndev->netdev_ops = &axienet_netdev_dmaengine_ops;
2836 else
2837 ndev->netdev_ops = &axienet_netdev_ops;
2838 /* Check for Ethernet core IRQ (optional) */
2839 if (lp->eth_irq <= 0)
2840 dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2841
2842 /* Retrieve the MAC address */
2843 ret = of_get_mac_address(pdev->dev.of_node, mac_addr);
2844 if (!ret) {
2845 axienet_set_mac_address(ndev, mac_addr);
2846 } else {
2847 dev_warn(&pdev->dev, "could not find MAC address property: %d\n",
2848 ret);
2849 axienet_set_mac_address(ndev, NULL);
2850 }
2851
2852 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2853 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2854 lp->coalesce_usec_rx = XAXIDMA_DFT_RX_USEC;
2855 lp->coalesce_usec_tx = XAXIDMA_DFT_TX_USEC;
2856
2857 ret = axienet_mdio_setup(lp);
2858 if (ret)
2859 dev_warn(&pdev->dev,
2860 "error registering MDIO bus: %d\n", ret);
2861
2862 if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2863 lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2864 np = of_parse_phandle(pdev->dev.of_node, "pcs-handle", 0);
2865 if (!np) {
2866 /* Deprecated: Always use "pcs-handle" for pcs_phy.
2867 * Falling back to "phy-handle" here is only for
2868 * backward compatibility with old device trees.
2869 */
2870 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2871 }
2872 if (!np) {
2873 dev_err(&pdev->dev, "pcs-handle (preferred) or phy-handle required for 1000BaseX/SGMII\n");
2874 ret = -EINVAL;
2875 goto cleanup_mdio;
2876 }
2877 lp->pcs_phy = of_mdio_find_device(np);
2878 if (!lp->pcs_phy) {
2879 ret = -EPROBE_DEFER;
2880 of_node_put(np);
2881 goto cleanup_mdio;
2882 }
2883 of_node_put(np);
2884 lp->pcs.ops = &axienet_pcs_ops;
2885 lp->pcs.neg_mode = true;
2886 lp->pcs.poll = true;
2887 }
2888
2889 lp->phylink_config.dev = &ndev->dev;
2890 lp->phylink_config.type = PHYLINK_NETDEV;
2891 lp->phylink_config.mac_managed_pm = true;
2892 lp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_ASYM_PAUSE |
2893 MAC_10FD | MAC_100FD | MAC_1000FD;
2894
2895 __set_bit(lp->phy_mode, lp->phylink_config.supported_interfaces);
2896 if (lp->switch_x_sgmii) {
2897 __set_bit(PHY_INTERFACE_MODE_1000BASEX,
2898 lp->phylink_config.supported_interfaces);
2899 __set_bit(PHY_INTERFACE_MODE_SGMII,
2900 lp->phylink_config.supported_interfaces);
2901 }
2902
2903 lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2904 lp->phy_mode,
2905 &axienet_phylink_ops);
2906 if (IS_ERR(lp->phylink)) {
2907 ret = PTR_ERR(lp->phylink);
2908 dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2909 goto cleanup_mdio;
2910 }
2911
2912 ret = register_netdev(lp->ndev);
2913 if (ret) {
2914 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2915 goto cleanup_phylink;
2916 }
2917
2918 return 0;
2919
2920cleanup_phylink:
2921 phylink_destroy(lp->phylink);
2922
2923cleanup_mdio:
2924 if (lp->pcs_phy)
2925 put_device(&lp->pcs_phy->dev);
2926 if (lp->mii_bus)
2927 axienet_mdio_teardown(lp);
2928cleanup_clk:
2929 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2930 clk_disable_unprepare(lp->axi_clk);
2931
2932free_netdev:
2933 free_netdev(ndev);
2934
2935 return ret;
2936}
2937
2938static void axienet_remove(struct platform_device *pdev)
2939{
2940 struct net_device *ndev = platform_get_drvdata(pdev);
2941 struct axienet_local *lp = netdev_priv(ndev);
2942
2943 unregister_netdev(ndev);
2944
2945 if (lp->phylink)
2946 phylink_destroy(lp->phylink);
2947
2948 if (lp->pcs_phy)
2949 put_device(&lp->pcs_phy->dev);
2950
2951 axienet_mdio_teardown(lp);
2952
2953 clk_bulk_disable_unprepare(XAE_NUM_MISC_CLOCKS, lp->misc_clks);
2954 clk_disable_unprepare(lp->axi_clk);
2955
2956 free_netdev(ndev);
2957}
2958
2959static void axienet_shutdown(struct platform_device *pdev)
2960{
2961 struct net_device *ndev = platform_get_drvdata(pdev);
2962
2963 rtnl_lock();
2964 netif_device_detach(ndev);
2965
2966 if (netif_running(ndev))
2967 dev_close(ndev);
2968
2969 rtnl_unlock();
2970}
2971
2972static int axienet_suspend(struct device *dev)
2973{
2974 struct net_device *ndev = dev_get_drvdata(dev);
2975
2976 if (!netif_running(ndev))
2977 return 0;
2978
2979 netif_device_detach(ndev);
2980
2981 rtnl_lock();
2982 axienet_stop(ndev);
2983 rtnl_unlock();
2984
2985 return 0;
2986}
2987
2988static int axienet_resume(struct device *dev)
2989{
2990 struct net_device *ndev = dev_get_drvdata(dev);
2991
2992 if (!netif_running(ndev))
2993 return 0;
2994
2995 rtnl_lock();
2996 axienet_open(ndev);
2997 rtnl_unlock();
2998
2999 netif_device_attach(ndev);
3000
3001 return 0;
3002}
3003
3004static DEFINE_SIMPLE_DEV_PM_OPS(axienet_pm_ops,
3005 axienet_suspend, axienet_resume);
3006
3007static struct platform_driver axienet_driver = {
3008 .probe = axienet_probe,
3009 .remove = axienet_remove,
3010 .shutdown = axienet_shutdown,
3011 .driver = {
3012 .name = "xilinx_axienet",
3013 .pm = &axienet_pm_ops,
3014 .of_match_table = axienet_of_match,
3015 },
3016};
3017
3018module_platform_driver(axienet_driver);
3019
3020MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
3021MODULE_AUTHOR("Xilinx");
3022MODULE_LICENSE("GPL");
1/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/netdevice.h>
28#include <linux/of_mdio.h>
29#include <linux/of_platform.h>
30#include <linux/of_address.h>
31#include <linux/skbuff.h>
32#include <linux/spinlock.h>
33#include <linux/phy.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36
37#include "xilinx_axienet.h"
38
39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40#define TX_BD_NUM 64
41#define RX_BD_NUM 128
42
43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44#define DRIVER_NAME "xaxienet"
45#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
46#define DRIVER_VERSION "1.00a"
47
48#define AXIENET_REGS_N 32
49
50/* Match table for of_platform binding */
51static struct of_device_id axienet_of_match[] __devinitdata = {
52 { .compatible = "xlnx,axi-ethernet-1.00.a", },
53 { .compatible = "xlnx,axi-ethernet-1.01.a", },
54 { .compatible = "xlnx,axi-ethernet-2.01.a", },
55 {},
56};
57
58MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60/* Option table for setting up Axi Ethernet hardware options */
61static struct axienet_option axienet_options[] = {
62 /* Turn on jumbo packet support for both Rx and Tx */
63 {
64 .opt = XAE_OPTION_JUMBO,
65 .reg = XAE_TC_OFFSET,
66 .m_or = XAE_TC_JUM_MASK,
67 }, {
68 .opt = XAE_OPTION_JUMBO,
69 .reg = XAE_RCW1_OFFSET,
70 .m_or = XAE_RCW1_JUM_MASK,
71 }, { /* Turn on VLAN packet support for both Rx and Tx */
72 .opt = XAE_OPTION_VLAN,
73 .reg = XAE_TC_OFFSET,
74 .m_or = XAE_TC_VLAN_MASK,
75 }, {
76 .opt = XAE_OPTION_VLAN,
77 .reg = XAE_RCW1_OFFSET,
78 .m_or = XAE_RCW1_VLAN_MASK,
79 }, { /* Turn on FCS stripping on receive packets */
80 .opt = XAE_OPTION_FCS_STRIP,
81 .reg = XAE_RCW1_OFFSET,
82 .m_or = XAE_RCW1_FCS_MASK,
83 }, { /* Turn on FCS insertion on transmit packets */
84 .opt = XAE_OPTION_FCS_INSERT,
85 .reg = XAE_TC_OFFSET,
