Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * sonic.c
4 *
5 * (C) 2005 Finn Thain
6 *
7 * Converted to DMA API, added zero-copy buffer handling, and
8 * (from the mac68k project) introduced dhd's support for 16-bit cards.
9 *
10 * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
11 *
12 * This driver is based on work from Andreas Busse, but most of
13 * the code is rewritten.
14 *
15 * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
16 *
17 * Core code included by system sonic drivers
18 *
19 * And... partially rewritten again by David Huggins-Daines in order
20 * to cope with screwed up Macintosh NICs that may or may not use
21 * 16-bit DMA.
22 *
23 * (C) 1999 David Huggins-Daines <dhd@debian.org>
24 *
25 */
26
27/*
28 * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
29 * National Semiconductors data sheet for the DP83932B Sonic Ethernet
30 * controller, and the files "8390.c" and "skeleton.c" in this directory.
31 *
32 * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
33 * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
34 * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
35 */
36
37static unsigned int version_printed;
38
39static int sonic_debug = -1;
40module_param(sonic_debug, int, 0);
41MODULE_PARM_DESC(sonic_debug, "debug message level");
42
43static void sonic_msg_init(struct net_device *dev)
44{
45 struct sonic_local *lp = netdev_priv(dev);
46
47 lp->msg_enable = netif_msg_init(sonic_debug, 0);
48
49 if (version_printed++ == 0)
50 netif_dbg(lp, drv, dev, "%s", version);
51}
52
53static int sonic_alloc_descriptors(struct net_device *dev)
54{
55 struct sonic_local *lp = netdev_priv(dev);
56
57 /* Allocate a chunk of memory for the descriptors. Note that this
58 * must not cross a 64K boundary. It is smaller than one page which
59 * means that page alignment is a sufficient condition.
60 */
61 lp->descriptors =
62 dma_alloc_coherent(lp->device,
63 SIZEOF_SONIC_DESC *
64 SONIC_BUS_SCALE(lp->dma_bitmode),
65 &lp->descriptors_laddr, GFP_KERNEL);
66
67 if (!lp->descriptors)
68 return -ENOMEM;
69
70 lp->cda = lp->descriptors;
71 lp->tda = lp->cda + SIZEOF_SONIC_CDA *
72 SONIC_BUS_SCALE(lp->dma_bitmode);
73 lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
74 SONIC_BUS_SCALE(lp->dma_bitmode);
75 lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
76 SONIC_BUS_SCALE(lp->dma_bitmode);
77
78 lp->cda_laddr = lp->descriptors_laddr;
79 lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA *
80 SONIC_BUS_SCALE(lp->dma_bitmode);
81 lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
82 SONIC_BUS_SCALE(lp->dma_bitmode);
83 lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
84 SONIC_BUS_SCALE(lp->dma_bitmode);
85
86 return 0;
87}
88
89/*
90 * Open/initialize the SONIC controller.
91 *
92 * This routine should set everything up anew at each open, even
93 * registers that "should" only need to be set once at boot, so that
94 * there is non-reboot way to recover if something goes wrong.
95 */
96static int sonic_open(struct net_device *dev)
97{
98 struct sonic_local *lp = netdev_priv(dev);
99 int i;
100
101 netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
102
103 spin_lock_init(&lp->lock);
104
105 for (i = 0; i < SONIC_NUM_RRS; i++) {
106 struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
107 if (skb == NULL) {
108 while(i > 0) { /* free any that were allocated successfully */
109 i--;
110 dev_kfree_skb(lp->rx_skb[i]);
111 lp->rx_skb[i] = NULL;
112 }
113 printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
114 dev->name);
115 return -ENOMEM;
116 }
117 /* align IP header unless DMA requires otherwise */
118 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
119 skb_reserve(skb, 2);
120 lp->rx_skb[i] = skb;
121 }
122
123 for (i = 0; i < SONIC_NUM_RRS; i++) {
124 dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
125 SONIC_RBSIZE, DMA_FROM_DEVICE);
126 if (dma_mapping_error(lp->device, laddr)) {
127 while(i > 0) { /* free any that were mapped successfully */
128 i--;
129 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
130 lp->rx_laddr[i] = (dma_addr_t)0;
131 }
132 for (i = 0; i < SONIC_NUM_RRS; i++) {
133 dev_kfree_skb(lp->rx_skb[i]);
134 lp->rx_skb[i] = NULL;
135 }
136 printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
137 dev->name);
138 return -ENOMEM;
139 }
140 lp->rx_laddr[i] = laddr;
141 }
142
143 /*
144 * Initialize the SONIC
145 */
146 sonic_init(dev, true);
147
148 netif_start_queue(dev);
149
150 netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
151
152 return 0;
153}
154
155/* Wait for the SONIC to become idle. */
156static void sonic_quiesce(struct net_device *dev, u16 mask, bool may_sleep)
157{
158 struct sonic_local * __maybe_unused lp = netdev_priv(dev);
159 int i;
160 u16 bits;
161
162 for (i = 0; i < 1000; ++i) {
163 bits = SONIC_READ(SONIC_CMD) & mask;
164 if (!bits)
165 return;
166 if (!may_sleep)
167 udelay(20);
168 else
169 usleep_range(100, 200);
170 }
171 WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
172}
173
174/*
175 * Close the SONIC device
176 */
177static int sonic_close(struct net_device *dev)
178{
179 struct sonic_local *lp = netdev_priv(dev);
180 int i;
181
182 netif_dbg(lp, ifdown, dev, "%s\n", __func__);
183
184 netif_stop_queue(dev);
185
186 /*
187 * stop the SONIC, disable interrupts
188 */
189 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
190 sonic_quiesce(dev, SONIC_CR_ALL, true);
191
192 SONIC_WRITE(SONIC_IMR, 0);
193 SONIC_WRITE(SONIC_ISR, 0x7fff);
194 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
195
196 /* unmap and free skbs that haven't been transmitted */
197 for (i = 0; i < SONIC_NUM_TDS; i++) {
198 if(lp->tx_laddr[i]) {
199 dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
200 lp->tx_laddr[i] = (dma_addr_t)0;
201 }
202 if(lp->tx_skb[i]) {
203 dev_kfree_skb(lp->tx_skb[i]);
204 lp->tx_skb[i] = NULL;
205 }
206 }
207
208 /* unmap and free the receive buffers */
209 for (i = 0; i < SONIC_NUM_RRS; i++) {
210 if(lp->rx_laddr[i]) {
211 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
212 lp->rx_laddr[i] = (dma_addr_t)0;
213 }
214 if(lp->rx_skb[i]) {
215 dev_kfree_skb(lp->rx_skb[i]);
216 lp->rx_skb[i] = NULL;
217 }
218 }
219
220 return 0;
221}
222
223static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue)
224{
225 struct sonic_local *lp = netdev_priv(dev);
226 int i;
227 /*
228 * put the Sonic into software-reset mode and
229 * disable all interrupts before releasing DMA buffers
230 */
231 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
232 sonic_quiesce(dev, SONIC_CR_ALL, false);
233
234 SONIC_WRITE(SONIC_IMR, 0);
235 SONIC_WRITE(SONIC_ISR, 0x7fff);
236 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
237 /* We could resend the original skbs. Easier to re-initialise. */
238 for (i = 0; i < SONIC_NUM_TDS; i++) {
239 if(lp->tx_laddr[i]) {
240 dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
241 lp->tx_laddr[i] = (dma_addr_t)0;
242 }
243 if(lp->tx_skb[i]) {
244 dev_kfree_skb(lp->tx_skb[i]);
245 lp->tx_skb[i] = NULL;
246 }
247 }
248 /* Try to restart the adaptor. */
249 sonic_init(dev, false);
250 lp->stats.tx_errors++;
251 netif_trans_update(dev); /* prevent tx timeout */
252 netif_wake_queue(dev);
253}
254
255/*
256 * transmit packet
257 *
258 * Appends new TD during transmission thus avoiding any TX interrupts
259 * until we run out of TDs.