86 .m_or = XAE_TC_FCS_MASK,
87 }, { /* Turn off length/type field checking on receive packets */
88 .opt = XAE_OPTION_LENTYPE_ERR,
89 .reg = XAE_RCW1_OFFSET,
90 .m_or = XAE_RCW1_LT_DIS_MASK,
91 }, { /* Turn on Rx flow control */
92 .opt = XAE_OPTION_FLOW_CONTROL,
93 .reg = XAE_FCC_OFFSET,
94 .m_or = XAE_FCC_FCRX_MASK,
95 }, { /* Turn on Tx flow control */
96 .opt = XAE_OPTION_FLOW_CONTROL,
97 .reg = XAE_FCC_OFFSET,
98 .m_or = XAE_FCC_FCTX_MASK,
99 }, { /* Turn on promiscuous frame filtering */
100 .opt = XAE_OPTION_PROMISC,
101 .reg = XAE_FMI_OFFSET,
102 .m_or = XAE_FMI_PM_MASK,
103 }, { /* Enable transmitter */
104 .opt = XAE_OPTION_TXEN,
105 .reg = XAE_TC_OFFSET,
106 .m_or = XAE_TC_TX_MASK,
107 }, { /* Enable receiver */
108 .opt = XAE_OPTION_RXEN,
109 .reg = XAE_RCW1_OFFSET,
110 .m_or = XAE_RCW1_RX_MASK,
111 },
112 {}
113};
114
115/**
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp: Pointer to axienet local structure
118 * @reg: Address offset from the base address of the Axi DMA core
119 *
120 * returns: The contents of the Axi DMA register
121 *
122 * This function returns the contents of the corresponding Axi DMA register.
123 */
124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125{
126 return in_be32(lp->dma_regs + reg);
127}
128
129/**
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp: Pointer to axienet local structure
132 * @reg: Address offset from the base address of the Axi DMA core
133 * @value: Value to be written into the Axi DMA register
134 *
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
137 */
138static inline void axienet_dma_out32(struct axienet_local *lp,
139 off_t reg, u32 value)
140{
141 out_be32((lp->dma_regs + reg), value);
142}
143
144/**
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev: Pointer to the net_device structure
147 *
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
151 */
152static void axienet_dma_bd_release(struct net_device *ndev)
153{
154 int i;
155 struct axienet_local *lp = netdev_priv(ndev);
156
157 for (i = 0; i < RX_BD_NUM; i++) {
158 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 lp->max_frm_size, DMA_FROM_DEVICE);
160 dev_kfree_skb((struct sk_buff *)
161 (lp->rx_bd_v[i].sw_id_offset));
162 }
163
164 if (lp->rx_bd_v) {
165 dma_free_coherent(ndev->dev.parent,
166 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 lp->rx_bd_v,
168 lp->rx_bd_p);
169 }
170 if (lp->tx_bd_v) {
171 dma_free_coherent(ndev->dev.parent,
172 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 lp->tx_bd_v,
174 lp->tx_bd_p);
175 }
176}
177
178/**
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev: Pointer to the net_device structure
181 *
182 * returns: 0, on success
183 * -ENOMEM, on failure
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189static int axienet_dma_bd_init(struct net_device *ndev)
190{
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
195
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
200
201 /*
202 * Allocate the Tx and Rx buffer descriptors.
203 */
204 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
205 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206 &lp->tx_bd_p,
207 GFP_KERNEL);
208 if (!lp->tx_bd_v) {
209 dev_err(&ndev->dev, "unable to allocate DMA Tx buffer "
210 "descriptors");
211 goto out;
212 }
213
214 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
215 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
216 &lp->rx_bd_p,
217 GFP_KERNEL);
218 if (!lp->rx_bd_v) {
219 dev_err(&ndev->dev, "unable to allocate DMA Rx buffer "
220 "descriptors");
221 goto out;
222 }
223
224 memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM);
225 for (i = 0; i < TX_BD_NUM; i++) {
226 lp->tx_bd_v[i].next = lp->tx_bd_p +
227 sizeof(*lp->tx_bd_v) *
228 ((i + 1) % TX_BD_NUM);
229 }
230
231 memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM);
232 for (i = 0; i < RX_BD_NUM; i++) {
233 lp->rx_bd_v[i].next = lp->rx_bd_p +
234 sizeof(*lp->rx_bd_v) *
235 ((i + 1) % RX_BD_NUM);
236
237 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
238 if (!skb) {
239 dev_err(&ndev->dev, "alloc_skb error %d\n", i);
240 goto out;
241 }
242
243 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
244 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
245 skb->data,
246 lp->max_frm_size,
247 DMA_FROM_DEVICE);
248 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
249 }
250
251 /* Start updating the Rx channel control register */
252 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
253 /* Update the interrupt coalesce count */
254 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
255 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
256 /* Update the delay timer count */
257 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
258 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
259 /* Enable coalesce, delay timer and error interrupts */
260 cr |= XAXIDMA_IRQ_ALL_MASK;
261 /* Write to the Rx channel control register */
262 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
263
264 /* Start updating the Tx channel control register */
265 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
266 /* Update the interrupt coalesce count */
267 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
268 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
269 /* Update the delay timer count */
270 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
271 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
272 /* Enable coalesce, delay timer and error interrupts */
273 cr |= XAXIDMA_IRQ_ALL_MASK;
274 /* Write to the Tx channel control register */
275 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
276
277 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
278 * halted state. This will make the Rx side ready for reception.*/
279 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
280 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
281 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
282 cr | XAXIDMA_CR_RUNSTOP_MASK);
283 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
284 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
285
286 /* Write to the RS (Run-stop) bit in the Tx channel control register.
287 * Tx channel is now ready to run. But only after we write to the
288 * tail pointer register that the Tx channel will start transmitting */
289 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
290 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
291 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
292 cr | XAXIDMA_CR_RUNSTOP_MASK);
293
294 return 0;
295out:
296 axienet_dma_bd_release(ndev);
297 return -ENOMEM;
298}
299
300/**
301 * axienet_set_mac_address - Write the MAC address
302 * @ndev: Pointer to the net_device structure
303 * @address: 6 byte Address to be written as MAC address
304 *
305 * This function is called to initialize the MAC address of the Axi Ethernet
306 * core. It writes to the UAW0 and UAW1 registers of the core.
307 */
308static void axienet_set_mac_address(struct net_device *ndev, void *address)
309{
310 struct axienet_local *lp = netdev_priv(ndev);
311
312 if (address)
313 memcpy(ndev->dev_addr, address, ETH_ALEN);
314 if (!is_valid_ether_addr(ndev->dev_addr))
315 random_ether_addr(ndev->dev_addr);
316
317 /* Set up unicast MAC address filter set its mac address */
318 axienet_iow(lp, XAE_UAW0_OFFSET,
319 (ndev->dev_addr[0]) |
320 (ndev->dev_addr[1] << 8) |
321 (ndev->dev_addr[2] << 16) |
322 (ndev->dev_addr[3] << 24));
323 axienet_iow(lp, XAE_UAW1_OFFSET,
324 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
325 ~XAE_UAW1_UNICASTADDR_MASK) |
326 (ndev->dev_addr[4] |
327 (ndev->dev_addr[5] << 8))));
328}
329
330/**
331 * netdev_set_mac_address - Write the MAC address (from outside the driver)
332 * @ndev: Pointer to the net_device structure
333 * @p: 6 byte Address to be written as MAC address
334 *
335 * returns: 0 for all conditions. Presently, there is no failure case.
336 *
337 * This function is called to initialize the MAC address of the Axi Ethernet
338 * core. It calls the core specific axienet_set_mac_address. This is the
339 * function that goes into net_device_ops structure entry ndo_set_mac_address.
340 */
341static int netdev_set_mac_address(struct net_device *ndev, void *p)
342{
343 struct sockaddr *addr = p;
344 axienet_set_mac_address(ndev, addr->sa_data);
345 return 0;
346}
347
348/**
349 * axienet_set_multicast_list - Prepare the multicast table
350 * @ndev: Pointer to the net_device structure
351 *
352 * This function is called to initialize the multicast table during
353 * initialization. The Axi Ethernet basic multicast support has a four-entry
354 * multicast table which is initialized here. Additionally this function
355 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
356 * means whenever the multicast table entries need to be updated this
357 * function gets called.
358 */
359static void axienet_set_multicast_list(struct net_device *ndev)
360{
361 int i;
362 u32 reg, af0reg, af1reg;
363 struct axienet_local *lp = netdev_priv(ndev);
364
365 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
366 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
367 /* We must make the kernel realize we had to move into
368 * promiscuous mode. If it was a promiscuous mode request
369 * the flag is already set. If not we set it. */
370 ndev->flags |= IFF_PROMISC;
371 reg = axienet_ior(lp, XAE_FMI_OFFSET);
372 reg |= XAE_FMI_PM_MASK;
373 axienet_iow(lp, XAE_FMI_OFFSET, reg);
374 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
375 } else if (!netdev_mc_empty(ndev)) {
376 struct netdev_hw_addr *ha;
377
378 i = 0;
379 netdev_for_each_mc_addr(ha, ndev) {
380 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
381 break;
382
383 af0reg = (ha->addr[0]);
384 af0reg |= (ha->addr[1] << 8);
385 af0reg |= (ha->addr[2] << 16);
386 af0reg |= (ha->addr[3] << 24);
387
388 af1reg = (ha->addr[4]);
389 af1reg |= (ha->addr[5] << 8);
390
391 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
392 reg |= i;
393
394 axienet_iow(lp, XAE_FMI_OFFSET, reg);
395 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
396 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
397 i++;
398 }
399 } else {
400 reg = axienet_ior(lp, XAE_FMI_OFFSET);
401 reg &= ~XAE_FMI_PM_MASK;
402
403 axienet_iow(lp, XAE_FMI_OFFSET, reg);
404
405 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
406 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
407 reg |= i;
408
409 axienet_iow(lp, XAE_FMI_OFFSET, reg);
410 axienet_iow(lp, XAE_AF0_OFFSET, 0);
411 axienet_iow(lp, XAE_AF1_OFFSET, 0);
412 }
413
414 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
415 }
416}
417
418/**
419 * axienet_setoptions - Set an Axi Ethernet option
420 * @ndev: Pointer to the net_device structure
421 * @options: Option to be enabled/disabled
422 *
423 * The Axi Ethernet core has multiple features which can be selectively turned
424 * on or off. The typical options could be jumbo frame option, basic VLAN
425 * option, promiscuous mode option etc. This function is used to set or clear
426 * these options in the Axi Ethernet hardware. This is done through
427 * axienet_option structure .
428 */
429static void axienet_setoptions(struct net_device *ndev, u32 options)
430{
431 int reg;
432 struct axienet_local *lp = netdev_priv(ndev);
433 struct axienet_option *tp = &axienet_options[0];
434
435 while (tp->opt) {
436 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
437 if (options & tp->opt)
438 reg |= tp->m_or;
439 axienet_iow(lp, tp->reg, reg);
440 tp++;
441 }
442
443 lp->options |= options;
444}
445
446static void __axienet_device_reset(struct axienet_local *lp,
447 struct device *dev, off_t offset)
448{
449 u32 timeout;
450 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
451 * process of Axi DMA takes a while to complete as all pending
452 * commands/transfers will be flushed or completed during this
453 * reset process. */
454 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
455 timeout = DELAY_OF_ONE_MILLISEC;
456 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
457 udelay(1);
458 if (--timeout == 0) {
459 dev_err(dev, "axienet_device_reset DMA "
460 "reset timeout!\n");
461 break;
462 }
463 }
464}
465
466/**
467 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
468 * @ndev: Pointer to the net_device structure
469 *
470 * This function is called to reset and initialize the Axi Ethernet core. This
471 * is typically called during initialization. It does a reset of the Axi DMA
472 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
473 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
474 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
475 * core.
476 */
477static void axienet_device_reset(struct net_device *ndev)
478{
479 u32 axienet_status;
480 struct axienet_local *lp = netdev_priv(ndev);
481
482 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
483 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
484
485 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
486 lp->options &= (~XAE_OPTION_JUMBO);
487
488 if ((ndev->mtu > XAE_MTU) &&
489 (ndev->mtu <= XAE_JUMBO_MTU) &&
490 (lp->jumbo_support)) {
491 lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
492 XAE_TRL_SIZE;
493 lp->options |= XAE_OPTION_JUMBO;
494 }
495
496 if (axienet_dma_bd_init(ndev)) {
497 dev_err(&ndev->dev, "axienet_device_reset descriptor "
498 "allocation failed\n");
499 }
500
501 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
502 axienet_status &= ~XAE_RCW1_RX_MASK;
503 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
504
505 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
506 if (axienet_status & XAE_INT_RXRJECT_MASK)
507 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
508
509 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
510
511 /* Sync default options with HW but leave receiver and
512 * transmitter disabled.*/
513 axienet_setoptions(ndev, lp->options &
514 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
515 axienet_set_mac_address(ndev, NULL);
516 axienet_set_multicast_list(ndev);
517 axienet_setoptions(ndev, lp->options);
518
519 ndev->trans_start = jiffies;
520}
521
522/**
523 * axienet_adjust_link - Adjust the PHY link speed/duplex.