260 * This routine interacts closely with the ISR in that it may,
261 * set tx_skb[i]
262 * reset the status flags of the new TD
263 * set and reset EOL flags
264 * stop the tx queue
265 * The ISR interacts with this routine in various ways. It may,
266 * reset tx_skb[i]
267 * test the EOL and status flags of the TDs
268 * wake the tx queue
269 * Concurrently with all of this, the SONIC is potentially writing to
270 * the status flags of the TDs.
271 */
272
273static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
274{
275 struct sonic_local *lp = netdev_priv(dev);
276 dma_addr_t laddr;
277 int length;
278 int entry;
279 unsigned long flags;
280
281 netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
282
283 length = skb->len;
284 if (length < ETH_ZLEN) {
285 if (skb_padto(skb, ETH_ZLEN))
286 return NETDEV_TX_OK;
287 length = ETH_ZLEN;
288 }
289
290 /*
291 * Map the packet data into the logical DMA address space
292 */
293
294 laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
295 if (dma_mapping_error(lp->device, laddr)) {
296 pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
297 dev_kfree_skb_any(skb);
298 return NETDEV_TX_OK;
299 }
300
301 spin_lock_irqsave(&lp->lock, flags);
302
303 entry = (lp->eol_tx + 1) & SONIC_TDS_MASK;
304
305 sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */
306 sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */
307 sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
308 sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
309 sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
310 sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
311 sonic_tda_put(dev, entry, SONIC_TD_LINK,
312 sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
313
314 sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL &
315 sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK));
316
317 netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
318
319 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
320
321 lp->tx_len[entry] = length;
322 lp->tx_laddr[entry] = laddr;
323 lp->tx_skb[entry] = skb;
324
325 lp->eol_tx = entry;
326
327 entry = (entry + 1) & SONIC_TDS_MASK;
328 if (lp->tx_skb[entry]) {
329 /* The ring is full, the ISR has yet to process the next TD. */
330 netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
331 netif_stop_queue(dev);
332 /* after this packet, wait for ISR to free up some TDAs */
333 }
334
335 spin_unlock_irqrestore(&lp->lock, flags);
336
337 return NETDEV_TX_OK;
338}
339
340/*
341 * The typical workload of the driver:
342 * Handle the network interface interrupts.
343 */
344static irqreturn_t sonic_interrupt(int irq, void *dev_id)
345{
346 struct net_device *dev = dev_id;
347 struct sonic_local *lp = netdev_priv(dev);
348 int status;
349 unsigned long flags;
350
351 /* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
352 * with sonic_send_packet() so that the two functions can share state.
353 * Secondly, it makes sonic_interrupt() re-entrant, as that is required
354 * by macsonic which must use two IRQs with different priority levels.
355 */
356 spin_lock_irqsave(&lp->lock, flags);
357
358 status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
359 if (!status) {
360 spin_unlock_irqrestore(&lp->lock, flags);
361
362 return IRQ_NONE;
363 }
364
365 do {
366 SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
367
368 if (status & SONIC_INT_PKTRX) {
369 netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
370 sonic_rx(dev); /* got packet(s) */
371 }
372
373 if (status & SONIC_INT_TXDN) {
374 int entry = lp->cur_tx;
375 int td_status;
376 int freed_some = 0;
377
378 /* The state of a Transmit Descriptor may be inferred
379 * from { tx_skb[entry], td_status } as follows.