524 * @ndev: Pointer to the net_device structure
525 *
526 * This function is called to change the speed and duplex setting after
527 * auto negotiation is done by the PHY. This is the function that gets
528 * registered with the PHY interface through the "of_phy_connect" call.
529 */
530static void axienet_adjust_link(struct net_device *ndev)
531{
532 u32 emmc_reg;
533 u32 link_state;
534 u32 setspeed = 1;
535 struct axienet_local *lp = netdev_priv(ndev);
536 struct phy_device *phy = lp->phy_dev;
537
538 link_state = phy->speed | (phy->duplex << 1) | phy->link;
539 if (lp->last_link != link_state) {
540 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
541 if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
542 setspeed = 0;
543 } else {
544 if ((phy->speed == SPEED_1000) &&
545 (lp->phy_type == XAE_PHY_TYPE_MII))
546 setspeed = 0;
547 }
548
549 if (setspeed == 1) {
550 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
551 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
552
553 switch (phy->speed) {
554 case SPEED_1000:
555 emmc_reg |= XAE_EMMC_LINKSPD_1000;
556 break;
557 case SPEED_100:
558 emmc_reg |= XAE_EMMC_LINKSPD_100;
559 break;
560 case SPEED_10:
561 emmc_reg |= XAE_EMMC_LINKSPD_10;
562 break;
563 default:
564 dev_err(&ndev->dev, "Speed other than 10, 100 "
565 "or 1Gbps is not supported\n");
566 break;
567 }
568
569 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
570 lp->last_link = link_state;
571 phy_print_status(phy);
572 } else {
573 dev_err(&ndev->dev, "Error setting Axi Ethernet "
574 "mac speed\n");
575 }
576 }
577}
578
579/**
580 * axienet_start_xmit_done - Invoked once a transmit is completed by the
581 * Axi DMA Tx channel.
582 * @ndev: Pointer to the net_device structure
583 *
584 * This function is invoked from the Axi DMA Tx isr to notify the completion
585 * of transmit operation. It clears fields in the corresponding Tx BDs and
586 * unmaps the corresponding buffer so that CPU can regain ownership of the
587 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
588 * required.
589 */
590static void axienet_start_xmit_done(struct net_device *ndev)
591{
592 u32 size = 0;
593 u32 packets = 0;
594 struct axienet_local *lp = netdev_priv(ndev);
595 struct axidma_bd *cur_p;
596 unsigned int status = 0;
597
598 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
599 status = cur_p->status;
600 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
601 dma_unmap_single(ndev->dev.parent, cur_p->phys,
602 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
603 DMA_TO_DEVICE);
604 if (cur_p->app4)
605 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
606 /*cur_p->phys = 0;*/
607 cur_p->app0 = 0;
608 cur_p->app1 = 0;
609 cur_p->app2 = 0;
610 cur_p->app4 = 0;
611 cur_p->status = 0;
612
613 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
614 packets++;
615
616 lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
617 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
618 status = cur_p->status;
619 }
620
621 ndev->stats.tx_packets += packets;
622 ndev->stats.tx_bytes += size;
623 netif_wake_queue(ndev);
624}
625
626/**
627 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
628 * @lp: Pointer to the axienet_local structure
629 * @num_frag: The number of BDs to check for
630 *
631 * returns: 0, on success
632 * NETDEV_TX_BUSY, if any of the descriptors are not free
633 *
634 * This function is invoked before BDs are allocated and transmission starts.
635 * This function returns 0 if a BD or group of BDs can be allocated for
636 * transmission. If the BD or any of the BDs are not free the function
637 * returns a busy status. This is invoked from axienet_start_xmit.
638 */
639static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
640 int num_frag)
641{
642 struct axidma_bd *cur_p;
643 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
644 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
645 return NETDEV_TX_BUSY;
646 return 0;
647}
648
649/**
650 * axienet_start_xmit - Starts the transmission.
651 * @skb: sk_buff pointer that contains data to be Txed.
652 * @ndev: Pointer to net_device structure.
653 *
654 * returns: NETDEV_TX_OK, on success
655 * NETDEV_TX_BUSY, if any of the descriptors are not free
656 *
657 * This function is invoked from upper layers to initiate transmission. The
658 * function uses the next available free BDs and populates their fields to
659 * start the transmission. Additionally if checksum offloading is supported,
660 * it populates AXI Stream Control fields with appropriate values.
661 */
662static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
663{
664 u32 ii;
665 u32 num_frag;
666 u32 csum_start_off;
667 u32 csum_index_off;
668 skb_frag_t *frag;
669 dma_addr_t tail_p;
670 struct axienet_local *lp = netdev_priv(ndev);
671 struct axidma_bd *cur_p;
672
673 num_frag = skb_shinfo(skb)->nr_frags;
674 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
675
676 if (axienet_check_tx_bd_space(lp, num_frag)) {
677 if (!netif_queue_stopped(ndev))
678 netif_stop_queue(ndev);
679 return NETDEV_TX_BUSY;
680 }
681
682 if (skb->ip_summed == CHECKSUM_PARTIAL) {
683 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
684 /* Tx Full Checksum Offload Enabled */
685 cur_p->app0 |= 2;
686 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
687 csum_start_off = skb_transport_offset(skb);
688 csum_index_off = csum_start_off + skb->csum_offset;
689 /* Tx Partial Checksum Offload Enabled */
690 cur_p->app0 |= 1;
691 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
692 }
693 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
694 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
695 }
696
697 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
698 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
699 skb_headlen(skb), DMA_TO_DEVICE);
700
701 for (ii = 0; ii < num_frag; ii++) {
702 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
703 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
704 frag = &skb_shinfo(skb)->frags[ii];
705 cur_p->phys = dma_map_single(ndev->dev.parent,
706 skb_frag_address(frag),
707 skb_frag_size(frag),
708 DMA_TO_DEVICE);
709 cur_p->cntrl = skb_frag_size(frag);
710 }
711
712 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
713 cur_p->app4 = (unsigned long)skb;
714
715 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
716 /* Start the transfer */
717 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
718 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
719
720 return NETDEV_TX_OK;
721}
722
723/**
724 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
725 * BD processing.
726 * @ndev: Pointer to net_device structure.
727 *
728 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
729 * does minimal processing and invokes "netif_rx" to complete further
730 * processing.
731 */
732static void axienet_recv(struct net_device *ndev)
733{
734 u32 length;
735 u32 csumstatus;
736 u32 size = 0;
737 u32 packets = 0;
738 dma_addr_t tail_p;
739 struct axienet_local *lp = netdev_priv(ndev);
740 struct sk_buff *skb, *new_skb;
741 struct axidma_bd *cur_p;
742
743 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
744 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
745
746 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
747 skb = (struct sk_buff *) (cur_p->sw_id_offset);
748 length = cur_p->app4 & 0x0000FFFF;
749
750 dma_unmap_single(ndev->dev.parent, cur_p->phys,
751 lp->max_frm_size,
752 DMA_FROM_DEVICE);
753
754 skb_put(skb, length);
755 skb->protocol = eth_type_trans(skb, ndev);
756 /*skb_checksum_none_assert(skb);*/
757 skb->ip_summed = CHECKSUM_NONE;
758
759 /* if we're doing Rx csum offload, set it up */
760 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
761 csumstatus = (cur_p->app2 &
762 XAE_FULL_CSUM_STATUS_MASK) >> 3;
763 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
764 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
765 skb->ip_summed = CHECKSUM_UNNECESSARY;
766 }
767 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
768 skb->protocol == __constant_htons(ETH_P_IP) &&
769 skb->len > 64) {
770 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
771 skb->ip_summed = CHECKSUM_COMPLETE;
772 }
773
774 netif_rx(skb);
775
776 size += length;
777 packets++;
778
779 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
780 if (!new_skb) {
781 dev_err(&ndev->dev, "no memory for new sk_buff\n");
782 return;
783 }
784 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
785 lp->max_frm_size,
786 DMA_FROM_DEVICE);
787 cur_p->cntrl = lp->max_frm_size;
788 cur_p->status = 0;
789 cur_p->sw_id_offset = (u32) new_skb;
790
791 lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
792 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
793 }
794
795 ndev->stats.rx_packets += packets;
796 ndev->stats.rx_bytes += size;
797
798 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
799}
800
801/**
802 * axienet_tx_irq - Tx Done Isr.
803 * @irq: irq number
804 * @_ndev: net_device pointer
805 *
806 * returns: IRQ_HANDLED for all cases.
807 *
808 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
809 * to complete the BD processing.
810 */
811static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
812{
813 u32 cr;
814 unsigned int status;
815 struct net_device *ndev = _ndev;
816 struct axienet_local *lp = netdev_priv(ndev);
817
818 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
819 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
820 axienet_start_xmit_done(lp->ndev);
821 goto out;
822 }
823 if (!(status & XAXIDMA_IRQ_ALL_MASK))
824 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
825 if (status & XAXIDMA_IRQ_ERROR_MASK) {
826 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
827 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
828 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
829
830 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
831 /* Disable coalesce, delay timer and error interrupts */
832 cr &= (~XAXIDMA_IRQ_ALL_MASK);
833 /* Write to the Tx channel control register */
834 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
835
836 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
837 /* Disable coalesce, delay timer and error interrupts */
838 cr &= (~XAXIDMA_IRQ_ALL_MASK);
839 /* Write to the Rx channel control register */
840 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
841
842 tasklet_schedule(&lp->dma_err_tasklet);
843 }
844out:
845 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
846 return IRQ_HANDLED;
847}
848
849/**
850 * axienet_rx_irq - Rx Isr.
851 * @irq: irq number
852 * @_ndev: net_device pointer
853 *
854 * returns: IRQ_HANDLED for all cases.
855 *
856 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
857 * processing.
858 */
859static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
860{
861 u32 cr;
862 unsigned int status;
863 struct net_device *ndev = _ndev;
864 struct axienet_local *lp = netdev_priv(ndev);
865
866 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
867 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
868 axienet_recv(lp->ndev);
869 goto out;
870 }
871 if (!(status & XAXIDMA_IRQ_ALL_MASK))
872 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
873 if (status & XAXIDMA_IRQ_ERROR_MASK) {
874 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
875 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
876 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
877
878 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
879 /* Disable coalesce, delay timer and error interrupts */
880 cr &= (~XAXIDMA_IRQ_ALL_MASK);
881 /* Finally write to the Tx channel control register */
882 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
883
884 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
885 /* Disable coalesce, delay timer and error interrupts */
886 cr &= (~XAXIDMA_IRQ_ALL_MASK);
887 /* write to the Rx channel control register */
888 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
889
890 tasklet_schedule(&lp->dma_err_tasklet);
891 }
892out:
893 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
894 return IRQ_HANDLED;
895}
896
897/**
898 * axienet_open - Driver open routine.
899 * @ndev: Pointer to net_device structure
900 *
901 * returns: 0, on success.
902 * -ENODEV, if PHY cannot be connected to
903 * non-zero error value on failure
904 *
905 * This is the driver open routine. It calls phy_start to start the PHY device.
906 * It also allocates interrupt service routines, enables the interrupt lines
907 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
908 * descriptors are initialized.
909 */
910static int axienet_open(struct net_device *ndev)
911{
912 int ret, mdio_mcreg;
913 struct axienet_local *lp = netdev_priv(ndev);
914
915 dev_dbg(&ndev->dev, "axienet_open()\n");
916
917 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
918 ret = axienet_mdio_wait_until_ready(lp);
919 if (ret < 0)
920 return ret;
921 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
922 * When we do an Axi Ethernet reset, it resets the complete core
923 * including the MDIO. If MDIO is not disabled when the reset
924 * process is started, MDIO will be broken afterwards. */
925 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
926 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
927 axienet_device_reset(ndev);
928 /* Enable the MDIO */
929 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
930 ret = axienet_mdio_wait_until_ready(lp);
931 if (ret < 0)
932 return ret;
933
934 if (lp->phy_node) {
935 lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
936 axienet_adjust_link, 0,
937 PHY_INTERFACE_MODE_GMII);
938 if (!lp->phy_dev) {
939 dev_err(lp->dev, "of_phy_connect() failed\n");
940 return -ENODEV;
941 }
942 phy_start(lp->phy_dev);
943 }
944
945 /* Enable interrupts for Axi DMA Tx */
946 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
947 if (ret)
948 goto err_tx_irq;
949 /* Enable interrupts for Axi DMA Rx */
950 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
951 if (ret)
952 goto err_rx_irq;
953 /* Enable tasklets for Axi DMA error handling */
954 tasklet_enable(&lp->dma_err_tasklet);
955 return 0;
956
957err_rx_irq:
958 free_irq(lp->tx_irq, ndev);
959err_tx_irq:
960 if (lp->phy_dev)
961 phy_disconnect(lp->phy_dev);
962 lp->phy_dev = NULL;
963 dev_err(lp->dev, "request_irq() failed\n");
964 return ret;
965}
966
967/**
968 * axienet_stop - Driver stop routine.
969 * @ndev: Pointer to net_device structure
970 *
971 * returns: 0, on success.
972 *
973 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
974 * device. It also removes the interrupt handlers and disables the interrupts.
975 * The Axi DMA Tx/Rx BDs are released.
976 */
977static int axienet_stop(struct net_device *ndev)
978{
979 u32 cr;
980 struct axienet_local *lp = netdev_priv(ndev);
981
982 dev_dbg(&ndev->dev, "axienet_close()\n");
983
984 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
985 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
986 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
987 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
988 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
989 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
990 axienet_setoptions(ndev, lp->options &
991 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
992
993 tasklet_disable(&lp->dma_err_tasklet);
994
995 free_irq(lp->tx_irq, ndev);
996 free_irq(lp->rx_irq, ndev);
997
998 if (lp->phy_dev)
999 phy_disconnect(lp->phy_dev);
1000 lp->phy_dev = NULL;
1001
1002 axienet_dma_bd_release(ndev);
1003 return 0;
1004}
1005
1006/**
1007 * axienet_change_mtu - Driver change mtu routine.
1008 * @ndev: Pointer to net_device structure
1009 * @new_mtu: New mtu value to be applied
1010 *
1011 * returns: Always returns 0 (success).
1012 *
1013 * This is the change mtu driver routine. It checks if the Axi Ethernet
1014 * hardware supports jumbo frames before changing the mtu. This can be
1015 * called only when the device is not up.