380 * { clear, clear } => the TD has never been used
381 * { set, clear } => the TD was handed to SONIC
382 * { set, set } => the TD was handed back
383 * { clear, set } => the TD is available for re-use
384 */
385
386 netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
387
388 while (lp->tx_skb[entry] != NULL) {
389 if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
390 break;
391
392 if (td_status & SONIC_TCR_PTX) {
393 lp->stats.tx_packets++;
394 lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
395 } else {
396 if (td_status & (SONIC_TCR_EXD |
397 SONIC_TCR_EXC | SONIC_TCR_BCM))
398 lp->stats.tx_aborted_errors++;
399 if (td_status &
400 (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
401 lp->stats.tx_carrier_errors++;
402 if (td_status & SONIC_TCR_OWC)
403 lp->stats.tx_window_errors++;
404 if (td_status & SONIC_TCR_FU)
405 lp->stats.tx_fifo_errors++;
406 }
407
408 /* We must free the original skb */
409 dev_consume_skb_irq(lp->tx_skb[entry]);
410 lp->tx_skb[entry] = NULL;
411 /* and unmap DMA buffer */
412 dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
413 lp->tx_laddr[entry] = (dma_addr_t)0;
414 freed_some = 1;
415
416 if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
417 entry = (entry + 1) & SONIC_TDS_MASK;
418 break;
419 }
420 entry = (entry + 1) & SONIC_TDS_MASK;
421 }
422
423 if (freed_some || lp->tx_skb[entry] == NULL)
424 netif_wake_queue(dev); /* The ring is no longer full */
425 lp->cur_tx = entry;
426 }
427
428 /*
429 * check error conditions
430 */
431 if (status & SONIC_INT_RFO) {
432 netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
433 __func__);
434 }
435 if (status & SONIC_INT_RDE) {
436 netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
437 __func__);
438 }
439 if (status & SONIC_INT_RBAE) {
440 netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
441 __func__);
442 }
443
444 /* counter overruns; all counters are 16bit wide */
445 if (status & SONIC_INT_FAE)
446 lp->stats.rx_frame_errors += 65536;
447 if (status & SONIC_INT_CRC)
448 lp->stats.rx_crc_errors += 65536;
449 if (status & SONIC_INT_MP)
450 lp->stats.rx_missed_errors += 65536;
451
452 /* transmit error */
453 if (status & SONIC_INT_TXER) {
454 u16 tcr = SONIC_READ(SONIC_TCR);
455
456 netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
457 __func__, tcr);
458
459 if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
460 SONIC_TCR_FU | SONIC_TCR_BCM)) {
461 /* Aborted transmission. Try again. */
462 netif_stop_queue(dev);
463 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
464 }
465 }
466
467 /* bus retry */
468 if (status & SONIC_INT_BR) {
469 printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
470 dev->name);
471 /* ... to help debug DMA problems causing endless interrupts. */
472 /* Bounce the eth interface to turn on the interrupt again. */
473 SONIC_WRITE(SONIC_IMR, 0);
474 }
475
476 status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
477 } while (status);
478
479 spin_unlock_irqrestore(&lp->lock, flags);
480
481 return IRQ_HANDLED;
482}
483
484/* Return the array index corresponding to a given Receive Buffer pointer. */
485static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
486 unsigned int last)
487{
488 unsigned int i = last;
489
490 do {
491 i = (i + 1) & SONIC_RRS_MASK;
492 if (addr == lp->rx_laddr[i])
493 return i;
494 } while (i != last);
495
496 return -ENOENT;
497}
498
499/* Allocate and map a new skb to be used as a receive buffer. */
500static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
501 struct sk_buff **new_skb, dma_addr_t *new_addr)
502{
503 *new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
504 if (!*new_skb)
505 return false;
506
507 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
508 skb_reserve(*new_skb, 2);
509
510 *new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
511 SONIC_RBSIZE, DMA_FROM_DEVICE);
512 if (dma_mapping_error(lp->device, *new_addr)) {
513 dev_kfree_skb(*new_skb);
514 *new_skb = NULL;
515 return false;
516 }
517
518 return true;
519}
520
521/* Place a new receive resource in the Receive Resource Area and update RWP. */
522static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
523 dma_addr_t old_addr, dma_addr_t new_addr)
524{
525 unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
526 unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
527 u32 buf;
528
529 /* The resources in the range [RRP, RWP) belong to the SONIC. This loop
530 * scans the other resources in the RRA, those in the range [RWP, RRP).
531 */
532 do {
533 buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
534 sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
535
536 if (buf == old_addr)
537 break;
538
539 entry = (entry + 1) & SONIC_RRS_MASK;
540 } while (entry != end);
541
542 WARN_ONCE(buf != old_addr, "failed to find resource!\n");
543
544 sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
545 sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
546
547 entry = (entry + 1) & SONIC_RRS_MASK;
548
549 SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
550}
551
552/*
553 * We have a good packet(s), pass it/them up the network stack.
554 */
555static void sonic_rx(struct net_device *dev)
556{
557 struct sonic_local *lp = netdev_priv(dev);
558 int entry = lp->cur_rx;
559 int prev_entry = lp->eol_rx;
560 bool rbe = false;
561
562 while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
563 u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
564
565 /* If the RD has LPKT set, the chip has finished with the RB */
566 if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
567 struct sk_buff *new_skb;
568 dma_addr_t new_laddr;
569 u32 addr = (sonic_rda_get(dev, entry,
570 SONIC_RD_PKTPTR_H) << 16) |
571 sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
572 int i = index_from_addr(lp, addr, entry);
573
574 if (i < 0) {
575 WARN_ONCE(1, "failed to find buffer!\n");
576 break;
577 }
578
579 if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
580 struct sk_buff *used_skb = lp->rx_skb[i];
581 int pkt_len;
582
583 /* Pass the used buffer up the stack */
584 dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
585 DMA_FROM_DEVICE);
586
587 pkt_len = sonic_rda_get(dev, entry,
588 SONIC_RD_PKTLEN);
589 skb_trim(used_skb, pkt_len);
590 used_skb->protocol = eth_type_trans(used_skb,
591 dev);
592 netif_rx(used_skb);
593 lp->stats.rx_packets++;
594 lp->stats.rx_bytes += pkt_len;
595
596 lp->rx_skb[i] = new_skb;
597 lp->rx_laddr[i] = new_laddr;
598 } else {
599 /* Failed to obtain a new buffer so re-use it */
600 new_laddr = addr;
601 lp->stats.rx_dropped++;
602 }
603 /* If RBE is already asserted when RWP advances then
604 * it's safe to clear RBE after processing this packet.
605 */
606 rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
607 sonic_update_rra(dev, lp, addr, new_laddr);
608 }
609 /*
610 * give back the descriptor
611 */
612 sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
613 sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
614
615 prev_entry = entry;
616 entry = (entry + 1) & SONIC_RDS_MASK;
617 }
618
619 lp->cur_rx = entry;
620
621 if (prev_entry != lp->eol_rx) {
622 /* Advance the EOL flag to put descriptors back into service */
623 sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
624 sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
625 sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
626 sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
627 lp->eol_rx = prev_entry;
628 }
629
630 if (rbe)
631 SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
632}
633
634
635/*
636 * Get the current statistics.