1016 */
1017static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1018{
1019 struct axienet_local *lp = netdev_priv(ndev);
1020
1021 if (netif_running(ndev))
1022 return -EBUSY;
1023 if (lp->jumbo_support) {
1024 if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1025 return -EINVAL;
1026 ndev->mtu = new_mtu;
1027 } else {
1028 if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1029 return -EINVAL;
1030 ndev->mtu = new_mtu;
1031 }
1032
1033 return 0;
1034}
1035
1036#ifdef CONFIG_NET_POLL_CONTROLLER
1037/**
1038 * axienet_poll_controller - Axi Ethernet poll mechanism.
1039 * @ndev: Pointer to net_device structure
1040 *
1041 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1042 * to polling the ISRs and are enabled back after the polling is done.
1043 */
1044static void axienet_poll_controller(struct net_device *ndev)
1045{
1046 struct axienet_local *lp = netdev_priv(ndev);
1047 disable_irq(lp->tx_irq);
1048 disable_irq(lp->rx_irq);
1049 axienet_rx_irq(lp->tx_irq, ndev);
1050 axienet_tx_irq(lp->rx_irq, ndev);
1051 enable_irq(lp->tx_irq);
1052 enable_irq(lp->rx_irq);
1053}
1054#endif
1055
1056static const struct net_device_ops axienet_netdev_ops = {
1057 .ndo_open = axienet_open,
1058 .ndo_stop = axienet_stop,
1059 .ndo_start_xmit = axienet_start_xmit,
1060 .ndo_change_mtu = axienet_change_mtu,
1061 .ndo_set_mac_address = netdev_set_mac_address,
1062 .ndo_validate_addr = eth_validate_addr,
1063 .ndo_set_rx_mode = axienet_set_multicast_list,
1064#ifdef CONFIG_NET_POLL_CONTROLLER
1065 .ndo_poll_controller = axienet_poll_controller,
1066#endif
1067};
1068
1069/**
1070 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1071 * @ndev: Pointer to net_device structure
1072 * @ecmd: Pointer to ethtool_cmd structure
1073 *
1074 * This implements ethtool command for getting PHY settings. If PHY could
1075 * not be found, the function returns -ENODEV. This function calls the
1076 * relevant PHY ethtool API to get the PHY settings.
1077 * Issue "ethtool ethX" under linux prompt to execute this function.
1078 */
1079static int axienet_ethtools_get_settings(struct net_device *ndev,
1080 struct ethtool_cmd *ecmd)
1081{
1082 struct axienet_local *lp = netdev_priv(ndev);
1083 struct phy_device *phydev = lp->phy_dev;
1084 if (!phydev)
1085 return -ENODEV;
1086 return phy_ethtool_gset(phydev, ecmd);
1087}
1088
1089/**
1090 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1091 * @ndev: Pointer to net_device structure
1092 * @ecmd: Pointer to ethtool_cmd structure
1093 *
1094 * This implements ethtool command for setting various PHY settings. If PHY
1095 * could not be found, the function returns -ENODEV. This function calls the
1096 * relevant PHY ethtool API to set the PHY.
1097 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1098 * function.
1099 */
1100static int axienet_ethtools_set_settings(struct net_device *ndev,
1101 struct ethtool_cmd *ecmd)
1102{
1103 struct axienet_local *lp = netdev_priv(ndev);
1104 struct phy_device *phydev = lp->phy_dev;
1105 if (!phydev)
1106 return -ENODEV;
1107 return phy_ethtool_sset(phydev, ecmd);
1108}
1109
1110/**
1111 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1112 * @ndev: Pointer to net_device structure
1113 * @ed: Pointer to ethtool_drvinfo structure
1114 *
1115 * This implements ethtool command for getting the driver information.
1116 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1117 */
1118static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1119 struct ethtool_drvinfo *ed)
1120{
1121 memset(ed, 0, sizeof(struct ethtool_drvinfo));
1122 strcpy(ed->driver, DRIVER_NAME);
1123 strcpy(ed->version, DRIVER_VERSION);
1124 ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1125}
1126
1127/**
1128 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1129 * AxiEthernet core.
1130 * @ndev: Pointer to net_device structure
1131 *
1132 * This implements ethtool command for getting the total register length
1133 * information.
1134 */
1135static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1136{
1137 return sizeof(u32) * AXIENET_REGS_N;
1138}
1139
1140/**
1141 * axienet_ethtools_get_regs - Dump the contents of all registers present
1142 * in AxiEthernet core.
1143 * @ndev: Pointer to net_device structure
1144 * @regs: Pointer to ethtool_regs structure
1145 * @ret: Void pointer used to return the contents of the registers.
1146 *
1147 * This implements ethtool command for getting the Axi Ethernet register dump.
1148 * Issue "ethtool -d ethX" to execute this function.
1149 */
1150static void axienet_ethtools_get_regs(struct net_device *ndev,
1151 struct ethtool_regs *regs, void *ret)
1152{
1153 u32 *data = (u32 *) ret;
1154 size_t len = sizeof(u32) * AXIENET_REGS_N;
1155 struct axienet_local *lp = netdev_priv(ndev);
1156
1157 regs->version = 0;
1158 regs->len = len;
1159
1160 memset(data, 0, len);
1161 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1162 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1163 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1164 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1165 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1166 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1167 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1168 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1169 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1170 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1171 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1172 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1173 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1174 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1175 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1176 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1177 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1178 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1179 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1180 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1181 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1182 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1183 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1184 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1185 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1186 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1187 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1188 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1189 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1190 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1191 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1192 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1193}
1194
1195/**
1196 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1197 * Tx and Rx paths.
1198 * @ndev: Pointer to net_device structure
1199 * @epauseparm: Pointer to ethtool_pauseparam structure.
1200 *
1201 * This implements ethtool command for getting axi ethernet pause frame
1202 * setting. Issue "ethtool -a ethX" to execute this function.
1203 */
1204static void
1205axienet_ethtools_get_pauseparam(struct net_device *ndev,
1206 struct ethtool_pauseparam *epauseparm)
1207{
1208 u32 regval;
1209 struct axienet_local *lp = netdev_priv(ndev);
1210 epauseparm->autoneg = 0;
1211 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1212 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1213 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1214}
1215
1216/**
1217 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1218 * settings.
1219 * @ndev: Pointer to net_device structure
1220 * @epauseparam:Pointer to ethtool_pauseparam structure
1221 *
1222 * This implements ethtool command for enabling flow control on Rx and Tx
1223 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1224 * function.
1225 */
1226static int
1227axienet_ethtools_set_pauseparam(struct net_device *ndev,
1228 struct ethtool_pauseparam *epauseparm)
1229{
1230 u32 regval = 0;
1231 struct axienet_local *lp = netdev_priv(ndev);
1232
1233 if (netif_running(ndev)) {
1234 printk(KERN_ERR "%s: Please stop netif before applying "
1235 "configruation\n", ndev->name);
1236 return -EFAULT;
1237 }
1238
1239 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1240 if (epauseparm->tx_pause)
1241 regval |= XAE_FCC_FCTX_MASK;
1242 else
1243 regval &= ~XAE_FCC_FCTX_MASK;
1244 if (epauseparm->rx_pause)
1245 regval |= XAE_FCC_FCRX_MASK;
1246 else
1247 regval &= ~XAE_FCC_FCRX_MASK;
1248 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1249
1250 return 0;
1251}
1252
1253/**
1254 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1255 * @ndev: Pointer to net_device structure
1256 * @ecoalesce: Pointer to ethtool_coalesce structure
1257 *
1258 * This implements ethtool command for getting the DMA interrupt coalescing
1259 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1260 * execute this function.
1261 */
1262static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1263 struct ethtool_coalesce *ecoalesce)
1264{
1265 u32 regval = 0;
1266 struct axienet_local *lp = netdev_priv(ndev);
1267 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1268 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1269 >> XAXIDMA_COALESCE_SHIFT;
1270 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1271 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1272 >> XAXIDMA_COALESCE_SHIFT;
1273 return 0;
1274}
1275
1276/**
1277 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1278 * @ndev: Pointer to net_device structure
1279 * @ecoalesce: Pointer to ethtool_coalesce structure
1280 *
1281 * This implements ethtool command for setting the DMA interrupt coalescing
1282 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1283 * prompt to execute this function.
1284 */
1285static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1286 struct ethtool_coalesce *ecoalesce)
1287{
1288 struct axienet_local *lp = netdev_priv(ndev);
1289
1290 if (netif_running(ndev)) {
1291 printk(KERN_ERR "%s: Please stop netif before applying "
1292 "configruation\n", ndev->name);
1293 return -EFAULT;
1294 }
1295
1296 if ((ecoalesce->rx_coalesce_usecs) ||
1297 (ecoalesce->rx_coalesce_usecs_irq) ||
1298 (ecoalesce->rx_max_coalesced_frames_irq) ||
1299 (ecoalesce->tx_coalesce_usecs) ||
1300 (ecoalesce->tx_coalesce_usecs_irq) ||
1301 (ecoalesce->tx_max_coalesced_frames_irq) ||
1302 (ecoalesce->stats_block_coalesce_usecs) ||
1303 (ecoalesce->use_adaptive_rx_coalesce) ||
1304 (ecoalesce->use_adaptive_tx_coalesce) ||
1305 (ecoalesce->pkt_rate_low) ||
1306 (ecoalesce->rx_coalesce_usecs_low) ||
1307 (ecoalesce->rx_max_coalesced_frames_low) ||
1308 (ecoalesce->tx_coalesce_usecs_low) ||
1309 (ecoalesce->tx_max_coalesced_frames_low) ||
1310 (ecoalesce->pkt_rate_high) ||
1311 (ecoalesce->rx_coalesce_usecs_high) ||
1312 (ecoalesce->rx_max_coalesced_frames_high) ||
1313 (ecoalesce->tx_coalesce_usecs_high) ||
1314 (ecoalesce->tx_max_coalesced_frames_high) ||
1315 (ecoalesce->rate_sample_interval))
1316 return -EOPNOTSUPP;
1317 if (ecoalesce->rx_max_coalesced_frames)
1318 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1319 if (ecoalesce->tx_max_coalesced_frames)
1320 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1321
1322 return 0;
1323}
1324
1325static struct ethtool_ops axienet_ethtool_ops = {
1326 .get_settings = axienet_ethtools_get_settings,
1327 .set_settings = axienet_ethtools_set_settings,
1328 .get_drvinfo = axienet_ethtools_get_drvinfo,
1329 .get_regs_len = axienet_ethtools_get_regs_len,
1330 .get_regs = axienet_ethtools_get_regs,
1331 .get_link = ethtool_op_get_link,
1332 .get_pauseparam = axienet_ethtools_get_pauseparam,
1333 .set_pauseparam = axienet_ethtools_set_pauseparam,
1334 .get_coalesce = axienet_ethtools_get_coalesce,
1335 .set_coalesce = axienet_ethtools_set_coalesce,
1336};
1337
1338/**
1339 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1340 * @data: Data passed
1341 *
1342 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1343 * Tx/Rx BDs.
1344 */
1345static void axienet_dma_err_handler(unsigned long data)
1346{
1347 u32 axienet_status;
1348 u32 cr, i;
1349 int mdio_mcreg;
1350 struct axienet_local *lp = (struct axienet_local *) data;
1351 struct net_device *ndev = lp->ndev;
1352 struct axidma_bd *cur_p;
1353
1354 axienet_setoptions(ndev, lp->options &
1355 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1356 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1357 axienet_mdio_wait_until_ready(lp);
1358 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1359 * When we do an Axi Ethernet reset, it resets the complete core
1360 * including the MDIO. So if MDIO is not disabled when the reset
1361 * process is started, MDIO will be broken afterwards. */
1362 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1363 ~XAE_MDIO_MC_MDIOEN_MASK));
1364
1365 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1366 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1367
1368 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1369 axienet_mdio_wait_until_ready(lp);
1370
1371 for (i = 0; i < TX_BD_NUM; i++) {
1372 cur_p = &lp->tx_bd_v[i];
1373 if (cur_p->phys)
1374 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1375 (cur_p->cntrl &
1376 XAXIDMA_BD_CTRL_LENGTH_MASK),
1377 DMA_TO_DEVICE);
1378 if (cur_p->app4)
1379 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1380 cur_p->phys = 0;
1381 cur_p->cntrl = 0;
1382 cur_p->status = 0;
1383 cur_p->app0 = 0;
1384 cur_p->app1 = 0;
1385 cur_p->app2 = 0;
1386 cur_p->app3 = 0;
1387 cur_p->app4 = 0;
1388 cur_p->sw_id_offset = 0;
1389 }
1390
1391 for (i = 0; i < RX_BD_NUM; i++) {
1392 cur_p = &lp->rx_bd_v[i];
1393 cur_p->status = 0;
1394 cur_p->app0 = 0;
1395 cur_p->app1 = 0;
1396 cur_p->app2 = 0;
1397 cur_p->app3 = 0;
1398 cur_p->app4 = 0;
1399 }
1400
1401 lp->tx_bd_ci = 0;
1402 lp->tx_bd_tail = 0;
1403 lp->rx_bd_ci = 0;
1404
1405 /* Start updating the Rx channel control register */
1406 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1407 /* Update the interrupt coalesce count */
1408 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1409 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1410 /* Update the delay timer count */
1411 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1412 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1413 /* Enable coalesce, delay timer and error interrupts */
1414 cr |= XAXIDMA_IRQ_ALL_MASK;
1415 /* Finally write to the Rx channel control register */
1416 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1417
1418 /* Start updating the Tx channel control register */
1419 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1420 /* Update the interrupt coalesce count */
1421 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1422 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1423 /* Update the delay timer count */
1424 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1425 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1426 /* Enable coalesce, delay timer and error interrupts */
1427 cr |= XAXIDMA_IRQ_ALL_MASK;
1428 /* Finally write to the Tx channel control register */
1429 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1430
1431 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1432 * halted state. This will make the Rx side ready for reception.*/
1433 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1434 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1435 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1436 cr | XAXIDMA_CR_RUNSTOP_MASK);
1437 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1438 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1439
1440 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1441 * Tx channel is now ready to run. But only after we write to the
1442 * tail pointer register that the Tx channel will start transmitting */
1443 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1444 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1445 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1446 cr | XAXIDMA_CR_RUNSTOP_MASK);
1447
1448 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1449 axienet_status &= ~XAE_RCW1_RX_MASK;
1450 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1451
1452 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1453 if (axienet_status & XAE_INT_RXRJECT_MASK)
1454 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1455 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1456
1457 /* Sync default options with HW but leave receiver and
1458 * transmitter disabled.*/
1459 axienet_setoptions(ndev, lp->options &
1460 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1461 axienet_set_mac_address(ndev, NULL);
1462 axienet_set_multicast_list(ndev);
1463 axienet_setoptions(ndev, lp->options);
1464}
1465
1466/**
1467 * axienet_of_probe - Axi Ethernet probe function.