637 * This may be called with the device open or closed.
638 */
639static struct net_device_stats *sonic_get_stats(struct net_device *dev)
640{
641 struct sonic_local *lp = netdev_priv(dev);
642
643 /* read the tally counter from the SONIC and reset them */
644 lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
645 SONIC_WRITE(SONIC_CRCT, 0xffff);
646 lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
647 SONIC_WRITE(SONIC_FAET, 0xffff);
648 lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
649 SONIC_WRITE(SONIC_MPT, 0xffff);
650
651 return &lp->stats;
652}
653
654
655/*
656 * Set or clear the multicast filter for this adaptor.
657 */
658static void sonic_multicast_list(struct net_device *dev)
659{
660 struct sonic_local *lp = netdev_priv(dev);
661 unsigned int rcr;
662 struct netdev_hw_addr *ha;
663 unsigned char *addr;
664 int i;
665
666 rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
667 rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
668
669 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
670 rcr |= SONIC_RCR_PRO;
671 } else {
672 if ((dev->flags & IFF_ALLMULTI) ||
673 (netdev_mc_count(dev) > 15)) {
674 rcr |= SONIC_RCR_AMC;
675 } else {
676 unsigned long flags;
677
678 netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
679 netdev_mc_count(dev));
680 sonic_set_cam_enable(dev, 1); /* always enable our own address */
681 i = 1;
682 netdev_for_each_mc_addr(ha, dev) {
683 addr = ha->addr;
684 sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
685 sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
686 sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
687 sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
688 i++;
689 }
690 SONIC_WRITE(SONIC_CDC, 16);
691 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
692
693 /* LCAM and TXP commands can't be used simultaneously */
694 spin_lock_irqsave(&lp->lock, flags);
695 sonic_quiesce(dev, SONIC_CR_TXP, false);
696 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
697 sonic_quiesce(dev, SONIC_CR_LCAM, false);
698 spin_unlock_irqrestore(&lp->lock, flags);
699 }
700 }
701
702 netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
703
704 SONIC_WRITE(SONIC_RCR, rcr);
705}
706
707
708/*
709 * Initialize the SONIC ethernet controller.
710 */
711static int sonic_init(struct net_device *dev, bool may_sleep)
712{
713 struct sonic_local *lp = netdev_priv(dev);
714 int i;
715
716 /*
717 * put the Sonic into software-reset mode and
718 * disable all interrupts
719 */
720 SONIC_WRITE(SONIC_IMR, 0);
721 SONIC_WRITE(SONIC_ISR, 0x7fff);
722 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
723
724 /* While in reset mode, clear CAM Enable register */
725 SONIC_WRITE(SONIC_CE, 0);
726
727 /*
728 * clear software reset flag, disable receiver, clear and
729 * enable interrupts, then completely initialize the SONIC
730 */
731 SONIC_WRITE(SONIC_CMD, 0);
732 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
733 sonic_quiesce(dev, SONIC_CR_ALL, may_sleep);
734
735 /*
736 * initialize the receive resource area
737 */
738 netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
739 __func__);
740
741 for (i = 0; i < SONIC_NUM_RRS; i++) {
742 u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
743 u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
744 sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
745 sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
746 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
747 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
748 }
749
750 /* initialize all RRA registers */
751 SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
752 SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
753 SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
754 SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
755 SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
756 SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
757
758 /* load the resource pointers */
759 netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
760
761 SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
762 sonic_quiesce(dev, SONIC_CR_RRRA, may_sleep);
763
764 /*
765 * Initialize the receive descriptors so that they
766 * become a circular linked list, ie. let the last
767 * descriptor point to the first again.
768 */
769 netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
770 __func__);
771
772 for (i=0; i<SONIC_NUM_RDS; i++) {
773 sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
774 sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
775 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
776 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
777 sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
778 sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
779 sonic_rda_put(dev, i, SONIC_RD_LINK,
780 lp->rda_laddr +
781 ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
782 }
783 /* fix last descriptor */
784 sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
785 (lp->rda_laddr & 0xffff) | SONIC_EOL);
786 lp->eol_rx = SONIC_NUM_RDS - 1;
787 lp->cur_rx = 0;
788 SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
789 SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
790
791 /*
792 * initialize transmit descriptors
793 */
794 netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
795 __func__);
796
797 for (i = 0; i < SONIC_NUM_TDS; i++) {
798 sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
799 sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
800 sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
801 sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
802 sonic_tda_put(dev, i, SONIC_TD_LINK,
803 (lp->tda_laddr & 0xffff) +
804 (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
805 lp->tx_skb[i] = NULL;
806 }
807 /* fix last descriptor */
808 sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
809 (lp->tda_laddr & 0xffff));
810
811 SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
812 SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
813 lp->cur_tx = 0;
814 lp->eol_tx = SONIC_NUM_TDS - 1;
815
816 /*
817 * put our own address to CAM desc[0]
818 */
819 sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
820 sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
821 sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
822 sonic_set_cam_enable(dev, 1);
823
824 for (i = 0; i < 16; i++)
825 sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
826
827 /*
828 * initialize CAM registers
829 */
830 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
831 SONIC_WRITE(SONIC_CDC, 16);
832
833 /*
834 * load the CAM
835 */
836 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
837 sonic_quiesce(dev, SONIC_CR_LCAM, may_sleep);
838
839 /*
840 * enable receiver, disable loopback
841 * and enable all interrupts
842 */
843 SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
844 SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
845 SONIC_WRITE(SONIC_ISR, 0x7fff);
846 SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
847 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
848
849 netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
850 SONIC_READ(SONIC_CMD));
851
852 return 0;
853}
854
855MODULE_LICENSE("GPL");
1/*
2 * sonic.c
3 *
4 * (C) 2005 Finn Thain
5 *
6 * Converted to DMA API, added zero-copy buffer handling, and
7 * (from the mac68k project) introduced dhd's support for 16-bit cards.
8 *
9 * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
10 *
11 * This driver is based on work from Andreas Busse, but most of
12 * the code is rewritten.