1468 * @op: Pointer to platform device structure.
1469 * @match: Pointer to device id structure
1470 *
1471 * returns: 0, on success
1472 * Non-zero error value on failure.
1473 *
1474 * This is the probe routine for Axi Ethernet driver. This is called before
1475 * any other driver routines are invoked. It allocates and sets up the Ethernet
1476 * device. Parses through device tree and populates fields of
1477 * axienet_local. It registers the Ethernet device.
1478 */
1479static int __devinit axienet_of_probe(struct platform_device *op)
1480{
1481 __be32 *p;
1482 int size, ret = 0;
1483 struct device_node *np;
1484 struct axienet_local *lp;
1485 struct net_device *ndev;
1486 const void *addr;
1487
1488 ndev = alloc_etherdev(sizeof(*lp));
1489 if (!ndev)
1490 return -ENOMEM;
1491
1492 ether_setup(ndev);
1493 dev_set_drvdata(&op->dev, ndev);
1494
1495 SET_NETDEV_DEV(ndev, &op->dev);
1496 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1497 ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST;
1498 ndev->netdev_ops = &axienet_netdev_ops;
1499 ndev->ethtool_ops = &axienet_ethtool_ops;
1500
1501 lp = netdev_priv(ndev);
1502 lp->ndev = ndev;
1503 lp->dev = &op->dev;
1504 lp->options = XAE_OPTION_DEFAULTS;
1505 /* Map device registers */
1506 lp->regs = of_iomap(op->dev.of_node, 0);
1507 if (!lp->regs) {
1508 dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1509 goto nodev;
1510 }
1511 /* Setup checksum offload, but default to off if not specified */
1512 lp->features = 0;
1513
1514 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1515 if (p) {
1516 switch (be32_to_cpup(p)) {
1517 case 1:
1518 lp->csum_offload_on_tx_path =
1519 XAE_FEATURE_PARTIAL_TX_CSUM;
1520 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1521 /* Can checksum TCP/UDP over IPv4. */
1522 ndev->features |= NETIF_F_IP_CSUM;
1523 break;
1524 case 2:
1525 lp->csum_offload_on_tx_path =
1526 XAE_FEATURE_FULL_TX_CSUM;
1527 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1528 /* Can checksum TCP/UDP over IPv4. */
1529 ndev->features |= NETIF_F_IP_CSUM;
1530 break;
1531 default:
1532 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1533 }
1534 }
1535 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1536 if (p) {
1537 switch (be32_to_cpup(p)) {
1538 case 1:
1539 lp->csum_offload_on_rx_path =
1540 XAE_FEATURE_PARTIAL_RX_CSUM;
1541 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1542 break;
1543 case 2:
1544 lp->csum_offload_on_rx_path =
1545 XAE_FEATURE_FULL_RX_CSUM;
1546 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1547 break;
1548 default:
1549 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1550 }
1551 }
1552 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1553 * a larger Rx/Tx Memory. Typically, the size must be more than or
1554 * equal to 16384 bytes, so that we can enable jumbo option and start
1555 * supporting jumbo frames. Here we check for memory allocated for
1556 * Rx/Tx in the hardware from the device-tree and accordingly set
1557 * flags. */
1558 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1559 if (p) {
1560 if ((be32_to_cpup(p)) >= 0x4000)
1561 lp->jumbo_support = 1;
1562 }
1563 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1564 NULL);
1565 if (p)
1566 lp->temac_type = be32_to_cpup(p);
1567 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1568 if (p)
1569 lp->phy_type = be32_to_cpup(p);
1570
1571 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1572 np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1573 if (!np) {
1574 dev_err(&op->dev, "could not find DMA node\n");
1575 goto err_iounmap;
1576 }
1577 lp->dma_regs = of_iomap(np, 0);
1578 if (lp->dma_regs) {
1579 dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1580 } else {
1581 dev_err(&op->dev, "unable to map DMA registers\n");
1582 of_node_put(np);
1583 }
1584 lp->rx_irq = irq_of_parse_and_map(np, 1);
1585 lp->tx_irq = irq_of_parse_and_map(np, 0);
1586 of_node_put(np);
1587 if ((lp->rx_irq == NO_IRQ) || (lp->tx_irq == NO_IRQ)) {
1588 dev_err(&op->dev, "could not determine irqs\n");
1589 ret = -ENOMEM;
1590 goto err_iounmap_2;
1591 }
1592
1593 /* Retrieve the MAC address */
1594 addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1595 if ((!addr) || (size != 6)) {
1596 dev_err(&op->dev, "could not find MAC address\n");
1597 ret = -ENODEV;
1598 goto err_iounmap_2;
1599 }
1600 axienet_set_mac_address(ndev, (void *) addr);
1601
1602 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1603 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1604
1605 lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1606 ret = axienet_mdio_setup(lp, op->dev.of_node);
1607 if (ret)
1608 dev_warn(&op->dev, "error registering MDIO bus\n");
1609
1610 ret = register_netdev(lp->ndev);
1611 if (ret) {
1612 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1613 goto err_iounmap_2;
1614 }
1615
1616 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
1617 (unsigned long) lp);
1618 tasklet_disable(&lp->dma_err_tasklet);
1619
1620 return 0;
1621
1622err_iounmap_2:
1623 if (lp->dma_regs)
1624 iounmap(lp->dma_regs);
1625err_iounmap:
1626 iounmap(lp->regs);
1627nodev:
1628 free_netdev(ndev);
1629 ndev = NULL;
1630 return ret;
1631}
1632
1633static int __devexit axienet_of_remove(struct platform_device *op)
1634{
1635 struct net_device *ndev = dev_get_drvdata(&op->dev);
1636 struct axienet_local *lp = netdev_priv(ndev);
1637
1638 axienet_mdio_teardown(lp);
1639 unregister_netdev(ndev);
1640
1641 if (lp->phy_node)
1642 of_node_put(lp->phy_node);
1643 lp->phy_node = NULL;
1644
1645 dev_set_drvdata(&op->dev, NULL);
1646
1647 iounmap(lp->regs);
1648 if (lp->dma_regs)
1649 iounmap(lp->dma_regs);
1650 free_netdev(ndev);
1651
1652 return 0;
1653}
1654
1655static struct platform_driver axienet_of_driver = {
1656 .probe = axienet_of_probe,
1657 .remove = __devexit_p(axienet_of_remove),
1658 .driver = {
1659 .owner = THIS_MODULE,
1660 .name = "xilinx_axienet",
1661 .of_match_table = axienet_of_match,
1662 },
1663};
1664
1665module_platform_driver(axienet_of_driver);
1666
1667MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1668MODULE_AUTHOR("Xilinx");
1669MODULE_LICENSE("GPL");