13 *
14 * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
15 *
16 * Core code included by system sonic drivers
17 *
18 * And... partially rewritten again by David Huggins-Daines in order
19 * to cope with screwed up Macintosh NICs that may or may not use
20 * 16-bit DMA.
21 *
22 * (C) 1999 David Huggins-Daines <dhd@debian.org>
23 *
24 */
25
26/*
27 * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
28 * National Semiconductors data sheet for the DP83932B Sonic Ethernet
29 * controller, and the files "8390.c" and "skeleton.c" in this directory.
30 *
31 * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
32 * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
33 * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
34 */
35
36
37
38/*
39 * Open/initialize the SONIC controller.
40 *
41 * This routine should set everything up anew at each open, even
42 * registers that "should" only need to be set once at boot, so that
43 * there is non-reboot way to recover if something goes wrong.
44 */
45static int sonic_open(struct net_device *dev)
46{
47 struct sonic_local *lp = netdev_priv(dev);
48 int i;
49
50 if (sonic_debug > 2)
51 printk("sonic_open: initializing sonic driver.\n");
52
53 for (i = 0; i < SONIC_NUM_RRS; i++) {
54 struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
55 if (skb == NULL) {
56 while(i > 0) { /* free any that were allocated successfully */
57 i--;
58 dev_kfree_skb(lp->rx_skb[i]);
59 lp->rx_skb[i] = NULL;
60 }
61 printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
62 dev->name);
63 return -ENOMEM;
64 }
65 /* align IP header unless DMA requires otherwise */
66 if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
67 skb_reserve(skb, 2);
68 lp->rx_skb[i] = skb;
69 }
70
71 for (i = 0; i < SONIC_NUM_RRS; i++) {
72 dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
73 SONIC_RBSIZE, DMA_FROM_DEVICE);
74 if (!laddr) {
75 while(i > 0) { /* free any that were mapped successfully */
76 i--;
77 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
78 lp->rx_laddr[i] = (dma_addr_t)0;
79 }
80 for (i = 0; i < SONIC_NUM_RRS; i++) {
81 dev_kfree_skb(lp->rx_skb[i]);
82 lp->rx_skb[i] = NULL;
83 }
84 printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
85 dev->name);
86 return -ENOMEM;
87 }
88 lp->rx_laddr[i] = laddr;
89 }
90
91 /*
92 * Initialize the SONIC
93 */
94 sonic_init(dev);
95
96 netif_start_queue(dev);
97
98 if (sonic_debug > 2)
99 printk("sonic_open: Initialization done.\n");
100
101 return 0;
102}
103
104
105/*
106 * Close the SONIC device
107 */
108static int sonic_close(struct net_device *dev)
109{
110 struct sonic_local *lp = netdev_priv(dev);
111 int i;
112
113 if (sonic_debug > 2)
114 printk("sonic_close\n");
115
116 netif_stop_queue(dev);
117
118 /*
119 * stop the SONIC, disable interrupts
120 */
121 SONIC_WRITE(SONIC_IMR, 0);
122 SONIC_WRITE(SONIC_ISR, 0x7fff);
123 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
124
125 /* unmap and free skbs that haven't been transmitted */
126 for (i = 0; i < SONIC_NUM_TDS; i++) {
127 if(lp->tx_laddr[i]) {
128 dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
129 lp->tx_laddr[i] = (dma_addr_t)0;
130 }
131 if(lp->tx_skb[i]) {
132 dev_kfree_skb(lp->tx_skb[i]);
133 lp->tx_skb[i] = NULL;
134 }
135 }
136
137 /* unmap and free the receive buffers */
138 for (i = 0; i < SONIC_NUM_RRS; i++) {
139 if(lp->rx_laddr[i]) {
140 dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
141 lp->rx_laddr[i] = (dma_addr_t)0;
142 }
143 if(lp->rx_skb[i]) {
144 dev_kfree_skb(lp->rx_skb[i]);
145 lp->rx_skb[i] = NULL;
146 }
147 }
148
149 return 0;
150}
151
152static void sonic_tx_timeout(struct net_device *dev)
153{
154 struct sonic_local *lp = netdev_priv(dev);
155 int i;
156 /*
157 * put the Sonic into software-reset mode and
158 * disable all interrupts before releasing DMA buffers
159 */
160 SONIC_WRITE(SONIC_IMR, 0);
161 SONIC_WRITE(SONIC_ISR, 0x7fff);
162 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
163 /* We could resend the original skbs. Easier to re-initialise. */
164 for (i = 0; i < SONIC_NUM_TDS; i++) {
165 if(lp->tx_laddr[i]) {
166 dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
167 lp->tx_laddr[i] = (dma_addr_t)0;
168 }
169 if(lp->tx_skb[i]) {
170 dev_kfree_skb(lp->tx_skb[i]);
171 lp->tx_skb[i] = NULL;
172 }
173 }
174 /* Try to restart the adaptor. */
175 sonic_init(dev);
176 lp->stats.tx_errors++;
177 dev->trans_start = jiffies; /* prevent tx timeout */
178 netif_wake_queue(dev);
179}
180
181/*
182 * transmit packet
183 *
184 * Appends new TD during transmission thus avoiding any TX interrupts
185 * until we run out of TDs.
186 * This routine interacts closely with the ISR in that it may,
187 * set tx_skb[i]
188 * reset the status flags of the new TD
189 * set and reset EOL flags
190 * stop the tx queue
191 * The ISR interacts with this routine in various ways. It may,
192 * reset tx_skb[i]
193 * test the EOL and status flags of the TDs
194 * wake the tx queue
195 * Concurrently with all of this, the SONIC is potentially writing to
196 * the status flags of the TDs.
197 * Until some mutual exclusion is added, this code will not work with SMP. However,
198 * MIPS Jazz machines and m68k Macs were all uni-processor machines.
199 */
200
201static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
202{
203 struct sonic_local *lp = netdev_priv(dev);
204 dma_addr_t laddr;
205 int length;
206 int entry = lp->next_tx;
207
208 if (sonic_debug > 2)
209 printk("sonic_send_packet: skb=%p, dev=%p\n", skb, dev);
210
211 length = skb->len;
212 if (length < ETH_ZLEN) {
213 if (skb_padto(skb, ETH_ZLEN))
214 return NETDEV_TX_OK;
215 length = ETH_ZLEN;
216 }
217
218 /*
219 * Map the packet data into the logical DMA address space
220 */
221
222 laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
223 if (!laddr) {
224 printk(KERN_ERR "%s: failed to map tx DMA buffer.\n", dev->name);
225 dev_kfree_skb(skb);
226 return NETDEV_TX_BUSY;
227 }
228
229 sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0); /* clear status */
230 sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1); /* single fragment */
231 sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
232 sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
233 sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
234 sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
235 sonic_tda_put(dev, entry, SONIC_TD_LINK,
236 sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
237
238 /*
239 * Must set tx_skb[entry] only after clearing status, and
240 * before clearing EOL and before stopping queue
241 */
242 wmb();
243 lp->tx_len[entry] = length;
244 lp->tx_laddr[entry] = laddr;
245 lp->tx_skb[entry] = skb;
246
247 wmb();
248 sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK,
249 sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK) & ~SONIC_EOL);
250 lp->eol_tx = entry;
251
252 lp->next_tx = (entry + 1) & SONIC_TDS_MASK;
253 if (lp->tx_skb[lp->next_tx] != NULL) {
254 /* The ring is full, the ISR has yet to process the next TD. */
255 if (sonic_debug > 3)
256 printk("%s: stopping queue\n", dev->name);
257 netif_stop_queue(dev);
258 /* after this packet, wait for ISR to free up some TDAs */
259 } else netif_start_queue(dev);
260
261 if (sonic_debug > 2)
262 printk("sonic_send_packet: issuing Tx command\n");
263
264 SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
265
266 return NETDEV_TX_OK;
267}
268
269/*
270 * The typical workload of the driver:
271 * Handle the network interface interrupts.
272 */
273static irqreturn_t sonic_interrupt(int irq, void *dev_id)
274{
275 struct net_device *dev = dev_id;
276 struct sonic_local *lp = netdev_priv(dev);
277 int status;
278
279 if (!(status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT))
280 return IRQ_NONE;
281
282 do {
283 if (status & SONIC_INT_PKTRX) {
284 if (sonic_debug > 2)
285 printk("%s: packet rx\n", dev->name);
286 sonic_rx(dev); /* got packet(s) */
287 SONIC_WRITE(SONIC_ISR, SONIC_INT_PKTRX); /* clear the interrupt */
288 }
289
290 if (status & SONIC_INT_TXDN) {
291 int entry = lp->cur_tx;
292 int td_status;
293 int freed_some = 0;
294
295 /* At this point, cur_tx is the index of a TD that is one of:
296 * unallocated/freed (status set & tx_skb[entry] clear)
297 * allocated and sent (status set & tx_skb[entry] set )
298 * allocated and not yet sent (status clear & tx_skb[entry] set )
299 * still being allocated by sonic_send_packet (status clear & tx_skb[entry] clear)
300 */
301
302 if (sonic_debug > 2)
303 printk("%s: tx done\n", dev->name);
304
305 while (lp->tx_skb[entry] != NULL) {
306 if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
307 break;
308
309 if (td_status & 0x0001) {
310 lp->stats.tx_packets++;
311 lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
312 } else {
313 lp->stats.tx_errors++;
314 if (td_status & 0x0642)
315 lp->stats.tx_aborted_errors++;
316 if (td_status & 0x0180)
317 lp->stats.tx_carrier_errors++;
318 if (td_status & 0x0020)
319 lp->stats.tx_window_errors++;
320 if (td_status & 0x0004)
321 lp->stats.tx_fifo_errors++;
322 }
323
324 /* We must free the original skb */
325 dev_kfree_skb_irq(lp->tx_skb[entry]);
326 lp->tx_skb[entry] = NULL;
327 /* and unmap DMA buffer */
328 dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
329 lp->tx_laddr[entry] = (dma_addr_t)0;
330 freed_some = 1;
331
332 if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
333 entry = (entry + 1) & SONIC_TDS_MASK;
334 break;
335 }
336 entry = (entry + 1) & SONIC_TDS_MASK;
337 }
338
339 if (freed_some || lp->tx_skb[entry] == NULL)
340 netif_wake_queue(dev); /* The ring is no longer full */
341 lp->cur_tx = entry;
342 SONIC_WRITE(SONIC_ISR, SONIC_INT_TXDN); /* clear the interrupt */
343 }
344
345 /*
346 * check error conditions
347 */
348 if (status & SONIC_INT_RFO) {
349 if (sonic_debug > 1)
350 printk("%s: rx fifo overrun\n", dev->name);
351 lp->stats.rx_fifo_errors++;
352 SONIC_WRITE(SONIC_ISR, SONIC_INT_RFO); /* clear the interrupt */
353 }
354 if (status & SONIC_INT_RDE) {
355 if (sonic_debug > 1)
356 printk("%s: rx descriptors exhausted\n", dev->name);
357 lp->stats.rx_dropped++;
358 SONIC_WRITE(SONIC_ISR, SONIC_INT_RDE); /* clear the interrupt */
359 }
360 if (status & SONIC_INT_RBAE) {
361 if (sonic_debug > 1)
362 printk("%s: rx buffer area exceeded\n", dev->name);
363 lp->stats.rx_dropped++;
364 SONIC_WRITE(SONIC_ISR, SONIC_INT_RBAE); /* clear the interrupt */
365 }
366
367 /* counter overruns; all counters are 16bit wide */
368 if (status & SONIC_INT_FAE) {
369 lp->stats.rx_frame_errors += 65536;
370 SONIC_WRITE(SONIC_ISR, SONIC_INT_FAE); /* clear the interrupt */
371 }
372 if (status & SONIC_INT_CRC) {
373 lp->stats.rx_crc_errors += 65536;
374 SONIC_WRITE(SONIC_ISR, SONIC_INT_CRC); /* clear the interrupt */
375 }
376 if (status & SONIC_INT_MP) {
377 lp->stats.rx_missed_errors += 65536;
378 SONIC_WRITE(SONIC_ISR, SONIC_INT_MP); /* clear the interrupt */
379 }
380
381 /* transmit error */
382 if (status & SONIC_INT_TXER) {
383 if ((SONIC_READ(SONIC_TCR) & SONIC_TCR_FU) && (sonic_debug > 2))
384 printk(KERN_ERR "%s: tx fifo underrun\n", dev->name);
385 SONIC_WRITE(SONIC_ISR, SONIC_INT_TXER); /* clear the interrupt */
386 }
387
388 /* bus retry */
389 if (status & SONIC_INT_BR) {
390 printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
391 dev->name);
392 /* ... to help debug DMA problems causing endless interrupts. */
393 /* Bounce the eth interface to turn on the interrupt again. */
394 SONIC_WRITE(SONIC_IMR, 0);
395 SONIC_WRITE(SONIC_ISR, SONIC_INT_BR); /* clear the interrupt */
396 }
397
398 /* load CAM done */
399 if (status & SONIC_INT_LCD)
400 SONIC_WRITE(SONIC_ISR, SONIC_INT_LCD); /* clear the interrupt */
401 } while((status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT));
402 return IRQ_HANDLED;
403}
404
405/*
406 * We have a good packet(s), pass it/them up the network stack.
407 */
408static void sonic_rx(struct net_device *dev)
409{
410 struct sonic_local *lp = netdev_priv(dev);
411 int status;
412 int entry = lp->cur_rx;
413
414 while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
415 struct sk_buff *used_skb;
416 struct sk_buff *new_skb;
417 dma_addr_t new_laddr;
418 u16 bufadr_l;
419 u16 bufadr_h;
420 int pkt_len;
421
422 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
423 if (status & SONIC_RCR_PRX) {
424 /* Malloc up new buffer. */
425 new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
426 if (new_skb == NULL) {
427 printk(KERN_ERR "%s: Memory squeeze, dropping packet.\n", dev->name);
428 lp->stats.rx_dropped++;
429 break;
430 }
431 /* provide 16 byte IP header alignment unless DMA requires otherwise */
432 if(SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
433 skb_reserve(new_skb, 2);
434
435 new_laddr = dma_map_single(lp->device, skb_put(new_skb, SONIC_RBSIZE),
436 SONIC_RBSIZE, DMA_FROM_DEVICE);
437 if (!new_laddr) {
438 dev_kfree_skb(new_skb);
439 printk(KERN_ERR "%s: Failed to map rx buffer, dropping packet.\n", dev->name);
440 lp->stats.rx_dropped++;
441 break;
442 }
443
444 /* now we have a new skb to replace it, pass the used one up the stack */
445 dma_unmap_single(lp->device, lp->rx_laddr[entry], SONIC_RBSIZE, DMA_FROM_DEVICE);
446 used_skb = lp->rx_skb[entry];
447 pkt_len = sonic_rda_get(dev, entry, SONIC_RD_PKTLEN);
448 skb_trim(used_skb, pkt_len);
449 used_skb->protocol = eth_type_trans(used_skb, dev);
450 netif_rx(used_skb);
451 lp->stats.rx_packets++;
452 lp->stats.rx_bytes += pkt_len;
453
454 /* and insert the new skb */
455 lp->rx_laddr[entry] = new_laddr;
456 lp->rx_skb[entry] = new_skb;
457
458 bufadr_l = (unsigned long)new_laddr & 0xffff;
459 bufadr_h = (unsigned long)new_laddr >> 16;
460 sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, bufadr_l);
461 sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, bufadr_h);
462 } else {
463 /* This should only happen, if we enable accepting broken packets. */
464 lp->stats.rx_errors++;
465 if (status & SONIC_RCR_FAER)
466 lp->stats.rx_frame_errors++;
467 if (status & SONIC_RCR_CRCR)
468 lp->stats.rx_crc_errors++;
469 }
470 if (status & SONIC_RCR_LPKT) {
471 /*
472 * this was the last packet out of the current receive buffer
473 * give the buffer back to the SONIC
474 */
475 lp->cur_rwp += SIZEOF_SONIC_RR * SONIC_BUS_SCALE(lp->dma_bitmode);
476 if (lp->cur_rwp >= lp->rra_end) lp->cur_rwp = lp->rra_laddr & 0xffff;
477 SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
478 if (SONIC_READ(SONIC_ISR) & SONIC_INT_RBE) {
479 if (sonic_debug > 2)
480 printk("%s: rx buffer exhausted\n", dev->name);
481 SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE); /* clear the flag */
482 }
483 } else
484 printk(KERN_ERR "%s: rx desc without RCR_LPKT. Shouldn't happen !?\n",
485 dev->name);
486 /*
487 * give back the descriptor
488 */
489 sonic_rda_put(dev, entry, SONIC_RD_LINK,
490 sonic_rda_get(dev, entry, SONIC_RD_LINK) | SONIC_EOL);
491 sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
492 sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK,
493 sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK) & ~SONIC_EOL);
494 lp->eol_rx = entry;
495 lp->cur_rx = entry = (entry + 1) & SONIC_RDS_MASK;
496 }
497 /*
498 * If any worth-while packets have been received, netif_rx()
499 * has done a mark_bh(NET_BH) for us and will work on them
500 * when we get to the bottom-half routine.
501 */
502}
503
504
505/*
506 * Get the current statistics.
507 * This may be called with the device open or closed.
508 */
509static struct net_device_stats *sonic_get_stats(struct net_device *dev)
510{
511 struct sonic_local *lp = netdev_priv(dev);
512
513 /* read the tally counter from the SONIC and reset them */
514 lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
515 SONIC_WRITE(SONIC_CRCT, 0xffff);
516 lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
517 SONIC_WRITE(SONIC_FAET, 0xffff);
518 lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
519 SONIC_WRITE(SONIC_MPT, 0xffff);
520
521 return &lp->stats;
522}
523
524
525/*
526 * Set or clear the multicast filter for this adaptor.
527 */
528static void sonic_multicast_list(struct net_device *dev)
529{
530 struct sonic_local *lp = netdev_priv(dev);
531 unsigned int rcr;
532 struct netdev_hw_addr *ha;
533 unsigned char *addr;
534 int i;
535
536 rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
537 rcr |= SONIC_RCR_BRD; /* accept broadcast packets */
538
539 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
540 rcr |= SONIC_RCR_PRO;
541 } else {
542 if ((dev->flags & IFF_ALLMULTI) ||
543 (netdev_mc_count(dev) > 15)) {
544 rcr |= SONIC_RCR_AMC;
545 } else {
546 if (sonic_debug > 2)
547 printk("sonic_multicast_list: mc_count %d\n",
548 netdev_mc_count(dev));
549 sonic_set_cam_enable(dev, 1); /* always enable our own address */
550 i = 1;
551 netdev_for_each_mc_addr(ha, dev) {
552 addr = ha->addr;
553 sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
554 sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
555 sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
556 sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
557 i++;
558 }
559 SONIC_WRITE(SONIC_CDC, 16);
560 /* issue Load CAM command */
561 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
562 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
563 }
564 }
565
566 if (sonic_debug > 2)
567 printk("sonic_multicast_list: setting RCR=%x\n", rcr);
568
569 SONIC_WRITE(SONIC_RCR, rcr);
570}
571
572
573/*
574 * Initialize the SONIC ethernet controller.
575 */
576static int sonic_init(struct net_device *dev)
577{
578 unsigned int cmd;
579 struct sonic_local *lp = netdev_priv(dev);
580 int i;
581
582 /*
583 * put the Sonic into software-reset mode and
584 * disable all interrupts
585 */
586 SONIC_WRITE(SONIC_IMR, 0);
587 SONIC_WRITE(SONIC_ISR, 0x7fff);
588 SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
589
590 /*
591 * clear software reset flag, disable receiver, clear and
592 * enable interrupts, then completely initialize the SONIC
593 */
594 SONIC_WRITE(SONIC_CMD, 0);
595 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
596
597 /*
598 * initialize the receive resource area
599 */
600 if (sonic_debug > 2)
601 printk("sonic_init: initialize receive resource area\n");
602
603 for (i = 0; i < SONIC_NUM_RRS; i++) {
604 u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
605 u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
606 sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
607 sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
608 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
609 sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
610 }
611
612 /* initialize all RRA registers */
613 lp->rra_end = (lp->rra_laddr + SONIC_NUM_RRS * SIZEOF_SONIC_RR *
614 SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
615 lp->cur_rwp = (lp->rra_laddr + (SONIC_NUM_RRS - 1) * SIZEOF_SONIC_RR *
616 SONIC_BUS_SCALE(lp->dma_bitmode)) & 0xffff;
617
618 SONIC_WRITE(SONIC_RSA, lp->rra_laddr & 0xffff);
619 SONIC_WRITE(SONIC_REA, lp->rra_end);
620 SONIC_WRITE(SONIC_RRP, lp->rra_laddr & 0xffff);
621 SONIC_WRITE(SONIC_RWP, lp->cur_rwp);
622 SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
623 SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
624
625 /* load the resource pointers */
626 if (sonic_debug > 3)
627 printk("sonic_init: issuing RRRA command\n");
628
629 SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
630 i = 0;
631 while (i++ < 100) {
632 if (SONIC_READ(SONIC_CMD) & SONIC_CR_RRRA)
633 break;
634 }
635
636 if (sonic_debug > 2)
637 printk("sonic_init: status=%x i=%d\n", SONIC_READ(SONIC_CMD), i);
638
639 /*
640 * Initialize the receive descriptors so that they
641 * become a circular linked list, ie. let the last
642 * descriptor point to the first again.
643 */
644 if (sonic_debug > 2)
645 printk("sonic_init: initialize receive descriptors\n");
646 for (i=0; i<SONIC_NUM_RDS; i++) {
647 sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
648 sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
649 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
650 sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
651 sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
652 sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
653 sonic_rda_put(dev, i, SONIC_RD_LINK,
654 lp->rda_laddr +
655 ((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
656 }
657 /* fix last descriptor */
658 sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
659 (lp->rda_laddr & 0xffff) | SONIC_EOL);
660 lp->eol_rx = SONIC_NUM_RDS - 1;
661 lp->cur_rx = 0;
662 SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
663 SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
664
665 /*
666 * initialize transmit descriptors
667 */
668 if (sonic_debug > 2)
669 printk("sonic_init: initialize transmit descriptors\n");
670 for (i = 0; i < SONIC_NUM_TDS; i++) {
671 sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
672 sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
673 sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
674 sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
675 sonic_tda_put(dev, i, SONIC_TD_LINK,
676 (lp->tda_laddr & 0xffff) +
677 (i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
678 lp->tx_skb[i] = NULL;
679 }
680 /* fix last descriptor */
681 sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
682 (lp->tda_laddr & 0xffff));
683
684 SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
685 SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
686 lp->cur_tx = lp->next_tx = 0;
687 lp->eol_tx = SONIC_NUM_TDS - 1;
688
689 /*
690 * put our own address to CAM desc[0]
691 */
692 sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
693 sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
694 sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
695 sonic_set_cam_enable(dev, 1);
696
697 for (i = 0; i < 16; i++)
698 sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
699
700 /*
701 * initialize CAM registers
702 */
703 SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
704 SONIC_WRITE(SONIC_CDC, 16);
705
706 /*
707 * load the CAM
708 */
709 SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
710
711 i = 0;
712 while (i++ < 100) {
713 if (SONIC_READ(SONIC_ISR) & SONIC_INT_LCD)
714 break;
715 }
716 if (sonic_debug > 2) {
717 printk("sonic_init: CMD=%x, ISR=%x\n, i=%d",
718 SONIC_READ(SONIC_CMD), SONIC_READ(SONIC_ISR), i);
719 }
720
721 /*
722 * enable receiver, disable loopback
723 * and enable all interrupts
724 */
725 SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN | SONIC_CR_STP);
726 SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
727 SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
728 SONIC_WRITE(SONIC_ISR, 0x7fff);
729 SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
730
731 cmd = SONIC_READ(SONIC_CMD);
732 if ((cmd & SONIC_CR_RXEN) == 0 || (cmd & SONIC_CR_STP) == 0)
733 printk(KERN_ERR "sonic_init: failed, status=%x\n", cmd);
734
735 if (sonic_debug > 2)
736 printk("sonic_init: new status=%x\n",
737 SONIC_READ(SONIC_CMD));
738
739 return 0;
740}
741
742MODULE_LICENSE("GPL");